Sample records for age-ice age difference

  1. Differences Between Surface Ice Deposits at the Poles of Mercury and the Moon: Insights into Ages of the Ice

    NASA Astrophysics Data System (ADS)

    Deutsch, A. N.; Head, J. W.; Neumann, G. A.

    2018-05-01

    The poles of Mercury and the Moon both show evidence for water ice, but the deposits on Mercury have a greater areal distribution and a more pure concentration. We explore how these differences may be related to the ages of the ice.

  2. Visual-Stratigraphic Dating of the GISP2 Ice Core: Basis, Reproducibility, and Application

    NASA Technical Reports Server (NTRS)

    Alley, R. B.; Shuman, C. A.; Meese, D. A.; Gow, A. J.; Taylor, K. C.; Cuffey, K. M.; Fitzpatrick, J. J.; Grootes, P. M.; Zielinski, G. A.; Ram, M.; hide

    1997-01-01

    Annual layers are visible in the Greenland Ice Sheet Project 2 ice core from central Greenland, allowing rapid dating of the core. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the ice correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene ice. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan ice-age ice and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for ice older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle ice" or many other core-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the core by dedicated observers.

  3. Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Shuman, C. A.; Meese, D. A.; Gow, A. J.; Taylor, K. C.; Cuffey, K. M.; Fitzpatrick, J. J.; Grootes, P. M.; Zielinski, G. A.; Ram, M.; Spinelli, G.; Elder, B.

    1997-11-01

    Annual layers are visible in the Greenland Ice Sheet Project 2 ice core from central Greenland, allowing rapid dating of the core. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the ice correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene ice. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan ice-age ice and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for ice older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle ice" or many other core-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the core by dedicated observers.

  4. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We propose an improved algorithm for sea ice age computation based on combination of sea ice drift and concentration, both derived from satellite measurements. The base sea ice drift product is from the Ocean and Sea Ice Satellite Application Facility (EUMETSAT OSI-SAF, Lavergne et al., 2011). This operational product was recently upgraded to also process ice drift during the summer season [http://osisaf.met.no/]. . The Sea Ice Concentration product from the ESA Sea Ice Climate Change Initiative (ESA SI CCI) project is used to adjust the partial concentrations at every advection step [http://esa-cci.nersc.no/]. Each grid cell is characterised by its partial concentration of water and ice of different ages. Also, sea ice convergence and divergence are used to realistically adjust the ratio of young ice / multi year ice. Comparison of results from this new algorithm with results derived from drifting ice buoys deployed in 2013 - 2016 demonstrates clear improvement in the ice age estimation. The spatial distribution of sea ice age in the new product compares better to the Sea Ice Type derived from satellite passive microwave and scatterometer measurements, both with regard to the decreased patchiness and the shape. The new ice age algorithm is developed in the context of the ESA CCI, and is designed for production of more accurate sea ice age climate data records in the future.

  5. Dating an 800,000 year Antarctic ice core record using the isotopic composition of trapped air

    NASA Astrophysics Data System (ADS)

    Dreyfus, Gabrielle Boissier

    Here we measure the isotopic composition of air trapped in the European Project for Ice Coring in Antarctica Dome C (EDC) ice core, and use this geochemical information to improve the ice core agescale and our understanding of air enclosure processes. A first result is the detection of a flow anomaly in the bottom 500m of the EDC ice core using the delta18O of atmospheric oxygen (noted delta18Oatm). By tuning the measured delta18Oatm to the orbital precession signal, we correct the EDC agescale over 400-800 ka for flow-induced distortions in the duration of events. Uncertainty in delta 18Oatm phasing with respect to precession limits the accuracy of the tuned agescale to +/-6 ka. We use this improved agescale to date two 10Be peaks detected in the EDC ice core and associated with the Matuyama-Brunhes geomagnetic boundary. While the ice age of the "precursor" event agrees within uncertainty with the age of radioisotopically dated lavas, the volcanic age for the younger reversal is approximately 10 ka older than the mid-point of the 10 Be peak in the ice. Since 80% of the lavas recording the Matuyama-Brunhes reversal are located in the Central Pacific, the observed age difference may indicate that the magnetic field orientation at this location changed prior to the dipole intensity minimum recorded by the ice core 10Be, as suggested by recent geodynamo modeling. A particular challenge for ice core dating is accurately accounting for the age difference between the trapped air and surrounding ice. This gas age - ice age difference (noted Deltaage) depends on the age of the ice at the bottom of the firn. delta15N of N2 is constant in the atmosphere over the timescales considered here, so any deviation from atmospheric composition reflects fractionation processes in the firn. We show that delta15N is positively correlated with the ice deuterium content, a proxy for temperature, over the entire EDC record, and propose an accumulation-permeability-convection mechanism. While temporal resolution and noise in the available data limit our ability to constrain glacial Deltaage, these data suggest that delta15N may be used as a gas-phase climate proxy at EDC.

  6. Effect of photochemical aging on the ice nucleation properties of diesel and wood burning particles

    NASA Astrophysics Data System (ADS)

    Chou, C.; Stetzer, O.; Tritscher, T.; Chirico, R.; Heringa, M. F.; Kanji, Z. A.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.; Lohmann, U.

    2012-06-01

    A measurement campaign (IMBALANCE) was conducted in 2009 and aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC) but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro with no emission after-treatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC) at three nominal temperatures, -30 °C, -35 °C and -40 °C. Freshly emitted diesel particles showed ice formation only at -40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi) and 92% relative humidity with respect to water (RHw), and photochemical aging did not play a role in modifying their ice nucleation behavior. Only one diesel experiment where α-pinene was added, showed an ice nucleation enhancement after the aging at -35 °C. Wood burning particles also act as ice nuclei (IN) at -40 °C in the deposition mode at the same conditions as for diesel particles and photochemical aging did also not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at -35 °C with no ice nucleation observed at -30 °C for wood burning particles. Photochemical aging did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below -30 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical aging on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  7. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles

    NASA Astrophysics Data System (ADS)

    Chou, C.; Kanji, Z. A.; Stetzer, O.; Tritscher, T.; Chirico, R.; Heringa, M. F.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.; Lohmann, U.

    2013-01-01

    A measurement campaign (IMBALANCE) conducted in 2009 was aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC) but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro without emission aftertreatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC) at three nominal temperatures, -30 °C, -35 °C and -40 °C. Freshly emitted diesel particles showed ice formation only at -40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi) and 92% relative humidity with respect to water (RHw), and photochemical ageing did not play a role in modifying their ice nucleation behaviour. Only one diesel experiment where α-pinene was added for the ageing process, showed an ice nucleation enhancement at -35 °C. Wood burning particles also act as ice nuclei (IN) at -40 °C in the deposition mode at the same conditions as for diesel particles and photochemical ageing also did not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at -35 °C whereas no ice nucleation was observed at -30 °C. Photochemical ageing did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below -40 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical ageing on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  8. Constraints on martian lobate debris apron evolution and rheology from numerical modeling of ice flow

    NASA Astrophysics Data System (ADS)

    Parsons, Reid A.; Nimmo, Francis; Miyamoto, Hideaki

    2011-07-01

    Radar observations in the Deuteronilus Mensae region by Mars Reconnaissance Orbiter have constrained the thickness and dust concentration found within mid-latitude ice deposits, providing an opportunity to more accurately estimate the rheology of ice responsible for the formation of lobate debris aprons based on their apparent age of ˜100 Myr. We developed a numerical model simulating ice flow under martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. By varying the ice grain size, the ice temperature, the subsurface slope, and the initial ice volume we determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to the apparent ages of LDA surfaces (90-300 Myr). We find that an ice temperature of 205 K, an ice grain size of 5 mm, and a flat subsurface slope give reasonable ages for many LDAs in the northern mid-latitudes of Mars. Assuming that the ice grain size is limited by the grain boundary pinning effect of incorporated dust, these results limit the dust volume concentration to less than 4%. However, assuming all LDAs were emplaced by a single event, we find that there is no single combination of grain size, temperature, and subsurface slope which can give realistic ages for all LDAs, suggesting that some or all of these variables are spatially heterogeneous. Based on our model we conclude that the majority of northern mid-latitude LDAs are composed of clean (⩽4 vol%), coarse (⩾1 mm) grained ice, but regional differences in either the amount of dust mixed in with the ice, or in the presence of a basal slope below the LDA ice must be invoked. Alternatively, the ice temperature and/or timing of ice deposition may vary significantly between different mid-latitude regions. Either eventuality can be tested with future observations.

  9. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    China, Swarup; Alpert, Peter A.; Zhang, Bo; Schum, Simeon; Dzepina, Katja; Wright, Kendra; Owen, R. Chris; Fialho, Paulo; Mazzoleni, Lynn R.; Mazzoleni, Claudio; Knopf, Daniel A.

    2017-03-01

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition between samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. This study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.

  10. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    DOE PAGES

    China, Swarup; Alpert, Peter A.; Zhang, Bo; ...

    2017-02-27

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition betweenmore » samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity ( RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. Finally, this study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.« less

  11. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    China, Swarup; Alpert, Peter A.; Zhang, Bo

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition betweenmore » samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity ( RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. Finally, this study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.« less

  12. A common and optimized age scale for Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Veres, D.; Landais, A.; Bazin, L.; Lemieux-Dudon, B.; Toye Mahamadou Kele, H.; Wolff, E.; Martinerie, P.

    2012-04-01

    Dating ice cores is a complex problem because 1) there is a age shift between the gas bubbles and the surrounding ice 2) there are many different ice cores which can be synchronized with various proxies and 3) there are many methods to date the ice and the gas bubbles, each with advantages and drawbacks. These methods fall into the following categories: 1) Ice flow (for the ice) and firn densification modelling (for the gas bubbles); 2) Comparison of ice core proxies with insolation variations (so-called orbital tuning methods); 3) Comparison of ice core proxies with other well dated archives; 4) Identification of well-dated horizons, such as tephra layers or geomagnetic anomalies. Recently, an new dating tool has been developped (DATICE, Lemieux-Dudon et al., 2010), to take into account all the different dating information into account and produce a common and optimal chronology for ice cores with estimated confidence intervals. In this talk we will review the different dating information for Antarctic ice cores and show how the DATICE tool can be applied.

  13. Deglaciation of Antarctica since the Last Glacial Maximum - what can we learn from cosmogenic 10Be and 26Al exposure ages?

    NASA Astrophysics Data System (ADS)

    Fink, David

    2015-04-01

    Ice volume changes at the coastal margins of Antarctica during the global LGM are uncertain. The little evidence available suggests that behaviour of the East and West Antarctic Ice Sheets are markedly different and complex. It is hypothesised that during interglacials, thinning of the Ross Ice Shelf, a more open-water environment and increased precipitation, allowed outlet glaciers draining the Transantarctic Mnts and fed by interior Ice Sheets to advance during moist warmer periods, out of phase with colder arid periods. In contrast, glacier dynamics along the vast coastal perimeter of East Antarctica is strongly influenced by Southern Ocean conditions. Cosmogenic 10Be and 26Al chronologies, although restricted to ice-free oasis and mountains flanking drainage glaciers, has become an invaluable, if not unique, tool to quantify spatial and temporal Pleistocene ice sheet variability over the past 2 Ma. Despite an increasing number of well documented areas, extracting reliable ages from glacial deposits in polar regions is problematic. Recycling of previously exposed/ buried debris and continual post-depositional modification leads to age ambiguities for a coeval glacial landform. More importantly, passage of cold-based ice can leave a landform unmodified resulting in young erratics deposited on ancient bedrock. Advances in delivering in-situ radiocarbon to routine application offer some relief. Exposure ages from different localities throughout East Antarctica (Framnes Mnts, Lutzow-Holm Bay, Vestfold Hills) and West Antarctica (Denton Ranges, Hatherton Glacier, Shackleton Range) highlight some of the new findings. This talk presents results which quantify the magnitude and timing of paleo-ice sheet thickness changes, questions the validity of an Antarctic LGM and discusses the complexities encountered in the often excessive spread in exposure ages.

  14. 77 FR 14567 - Draft General Management Plan/Environmental Impact Statement for the Ice Age Complex at Cross...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Impact Statement for the Ice Age Complex at Cross Plains, Cross Plains, Wisconsin AGENCY: National Park... General Management Plan/Environmental Impact Statement for the Ice Age Complex at Cross Plains, Wisconsin... also send comments to Superintendent, Ice Age National Scenic Trail, 700 Rayovac Drive, Suite 100...

  15. Development of lysozyme-combined antibacterial system to reduce sulfur dioxide and to stabilize Italian Riesling ice wine during aging process

    PubMed Central

    Chen, Kai; Han, Shun-yu; Zhang, Bo; Li, Min; Sheng, Wen-jun

    2015-01-01

    For the purpose of SO2 reduction and stabilizing ice wine, a new antibacterial technique was developed and verified in order to reduce the content of sulfur dioxide (SO2) and simultaneously maintain protein stability during ice wine aging process. Hazardous bacterial strain (lactic acid bacteria, LAB) and protein stability of Italian Riesling ice wine were evaluated in terms of different amounts of lysozyme, SO2, polyphenols, and wine pH by single-factor experiments. Subsequently, a quadratic rotation-orthogonal composite design with four variables was conducted to establish the multiple linear regression model that demonstrated the influence of different treatments on synthesis score between LAB inhibition and protein stability of ice wine. The results showed that, synthesis score can be influenced by lysozyme and SO2 concentrations on an extremely significant level (P < 0.01). Furthermore, the lysozyme-combined antibacterial system, which is specially designed for ice wine aging, was optimized step by step by response surface methodology and ridge analysis. As a result, the optimal proportion should be control in ice wine as follows: 179.31 mg L−1 lysozyme, 177.14 mg L−1 SO2, 0.60 g L−1 polyphenols, and 4.01 ice wine pH. Based on this system, the normalized synthesis score between LAB inhibition and protein stability can reach the highest point 0.920. Finally, by the experiments of verification and comparison, it was indicated that lysozyme-combined antibacterial system, which was a practical and prospective method to reduce SO2 concentration and effectively prevent contamination from hazardous LAB, can be used to stabilize ice wine during aging process. PMID:26405531

  16. Preliminary Cosmogenic Surface Exposure Ages on Laurentide Ice-sheet Retreat and Opening of the Eastern Lake Agassiz Outlets

    NASA Astrophysics Data System (ADS)

    Leydet, D.; Carlson, A. E.; Sinclair, G.; Teller, J. T.; Breckenridge, A. J.; Caffee, M. W.; Barth, A. M.

    2015-12-01

    The chronology for the eastern outlets of glacial Lake Agassiz holds important consequences for the cause of Younger Dryas cold event during the last deglaciation. Eastward routing of Lake Agassiz runoff was originally hypothesized to have triggered the Younger Dryas. However, currently the chronology of the eastern outlets is only constrained by minimum-limiting radiocarbon ages that could suggest the eastern outlets were still ice covered at the start of the Younger Dryas at ~12.9 ka BP, requiring a different forcing of this abrupt climate event. Nevertheless, the oldest radiocarbon ages are still consistent with an ice-free eastern outlet at the start of the Younger Dryas. Here we will present preliminary 10-Be cosmogenic surface exposure ages from the North Lake, Flat Rock Lake, glacial Lake Kaministiquia, and Lake Nipigon outlets located near Thunder Bay, Ontario. These ages will date the timing of the deglaciation of the Laurentide ice sheet in the eastern outlet region of glacial Lake Agassiz. This will provide an important constraint for the hypothesized freshwater forcing of the cause of Younger Dryas cold event.

  17. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Lauer, Tobias; Winsemann, Jutta

    2018-01-01

    A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.

  18. Volcanic Eruptions as the Cause of the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Zambri, B.; Robock, A.

    2017-12-01

    Both external forcing (solar radiation, volcanic eruptions) and internal fluctuations have been proposed to explain such multi-centennial perturbations as the Little Ice Age. Confidence in these hypotheses is limited due to the limited number of proxies, as well as only one observed realization of the Last Millennium. Here, we evaluate different hypotheses on the origin of Little Ice Age-like anomalies, focusing in particular on the long-term response of North Atlantic and Arctic climate perturbations to solar and volcanic perturbations. For that, we conduct a range of sensitivity tests carried out with the Community Earth System Model (CESM) at the National Center for Atmospheric Research, focusing in particular on the sensitivity to initial conditions and the strength of solar and volcanic forcing. By comparing the climate response to various combinations of external perturbations, we demonstrate nonlinear interactions that are necessary to explain trends observed in the fully coupled system and discuss physical mechanisms through which these external forcings can trigger multidecadal modes of the Atlantic Multidecadal Oscillation and subsequently lead to a Little-Ice-Age-like regime. For that, we capture and compare patterns of the coupled atmosphere-sea-ice-ocean response as revealed through a range of data analysis techniques. We show that the large 1257 Samalas, 1452 Kuwae, and 1600 Huaynaputina volcanic eruptions were the main causes of the multi-centennial glaciation associated with the Little Ice Age.

  19. Constraints on Lobate Debris Apron Evolution and Rheology from Numerical Modeling of Ice Flow

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Nimmo, F.

    2010-12-01

    Recent radar observations of mid-latitude lobate debris aprons (LDAs) have confirmed the presence of ice within these deposits. Radar observations in Deuteronilus Mensae have constrained the concentration of dust found within the ice deposits to <30% by volume based on the strength of the returned signal. In addition to constraining the dust fraction, these radar observations can measure the ice thickness - providing an opportunity to more accurately estimate the flow behavior of ice responsible for the formation of LDAs. In order to further constrain the age and rheology of LDA ice, we developed a numerical model simulating ice flow under Martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. This finite difference model calculates the LDA profile shape as it flows over time assuming no basal slip. In our model, the ice rheology is determined by the concentration of dust which influences the ice grain size by pinning the ice grain boundaries and halting ice grain growth. By varying the dust fraction (and therefore the ice grain size), the ice temperature, the subsurface slope, and the initial ice volume we are able to determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to crater age dates of LDA surfaces (90 - 300 My, see figure). Based on simulations using different combinations of ice temperature, ice grain size, and basal slope, we find that an ice temperature of 205 K, a dust volume fraction of 0.5% (resulting in an ice grain size of 5 mm), and a flat subsurface slope give reasonable model LDA ages for many LDAs in the northern mid-latitudes of Mars. However, we find that there is no single combination of dust fraction, temperature, and subsurface slope which can give realistic ages for all LDAs suggesting that all or some of these variables are spatially heterogeneous. We conclude that there are important regional differences in either the amount of dust mixed in with the ice, or in the presence of a basal slope below the LDA ice. Alternatively, the ice temperature and/or timing of ice deposition may vary significantly between different mid-latitude regions. a) Topographic profiles plotted every 200 My (thin, solid lines) from a 1 Gy simulation of ice flow for an initial ice deposit (thick, solid line) 5 km long and 1 km thick using an ice temperature of 205 K and a dust fraction, φ, of 0.047%. A MOLA profile of an LDA at 38.6oN, 24.3oE (dashed line) is shown for comparison. b) Final profiles for simulations lasting 100 My using temperatures of 195, 205 and 215 K illustrate the effect of both temperature and increasing the dust volume fraction to 1.2% (resulting in an ice grain size of 1 mm).

  20. Ice age True Polar Wander: raising debates and new analyses

    NASA Astrophysics Data System (ADS)

    Sabadini, Roberto; Cambiotti, Gabriele; Ricard, Yanick

    2010-05-01

    Issues related to long time scale instability in the Earth's rotation, named True Polar Wander (TPW), have continuously been debated, after the pioneering works of the sixties. Since Maxwell Earth models with elastic or high viscosity viscoelastic lithospheres predict different ice-age TPW in the lower mantle viscosity range 1021 - 1022 Pa s, it has been recently suggested that the observed fluid Love number should be used to describe the initial equatorial bulge rather than the tidal fluid limit resulting from the viscoelastic modelling itself. We show that different ice-age TPW predictions have to be expected due to the dependence of TPW on the Earth's initial state, characterized by a larger and stress-free equatorial bulge for the viscoelastic lithosphere, compared to the elastic one, and that there is no shortcomings or errors in the traditional approach based on the use of tidal Love number from the model. The use of the observed fluid Love number represents in fact a simplified attempt to couple the effects on TPW from mantle convection and glacial forcing, by including the non-hydrostatic flattening due to mantle convection but not its driving part. This partial coupling freezes in space the non-hydrostatic contribution due to mantle convection, thus damping the present-day ice-age TPW and forcing the axis of instantaneous rotation to come back to its initial position when ice ages started. In this perspective, we discuss the implication of self-consistent convection calculations of the non-hydrostatic contribution and its impact on the long-term Earth's rotation stability during ice-age. We develop a full compressible model, based on the numerical integration in the radial variable of the momentum and Poisson equations and on the contour integration in the Laplace domain, which allows us to deal with the non-modal contribution from continuous radial rheological variations. We quantify the effects of the compressible rheology, compared to the widely used incompressible ones

  1. Volcanic synchronization of Dome Fuji and Dome C Antarctic deep ice cores over the past 216 kyr

    NASA Astrophysics Data System (ADS)

    Fujita, S.; Parrenin, F.; Severi, M.; Motoyama, H.; Wolff, E. W.

    2015-10-01

    Two deep ice cores, Dome Fuji (DF) and EPICA Dome C (EDC), drilled at remote dome summits in Antarctica, were volcanically synchronized to improve our understanding of their chronologies. Within the past 216 kyr, 1401 volcanic tie points have been identified. DFO2006 is the chronology for the DF core that strictly follows O2 / N2 age constraints with interpolation using an ice flow model. AICC2012 is the chronology for five cores, including the EDC core, and is characterized by glaciological approaches combining ice flow modelling with various age markers. A precise comparison between the two chronologies was performed. The age differences between them are within 2 kyr, except at Marine Isotope Stage (MIS) 5. DFO2006 gives ages older than AICC2012, with peak values of 4.5 and 3.1 kyr at MIS 5d and MIS 5b, respectively. Accordingly, the ratios of duration (AICC2012 / DFO2006) range between 1.4 at MIS 5e and 0.7 at MIS 5a. When making a comparison with accurately dated speleothem records, the age of DFO2006 agrees well at MIS 5d, while the age of AICC2012 agrees well at MIS 5b, supporting their accuracy at these stages. In addition, we found that glaciological approaches tend to give chronologies with younger ages and with longer durations than age markers suggest at MIS 5d-6. Therefore, we hypothesize that the causes of the DFO2006-AICC2012 age differences at MIS 5 are (i) overestimation in surface mass balance at around MIS 5d-6 in the glaciological approach and (ii) an error in one of the O2 / N2 age constraints by ~ 3 kyr at MIS 5b. Overall, we improved our knowledge of the timing and duration of climatic stages at MIS 5. This new understanding will be incorporated into the production of the next common age scale. Additionally, we found that the deuterium signals of ice, δDice, at DF tends to lead the one at EDC, with the DF lead being more pronounced during cold periods. The lead of DF is by +710 years (maximum) at MIS 5d, -230 years (minimum) at MIS 7a and +60 to +126 years on average.

  2. Skylab floating ice experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.

    1975-01-01

    The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating ice. In both sea and lake ice, it was possible to distinguish a wide variety of thin ice types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the ice increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations decreased. It appears that the horizontally polarized data is the most sensitive to variations in ice type for both fresh water and sea ice. The study also showed the great amount of information on ice surface roughness and deformation patterns that can be obtained from X-band SLAR observations.

  3. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska

    USGS Publications Warehouse

    Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.

    2007-01-01

    Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.

  4. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120-800 ka

    NASA Astrophysics Data System (ADS)

    Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Veres, D.; Parrenin, F.; Martinerie, P.; Ritz, C.; Capron, E.; Lipenkov, V.; Loutre, M.-F.; Raynaud, D.; Vinther, B.; Svensson, A.; Rasmussen, S. O.; Severi, M.; Blunier, T.; Leuenberger, M.; Fischer, H.; Masson-Delmotte, V.; Chappellaz, J.; Wolff, E.

    2013-08-01

    An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this framework, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete δ18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.

  5. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120-800 ka

    NASA Astrophysics Data System (ADS)

    Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Veres, D.; Parrenin, F.; Martinerie, P.; Ritz, C.; Capron, E.; Lipenkov, V.; Loutre, M.-F.; Raynaud, D.; Vinther, B.; Svensson, A.; Rasmussen, S. O.; Severi, M.; Blunier, T.; Leuenberger, M.; Fischer, H.; Masson-Delmotte, V.; Chappellaz, J.; Wolff, E.

    2012-11-01

    An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale has been developed based on an inverse dating method (Datice) combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousand of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2012), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this frame, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete δ18Oatm record of the TALDICE ice cores permit us to derive new orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology shows only small differences, well within the original uncertainty range, when compared with the previous ice core reference age scale EDC3. For instance, the duration of the last four interglacial periods is not affected by more than 5%. The largest deviation between AICC2012 and EDC3 (4.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.

  6. Stationary Waves of the Ice Age Climate.

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.; Held, Isaac M.

    1988-08-01

    A linearized, steady state, primitive equation model is used to simulate the climatological zonal asymmetries (stationary eddies) in the wind and temperature fields of the 18 000 YBP climate during winter. We compare these results with the eddies simulated in the ice age experiments of Broccoli and Manabe, who used CLIMAP boundary conditions and reduced atmospheric CO2 in an atmospheric general circulation model (GCM) coupled with a static mixed layer ocean model. The agreement between the models is good, indicating that the linear model can be used to evaluate the relative influences of orography, diabatic heating, and transient eddy heat and momentum transports in generating stationary waves. We find that orographic forcing dominates in the ice age climate. The mechanical influence of the continental ice sheets on the atmosphere is responsible for most of the changes between the present day and ice age stationary eddies. This concept of the ice age climate is complicated by the sensitivity of the stationary eddies to the large increase in the magnitude of the zonal mean meridional temperature gradient simulated in the ice age GCM.

  7. Geological Evidence for Recent Ice Ages on Mars

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Mustard, J. F.; Kreslavsky, M. A.; Milliken, R. E.; Marchant, D. R.

    2003-12-01

    A primary cause of ice ages on Earth is orbital forcing from variations in orbital parameters of the planet. On Mars such variations are known to be much more extreme. Recent exploration of Mars has revealed abundant water ice in the near-surface at high latitudes in both hemispheres. We outline evidence that these near-surface, water-ice rich mantling deposits represent a mixture of ice and dust that is layered, meters thick, and latitude dependent. These units were formed during a geologically recent major martian ice age, and were emplaced in response to the changing stability of water ice and dust on the surface during variations in orbital parameters. Evidence for these units include a smoothing of topography at subkilometer baselines from about 30o north and south latitudes to the poles, a distinctive dissected texture in MOC images in the +/-30o-60o latitude band, latitude-dependent sets of topographic characteristics and morphologic features (e.g., polygons, 'basketball' terrain texture, gullies, viscous flow features), and hydrogen concentrations consistent with the presence of abundant ice at shallow depths above 60o latitude. The most equatorward extent of these ice-rich deposits was emplaced down to latitudes equivalent to Saudi Arabia and the southern United States on Earth during the last major martian ice age, probably about 0.4-2.1 million years ago. Mars is currently in an inter-ice age period and the ice-rich deposits are presently undergoing reworking, degradation and retreat in response to the current stability relations of near-surface ice. Unlike Earth, martian ice ages are characterized by warmer climates in the polar regions and the enhanced role of atmospheric water ice and dust transport and deposition to produce widespread and relatively evenly distributed smooth deposits at mid-latitudes during obliquity maxima.

  8. Are There Differences in Ice Hockey Injuries Between Sexes?: A Systematic Review.

    PubMed

    MacCormick, Lauren; Best, Thomas M; Flanigan, David C

    2014-01-01

    Men's ice hockey allows for body checking, and women's ice hockey prohibits it. Studies have reported injury data on both sexes, but no systematic reviews have compared the injury patterns between male and female ice hockey players. Men's and women's ice hockey would have different types of injuries, and this difference would extend across the different age groups and levels of play. Systematic review; Level of evidence, 4. Three databases, 3 scientific journals, and selected bibliographies were searched to identify articles relevant to this study. Articles were further screened by the use of predetermined inclusion and exclusion criteria. Twenty-two studies met these criteria and were subsequently reviewed. Men sustained higher rates of injuries than women at all age levels, and both sexes sustained at least twice as many injuries in games than practices. Both sexes sustained most of their injuries from player contact. Men and women in college sustained most injuries to the head and face, and women suffered from higher percentages of concussion. At all ages and levels of play, men had higher rates of upper extremity injuries (shoulder), while women were found to sustain more injuries to the lower extremity (thigh, knee). Although findings showed men sustaining higher rates of injuries than women, the predominant mechanism of player contact was the same. The most common locations and types of injuries in female ice hockey players are comparable to other sports played by women, and similar interventions could offer protection against injury. Further studies that report injury data for women playing ice hockey at all levels will assist in understanding what prevention strategies should be implemented.

  9. Last Glacial Maximum cirque glaciation in Ireland and implications for reconstructions of the Irish Ice Sheet

    NASA Astrophysics Data System (ADS)

    Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; McCabe, A. Marshall; Caffee, Marc

    2016-06-01

    Reconstructions of the extent and height of the Irish Ice Sheet (IIS) during the Last Glacial Maximum (LGM, ∼19-26 ka) are widely debated, in large part due to limited age constraints on former ice margins and due to uncertainties in the origin of the trimlines. A key area is southwestern Ireland, where various LGM reconstructions range from complete coverage by a contiguous IIS that extends to the continental shelf edge to a separate, more restricted southern-sourced Kerry-Cork Ice Cap (KCIC). We present new 10Be surface exposure ages from two moraines in a cirque basin in the Macgillycuddy's Reeks that provide a unique and unequivocal constraint on ice thickness for this region. Nine 10Be ages from an outer moraine yield a mean age of 24.5 ± 1.4 ka while six ages from an inner moraine yield a mean age of 20.4 ± 1.2 ka. These ages show that the northern flanks of the Macgillycuddy's Reeks were not covered by the IIS or a KCIC since at least 24.5 ± 1.4 ka. If there was more extensive ice coverage over the Macgillycuddy's Reeks during the LGM, it occurred prior to our oldest ages.

  10. Impact of Ice Ages on the genetic structure of trees and shrubs.

    PubMed Central

    Lascoux, Martin; Palmé, Anna E; Cheddadi, Rachid; Latta, Robert G

    2004-01-01

    Data on the genetic structure of tree and shrub populations on the continental scale have accumulated dramatically over the past decade. However, our ability to make inferences on the impact of the last ice age still depends crucially on the availability of informative palaeoecological data. This is well illustrated by the results from a recent project, during which new pollen fossil maps were established and the variation in chloroplast DNA was studied in 22 European species of trees and shrubs. Species exhibit very different levels of genetic variation between and within populations, and obviously went through very different histories after Ice Ages. However, when palaeoecological data are non-informative, inferences on past history are difficult to draw from entirely genetic data. On the other hand, as illustrated by a study in ponderosa pine, when we can infer the species' history with some certainty, coalescent simulations can be used and new hypotheses can be tested. PMID:15101576

  11. Using U-Pb Detrital Zircon Geochronology to Study Ice Streams in the Weddell Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Agrios, L.; Licht, K.; Hemming, S. R.; Williams, T.

    2016-12-01

    Till from major ice streams of the Weddell Sea Embayment contain detrital zircons with distinct U-Pb age populations that can be used as a provenance tool to better understand ice stream dynamics. The ice streams in this study include the Foundation Ice Stream, and Academy, Slessor, and Recovery glaciers, all of which drain ice from the continent's interior into the Weddell Sea. Characterizing the U-Pb detrital zircon ages in till and rocks will (1) provide the zircon provenance signatures of the material carried by the ice stream - when these signatures are found in LGM and older deposits downstream they can enable interpretation of past ice flow history; and (2) constrain ice-covered upstream bedrock geology that supplies the till carried by ice streams and glaciers. U-Pb ages of detrital zircons were measured in 21 samples of onshore till, erratics, and bedrock of potential source rocks. Grains were analyzed by LA-ICPMS at the University of Arizona (n=300). Relative probability U-Pb age density plots of till in moraines along the Foundation Ice Stream and Academy Glacier show prominent peaks at 500-530 and 615-650 Ma, which overlap with the timing of the Ross and Pan-African orogenies. Zircon ages of 1000-1095 Ma are also present. Local bedrock in the Patuxent Range has the most prominent peak at 510 Ma, suggesting the till is predominantly derived from local Patuxent Formation. However, local bedrock also has fewer grains at 1030 Ma which suggests that this age population is carried in the till as well. Prominent peaks in U-Pb ages from till transported by the Recovery Glacier are 530, 635, 1610 and 1770 Ma. Bedrock of this area contains similar age peaks, with the exception of the 635 Ma peak, suggesting that this ice stream is carrying a signature from an unexposed source of this age completely buried by ice. The Slessor Glacier carries zircons with prominent populations at 1710 and 2260-2420 Ma, which overlap with a high-grade metamorphic event in the Shackleton Range between 1710-1680 Ma. In order to gain the offshore signature of ice streams, these data will be compared to 40Ar/39Ar hornblende and biotite thermochronological data, and U-Pb geochronology data from subglacial till and proximal glaciomarine sediment from existing core sites located at the edge of the Ronne-Filchner Ice Shelf.

  12. Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen Tony; Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.

    2017-03-01

    The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18-25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.

  13. Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age

    PubMed Central

    Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.

    2017-01-01

    The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18–25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively. PMID:28298529

  14. Causes of ice age intensification across the Mid-Pleistocene Transition

    PubMed Central

    Foster, Gavin L.; Rohling, Eelco J.; Sexton, Philip F.; Cherry, Soraya G.; Hasenfratz, Adam P.; Haug, Gerald H.; Martínez-García, Alfredo; Pälike, Heiko; Pancost, Richard D.; Wilson, Paul A.

    2017-01-01

    During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth’s orbitally paced ice age cycles intensified, lengthened from ∼40,000 (∼40 ky) to ∼100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ∼43 to ∼75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets. PMID:29180424

  15. Causes of ice age intensification across the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Chalk, Thomas B.; Hain, Mathis P.; Foster, Gavin L.; Rohling, Eelco J.; Sexton, Philip F.; Badger, Marcus P. S.; Cherry, Soraya G.; Hasenfratz, Adam P.; Haug, Gerald H.; Jaccard, Samuel L.; Martínez-García, Alfredo; Pälike, Heiko; Pancost, Richard D.; Wilson, Paul A.

    2017-12-01

    During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth's orbitally paced ice age cycles intensified, lengthened from ˜40,000 (˜40 ky) to ˜100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ˜43 to ˜75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.

  16. 78 FR 46604 - Notice of Availability of the Record of Decision for the General Management Plan/Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Statement for the Ice Age National Scenic Trail Interpretive Site, Wisconsin AGENCY: National Park Service... (GMP/EIS) for the Ice Age National Scenic Trail (Trail) Interpretive Site, Wisconsin. ADDRESSES: Copies may be picked up in person or by mailing a request in writing to the Ice Age National Scenic Trail...

  17. Cosmogenic exposure age constraints on deglaciation and flow behaviour of a marine-based ice stream in western Scotland, 21-16 ka

    NASA Astrophysics Data System (ADS)

    Small, David; Benetti, Sara; Dove, Dayton; Ballantyne, Colin K.; Fabel, Derek; Clark, Chris D.; Gheorghiu, Delia M.; Newall, Jennifer; Xu, Sheng

    2017-07-01

    Understanding how marine-based ice streams operated during episodes of deglaciation requires geochronological data that constrain both timing of deglaciation and changes in their flow behaviour, such as that from unconstrained ice streaming to topographically restricted flow. We present seventeen new 10Be exposure ages from glacial boulders and bedrock at sites in western Scotland within the area drained by the Hebrides Ice Stream, a marine-based ice stream that drained a large proportion of the former British-Irish Ice Sheet. Exposure ages from Tiree constrain deglaciation of a topographic high within the central zone of the ice stream, from which convergent flowsets were produced during ice streaming. These ages thus constrain thinning of the Hebrides Ice Stream, which, on the basis of supporting information, we infer to represent cessation of ice streaming at 20.6 ± 1.2 ka, 3-4 ka earlier than previously inferred. A period of more topographically restricted flow produced flow indicators superimposed on those relating to full ice stream conditions, and exposure ages from up-stream of these constrain deglaciation to 17.5 ± 1.0 ka. Complete deglaciation of the marine sector of the Hebrides Ice Stream occurred by 17-16 ka at which time the ice margin was located near the present coastline. Exposure ages from the southernmost Outer Hebrides (Mingulay and Barra) indicate deglaciation at 18.9 ± 1.0 and 17.1 ± 1.0 ka respectively, demonstrating that an independent ice cap persisted on the southern Outer Hebrides for 3-4 ka after initial ice stream deglaciation. This suggests that deglaciation of the Hebrides Ice Stream was focused along major submarine troughs. Collectively, our data constrain initial deglaciation and changes in flow regime of the Hebrides Ice Stream, final deglaciation of its marine sector, and deglaciation of the southern portion of the independent Outer Hebrides Ice Cap, providing chronological constraints on future numerical reconstructions of this key sector of the former British-Irish Ice Sheet.

  18. Analysis of Ice-Related Intra-Crater Facies in Promethei Terra, Mars

    NASA Astrophysics Data System (ADS)

    Orgel, Csilla; Kereszturi, Ákos; van Gasselt, Stephan

    2014-05-01

    On Mars ice-related landforms have been identified at mid-latitudes between 30° and 50° in both hemispheres including the areas of Tempe Terra, Deuteronilus-Protonilus Mensae, Phlegra Montes and the rims of the southern-hemispheric impact basins Argyre and Hellas [1-7]. Our study area - informally termed hourglass-shaped crater [8] - is located near Reull Vallis on the eastern rim of the Hellas impact basin (39.0°S, 102.8°E). Impact-crater infill was described as debris-covered piedmont-type glacier [8] based on analysis of High Resolution Stereo Camera (HRSC) data, and implies a glacial origin with precipitation of ice during higher obliquity phases. Recent, higher-resolution image data such as data of the High Resolution Imaging Science Experiment (HiRISE) and the Context Imager (CTX) provide a more detailed picture of the lateral distribution of different small-scale surface features indicative of periglacial and/or glacial origin. The aim of this study is to identify qualitative and quantitative characteristics of these ice-related landforms and to separate sources of water ice and related processes. Initial age determinations based on impact-crater size-frequency statistics indicate an age of 3.4 Gyr for the impact-crater and an age of approximately 75 Myr for the infill [8]. In order to identify a possible sequence of surface-feature evolution we calculated the age distribution of four major surface units which span ages ages between 1-47 Myr. Along with detailed age information and a separation of different processes at this confined type location of Mars young-Amazonian landscape evolution and potential cyclic signals are being reconstructed to constrain climate evolution. Carr, M. H. & Schaber, G. G. 1977: Martian permafrost features.- J. Geophys. Res. 82, 4039-4054. Squyres, S. W. 1978: Martian fretted terrain: flow of erosional debris.- Icarus 34, 600-613. Squyres, S. W. 1979: The distribution of lobate debris aprons and similar flows on Mars.- J. Geophys. Res. 84, 8087-8096. Lucchitta, B. K. 1981: Mars and Earth: comparison of cold-climate features.- Icarus 45, 264-303. Lucchitta, B. K. 1984: Ice and debris in the fretted terrain, Mars.- J. Geophys. Res. 89, B409-B418. Squyres, S. W. & Carr, M. H. 1986: Geomorphic evidence for the distribution of ground ice on Mars.- Science 231, 249-252. Kargel, J. S. & Strom, R. G. 1992: Ancient glaciation on Mars.- Geology 20, 3-7. Head, J. W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., Masson, P., Foing, B., Hoffmann, H., Kreslavsky, M., Werner, S., Milkovich, S., van Gasselt, S. & the HRSC Co-Investigator Team 2005: Tropical and mid-latitude snow and ice accumulation, flow and glaciation on Mars.- Nature 434, 346-351.

  19. Radio-echo sounding at Dome C, East Antarctica: A comparison of measured and modeled data

    NASA Astrophysics Data System (ADS)

    Winter, Anna; Eisen, Olaf; Steinhage, Daniel; Zirizzotti, Achille; Urbini, Stefano; Cavitte, Marie; Blankenship, Donald D.; Wolff, Eric

    2016-04-01

    The internal layering architecture of ice sheets, detected with radio-echo sounding (RES), contains clues to past ice-flow dynamics and mass balance. A common way of relating the recorded travel time of RES reflections to depth is by integrating a wave-speed distribution. This results in an increasing absolute error with depth. We present a synchronization of RES-internal layers of different radar systems (Alfred Wegener Institute, Center for Remote Sensing of Ice Sheets, Istituto Nazionale di Geofisica e Vulcanologia, British Antarctic Survey and University of Texas Institute for Geophysics) with ice-core records from the Antarctic deep drill site Dome C. Synthetic radar traces are obtained from measurements of ice-core density and conductivity with a 1D model of Maxwell's equations. The reflection peaks of the different radar systems' measurements are shifted by a wiggle-matching algorithm, so they match the synthetic trace. In this way, we matched pronounced internal reflections in the RES data to conductivity peaks with considerably smaller depth uncertainties, and assigned them with the ice-core age. We examine the differences in shifts and resolution of the different RES data to address the question of their comparability and combined analysis for an extensive age-depth distribution.

  20. How and when to terminate the Pleistocene ice ages?

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Takahashi, K.; Raymo, M. E.; Okuno, J.; Blatter, H.

    2015-12-01

    Climate change with wax and wane of large Northern Hemisphere ice sheet occurred in the past 800 thousand years characterized by 100 thousand year cycle with a large amplitude of sawtooth pattern, following a transition from a period of 40 thousand years cycle with small amplitude of ice sheet change at about 1 million years ago. Although the importance of insolation as the ultimate driver is now appreciated, the mechanism what determines timing and strength of terminations are far from clearly understood. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. We discuss further the mechanism which determine the timing of ice age terminations by examining the role of astronomical forcing and change of atmospheric carbon dioxide contents through sensitivity experiments and comparison of several ice age cycles with different settings of astronomical forcings.

  1. Comparative Study of Probiotic Ice Cream and Probiotic Drink on Salivary Streptococcus mutans Levels in 6-12 Years Age Group Children.

    PubMed

    Mahantesha, Taranatha; Reddy, K M Parveen; Kumar, N H Praveen; Nara, Asha; Ashwin, Devasya; Buddiga, Vinutna

    2015-09-01

    Dental caries is one of the most common health problems in the world. Probiotics are one the various preventive methods to reduce dental caries. The aim of this study is to compare the effectiveness of probiotic ice cream and drink on salivary Streptococcus mutans levels in children of 6-12 years age group. A three phase study was carried out in children (n = 50) of 6-12 years age with zero decayed missing filled teeth (dmft)/DMFT. They were randomly divided into two equal groups. Saliva samples were collected before the consumptions of probiotic ice cream and probiotic drink. Colony count obtained was recorded as baseline data. For both groups probiotic ice cream and drink was given randomly for 7 days and a washout period of 90 days were given and then the saliva samples were collected and colony counting was done. Statistical analysis was performed using Student's paired t-test and multiple comparisons by Tukey's honest significant difference test which showed, there is a significant reduction in salivary S. mutans level in both groups after 7 days period. However, after washout period only probiotic ice cream showed reduction whereas drink did not. Also, there was no significant difference between probiotic ice cream and drink. Probiotic organisms definitely have a role in reducing the salivary S. mutans level and ice cream would be a better choice than drink. However, the prolonged use of the agents and their effects on caries is still to be determined.

  2. Timing and Rate of Deglaciation of the MIS 2 Cordilleran Ice Sheet in Yukon Territory

    NASA Astrophysics Data System (ADS)

    Ward, B. C.; Bond, J. D.; Gosse, J. C.; Turner, D. G.

    2015-12-01

    The northern Cordilleran ice sheet (CIS) consisted of a series of quasi-independent ice lobes that coalesced during the last glacial maximum (LGM) to form a continuous carapace of precipitation limited ice over southern Yukon. Variations in effective precipitation to different source areas of these ice lobes have been used to explain disparities in glacier extents in marine oxygen isotope stages (MIS) 4 and 6. Deglaciation of the northern margin of the CIS and its rate of recession from the LGM are poorly understood. We use cosmogenic nuclide exposure dating (10Be and 36Cl) on groups of 3-4 glacial erratics to reconstruct the timing and rate of deglaciation. Our sampling concentrated on the St. Elias, Cassiar and Selwyn lobes, as well an independent glacier from the Ogilvie Mountains. Boulders sampled up-ice from terminal moraines show that the initiation of deglaciation varied regionally. 36Cl ages from the Ogilvie Mountains indicate that deglaciation initiated by 24.8 ka. Further south in the Selwyn Lobe, two sites separated by ~150 km returned ages of 15.2 and 16.1 ka. To the south-west, three boulders from the Cassiar Lobe are 13.6 ka. Rates of deglaciation are best constrained for the Cassiar Lobe with two transects along different flow lines. Multiple valley bottom samples in the mid-deglaciation setting at Whitehorse yielded ages of 12.0 ka, while one boulder from the adjacent ridge top 600 m above is 13.5 ka. In the accumulation zone, ice-free conditions occurred by 10.8 ka. The other transect has higher elevation samples in a mid-deglaciation setting in the Pelly Mountains that indicate deglaciation occurred by 13.0 ka. Samples taken from high elevation and valley bottom sites close to accumulation zones of the Cassiar Lobe yielded ages of 13.6 and 11.0 ka, respectively. These results provide a chronology for the style of deglaciation interpreted from regional mapping throughout Yukon: gradual initial retreat and thinning marked by moraines, followed by rapid downwasting and regional stagnation. Thinning of the ice to expose uplands in the Cassiar lobe was coincident with margin retreat. The increase in rates of deglaciation after 12 ka fits well with mapped evidence of regional stagnation. These ages correspond to evidence in the north Pacific of rapid warming immediately after the Younger Dryas in the pre-Boreal.

  3. Students' Conceptions of Glaciers and Ice Ages: Applying the Model of Educational Reconstruction to Improve Learning

    ERIC Educational Resources Information Center

    Felzmann, Dirk

    2017-01-01

    Glaciers and ice ages are important topics in teaching geomorphology, earth history, and climate change. As with many geoscience topics, glacier formation, glacier movement, glacial morphology, and ice ages consist of a wide variety of processes and phenomena. Accordingly, it must be decided which of those processes and phenomena should be part of…

  4. On a new species of Amphilochus from deep and cold Atlantic waters, with a note on the genus Amphilochopsis (Amphipoda, Gammaridea, Amphilochidae)

    PubMed Central

    Tandberg, Anne Helene S.; Vader, Wim

    2018-01-01

    Abstract Amphilochus manudens and Amphilochopsis hamatus are redescribed based on specimens from the BioIce, Mareano, and IceAGE programmes. The new species Amphilochus anoculus sp. n. is described based on material from the IceAGE programme and the preceding BioIce programme; it is separated from the closely related Amphilochus manudens by the absence of eyes, a symmetrically bilobed labrum, four setae on the maxilla 2 outer plate, a rounded corner of epimeral plate 3, and a robust seta at the tip of the telson. There are also clear differences in depth and temperature ranges. Amphilochopsis hamatus is shown to be closely related to Amphilochus manudens and A. anoculus and transferred to Amphilochus s. str. PMID:29416401

  5. Where is the 1-million-year-old ice at Dome A?

    NASA Astrophysics Data System (ADS)

    Zhao, Liyun; Moore, John C.; Sun, Bo; Tang, Xueyuan; Guo, Xiaoran

    2018-05-01

    Ice fabric influences the rheology of ice, and hence the age-depth profile at ice core drilling sites. To investigate the age-depth profile to be expected of the ongoing deep ice coring at Kunlun station, Dome A, we use the depth-varying anisotropic fabric suggested by the recent polarimetric measurements around Dome A along with prescribed fabrics ranging from isotropic through girdle to single maximum in a three-dimensional, thermo-mechanically coupled full-Stokes model of a 70 × 70 km2 domain around Kunlun station. This model allows for the simulation of the near basal ice temperature and age, and ice flow around the location of the Chinese deep ice coring site. Ice fabrics and geothermal heat flux strongly affect the vertical advection and basal temperature which consequently control the age profile. Constraining modeled age-depth profiles with dated radar isochrones to 2/3 ice depth, the surface vertical velocity, and also the spatial variability of a radar isochrones dated to 153.3 ka BP, limits the age of the deep ice at Kunlun to between 649 and 831 ka, a much smaller range than previously inferred. The simple interpretation of the polarimetric radar fabric data that we use produces best fits with a geothermal heat flux of 55 mW m-2. A heat flux of 50 mW m-2 is too low to fit the deeper radar layers, and 60 mW m-2 leads to unrealistic surface velocities. The modeled basal temperature at Kunlun reaches the pressure melting point with a basal melting rate of 2.2-2.7 mm a-1. Using the spatial distribution of basal temperatures and the best fit fabric suggests that within 400 m of Kunlun station, 1-million-year-old ice may be found 200 m above the bed, and that there are large regions where even older ice is well above the bedrock within 5-6 km of the Kunlun station.

  6. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores.

    PubMed

    Deng, Tao; Wang, Xiaoming; Fortelius, Mikael; Li, Qiang; Wang, Yang; Tseng, Zhijie J; Takeuchi, Gary T; Saylor, Joel E; Säilä, Laura K; Xie, Guangpu

    2011-09-02

    Ice Age megafauna have long been known to be associated with global cooling during the Pleistocene, and their adaptations to cold environments, such as large body size, long hair, and snow-sweeping structures, are best exemplified by the woolly mammoths and woolly rhinos. These traits were assumed to have evolved as a response to the ice sheet expansion. We report a new Pliocene mammal assemblage from a high-altitude basin in the western Himalayas, including a primitive woolly rhino. These new Tibetan fossils suggest that some megaherbivores first evolved in Tibet before the beginning of the Ice Age. The cold winters in high Tibet served as a habituation ground for the megaherbivores, which became preadapted for the Ice Age, successfully expanding to the Eurasian mammoth steppe.

  7. The last forests in Greenland, and the age of the ice sheet

    NASA Astrophysics Data System (ADS)

    Funder, Svend; Schmidt, Astrid M. Z.; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder; Willerslev, Eske

    2014-05-01

    Recently ancient DNA (aDNA) studies of the basal ice in the Camp Century ice core, northern Greenland, have shown that mixed coniferous-deciduous forest grew here before the area was invaded and permanently covered by the ice sheet. The coring site is situated only 100 km from the present ice margin and more than 500 km from the ice divide, indicating that since this last inception the northern part of the ice sheet never receded more than 100 km from its present margin. Dating of the basal ice and obtaining an age for the forest and for the beginning of the ice sheet's permanency has been attempted by analyzing for optically stimulated luminescence (OSL), meteoric 10Be/36Cl cosmogenic nuclides, 234U/238U recoil. These methods all provide only minimum ages and show that the forest at Cap Century is older than 500 ka. Comparison with other Pleistocene "forest sites" in Greenland - the Kap København Formation in northernmost Greenland, the DYE-3 ice core in the south, the ODP boring 646 south of Greenland, as well as results from basal ice in the GRIP ice core - extends the minimum age to c. 1 ma. The maximum age is provided by the Kap København Formation, which must be older - or contemporaneous. The formation has recently been confirmed to date within the interval 2-2.5 ma, with a preferred age of 2.3-2.4 ma. Surprisingly, application of the molecular clock of insect COI sequences on the Camp Century aDNA now seem to push the minimum age just as far back - to 2.4 ma, suggesting that the timberline boreal forest at Kap København is contemporaneous with the mixed forest at Camp Century, 600 km to the south. From this we conclude that the northern ice sheet dome, which today contains 85% of the total ice sheet volume, has remained within 100 km of its present margin for at least 1 ma, and possibly may go back as far as 2.4 ma. The ice sheet has therefore survived both interglacials and "super interglacials" that were both warmer and longer than the present. This may give us some hope for the future.

  8. Rapid changes in ice core gas records - Part 1: On the accuracy of methane synchronisation of ice cores

    NASA Astrophysics Data System (ADS)

    Köhler, P.

    2010-08-01

    Methane synchronisation is a concept to align ice core records during rapid climate changes of the Dansgaard/Oeschger (D/O) events onto a common age scale. However, atmospheric gases are recorded in ice cores with a log-normal-shaped age distribution probability density function, whose exact shape depends mainly on the accumulation rate on the drilling site. This age distribution effectively shifts the mid-transition points of rapid changes in CH4 measured in situ in ice by about 58% of the width of the age distribution with respect to the atmospheric signal. A minimum dating uncertainty, or artefact, in the CH4 synchronisation is therefore embedded in the concept itself, which was not accounted for in previous error estimates. This synchronisation artefact between Greenland and Antarctic ice cores is for GRIP and Byrd less than 40 years, well within the dating uncertainty of CH4, and therefore does not calls the overall concept of the bipolar seesaw into question. However, if the EPICA Dome C ice core is aligned via CH4 to NGRIP this synchronisation artefact is in the most recent unified ice core age scale (Lemieux-Dudon et al., 2010) for LGM climate conditions of the order of three centuries and might need consideration in future gas chronologies.

  9. The impact of wood ice cream sticks' origin on the aroma of exposed ice cream mixes.

    PubMed

    Jiamyangyuen, S; Delwiche, J F; Harper, W J

    2002-02-01

    The effect of volatile compounds in white birch sticks obtained from four different geographical locations on the aroma of ice cream mix was investigated. Sensory evaluation, (specifically, a series of warmed-up paired comparisons) was conducted on stick-exposed ice cream mixes to determine whether aroma differences in those mixes could be detected. Batches of ice cream mix were exposed to the sticks and aged for 6 d at 4 degrees C and then assessed by the panelists by pairwise comparison. Findings suggest that differences in aroma of mixes that have been exposed to white birch sticks from four different geographical origins can be distinguished perceptually.

  10. Southern Ocean biogeochemical control of glacial/interglacial carbon dioxide change

    NASA Astrophysics Data System (ADS)

    Sigman, D. M.

    2014-12-01

    In the effort to explain the lower atmospheric CO2 concentrations observed during ice ages, two of the first hypotheses involved redistributing dissolved inorganic carbon (DIC) within the ocean. Broecker (1982) proposed a strengthening of the ocean's biological pump during ice ages, which increased the dissolved inorganic carbon gradient between the dark, voluminous ocean interior and the surface ocean's sun-lit, wind-mixed layer. Boyle (1988) proposed a deepening in the ocean interior's pool of DIC associated with organic carbon regeneration, with its concentration maximum shifting from intermediate to abyssal depths. While not irrefutable, evidence has arisen that these mechanisms can explain much of the ice age CO2 reduction and that both were activated by changes in the Southern Ocean. In the Antarctic Zone, reduced exchange of water between the surface and the underlying ocean sequestered more DIC in the ocean interior (the biological pump mechanism). Dust-borne iron fertilization of the Subantarctic surface lowered CO2 partly by the biological pump mechanism and partly by Boyle's carbon deepening. Each mechanism owes a part of its CO2 effect to a transient increase in seafloor calcium carbonate dissolution, which raised the ice age ocean's alkalinity, causing it to absorb more CO2. However, calcium carbonate cycling also sets limits on these mechanisms and their CO2 effects, such that the combination of Antarctic and Subantarctic changes is needed to achieve the full (80-100 ppm) ice age CO2 decline. Data suggest that these changes began at different phases in the development of the last ice age, 110 and 70 ka, respectively, explaining a 40 ppm CO2 drop at each time. We lack a robust understanding of the potential causes for both the implied reduction in Antarctic surface/deep exchange and the increase in Subantarctic dust supply during ice ages. Thus, even if the evidence for these Southern Ocean changes were to become incontrovertible, conceptual gaps stand in the way of a theory of glacial cycles that includes Southern Ocean-driven CO2 change. There are more compelling proposals for the causes of deglacial change, with a sharp reduction in North Atlantic deep water formation implicated as a trigger of increased surface/deep exchange in the Antarctic and the resulting release of CO2 to the atmosphere.

  11. Recent ice ages on Mars

    NASA Astrophysics Data System (ADS)

    Head, James W.; Mustard, John F.; Kreslavsky, Mikhail A.; Milliken, Ralph E.; Marchant, David R.

    2003-12-01

    A key pacemaker of ice ages on the Earth is climatic forcing due to variations in planetary orbital parameters. Recent Mars exploration has revealed dusty, water-ice-rich mantling deposits that are layered, metres thick and latitude dependent, occurring in both hemispheres from mid-latitudes to the poles. Here we show evidence that these deposits formed during a geologically recent ice age that occurred from about 2.1 to 0.4 Myr ago. The deposits were emplaced symmetrically down to latitudes of ~30°-equivalent to Saudi Arabia and the southern United States on the Earth-in response to the changing stability of water ice and dust during variations in obliquity (the angle between Mars' pole of rotation and the ecliptic plane) reaching 30-35°. Mars is at present in an `interglacial' period, and the ice-rich deposits are undergoing reworking, degradation and retreat in response to the current instability of near-surface ice. Unlike the Earth, martian ice ages are characterized by warmer polar climates and enhanced equatorward transport of atmospheric water and dust to produce widespread smooth deposits down to mid-latitudes.

  12. Recent ice ages on Mars.

    PubMed

    Head, James W; Mustard, John F; Kreslavsky, Mikhail A; Milliken, Ralph E; Marchant, David R

    2003-12-18

    A key pacemaker of ice ages on the Earth is climatic forcing due to variations in planetary orbital parameters. Recent Mars exploration has revealed dusty, water-ice-rich mantling deposits that are layered, metres thick and latitude dependent, occurring in both hemispheres from mid-latitudes to the poles. Here we show evidence that these deposits formed during a geologically recent ice age that occurred from about 2.1 to 0.4 Myr ago. The deposits were emplaced symmetrically down to latitudes of approximately 30 degrees--equivalent to Saudi Arabia and the southern United States on the Earth--in response to the changing stability of water ice and dust during variations in obliquity (the angle between Mars' pole of rotation and the ecliptic plane) reaching 30-35 degrees. Mars is at present in an 'interglacial' period, and the ice-rich deposits are undergoing reworking, degradation and retreat in response to the current instability of near-surface ice. Unlike the Earth, martian ice ages are characterized by warmer polar climates and enhanced equatorward transport of atmospheric water and dust to produce widespread smooth deposits down to mid-latitudes.

  13. Do physical maturity and birth date predict talent in male youth ice hockey players?

    PubMed

    Sherar, Lauren B; Baxter-Jones, Adam D G; Faulkner, Robert A; Russell, Keith W

    2007-06-01

    The aim of this study was to examine the relationships among biological maturity, physical size, relative age (i.e. birth date), and selection into a male Canadian provincial age-banded ice hockey team. In 2003, 619 male ice hockey players aged 14-15 years attended Saskatchewan provincial team selection camps, 281 of whom participated in the present study. Data from 93 age-matched controls were obtained from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-1997). During the initial selection camps, birth dates, heights, sitting heights, and body masses were recorded. Age at peak height velocity, an indicator of biological maturity, was determined in the controls and predicted in the ice hockey players. Data were analysed using one-way analysis of variance, logistic regression, and a Kolmogorov-Smirnov test. The ice hockey players selected for the final team were taller, heavier, and more mature (P < 0.05) than both the unselected players and the age-matched controls. Furthermore, age at peak height velocity predicted (P < 0.05) being selected at the first and second selection camps. The birth dates of those players selected for the team were positively skewed, with the majority of those selected being born in the months January to June. In conclusion, team selectors appear to preferentially select early maturing male ice hockey players who have birth dates early in the selection year.

  14. Cosmogenic nuclide age estimate for Laurentide Ice Sheet recession from the terminal moraine, New Jersey, USA, and constraints on latest Pleistocene ice sheet history

    USGS Publications Warehouse

    Corbett, Lee B.; Bierman, Paul R.; Stone, Byron D.; Caffee, Marc W.; Larsen, Patrick L.

    2017-01-01

    The time at which the Laurentide Ice Sheet reached its maximum extent and subsequently retreated from its terminal moraine in New Jersey has been constrained by bracketing radiocarbon ages on preglacial and postglacial sediments. Here, we present measurements of in situ produced 10Be and 26Al in 16 quartz-bearing samples collected from bedrock outcrops and glacial erratics just north of the terminal moraine in north-central New Jersey; as such, our ages represent a minimum limit on the timing of ice recession from the moraine. The data set includes field and laboratory replicates, as well as replication of the entire data set five years after initial measurement. We find that recession of the Laurentide Ice Sheet from the terminal moraine in New Jersey began before 25.2±2.1 ka (10Be, n=16, average, 1 standard deviation). This cosmogenic nuclide exposure age is consistent with existing limiting radiocarbon ages in the study area and cosmogenic nuclide exposure ages from the terminal moraine on Martha’s Vineyard ~300 km to the northeast. The age we propose for Laurentide Ice Sheet retreat from the New Jersey terminal position is broadly consistent with regional and global climate records of the last glacial maximum termination and records of fluvial incision.

  15. Comprehensive Examination of Bottom Ash, Soil Dust, and Direct Emissions and Aging of Laboratory Biomass Burning as Potential Sources of Ice Nucleating Particles

    NASA Astrophysics Data System (ADS)

    Polen, M.; Jahl, L.; Jahn, L.; Somers, J.; Sullivan, R. C.

    2017-12-01

    Recent laboratory and field studies have found that biomass burning can produce ice nucleating particles (INP) with varying efficiencies depending on fuel and burn conditions. Few studies have examined the ice nucleating potential of bottom ash, which has the potential to be lofted during intense burning events. To date, no publications have examined the impact of atmospheric aging or lofted soil particles on INP emitted from biomass burning. This study investigated each of these aspects through laboratory biomass fuel combustion studies. We burned a number of grasses from different locations, and collected filter samples of fresh and photochemically aged biomass burning aerosol, as well as bottom ash collected after the burn. Some burns included soil that the grasses grew in to test for the importance of soil dust to INP emissions lofting during intense fires. The composition and mixing state of the aerosol was determined using a suite of online and offline single-particle techniques. Our findings suggest that bottom ash is a relatively weak INP, but all samples froze consistently at -20 °C < T < -25 °C. We also found that oxidation of the biomass burning aerosol typically enhances ice nucleating activity over fresh, unaged particles, increasing the ice active site surface density by up to a factor of 3 at T = -25 °C. Lastly, the presence of soil dust can greatly enhance INP concentrations for biomass burning events with an increase in the freezing temperature spectrum by > 3 °C. Detailed analysis of these samples aims to provide a clearer understanding of what components of biomass burning increase the ambient concentrations of ice nucleation active particles, and how their ice nucleation properties evolve during atmospheric aging.

  16. 500,000-year temperature record challenges ice age theory

    USGS Publications Warehouse

    Snow, K. Mitchell

    1994-01-01

    Just outside the searing heat of Death Valley lies Devils Hole (fig. 1), a fault-created cave that harbors two remnants of the Earth's great ice ages. The endangered desert pupfish (Cyprinodon diabolis) has long made its home in the cave. A 500,000-year record of the planet's climate that challenges a widely accepted theory explaining the ice ages also has been preserved in Devils Hole.

  17. Millennial-scale variability in dust deposition, marine export production, and nutrient consumption in the glacial subantarctic ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Martinez-Garcia, A.; Sigman, D. M.; Anderson, R. F.; Ren, H. A.; Hodell, D. A.; Straub, M.; Jaccard, S.; Eglinton, T. I.; Haug, G. H.

    2013-12-01

    Based on the limitation of modern Southern Ocean phytoplankton by iron and the evidence of higher iron-bearing dust fluxes to the ocean during ice ages, it has been proposed that iron fertilization of Southern Ocean phytoplankton contributed to the reduction in atmospheric CO2 during ice ages. In the Subantarctic zone of the Atlantic Southern Ocean, glacial increases in dust flux and export production have been documented, supporting the iron fertilization hypothesis. However, these observations could be interpreted alternatively as resulting from the equatorward migration of Southern Ocean fronts during ice ages if the observed productivity rise was not accompanied by an increase in major nutrient consumption. Here, new 230Th-normalized lithogenic and opal fluxes are combined with high-resolution biomarker measurements to reconstruct millennial-scale changes in dust deposition and marine export production in the subantarctic Atlantic over the last glacial cycle. In the same record foraminifera-bound nitrogen isotopes are used to reconstruct ice age changes in surface nitrate utilization, providing a comprehensive test of the iron fertilization hypothesis. Elevation in foraminifera-bound δ15N, indicating more complete nitrate consumption, coincides with times of surface cooling and greater dust flux and export production. These observations indicate that the ice age Subantarctic was characterized by iron fertilized phytoplankton growth. The resulting strengthening of the Southern Ocean's biological pump can explain the ~40 ppm lowering of CO2 that characterizes the transitions from mid-climate states to full ice age conditions as well as the millennial-scale atmospheric CO2 fluctuations observed within the last ice age

  18. Predation rates by North Sea cod (Gadus morhua) - Predictions from models on gastric evacuation and bioenergetics

    USGS Publications Warehouse

    Hansson, S.; Rudstam, L. G.; Kitchell, J.F.; Hilden, M.; Johnson, B.L.; Peppard, P.E.

    1996-01-01

    We compared four different methods for estimating predation rates by North Sea cod (Gadus moi hua). Three estimates, based on gastric evacuation rates, came from an ICES multispecies working group and the fourth from a bioenergetics model. The bioenergetics model was developed from a review of literature on cod physiology. The three gastric evacuation rate models produced very different prey consumption estimates for small (2 kg) fish. For most size and age classes, the bioenergetics model predicted food consumption rates intermediate to those predicted by the gastric evacuation models. Using the standard ICES model and the average population abundance and age structure for 1974-1989, annual, prey consumption by the North Sea cod population (age greater than or equal to 1) was 840 kilotons. The other two evacuation rate models produced estimates of 1020 and 1640 kilotons, respectively. The bioenergetics model estimate was 1420 kilotons. The major differences between models were due to consumption rate estimates for younger age groups of cod. (C) 1996 International Council for the Exploration of the Sea

  19. Varied records of early Wisconsinan alpine glaciation in the western United States derived from weathering-rind thicknesses

    USGS Publications Warehouse

    Clark, Peter U.; Lea, P.D.

    1992-01-01

    Weathering-rind thicknesses were measured on volcanic clasts in sequences of glacial deposits in seven mountain ranges in the western United States and in the Puget lowland. Because the rate of rind development decreases with time, ratios of rind thicknesses provide limits on corresponding age ratios. In all areas studied, deposits of late Wisconsinan age are obvious; deposits of late Illinoian age (ca. 140 ka) also seem to be present in each area, although independent evidence for their numerical age is circumstantial. The weathering-rind data indicate that deposits that have intermediate ages between these two are common, and ratios of rind thicknesses suggest an early Wisconsinan age (about 60 to 70 ka) for some of the intermediate deposits. Three of the seven studied alpine areas (McCall, Idaho; Yakima Valley, Washington; and Lassen Peak, California) appear to have early Wisconsinan drift beyond the extent of late Wisconsinan ice. In addition, Mount Rainier and the Puget lowland, Washington, have outwash terraces but no moraines of early Wisconsinan age. The sequences near West Yellowstone, Montana; Truckee, California; and in the southern Olympic Mountains have no recognized moraines or outwash of this age. Many of the areas have deposits that may be of middle Wisconsinan age.Differences in the relative extents of early Wisconsinan alpine glaciers are not expected from the marine oxygen-isotope record and are not explained by any simple trend in climatic variables or proximity to oceanic moisture sources. However, alpine glaciers could have responded more quickly and more variably than continental ice sheets to intense, short-lived climatic events, and they may have been influenced by local climatic or hypsometric effects. The relative sizes of early and late Wisconsinan alpine glaciers could also reflect differences between early and late Wisconsinan continental ice sheets and their regional climatic effects.

  20. Middle to late Holocene fluctuations of the Vindue glacier, an outlet glacier of the Greenland Ice Sheet, central East Greenland.

    NASA Astrophysics Data System (ADS)

    Levy, L.; Hammer, S. K.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Howley, J. A.; Wilcox, P.; Medford, A.

    2014-12-01

    The margins of the Greenland Ice Sheet are currently responding to present-day climate changes. Determining how the ice sheet margins have responded to past climate changes provides a means to understand how they may respond in the future. Here we present a multi-proxy record used to reconstruct the Holocene fluctuations of the Vindue glacier, an ice sheet outlet glacier in eastern Greenland. Lake sediment cores from Qiviut lake (informal name), located ~0.75 km from the present-day Vindue glacier margin contain a sharp transition from medium sand/coarse silt to laminated gyttja just prior to 6,340±130 cal yr BP. We interpret this transition to indicate a time when the Vindue glacier retreated sufficiently to cease glacial sedimentation into the lake basin. Above this contact the core contains laminated gyttja with prominent, ~0.5 cm thick, silt layers. 10Be ages of boulders on bedrock located between Qiviut lake and the present-day ice margin date to 6.81 ± 0.67 ka (n = 3), indicating the time of deglaciation. These ages also agree well with the radiocarbon age of the silt-gyttja transition in Qiviut lake cores. 10Be ages on boulders on bedrock located more proximal to the ice margin (~0.5 km) yield ages of 2.67 ± 0.18 ka (n = 2). These ages indicate either the continued recession of the ice margin during the late Holocene or an advance at this time. Boulders on the historical moraines show that ice retreated from the moraine by AD 1620 ± 20 yrs (n = 2). These results are in contrast with some areas of the western margin of the ice sheet where 10Be ages indicate that the ice sheet was behind its Historical limit from the middle Holocene (~6-7 ka) to Historical time. This may indicate that the eastern margin may have responded to late Holocene cooling more sensitively or that the advance associated with the Historical moraines overran any evidence of late Holocene fluctuations along the western margin of the ice sheet.

  1. Protective role of vitamins E and C against oxidative stress caused by intermittent cold exposure in aging rat's frontoparietal cortex.

    PubMed

    Asha Devi, S; Manjula, K R; Subramanyam, M V V

    2012-11-07

    This study examined the role of vitamins E and C in combating oxidative stress (OS) caused by intermittent cold exposure (ICE) in the frontoparietal cortex (FPC) of adult (3 months), late-adult (12 months), middle-aged (18 months) and old (24 months) male Wistar rats. Each age group was divided into sub-groups, control (CON), cold-exposed at 5°C (C5), control supplementees (CON+S) and cold-exposed supplementees (C5+S). The supplement was a daily dose of 400mg vitamin C and 50I.U.of vitamin E/kg body weight. Cold exposure lasted 2h/day for 4 weeks. All age groups except the old showed an increase in the final body mass in the cold-exposed. The feeding efficiency was higher in the cold-exposed irrespective of age. OS as reflected in age-related increased levels of hydrogen peroxide, protein carbonyl, advanced oxidation protein products and malondialdehyde showed further increase with ICE in the FPC. However, vitamins E and C supplementation attenuated the ICE-induced OS. ICE depleted the levels of tissue vitamins E and C while supplementation resulted in increased levels. Further age emerged as a significant factor in ICE-induced stress and also the response to vitamins E and C supplementation. Behavioral studies are underway to examine the findings on ICE-induced oxidative injury in the FPC, and the prospects for using vitamins E and C in cold exposures in the aged. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Chronological framework for the deglaciation of the Lake Michigan lobe of the Laurentide ice sheet from ice-walled lake deposits

    USGS Publications Warehouse

    Curry, B.; Petras, J.

    2011-01-01

    A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south-central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low-relief ice-walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice-walled lake deposit. The semi-circular basin is about 0.72km wide and formed of a 4- to 16-m-thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270??50 14C a BP (21 810cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil-bearing horizon was 17 770??40 14C a BP (21 180cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice-walled lake succession persisted for between 210 and 860cal. a (modal value: 610cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice-walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice-walled lake sedimentation. ?? 2011 John Wiley & Sons, Ltd.

  3. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback.

    PubMed

    Hovel, Rachel A; Carlson, Stephanie M; Quinn, Thomas P

    2017-06-01

    High-latitude lakes are particularly sensitive to the effects of global climate change, demonstrating earlier ice breakup, longer ice-free seasons, and increased water temperatures. Such physical changes have implications for diverse life-history traits in taxa across entire lake food webs. Here, we use a five-decade time series from an Alaskan lake to explore effects of climate change on growth and reproduction of a widely distributed lacustrine fish, the three-spine stickleback (Gasterosteus aculeatus). We used multivariate autoregressive state-space (MARSS) models to describe trends in the mean length for multiple size classes and to explore the influence of physical (date of ice breakup, surface water temperature) and biological (density of con- and heterospecifics) factors. As predicted, mean size of age 1 and older fish at the end of the growing season increased across years with earlier ice breakup and warmer temperatures. In contrast, mean size of age 0 fish decreased over time. Overall, lower fish density and warmer water temperatures were associated with larger size for all cohorts. Earlier ice breakup was associated with larger size for age 1 and older fish but, paradoxically, with smaller size of age 0 fish. To explore this latter result, we used mixing models on age 0 size distributions, which revealed an additional cohort in years with early ice breakup, lowering the mean size of age 0 fish. Moreover, early ice breakup was associated with earlier breeding, evidenced by earlier capture of age 0 fish. Our results suggest that early ice breakup altered both timing and frequency of breeding; three-spine stickleback spawned earlier and more often in response to earlier ice breakup date. While previous studies have shown the influence of changing conditions in northern lakes on breeding timing and growth, this is the first to document increased breeding frequency, highlighting another pathway by which climate change can alter the ecology of northern lakes. © 2016 John Wiley & Sons Ltd.

  4. Evaluating the Duration and Continuity of Potential Climate Records From the Allan Hills Blue Ice Area, East Antarctica

    NASA Astrophysics Data System (ADS)

    Kehrl, Laura; Conway, Howard; Holschuh, Nicholas; Campbell, Seth; Kurbatov, Andrei V.; Spaulding, Nicole E.

    2018-05-01

    The current ice core record extends back 800,000 years. Geologic and glaciological evidence suggests that the Allan Hills Blue Ice Area, East Antarctica, may preserve a continuous record that extends further back in time. In this study, we use ice-penetrating radar and existing age constraints to map the internal stratigraphy and age structure of the Allan Hills Main Ice Field. The dated isochrones provide constraints for an ice flow model to estimate the age of ice near the bed. Previous drilling in the region recovered stratigraphically disturbed sections of ice up to 2.7 million years old. Our study identifies a site 5 km upstream, which likely preserves a continuous record through Marine Isotope Stage 11 with the possibility that the record extends back 1 million years. Such records would provide new insight into the past climate and glacial history of the Ross Sea Sector.

  5. High-resolution 129I bomb peak profile in an ice core from SE-Dome site, Greenland.

    PubMed

    Bautista, Angel T; Miyake, Yasuto; Matsuzaki, Hiroyuki; Iizuka, Yoshinori; Horiuchi, Kazuho

    2018-04-01

    129 I in natural archives, such as ice cores, can be used as a proxy for human nuclear activities, age marker, and environmental tracer. Currently, there is only one published record of 129 I in ice core (i.e., from Fiescherhorn Glacier, Swiss Alps) and its limited time resolution (1-2 years) prevents the full use of 129 I for the mentioned applications. Here we show 129 I concentrations in an ice core from SE-Dome, Greenland, covering years 1956-1976 at a time resolution of ∼6 months, the most detailed record to date. Results revealed 129 I bomb peaks in years 1959, 1962, and 1963, associated to tests performed by the former Soviet Union, one year prior, in its Novaya Zemlya test site. All 129 I bomb peaks were observed in winter (1958.9, 1962.1, and 1963.0), while tritium bomb peaks, another prominent radionuclide associated with nuclear bomb testing, were observed in spring or summer (1959.3, and 1963.6; Iizuka et al., 2017). These results indicate that 129 I bomb peaks can be used as annual and seasonal age markers for these years. Furthermore, we found that 129 I recorded nuclear fuel reprocessing signals and that these can be potentially used to correct timing of estimated 129 I releases during years 1964-1976. Comparisons with other published records of 129 I in natural archives showed that 129 I can be used as common age marker and tracer for different types of records. Most notably, the 1963 129 I bomb peak can be used as common age marker for ice and coral cores, providing the means to reconcile age models and associated trends from the polar and tropical regions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Emergent Dead Vegetation and Paired Cosmogenic Isotope Constraints on Ice Cap Activity, Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Pendleton, S.; Miller, G. H.

    2014-12-01

    Recent summer warming has now raised the equilibrium line above almost all ice caps on Baffin Island, resulting in surface lowering and marginal recession everywhere. As cold-based ice recedes it frequently exposes in situ tundra plants that were living at the time ice expanded across the site. Radiocarbon dates for each plant records when cold summers dropped regional snowline below the site, killing the plants, and snowline remained below the site until the collection date. The kill dates also represent the last time that the climate was warm enough to expose the sampling location. Seventy-six vegetation samples collected in 2013 from the Penny Ice Cap region have been dated, with significant age populations at ~0.5, 1.8, 2.3, and 3.6 ka. The absence of ages around ~1, 2, 3, 4.5, and 5.5 ka suggest periods of either no snowline depression or stability. Sixteen vegetation samples returned ages of >45 ka (2 revisited sites from 2010, 14 new). It is postulated that these radiocarbon dead samples were last exposed during the last interglaciation (~120 ka), the last time climate was as warm as present. In addition to plant collections, bedrock exposures at the ice margins were sampled for 26Al/10Be cosmogenic nuclide dating. Seven samples from and around the Penny Ice cap have returned maximum exposure ages from ~ 0.6-0.9 ma and total histories of ~0.6-1.5 ma. In general, samples from the larger Penny Ice Cap exhibited lower amounts of exposure (~20% of total history) than those samples from smaller, localized ice caps (~55%). Radiocarbon dead sites north of the Penny Ice cap experienced significantly more exposure over their lifetimes than their counterparts east of the Penny Ice cap, suggesting significant differences in local and regional land ice fluctuations over the last 2 million years. Utilizing both the method of in situ moss and 26Al/10Be dating provides new insight into both the recent activity and long-term evolution of ice on Baffin Island. In particular these new data help to shed light on how late Holocene coolings affect both large and small ice bodies and how this behavior is represented in the longer-term burial/exposure record contained within the rock surface.

  7. Effect of Nitrogen and Phosphorus Fertilization on Growth of a Sweetgum Plantation Damaged by an Ice Storm

    Treesearch

    Yanfei Guo; Curtis Vanderschaaf

    2002-01-01

    In 1994, an ice storm impacted a 19-year-old sweetgum plantation (Liquidambar styraciflua L.) fertilized with nitrogen (N) and phosphorus (P) at age 4. Thirty-nine percent of the stems were broken, 55 percent were not damaged, and 6 percent were leaning. After the ice storm, differences in height and dbh among the fertilization treatments disappeared...

  8. The Depth of Ice Inside the Smallest Cold-Traps on Mercury: Implications for Age and Origin

    NASA Astrophysics Data System (ADS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2018-05-01

    We use Mercury Laser Altimeter data and an illumination model to constrain the depth of the smallest ice deposits on Mercury. By comparing this depth to modeled gardening rates, we estimate the age and delivery method of this ice.

  9. Late Noachian and early Hesperian ridge systems in the south circumpolar Dorsa Argentea Formation, Mars: Evidence for two stages of melting of an extensive late Noachian ice sheet

    NASA Astrophysics Data System (ADS)

    Kress, Ailish M.; Head, James W.

    2015-05-01

    The Dorsa Argentea Formation (DAF), extending from 270°-100° E and 70°-90° S, is a huge circumpolar deposit surrounding and underlying the Late Amazonian South Polar Layered Deposits (SPLD) of Mars. Currently mapped as Early-Late Hesperian in age, the Dorsa Argentea Formation has been interpreted as volatile-rich, possibly representing the remnants of an ancient polar ice cap. Uncertain are its age (due to the possibility of poor crater retention in ice-related deposits), its mode of origin, the origin of the distinctive sinuous ridges and cavi that characterize the unit, and its significance in the climate history of Mars. In order to assess the age of activity associated with the DAF, we examined the ridge populations within the Dorsa Argentea Formation, mapping and characterizing seven different ridge systems (composed of nearly 4,000 ridges covering a total area of ~300,000 km2, with a cumulative length of ridges of ~51,000 km) and performing crater counts on them using the method of buffered crater counting to determine crater retention ages of the ridge populations. We examined the major characteristics of the ridge systems and found that the majority of them were consistent with an origin as eskers, sediment-filled subglacial drainage channels. Ridge morphologies reflect both distributed and channelized esker systems, and evidence is also seen that some ridges form looping moraine-like termini distal to some distributed systems. The ridge populations fall into two age groups: ridge systems between 270° and 0° E date to the Early Hesperian, but to the east, the Promethei Planum and the Chasmata ridge systems date to the Late Noachian. Thus, these ages, and esker and moraine-like morphologies, support the interpretation that the DAF is a remnant ice sheet deposit, and that the esker systems represent evidence of significant melting and drainage of meltwater from portions of this ice sheet, thus indicating at least some regions and/or periods of wet-based glaciation. The Late Noachian and Early Hesperian ages of the ridge systems closely correspond to the ages of valley network/open basin lake systems, representing runoff, drainage and storage of liquid water in non-polar regions of the surface of Mars. Potential causes of such wet-based conditions in the DAF include: 1) top-down melting due to atmospheric warming, 2) enhanced snow and ice accumulation and raising of the melting isotherm to the base of the ice sheet, or 3) basal melting associated with intrusive volcanism (volcano-ice interactions). The early phase of melting is closely correlated in time with valley network formation and thus may be due to global atmospheric warming, while the later phase of melting may be linked to Early Hesperian global volcanism and specific volcano-ice interactions (table mountains) in the DAF. Crater ages indicate that these wet-based conditions ceased by the Late Hesperian, and that further retreat of the DAF to its present configuration occurred largely through sublimation, not melting, thus preserving the extensive ridge systems. MARSIS radar data suggest that significant areas of layered, potentially ice-rich parts of the Dorsa Argentea Formation remain today.

  10. Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of late Cenozoic ice ages

    NASA Astrophysics Data System (ADS)

    Galbraith, Eric; de Lavergne, Casimir

    2018-03-01

    Over the past few million years, the Earth descended from the relatively warm and stable climate of the Pliocene into the increasingly dramatic ice age cycles of the Pleistocene. The influences of orbital forcing and atmospheric CO2 on land-based ice sheets have long been considered as the key drivers of the ice ages, but less attention has been paid to their direct influences on the circulation of the deep ocean. Here we provide a broad view on the influences of CO2, orbital forcing and ice sheet size according to a comprehensive Earth system model, by integrating the model to equilibrium under 40 different combinations of the three external forcings. We find that the volume contribution of Antarctic (AABW) vs. North Atlantic (NADW) waters to the deep ocean varies widely among the simulations, and can be predicted from the difference between the surface densities at AABW and NADW deep water formation sites. Minima of both the AABW-NADW density difference and the AABW volume occur near interglacial CO2 (270-400 ppm). At low CO2, abundant formation and northward export of sea ice in the Southern Ocean contributes to very salty and dense Antarctic waters that dominate the global deep ocean. Furthermore, when the Earth is cold, low obliquity (i.e. a reduced tilt of Earth's rotational axis) enhances the Antarctic water volume by expanding sea ice further. At high CO2, AABW dominance is favoured due to relatively warm subpolar North Atlantic waters, with more dependence on precession. Meanwhile, a large Laurentide ice sheet steers atmospheric circulation as to strengthen the Atlantic Meridional Overturning Circulation, but cools the Southern Ocean remotely, enhancing Antarctic sea ice export and leading to very salty and expanded AABW. Together, these results suggest that a `sweet spot' of low CO2, low obliquity and relatively small ice sheets would have poised the AMOC for interruption, promoting Dansgaard-Oeschger-type abrupt change. The deep ocean temperature and salinity simulated under the most representative `glacial' state agree very well with reconstructions from the Last Glacial Maximum (LGM), which lends confidence in the ability of the model to estimate large-scale changes in water-mass geometry. The model also simulates a circulation-driven increase of preformed radiocarbon reservoir age, which could explain most of the reconstructed LGM-preindustrial ocean radiocarbon change. However, the radiocarbon content of the simulated glacial ocean is still higher than reconstructed for the LGM, and the model does not reproduce reconstructed LGM deep ocean oxygen depletions. These ventilation-related disagreements probably reflect unresolved physical aspects of ventilation and ecosystem processes, but also raise the possibility that the LGM ocean circulation was not in equilibrium. Finally, the simulations display an increased sensitivity of both surface air temperature and AABW volume to orbital forcing under low CO2. We suggest that this enhanced orbital sensitivity contributed to the development of the ice age cycles by amplifying the responses of climate and the carbon cycle to orbital forcing, following a gradual downward trend of CO2.

  11. Did glacially induced TPW end the ice age? A reanalysis

    NASA Astrophysics Data System (ADS)

    Chan, Ngai-Ham; Mitrovica, Jerry X.; Daradich, Amy

    2015-09-01

    Previous studies of Earth rotation perturbations due to ice-age loading have predicted a slow secular drift of the rotation axis relative to the surface geography (i.e. true polar wander, TPW) of order of several degrees over the Plio-Pleistocene. It has been argued that this drift and the change in the geographic distribution of solar insolation that it implies may have been responsible for important transitions in ice-age climate, including the termination of ice-age cycles.We use a revised rotational stability theory that incorporates a more accurate treatment of the Earth's background ellipticity to reconsider this issue, and demonstrate that the net displacement of the pole predicted in earlier studies disappears. This more muted polar motion is due to two factors: first, the revised theory no longer predicts the permanent shift in the rotation axis, or the so-called `unidirectional TPW', that appears in the traditional stability theory; and, second, the increased background ellipticity incorporated in the revised predictions acts to reduce the normal mode amplitudes governing the motion of the pole. We conclude that ice-age-induced TPW was not responsible for the termination of the ice age. This does not preclude the possibility that TPW induced by mantle convective flow may have played a role in major Plio-Pleistocene climate transitions, including the onset of Northern Hemisphere glaciation.

  12. Siple Dome ice reveals two modes of millennial CO2 change during the last ice age

    PubMed Central

    Ahn, Jinho; Brook, Edward J.

    2014-01-01

    Reconstruction of atmospheric CO2 during times of past abrupt climate change may help us better understand climate-carbon cycle feedbacks. Previous ice core studies reveal simultaneous increases in atmospheric CO2 and Antarctic temperature during times when Greenland and the northern hemisphere experienced very long, cold stadial conditions during the last ice age. Whether this relationship extends to all of the numerous stadial events in the Greenland ice core record has not been clear. Here we present a high-resolution record of atmospheric CO2 from the Siple Dome ice core, Antarctica for part of the last ice age. We find that CO2 does not significantly change during the short Greenlandic stadial events, implying that the climate system perturbation that produced the short stadials was not strong enough to substantially alter the carbon cycle. PMID:24781344

  13. An investigation of the astronomical theory of the ice ages using a simple climate-ice sheet model

    NASA Technical Reports Server (NTRS)

    Pollard, D.

    1978-01-01

    The astronomical theory of the Quaternary ice ages is incorporated into a simple climate model for global weather; important features of the model include the albedo feedback, topography and dynamics of the ice sheets. For various parameterizations of the orbital elements, the model yields realistic assessments of the northern ice sheet. Lack of a land-sea heat capacity contrast represents one of the chief difficulties of the model.

  14. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica

    PubMed Central

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V.; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P.; Brook, Edward J.

    2014-01-01

    We present successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) 85Kr and 39Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the 81Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130–115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA 81Kr analysis requires a 40–80-kg ice sample; as sample requirements continue to decrease, 81Kr dating of ice cores is a future possibility. PMID:24753606

  15. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica.

    PubMed

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-05-13

    We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.

  16. Latest Pleistocene and Holocene Glacier Fluctuations in southernmost Patagonia

    NASA Astrophysics Data System (ADS)

    Menounos, B.; Maurer, M.; Clague, J. J.; osborn, G.; Ponce, F.; Davis, P. T.; Rabassa, J.; Coronato, A.; Marr, R.

    2011-12-01

    Summer insolation has been proposed to explain long-term glacier fluctuations during the Holocene. If correct, the record of glacier fluctuations at high latitudes in the Southern Hemisphere should differ from that in the Northern Hemisphere. Testing this insolation hypothesis has been hampered by dating uncertainties of many Holocene glacier chronologies from Patagonia. We report on our ongoing research aimed at developing a regional glacier chronology at the southern end of the Andes north and west of Ushuaia, Argentina. We have found evidence for an advance of cirque glaciers at the end of the Pleistocene; one or locally two closely spaced moraines extend up to 2 km beyond Little Ice Age moraines. Radiocarbon dating of terrestrial macrofossils recovered from basal sediments behind two of these moraines yielded ages of 10,320 ± 25 and 10,330 ± 30 14C yr BP. These moraines may record glacier advances coeval with the Antarctic Cold Reversal; surface exposure dating of these moraines is currently in progress to test this hypothesis. We find no evidence of Holocene moraines older than 6800 14C yr BP, based on the distribution of Hudson tephra of that age. At some sites, there is evidence for an early Neoglacial advance of glaciers slightly beyond (< 0.5 km) Little Ice Age limits. Terrestrial macrofossils at the upper contact of basal till from one site yielded an age of 4505 ± 30 14C yr BP; this age overlaps the most probable age range of early Neoglacial ice expansion in southern Patagonia reported by Porter (2000) and the age of plants killed by expansion of the Quelccaya Ice Cap in Peru. We have documented multiple wood mats with stumps in growth position separated by till units in a 100 m section of the northeast lateral moraine at Stoppani Glacier (54.78 S, 68.98 W), 50 km west of Ushuaia. Ten radiocarbon ages on these wood mats range in age from 3510 ± 15 to 135 ± 15 14C yr BP. The mats decrease in age up-section; many overlap with published age ranges for Neoglacial advances in western Canada. Taken together, these data: a) do not support the summer insolation hypothesis for Holocene glacier fluctuations in southernmost Patagonia; b) confirm paleobotanical evidence for a warm, dry early Holocene; and c) suggest that many Neoglacial advances in southernmost Patagonia and western North America were synchronous.

  17. Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland

    NASA Astrophysics Data System (ADS)

    Bohleber, Pascal; Hoffmann, Helene; Kerch, Johanna; Sold, Leo; Fischer, Andrea

    2018-01-01

    Cold glaciers at the highest locations of the European Alps have been investigated by drilling ice cores to retrieve their stratigraphic climate records. Findings like the Oetztal ice man have demonstrated that small ice bodies at summit locations of comparatively lower altitudes may also contain old ice if locally frozen to the underlying bedrock. In this case, constraining the maximum age of their lowermost ice part may help to identify past periods with minimum ice extent in the Alps. However, with recent warming and consequent glacier mass loss, these sites may not preserve their unique climate information for much longer. Here we utilized an existing ice cave at Chli Titlis (3030 m), central Switzerland, to perform a case study for investigating the maximum age of cold-based summit glaciers in the Alps. The cave offers direct access to the glacier stratigraphy without the logistical effort required in ice core drilling. In addition, a pioneering exploration had already demonstrated stagnant cold ice conditions at Chli Titlis, albeit more than 25 years ago. Our englacial temperature measurements and the analysis of the isotopic and physical properties of ice blocks sampled at three locations within the ice cave show that cold ice still exists fairly unchanged today. State-of-the-art micro-radiocarbon analysis constrains the maximum age of the ice at Chli Titlis to about 5000 years before present. By this means, the approach presented here will contribute to a future systematic investigation of cold-based summit glaciers, also in the Eastern Alps.

  18. Radiostratigraphy and age structure of the Greenland Ice Sheet

    PubMed Central

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu

    2015-01-01

    Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Key Points Phase information predicts reflection slope and simplifies reflection tracing Reflections can be dated away from ice cores using a simple ice flow model Radiostratigraphy is often disrupted near the onset of fast ice flow PMID:26213664

  19. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    PubMed

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-24

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  20. The deglacial history of NW Alexander Island, Antarctica, from surface exposure dating

    NASA Astrophysics Data System (ADS)

    Johnson, Joanne S.; Everest, Jeremy D.; Leat, Philip T.; Golledge, Nicholas R.; Rood, Dylan H.; Stuart, Finlay M.

    2012-03-01

    Recent changes along the margins of the Antarctic Peninsula, such as the collapse of the Wilkins Ice Shelf, have highlighted the effects of climatic warming on the Antarctic Peninsula Ice Sheet (APIS). However, such changes must be viewed in a long-term (millennial-scale) context if we are to understand their significance for future stability of the Antarctic ice sheets. To address this, we present nine new cosmogenic 10Be exposure ages from sites on NW Alexander Island and Rothschild Island (adjacent to the Wilkins Ice Shelf) that provide constraints on the timing of thinning of the Alexander Island ice cap since the last glacial maximum. All but one of the 10Be ages are in the range 10.2-21.7 ka, showing a general trend of progressive ice-sheet thinning since at least 22 ka until 10 ka. The data also provide a minimum estimate (490 m) for ice-cap thickness on NW Alexander Island at the last glacial maximum. Cosmogenic 3He ages from a rare occurrence of mantle xenoliths on Rothschild Island yield variable ages up to 46 ka, probably reflecting exhumation by periglacial processes.

  1. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    DTIC Science & Technology

    2015-11-30

    information from the PIOMAS model [J. Zhang], melt pond coverage from MODIS [Rösel et al., 2012], and ice-age estimates [Maslanik et al., 2011] to...determined from MODIS satellite data using an artificial neural network, Cryosph., 6(2), 431–446, doi:10.5194/tc- 6-431-2012. PUBLICATIONS Carmack...from MODIS , and ice-age estimates to this dataset. We have used this extented dataset to build a climatology of the partitioning of solar heat between

  2. Just the right age: well-clustered exposure ages from a global glacial 10Be compilation

    NASA Astrophysics Data System (ADS)

    Heyman, Jakob; Margold, Martin

    2017-04-01

    Cosmogenic exposure dating has been used extensively for defining glacial chronologies, both in ice sheet and alpine settings, and the global set of published ages today reaches well beyond 10,000 samples. Over the last few years, a number of important developments have improved the measurements (with well-defined AMS standards) and exposure age calculations (with updated data and methods for calculating production rates), in the best case enabling high precision dating of past glacial events. A remaining problem, however, is the fact that a large portion of all dated samples have been affected by prior and/or incomplete exposure, yielding erroneous exposure ages under the standard assumptions. One way to address this issue is to only use exposure ages that can be confidently considered as unaffected by prior/incomplete exposure, such as groups of samples with statistically identical ages. Here we use objective statistical criteria to identify groups of well-clustered exposure ages from the global glacial "expage" 10Be compilation. Out of ˜1700 groups with at least 3 individual samples ˜30% are well-clustered, increasing to ˜45% if allowing outlier rejection of a maximum of 1/3 of the samples (still requiring a minimum of 3 well-clustered ages). The dataset of well-clustered ages is heavily dominated by ages <30 ka, showing that well-defined cosmogenic chronologies primarily exist for the last glaciation. We observe a large-scale global synchronicity in the timing of the last deglaciation from ˜20 to 10 ka. There is also a general correlation between the timing of deglaciation and latitude (or size of the individual ice mass), with earlier deglaciation in lower latitudes and later deglaciation towards the poles. Grouping the data into regions and comparing with available paleoclimate data we can start to untangle regional differences in the last deglaciation and the climate events controlling the ice mass loss. The extensive dataset and the statistical analysis enables an unprecedented global view on the last deglaciation.

  3. Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.

    2010-12-01

    Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at <1050-1350-AD (Mercer and Palacios, 1977) and interpreted to have been deposited during the Little Ice Age. We present a new suite of surface exposure and radiocarbon dates collected in 2008 and 2009 that constrain the ages of these moraines. Preliminary 10Be ages of boulder surfaces atop the moraines range from ~350-1370 AD. Maximum and minimum-limiting radiocarbon ages bracketing the moraines are ~0-1800 AD. The chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.

  4. Time Dependent Frictional Changes in Ice due to Contact Area Changes

    NASA Astrophysics Data System (ADS)

    Sevostianov, V.; Lipovsky, B. P.; Rubinstein, S.; Dillavou, S.

    2017-12-01

    Sliding processes along the ice-bed interface of Earth's great ice sheets are the largest contributor to our uncertainty in future sea level rise. Laboratory experiments that have probed sliding processes have ubiquitously shown that ice-rock interfaces strengthen while in stationary contact (Schulson and Fortt, 2013; Zoet et al., 2013; McCarthy et al., 2017). This so-called frictional ageing effect may have profound consequences for ice sheet dynamics because it introduces the possibility of basal strength hysteresis. Furthermore this effect is quite strong in ice-rock interfaces (more than an order of magnitude more pronounced than in rock-rock sliding) and can double in frictional strength in a matter of minutes, much faster than most frictional aging (Dieterich, 1972; Baumberger and Caroli, 2006). Despite this importance, the underling physics of frictional ageing of ice remain poorly understood. Here we conduct laboratory experiments to image the microscopic points of contact along an ice-glass interface. We optically measure changes in the real area of contact over time using measurements of this reflected optical light intensity. We show that contact area increases with time of stationary contact. This result suggests that thermally enhanced creep of microscopic icy contacts is responsible for the much larger frictional ageing observed in ice-rock versus rock-rock interfaces. Furthermore, this supports a more physically detailed description of the thermal dependence of basal sliding than that used in the current generation of large scale ice sheet models.

  5. Foraminiferal faunal estimates of paleotemperature: Circumventing the no-analog problem yields cool ice age tropics

    USGS Publications Warehouse

    Mix, A.C.; Morey, A.E.; Pisias, N.G.; Hostetler, S.W.

    1999-01-01

    The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5??to 6??C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.

  6. Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr BP

    NASA Astrophysics Data System (ADS)

    Severi, M.; Udisti, R.; Becagli, S.; Stenni, B.; Traversi, R.

    2012-04-01

    An age scale synchronisation between the Talos Dome and the EPICA Dome C ice cores was carried on through the identification of several common volcanic signatures for the last 42 kyr. Using this tight stratigraphic link we transferred the EDC age scale to the Talos Dome ice core producing a new age scale for the last 12 kyr. We estimated the discrepancies between the modeled TALDICE-1 age scale and the new one during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. Except for a very few cases, R ranges between 0.8 and 1.2 corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two ice cores. At this stage our approach does not allow us unequivocally to find out which of the models is affected by errors, but, taking into account only the historically known volcanic events, we found that discrepancies up to 200 years appears in the last two millennia in the TALDICE-1 model, while our new age scale shows a much better agreement with the volcanic absolute horizons. Thus, we propose for the Talos Dome ice core a new age scale (covering the whole Holocene) obtained by a direct transfer, via our stratigraphic link, from the EDC modelled age scale by Lemieux-Dudon et al. (2010).

  7. Holocene history of North Ice Cap, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Corbett, L. B.; Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Roy, E. P.; Thompson, J. T.

    2013-12-01

    Although much research has focused on the past extents of the Greenland Ice Sheet, less is known about the smaller ice caps on Greenland and how they have evolved over time. These small ice caps respond sensitively to summer temperatures and, to a lesser extent, winter precipitation, and provide valuable information about climatic conditions along the Greenland Ice Sheet margins. Here, we investigate the Holocene history of North Ice Cap (76°55'N 68°00'W), located in the Nunatarssuaq region near Thule, northwest Greenland. Our results are based on glacial geomorphic mapping, 10Be dating, and analyses of sediment cores from a glacially fed lake. Fresh, unweathered and unvegetated boulders comprise moraines and drift that mark an extent of North Ice Cap ~25 m outboard of the present ice margin. It is likely that these deposits were formed during late Holocene time and we are currently employing 10Be surface exposure dating to examine this hypothesis. Just outboard of the fresh moraines and drift, boulders and bedrock show significant weathering and are covered with lichen. Based on glacial geomorphic mapping and detailed site investigations, including stone counts, we suggest that the weathered boulders and bedrock were once covered by erosive Greenland Ice Sheet flow from southeast to northwest over the Nunatarssuaq region. Five 10Be ages from the more weathered landscape only 100-200 m outboard of the modern North Ice Cap margin are 52 and 53 ka (bedrock) and 16, 23, and 31 ka (boulders). These ages indicate that recent ice cover has likely been cold-based and non-erosive, failing to remove inherited cosmogenic nuclides from previous periods of exposure, although the youngest boulder may provide a maximum limiting deglaciation age. Sediment cores collected from Delta Sø, a glacially-fed lake ~1.5 km outside of the modern North Ice Cap margin, contain 130 cm of finely laminated sediments overlying coarse sands and glacial till. Radiocarbon ages from just above the sands are 14,940 and 14,560 cal yr BP (medians of two-sigma ranges). Our results thus far suggest that the Nunatarssuaq region preserves a long and complex glacial history, including glaciation by the Greenland Ice Sheet and potentially North Ice Cap, as well as glaciation by both erosive and non-erosive ice. Based on the basal ages from Delta Sø and the youngest boulder 10Be age, recession at the end of the most recent glacial period likely occurred by ~15 ka. This is considerably earlier than most other terrestrial margins of Greenland that did not become ice free until ~10 ka. Our ongoing research is developing proxy and further chronological data from sediment cores from Delta Sø and nearby ice-marginal lakes to constrain the Holocene fluctuations of North Ice Cap.

  8. Surface-exposure ages of Front Range moraines that may have formed during the Younger Dryas, 8.2 cal ka, and Little Ice Age events

    USGS Publications Warehouse

    Benson, L.; Madole, R.; Kubik, P.; McDonald, R.

    2007-01-01

    Surface-exposure (10Be) ages have been obtained on boulders from three post-Pinedale end-moraine complexes in the Front Range, Colorado. Boulder rounding appears related to the cirque-to-moraine transport distance at each site with subrounded boulders being typical of the 2-km-long Chicago Lakes Glacier, subangular boulders being typical of the 1-km-long Butler Gulch Glacier, and angular boulders being typical of the few-hundred-m-long Isabelle Glacier. Surface-exposure ages of angular boulders from the Isabelle Glacier moraine, which formed during the Little Ice Age (LIA) according to previous lichenometric dating, indicate cosmogenic inheritance values ranging from 0 to ???3.0 10Be ka.11Surface-exposure ages in this paper are labeled 10Be; radiocarbon ages are labeled 14C ka, calendar and calibrated radiocarbon ages are labeled cal ka, and layer-based ice-core ages are labeled ka. 14C ages, calibrated 14C ages, and ice core ages are given relative to AD 1950, whereas 10Be ages are given relative to the sampling date. Radiocarbon ages were calibrated using CALIB 5.01 and the INTCAL04 data base Stuiver et al. (2005). Ages estimated using CALIB 5.01 are shown in terms of their 1-sigma range. Subangular boulders from the Butler Gulch end moraine yielded surface-exposure ages ranging from 5 to 10.2 10Be ka. We suggest that this moraine was deposited during the 8.2 cal ka event, which has been associated with outburst floods from Lake Agassiz and Lake Ojibway, and that the large age range associated with the Butler Gulch end moraine is caused by cosmogenic shielding of and(or) spalling from boulders that have ages in the younger part of the range and by cosmogenic inheritance in boulders that have ages in the older part of the range. The surface-exposure ages of eight of nine subrounded boulders from the Chicago Lakes area fall within the 13.0-11.7 10Be ka age range, and appear to have been deposited during the Younger Dryas interval. The general lack of inheritance in the eight samples probably stems from the fact that only a few thousand years intervened between the retreat of the Pinedale glacier and the advance of the Chicago Lakes glacier; in addition, bedrock in the Chicago Lakes cirque area may have remained covered with snow and ice during that interval, thus partially shielding the bedrock from cosmogenic radiation.

  9. Effect of ageing of K-feldspar on its ice nucleating efficiency in immersion, deposition and contact freezing modes

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Bachmann, Felix; Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2015-04-01

    Recently K-feldspar was identified as one of the most active atmospheric ice nucleating particles (INP) of mineral origin [1]. Seeking the explanation to this phenomena we have conducted extensive experimental investigation of the ice nucleating efficiency of K-feldspar in three heterogeneous freezing modes. The immersion freezing of K-feldspar was investigated with the cold stage using arrays of nanoliter-size droplets containing aqueous suspension of polydisperse feldspar particles. For contact freezing, the charged droplets of supercooled water were suspended in the laminar flow of the DMA-selected feldspar-containing particles, allowing for determination of freezing probability on a single particle-droplet contact [2]. The nucleation and growth of ice via vapor deposition on the crystalline surfaces of macroscopic feldspar particles have been investigated in the Environmental Scanning Electron Microscope (ESEM) under humidified nitrogen atmosphere. The ice nucleation experiments were supplemented with measurements of effective surface area of feldspar particles and ion chromatography (IC) analysis of the leached framework cations (K+, Na+, Ca2+, Mg2+). In this contribution we focus on the role of surface chemistry influencing the IN efficiency of K-feldspar, in particular the connection between the degree of surface hydroxylation and its ability to induce local structural ordering in the interfacial layer in water molecules (as suggested by recent modeling efforts). We mimic the natural process of feldspar ageing by suspending it in water or weak aqueous solution of carbonic acid for different time periods, from minutes to months, and present its freezing efficiency as a function of time. Our immersion freezing experiments show that ageing have a nonlinear effect on the freezing behavior of feldspar within the investigated temperature range (-40°C to -10°C). On the other hand, deposition nucleation of ice observed in the ESEM reveals clear different pattern between freshly cleaved and aged mineral surfaces. This effect is especially pronounced for surfaces having different crystallographic orientations (001 and 010), with 001 being clearly preferential for ice nucleation. The factor two change of the BET effective area of the naturally aged feldspar particles is also indicative for the change in the surface morphology. Based on the IC analysis of framework cations removal from the surface of feldspar, we discuss the possible implications of this process for the interpretation of observed freezing behavior of feldspars. [1] Atkinson, J.D., Murray, B.J., Woodhouse, M.T., Whale, T.F., Baustian, K.J., Carslaw, K.S., Dobbie, S., O'Sullivan, D., and Malkin, T.L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355-358, 2013 [2] Hoffmann, N., Kiselev, A., Rzesanke, D., Duft, D., and Leisner, T.: Experimental quantification of contact freezing in an electrodynamic balance. Atmos. Meas. Tech., 6, 2373-2382, 2013.

  10. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  11. Vostok Subglacial Lake: A Review of Geophysical Data Regarding Its Discovery and Topographic Setting

    NASA Technical Reports Server (NTRS)

    Siegert, Martin J.; Popov, Sergey; Studinger, Michael

    2011-01-01

    Vostok Subglacial Lake is the largest and best known sub-ice lake in Antarctica. The establishment of its water depth (>500 m) led to an appreciation that such environments may be habitats for life and could contain ancient records of ice sheet change, which catalyzed plans for exploration and research. Here we discuss geophysical data used to identify the lake and the likely physical, chemical, and biological processes that occur in it. The lake is more than 250 km long and around 80 km wide in one place. It lies beneath 4.2 to 3.7 km of ice and exists because background levels of geothermal heating are sufficient to warm the ice base to the pressure melting value. Seismic and gravity measurements show the lake has two distinct basins. The Vostok ice core extracted >200 m of ice accreted from the lake to the ice sheet base. Analysis of this ice has given valuable insights into the lake s biological and chemical setting. The inclination of the ice-water interface leads to differential basal melting in the north versus freezing in the south, which excites circulation and potential mixing of the water. The exact nature of circulation depends on hydrochemical properties, which are not known at this stage. The age of the subglacial lake is likely to be as old as the ice sheet (approx.14 Ma). The age of the water within the lake will be related to the age of the ice melting into it and the level of mixing. Rough estimates put that combined age as approx.1 Ma.

  12. Space/Time Statistics of Polar Ice Motion

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Fowler, Charles; Maslanik, James A.

    2003-01-01

    Ice motions have been computed from passive microwave imagery (SMMR and SSM/I) on a daily basis for both Polar Regions. In the Arctic these daily motions have been merged with daily motions from AVHRR imagery and the Arctic buoy program. In the Antarctic motion only from the AVHRR were available for merging with the passive microwave vectors. Long-term means, monthly means and weekly means have all been computed from the resulting 22-year time series of polar ice motion. Papers are in preparation that present the long term (22 year) means, their variability and show animations of the monthly means over this time period for both Polar Regions. These papers will have links to "enhanced objects" that allow the reader to view the animations as part of the paper. The first paper presents the ice motion results from each of the Polar Regions. The second paper looks only at ice motion in the Arctic in order to develop a time series of ice age in the Arctic. Starting with the first full SMMR year in 1979 we keep track of each individual "ice element" (resolution of the sensor) and track it in the subsequent monthly time series. After a year we "age" each "particle" and we thus can keep track of the age of the ice starting in 1979. We keep track of ice age classes between one and five years and thus we can see the evolution of the ice as it ages after the initial 5-year period. This calculation shows how we are losing the older ice through Fram Strait at a rather alarming rate particularly in the past 15 years. This loss of older ice has resulted in an overall decrease in the thickest, oldest ice, which is now limited to a region just north of the Canadian Archipelago with tongues extending out across the pole towards the Siberian Shelf. This loss of old ice is consistent with the effects of global warming which provides the heat needed to melt, move and disperse this oldest ice through Fram Strait. This is the first step in a progression that may eventually open the Arctic ice pack and lead to an ice-free Arctic Ocean.

  13. Polar process and world climate /A brief overview/

    NASA Technical Reports Server (NTRS)

    Goody, R.

    1980-01-01

    A review is presented of events relating polar regions to the world climate, the mechanisms of sea ice and polar ice sheets, and of two theories of the Pleistocene Ice Ages. The sea ice which varies over time scales of one or two years and the polar ice sheets with time changes measured in tens or hundreds of thousands of years introduce two distinct time constants into global time changes; the yearly Arctic sea ice variations affect northern Europe and have some effect over the entire Northern Hemisphere; the ice-albedo coupling in the polar ice sheets is involved in major climatic events such as the Pleistocene ice ages. It is concluded that climate problems require a global approach including the atmosphere, the oceans, and the cryosphere.

  14. Morphological, Physiological and Skating Performance Profiles of Male Age-Group Elite Ice Hockey Players.

    PubMed

    Allisse, Maxime; Sercia, Pierre; Comtois, Alain-Steve; Leone, Mario

    2017-09-01

    The purpose of this study was to describe the evolution of morphological, physiological and skating performance profiles of elite age-group ice hockey players based on repeated measures spread over one season. In addition, the results of fitness tests and training programs performed in off-ice conditions and their relationship with skating performance were analyzed. Eighteen high level age-group ice hockey players (13.1 ± 0.6 years) were assessed off and on-ice at the beginning and at the end of the hockey season. A third evaluation was also conducted at the beginning of the following hockey season. The players were taller, heavier, and showed bone breadths and muscle girths above the reference population of the same age. Muscular variables improved significantly during and between the two hockey seasons (p < 0.05). However, maximal aerobic power improved only during the off-season. All skating performance tests exhibited significant enhancements during the hockey season, but not during the off-season where some degradation was observed. Finally, weak observed variances (generally <20% of the explained variance) between physiological variables measured off-ice and on-ice skating performance tests indicated important gaps, both in the choice of the off-ice assessment tools as well as in training methods conventionally used. The reflection on the best way to assess and train hockey players certainly deserves to be continued.

  15. Morphological, Physiological and Skating Performance Profiles of Male Age-Group Elite Ice Hockey Players

    PubMed Central

    Allisse, Maxime; Sercia, Pierre; Comtois, Alain-Steve; Leone, Mario

    2017-01-01

    Abstract The purpose of this study was to describe the evolution of morphological, physiological and skating performance profiles of elite age-group ice hockey players based on repeated measures spread over one season. In addition, the results of fitness tests and training programs performed in off-ice conditions and their relationship with skating performance were analyzed. Eighteen high level age-group ice hockey players (13.1 ± 0.6 years) were assessed off and on-ice at the beginning and at the end of the hockey season. A third evaluation was also conducted at the beginning of the following hockey season. The players were taller, heavier, and showed bone breadths and muscle girths above the reference population of the same age. Muscular variables improved significantly during and between the two hockey seasons (p < 0.05). However, maximal aerobic power improved only during the off-season. All skating performance tests exhibited significant enhancements during the hockey season, but not during the off-season where some degradation was observed. Finally, weak observed variances (generally <20% of the explained variance) between physiological variables measured off-ice and on-ice skating performance tests indicated important gaps, both in the choice of the off-ice assessment tools as well as in training methods conventionally used. The reflection on the best way to assess and train hockey players certainly deserves to be continued. PMID:28828080

  16. The Relationship Between Arctic Sea Ice Albedo and the Geophysical Parameters of the Ice Cover

    NASA Astrophysics Data System (ADS)

    Riihelä, A.

    2015-12-01

    The Arctic sea ice cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining ice cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing ice concentration and enhanced surface melt of the ice, remains an important research question for the forecasting of future conditions of the ice cover. A necessary step towards this goal is understanding the relationships between Arctic sea ice albedo and the geophysical parameters of the ice cover. Particularly the question of the relationship between sea ice albedo and ice age is both interesting and not widely studied. The recent changes in the Arctic sea ice zone have led to a substantial decrease of its multi-year sea ice, as old ice melts and is replaced by first-year ice during the next freezing season. It is generally known that younger sea ice tends to have a lower albedo than older ice because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea ice age and sea ice albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea ice albedo relative to the geophysical parameters of the ice field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea ice albedo as a function of sea ice age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea ice in the central parts of the Arctic Ocean is resistant to the decreasing overall trend.A similar analysis is also extended to ice concentration, melt season length and other appropriate parameters describing the surface conditions. The results of the analyses are summed up to provide an assessment of the relative impact strengths of the ice field parameters on the albedo.

  17. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years

    NASA Astrophysics Data System (ADS)

    Veres, D.; Bazin, L.; Landais, A.; Toyé Mahamadou Kele, H.; Lemieux-Dudon, B.; Parrenin, F.; Martinerie, P.; Blayo, E.; Blunier, T.; Capron, E.; Chappellaz, J.; Rasmussen, S. O.; Severi, M.; Svensson, A.; Vinther, B.; Wolff, E. W.

    2013-08-01

    The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120-800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.

  18. A comparison of Holocene fluctuations of the eastern and western margins of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.

    2013-12-01

    Determining how the Greenland Ice Sheet (GrIS) responded to past temperature fluctuations is important for assessing its future stability in a changing climate. We present a record of the Holocene extents of the western GrIS margin near Kangerlussuaq (67.0°N, 50.7°W) and compare this with the past fluctuations of Bregne ice cap (71°N, 25.6° W), a small ice cap in the Scoresby Sund region 90 km from the eastern GrIS margin, to examine the mechanisms that influenced past ice margin fluctuations. The past extents of the Bregne ice cap are a proxy for the climatic conditions that influenced the nearby GrIS margin. We used glacial geomorphic mapping, 10Be dating of boulders and bedrock, and sediment cores from proglacial and non-glacial lakes. In western Greenland, 10Be ages on the Keglen moraines, 13 km west of the current GrIS margin and the Ørkendalen moraines, ≤2 km west of the current ice margin date to 7.3 × 0.1 ka (n=6) and 6.8 × 0.3 ka (n=9), respectively. Fresh moraines, ≤50 m from the current ice margin date to AD 1830-1950 and are likely associated with advances during the Little Ice Age (LIA). In some areas, the LIA moraines lie stratigraphically above the Ørkendalen moraines, indicating the GrIS was inboard of the Ørkendalen limit from 6.8 ka to the 20th century. In eastern Greenland, 10Be ages show that Bregne ice cap retreated within its late Holocene limit by 10.7 ka. A lack of clastic sediment in a proglacial lake suggests the ice cap was smaller or completely absent from ~10-2.6 ka. A snowline analysis indicates that temperatures ~0.5°C warmer than present would render the entire ice cap into an ablation zone. Glacial silts in the proglacial lake at ~2.6 and ~1.9 cal kyr BP to present indicate advances of Bregne ice cap. Fresh moraines ≤200 m of Bregne ice cap were deposited ≤2.6 cal kyr BP and mark the largest advance of the Holocene. Both the western GrIS margin and Bregne ice cap were influenced by Northern Hemisphere summer insolation during the Holocene. The western GrIS margin retreated significantly and Bregne ice cap likely disappeared during the warm early to middle Holocene. 10Be ages (10.7 ka) outboard of the late Holocene moraines at Bregne ice cap compared to those outside of the LIA moraines near Kangerlussuaq (6.8 ka) differ by ~4 kyr. This disparity in ages may have been caused by a large late Holocene advance in eastern Greenland, or perhaps the western GrIS margin retreated farther inland during the middle Holocene. Decreasing Northern Hemisphere summer insolation during the late Holocene, combined with a strong, cold East Greenland Current near Scoresby Sund may have influenced a significant ice cap advance. The temporal pattern of the responses of the eastern and western ice margins to Holocene climate changes may be indicative of how the GrIS will respond to future changes.

  19. Volcano-ice age link discounted

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1996-05-10

    Speculation that huge volcanic eruptions may have caused an immediate `volcanic winter` that devastated early humans and accelerated a slide into the Ice Age. However, further information from the Greenland ice sheet about the Toba errumption on the island of Sumatra 70,000 years ago, seems to indicate that such volcanic actions wasn`t a major climatic catalyst. This article discusses the evidence and further possibilities.

  20. Biomarker-based reconstruction of late Holocene sea-ice variability: East versus West Greenland continental shelf.

    NASA Astrophysics Data System (ADS)

    Kolling, H. M.; Stein, R. H.; Fahl, K.

    2016-12-01

    Sea is a critical component of the climate system and its role is not yet fully understood e.g. the recent rapid decrease in sea ice is not clearly reflected in climate models. This illustrates the need for high-resolution proxy-based sea-ice reconstructions going beyond the time scale of direct measurements in order to understand the processes controlling present and past natural variability of sea ice on short time scales. Here we present the first comparison of two high-resolution biomarker records from the East and West Greenland Shelf for the late Holocene. Both areas are highly sensitive to sea-ice changes as they are influenced by the East Greenland Current, the main exporter of Arctic freshwater and sea ice. On the East Greenland Shelf, we do not find any clear evidence for a long-term increase of sea ice during the late Holocene Neoglacial. This sea-ice record seems to be more sensitive to short-term climate events, such as the Roman Warm Period, the Dark Ages, the Medieval Warm Period and the Little Ice Age. In contrary, the West Greenland Shelf record shows a strong and gradual increase in sea ice concentration and a reduction in marine productivity markers starting near 1.6 ka. In general, the increase in sea ice seems to follow the decreasing solar insolation trend. Short-term events are not as clearly pronounced as on the East Greenland Shelf. A comparison to recently published foraminiferal records from the same cores (Perner et al., 2011, 2015) illuminates the differences of biomarker and micropaleontoligical proxies. It seems that the general trend is reflected in both proxies but the signal of small-scale events is preserved rather differently, pointing towards different environmental requirements of the species behind both proxies. References: Perner, K., et al., 2011. Quat. Sci. Revs. 30, 2815-2826 Perner, K., et al., 2015. Quat. Sci. Revs. 129, 296-307

  1. Challenges in validating model results for first year ice

    NASA Astrophysics Data System (ADS)

    Melsom, Arne; Eastwood, Steinar; Xie, Jiping; Aaboe, Signe; Bertino, Laurent

    2017-04-01

    In order to assess the quality of model results for the distribution of first year ice, a comparison with a product based on observations from satellite-borne instruments has been performed. Such a comparison is not straightforward due to the contrasting algorithms that are used in the model product and the remote sensing product. The implementation of the validation is discussed in light of the differences between this set of products, and validation results are presented. The model product is the daily updated 10-day forecast from the Arctic Monitoring and Forecasting Centre in CMEMS. The forecasts are produced with the assimilative ocean prediction system TOPAZ. Presently, observations of sea ice concentration and sea ice drift are introduced in the assimilation step, but data for sea ice thickness and ice age (or roughness) are not included. The model computes the age of the ice by recording and updating the time passed after ice formation as sea ice grows and deteriorates as it is advected inside the model domain. Ice that is younger than 365 days is classified as first year ice. The fraction of first-year ice is recorded as a tracer in each grid cell. The Ocean and Sea Ice Thematic Assembly Centre in CMEMS redistributes a daily product from the EUMETSAT OSI SAF of gridded sea ice conditions which include "ice type", a representation of the separation of regions between those infested by first year ice, and those infested by multi-year ice. The ice type is parameterized based on data for the gradient ratio GR(19,37) from SSMIS observations, and from the ASCAT backscatter parameter. This product also includes information on ambiguity in the processing of the remote sensing data, and the product's confidence level, which have a strong seasonal dependency.

  2. Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peteet, D. M.; Beh, M.; Orr, C.

    The conventionally accepted ages of the Last Glacial Maximum (LGM) retreat of the southeastern Laurentide Ice Sheet (LIS) are 26–21 cal. kyr (derived from bulk-sediment radiocarbon ages) and 28–23 cal. kyr (varve estimates). By utilizing accelerator mass spectrometry (AMS) 14C dating of earliest macrofossils in 13 lake/bog inorganic clays, we find that vegetation first appeared on the landscape at 16–15 cal. kyr, suggesting ice had not retreated until that time. The gap between previous age estimates and ours is significant and has large implications for our understanding of ocean-atmosphere linkages. Older ages imply extreme Arctic conditions for 9–5 cal kyr;more » a landscape with no ice, yet no deposition in lakes. Also, our new AMS chronology of LIS retreat is consistent with marine evidence of deglaciation from the N. Atlantic, showing significant freshwater input and sea level rise only after 19 cal kyr with a cold meltwater lid, perhaps delaying ice melt.« less

  3. Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin?

    DOE PAGES

    Peteet, D. M.; Beh, M.; Orr, C.; ...

    2012-06-15

    The conventionally accepted ages of the Last Glacial Maximum (LGM) retreat of the southeastern Laurentide Ice Sheet (LIS) are 26–21 cal. kyr (derived from bulk-sediment radiocarbon ages) and 28–23 cal. kyr (varve estimates). By utilizing accelerator mass spectrometry (AMS) 14C dating of earliest macrofossils in 13 lake/bog inorganic clays, we find that vegetation first appeared on the landscape at 16–15 cal. kyr, suggesting ice had not retreated until that time. The gap between previous age estimates and ours is significant and has large implications for our understanding of ocean-atmosphere linkages. Older ages imply extreme Arctic conditions for 9–5 cal kyr;more » a landscape with no ice, yet no deposition in lakes. Also, our new AMS chronology of LIS retreat is consistent with marine evidence of deglaciation from the N. Atlantic, showing significant freshwater input and sea level rise only after 19 cal kyr with a cold meltwater lid, perhaps delaying ice melt.« less

  4. Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations

    NASA Astrophysics Data System (ADS)

    Grosjean, Martin; Suter, Peter J.; Trachsel, Mathias; Wanner, Heinz

    2007-03-01

    During the hot summer of 2003, reduction of an ice field in the Swiss Alps (Schnidejoch) uncovered spectacular archaeological hunting gear, fur, leather and woollen clothing and tools from four distinct windows of time: Neolithic Age (4900 to 4450 cal. yr BP), early Bronze Age (4100-3650 cal. yr BP), Roman Age (1st-3rd century AD), and Medieval times (8-9th century AD and 14-15th century AD). Transalpine routes connecting northern Italy with the northern Alps during these slots is consistent with late Holocene maximum glacier retreat. The age cohorts of the artefacts are separated which is indicative of glacier advances when the route was difficult and not used for transit. The preservation of Neolithic leather indicates permanent ice cover at that site from ca. 4900 cal. yr BP until AD 2003, implying that the ice cover was smaller in 2003 than at any time during the last 5000 years. Current glacier retreat is unprecedented since at least that time. This is highly significant regarding the interpretation of the recent warming and the rapid loss of ice in the Alps. Copyright

  5. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  6. Episodic Neoglacial snowline descent and glacier expansion on Svalbard reconstructed from the 14C ages of ice-entombed plants

    NASA Astrophysics Data System (ADS)

    Miller, Gifford H.; Landvik, Jon Y.; Lehman, Scott J.; Southon, John R.

    2017-01-01

    The response of the Northern Hemisphere cryosphere to the monotonic decline in summer insolation and variable radiative forcing during the Holocene has been one of irregular expansion culminating in the Little Ice Age, when most glaciers attained their maximum late Holocene dimensions. Although periods of intervening still-stand or ice-retreat can be reconstructed by direct dating of ice-recessional features, defining times of Neoglacial ice growth has been limited to indirect proxies preserved in distal archives. Here we report 45 precise radiocarbon dates on in situ plants emerging from beneath receding glaciers on Svalbard that directly date the onset of snowline descent and glacier expansion, entombing the plants. Persistent snowline lowering occurred between 4.0 and 3.4 ka, but with little additional persistent lowering until early in the first millennium AD. Populations of individual 14C calendar age results and their aggregate calendar age probabilities define discrete episodes of vegetation kill and snowline lowering 240-340 AD, 410-540 AD and 670-750 AD, each with a lower snowline than the preceding episode, followed by additional snowline lowering between 1000 and 1220 AD, and between 1300 and 1450 AD. Snowline changes after 1450 AD, including the maximum ice extent of the Little Ice Age are not resolved by our collections, although snowlines remained lower than their 1450 AD level until the onset of modern warming. A time-distance diagram derived from a 250-m-long transect of dated ice-killed plants documents ice-margin advances ∼750, ∼1100 and after ∼1500 AD, concordant with distributed vegetation kill ages seen in the aggregate data set, supporting our central thesis that vegetation kill ages provide direct evidence of snowline lowering and cryospheric expansion. The mid- to late-Holocene history of snowline lowering on Svalbard is similar to ELA reconstructions of Norwegian and Svalbard cirque glaciers, and consistent with a cryospheric response to the secular decline of regional summertime insolation and stepped changes in nearby surface ocean environments. The widespread exposure of entombed plants dating from the first millennium AD suggests that Svalbard's average summer temperatures of the past century now exceed those of any century since at least 700 AD, including medieval times.

  7. The Great Ice Age

    USGS Publications Warehouse

    Ray, Louis L.

    1992-01-01

    The Great Ice Age, a recent chapter in the Earth's history, was a period of recurring widespread glaciations. During the Pleistocene Epoch of the geologic time scale, which began about a million or more years ago, mountain glaciers formed on all continents, the icecaps of Antarctica and Greenland were more extensive and thicker than today, and vast glaciers, in places as much as several thousand feet thick, spread across northern North America and Eurasia. So extensive were these glaciers that almost a third of the present land surface of the Earth was intermittently covered by ice. Even today remnants of the great glaciers cover almost a tenth of the land, indicating that conditions somewhat similar to those which produced the Great Ice Age are still operating in polar and subpolar climates.

  8. Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr BP

    NASA Astrophysics Data System (ADS)

    Severi, M.; Udisti, R.; Becagli, S.; Stenni, B.; Traversi, R.

    2012-03-01

    The age scale synchronisation between the Talos Dome and the EPICA Dome C ice cores was carried on through the identification of several common volcanic signatures. This paper describes the rigorous method, using the signature of volcanic sulphate, which was employed for the last 42 kyr of the record. Using this tight stratigraphic link, we transferred the EDC age scale to the Talos Dome ice core, producing a new age scale for the last 12 kyr. We estimated the discrepancies between the modelled TALDICE-1 age scale and the new scale during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. Except for a very few cases, R ranges between 0.8 and 1.2, corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two ice cores. At this stage our approach does not allow us to unequivocally identify which of the models is affected by errors, but, taking into account only the historically known volcanic events, we found that discrepancies up to 200 yr appear in the last two millennia in the TALDICE-1 model, while our new age scale shows a much better agreement with the volcanic absolute horizons. Thus, we propose for the Talos Dome ice core a new age scale (covering the whole Holocene) obtained by a direct transfer, via our stratigraphic link, from the EDC modelled age scale by Lemieux-Dudon et al. (2010).

  9. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  10. A Younger Dryas re-advance of local glaciers in north Greenland

    NASA Astrophysics Data System (ADS)

    Larsen, Nicolaj K.; Funder, Svend; Linge, Henriette; Möller, Per; Schomacker, Anders; Fabel, Derek; Xu, Sheng; Kjær, Kurt H.

    2016-09-01

    The Younger Dryas (YD) is a well-constrained cold event from 12,900 to 11,700 years ago but it remains unclear how the cooling and subsequent abrupt warming recorded in ice cores was translated into ice margin fluctuations in Greenland. Here we present 10Be surface exposure ages from three moraines in front of local glaciers on a 50 km stretch along the north coast of Greenland, facing the Arctic Ocean. Ten ages range from 11.6 ± 0.5 to 27.2 ± 0.9 ka with a mean age of 12.5 ± 0.7 ka after exclusion of two outliers. We consider this to be a minimum age for the abandonment of the moraines. The ages of the moraines are furthermore constrained using Optically Stimulated Luminescence (OSL) dating of epishelf sediments, which were deposited prior to the ice advance that formed the moraines, yielding a maximum age of 12.4 ± 0.6 ka, and bracketing the formation and subsequent abandonment of the moraines to within the interval 11.8-13.0 ka ago. This is the first time a synchronous YD glacier advance and subsequent retreat has been recorded for several independent glaciers in Greenland. In most other areas, there is no evidence for re-advance and glaciers were retreating during YD. We explain the different behaviour of the glaciers in northernmost Greenland as a function of their remoteness from the Atlantic Meridional Overturning Circulation (AMOC), which in other areas has been held responsible for modifying the YD drop in temperatures.

  11. Dating the Vostok ice core record by importing the Devils Hole chronology

    USGS Publications Warehouse

    Landwehr, J.M.; Winograd, I.J.

    2001-01-01

    The development of an accurate chronology for the Vostok record continues to be an open research question because these invaluable ice cores cannot be dated directly. Depth-to-age relationships have been developed using many different approaches, but published age estimates are inconsistent, even for major paleoclimatic events. We have developed a chronology for the Vostok deuterium paleotemperature record using a simple and objective algorithm to transfer ages of major paleoclimatic events from the radiometrically dated 500,000-year ??18O-paleotemperature record from Devils Hole, Nevada. The method is based only on a strong inference that major shifts in paleotemperature recorded at both locations occurred synchronously, consistent with an atmospheric teleconnection. The derived depth-to-age relationship conforms with the physics of ice compaction, and internally produces ages for climatic events 5.4 and 11.24 which are consistent with the externally assigned ages that the Vostok team needed to assume in order to derive their most recent chronology, GT4. Indeed, the resulting V-DH chronology is highly correlated with GT4 because of the unexpected correspondence even in the timing of second-order climatic events that were not constrained by the algorithm. Furthermore, the algorithm developed herein is not specific to this problem; rather, the procedure can be used whenever two paleoclimate records are proxies for the same physical phenomenon, and paleoclimatic conditions forcing the two records can be considered to have occurred contemporaneously. The ability of the algorithm to date the East Antarctic Dome Fuji core is also demonstrated.

  12. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  13. The little ice age as recorded in the stratigraphy of the tropical quelccaya ice cap.

    PubMed

    Thompson, L G; Mosley-Thompson, E; Dansgaard, W; Grootes, P M

    1986-10-17

    The analyses of two ice cores from a southern tropical ice cap provide a record of climatic conditions over 1000 years for a region where other proxy records are nearly absent. Annual variations in visible dust layers, oxygen isotopes, microparticle concentrations, conductivity, and identification of the historical (A.D. 1600) Huaynaputina ash permit accurate dating and time-scale verification. The fact that the Little Ice Age (about A.D. 1500 to 1900) stands out as a significant climatic event in the oxygen isotope and electrical conductivity records confirms the worldwide character of this event.

  14. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE PAGES

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; ...

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  15. Effect of aging and ice structuring proteins on the morphology of frozen hydrated gluten networks.

    PubMed

    Kontogiorgos, Vassilis; Goff, H Douglas; Kasapis, Stefan

    2007-04-01

    The present investigation constitutes an attempt to rationalize the effect of aging and ice structuring proteins (ISPs) on the network morphology of frozen hydrated gluten. In doing so, it employs differential scanning calorimetry, time-domain NMR, dynamic oscillation on shear, creep testing, and electron microscopy. Experimentation and first principles modeling allows identification and description of the processes of ice formation and recrystallization in molecular terms. It is demonstrated that in the absence of a readily discernible glass transition temperature in gluten-ice composites, the approach of considering the melting point and aging at constant or fluctuating temperature conditions in the vicinity of this point can provide a valid index of functional quality. A theoretical framework supporting the concept of capillary confined frozen water in the gluten matrix was advanced, and it was found that ISPs were effective in controlling recrystallization both within these confines and within ice in the bulk.

  16. Erosion patterns produced by the paleo Haizishan ice cap, SE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Fu, P.; Stroeven, A. P.; Harbor, J.; Hättestrand, C.; Heyman, J.; Caffee, M. W.

    2017-12-01

    Erosion is a primary driver of landscape evolution, topographic relief production, geochemical cycles, and climate change. Combining in situ 10Be and 26Al exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4,000 km2 paleo Haizishan ice cap on the southeastern Tibetan Plateau. Our results show that ice caps on the low relief Haizishan Plateau produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with the last deglaciation, complete resetting of the cosmogenic exposure age clock indicates glacial erosion of at least a few meters. However, older apparent exposure ages on bedrock in areas known to have been covered by the paleo ice cap during the Last Glacial Maximum indicate inheritance and thus limited glacial erosion. Inferred surface exposure ages from cosmogenic depth profiles through two saprolites vary from resetting and thus saprolite profile truncation to nuclide inheritance indicating limited erosion. Finally, significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate limited glacial erosion during the last glaciation. Hence, for the first time, our study shows clear evidence of preservation under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the paleo Haizishan ice cap during the LGM.

  17. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments.

    PubMed

    La Farge, Catherine; Williams, Krista H; England, John H

    2013-06-11

    Across the Canadian Arctic Archipelago, widespread ice retreat during the 20th century has sharply accelerated since 2004. In Sverdrup Pass, central Ellesmere Island, rapid glacier retreat is exposing intact plant communities whose radiocarbon dates demonstrate entombment during the Little Ice Age (1550-1850 AD). The exhumed bryophyte assemblages have exceptional structural integrity (i.e., setae, stem structures, leaf hair points) and have remarkable species richness (60 of 144 extant taxa in Sverdrup Pass). Although the populations are often discolored (blackened), some have developed green stem apices or lateral branches suggesting in vivo regrowth. To test their biological viability, Little Ice Age populations emerging from the ice margin were collected for in vitro growth experiments. Our results include a unique successful regeneration of subglacial bryophytes following 400 y of ice entombment. This finding demonstrates the totipotent capacity of bryophytes, the ability of a cell to dedifferentiate into a meristematic state (analogous to stem cells) and develop a new plant. In polar ecosystems, regrowth of bryophyte tissue buried by ice for 400 y significantly expands our understanding of their role in recolonization of polar landscapes (past or present). Regeneration of subglacial bryophytes broadens the concept of Ice Age refugia, traditionally confined to survival of land plants to sites above and beyond glacier margins. Our results emphasize the unrecognized resilience of bryophytes, which are commonly overlooked vis-a-vis their contribution to the establishment, colonization, and maintenance of polar terrestrial ecosystems.

  18. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments

    PubMed Central

    La Farge, Catherine; Williams, Krista H.; England, John H.

    2013-01-01

    Across the Canadian Arctic Archipelago, widespread ice retreat during the 20th century has sharply accelerated since 2004. In Sverdrup Pass, central Ellesmere Island, rapid glacier retreat is exposing intact plant communities whose radiocarbon dates demonstrate entombment during the Little Ice Age (1550–1850 AD). The exhumed bryophyte assemblages have exceptional structural integrity (i.e., setae, stem structures, leaf hair points) and have remarkable species richness (60 of 144 extant taxa in Sverdrup Pass). Although the populations are often discolored (blackened), some have developed green stem apices or lateral branches suggesting in vivo regrowth. To test their biological viability, Little Ice Age populations emerging from the ice margin were collected for in vitro growth experiments. Our results include a unique successful regeneration of subglacial bryophytes following 400 y of ice entombment. This finding demonstrates the totipotent capacity of bryophytes, the ability of a cell to dedifferentiate into a meristematic state (analogous to stem cells) and develop a new plant. In polar ecosystems, regrowth of bryophyte tissue buried by ice for 400 y significantly expands our understanding of their role in recolonization of polar landscapes (past or present). Regeneration of subglacial bryophytes broadens the concept of Ice Age refugia, traditionally confined to survival of land plants to sites above and beyond glacier margins. Our results emphasize the unrecognized resilience of bryophytes, which are commonly overlooked vis-a-vis their contribution to the establishment, colonization, and maintenance of polar terrestrial ecosystems. PMID:23716658

  19. Extreme aridity and mild temperatures in the Middle East during the late Little Ice Age indicated by paired coral Sr/Ca and δ18O from the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Felis, T.; Ionita, M.; Rimbu, N.; Lohmann, G.; Kölling, M.

    2016-12-01

    Throughout the global deserts, annually resolved reconstructions of temperature that extend the short instrumental record are virtually absent, and proxy records of aridity are difficult to obtain. The Little Ice Age ( 1450-1850) is thought to have been characterized by generally cold conditions in many regions of the globe with little commonality regarding the hydroclimate. However, due to a lack of annually resolved natural archives in the Sahara and Arabian Desert, the precise characteristics of Middle Eastern climate during the Little Ice Age are unknown. Here we show, based on subseasonally resolved proxy records using corals from the northern Red Sea that the Middle East did not experience pronounced cooling during the late Little Ice Age (1751-1850). Instead, it was characterised by an even more arid climate than today. From our coral records and early instrumental data we conclude that Middle Eastern aridity resulted from a blocking-like atmospheric circulation over central Europe that weakened the moist Mediterranean westerlies and favoured the advection of dry continental air from Eurasia. We find that this extreme aridity terminated abruptly between 1850 and 1855 due to an atmospheric circulation change over the European-Middle East area at the end of the Little Ice Age with profound impacts on regional hydroclimate. Our results provide a hydroclimatic perspective on the resettlement of abandoned areas of the historical Fertile Crescent following the Little Ice Age. Furthermore, we speculate such an atmospheric blocking could have prevailed during other North Atlantic-European cold events of the Holocene epoch, and may explain the northern Mesopotamian aridification at 4,200 years ago that is thought to have led to the collapse of ancient civilizations.

  20. Holocene Fluctuations of North Ice Cap, a Proxy for Climate Conditions along the Northwestern Margin of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Osterberg, E. C.; Lasher, G. E.; Farnsworth, L. B.; Howley, J. A.; Axford, Y.; Zimmerman, S. R. H.

    2015-12-01

    North Ice Cap (~76.9°N, 68°W, summit elevation 1322 m asl), a small, independent ice cap in northwestern Greenland, is located within ~25 km of the Greenland Ice Sheet margin and Harald Molkte Bræ outlet glacier. We present geochronological, geomorphic and sedimentological data constraining the Holocene extents of North Ice Cap and suggest that its past fluctuations can be used as a proxy for climate conditions along the northwestern margin of the Greenland Ice Sheet. Prior work by Goldthwait (1960) used glacial geomorphology and radiocarbon ages of subfossil plants emerging along shear planes in the ice cap margin to suggest that that North Ice Cap was not present during the early Holocene and nucleated in the middle to late Holocene time, with the onset of colder conditions. Subfossil plants emerging at shear planes in the North Ice Cap margin yield radiocarbon ages of ~4.8-5.9 cal kyr BP (Goldthwait, 1960) and ~AD 1000-1350 (950-600 cal yr BP), indicating times when the ice cap was smaller than at present. In situ subfossil plants exposed by recent ice cap retreat date to ~AD 1500-1840 (450-110 cal yr BP) and indicate small fluctuations of the ice cap margin. 10Be ages of an unweathered, lichen-free drift <100 m from the present North Ice Cap margin range from ~500 to 8000 yrs ago. We suggest that the drift was deposited during the last ~500 yrs and that the older 10Be ages are influenced by 10Be inherited from a prior period of exposure. We also infer ice cap fluctuations using geochemical data from a Holocene-long sediment core from Deltasø, a downstream lake that currently receives meltwater from North Ice Cap. The recent recession of the North Ice Cap margin influenced a catastrophic drainage of a large proglacial lake, Søndre Snesø, that our field team documented in August 2012. To our knowledge, this is the first significant lowering of Søndre Snesø in historical time.

  1. Rate and style of ice stream retreat constrained by new surface-exposure ages: The Minch, NW Scotland

    NASA Astrophysics Data System (ADS)

    Bradwell, Tom; Small, David; Fabel, Derek; Dove, Dayton; Cofaigh, Colm O.; Clark, Chris; Consortium, Britice-Chrono

    2016-04-01

    Chronologically constrained studies of former ice-sheet extents and dynamics are important for understanding past cryospheric responses and modelling future ice-sheet and sea-level change. As part of the BRITICE-CHRONO project, we present new geomorphological and chronological data from a marine-terminating ice stream system in NW Europe that operated during the Late Weichselian Glaciation. A suite of 51 cosmogenic-nuclide exposure ages from ice sheet moraines and glacially transported boulders constrain the maximum extent of the ice sheet on the continental shelf (~28 ka BP) and its subsequent retreat, between ~27 and 16 ka BP, into a large marine embayment (ca. 7000 km2; the Minch, NW Scotland). Recently acquired swath bathymetry and acoustic sub-bottom profiler data reveal several large transverse grounding-zone wedges up to 40 m thick and 5 km wide with diagnostic acoustic-facies architecture. These seabed sediment wedges mark former quasi-stable positions of grounded marine-terminating ice-stream fronts; their size and thickness suggest long-lived stillstands of the order of centuries. Statistically significant clusters of exposure ages from glacial deposits on islands and intervening headlands shed important new light on the age of these marine grounding-zone wedges and, by inference, the rate and timing of Minch palaeo-ice stream retreat. We find strong evidence for episodic ice stream retreat on the continental shelf between ~28-24 ka BP, in the outer Minch between ~24-22 ka BP, and in the central Minch between 22-18.5 ka BP. In contrast, final ice stream deglaciation (<18 ka) across the deepest parts of the inner Minch embayment, was probably rapid and uninterrupted - with the ice sheet margin at or close to the present-day coastline in NW Scotland by 16.1 ka BP. It is hoped that these results will form the empirical basis for future ice-sheet modelling of this dynamically sensitive sector of the British-Irish Ice Sheet.

  2. Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology

    NASA Astrophysics Data System (ADS)

    Solomina, Olga; Jomelli, Vincent; Kaser, Georg; Ames, Alcides; Berger, Bernhard; Pouyaud, Bernard

    2007-10-01

    This paper is a comparison and compilation of lichenometric and geomorphic studies performed by two independent teams in the Cordillera Blanca, Peru, in 1996 and 2002 on 66 "Little Ice Age" moraines of 14 glaciers. Using eleven new control points, we recalibrated the initial rapid growth phase of the previously established Rhizocarpon subgenus Rhizocarpon growth curve. This curve was then used to estimate the age of "Little Ice Age" moraines. The time of deposition of the most prominent and numerous terminal and lateral moraines on the Pacific-facing side of the Cordillera Blanca (between AD 1590 and AD 1720) corresponds to the coldest and wettest phase in the tropical Andes as revealed by ice-core data. Less prominent advances occurred between AD 1780 and 1880.

  3. Cosmogenic 10Be ages from the Meirs and Garwood Valleys, Denton Hills, West Antarctica, suggest an absence in LGM Ice Sheet expansion.

    NASA Astrophysics Data System (ADS)

    Fink, David; Joy, Kurt; Storey, Bryan

    2014-05-01

    It has been hypothesised that during interglacials, thinning of the Ross Ice Shelf allowed a more open water environment with increased local precipitation. This resulted in outlet glaciers, which drain the Transantarctic Mountains and fed by the East Antarctic Ice Sheet, advancing during moist warmer periods, apparently out of phase with colder arid dry periods. Significantly the ice core record during these warm periods also shows increased accumulation continent wide The geomorphology of the Denton Hills in the Royal Society Range, West Antarctica, is a result of Miocene fluvial incision reworked by subsequent glacial advances throughout the Quaternary. The Garwood and Miers glacial valleys drain ice across the Denton Hills into the Shelf, and should thus show maximum extent during interstadials. To understand the chronology of late Quaternary glaciations, 15 granitic boulders from terminal moraines were sampled for 10Be and 26Al cosmogenic dating. Obtaining reliable exposure ages of erratics within moraines that represent timing of deposition (i.e. glacial advances) is problematic in polar regions, where glacial activity is principally controlled by ice sheet dynamics. Recycling of previously exposed debris, uncertainty in provenance of glacially transported boulders and a lack of a post-depositional hydrologic process to remove previously exposed material from a valley system, leads to ambiguities in multiple exposure ages from a single coeval glacial landform. More importantly, cold-based ice advance can leave a landform unmodified resulting in young erratics deposited on bedrock that shows weathering and/or inconsistent age-altitude relationships. Primarily, inheritance becomes a difficulty in qualifying exposure ages from polar regions. Preliminary results from the Garwood and Miers Valleys indicate that glaciers in the Denton Hills had begun to retreat from their last maximum positions no later than 23-37 ka, and thus the local last glacial maximum occurred prior to the Antarctic LGM (18-22 ka). No evidence based on cosmogenic ages for post-LGM or Holocene advances were found. These results support an extensive exposure age data set from the nearby Darwin-Hatherton Glacier system that indicates an absence of EAIS expansion across the Transantarctic Mnts during the global LGM period.

  4. Adélie penguin survival: age structure, temporal variability and environmental influences.

    PubMed

    Emmerson, Louise; Southwell, Colin

    2011-12-01

    The driving factors of survival, a key demographic process, have been particularly challenging to study, especially for winter migratory species such as the Adélie penguin (Pygoscelis adeliae). While winter environmental conditions clearly influence Antarctic seabird survival, it has been unclear to which environmental features they are most likely to respond. Here, we examine the influence of environmental fluctuations, broad climatic conditions and the success of the breeding season prior to winter on annual survival of an Adélie penguin population using mark-recapture models based on penguin tag and resight data over a 16-year period. This analysis required an extension to the basic Cormack-Jolly-Seber model by incorporating age structure in recapture and survival sub-models. By including model covariates, we show that survival of older penguins is primarily related to the amount and concentration of ice present in their winter foraging grounds. In contrast, fledgling and yearling survival depended on other factors in addition to the physical marine environment and outcomes of the previous breeding season, but we were unable to determine what these were. The relationship between sea-ice and survival differed with penguin age: extensive ice during the return journey to breeding colonies was detrimental to survival for the younger penguins, whereas either too little or too much ice (between 15 and 80% cover) in the winter foraging grounds was detrimental for adults. Our results demonstrate that predictions of Adélie penguin survival can be improved by taking into account penguin age, prior breeding conditions and environmental features.

  5. 48,000 years of climate and forest change in a biodiversity hot spot.

    PubMed

    Bush, Mark B; Silman, Miles R; Urrego, Dunia H

    2004-02-06

    A continuous 48,000-year-long paleoecological record from Neotropical lower montane forest reveals a consistent forest presence and an ice-age cooling of approximately 5 degrees to 9 degrees C. After 30,000 years of compositional stability, a steady turnover of species marks the 8000-year-long transition from ice-age to Holocene conditions. Although the changes were directional, the rates of community change were no different during this transitional period than in the preceding 30,000-year period of community stability. The warming rate of about 1 degrees C per millennium during the Pleistocene-Holocene transition was an order of magnitude less than the projected changes for the 21st century.

  6. Martian Polar Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Garvin, J. B.

    1999-01-01

    Our knowledge of the age of the layered polar deposits and their activity in the volatile cycling and climate history of Mars is based to a large extent on their apparent ages as determined from crater counts. Interpretation of the polar stratigraphy (in terms of climate change) is complicated by reported differences in the ages of the northern and southern layered deposits. The north polar residual ice deposits are thought to be relatively young, based on the reported lack of any fresh impact craters in Viking Orbiter Images. Herkenhoff et al., report no craters at all on the North polar layered deposits or ice cap, and placed an upper bound on the surface age (or, alternatively, the vertical resurfacing rate) of 100 thousand years to 10 million years, suggesting that the north polar region is an active resurfacing site. In contrast, the southern polar region was found to have at least 15 impact craters in the layered deposits and cap. Plaut et al, concluded that the surface was less than or = 120 million years old. This reported age difference factor of 100 to 1000 increases complexity in climate and volatile modeling. Recent MOLA results for the topography of the northern polar cap document a handful or more of possible craters, which could result in revised age or resurfacing estimates for the northern cap. This study is a preliminary look at putative craters in both polar caps. Additional information is contained in the original extended abstract.

  7. Rheological properties of reduced fat ice cream mix containing octenyl succinylated pearl millet starch.

    PubMed

    Sharma, Monika; Singh, Ashish K; Yadav, Deep N

    2017-05-01

    The octenyl succinyl anhydride (OSA) esterified pearl millet ( Pennisetum typhoides ) starch was evaluated as fat replacer in soft serve ice cream in comparison to other fat replacers viz. inulin, whey protein concentrate-70 and commercial starch. During temperature sweep test, the yield stress and flow behaviour index of un-pasteurized ice cream mixes increased as the temperature increased from 40 to 80 °C, while the consistency index decreased. Consistency index of aged ice cream mixes containing 2% fat replacer was higher as compared to mixes with 1% level. The aged ice cream mixes exhibited non-Newtonian behaviour as flow behaviour index values were less than one. Apparent viscosity (at 50 s -1 shear rate) of control as well as ice cream mix containing 1% OSA-esterified pearl millet starch samples was 417 and 415 mPas, respectively and did not differ significantly. The overrun of the ice cream (with 5 and 7.5% fat) containing 1 and 2% of above fat replacers ranged between 29.7 and 34.3% and was significantly lower than control (40.3%). The percent melted ice cream was also low for the ice creams containing 2% of above fat replacers at 5% fat content as compared to control. However, sensory acceptability and rheological characteristics of reduced fat ice creams containing 1.0 and 2.0% OSA-esterified pearl millet starch were at par with other fat replacers under the study. Thus, OSA-esterified pearl millet starch has potential to be used as fat replacer in reduced fat ice cream.

  8. Life and extinction of megafauna in the ice-age Arctic

    PubMed Central

    Mann, Daniel H.; Groves, Pamela; Reanier, Richard E.; Gaglioti, Benjamin V.; Kunz, Michael L.; Shapiro, Beth

    2015-01-01

    Understanding the population dynamics of megafauna that inhabited the mammoth steppe provides insights into the causes of extinctions during both the terminal Pleistocene and today. Our study area is Alaska's North Slope, a place where humans were rare when these extinctions occurred. After developing a statistical approach to remove the age artifacts caused by radiocarbon calibration from a large series of dated megafaunal bones, we compare the temporal patterns of bone abundance with climate records. Megafaunal abundance tracked ice age climate, peaking during transitions from cold to warm periods. These results suggest that a defining characteristic of the mammoth steppe was its temporal instability and imply that regional extinctions followed by population reestablishment from distant refugia were characteristic features of ice-age biogeography at high latitudes. It follows that long-distance dispersal was crucial for the long-term persistence of megafaunal species living in the Arctic. Such dispersal was only possible when their rapidly shifting range lands were geographically interconnected. The end of the last ice age was fatally unique because the geographic ranges of arctic megafauna became permanently fragmented after stable, interglacial climate engendered the spread of peatlands at the same time that rising sea level severed former dispersal routes. PMID:26578776

  9. Glacial/interglacial changes in subarctic north pacific stratification.

    PubMed

    Jaccard, S L; Haug, G H; Sigman, D M; Pedersen, T F; Thierstein, H R; Röhl, U

    2005-05-13

    Since the first evidence of low algal productivity during ice ages in the Antarctic Zone of the Southern Ocean was discovered, there has been debate as to whether it was associated with increased polar ocean stratification or with sea-ice cover, shortening the productive season. The sediment concentration of biogenic barium at Ocean Drilling Program site 882 indicates low algal productivity during ice ages in the Subarctic North Pacific as well. Site 882 is located southeast of the summer sea-ice extent even during glacial maxima, ruling out sea-ice-driven light limitation and supporting stratification as the explanation, with implications for the glacial cycles of atmospheric carbon dioxide concentration.

  10. Modeling Pluto's Ice-Rich Surface and Its Interaction with Atmosphere

    NASA Astrophysics Data System (ADS)

    Wei, Q.; Hu, Y.

    2016-12-01

    Recent discoveries made available through NASA's New Horizon mission revealed a new world on Pluto with a plateau of "young" surface, the Sputnik Planum. It is a gigantic reservoir of volatile ice on top of an impact basin. The reason of such a high level of concentration of volatile ice is yet unknown. We are actively looking into explanations through atmospheric models and ice sheet models. Apart from the quantity of ice on SP, its surface age constrained by impact flux models to under 10Myr is significantly different from other parts of Pluto. Convection of solid nitrogen ice has been proposed as a viable cause. We endeavor to explore other possibilities that may have jointly contributed to this phenomena, including atmospheric condensation, ice sheet evolution, etc. Unique rheological properties of nitrogen ice, which is thought to dominate the Sputnik Planum, may hold the key to answering our questions. They are soft and easy to deform under its own weight even at Pluto's surface temperature of around 40K. Based on our initial simulations with numerical ice sheet models, we propose that once a crater is created on the Sputnik Planum, deformation under internal stress kicks in as a primary mechanism to flatten out craters. This could be done in a time scale of 100,000 years, significantly shorter than the maximum surface age contrained by crater densitiess models. As the surface arpproaches a flat state, such mechanism becomes weaker. The surface feature is then dominated by convection.

  11. Constraints on ice volume changes of the WAIS and Ross Ice Shelf since the LGM based on cosmogenic exposure ages in the Darwin-Hatherton glacial system of the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Fink, David; Storey, Bryan; Hood, David; Joy, Kurt; Shulmeister, James

    2010-05-01

    Quantitative assessment of the spatial and temporal scale of ice volume change of the West Antarctic ice sheet (WAIS) and Ross Ice Shelf since the last glacial maximum (LGM) ~20 ka is essential to accurately predict ice sheet response to current and future climate change. Although global sea level rose by approximately 120 metres since the LGM, the contribution of polar ice sheets is uncertain and the timing of any such contribution is controversial. Mackintosh et al (2007) suggest that sectors of the EAIS, similar to those studied at Framnes Mountains where the ice sheet slowly calves at coastal margins, have made marginal contributions to global sea-level rise between 13 and 7 ka. In contrast, Stone et al (2003) document continuing WAIS decay during the mid-late Holocene, raising the question of what was the response of the WAIS since LGM and into the Holocene. Terrestrial evidence is restricted to sparse coastal oasis and ice free mountains which archive limits of former ice advances. Mountain ranges flanking the Darwin-Hatherton glaciers exhibit well-defined moraines, weathering signatures, boulder rich plateaus and glacial tills, which preserve the evidence of advance and retreat of the ice sheet during previous glacial cycles. Previous studies suggest a WAIS at the LGM in this location to be at least 1,000 meters thicker than today. As part of the New Zealand Latitudinal Gradient Project along the Transantarctic, we collected samples for cosmogenic exposure dating at a) Lake Wellman area bordering the Hatherton Glacier, (b) Roadend Nunatak at the confluence of the Darwin and Hatherton glaciers and (c) Diamond Hill which is positioned at the intersection of the Ross Ice Shelf and Darwin Glacier outlet. While the technique of exposure dating is very successful in mid-latitude alpine glacier systems, it is more challenging in polar ice-sheet regions due to the prevalence of cold-based ice over-riding events and absence of outwash processes which removes glacially transported debris. Our glacial geomorphic survey from ice sheet contact edge (~850 masl) to mountain peak at 1600 masl together with a suite of 10Be and 26Al exposure ages, documents a pre-LGM ice volume at least 800 meters thicker than current ice levels which was established at least 2 million years ago. However a complex history of exposure and re-exposure of the ice free regions in this area is seen in accordance with advance and retreat of the ice sheets that feeds into the Darwin -Hatherton system. A cluster of mid-altitude boulders, located below a prominent moraine feature mapped previously as demarcating the LGM ice advance limits, have exposure ages ranging from 30 to 40 ka. Exposure ages for boulders just above the ice contact range from 1to 19 ka and allow an estimate of inheritance. Hence, we conclude that LGM ice volume was not as large as previously estimated and actually little different from what is observed today. These results raise rather serious questions about the implications of a reduced WAIS at the LGM, its effect on the development of the Ross Ice Shelf, and how the Antarctic ice sheets respond to global warming. J. O. Stone et al., Science v299, 99 (2003). A. Mackintosh, D. White, D. Fink, D. Gore et al, Geology, v 35; 551-554 (2007).

  12. Late-glacial and Holocene history of changes in Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.; Finkel, R. C.

    2008-12-01

    Quelccaya Ice Cap in the southeastern Peruvian Andes (~13-14° S latitude) is an icon for climate change. Its rapidly receding outlet, Qori Kalis Glacier, has been monitored since the 1970's. Cores from Quelccaya Ice Cap provide high-resolution information about temperature and precipitation during the past 1,500 years. We extend the understanding of past changes in Quelccaya Ice Cap based on mapping and dating of glacial moraines and associated deposits. Our results include fifty 10Be ages of moraines and bedrock as well as twenty-nine 14C ages of organic material associated with moraines. These results form the basis of a chronology of changes in Quelccaya Ice Cap from ~16,000 yr BP to late Holocene time. Results from 10Be and 14C dating indicate that Quelccaya Ice Cap experienced a significant advance at 12,700-11,400 yr BP. Subsequent to this advance, the ice margin deposited at least three recessional moraine sets. Quelccaya Ice Cap receded to near its present-day margin by ~10,000 yr BP. Neoglacial advances began by ~3,000 yr BP and culminated with a maximum advance during the Little Ice Age. This chronology fits well with prior work which indicates a restricted Quelccaya Ice Cap during middle Holocene time. Moreover, the overlap between moraine and ice core data for the last 1,500 years provides a unique opportunity to assess the influences of temperature and precipitation on past ice cap extents.

  13. 75 FR 7536 - Culturally Significant Objects Imported for Exhibition Determinations: “Hendrick Avercamp (1585...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... DEPARTMENT OF STATE [Public Notice 6897] Culturally Significant Objects Imported for Exhibition Determinations: ``Hendrick Avercamp (1585-1634): The Little Ice Age'' SUMMARY: Notice is hereby given of the... included in the exhibition ``Hendrick Avercamp (1585-1634): The Little Ice Age,'' imported from abroad for...

  14. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  15. Ice-skating and roller disco injuries in Dublin.

    PubMed Central

    Horner, C.; McCabe, M. J.

    1984-01-01

    A comparative study was carried out on a series of 72 ice-skating and 57 roller skating injuries over a sixteen month period. The average patient age was 20.5 years in the ice-skating group and 16.5 years in the roller skating group. Females predominated in both groups accounting for 72% of ice-skaters injured and 77% of roller skaters injured. Ice-skaters sustained more serious injuries than roller skaters as was evident from the significant difference in fracture numbers in the two groups. Ice-skating fractures accounted for 40% of all injuries while roller skating fractures were only 14% of their total injuries. The majority of ice-skating fractures occurred in females. As a result of our study we recommended several preventative measures. Images p207-a p207-b PMID:6487948

  16. High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5°S) revealed through varve chronology and Bayesian age modelling

    NASA Astrophysics Data System (ADS)

    Bendle, Jacob M.; Palmer, Adrian P.; Thorndycraft, Varyl R.; Matthews, Ian P.

    2017-12-01

    Glaciolacustrine varves offer the potential to construct continuous, annually-resolved chronologies for ice-sheet deglaciation, and improved understanding of glacier retreat dynamics. This paper investigates laminated glaciolacustrine sediments deposited around the waning margins of the Patagonian Ice Sheet, following the local Last Glacial Maximum (LGM). Detailed macro- and microfacies analyses confirm an annual (varve) structure within these sediments. The correlation of annual layers (varves) across five sites in eastern Lago Buenos Aires yields a 994 ± 36 varve-year (vyr) chronology and thickness record. The floating chronology has been anchored to the calendar-year timescale through identification of the Ho tephra (17,378 ± 118 cal a BP) in the varve sequences. Using a Bayesian age model to integrate the new varve chronology with published moraine ages, the onset of deglaciation at 46.5°S is dated to 18,086 ± 214 cal a BP. New age estimates for deglacial events are combined with high-resolution analysis of varve thickness trends, and new lithostratigraphic data on ice-margin position(s), to reconstruct ice-margin retreat rates for the earliest ca. 1000 years of ice-sheet demise. Glacier retreat rates were moderate (5.3-10.3 m yr-1) until 17,322 ± 115 cal a BP, but subsequently accelerated (15.4-18.0 m yr-1). Sustained influxes of ice-rafted debris (IRD) after 17,145 ± 122 cal a BP suggest retreat rates were enhanced by calving after ice contracted into deeper lake waters. Ice persisted in eastern Lago Buenos Aires until at least 16,934 ± 116 cal a BP, after which the glacier started to retreat towards the Patagonian mountains.

  17. Saving Humanity from Catastrophic Cooling with Geo-Engineering

    NASA Astrophysics Data System (ADS)

    Haapala, K.; Singer, S. F.

    2016-02-01

    There are two kinds of ice ages; they are fundamentally different and therefore require different methods of mitigation: (i) Major (Milankovitch-style) glaciations occur on a 100,000-year time-scale and are controlled astronomically. (ii) "Little" ice ages were discovered in ice cores; they have been occurring on an approx. 1000-1500-yr cycle and are likely controlled by the Sun [Ref: Singer & Avery 2007. Unstoppable Global Warming: Every 1500 years]. The current cycle's cooling phase may be imminent - hence there may be urgent need for action. To stop onset of a major (Milankovitch) glaciation 1. Locate a "trigger" - a growing perennial snow/ice field - using satellites 2. Spread soot, to lower the albedo, and use Sun to melt 3. How much soot? How to apply soot? Learn by experimentation To lessen (regional, intermittent) cooling of DOB (Dansgaard-Oeschger-Bond) cycles1. Use greenhouse effect of manmade cirrus (ice particles) [Ref: Singer 1988. Meteorology and Atmospheric Physics 38:228 - 239]2. Inject water droplets (mist) near tropopause 3. Trace dispersion of cirrus cloud by satellite and observe warming at surface 4. How much water; over what area? How often to inject? Learn by experimentation Many scientific questions remain. While certainly interesting and important, there is really no need to delay the crucial and urgent tests of geo-engineering, designed to validate schemes of mitigation. Such proposed tests involve only minor costs and present negligible risks to the environment.

  18. Anatomy of Heinrich Layer 1 and its role in the last deglaciation

    NASA Astrophysics Data System (ADS)

    Hodell, David A.; Nicholl, Joseph A.; Bontognali, Tomaso R. R.; Danino, Steffan; Dorador, Javier; Dowdeswell, Julian A.; Einsle, Joshua; Kuhlmann, Holger; Martrat, Belen; Mleneck-Vautravers, Maryline J.; Rodríguez-Tovar, Francisco Javier; Röhl, Ursula

    2017-03-01

    X-ray fluorescence (XRF) core scanning and X-ray computed tomography data were measured every 1 mm to study the structure of Heinrich Event 1 during the last deglaciation at International Ocean Discovery Program Site U1308. Heinrich Layer 1 comprises two distinct layers of ice-rafted detritus (IRD), which are rich in detrital carbonate (DC) and poor in foraminifera. Each DC layer consists of poorly sorted, coarse-grained clasts of IRD embedded in a dense, fine-grained matrix of glacial rock flour that is partially cemented. The radiocarbon ages of foraminifera at the base of the two layers indicate a difference of 1400 14C years, suggesting that they are two distinct events, but the calendar ages depend upon assumptions made for surface reservoir ages. The double peak indicates at least two distinct stages of discharge of the ice streams that drained the Laurentide Ice Sheet through Hudson Strait during HE1 or, alternatively, the discharge of two independent ice streams containing detrital carbonate. Heinrich Event 1.1 was the larger of the two events and began at 16.2 ka (15.5-17.1 ka) when the polar North Atlantic was already cold and Atlantic Meridional Overturning Circulation (AMOC) weakened. The younger peak (H1.2) at 15.1 ka (14.3 to 15.9 ka) was a weaker event than H1.1 that was accompanied by minor cooling. Our results support a complex history for Heinrich Stadial 1 (HS1) with reduction in AMOC during the early part ( 20-16.2 ka) possibly driven by melting of European ice sheets, whereas the Laurentide Ice Sheet assumed a greater role during the latter half ( 16.2-14.7 ka).

  19. Validation of the FAST skating protocol to predict aerobic power in ice hockey players.

    PubMed

    Petrella, Nicholas J; Montelpare, William J; Nystrom, Murray; Plyley, Michael; Faught, Brent E

    2007-08-01

    Few studies have reported a sport-specific protocol to measure the aerobic power of ice hockey players using a predictive process. The purpose of our study was to validate an ice hockey aerobic field test on players of varying ages, abilities, and levels. The Faught Aerobic Skating Test (FAST) uses an on-ice continuous skating protocol on a course measuring 160 feet (48.8 m) using a CD to pace the skater with a beep signal to cross the starting line at each end of the course. The FAST incorporates the principle of increasing workload at measured time intervals during a continuous skating exercise. Step-wise multiple regression modelling was used to determine the estimate of aerobic power. Participants completed a maximal aerobic power test using a modified Bruce incremental treadmill protocol, as well as the on-ice FAST. Normative data were collected on 406 ice hockey players (291 males, 115 females) ranging in age from 9 to 25 y. A regression to predict maximum aerobic power was developed using body mass (kg), height (m), age (y), and maximum completed lengths of the FAST as the significant predictors of skating aerobic power (adjusted R2 = 0.387, SEE = 7.25 mL.kg-1.min-1, p < 0.0001). These results support the application of the FAST in estimating aerobic power among male and female competitive ice hockey players between the ages of 9 and 25 years.

  20. Sea-level responses to sediment transport over the last ice age cycle

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2013-12-01

    Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where most of the Indus sediment may have been deposited during the glacial period preceding the Holocene. These simulations highlight the role that massive continent-to-ocean sediment fluxes can play in driving sea-level patterns over thousands of years. References: Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III: Incorporating sediment redistribution. Geophys. J. Int., doi: 10.1093/gji/ggt089.

  1. Reassessment of the Upper Fremont Glacier Ice-Core Chronologies by Synchronizing of Ice-Core-Water Isotopes to a Nearby Tree-Ring Chronology.

    PubMed

    Chellman, Nathan; McConnell, Joseph R; Arienzo, Monica; Pederson, Gregory T; Aarons, Sarah M; Csank, Adam

    2017-04-18

    The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.

  2. Reassessment of the Upper Fremont Glacier ice-core chronologies by synchronizing of ice-core-water isotopes to a nearby tree-ring chronology

    USGS Publications Warehouse

    Chellman, Nathan J.; McConnell, Joseph R.; Arienzo, Monica; Pederson, Gregory T.; Aarons, Sarah; Csank, Adam

    2017-01-01

    The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.

  3. Evidence for smaller extents of the northwestern Greenland Ice Sheet and North Ice Cap during the Holocene

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Birkel, S. D.; Corbett, L. B.; Roy, E. P.; Thompson, J. T.; Whitecloud, S.

    2013-12-01

    The Greenland Ice Sheet (GrIS) and local glaciers on Greenland are responding dynamically to warming temperatures with widespread retreat. GRACE satellite data (e.g., Kahn et al., 2010) and the Petermann Glacier calving events document the recent expansion of ice loss into northwestern Greenland. To improve the ability to estimate future ice loss in a warming climate, we are developing records of the response of the northwestern Greenlandic cryosphere to Holocene climatic conditions, with a focus on past warm periods. Our ongoing research includes analyses of glacial geology, sub-fossil vegetation, lake sediment cores, chironomid assemblages and ice cores combined with glaciological modeling. To constrain past ice extents that were as small as, or smaller than, at present, we recovered sub-fossil vegetation exposed at the receding margins of the GrIS and North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W) and of the GrIS near Thule (~76.5°N, 68.7°W). We present vegetation types and radiocarbon ages of 30 plant samples collected in August 2012. In the Nunatarssuaq region, five ages of in situ (rooted) vegetation including Polytrichum moss, Saxifraga nathorstii and grasses located <5 m outboard of the GrIS margin are ~120-200 cal yr BP (range of medians of the 2-sigma calibrated age ranges). Nine ages of in situ Polytrichum, Saxifraga oppositafolia and grasses from ~1-5 m inboard of the NIC margin (excavated from beneath ice) range from ~50 to 310 cal yr BP. The growth of these plants occurred when the GrIS and NIC were at least as small as at present and their ages suggest that ice advances occurred in the last 50-120 yrs. In addition to the in situ samples, we collected plants from well-preserved ground material exposed along shear planes in the GrIS margins. In Nunatarssuaq, two Polytrichum mosses rooted in ground material and exposed along a shear plane in the GrIS margin date to 4680 and 4730 cal yr BP. Near Thule, three ages of Salix arctica rooted in ground material and exposed along a shear plane in the GrIS are ~170-390 cal yr BP. Four ages of plant fragments within ice in a shear plane in the NIC margin are ~600-950 cal yr BP. Since these organic remains have been transported from beneath the GrIS and NIC, respectively, they indicate times of smaller than present ice extents. Together these plants provide evidence that the northwestern GrIS was smaller than at present at ~4600-4800 and ~170-390 cal yr BP. Advance to the modern GrIS extent was likely underway at of after ~170 cal yr BP. NIC was smaller than at present at ~600-950 cal yr. Our ongoing research is investigating the climatic conditions during these times and the relationship of these restricted ice extents to those documented elsewhere on Greenland as well as on Baffin Island.

  4. A Chronology of Late-Glacial and Holocene Advances of Quelccaya Ice Cap, Peru, Based on 10Be and Radiocarbon Dating

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.

    2007-12-01

    The Quelccaya Ice Cap region in the southeastern Peruvian Andes (~13-14°S latitude) is a key location for the development of late-glacial and Holocene terrestrial paleoclimate records in the tropics. We present a chronology of past extents of Quelccaya Ice Cap based on ~thirty internally consistent 10Be dates of boulders on moraines and bedrock as well as twenty radiocarbon dates of organic material associated with moraines. Based on results from both dating methods, we suggest that significant advances of Quelccaya Ice Cap occurred during late-glacial time, at ~12,700-11,400 yr BP, and during Late Holocene time ~400-300 yr BP. Radiocarbon dating of organic material associated with moraines provides maximum and minimum ages for ice advances and recessions, respectively, thus providing an independent check on 10Be dates of boulders on moraines. The opportunity to use both 10Be and radiocarbon dating makes the Quelccaya Ice Cap region a potentially important low-latitude calibration site for production rates of cosmogenic nuclides. Our radiocarbon chronology provides a tighter constraint on maximum ages of late-glacial and Late Holocene ice advances. Upcoming field research will obtain organic material for radiocarbon dating to improve minimum age constrains for late-glacial and Late Holocene ice recessions.

  5. How ice age climate got the shakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1993-05-14

    Records in Greenland ice, ocean mud, and ancient corals are revealing abrupt climate shifts during the last ice age. The climate at the end of the last ice age apparently jumped from cold to warmer conditions, jumped back to cold, and then jumped into the present warm weather conditions. The mechanism for this erratic behavior is unknown, but appears to be an interaction of North Atlantic ocean currents and the ice sheets themselves. Warm water from the tropics would evaporate and become more saline and dense as it moved north. The colder, denser water would then sink and flow backmore » to the tropics. The melting of ice caused by the warm water would decrease the salinity of the North Atlantic current, the water would not sink, the return current would be shut down, and the waters surrounding the ice sheets would become colder, slowing melting of the sheets. The cycle could be started again by collapse of the ice sheets from their internal heat. There may be other switches that could cause sudden climate change, as may be evidenced by links between changes in the Pacific and a decade of erratic weather in North America. Researcher would like to identify these switches to prevent them from being activated by human activity.« less

  6. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation.

    PubMed

    Shakun, Jeremy D; Clark, Peter U; He, Feng; Marcott, Shaun A; Mix, Alan C; Liu, Zhengyu; Otto-Bliesner, Bette; Schmittner, Andreas; Bard, Edouard

    2012-04-04

    The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.

  7. Deep Radiostratigraphy of the East Antarctic Plateau: Connecting the Dome C and Vostok Ice Core Sites

    NASA Technical Reports Server (NTRS)

    Cavitte, Marie G. P.; Blankenship, Donald D.; Young, Duncan A.; Schroeder, Dustin M.; Parrenin, Frederic; Lemeur, Emmanuel; Macgregor, Joseph A.; Siegert, Martin J.

    2016-01-01

    Several airborne radar-sounding surveys are used to trace internal reflections around the European Project for Ice Coring in Antarctica Dome C and Vostok ice core sites. Thirteen reflections, spanning the last two glacial cycles, are traced within 200 km of Dome C, a promising region for million-year-old ice, using the University of Texas Institute for Geophysics High-Capacity Radar Sounder. This provides a dated stratigraphy to 2318 m depth at Dome C. Reflection age uncertainties are calculated from the radar range precision and signal-to-noise ratio of the internal reflections. The radar stratigraphy matches well with the Multichannel Coherent Radar Depth Sounder (MCoRDS) radar stratigraphy obtained independently. We show that radar sounding enables the extension of ice core ages through the ice sheet with an additional radar-related age uncertainty of approximately 1/3-1/2 that of the ice cores. Reflections are extended along the Byrd-Totten Glacier divide, using University of Texas/Technical University of Denmark and MCoRDS surveys. However, core-to-core connection is impeded by pervasive aeolian terranes, and Lake Vostok's influence on reflection geometry. Poor radar connection of the two ice cores is attributed to these effects and suboptimal survey design in affected areas. We demonstrate that, while ice sheet internal radar reflections are generally isochronal and can be mapped over large distances, careful survey planning is necessary to extend ice core chronologies to distant regions of the East Antarctic ice sheet.

  8. What can Subglacial Sediment Tell us About the Underlying Geology and the Dynamic of the West-Antarctic Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Vogel, S. W.; Tulaczyk, S. M.; Carter, S.; Grunow, A.

    2003-12-01

    The West-Antarctic Ice Sheet (WAIS) is the second largest ice sheet in the world. Its dynamic is extensively studied due to the proposed threat of rapid disintegration and associated sea level rise (Mercer, 1971). Most of its ice drains through a few fast flowing (>100 m/yr) ice streams and outlet glaciers. Subglacial conditions in particular the distribution of basal water and the availability of subglacial sediment plays an important role for their location and extent. Subglacial geology in particular the distribution of sedimentary basin fill, providing material for a lubricating subglacial till layer, may pose a limit on the inland extent of the fast flowing ice stream. Subglacial volcanism and associated elevated geothermal heat fluxes may provide crucial subglacial melt water for ice stream lubrication. We have studied sediment from the base of the WAIS to elucidate questions about the existence of subglacial volcanism and to determine the provenance of the subglacial sediment. Within this study we measured clay mineralogy, sand petrography, magnetic and geochemical properties of subglacial and englacial sediment from different locations in the Ross Sea-catchment area of the WAIS. Our samples come from Whillans-, Kamb- and Bindschadler Ice Stream as well as from Siple Dome, Crary Ice Rise and Byrd Station. Most of our sediment samples represent samples of subglacial till, which in earlier studies have been characterized as reworked marine sediment of Cenozoic age. The englacial sediment samples come from basal ice. Our study so far has found no positive evidence for the existence of subglacial volcanism beneath the WAIS. The mineralogy as well as the REE-pattern of our samples correspond better with a crustal source for the sediment than Cenozoic basalts. The isotopic composition of our samples (Nd/Sm, Rb/Sr) show differences between individual ice streams locations as well as differences between different grain size fractions. TDM-ages range from ~900 Ma to 1800 Ma; ENd between -4 to -12 and 87Sr/86Sr ~0.715 to ~0.735. Our preliminary geochemical results so far point to rocks from outcrops in the upstream areas of the individual ice streams as provenance for their sediment (Horlick Mountains and Whitmore Mountains) with a possibly small East-Antarctic component.

  9. Cold climate deglaciation prior to termination 2 implied by new evidence for high sea-levels at 132 KA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.G.

    1992-01-01

    Radioisotope dating of corals from reefs and beaches suggests a high sea stand just prior to termination 2. Lack of precision in the ages, stratigraphic uncertainties, and possible diagenetic alterations in the corals have prevented a widespread acceptance of this sea stand. These disadvantages can be avoided by an approach that uses differential uplift measurements to determine the duration of the interval of generally high sea-levels. The last interglacial terrace on Barbados has features indicating two intervals of constant sea-level: an older wave-cut at the inshore edge of the terrace, and a younger cut formed near present eustatic sea-level, belowmore » the crest, and just before the earliest Wisconsin glacial buildup. The differential uplift between these two features, measured at five locations having uplift rates between 0.18 and 0.39m/ka, yields a eustatic sea-level differences of 5.4m and a minimal duration of 12.1 [+-] 0.6ka between the two still stands. The assigned age of the younger wave-cut is 120 [+-] 0.5ka, based on sea-level regression due to ice sheet buildup implied by a Little Ice Age analog and rapidly falling Milankovitch summer insolation. The resulting minimal age of the first high sea-stand is 132.1 [+-] 1.1ka, about 7ka before termination 2. This age implies a major early deglaciation caused by a deficit of moisture transported to the great ice sheets, and occurring under relatively cold climate conditions.« less

  10. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars

    USGS Publications Warehouse

    Herkenhoff, K. E.; Plaut, J.J.

    2000-01-01

    Interpretation of the polar stratigraphy of Mars in terms of global climate changes is complicated by the significant difference in surface ages between the north and south polar layered terrains inferred from crater statistics. We have reassessed the cratering record in both polar regions using Viking Orbiter and Mariner 9 images. No craters have been found in the north polar layered terrain, but the surface of most of the south polar layered deposits appears to have been stable for many of the orbital/axial cycles that are thought to have induced global climate changes on Mars. The inferred surface age of the south polar layered deposits (about 10 Ma) is two orders of magnitude greater than the surface age of the north polar layered deposits and residual cap (at most 100 ka). Similarly, modeled resurfacing rates are at least 20 times greater in the north than in the south. These results are consistent with the hypotheses that polar layered deposit resurfacing rates are highest in areas covered by perennial ice and that the differences in polar resurfacing rates result from the 6.4 km difference in elevation between the polar regions. Deposition on the portion of the south polar layered deposits that is not covered by the perennial ice cap may have ceased about 5 million years ago when the obliquity of Mars no longer exceeded 40??. ?? 2000 Academic Press.

  11. Precise interpolar phasing of abrupt climate change during the last ice age.

    PubMed

    2015-04-30

    The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard-Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.

  12. An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    NASA Astrophysics Data System (ADS)

    Moreno-Chamarro, Eduardo; Zanchettin, Davide; Lohmann, Katja; Jungclaus, Johann H.

    2017-02-01

    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset.

  13. The New ICE-Age: Frozen and Thawing Perceptions of Imagination

    ERIC Educational Resources Information Center

    Hatt, Blaine E.

    2018-01-01

    The article examines the importance of imagination in adult-child relationships in 21st-century experiential learning, where ICE is an acronym for Imagination Creativity Education. It explores, through hermeneutic phenomenology, the impact of imagination in the life-experiences of three school-aged children through the wonder of toying, through…

  14. Integrating Teaching about the Little Ice Age with History, Art, and Literature.

    ERIC Educational Resources Information Center

    Glenn, William Harold

    1996-01-01

    Discusses climate change during the Little Ice Age as experienced during several historical events, including the settlement and demise of the Norse Greenland colonies, the landing of the Pilgrims at Plymouth, and both the Battle of Trenton and Washington's encampment at Valley Forge during the American Revolution. Associated artistic and literary…

  15. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.

    2014-01-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties to assess if soil profile characteristics and pattern of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significant lower mass activities of FRNs are found in soils on the moraines than on colluviums. Variations of ERNs activities in the valleys are related to characteristics soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.

  16. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.

    2014-06-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils were formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic, and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significantly lower mass activities of FRNs were found in soils on the moraines than on colluviums. Variations of ERN activities in the valleys were related to characteristics of soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.

  17. Acute injuries in soccer, ice hockey, volleyball, basketball, judo, and karate: analysis of national registry data.

    PubMed

    Kujala, U M; Taimela, S; Antti-Poika, I; Orava, S; Tuominen, R; Myllynen, P

    1995-12-02

    To determine the acute injury profile in each of six sports and compare the injury rates between the sports. Analysis of national sports injury insurance registry data. Finland during 1987-91. 621,691 person years of exposure among participants in soccer, ice hockey, volleyball, basketball, judo, or karate. Acute sports injuries requiring medical treatment and reported to the insurance company on structured forms by the patients and their doctors. 54,186 sports injuries were recorded. Injury rates were low in athletes aged under 15, while 20-24 year olds had the highest rates. Differences in injury rates between the sports were minor in this adult age group. Overall injury rates were higher in sports entailing more frequent and powerful body contact. Each sport had a specific injury profile. Fractures and dental injuries were most common in ice hockey and karate and least frequent in volleyball. Knee injuries were the most common cause of permanent disability. Based on the defined injury profiles in the different sports it is recommended that sports specific preventive measures should be employed to decrease the number of violent contacts between athletes, including improved game rules supported by careful refereeing. To prevent dental injuries the wearing of mouth guards should be encouraged, especially in ice hockey, karate, and basketball.

  18. Sensitivity of the marine-terminating margins to Holocene climate change in south and southeast Greenland

    NASA Astrophysics Data System (ADS)

    Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.

    2016-12-01

    The marine-terminating glaciers of the Greenland Ice Sheet (GrIS) are responding rapidly to present-day climate change. More than one-third of the GrIS's discharge flows to the ocean through the marine-terminating outlet glaciers of southeastern Greenland, making it a potentially important region of the ice sheet. Documenting how these outlet glaciers have responded to longer-term past climate change (i.e. the Holocene) allows for more accurate predictions of their response to future climate changes. Here, we present 36 new 10Be ages on boulders perched on bedrock and on bedrock that record the timing of ice marginal fluctuations in several fjords in southeast and south Greenland, a region where little is known about past ice fluctuations due to its relative inaccessibility. We show that at Skjoldungen Sund (63.4N), deglaciation was rapid, beginning by 10.1 ± 0.4 ka. Deglaciation occurred concurrently at Timmiarmiut Fjord (62.7N), 100 km to the south, at 10.3 ± 0.4 ka. We suggest that this was in response to the warming ocean and air temperatures of the early Holocene. Additionally, 10Be ages on boulders perched on bedrock just distal to the historic­ moraines in Timmiarmiut Fjord date to 1.7 ± 0.1 ka, indicating the presence of a late Holocene advance prior to the Little Ice Age. In southern Greenland, deglaciation at Lindenow Fjord (60.6N), which drains the Julienhåb ice cap, occurred at 11.2 ± 0.4 ka. The ice then retreated up-fjord at a rate of 70-100 m yr-1, comparable with modern retreat rates of 30-100 m yr-1. We hypothesize that the earlier deglaciation at Lindenow Fjord by 1 ka may indicate that the Julienhåb ice cap was more sensitive to early Holocene warming than the GrIS. Additional 10Be ages from Prins Christen Fjord and near Qaqortoq are forthcoming. These new 10Be ages provide a longer-term perspective of marine-terminating outlet glacier fluctuations in Greenland and show that the ice sheet responded sensitively to Holocene climate change.

  19. Constraining Landscape History and Glacial Erosivity Using Paired Cosmogenic Nuclides in Upernavik, Northwest Greenland

    NASA Technical Reports Server (NTRS)

    Corbett, Lee B.; Bierman, Paul R.; Graly, Joseph A.; Neumann, Thomas A.; Rood, Dylan H.

    2013-01-01

    High-latitude landscape evolution processes have the potential to preserve old, relict surfaces through burial by cold-based, nonerosive glacial ice. To investigate landscape history and age in the high Arctic, we analyzed in situ cosmogenic Be(sup 10) and Al (sup 26) in 33 rocks from Upernavik, northwest Greenland. We sampled adjacent bedrock-boulder pairs along a 100 km transect at elevations up to 1000 m above sea level. Bedrock samples gave significantly older apparent exposure ages than corresponding boulder samples, and minimum limiting ages increased with elevation. Two-isotope calculations Al(sup26)/B(sup 10) on 20 of the 33 samples yielded minimum limiting exposure durations up to 112 k.y., minimum limiting burial durations up to 900 k.y., and minimum limiting total histories up to 990 k.y. The prevalence of BE(sup 10) and Al(sup 26) inherited from previous periods of exposure, especially in bedrock samples at high elevation, indicates that these areas record long and complex surface exposure histories, including significant periods of burial with little subglacial erosion. The long total histories suggest that these high elevation surfaces were largely preserved beneath cold-based, nonerosive ice or snowfields for at least the latter half of the Quaternary. Because of high concentrations of inherited nuclides, only the six youngest boulder samples appear to record the timing of ice retreat. These six samples suggest deglaciation of the Upernavik coast at 11.3 +/- 0.5 ka (average +/- 1 standard deviation). There is no difference in deglaciation age along the 100 km sample transect, indicating that the ice-marginal position retreated rapidly at rates of approx.120 m yr(sup-1).

  20. Cosmogenic exposure-age chronologies of Pinedale and Bull Lake glaciations in greater Yellowstone and the Teton Range, USA

    USGS Publications Warehouse

    Licciardi, J.M.; Pierce, K.L.

    2008-01-01

    We have obtained 69 new cosmogenic 10Be surface exposure ages from boulders on moraines deposited by glaciers of the greater Yellowstone glacial system and Teton Range during the middle and late Pleistocene. These new data, combined with 43 previously obtained 3He and 10Be ages from deposits of the northern Yellowstone outlet glacier, establish a high-resolution chronology for the Yellowstone-Teton mountain glacier complexes. Boulders deposited at the southern limit of the penultimate ice advance of the Yellowstone glacial system yield a mean age of 136??13 10Be ka and oldest ages of ???151-157 10Be ka. These ages support a correlation with the Bull Lake of West Yellowstone, with the type Bull Lake of the Wind River Range, and with Marine Isotope Stage (MIS) 6. End moraines marking the maximum Pinedale positions of outlet glaciers around the periphery of the Yellowstone glacial system range in age from 18.8??0.9 to 16.5??1.4 10Be ka, and possibly as young as 14.6??0.7 10Be ka, suggesting differences in response times of the various ice-cap source regions. Moreover, all dated Pinedale terminal moraines in the greater Yellowstone glacial system post-date the Pinedale maximum in the Wind River Range by ???4-6 kyr, indicating a significant phase relationship between glacial maxima in these adjacent ranges. Boulders on the outermost set and an inner set of Pinedale end moraines enclosing Jenny Lake on the eastern Teton front yield mean ages of 14.6??0.7 and 13.5??1.1 10Be ka, respectively. The outer Jenny Lake moraines are partially buried by outwash from ice on the Yellowstone Plateau, hence their age indicates a major standstill of an expanded valley glacier in the Teton Range prior to the Younger Dryas, followed closely by deglaciation of the Yellowstone Plateau. These new glacial chronologies are indicative of spatially variable regional climate forcing and temporally complex patterns of glacier responses in this region of the Rocky Mountains during the Pleistocene. ?? 2008 Elsevier Ltd. All rights reserved.

  1. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  2. Subdivision of Glacial Deposits in Southeastern Peru Based on Pedogenic Development and Radiometric Ages

    NASA Astrophysics Data System (ADS)

    Goodman, Adam Y.; Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.

    2001-07-01

    The Cordillera Vilcanota and Quelccaya Ice Cap region of southern Peru (13°30‧-14°00‧S; 70°40‧-71°25‧W) contains a detailed record of late Quaternary glaciation in the tropical Andes. Quantification of soil development on 19 moraine crests and radiocarbon ages are used to reconstruct the glacial history. Secondary iron and clay increase linearly in Quelccaya soils and clay accumulates at a linear rate in Vilcanota soils, which may reflect the semicontinuous addition of eolian dust enriched in secondary iron to all soils. In contrast, logarithmic rates of iron buildup in soils in the Cordillera Vilcanota reflect chemical weathering; high concentrations of secondary iron in Vilcanota tills may mask the role of eolian input to these soils. Soil-age estimates from extrapolation of field and laboratory data suggest that the most extensive late Quaternary glaciation occurred >70,000 yr B.P. This provides one of the first semiquantitative age estimates for maximum ice extent in southern Peru and is supported by a minimum-limiting age of ∼41,520 14C yr B.P. A late glacial readvance culminated ∼16,650 cal yr B.P. in the Cordillera Vilcanota. Following rapid deglaciation of unknown extent, an advance of the Quelccaya Ice Cap occurred between ∼13,090 and 12,800 cal yr B.P., which coincides approximately with the onset of the Younger Dryas cooling in the North Atlantic region. Moraines deposited <394 cal yr B.P. in the Cordillera Vilcanota and <300 cal yr B.P. on the west side of the Quelccaya Ice Cap correlate with Little Ice Age moraines of other regions.

  3. Insights into accumulation variability over the last 2000 years at James Ross Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Massam, A.; Mulvaney, R.; McConnell, J.; Abram, N.; Arienzo, M. M.; Whitehouse, P. L.

    2016-12-01

    The James Ross Island ice core, drilled to 364 m on the northern tip of the Antarctic Peninsula, preserves a climate record that spans beyond the Holocene period to the end of the last glacial maximum (LGM). Reanalysis of the ice core using high-resolution continuous flow analysis (CFA) highlighted errors in the identification of events of known age that had been used to constrain the earlier chronology. The new JRI2 chronology is annual layer counted to 300 years, with the remaining profile reconstructed using a new age-depth model that is tied to age horizons identified in the annual-layer counted WAIS Divide ice core record. An accurate age-depth profile requires reliable known-age horizons along the ice core profile. In addition, these allow us to determine a solution for the accumulation history and rate of compaction due to vertical strain. The accuracy of the known-age constraints used in JRI2 allows only a small uncertainty in the reconstruction of the most recent 2000 years of accumulation variability. Independently, the surface temperature profile has been estimated from the stable water isotope profile and calibrated to borehole temperature observations. We present the accumulation, vertical thinning and temperature history interpreted from the James Ross Island ice core for the most recent 2000 years. JRI2 reconstructions show accumulation variability on a decadal to centennial timescale up to 20% from the present-day mean annual accumulation rate of 0.63 m yr-1. Analysis of the accumulation profile for James Ross Island offers insight into the sensitivity of accumulation to a change in surface temperature, as well as the reliability of the assumed relationship between accumulation and surface temperature in climate reconstructions using stable water isotope proxies.

  4. Variation in annual production of copepods, euphausiids, and juvenile walleye pollock in the southeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Heintz, Ronald A.; Lomas, Michael W.; Hunt, George L.

    2016-12-01

    We synthesize recent research on variation in annual production of copepods (Calanus spp.), euphausiids (Thysanoessa spp.), and juvenile walleye pollock (Gadus chalcogrammus) in the southeastern Bering Sea. We reach five conclusions: 1) the timing of the spring bloom is more important than the amount of annual primary production for the transfer of primary to secondary production (i.e., timing matters); 2) summer and fall, not just spring, matter: organisms must maximize energy intake devoted to somatic growth and storage of lipids and minimize energy expenditures during each season; 3) stored lipids are important for the overwinter survival of both zooplankton and age-0 walleye pollock; 4) variation in ice extent and timing of ice retreat affect the spatial distributions of phytoplankton, zooplankton, and age-0 walleye pollock; when these spatial distributions match in late-ice-retreat years, the annual production of copepods, euphausiids, and juvenile walleye pollock often increases (i.e., location matters); 5) if years with late ice retreat, which favor copepod, euphausiid, and juvenile walleye pollock production, occur in succession, top-down control increases. These conclusions help to explain annual variation in production of copepods, euphausiids and juvenile walleye pollock. Copepods and euphausiids often are more abundant in cold years with late ice retreat than in warm years with early ice retreat due to bloom timing and the availability of ice algae during years with late ice retreat. As a consequence, age-0 walleye pollock consume lipid-enriched prey in cold years, better preparing them for their first winter and their overwinter survival is greater. In addition, there is a spatial match of primary production, zooplankton, and age-0 walleye pollock in cold years and a mismatch in warm years.

  5. Trends in reporting of mechanisms and incidence of hip injuries in males playing minor ice hockey in Canada: a cross-sectional study.

    PubMed

    Ayeni, Olufemi R; Kowalczuk, Marcin; Farag, Jordan; Farrokhyar, Forough; Chu, Raymond; Bedi, Asheesh; Willits, Kevin; Bhandari, Mohit

    2014-01-01

    There has been a noted increase in the diagnosis and reporting of sporting hip injuries and conditions in the medical literature but reporting at the minor hockey level is unknown. The purpose of this study is to investigate the trend of reporting hip injuries in amateur ice hockey players in Canada with a focus on injury type and mechanism. A retrospective review of the Hockey Canada insurance database was performed and data on ice hockey hip injuries reported between January 2005 and June 2011 were collected. The study population included all male hockey players from Peewee (aged 11-12 years) to Senior (aged 20+ years) participating in amateur level competition sanctioned by Hockey Canada. Reported cases of ice hockey hip injuries were analyzed according to age, mechanism of injury, and injury subtype. Annual injury reporting rates were determined and using a linear regression analysis trended to determine the change in ice hockey hip injury reporting rate over time. One hundred and six cases of ice hockey-related hip injuries were reported in total. The majority of injuries (75.5%) occurred in players aged 15-20 years playing at the Junior level. Most injuries were caused by a noncontact mechanism (40.6%) and strains were the most common subtype (50.0%). From 2005 to 2010, the number of reported hip injuries increased by 5.31 cases per year and the rate of reported hip injury per 1,000 registered players increased by 0.02 cases annually. Reporting of hip injuries in amateur ice hockey players is increasing. A more accurate injury reporting system is critical for future epidemiologic studies to accurately document the rate and mechanism of hip injury in amateur ice hockey players.

  6. Detrital zircon fission track analysis reveals the thermotectonic history of ice-covered rocks of the Chugach-St. Elias orogen, SE-Alaska

    NASA Astrophysics Data System (ADS)

    Enkelmann, E.; Garver, J. I.; Pavlis, T. L.; Bruhn, R. L.; Chapman, J. B.

    2007-12-01

    Investigating the exhumation history of the Chugach-St. Elias orogen (SE Alaska) using low-temperature thermochronometers is challenged by significant ice cover. Assuming exhumation drove cooling, cooling ages increase with elevation in an orogenic belt, and as such the youngest ages occur in valley bottoms. Cooling and exhumation rates are expected to be very high in the Chugach-St. Elias orogen due to efficient glacial erosion and the most intense erosion occurs under the major ice fields. To study the cooling history of rapidly exhuming rocks underneath this ice cover, we analyzed detrital zircon fission track (DZFT) ages of Recent sand samples from modern rivers that drain the central Bagley Ice field and smaller glaciers draining north (Chitina valley) and south (Pacific) of the mountain range. A distinct advantage of DZFT is that it allows one to sample a landscape regardless of accessibility. The youngest ZFT component populations of samples north and south of the Bagley Ice field record a Late Miocene (5-13 Ma) cooling of the orogen. The pattern of cooling ages shows symmetry across the orogen predates the earliest record of the collision of the Yakutat terrane with Alaska. This result contrasts with the asymmetric cooling pattern displayed by low- temperature thermochronological ages (AFT and AHe) of the exposed bedrock within the range. Apatite FT and U- Th/He ages of bedrock samples south of the Bagley Ice field record the syn-collisional (<5 Ma) fast exhumation whereas apatite ages to the north reveal more heterogeneous exhumation and vary widely from Miocene to Eocene. The bedrock samples from throughout the orogenic belt thus display predominantly the effects of the recent climatic situation of the mountain range with very high precipitation on the south, seaward side versus a more arid north side. Our ZFT results from the northern drainages highlight the relative sense and timing of two important fault zones, both accommodate south-side-up exhumation. The Steward Creek fault zone, located north of the Bagley Ice field, limits the Late Miocene exhumation, whereby samples north of it yielded age populations that are Late Eocene to Cretaceous (30-120 Ma) or older. The Border Ranges fault zone, located farther north, limits the Late Eocene cooling and exhumation of the low-P and high-T Chugach Metamorphic Complex that is inferred to have formed during Eocene ridge subduction. This study provides the first insights on the exhumation history of the Chugach- St. Elias orogen between the time of Eocene ridge subduction and full collision of the Yakutat terrane with North America in the latest Miocene.

  7. Age of the Pineo Ridge System: Implications for behavior of the Laurentide Ice Sheet in eastern Maine, U.S.A., during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Hall, Brenda L.; Borns, Harold W.; Bromley, Gordon R. M.; Lowell, Thomas V.

    2017-08-01

    The Laurentide Ice Sheet was a major driver of global sea-level change during the last deglaciation and may have impacted both atmospheric and oceanic circulation. An understanding of past changes in the ice sheet is important for constraining its interaction with other components of the climate system. Here, we present the geologic context and chronology for ice-sheet fluctuations in eastern Maine, adjacent to the North Atlantic Ocean, thought to be a key player in the termination of the last ice age. Retreat of the Laurentide Ice Sheet through coastal Maine first produced a series of lobate grounding-line moraines, followed by deposition of the prominent Pineo Ridge System, which crosscut the earlier moraine set and which is characterized by extensive ice-contact deltas, closely spaced parallel moraines, and association with eskers. Our new 10Be surface exposure ages indicate that the Pineo Ridge System, which extends for more than 100 km in eastern Maine and Atlantic Canada, dates to ∼15.3 ka, ∼800 years older than recent estimates. Our data are in accord with inboard minimum-limiting radiocarbon ages of terrestrial materials, which indicate deglaciation as early as 15.3 ka, as well as of marine shells that are as old as 15.0 ka. Both the deglaciation that produced the lobate moraines and the short-lived readvance that led to the Pineo Ridge System occurred during Heinrich Stadial 1. Given that faunal and isotopic evidence indicates that the ocean remained cold during deglaciation of coastal Maine, we infer that ice recession was due to rising summer air temperatures that gave way briefly to cooling to allow minor readvance. Glacial deposits north of the Pineo Ridge System display evidence of ice stagnation and downwasting, suggesting rapid ice retreat following deposition of the delta-moraine complex, coincident with the onset of the Bølling.

  8. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice.

    PubMed

    Hatam, Ido; Charchuk, Rhianna; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2014-10-01

    Bacterial communities in Arctic sea ice play an important role in the regulation of nutrient and energy dynamics in the Arctic Ocean. Sea ice has vertical gradients in temperature, brine salinity and volume, and light and UV levels. Multiyear ice (MYI) has at least two distinct ice layers: old fresh ice with limited permeability, and new saline ice, and may also include a surface melt pond layer. Here, we determine whether bacterial communities (1) differ with ice depth due to strong physical and chemical gradients, (2) are relatively homogenous within a layer, but differ between layers, or (3) do not vary with ice depth. Cores of MYI off northern Ellesmere Island, NU, Canada, were subsectioned in 30-cm intervals, and the bacterial assemblage structure was characterized using 16S rRNA gene pyrotag sequencing. Assemblages clustered into three distinct groups: top (0-30 cm); middle (30-150 cm); and bottom (150-236 cm). These layers correspond to the occurrence of refrozen melt pond ice, at least 2-year-old ice, and newly grown first-year ice at the bottom of the ice sheet, respectively. Thus, MYI houses multiple distinct bacterial assemblages, and in situ conditions appear to play a less important role in structuring microbial assemblages than the age or conditions of the ice at the time of formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Tradition and Technology: Sea Ice Science on Inuit Sleds

    NASA Astrophysics Data System (ADS)

    Wilkinson, Jeremy P.; Hanson, Susanne; Hughes, Nick E.; James, Alistair; Jones, Bryn; MacKinnon, Rory; Rysgaard, Søren; Toudal, Leif

    2011-01-01

    The Arctic is home to a circumpolar community of native people whose culture and traditions have enabled them to thrive in what most would perceive as a totally inhospitable and untenable environment. In many ways, sea ice can be viewed as the glue that binds these northern communities together; it is utilized in all aspects of their daily life. Sea ice acts as highways of the north; indeed, one can travel on these highways with dogsleds and snowmobiles. These travels over the frozen ocean occur at all periods of the sea ice cycle and over different ice types and ages. Excursions may be hunting trips to remote regions or social visits to nearby villages. Furthermore, hunting on the sea ice contributes to the health, culture, and commercial income of a community.

  10. Comparing dust flux records from the Subarctic North Pacific and Greenland: Implications for atmospheric transport to Greenland and for the application of dust as a chronostratigraphic tool

    NASA Astrophysics Data System (ADS)

    Serno, Sascha; Winckler, Gisela; Anderson, Robert F.; Maier, Edith; Ren, Haojia; Gersonde, Rainer; Haug, Gerald H.

    2015-06-01

    We present a new record of eolian dust flux to the western Subarctic North Pacific (SNP) covering the past 27,000 years based on a core from the Detroit Seamount. Comparing the SNP dust record to the North Greenland Ice Core Project (NGRIP) ice core record shows significant differences in the amplitude of dust changes to the two regions during the last deglaciation, while the timing of abrupt changes is synchronous. If dust deposition in the SNP faithfully records its mobilization in East Asian source regions, then the difference in the relative amplitude must reflect climate-related changes in atmospheric dust transport to Greenland. Based on the synchronicity in the timing of dust changes in the SNP and Greenland, we tie abrupt deglacial transitions in the 230Th-normalized 4He flux record to corresponding transitions in the well-dated NGRIP dust flux record to provide a new chronostratigraphic technique for marine sediments from the SNP. Results from this technique are complemented by radiocarbon dating, which allows us to independently constrain radiocarbon paleoreservoir ages. We find paleoreservoir ages of 745 ± 140 years at 11,653 year B.P., 680 ± 228 years at 14,630 year B.P., and 790 ± 498 years at 23,290 year B.P. Our reconstructed paleoreservoir ages are consistent with modern surface water reservoir ages in the western SNP. Good temporal synchronicity between eolian dust records from the Subantarctic Atlantic and equatorial Pacific and the ice core record from Antarctica supports the reliability of the proposed dust tuning method to be used more widely in other global ocean regions.

  11. Chronological refinement of an ice core record at Upper Fremont Glacier in south central North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, Paul F.; White, David E.; Naftz, David L.

    2000-02-27

    The potential to use ice cores from alpine glaciers in the midlatitudes to reconstruct paleoclimatic records has not been widely recognized. Although excellent paleoclimatic records exist for the polar regions, paleoclimatic ice core records are not common from midlatitude locations. An ice core removed from the Upper Fremont Glacier in Wyoming provides evidence for abrupt climate change during the mid-1800s. Volcanic events (Krakatau and Tambora) identified from electrical conductivity measurements (ECM) and isotopic and chemical data from the Upper Fremont Glacier were reexamined to confirm and refine previous chronological estimates of the ice core. At a depth of 152 mmore » the refined age-depth profile shows good agreement (1736{+-}10 A.D.) with the {sup 14}C age date (1729{+-}95 A.D.). The {delta}{sup 18}O profile of the Upper Fremont Glacier (UFG) ice core indicates a change in climate known as the Little Ice Age (LIA). However, the sampling interval for {delta}{sup 18}O is sufficiently large (20 cm) such that it is difficult to pinpoint the LIA termination on the basis of {delta}{sup 18}O data alone. Other research has shown that changes in the {delta}{sup 18}O variance are generally coincident with changes in ECM variance. The ECM data set contains over 125,000 data points at a resolution of 1 data point per millimeter of ice core. A 999-point running average of the ECM data set and results from f tests indicates that the variance of the ECM data decreases significantly at about 108 m. At this depth, the age-depth profile predicts an age of 1845 A.D. Results indicate the termination of the LIA was abrupt with a major climatic shift to warmer temperatures around 1845 A.D. and continuing to present day. Prediction limits (error bars) calculated for the profile ages are {+-}10 years (90% confidence level). Thus a conservative estimate for the time taken to complete the LIA climatic shift to present-day climate is about 10 years, suggesting the LIA termination in alpine regions of central North America may have occurred on a relatively short (decadal) timescale. (c) 2000 American Geophysical Union.« less

  12. The little ice age and medieval warm period in the Sargasso Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keigwin, L.D.

    1996-11-29

    Sea surface temperature (SST), salinity, and flux of terrigenous material oscillated on millennial time scales in the Pleistocene North Atlantic, but there are few records of Holocene variability. Because of high rates of sediment accumulation, Holocene oscillations are well documented in the northern Sargasso Sea. Results from a radiocarbondated box core show that SST was {approximately} 1{degree}C cooler than today {approximately} 400 years ago (the Little Ice Age) and 1700 years ago, and {approximately} 1{degree}C warmer than today 1000 years ago (the Medieval Warm Period). Thus, at least some of the warming since the Little Ice Age appears to bemore » part of a natural oscillation. 39 refs., 4 figs., 1 tab.« less

  13. The Little Ice Age and Solar Activity

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Leal Silva, C. M. Carmen; Velasco Herrera, Graciela

    We analyze the ice winter severity index on the Baltic region since 1501-1995. We found that the variability of this index is modulated among other factors by the secular solar activity. The little ice ages that have appeared in the North Hemisphere occurred during periods of low solar activity. Seemingly our star is experiencing a new quiet stage compared with Maunder or Dalton minimum, this is important because it is estimated that even small changes in weather can represent a great impact in ice index. These results are relevant since ice is a very important element in the climate system of the Baltic region and it can affect directly or indirectly many of the oceanographic, climatic, eco-logical, economical and cultural patterns.

  14. The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments

    NASA Astrophysics Data System (ADS)

    Shakesby, Richard A.; Matthews, John A.; Owen, Geraint

    2006-11-01

    The Schmidt hammer is a relatively cheap, portable, sturdy instrument with proven value over the last two decades or so in rapidly dating coarse inorganic deposits of diverse origins. Early views were that its dating role was limited to distinguishing recently exposed from much older. Typically, either a few sites of possibly different ages or occasional older surfaces amongst many young sites were studied. More recently, calibration curves based on individual R-value means from small numbers (2-4) of sites of known ages have been used to estimate the ages of undated sites. We present Schmidt hammer rebound ( R-) values from 28 'Little Ice Age' (and younger), 23 Preboreal and 7 Younger Dryas glaciated surfaces in southern Norway in order, first, to test rigorously the robustness of the instrument as a relative-age dating tool. Despite being obtained from different surfaces (moraines, glaciofluvial deposits and bedrock) and varied metamorphic lithologies, the R-value overall means and 95% confidence intervals for the 'Little Ice Age', Preboreal and Younger Dryas age categories (respectively, 60.0±1.6, 41.6±1.4 and 34.2±2.0) are statistically significantly different. Only two outlying sites in the two younger age categories have overlapping confidence intervals, demonstrating remarkable robustness in differentiating early- and late-Holocene surfaces. The distinction between Preboreal and Younger Dryas sites (with terminal dates <2000 years apart) is less clear but still statistically significant, though possibly partly because of enhanced weathering conditions at the predominantly well vegetated Younger Dryas sites. Second, we examine the feasibility and desirability of controlling non-age-related factors, including some previously considered critical (instrument wear, operator bias, initial rock surface texture), which emerge either as less important than previously argued or as relatively unimportant, together with others previously unreported (e.g. long-term changes in lichen, soil, snow and vegetation covers). Third, we investigate the potential for calibrated-age dating by applying exploratory, linear rates of R-value decline to selected combinations of sites. The results suggest that error limits of ca ±700 to ±1600 years should be achievable over the Holocene timescale. This improved dating capability, however, will require adequate numbers of site means not only for each age category used to define these curves but also for each set of test surfaces of the same ages. Recommendations are made for a suitable sampling protocol for developing further the Schmidt hammer as a calibrated-age dating tool.

  15. Debris-Covered Glaciers in Antarctica: Analogs for Viscous-Flow Features on Mars

    NASA Astrophysics Data System (ADS)

    Marchant, D. R.; Phillips, W. M.; Schaefer, J.; Fastook, J.; Landis, G.

    2007-12-01

    The McMurdo Dry Valleys (MDV) are generally classified as a hyper-arid, cold-polar desert. Subtle variations in climate parameters throughout the region result in considerable differences in the distribution, origin, and morphology of buried ice. In the coastal thaw zone, near-surface buried ice experiences seasonal melt and may have formed where pore water from surface snowmelt freezes underground (segregation ice). Characteristic landforms associated with this type of buried ice include thermokarst, shallow planar slides, and solifluction. In contrast, in the coldest and driest regions of the MDV, the stable upland zone, there is insufficient meltwater to produce extensive segregation ice. Rather, widespread buried ice in this zone is typically glacier ice. Temperature data indicate that ice remains frozen in this zone if buried beneath ~15 cm of debris. The Mullins-valley debris-covered glacier, which lies within the stable upland zone, contains ancient glacier ice beneath a thin layer of sublimation till. Four independent dating techniques confirm that the glacier age ranges from ~10 ka near the valley head, to >8 Ma at its diffuse terminus in central Beacon Valley. The dating methods include cosmogenic-nuclide analyses of surface boulders; horizontal ice-flow velocities as determined from synthetic aperture radar interferometry; 40Ar/39Ar analyses of in-situ ash fall in relict polygon troughs at the till surface; and numerical ice-flow models. Age results so derived are in accord with measured variations in ancient community DNA extracted from pristine ice samples along the length of the glacier. Multi- channel seismic and ground-penetrating radar surveys demonstrate that the ice is relatively clean and that it averages from ~45 m to ~150 m thick. Morphologic comparisons of the Mullins Valley debris-covered glacier are used to shed light on the origin and modification of near-surface ice on Mars.

  16. A middle Pleistocene through middle Miocene moraine sequence in the central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Balter, A.; Bromley, G. R.; Balco, G.; Thomas, H.; Jackson, M. S.

    2017-12-01

    Ice-free areas at high elevation in the central Transantarctic Mountains preserve extensive moraine sequences and drift deposits that comprise a geologic record of former East Antarctic Ice Sheet thickness and extent. We are applying cosmogenic-nuclide exposure dating to determine the ages of these moraine sequences at Roberts Massif and Otway Massif, at the heads of the Shackleton and Beardmore Glaciers, respectively. Moraines at these sites are for the most part openwork boulder belts characteristic of deposition by cold-based ice, which is consistent with present climate and glaciological conditions. To develop our chronology, we collected samples from 30 distinct ice-marginal landforms and have so far measured >100 3He, 10Be, and 21Ne exposure ages. Apparent exposure ages range from 1-14 Ma, which shows that these landforms record glacial events between the middle Pleistocene and middle Miocene. These data show that the thickness of the East Antarctic Ice Sheet in this region was similar to or thicker than present for long periods between the middle Miocene and today. The time range represented by these moraine sequences indicates that they may also provide direct geologic evidence for East Antarctic Ice Sheet behavior during past periods of warmer-than-present climate, specifically the Miocene and Pliocene. As the East Antarctic Ice Sheet is the largest ice sheet on earth, understanding its sensitivity to warm-climate conditions is critical for projections of ice sheet behavior and sea-level rise in future warm climates.

  17. Differently Aged Terrain

    NASA Image and Video Library

    2010-07-09

    NASA Cassini spacecraft examines old and new terrain on Saturn fascinating Enceladus, a moon where jets of water ice particles and vapor spew from the south pole. Newly created terrain is at the bottom, in the center and on the left of this view.

  18. Rapid onset of Little Ice Age summer cold in the northern North Atlantic derived from precisely dated ice cap records (Invited)

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Larsen, D.; Geirsdottir, A.; Refsnider, K. A.; Anderson, C.

    2009-12-01

    Precise radiocarbon dates on dead vegetation emerging beneath retreating non-erosive ice caps in NE Arctic Canada define the onset of ice cap growth, and provide a Holocene context for 20th Century warming. Although most plateau ice caps melted during the Medieval Warm Period, a few that are now disappearing remained intact since at least 350 AD. Little Ice Age ice cap inception occurred in two pulses, centered on 1250-1300 AD and around 1450 AD, with ice caps remaining in an expanded state until the warming of the past few decades. Ice cap inception occurred simultaneously (±10 years) over a 200 m elevational range, suggesting an abrupt onset of Little Ice Age cold, rather than a slow cooling over many decades. Similarly, a 3000 year annually resolved lacustrine record of glacier power and a complementary independent proxy for landscape instability in the highlands of central Iceland show an initial jump in both glacier power and landscape instability between 1250 and 1300 AD, with a second step-increase around 1450 AD, and dramatic increases in both proxies around 1800 AD, retracting in the 20th Century. A sub-decadal record of hillslope stability and within-lake primary productivity in sediments from a low-elevation lake in northern Iceland shows parallel changes at similar times. Sea ice proxies and historical records document the first appearance of sea ice around Iceland following Medieval time about 1250 AD. The similarity in the onset and intensification of Little Ice Age cold-weather proxies across a wide region of the northern North Atlantic suggests at least a regional driver of abrupt climate change. The time intervals for which these abrupt changes occur coincide with the three most intense episodes of multiple explosive volcanic eruptions that introduced large volumes of sulfate aerosols into the stratosphere during the past millennium. Although the direct impacts of volcanic aerosols have a duration of only a few years, the memory stored by the cooled ocean surface waters allows a cumulative effect to have a longer-term impact. To explain the apparent irreversible shift to colder summers following volcanic eruptions requires additional strong positive feedbacks, most likely a consequence of expanded sea ice cover.

  19. Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial-interglacial transition

    NASA Astrophysics Data System (ADS)

    Nývlt, Daniel; Braucher, Régis; Engel, Zbyněk; Mlčoch, Bedřich

    2014-09-01

    The Northern Prince Gustav Ice Stream located in Prince Gustav Channel, drained the northeastern portion of the Antarctic Peninsula Ice Sheet during the last glacial maximum. Here we present a chronology of its retreat based on in situ produced cosmogenic 10Be from erratic boulders at Cape Lachman, northern James Ross Island. Schmidt hammer testing was adopted to assess the weathering state of erratic boulders in order to better interpret excess cosmogenic 10Be from cumulative periods of pre-exposure or earlier release from the glacier. The weighted mean exposure age of five boulders based on Schmidt hammer data is 12.9 ± 1.2 ka representing the beginning of the deglaciation of lower-lying areas (< 60 m a.s.l.) of the northern James Ross Island, when Northern Prince Gustav Ice Stream split from the remaining James Ross Island ice cover. This age represents the minimum age of the transition from grounded ice stream to floating ice shelf in the middle continental shelf areas of the northern Prince Gustav Channel. The remaining ice cover located at higher elevations of northern James Ross Island retreated during the early Holocene due to gradual decay of terrestrial ice and increase of equilibrium line altitude. Schmidt hammer R-values are inversely correlated with 10Be exposure ages and could be used as a proxy for exposure history of individual granite boulders in this region and favour the hypothesis of earlier release of boulders with excessive 10Be concentrations from glacier directly at this site. These data provide evidences for an earlier deglaciation of northern James Ross Island when compared with other recently presented cosmogenic nuclide based deglaciation chronologies, but this timing coincides with rapid increase of atmospheric temperature in this marginal part of Antarctica.

  20. Precise interpolar phasing of abrupt climate change during the last ice age

    USGS Publications Warehouse

    ,; Buizert, Christo; Adrian, Betty M.; Ahn, Jinho; Albert, Mary; Alley, Richard B.; Baggenstos, Daniel; Bauska, Thomas K.; Bay, Ryan C.; Bencivengo, Brian B.; Bentley, Charles R.; Brook, Edward J.; Chellman, Nathan J.; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cravens, Eric; Cuffey, Kurt M.; Dunbar, Nelia W.; Edwards, Jon S.; Fegyveresi, John M.; Ferris, Dave G.; Fitzpatrick, Joan J.; Fudge, T. J.; Gibson, Chris J.; Gkinis, Vasileios; Goetz, Joshua J.; Gregory, Stephanie; Hargreaves, Geoffrey Mill; Iverson, Nels; Johnson, Jay A.; Jones, Tyler R.; Kalk, Michael L.; Kippenhan, Matthew J.; Koffman, Bess G.; Kreutz, Karl; Kuhl, Tanner W.; Lebar, Donald A.; Lee, James E.; Marcott, Shaun A.; Markle, Bradley R.; Maselli, Olivia J.; McConnell, Joseph R.; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter D.; Nishiizumi, Kunihiko; Nunn, Richard M.; Orsi, Anais J.; Pasteris, Daniel R.; Pedro, Joel B.; Pettit, Erin C.; Price, P. Buford; Priscu, John C.; Rhodes, Rachael H.; Rosen, Julia L.; Schauer, Andrew J.; Schoenemann, Spruce W.; Sendelbach, Paul J.; Severinghaus, Jeffrey P.; Shturmakov, Alexander J.; Sigl, Michael; Slawny, Kristina R.; Souney, Joseph M.; Sowers, Todd A.; Spencer, Matthew K.; Steig, Eric J.; Taylor, Kendrick C.; Twickler, Mark S.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Welten, Kees C.; Wendricks, Anthony W.; White, James W. C.; Winstrup, Mai; Wong, Gifford J.; Woodruff, Thomas E.

    2015-01-01

    The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives1. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa2, 3, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw4, 5, 6. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events7, 8, 9. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision2, 3,10. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.

  1. Ice nucleation activity of diesel soot particles at Cirrus relevant conditions: Effects of hydration, secondary organics coating, hydration, soot morphology, and coagulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar R.; China, Swarup; Liu, Shang

    The role of atmospheric relevant soot particles that are processed in the atmosphere toward ice nucleation at cirrus cloud condition is poorly understood. In this study, the ice nucleating properties of diesel soot particles subjected to various physical and chemical aging treatments were investigated at temperatures ranging from -40 to -50 °C. We show that bare soot particles nucleate ice in deposition mode, but coating with secondary organics suppresses the heterogeneous ice nucleation potential of soot particles requiring homogeneous freezing threshold conditions. However, the ice nucleation efficiency of soot particles coated with an aqueous organic layer was similar to baremore » soot particles. Hydration of bare soot particles slightly enhanced the ice nucleation efficiency, and the IN abilities of compact soot particles (roundness = ~ 0.6) were similar to bare lacey soot particles (roundness = ~ 0.4). These results indicate that ice nucleation properties are sensitive to the various aging treatments.« less

  2. Optical ages indicate the southwestern margin of the Green Bay Lobe in Wisconsin, USA, was at its maximum extent until about 18,500 years ago

    USGS Publications Warehouse

    Attig, J.W.; Hanson, P.R.; Rawling, J.E.; Young, A.R.; Carson, E.C.

    2011-01-01

    Samples for optical dating were collected to estimate the time of sediment deposition in small ice-marginal lakes in the Baraboo Hills of Wisconsin. These lakes formed high in the Baraboo Hills when drainage was blocked by the Green Bay Lobe when it was at or very near its maximum extent. Therefore, these optical ages provide control for the timing of the thinning and recession of the Green Bay Lobe from its maximum position. Sediment that accumulated in four small ice-marginal lakes was sampled and dated. Difficulties with field sampling and estimating dose rates made the interpretation of optical ages derived from samples from two of the lake basins problematic. Samples from the other two lake basins-South Bluff and Feltz basins-responded well during laboratory analysis and showed reasonably good agreement between the multiple ages produced at each site. These ages averaged 18.2. ka (n= 6) and 18.6. ka (n= 6), respectively. The optical ages from these two lake basins where we could carefully select sediment samples provide firm evidence that the Green Bay Lobe stood at or very near its maximum extent until about 18.5. ka.The persistence of ice-marginal lakes in these basins high in the Baraboo Hills indicates that the ice of the Green Bay Lobe had not experienced significant thinning near its margin prior to about 18.5. ka. These ages are the first to directly constrain the timing of the maximum extent of the Green Bay Lobe and the onset of deglaciation in the area for which the Wisconsin Glaciation was named. ?? 2011 Elsevier B.V.

  3. Late Quaternary deglacial history across the Larsen B embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Jeong, Ara; Lee, Jae Il; Seong, Yeong Bae; Balco, Greg; Yoo, Kyu-Cheul; Yoon, Ho Il; Domack, Eugene; Rhee, Hyun Hee; Yu, Byung Yong

    2018-06-01

    We measured meteoric 10Be variation throughout a marine sediment core from the Larsen B embayment (LBE) of the Antarctic Peninsula, and collected in situ 10Be and 14C exposure ages on terrestrial glacial deposits from the northern and southern margins of the LBE. We use these data to reconstruct Last Glacial Maximum (LGM) to present deglaciation and ice shelf change in the LBE. Core sedimentary facies and meteoric 10Be data show a monotonic progression from subglacial deposits to sub-ice-shelf deposits to open-marine conditions, indicating that its collapse in 2002 was unprecedented since the LGM. Exposure-age data from the southern LBE indicate 40 m of ice surface lowering between 14 and 6 ka, then little change between 6 ka and the 2002 collapse. Exposure-age data from the northern LBE show a bimodal distribution in which clusters of apparent exposure ages in the ranges 4.9-5.1 ka and 1.0-2.0 ka coexist near 50 m elevation. Based on these results, other published terrestrial and marine deglaciation ages, and a compilation of sea bed imagery, we suggest a north-to-south progression of deglaciation in the northeast Antarctic Peninsula in response to Holocene atmospheric and oceanic warming. We argue that local topography and ice configuration inherited from the LGM, in addition to climate change, are important in controlling the deglaciation history in this region.

  4. Regional mid-Pleistocene glaciation in central Patagonia

    NASA Astrophysics Data System (ADS)

    Hein, Andrew S.; Cogez, Antoine; Darvill, Christopher M.; Mendelova, Monika; Kaplan, Michael R.; Herman, Frédéric; Dunai, Tibor J.; Norton, Kevin; Xu, Sheng; Christl, Marcus; Rodés, Ángel

    2017-05-01

    Southern South America contains a glacial geomorphological record that spans the past million years and has the potential to provide palaeoclimate information for several glacial periods in Earth's history. In central Patagonia, two major outlet glaciers of the former Patagonian Ice Sheet carved deep basins ∼50 km wide and extending over 100 km into the Andean plain east of the mountain front. A succession of nested glacial moraines offers the possibility of determining when the ice lobes advanced and whether such advances occurred synchronously. The existing chronology, which was obtained using different methods in each valley, indicates the penultimate moraines differ in age by a full glacial cycle. Here, we test this hypothesis further using a uniform methodology that combines cosmogenic nuclide ages from moraine boulders, moraine cobbles and outwash cobbles. 10Be concentrations in eighteen outwash cobbles from the Moreno outwash terrace in the Lago Buenos Aires valley yield surface exposure ages of 169-269 ka. We find 10Be inheritance is low and therefore use the oldest surface cobbles to date the deposit at 260-270 ka, which is indistinguishable from the age obtained in the neighbouring Lago Pueyrredón valley. This suggests a regionally significant glaciation during Marine Isotope Stage 8, and broad interhemispheric synchrony of glacial maxima during the mid to late Pleistocene. Finally, we find the dated outwash terrace is 70-100 ka older than the associated moraines. On the basis of geomorphological observations, we suggest this difference can be explained by exhumation of moraine boulders.

  5. High-resolution sedimentary effects of post-Little Ice Age glacial recession in Hornsund (Svalbard) - insights from chirp and core data

    NASA Astrophysics Data System (ADS)

    Dominiczak, Aleksander; Szczuciński, Witold; Moskalik, Mateusz; Forwick, Matthias

    2017-04-01

    As a result of global warming from the end of the Little Ice Age a fast withdrawal and loss of mass of many glaciers have been observed. The retreat has been particularly rapid in case of tidewater glaciers of Spitsbergen, where in an effect a new bays were formed and serve as glaciomarine sediment accumulation areas. The new depocenters in emerging bays are characterized by high sediment accumulation rates. Analysis and quantitative assessment of the processes occurring in these bays can enhance a better understanding of the dynamics of glaciers recession and bio-geochemical processes occurring in the fjords. This is particularly important because the subpolar fjords may be important storage for organic carbon on a global scale (Smith at al. 2015). In order to obtain a detailed high-resolution record of sedimentation history in the post Little Ice Age bays, 30 gravity cores and 18 box cores were collected along with detail seism acoustic surveys (Chirp) during three cruises on board of R/V Helmar Hansen in 2007, 2014 and 2015. The sediment cores revealed two major types of sediments: subglacial till and overlying laminated glacimarine mud with abundant ice rafted debris. The sediment accumulation rate of the latter is estimated to be on average in order of 1 to 5 cm per year. The periods of increase ice rafting are likely related to surge events. The dense Chirp survey grid spatial changeability in the post-Little Ice Age sediment cover. The amount and lithology of sediments in different parts of the bays also helped to link glacier dynamics with sedimentary effect. Our results confirms that despite similarities in lithology there are significant differences in sediment accumulation rates, probably driven by changes in accommodation spaces and sediment delivery. The record is also affected by effects of glacier surges. However, analyses of historical data enhanced the interpretation of sedimentary record and provide hints to identify the specific processes and events in the sedimentary record. The study was funded by Polish National Science Centre grant No. 2013/10/E/ST10/00166. We kindly acknowledge help of the captain and crew of R/V Helmer Hanssen as well as onboard scientific party. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., & Galy, V. (2015). High rates of organic carbon burial in fjord sediments globally. Nature Geoscience, 8(6), 450-453.

  6. Retreat of the Southwest Labrador Sector of the Laurentide Ice Sheet During the Last Termination

    NASA Astrophysics Data System (ADS)

    Lowell, T. V.; Kelly, M. A.; Fisher, T. G.; Barnett, P. J.; Howley, J. A.; Zimmerman, S. R. H.

    2016-12-01

    Large ice sheets are suspected to have played a major role in forcing the transitions from glacial to interglacial conditions, known as terminations. To improve the understanding of the role of the Laurentide Ice Sheet in the last termination, we present a chronology of ice sheet recession from just subsequent to end of the Last Glacial Maximum (LGM) to the early Holocene. We focus on the retreat of the southwest Labrador Sector of the ice sheet in northern Minnesota and adjacent Ontario. Multiple moraines in this region mark an overall pattern of ice recession interrupted by stillstands and/or minor readvances. Radiocarbon and 10Be ages from 50 sites along this 400 km-long transect indicate that the oldest moraine complex, the Vermillion moraine, formed at 17.0 ka. Subsequently, the ice margin retreated with minor standstills until the Dog Lake moraine was deposited between 12.7 and 12.3 ka. Recession from the Dog Lake moraine began by 12.3 ka the ice margin receded 150 km to the north-northeast by 10.7 ka. In general, the radiocarbon and 10Be ages define a pattern of near-continuous ice sheet retreat. Deposition of the Vermillion and Dog Lake moraines occurred at the beginning of Heinrich stadials 1 ( 17.5-14.5 ka) and 0 ( 12.9-11.7 ka), respectively, but ice recession occurred throughout the remainder of these stadials. This pattern is different from climate conditions registered by Greenland ice cores which show cold conditions from the end of the LGM until the Bølling warming at 14.5 ka, and throughout the Younger Dryas ( 12.9-11.7 ka). We suggest that the pattern of ice sheet recession is more similar to mountain glaciers in the southern mid-latitudes and tropics, and that Heinrich stadials may have been characterized by warming at least in the summertime that influenced near global ice recession.

  7. Exposure age and climate controls on weathering in deglaciated watersheds of western Greenland

    NASA Astrophysics Data System (ADS)

    Scribner, C. A.; Martin, E. E.; Martin, J. B.; Deuerling, K. M.; Collazo, D. F.; Marshall, A. T.

    2015-12-01

    Fine-grained sediments deposited by retreating glaciers weather faster than the global average and this weathering can impact the global carbon cycle and oceanic fluxes of nutrients and radiogenic isotopes. Much work has focused on subglacial and proglacial weathering of continental ice sheets, but little is known about weathering and resulting fluxes from deglacial watersheds, which are disconnected from the ice sheets and discharge only annual precipitation and permafrost melt. We investigate the effects of exposure age and precipitation on weathering intensity in four deglacial watersheds on Greenland that form a transect from the coast near Sisimiut toward the Greenland Ice Sheet (GrIS) near Kangerlussuaq based on evaluations of major ion compositions, Sr isotope ratios, and mineral saturation states of waters and sediments. The transect is underlain by Archean orthogneiss and is characterized by gradients in moraine ages (∼7.5-8.0 ky inland to ∼10 ky at the coast) and water balance (-150 mm/yr inland to +150 mm/yr at the coast). Anion compositions are generally dominated by HCO3, but SO4 becomes increasingly important toward the coast, reflecting a switch from trace carbonate dissolution to sulfide mineral oxidation. Coastal watersheds have a higher proportion of dissolved silica, higher Na/Cl, Si/Ca, and lower Ca/Sr ratios than inland watersheds, indicating an increase in the relative proportion of silicate weathering and an increase in the extent of weathering toward the coast. More extensive weathering near the coast is also apparent in differences in the 87Sr/86Sr ratios of stream water and bedload (Δ87Sr/86Sr), which decreases from 0.017 inland to 0.005 at the coast, and in increased saturation states relative to amorphous SiO2 and quartz. The steep weathering gradient from inland to coastal watersheds reflects enhanced weathering compared to that expected from the 2 to 3 ky difference in exposure age caused by elevated coastal precipitation. The gradient of weathering with exposure age, water budget and distance from the ice sheet indicates that oceanic and atmospheric fluxes will change as continental glaciers retreat, precipitation patterns across the deglacial region readjust, and the relative proportion of deglacial to proglacial runoff increases.

  8. Glacier History of the Northern Antarctic Peninsula Region Since the End of the Last Ice Age and Implications for Southern Hemisphere Westerly-Climate Changes

    NASA Astrophysics Data System (ADS)

    Kaplan, M. R.; Schaefer, J. M.; Strelin, J. A.; Peltier, C.; Southon, J. R.; Lepper, K. E.; Winckler, G.

    2017-12-01

    For the area around James Ross Island, we present new cosmogenic 10Be exposure ages on glacial deposits, and 14C ages on associated fossil materials. These data allow us to reconstruct in detail when and how the Antarctic Peninsula Ice Sheet retreated around the Island as the last Ice Age ended, and afterward when local land-based glaciers fluctuated. Similar to other studies, we found widespread deglaciation during the earliest Holocene, with fjords and bays becoming ice free between about 11,000 and 8,000 years ago. After 7,000 years ago, neoglacial type advances initiated. Then, both expansions and ice free periods occurred from the middle to late Holocene. We compare the new glacier record to those in southern Patagonia, which is on the other side of the Drake Passage, and published Southern Ocean marine records, in order to infer past middle to high latitude changes in the Southern Hemisphere Westerlies. Widespread warmth in the earliest Holocene, to the north and south of the Drake Passage, led to small glacier systems in Patagonia and wide-ranging glacier recession around the northern Antarctic Peninsula. We infer that this early Holocene period of overall glacier recession - from Patagonia to the northern Peninsula - was caused by a persistent far-southerly setting of the westerlies and accompanying warm climates. Subsequently, during the middle Holocene renewed glacier expansions occurred on both sides of the Drake Passage, which reflects that the Westerlies and associated colder climate systems were generally more equatorward. From the middle to late Holocene, glacier expansions and ice free periods (and likely related ice shelf behavior) document how the Westerlies and associated higher-latitude climate systems varied.

  9. Habitat selection and seasonal movements of young bearded seals (Erignathus barbatus) in the Bering Sea

    PubMed Central

    2018-01-01

    The first year of life is typically the most critical to a pinniped’s survival, especially for Arctic phocids which are weaned at only a few weeks of age and left to locate and capture prey on their own. Their seasonal movements and habitat selection are therefore important factors in their survival. During a cooperative effort between scientists and subsistence hunters in October 2004, 2005, and 2006, 13 female and 13 male young (i.e., age <2) bearded seals (Erignathus barbatus) were tagged with satellite-linked dive recorders (SDRs) in Kotzebue Sound, Alaska. Shortly after being released, most seals moved south with the advancing sea-ice through the Bering Strait and into the Bering Sea where they spent the winter and early spring. The SDRs of 17 (8 female and 9 male) seals provided frequent high-quality positions in the Bering Sea; their data were used in our analysis. To investigate habitat selection, we simulated 20 tracks per seal by randomly selecting from the pooled distributions of the absolute bearings and swim speeds of the tagged seals. For each point in the observed and simulated tracks, we obtained the depth, sea-ice concentration, and the distances to sea-ice, open water, the shelf break and coastline. Using logistic regression with a stepwise model selection procedure, we compared the simulated tracks to those of the tagged seals and obtained a model for describing habitat selection. The regression coefficients indicated that the bearded seals in our study selected locations near the ice edge. In contrast, aerial surveys of the bearded seal population, predominantly composed of adults, indicated higher abundances in areas farther north and in heavier pack ice. We hypothesize that this discrepancy is the result of behavioral differences related to age. Ice concentration was also shown to be a statistically significant variable in our model. All else being equal, areas of higher ice concentration are selected for up to about 80%. The effects of sex and bathymetry were not statistically significant. The close association of young bearded seals to the ice edge in the Bering Sea is important given the likely effects of climate warming on the extent of sea-ice and subsequent changes in ice edge habitat. PMID:29489846

  10. Expanded secondary craters in the Arcadia Planitia region, Mars: evidence for tens of Myr-old shallow subsurface ice

    USGS Publications Warehouse

    Viola, Donna; McEwen, Alfred S.; Dundas, Colin M.; Byrne, Shane

    2015-01-01

    A range of observations indicates widespread subsurface ice throughout the mid and high latitudes of Mars in the form of both pore-filling and excess ice. It is generally thought that this ice was recently emplaced and is not older than a hundred thousand to a few millions of years old based on ice stability and orbital-induced climate change. We analyze the distribution of subsurface ice in Arcadia Planitia, located in the northern mid latitudes, by mapping thermokarstically expanded secondary craters, providing additional evidence for extensive excess ice down to fairly low latitudes (less than 40°N). We further infer the minimum age of this subsurface ice based on the ages of the four primary craters that are thought to be the source of a large portion of these secondaries, which yields estimates on the order of tens of millions of years old – much more ancient than anticipated. This estimated ancient age suggests that ice can be preserved in the shallow subsurface for long periods of time, at least in some parts of Arcadia Planitia where expanded secondary craters are especially abundant. We estimate the amount of ice lost to sublimation during crater expansion based on measurements of expanded secondary craters in HiRISE Digital Terrain Models. The loss is equivalent to a volume of ice between ∼140 and 360 km3, which would correspond to a global layer of 1–2.5 mm thick. We further argue that much more ice (at least 6000 km3) is likely preserved beneath the un-cratered regions of Arcadia Planitia since significant loss of this excess ice would have caused extensive terrain dissection and the removal of the expanded secondary craters. Both the loss of ice due to secondary crater expansion and the presence of this ice today have implications for the martian climate.

  11. A comparison of ringed and bearded seal diet, condition and productivity between historical (1975-1984) and recent (2003-2012) periods in the Alaskan Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Crawford, Justin A.; Quakenbush, Lori T.; Citta, John J.

    2015-08-01

    Reductions in summer sea ice in the Chukchi and Beaufort seas are expected to affect what has been an ice-adapted marine food web in the Pacific Arctic. To determine whether recent decreases in sea ice have affected ice-associated marine predators (i.e., ringed, Pusa hispida, and bearded seals, Erignathus barbatus) in the Bering and Chukchi seas we compared diet, body condition, growth, productivity, and the proportion of pups harvested (an index of weaning success) for seals of each species harvested by 11 Alaskan villages during two periods; a historical (1975-1984) and a recent period (2003-2012). We also examined how changes in indices of seal health may be correlated with the reduction of sea ice characteristic of the recent period. For ringed seals ⩾1 year of age, the % frequency of occurrence (%FO) of Arctic cod (Boreogadus saida), walleye pollock (Gadus chalcogramma), rainbow smelt (Osmerus mordax), and Pacific herring (Clupea pallasi) increased from the historic to the recent period, while the %FO of invertebrates decreased for both pups and seals ⩾1 year of age. For bearded seals ⩾1 year of age, the %FO of Arctic cod, pricklebacks, and flatfish increased during the recent period, while the %FO of saffron cod (Eleginus gracilis) decreased for pups. Although invertebrates did not change overall for either age class, decreases occurred in 10 of 24 specific prey categories, for bearded seals ⩾1 year of age; only echiurids increased. The %FO of gastropods and bivalves increased for pups while isopods and one species of shrimp and crab decreased in occurrence. During the recent period ringed seals grew faster, had thicker blubber, had no change in pregnancy rate, matured 2 years earlier, and a larger proportion of pups was harvested than during the historical period. Correlations with spring ice concentration showed that the growth and blubber thickness of seals ⩾1 year of age, blubber thickness of pups, and the proportion of pups in the harvest all declined for ringed seals when ice concentrations were higher in the historic period. However, only the correlations between high ice concentrations and growth of ringed seals ⩾1 year of age and the proportion of ringed seal pups in the harvest were statistically significant. Although growth of bearded seals ⩾1 year of age was slower during the recent period, it was similar to the average over the entire time series, and blubber thickness increased. Pup growth and blubber thickness did not change between periods. There was no change in pregnancy rate, but females matured 1.6 years earlier, and a larger proportion of pups were harvested. Correlations with spring ice concentration showed that the growth of seals ⩾1 year of age, the growth of pups, blubber thickness of pups, and proportion of pups in the harvest also declined for bearded seals when sea ice concentrations were higher. However, no relationships between bearded seals and sea ice were statistically significant. Overall, our results suggest that ringed seals in the Alaskan Bering and Chukchi seas have adjusted to changes in diet, are growing faster and possibly weaning more pups in the recent compared to the historic period. These patterns are less evident for bearded seals. Although the ringed and bearded seals we examined have not exhibited the declines in body condition, growth, or reproduction observed in other populations, continued monitoring and comparison among seal populations is vital to understanding the effects of changing environmental conditions in the Pacific Arctic region.

  12. The epipelagic fish community of Beaufort Sea coastal waters, Alaska

    USGS Publications Warehouse

    Jarvela, L.E.; Thorsteinson, L.K.

    1999-01-01

    A three-year study of epipelagic fishes inhabiting Beaufort Sea coastal waters in Alaska documented spatial and temporal patterns in fish distribution and abundance and examined their relationships to thermohaline features during summer. Significant interannual, seasonal, and geographical differences in surface water temperatures and salinities were observed. In 1990, sea ice was absent and marine conditions prevailed, whereas in 1988 and 1991, heavy pack ice was present and the dissolution of the brackish water mass along the coast proceeded more slowly. Arctic cod, capelin, and liparids were the most abundant marine fishes in the catches, while arctic cisco was the only abundant diadromous freshwater species. Age-0 arctic cod were exceptionally abundant and large in 1990, while age-0 capelin dominated in the other years. The alternating numerical dominances of arctic cod and age-0 capelin may represent differing species' responses to wind-driven oceanographic processes affecting growth and survival. The only captures of age-0 arctic cisco occurred during 1990. Catch patterns indicate they use a broad coastal migratory corridor and tolerate high salinities. As in the oceanographic data, geographical anti temporal patterns were apparent in the fish catch data, but in most cases these patterns were not statistically testable because of excessive zero catches. The negative binomial distribution appeared to be a suitable statistical descriptor of the aggregated catch patterns for the more common species.

  13. [Evaluation of the dental pathology in archaeological skeletal material: prevalence of dental caries since prehistory to modern age].

    PubMed

    Stránská, Petra

    2013-01-01

    The evaluation of the dental health of past populations is an important part of the anthropological analysis of human skeletal remains uncovered during the archaeological excavations. The results provide the important information not only of the overall health of past populations, but also are reflective of the nutrition or the social status of our ancestors. We focused on the comparison of dental caries from prehistoric times to the present day. The aim was to evaluate the dental decay in several prehistoric, Early Medieval and modern populations and determine whether and to what extent the decay differ between the individual groups. METHODS AND RESULTS. We observed the permanent dentition in adult men and females, who were divided into three groups: the population of the younger Eneolithic to the Bronze Age, the population of the Early Middle Ages and the population of the modern times. We used the Index of Intensity of Caries I-CE and the Index of Caries Frequency F-CE to evaluate the incidence of caries and intra-vital losses. The comparison was carried out between groups, between both of jaws and between individual teeth. We took into account sex and age of the individuals studied. The highest value of F-CE was set in the population of the modern times (67.5). The difference in caries frequency among populations was not significant. The intensity of caries was the highest in modern population (I-CE: 13.2). Compared with the two older populations the difference was statistically highly significant (p 0.001).With regard to sex, the results differed between populations. It could be caused by a different frequency of men and females in individual groups.The correlation of intensity of caries with age was confirmed. Some partial results were affected by unequal frequency of age categories. CONCLUSION. The results showed the worst dental health in the population of the modern times. The null hypothesis,that tooth decay among the individual populations from different periods is not different, was rejected. The results must be interpreted with regard to the demographic composition of the files researched.

  14. The IceAge ERS Program: Probing Building blocks of Life During the JWST Era

    NASA Astrophysics Data System (ADS)

    McClure, Melissa K.; Boogert, Adwin; Linnartz, Harold; Beck, Tracy L.; van Dishoeck, Ewine; Egami, Eiichi; Garrod, Robin; Gordon, Karl D.; Palumbo, Maria Elisabetta; Brown, Wendy; Fraser, Helen; Ioppolo, Sergio; Jimenez-Serra, Izaskun; McCoustra, Martin; Noble, Jennifer; Pendleton, Yvonne J.; Pontoppidan, Klaus; Viti, Serena; Chiar, Jean E.; Caselli, Paola; Bailey, John Ira; Jorgensen, Jes; Kristensen, Lars; Murillo, Nadia; Oberg, Karin I.; IceAge ERS Team Collaborators

    2018-06-01

    Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. Through the IceAge Early Release Science program, we will trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R~1500-3000) and sensitivity (S/N~100-300) observations from 3 to 15 micron to template spectra, we will map the spatial distribution of ices down to ~20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies, thermal histories, and mixing environments.The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.

  15. Geochronology and paleoclimatic implications of the last deglaciation of the Mauna Kea Ice Cap, Hawaii

    USGS Publications Warehouse

    Anslow, Faron S.; Clark, P.U.; Kurz, M.D.; Hostetler, S.W.

    2010-01-01

    We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5??2.5ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3km upslope for ~4.5-5.0kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6??1.9ka, corresponding to a rapid resumption of the AMOC and onset of the B??lling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5??1??C, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the inter-tropical convergence zone (ITCZ). Such a shift in the ITCZ would have allowed midlatitude cyclones to reach Mauna Kea more frequently which would have increased precipitation at high elevations and caused additional cooling. ?? 2010 Elsevier B.V.

  16. Ice Elevation Changes in the Ellsworth Mountains, Antarctica Using Multiple Cosmogenic Nuclides

    NASA Astrophysics Data System (ADS)

    Marrero, S.; Hein, A.; Sugden, D.; Woodward, J.; Dunning, S.; Reid, K.

    2014-12-01

    Well-dated geologic data points provide important indicators that can be used for the reconstruction of ice sheet dynamics and as constraints in ice sheet models predicting future change. Cosmogenic nuclides, which accumulate in rocks exposed at the earth's surface, can be used to directly date the exposure age of the rock surfaces that have been created through glacial erosion or deposition. The technique requires a detailed understanding of the local geomorphology as well as awareness of the post-depositional processes that may affect the interpretation of exposure ages. Initial surface exposure ages (10Be, 26Al, 21Ne, and 36Cl ) from local limestone bedrock and other glacially deposited exotic lithologies provide a history spanning from 0 to 1.1 Ma in the Patriot, Independence, and Marble Hills in the southern Ellsworth Mountains, Antarctica. Using the new surface exposure ages combined with geomorphological mapping, we will discuss the implications for the glacial history of the southern Ellsworth Mountains.

  17. Using Multiple Cosmogenic Nuclides to Investigate Ice Elevation Changes in the Ellsworth Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Marrero, Shasta; Hein, Andy; Sugden, David; Woodward, John; Dunning, Stuart; Freeman, Stewart; Shanks, Richard

    2015-04-01

    Well-dated geologic data points provide important indicators that can be used for the reconstruction of ice sheet dynamics and as constraints in ice sheet models predicting future change. Cosmogenic nuclides, which accumulate in rocks exposed at the earth's surface, can be used to directly date the exposure age of the rock surfaces that have been created through glacial erosion or deposition. The technique requires a detailed understanding of the local geomorphology as well as awareness of the post-depositional processes that may affect the interpretation of exposure ages. Surface exposure ages (10Be, 26Al, 21Ne, and 36Cl) from local limestone bedrock and other glacially deposited exotic lithologies provide a history spanning from 0 to more than 1 million years in the Patriot, Independence, and Marble Hills in the southern Ellsworth Mountains, Antarctica. Using the new surface exposure ages combined with geomorphological mapping, we will discuss the implications for the glacial history of the southern Ellsworth Mountains.

  18. Clear roads' safety effect on elderly drivers.

    DOT National Transportation Integrated Search

    2011-10-01

    Driving on roads that are covered with ice or snow is hazardous for all drivers, but there may be : disproportionally high risks for certain age groups on certain road types and different winter : maintenance practices may also have a greater influen...

  19. Marine biological controls on atmospheric CO2 and climate

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.

    1983-01-01

    It is argued that the ocean is losing N gas faster than N is being returned to the ocean, and that replenishment of the N supply in the ocean usually occurs during ice ages. Available N from river and estruarine transport and from rainfall after formation by lightning are shown to be at a rate too low to compensate for the 10,000 yr oceanic lifetime of N. Ice sheets advance and transfer moraine N to the ocean, lower the sea levels, erode the ocean beds, promote greater biological productivity, and reduce CO2. Ice core samples have indicated a variability in the atmospheric N content that could be attributed to the ice age scenario.

  20. Late Pleistocene leopards across Europe - northernmost European German population, highest elevated records in the Swiss Alps, complete skeletons in the Bosnia Herzegowina Dinarids and comparison to the Ice Age cave art

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2013-09-01

    European leopard sites in Europe demonstrate Early/Middle Pleistocene out of Africa lowland, and Late Pleistocene Asian alpine migrations being driven by climatic changes. Four different European Pleistocene subspecies are known. The final European Late Pleistocene “Ice Age leopard” Panthera pardus spelaea (Bächler, 1936) is validated taxonomically. The skull shows heavy signs of sexual dimorphism with closest cranial characters to the Caucasian Panthera pardus ciscaucasica (Persian leopard). Late Pleistocene leopards were distributed northernmost, up to S-England with the youngest stratigraphic records by skeletons and cave art in the MIS 2/3 (about 32,000-26,000 BP). The oldest leopard painting left by Late Palaeolithics (Aurignacians/Gravettians) in the Chauvet Cave (S-France) allows the reconstruction of the Ice Age leopard fur spot pattern being close to the snow or Caucasian leopards. The last Ice Age glacial leopard habitat was the mountain/alpine boreal forest (not mammoth steppe lowland), where those hunted even larger prey such as alpine game (Ibex, Chamois). Into some lairs, those imported their prey by short-term cave dwelling (e.g. Baumann's Cave, Harz Mountains, Germany). Only Eurasian Ice Age leopards specialized, similar as other Late Pleistocene large felids (steppe lions), on cave bear predation/scavenging partly very deep in caves. In Vjetrenica Cave (Dinarid Mountains, Bosnia Herzegovina), four adult leopards (two males/two females) of the MIS 3 were found about two km deep from the entrance in a cave bear den, near to one cave bear skeleton, that remained articulated in its nest. Leopards died there, partly being trapped by raising water levels of an active ponor stream, but seem to have been killed possibly either, similar as for lions known, in battles with cave bears in several cave bear den sites of Europe (e.g. Baumann's Cave, Wildkirchli Cave, Vjetrenica Cave). At other large cave sites, with overlap of hyena, wolf and dhole dens at the cave entrances, leopard bones with bite damages indicate their remains to have been imported and consumed by predators in alpine regions due to reduced prey availability. The best models for the competition/taphonomy of large predators - felids, hyenids, canids - within large cave bear dens of Europe is represented in combination of the Zoolithen Cave and Vjetrenica Cave taphonomy.

  1. Acute injuries in soccer, ice hockey, volleyball, basketball, judo, and karate: analysis of national registry data.

    PubMed Central

    Kujala, U. M.; Taimela, S.; Antti-Poika, I.; Orava, S.; Tuominen, R.; Myllynen, P.

    1995-01-01

    OBJECTIVE--To determine the acute injury profile in each of six sports and compare the injury rates between the sports. DESIGN--Analysis of national sports injury insurance registry data. SETTING--Finland during 1987-91. SUBJECTS--621,691 person years of exposure among participants in soccer, ice hockey, volleyball, basketball, judo, or karate. MAIN OUTCOME MEASURES--Acute sports injuries requiring medical treatment and reported to the insurance company on structured forms by the patients and their doctors. RESULTS--54,186 sports injuries were recorded. Injury rates were low in athletes aged under 15, while 20-24 year olds had the highest rates. Differences in injury rates between the sports were minor in this adult age group. Overall injury rates were higher in sports entailing more frequent and powerful body contact. Each sport had a specific injury profile. Fractures and dental injuries were most common in ice hockey and karate and least frequent in volleyball. Knee injuries were the most common cause of permanent disability. CONCLUSIONS--Based on the defined injury profiles in the different sports it is recommended that sports specific preventive measures should be employed to decrease the number of violent contacts between athletes, including improved game rules supported by careful refereeing. To prevent dental injuries the wearing of mouth guards should be encouraged, especially in ice hockey, karate, and basketball. PMID:8520333

  2. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  3. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    USGS Publications Warehouse

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  4. Holocene deglacial history of the northeast Antarctic Peninsula - A review and new chronological constraints

    NASA Astrophysics Data System (ADS)

    Johnson, Joanne S.; Bentley, Michael J.; Roberts, Stephen J.; Binnie, Steven A.; Freeman, Stewart P. H. T.

    2011-12-01

    The northeast Antarctic Peninsula (NEAP) region is currently showing signs of significant environmental change, evidenced by acceleration of glacial retreat and collapse of both Larsen-A and -B ice shelves within the past 15 years. However, data on the past extent of the eastern margin of the Antarctic Peninsula Ice Sheet (APIS) and its Holocene retreat history are sparse, and hence we cannot yet put the recent changes into a long-term context. In order to investigate the timing of deglaciation, we present 16 new cosmogenic 10Be surface exposure ages from sites on northern James Ross Island (Cape Lachman, Johnson Mesa and Terrapin Hill) and Seymour Island. The majority of the ages cluster around 6-10 ka, with three significantly older (25-31 ka). We combine these ages with existing terrestrial and marine radiocarbon deglaciation ages, and a compilation of existing swath bathymetry data, to quantify the temporal and spatial character of the regional glacial history. Ice had begun to retreat from the outer shelf by 18.3 ka, reaching Seymour Island by ˜8 ka. Northern James Ross Island began to deglaciate around the time of the Early Holocene Climatic Optimum (c. 11-9.5 ka). Deglaciation continued, and a transition from grounded to floating ice in Prince Gustav Channel occurred around 8 ka, separating the James Ross Island ice cap from the APIS. This occurred shortly before Prince Gustav Channel ice shelf began to disintegrate at 6.2 ka. Our results suggest there may be a bathymetric control on the spatial pattern of deglaciation in the NEAP.

  5. Incidence of Concussion in Youth Ice Hockey Players

    PubMed Central

    Elbin, R.J.; Sufrinko, Alicia; Dakan, Scott; Bookwalter, Kylie; Price, Ali; Meehan, William P.; Collins, Michael W.

    2016-01-01

    BACKGROUND: Ice hockey is a fast-paced collision sport that entails both intentional (ie, body checking) and incidental contact that may involve the head. The objective of this study was to determine the incidence of concussions in relation to games/practices and age among competition-level youth ice hockey players (ages 12–18 years). METHODS: Participants included 397 youth ice hockey players from Western Pennsylvania; Boston, Massachusetts; and Birmingham, Alabama, during the 2012–2013 and 2013–2014 youth ice hockey seasons. Incidence rates (IRs) and incidence rate ratios (IRRs) of concussion were calculated for games/practices and age groups. RESULTS: A total of 23 369 (12 784 practice/10 585 game) athletic exposures (AEs) involving 37 medically diagnosed concussions occurred. More than 40% of concussions involved illegal contact. The combined IR for games and practices was 1.58 concussions per 1000 AEs. The IRR was 2.86 times (95% confidence interval 0.68–4.42) higher during games (2.49 per 1000 AEs) than practices (1.04 per 1000 AEs). CONCLUSIONS: The overall IR for concussion in youth ice hockey was comparable to those reported in other youth collision sports. The game-to-practice IRR was lower than previously reported in ice hockey and other youth sports, although more concussions per exposure occurred in games compared with practices. Younger players had a higher rate of concussions than older players. PMID:26746405

  6. Incidence of Concussion in Youth Ice Hockey Players.

    PubMed

    Kontos, Anthony P; Elbin, R J; Sufrinko, Alicia; Dakan, Scott; Bookwalter, Kylie; Price, Ali; Meehan, William P; Collins, Michael W

    2016-02-01

    Ice hockey is a fast-paced collision sport that entails both intentional (ie, body checking) and incidental contact that may involve the head. The objective of this study was to determine the incidence of concussions in relation to games/practices and age among competition-level youth ice hockey players (ages 12-18 years). Participants included 397 youth ice hockey players from Western Pennsylvania; Boston, Massachusetts; and Birmingham, Alabama, during the 2012-2013 and 2013-2014 youth ice hockey seasons. Incidence rates (IRs) and incidence rate ratios (IRRs) of concussion were calculated for games/practices and age groups. A total of 23 369 (12 784 practice/10 585 game) athletic exposures (AEs) involving 37 medically diagnosed concussions occurred. More than 40% of concussions involved illegal contact. The combined IR for games and practices was 1.58 concussions per 1000 AEs. The IRR was 2.86 times (95% confidence interval 0.68-4.42) higher during games (2.49 per 1000 AEs) than practices (1.04 per 1000 AEs). The overall IR for concussion in youth ice hockey was comparable to those reported in other youth collision sports. The game-to-practice IRR was lower than previously reported in ice hockey and other youth sports, although more concussions per exposure occurred in games compared with practices. Younger players had a higher rate of concussions than older players. Copyright © 2016 by the American Academy of Pediatrics.

  7. A combined approach of remote sensing and airborne electromagnetics to determine the volume of polynya sea ice in the Laptev Sea

    NASA Astrophysics Data System (ADS)

    Rabenstein, L.; Krumpen, T.; Hendricks, S.; Koeberle, C.; Haas, C.; Hoelemann, J. A.

    2013-06-01

    A combined interpretation of synthetic aperture radar (SAR) satellite images and helicopter electromagnetic (HEM) sea-ice thickness data has provided an estimate of sea-ice volume formed in Laptev Sea polynyas during the winter of 2007/08. The evolution of the surveyed sea-ice areas, which were formed between late December 2007 and middle April 2008, was tracked using a series of SAR images with a sampling interval of 2-3 days. Approximately 160 km of HEM data recorded in April 2008 provided sea-ice thicknesses along profiles that transected sea ice varying in age from 1 to 116 days. For the volume estimates, thickness information along the HEM profiles was extrapolated to zones of the same age. The error of areal mean thickness information was estimated to be between 0.2 m for younger ice and up to 1.55 m for older ice, with the primary error source being the spatially limited HEM coverage. Our results have demonstrated that the modal thicknesses and mean thicknesses of level ice correlated with the sea-ice age, but that varying dynamic and thermodynamic sea-ice growth conditions resulted in a rather heterogeneous sea-ice thickness distribution on scales of tens of kilometers. Taking all uncertainties into account, total sea-ice area and volume produced within the entire surveyed area were 52 650 km2 and 93.6 ± 26.6 km3. The surveyed polynya contributed 2.0 ± 0.5% of the sea-ice produced throughout the Arctic during the 2007/08 winter. The SAR-HEM volume estimate compares well with the 112 km3 ice production calculated with a~high-resolution ocean sea-ice model. Measured modal and mean-level ice thicknesses correlate with calculated freezing-degree-day thicknesses with a factor of 0.87-0.89, which was too low to justify the assumption of homogeneous thermodynamic growth conditions in the area, or indicates a strong dynamic thickening of level ice by rafting of even thicker ice.

  8. A combined approach of remote sensing and airborne electromagnetics to determine the volume of polynya sea ice in the Laptev Sea

    NASA Astrophysics Data System (ADS)

    Rabenstein, L.; Krumpen, T.; Hendricks, S.; Koeberle, C.; Haas, C.; Hoelemann, J. A.

    2013-02-01

    A combined interpretation of synthetic aperture radar (SAR) satellite images and helicopter electromagnetic (HEM) sea-ice thickness data has provided an estimate of sea-ice volume formed in Laptev Sea polynyas during the winter of 2007/08. The evolution of the surveyed sea-ice areas, which were formed between late December 2007 and middle April 2008, was tracked using a series of SAR images with a sampling interval of 2-3 days. Approximately 160 km of HEM data recorded in April 2008 provided sea-ice thicknesses along profiles that transected sea-ice varying in age from 1-116 days. For the volume estimates, thickness information along the HEM profiles was extrapolated to zones of the same age. The error of areal mean thickness information was estimated to be between 0.2 m for younger ice and up to 1.55 m for older ice, with the primary error source being the spatially limited HEM coverage. Our results have demonstrated that the modal thicknesses and mean thicknesses of level ice correlated with the sea-ice age, but that varying dynamic and thermodynamic sea-ice growth conditions resulted in a rather heterogeneous sea-ice thickness distribution on scales of tens of kilometers. Taking all uncertainties into account, total sea-ice area and volume produced within the entire surveyed area were 52 650 km2 and 93.6 ± 26.6 km3. The surveyed polynya contributed 2.0 ± 0.5% of the sea-ice produced throughout the Arctic during the 2007/08 winter. The SAR-HEM volume estimate compares well with the 112 km3 ice production calculated with a high resolution ocean sea-ice model. Measured modal and mean-level ice thicknesses correlate with calculated freezing-degree-day thicknesses with a factor of 0.87-0.89, which was too low to justify the assumption of homogeneous thermodynamic growth conditions in the area, or indicates a strong dynamic thickening of level ice by rafting of even thicker ice.

  9. The Holocene Minimum of the West Antarctic Ice Sheet: Radiocarbon Model Ages for Subglacial Sediments

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Stansell, N.; Scherer, R. P.; Powell, R. D.

    2017-12-01

    It is commonly assumed that the West Antarctic Ice Sheet (WAIS) is at the present time as small as it has been since at least the last interglacial period about 125,000 years ago. Yet, our recent analyses of subglacial sediments recovered from beneath the ice sheet indicate regionally widespread presence of radiocarbon. This unstable isotope with half life of 5,730 years should decay to nil if the analyzed subglacial sediment samples have been isolated beneath the ice sheet from the atmosphere and the ocean for 125,000 years (over 20 half lives). However, the apparent radiocarbon ages for these samples are in the range of about 20,000-30,000 years BP, based on radiocarbon Fraction Modern (FM) of a few to several percent. The apparent sediment ages cannot be taken at face value because: (1) they overlap with the Last Glacial Maximum (LGM) when WAIS is known to have extended over 1,000 km past the sediment sampling locations, and (2) Antarctic glacigenic sediments commonly contain significant admixture of old, radiocarbon-dead organic matter. The latter biases apparent radiocarbon ages because it violates the assumption that the initial radiocarbon fraction in a sample was equal to FM. To mitigate the problem with apparent ages, we assume that initial radiocarbon fraction in subglacial sediments was equal to that determined by us independently in J-9 sediments from beneath the Ross Ice Shelf (RIS) and calculate radiocarbon 'model ages' between 1,000 and 6,000 years BP. This period of time overlaps with a regional climatic optimum and with late phases of post-LGM glacioisostatic adjustment in the region (e.g., Kingslake et al., this session). We propose that the grounding line of WAIS, at least on the RIS side, retreated in mid/late Holocene more than 300 km beyond its current position and then re-advanced to reach its modern geometry. This implies that the main body of WAIS was significantly smaller than today in mid/late Holocene and that the ice sheet is capable of large fluctuations on timescales much shorter than previously expected.

  10. Methodological synergies for glaciological constraints to find Oldest Ice

    NASA Astrophysics Data System (ADS)

    Eisen, Olaf

    2017-04-01

    The Beyond EPICA - Oldest Ice (BE-OI) consortium and its international partners unite a globally unique concentration of scientific expertise and infrastructure for ice-core investigations. It delivers the technical, scientific and financial basis for a comprehensive plan to retrieve an ice core up to 1.5 million years old. The consortium takes care of the pre-site surveys for site selection around Dome C and Dome Fuji, both potentially appropriate regions in East Antarctica. Other science consortia will investigate other regions under the umbrella of the International Partnerships in Ice Core Sciences (IPICS). Of major importance to obtain reliable estimates of the age of the ice in the basal layers of the ice sheet are the physical boundary conditions and ice-flow dynamics: geothermal heat flux, advection and layer integrity to avoid layer overturning and the formation of folds. The project completed the first field season at both regions of interest. This contribution will give an overview how the combined application of various geophysical, geodetical and glaciological methods applied in the field in combination with ice-flow modelling can constrain the glaciological boundary conditions and thus age at depth.

  11. Estimating age ratios and size of pacific walrus herds on coastal haulouts using video imaging.

    PubMed

    Monson, Daniel H; Udevitz, Mark S; Jay, Chadwick V

    2013-01-01

    During Arctic summers, sea ice provides resting habitat for Pacific walruses as it drifts over foraging areas in the eastern Chukchi Sea. Climate-driven reductions in sea ice have recently created ice-free conditions in the Chukchi Sea by late summer causing walruses to rest at coastal haulouts along the Chukotka and Alaska coasts, which provides an opportunity to study walruses at relatively accessible locations. Walrus age can be determined from the ratio of tusk length to snout dimensions. We evaluated use of images obtained from a gyro-stabilized video system mounted on a helicopter flying at high altitudes (to avoid disturbance) to classify the sex and age of walruses hauled out on Alaska beaches in 2010-2011. We were able to classify 95% of randomly selected individuals to either an 8- or 3-category age class, and we found measurement-based age classifications were more repeatable than visual classifications when using images presenting the correct head profile. Herd density at coastal haulouts averaged 0.88 walruses/m(2) (std. err. = 0.02), herd size ranged from 8,300 to 19,400 (CV 0.03-0.06) and we documented ∼30,000 animals along ∼1 km of beach in 2011. Within the herds, dependent walruses (0-2 yr-olds) tended to be located closer to water, and this tendency became more pronounced as the herd spent more time on the beach. Therefore, unbiased estimation of herd age-ratios will require a sampling design that allows for spatial and temporal structuring. In addition, randomly sampling walruses available at the edge of the herd for other purposes (e.g., tagging, biopsying) will not sample walruses with an age structure representative of the herd. Sea ice losses are projected to continue, and population age structure data collected with aerial videography at coastal haulouts may provide demographic information vital to ongoing efforts to understand effects of climate change on this species.

  12. Estimating age ratios and size of Pacific walrus herds on coastal haulouts using video imaging

    USGS Publications Warehouse

    Monson, Daniel H.; Udevitz, Mark S.; Jay, Chadwick V.

    2013-01-01

    During Arctic summers, sea ice provides resting habitat for Pacific walruses as it drifts over foraging areas in the eastern Chukchi Sea. Climate-driven reductions in sea ice have recently created ice-free conditions in the Chukchi Sea by late summer causing walruses to rest at coastal haulouts along the Chukotka and Alaska coasts, which provides an opportunity to study walruses at relatively accessible locations. Walrus age can be determined from the ratio of tusk length to snout dimensions. We evaluated use of images obtained from a gyro-stabilized video system mounted on a helicopter flying at high altitudes (to avoid disturbance) to classify the sex and age of walruses hauled out on Alaska beaches in 2010–2011. We were able to classify 95% of randomly selected individuals to either an 8- or 3-category age class, and we found measurement-based age classifications were more repeatable than visual classifications when using images presenting the correct head profile. Herd density at coastal haulouts averaged 0.88 walruses/m2 (std. err. = 0.02), herd size ranged from 8,300 to 19,400 (CV 0.03–0.06) and we documented ~30,000 animals along ~1 km of beach in 2011. Within the herds, dependent walruses (0–2 yr-olds) tended to be located closer to water, and this tendency became more pronounced as the herd spent more time on the beach. Therefore, unbiased estimation of herd age-ratios will require a sampling design that allows for spatial and temporal structuring. In addition, randomly sampling walruses available at the edge of the herd for other purposes (e.g., tagging, biopsying) will not sample walruses with an age structure representative of the herd. Sea ice losses are projected to continue, and population age structure data collected with aerial videography at coastal haulouts may provide demographic information vital to ongoing efforts to understand effects of climate change on this species.

  13. Estimating Age Ratios and Size of Pacific Walrus Herds on Coastal Haulouts using Video Imaging

    PubMed Central

    Monson, Daniel H.; Udevitz, Mark S.; Jay, Chadwick V.

    2013-01-01

    During Arctic summers, sea ice provides resting habitat for Pacific walruses as it drifts over foraging areas in the eastern Chukchi Sea. Climate-driven reductions in sea ice have recently created ice-free conditions in the Chukchi Sea by late summer causing walruses to rest at coastal haulouts along the Chukotka and Alaska coasts, which provides an opportunity to study walruses at relatively accessible locations. Walrus age can be determined from the ratio of tusk length to snout dimensions. We evaluated use of images obtained from a gyro-stabilized video system mounted on a helicopter flying at high altitudes (to avoid disturbance) to classify the sex and age of walruses hauled out on Alaska beaches in 2010–2011. We were able to classify 95% of randomly selected individuals to either an 8- or 3-category age class, and we found measurement-based age classifications were more repeatable than visual classifications when using images presenting the correct head profile. Herd density at coastal haulouts averaged 0.88 walruses/m2 (std. err. = 0.02), herd size ranged from 8,300 to 19,400 (CV 0.03–0.06) and we documented ∼30,000 animals along ∼1 km of beach in 2011. Within the herds, dependent walruses (0–2 yr-olds) tended to be located closer to water, and this tendency became more pronounced as the herd spent more time on the beach. Therefore, unbiased estimation of herd age-ratios will require a sampling design that allows for spatial and temporal structuring. In addition, randomly sampling walruses available at the edge of the herd for other purposes (e.g., tagging, biopsying) will not sample walruses with an age structure representative of the herd. Sea ice losses are projected to continue, and population age structure data collected with aerial videography at coastal haulouts may provide demographic information vital to ongoing efforts to understand effects of climate change on this species. PMID:23936106

  14. Ramped PyrOx 14C With a Twist: Improving Radiocarbon Chronologies on Highly Detrital Marginal Antarctic Sediments

    NASA Astrophysics Data System (ADS)

    Subt, C.; Yoon, H.; Yoo, K. C.; Lee, J. I.; Domack, E. W.; Rosenheim, B. E.

    2016-02-01

    Highly detrital sediments can be difficult to date when the detritus includes material similar to that from which dates are sought. For radiocarbon dating, samples with a high degree of pre-aged detrital carbon contamination necessitate measurement of a very small portion of the sample to remove that contamination from the targeted component, even when using advanced techniques such as Ramped PyrOx (RP) 14C dating. Here we present three case studies of alternative RP approaches, producing accurate and precise chronologies for highly detrital sediments near the Larsen C ice shelf, near the Drygalski Ice Tongue in Ross Sea, and in Lapeyrère Bay, Anvers Island. For sediments where the proportion of organic carbon that was modern at the time of deposition is too small for a traditional AMS analysis after RP treatment, we have developed an innovative multiple RP analyses approach to minimize the cost in precision from using smaller temperature intervals, while maximizing the benefit in accuracy. Resulting sub ice-shelf chronologies show vastly improved dates down-core, significantly younger than the equivalent 14C chronology from the bulk acid insoluble organic (AIO) carbon with increasing ages down-core. By comparison, bulk AIO 14C dates in the study areas are not only older, but are subject to age reversals and nearly constant ages that make sedimentation rates impossible to resolve. Using our new approaches, we can reduce pre-aged carbon contamination in Lapeyrère Bay, and date sediments within layers of siliceous mud and ooze in the Ross Sea, and near the Larsen C ice shelf. Improved accuracy for 14C dates of highly detrital sediments can sometimes require the incorporation of a larger blank correction to account for multiple analyses, decreasing the precision. Application of this method refines ages of hard-to-date sediments, removing limits on what to include in a regional approach to chronicle ice shelf collapse.

  15. The implementation of a municipal indoor ice skating helmet policy: effects on helmet use, participation and attitudes.

    PubMed

    O'Mahony-Menton, Colleen; Willmore, Jacqueline; Russell, Katherine

    2015-12-01

    In Ottawa, between 2005 and 2009 there was an annual average of 47.2 head injuries due to ice skating in children and youth (1-19 years of age) requiring a visit to the emergency department, with the highest rates among those aged 5-14 years. Between 2002 and 2007, only 6% of children were wearing a helmet during ice skating when the head injury occurred. During indoor public skating sessions, 93% of children (<10 years)-57% aged 10-12 years, 20% aged 13-17 years and 9% adults-wore helmets in the absence of a policy. Support for a helmet policy was high from public health, medical, political and community perspectives. Helmet policies in relation to cycling have demonstrated increases in helmet use and reduction of head injuries without decreasing physical activity. However, no known studies have examined the effect of indoor ice skating helmet policy coupled with education and promotional activities on helmet use, participation and attitudes towards helmet use. An ice skating helmet policy for children (<11 years of age) and those with limited skating experience at indoor rinks during public skating sessions was developed, implemented and evaluated. Supportive activities such as discount coupons, promotional materials, a media launch, social marketing and staff training are described. The helmet policy was associated with increased helmet use for young children and for older children, youth and adults not included in the policy, without decreasing attendance to public skating sessions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival

    USGS Publications Warehouse

    Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Reanier, Richard E.; Gaglioti, Benjamin V.

    2013-01-01

    Radical restructuring of the terrestrial, large mammal fauna living in arctic Alaska occurred between 14,000 and 10,000 years ago at the end of the last ice age. Steppe bison, horse, and woolly mammoth became extinct, moose and humans invaded, while muskox and caribou persisted. The ice age megafauna was more diverse in species and possibly contained 6× more individual animals than live in the region today. Megafaunal biomass during the last ice age may have been 30× greater than present. Horse was the dominant species in terms of number of individuals. Lions, short-faced bears, wolves, and possibly grizzly bears comprised the predator/scavenger guild. The youngest mammoth so far discovered lived ca 13,800 years ago, while horses and bison persisted on the North Slope until at least 12,500 years ago during the Younger Dryas cold interval. The first people arrived on the North Slope ca 13,500 years ago. Bone-isotope measurements and foot-loading characteristics suggest megafaunal niches were segregated along a moisture gradient, with the surviving species (muskox and caribou) utilizing the warmer and moister portions of the vegetation mosaic. As the ice age ended, the moisture gradient shifted and eliminated habitats utilized by the dryland, grazing species (bison, horse, mammoth). The proximate cause for this change was regional paludification, the spread of organic soil horizons and peat. End-Pleistocene extinctions in arctic Alaska represent local, not global extinctions since the megafaunal species lost there persisted to later times elsewhere. Hunting seems unlikely as the cause of these extinctions, but it cannot be ruled out as the final blow to megafaunal populations that were already functionally extinct by the time humans arrived in the region.

  17. Geochronological (OSL) and geomorphological investigations at the presumed Frankfurt ice marginal position in northeast Germany

    NASA Astrophysics Data System (ADS)

    Hardt, Jacob; Lüthgens, Christopher; Hebenstreit, Robert; Böse, Margot

    2016-12-01

    The Weichselian Frankfurt ice marginal position in northeast Germany has been critically discussed in the past owing to weak morphological evidence and a lack of clear sedimentological records. This study aims to contribute to this discussion with new geochronological and geomorphological results. Apart from very few cosmogenic exposure ages, the time frame is to date still based on long distance correlation with radiocarbon chronologies. We selected a study site in a key position regarding the classic location of the Frankfurt ice marginal position and the recently described arcuate ridge structures on the Barnim plateau. For the first time we present Optically Stimulated Luminescence (OSL) ages of quartz from glaciofluvial deposits for this Weichselian phase. Our results indicate an advance of the Scandinavian Ice Sheet (SIS) at around 34.1 ± 4.6 ka. This is in agreement with OSL ages from sandur deposits at the Brandenburg ice marginal position located farther south and could also be correlated with the Klintholm advance in Denmark. The subsequent meltdown phase lasted until around 26.3 ± 3.7 ka. During the meltdown phase a minor oscillation of the SIS caused the formation of the recently described arcuate ridges on the Barnim till plain. Recalculated surface exposure ages of glacigenic boulders with an updated global production rate indicate a landscape stabilization phase at around 22.7 ± 1.6 ka, which is in agreement with our ages. A phase of strong aeolian activity has been dated with OSL to 1 ± 0.1 ka; this may have been triggered by human activities that are documented in this region for the medieval period.

  18. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival

    NASA Astrophysics Data System (ADS)

    Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Reanier, Richard E.; Gaglioti, Benjamin V.

    2013-06-01

    Radical restructuring of the terrestrial, large mammal fauna living in arctic Alaska occurred between 14,000 and 10,000 years ago at the end of the last ice age. Steppe bison, horse, and woolly mammoth became extinct, moose and humans invaded, while muskox and caribou persisted. The ice age megafauna was more diverse in species and possibly contained 6× more individual animals than live in the region today. Megafaunal biomass during the last ice age may have been 30× greater than present. Horse was the dominant species in terms of number of individuals. Lions, short-faced bears, wolves, and possibly grizzly bears comprised the predator/scavenger guild. The youngest mammoth so far discovered lived ca 13,800 years ago, while horses and bison persisted on the North Slope until at least 12,500 years ago during the Younger Dryas cold interval. The first people arrived on the North Slope ca 13,500 years ago. Bone-isotope measurements and foot-loading characteristics suggest megafaunal niches were segregated along a moisture gradient, with the surviving species (muskox and caribou) utilizing the warmer and moister portions of the vegetation mosaic. As the ice age ended, the moisture gradient shifted and eliminated habitats utilized by the dryland, grazing species (bison, horse, mammoth). The proximate cause for this change was regional paludification, the spread of organic soil horizons and peat. End-Pleistocene extinctions in arctic Alaska represent local, not global extinctions since the megafaunal species lost there persisted to later times elsewhere. Hunting seems unlikely as the cause of these extinctions, but it cannot be ruled out as the final blow to megafaunal populations that were already functionally extinct by the time humans arrived in the region.

  19. Does hydrophilicity of carbon particles improve their ice nucleation ability?

    PubMed

    Lupi, Laura; Molinero, Valeria

    2014-09-04

    Carbonaceous particles account for 10% of the particulate matter in the atmosphere. Atmospheric oxidation and aging of soot modulates its ice nucleation ability. It has been suggested that an increase in the ice nucleation ability of aged soot results from an increase in the hydrophilicity of the surfaces upon oxidation. Oxidation, however, also impacts the nanostructure of soot, making it difficult to assess the separate effects of soot nanostructure and hydrophilicity in experiments. Here we use molecular dynamics simulations to investigate the effect of changes in hydrophilicity of model graphitic surfaces on the freezing temperature of ice. Our results indicate that the hydrophilicity of the surface is not in general a good predictor of ice nucleation ability. We find a correlation between the ability of a surface to promote nucleation of ice and the layering of liquid water at the surface. The results of this work suggest that ordering of liquid water in contact with the surface plays an important role in the heterogeneous ice nucleation mechanism.

  20. Holocene Activity of the Quelccaya Ice Cap: A Working Model

    NASA Astrophysics Data System (ADS)

    Lowell, T. V.; Smith, C. A.; Kelly, M. A.; Stroup, J. S.

    2012-12-01

    The patterns and magnitudes of past climate change in the topics are still under discussion. We contribute here by reporting on patterns of glacier length changes of the largest glacier in the tropics, Quelccaya Ice Cap (~13.9°S, 70.9°W, summit at 5645 m). This ice cap has several local domes that may have different patterns of length changes because of differing elevations of the domes (high to the north, lower to the south). Prior work (Mark et al. 2003, Abbott et al., 2004; Thompson et al., 2005; Buffen, et al., 2009), new radiocarbon ages, and stratigraphic and geomorphic relationships are used to determine the general pattern of length changes for the outlets from this ice cap. We exploit geomorphic relationships and present new radiocarbon ages on interpreted stratigraphic sections to determine the pattern of length changes for this ice cap. Ice retreated during late glacial times (Rodbell and Seltzer, 2000; Kelly et al., in press). By 11,400 yr BP it had reached a position ~1.2 km beyond its present (2000 AD) extent. While length during the early Holocene is problematic, present evidence permits, but does not prove, extents of 0.5 to 1.0 km down-valley from the present margin. Between 6400 and 4400 yr BP the ice cap was smaller than present, but it advanced multiple times during the late Holocene. Lengths of up to 1 km beyond present were achieved at 3400 yr BP and ~500 yr BP. Additionally, the ice advanced to 0.8 km beyond its present margin at 1600 yr BP. Because these glaciers were temperate, we take these lengths to represent primarily changes in temperature. This may suggest that lowering insolation values in the northern hemisphere during the Holocene provide a first order control on tropical temperatures. Alternatively, it may be that major reorganization of the topical circulation belts about 5000 yr BP yields two configurations of the QIC and hence Holocene temperatures - one at the present ice margin and and the second about 1 km beyond the present ice margin. In either case, the pulsating glacier lengths indicate a dynamic Holocene climate.

  1. A 62 ka record from the WAIS Divide ice core with annual resolution to 30 ka (so far)

    NASA Astrophysics Data System (ADS)

    Fudge, T. J.; Taylor, K.; McGwire, K.; Brook, E.; Sowers, T.; Steig, E.; White, J.; Vaughn, B.; Bay, R.; McConnell, J.; Waddington, E.; Conway, H.; Clow, G.; Cuffey, K.; Cole-Dai, J.; Ferris, D.; Severinghaus, J.

    2012-04-01

    Drilling of the West Antarctic Ice Sheet (WAIS) Divide ice core has been completed to a depth of 3400 m, about 60 meters above the bed. We present an annually resolved time scale for the most recent 30ka (to 2800 m) based on electrical conductivity measurements, called "timescale WDC06A-5". Below 2800 m the ice is dated by matching isotopes, methane, and/or dust records to other ice cores. Optical borehole logging provides stratigraphic ties to other cores for the bottom-most 75 m that was drilled in December 2011, and indicates the bottom-most ice has an age of 62 ka. The relatively young ice at depth is likely the result of basal melting. The inferred annual layer thickness of the deep ice is >1 cm, suggesting that annual layer counting throughout the entire core may be possible with continuous flow analysis of the ice core chemistry; however, the annual signal in the electrical measurements fades at about 30 ka. We compare the WDC06A-5 timescale through the glacial-interglacial transition with the Greenland GICC05 and GISP2 timescales via rapid variations in methane. We calculate a preliminary delta-age with: 1) accumulation rate inferred from the annual layer thicknesses and thinning functions computed with a 1-D ice flow model, and 2) surface temperature inferred from the low resolution d18O record and a preliminary borehole temperature profile. The WDC06A-5 timescale agrees with the GICC05 and GISP2 timescales to within decades at the 8.2k event and the ACR termination (Younger Dryas/Preboreal transition, 11.7 ka). This is within the delta-age and correlation uncertainties. At the rapid methane drop at ~12.8 ka, the WDC06A-5 timescale is ~150 years older than GICC05 and ~90 older than GISP2; while at ~14.8 ka, the timescales once again agree within the delta-age and correlation uncertainties. The cause of the age discrepancy at 12.8 ka is unclear. We also compare the WDC06A-5 timescale at Dansgaard-Oeschger events 3 and 4 (~27.5 and 29 ka) to the radiometrically-dated speolethem records from Hulu Cave, China (Larry Edwards and Hai Cheng, personal communication). To make such a comparison, we assume that the rapid variations in methane from the WAIS Divide core are synchronous with the rapid variations in d18O in the speleothem record. We find that the WDC06A-5 timescale is multiple hundreds of years older than the Hulu Cave record. As the GICC05 timescale is younger than the Hulu timescale, this puts the WDC06A-5 timescale even older than the GICC05. The uncertainties in the comparison are large both because of the uncertainty in the synchroneity of the ice core methane and speleothem isotope variations and because of the larger delta-age for the ice core in the glacial period. The timescale for the WAIS Divide core will be revised when the CFA results become available.

  2. BrightFocus Foundation

    MedlinePlus

    ... treatment for geographic atrophy, the advanced form of dry age-related macular degeneration. Thursday, September 28, 2017 ... and ICE Syndrome Iridocorneal endothelial syndrome, or ICE syndrome, is a ...

  3. Exploring comfort food preferences across age and gender.

    PubMed

    Wansink, Brian; Cheney, Matthew M; Chan, Nina

    2003-09-01

    Building on findings related to physiological and psychological motivations of food preference, this research develops a framework to examine preferences toward comfort foods. Study 1 used a North American survey of 411 people to determine favored comfort foods, and Study 2 quantified the preferences for these foods across gender and across age groups using a stratified sample of 1005 additional people. Consistent with hypotheses, the findings showed different comfort food preferences across gender and across age. Males preferred warm, hearty, meal-related comfort foods (such as steak, casseroles, and soup), while females instead preferred comfort foods that were more snack related (such as chocolate and ice cream). In addition, younger people preferred more snack-related comfort foods compared to those over 55 years of age. Associations with guilty feelings underscored how these different preferences between males and females may extend to areas of application.

  4. Saskatchewan Indian Heritage: The First Two Hundred Centuries.

    ERIC Educational Resources Information Center

    Pohorecky, Zenon

    Saskatchewan's history of the first Canadians is presented in this 1970 document. Early contributions of these Indians are discussed in terms of food, medicine, democracy, fine arts, language, and culture. Sections of the document are devoted to (1) ancient pursuits during the Ice Age, Agassiz Age, Age of Transition, Age of Diversity, Christian…

  5. Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice

    USGS Publications Warehouse

    Ewing, Stephanie A.; Paces, James B.; O'Donnell, J.A.; Jorgenson, M.T.; Kanevskiy, M.Z.; Aiken, George R.; Shur, Y.; Harden, Jennifer W.; Striegl, Robert G.

    2015-01-01

    The residence time of ice in permafrost is an indicator of past climate history, and of the resilience and vulnerability of high-latitude ecosystems to global change. Development of geochemical indicators of ground-ice residence times in permafrost will advance understanding of the circumstances and evidence of permafrost formation, preservation, and thaw in response to climate warming and other disturbance. We used uranium isotopes to evaluate the residence time of segregated ground ice from ice-rich loess permafrost cores in central Alaska. Activity ratios of 234U vs. 238U (234U/238U) in water from thawed core sections ranged between 1.163 and 1.904 due to contact of ice and associated liquid water with mineral surfaces over time. Measured (234U/238U) values in ground ice showed an overall increase with depth in a series of five neighboring cores up to 21 m deep. This is consistent with increasing residence time of ice with depth as a result of accumulation of loess over time, as well as characteristic ice morphologies, high segregated ice content, and wedge ice, all of which support an interpretation of syngenetic permafrost formation associated with loess deposition. At the same time, stratigraphic evidence indicates some past sediment redistribution and possibly shallow thaw among cores, with local mixing of aged thaw waters. Using measures of surface area and a leaching experiment to determine U distribution, a geometric model of (234U/238U) evolution suggests mean ages of up to ∼200 ky BP in the deepest core, with estimated uncertainties of up to an order of magnitude. Evidence of secondary coatings on loess grains with elevated (234U/238U) values and U concentrations suggests that refinement of the geometric model to account for weathering processes is needed to reduce uncertainty. We suggest that in this area of deep ice-rich loess permafrost, ice bodies have been preserved from the last glacial period (10–100 ky BP), despite subsequent fluctuations in climate, fire disturbance and vegetation. Radiocarbon (14C) analysis of dissolved organic carbon (DOC) in thaw waters supports ages greater than ∼40 ky BP below 10 m. DOC concentrations in thaw waters increased with depth to maxima of >1000 ppm, despite little change in ice content or cryostructures. These relations suggest time-dependent production of old DOC that will be released upon permafrost thaw at a rate that is mediated by sediment transport, among other factors.

  6. 210Po/210Pb Activity Ratios as a Possible `Dating Tool' of Ice Cores and Ice-rafted Sediments from the Western Arctic Ocean - Preliminary Results

    NASA Astrophysics Data System (ADS)

    Krupp, K.; Baskaran, M. M.

    2016-02-01

    We have collected and analyzed a suite of surface snow samples, ice cores, ice-rafted sediments (IRS) and aerosol samples from the Western Arctic for Po-210 and Pb-210 to examine the extent of disequilibrium between this pair to possibly use 210Po/210Pb activity ratio to date different layers of ice cores and time of incorporation of ice-rafted sediments into the sea ice. We have earlier reported that the activity concentrations of 210Pb in IRS vary over an order of magnitude and it is 1-2 orders of magnitude higher than that of the benthic sediments (1-2 dpm/g in benthic sediments compared to 25 to 300 dpm/g in IRS). In this study, we have measured 210Po/210Pb activity ratios in aerosols from the Arctic Ocean to constrain the initial 210Po/210Pb ratio at the time of deposition during precipitation. The 210Po activity concentration in recent snow is compared to surface ice samples. The `age' of IRS incorporation can be calculated as follows: [210Po]measured = [210Po]initial + [210Pb] (1 - exp(-λt)) (1) where λ is the decay constant of 210Po, 138.4 days, and `t' is the in-growth time period. From this equation, `t' can be calculated as follows: t = (-1/λ) [ln (1- ((210Po/210Pb)measured - (210Po/210Pb)initial)] (2) The assumption involved in this approach are: i) there is no preferential uptake of 210Po (highly biogenic - S group); and iii) both 210Po and 210Pb remain as closed system. The calculated age using equation (2) will be discussed and presented.

  7. Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America

    NASA Astrophysics Data System (ADS)

    Rowe, Harold D.; Guilderson, Thomas P.; Dunbar, Robert B.; Southon, John R.; Seltzer, Geoffrey O.; Mucciarone, David A.; Fritz, Sherilyn C.; Baker, Paul A.

    2003-09-01

    We present and compare AMS- 14C geochronologies for sediment cores recovered from Lake Titicaca, South America. Radiocarbon dates from three core sites constrain the timing of late Quaternary paleoenvironmental changes in the Central Andes and highlight the site-specific factors that limit the radiocarbon geochronometer. With the exception of mid-Holocene sediments, all cores are generally devoid of macrophyte fragments, thus bulk organic fractions are used to build core chronologies. Comparisons of radiocarbon results for chemically defined fractions (bulk decalcified, humate, humin) suggest that ages derived from all fractions are generally coherent in the post-13,500 yr BP time interval. In the pre-13,500 yr BP time interval, ages derived from humate extracts are significantly younger (300-7000 years) than ages from paired humin residues. Gross age incoherencies between paired humate and humin sub-fractions in pre-13,500 yr BP sediments from all core sites probably reflect the net downward migration of humates. Ages derived from bulk decalcified fractions at our shallow water (90 m) and deep water (230 m) core sites consistently fall between ages derived from humate and humin sub-fractions in the pre-13,500 yr BP interval, reflecting that the bulk decalcified fraction is predominantly a mixture of humate and humin sub-fractions. Bulk decalcified ages from the pre-13,500 yr BP interval at our intermediate depth core site (150 m) are consistently older than humate (youngest) and humin sub-fractions. This uniform, reproducible pattern can be explained by the mobilization of a relatively older organic sub-fraction during and after the re-acidification step following the alkaline treatment of the bulk sediment. The inferred existence of this 'alkali-mobile, acid-soluble' sub-fraction implies a different depositional/post-depositional history that is potentially associated with a difference in source material. While internally consistent geochronologies can be developed for the Lake Titicaca sequence using different organic fractions, mobile organic sub-fractions and fractions containing mobile sub-fractions should generally be avoided in geochronology studies. Consequently, we believe humin and/or bulk decalcified ages provide the most consistent chronologies for the post-13,500 yr BP interval, and humin ages provide the most representative ages for sedimentation prior to 13,500 yr BP interval. Using the age model derived from the deep water core site and a previously published isotope-based lake-level reconstruction, we present a qualitative record of lake level in the context of several ice-core records from the western hemisphere. We find the latest Pleistocene lake-level response to changing insolation began during or just prior to the Bølling/Allerød period. Using the isotope-based lake-level reconstruction, we also find the 85-m drop in lake level that occurred during the mid-Holocene was synchronous with an increase in the variability of ice-core δ18O from a nearby icecap, but was not reflected in any of the polar ice-core records recovered from the interior of Antarctica and Greenland.

  8. Effect of Salted Ice Bags on Surface and Intramuscular Tissue Cooling and Rewarming Rates.

    PubMed

    Hunter, Eric J; Ostrowski, Jennifer; Donahue, Matthew; Crowley, Caitlyn; Herzog, Valerie

    2016-02-01

    Many researchers have investigated the effectiveness of different cryotherapy agents at decreasing intramuscular tissue temperatures. However, no one has looked at the effectiveness of adding salt to an ice bag. To compare the cooling effectiveness of different ice bags (wetted, salted cubed, and salted crushed) on cutaneous and intramuscular temperatures. Repeated-measures counterbalanced design. University research laboratory. 24 healthy participants (13 men, 11 women; age 22.46 ± 2.33 y, height 173.25 ± 9.78 cm, mass 74.51 ± 17.32 kg, subcutaneous thickness 0.63 ± 0.27 cm) with no lower-leg injuries, vascular diseases, sensitivity to cold, compromised circulation, or chronic use of NSAIDs. Ice bags made of wetted ice (2000 mL ice and 300 mL water), salted cubed ice (intervention A; 2000 mL of cubed ice and 1/2 tablespoon of salt), and salted crushed ice (intervention B; 2000 mL of crushed ice and 1/2 tablespoon of salt) were applied to the posterior gastrocnemius for 30 min. Each participant received all conditions with at least 4 d between treatments. Cutaneous and intramuscular (2 cm plus adipose thickness) temperatures of nondominant gastrocnemius were measured during a 10-min baseline period, a 30-min treatment period, and a 45-min rewarming period. Differences from baseline were observed for all treatments. The wetted-ice and salted-cubed-ice bags produced significantly lower intramuscular temperatures than the salted-crushed-ice bag. Wetted-ice bags produced the greatest temperature change for cutaneous tissues. Wetted- and salted-cubed-ice bags were equally effective at decreasing intramuscular temperature at 2 cm subadipose. Clinical practicality may favor salted-ice bags over wetted-ice bags.

  9. Effect of Probiotic Containing Ice-cream on Salivary Mutans Streptococci (SMS) Levels in Children of 6-12 Years of Age: A Randomized Controlled Double Blind Study with Six-months Follow Up.

    PubMed

    Ashwin, Devasya; Ke, Vijayaprasad; Taranath, Mahanthesh; Ramagoni, Naveen Kumar; Nara, Asha; Sarpangala, Mythri

    2015-02-01

    To evaluate the caries risk based on the salivary levels of streptococcus mutans in children of 6-12 years of age group before and after consuming probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5. A double blind, placebo controlled trial was carried out in 60 children aged between 6 to 12 years with zero decayed, missing, and filled teeth (DMFT). They were randomly divided into two equal groups. Saliva sample were collected before the consumption of ice-cream and Streptococcus mutans count was calculated and recorded as baseline data. For the next seven days both the groups were given ice creams marked as A and B. Saliva samples were collected after ice-cream consumption at the end of study period and also after a washout period of 30 days and again after six months. Samples were inoculated and colonies were counted. On statistical evaluation by students paired t-test, probiotic ice-cream brought significant reduction in the Streptococcus mutans count after seven days of ice-cream ingestion (p<0.001) and also after 30 d of washout period (p<0.001). There was no significant reduction (p=0.076) by normal ice-cream consumption. After six months of the study period in both the groups the salivary levels of Streptococcus mutans was similar to the baseline. Probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5 can cause reduction in caries causative organism. The dosage of the probiotic organisms for the long term or synergetic effect on the oral health are still needed to be explored.

  10. Effect of Probiotic Containing Ice-cream on Salivary Mutans Streptococci (SMS) Levels in Children of 6-12 Years of Age: A Randomized Controlled Double Blind Study with Six-months Follow Up

    PubMed Central

    KE, Vijayaprasad; Taranath, Mahanthesh; Ramagoni, Naveen Kumar; Nara, Asha; Sarpangala, Mythri

    2015-01-01

    Introduction: To evaluate the caries risk based on the salivary levels of streptococcus mutans in children of 6-12 years of age group before and after consuming probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5. Materials and Methods: A double blind, placebo controlled trial was carried out in 60 children aged between 6 to 12 years with zero decayed, missing, and filled teeth (DMFT). They were randomly divided into two equal groups. Saliva sample were collected before the consumption of ice-cream and Streptococcus mutans count was calculated and recorded as baseline data. For the next seven days both the groups were given ice creams marked as A and B. Saliva samples were collected after ice-cream consumption at the end of study period and also after a washout period of 30 days and again after six months. Samples were inoculated and colonies were counted. Results: On statistical evaluation by students paired t-test, probiotic ice-cream brought significant reduction in the Streptococcus mutans count after seven days of ice-cream ingestion (p<0.001) and also after 30 d of washout period (p<0.001). There was no significant reduction (p=0.076) by normal ice-cream consumption. After six months of the study period in both the groups the salivary levels of Streptococcus mutans was similar to the baseline. Conclusion: Probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5 can cause reduction in caries causative organism. The dosage of the probiotic organisms for the long term or synergetic effect on the oral health are still needed to be explored. PMID:25859515

  11. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Goodge, John W.

    2018-02-01

    Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central East Antarctica resembles that in the Proterozoic Arunta and Tennant Creek inliers of Australia but is dissimilar to other areas like the Central Australian Heat Flow Province that are characterized by anomalously high heat flow. Age variation within the sample suite indicates that central East Antarctic lithosphere is heterogeneous, yet the average heat production and heat flow of four age subgroups cluster around the group mean, indicating minor variation in the thermal contribution to the overlying ice sheet from upper crustal heat production. Despite these minor differences, ice-sheet models may favor a geologically realistic input of crustal heat flow represented by the distribution of ages and geothermal characteristics found in these glacial clasts.

  12. Wringing the last drop of optically stimulated luminescence response for accurate dating of glacial sediments

    NASA Astrophysics Data System (ADS)

    Medialdea, Alicia; Bateman, Mark D.; Evans, David J.; Roberts, David H.; Chiverrell, Richard C.; Clark, Chris D.

    2017-04-01

    BRITICE-CHRONO is a NERC-funded consortium project of more than 40 researchers aiming to establish the retreat patterns of the last British and Irish Ice Sheet. For this purpose, optically stimulated luminescence (OSL) dating, among other dating techniques, has been used in order to establish accurate chronology. More than 150 samples from glacial environments have been dated and provide key information for modelling of the ice retreat. Nevertheless, luminescence dating of glacial sediments has proven to be challenging: first, glacial sediments were often affected by incomplete bleaching and secondly, quartz grains within the sediments sampled were often characterized by complex luminescence behaviour; characterized by dim signal and low reproducibility. Specific statistical approaches have been used to over come the former to enable the estimated ages to be based on grain populations most likely to have been well bleached. This latest work presents how issues surrounding complex luminescence behaviour were over-come in order to obtain accurate OSL ages. This study has been performed on two samples of bedded sand originated on an ice walled lake plain, in Lincolnshire, UK. Quartz extracts from each sample were artificially bleached and irradiated to known doses. Dose recovery tests have been carried out under different conditions to study the effect of: preheat temperature, thermal quenching, contribution of slow components, hot bleach after a measuring cycles and IR stimulation. Measurements have been performed on different luminescence readers to study the possible contribution of instrument reproducibility. These have shown that a great variability can be observed not only among the studied samples but also within a specific site and even a specific sample. In order to determine an accurate chronology and realistic uncertainties to the estimated ages, this variability must be taken into account. Tight acceptance criteria to measured doses from natural, not exposed, aliquots have been applied. These derived on reproducible dose distributions from which accurate ages could be estimated.

  13. Ice Age Sea Level Change on a Dynamic Earth

    NASA Astrophysics Data System (ADS)

    Austermann, J.; Mitrovica, J. X.; Latychev, K.; Rovere, A.; Moucha, R.

    2014-12-01

    Changes in global mean sea level (GMSL) are a sensitive indicator of climate variability during the current ice age. Reconstructions are largely based on local sea level records, and the mapping to GMSL is computed from simulations of glacial isostatic adjustment (GIA) on 1-D Earth models. We argue, using two case studies, that resolving important, outstanding issues in ice age paleoclimate requires a more sophisticated consideration of mantle structure and dynamics. First, we consider the coral record from Barbados, which is widely used to constrain global ice volume changes since the Last Glacial Maximum (LGM, ~21 ka). Analyses of the record using 1-D viscoelastic Earth models have estimated a GMSL change since LGM of ~120 m, a value at odds with analyses of other far field records, which range from 130-135 m. We revisit the Barbados case using a GIA model that includes laterally varying Earth structure (Austermann et al., Nature Geo., 2013) and demonstrate that neglecting this structure, in particular the high-viscosity slab in the mantle linked to the subduction of the South American plate, has biased (low) previous estimates of GMSL change since LGM by ~10 m. Our analysis brings the Barbados estimate into accord with studies from other far-field sites. Second, we revisit estimates of GMSL during the mid-Pliocene warm period (MPWP, ~3 Ma), which was characterized by temperatures 2-3°C higher than present. The ice volume deficit during this period is a source of contention, with estimates ranging from 0-40 m GMSL equivalent. We argue that refining estimates of ice volume during MPWP requires a correction for mantle flow induced dynamic topography (DT; Rowley et al., Science, 2013), a signal neglected in previous studies of ice age sea level change. We present estimates of GIA- and DT-corrected elevations of MPWP shorelines from the U.S. east coast, Australia and South Africa in an attempt to reconcile these records with a single GMSL value.

  14. Surface Exposure Dating of the Huancané III Moraines in Peru: A Record of Quelccaya Ice Cap's Maximum Extent during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Baranes, H. E.; Kelly, M. A.; Stroup, J. S.; Howley, J. A.; Lowell, T. V.

    2012-12-01

    The climatic conditions that influenced the tropics during the height of the last glacial period are not well defined and controversial. There are disparities in estimates of temperature anomalies (e.g., MARGO, 2009; Rind and Peteet, 1985; CLIMAP, 1976), and critical terrestrial paleotemperature proxy records in tropical regions are poorly dated (e.g., Porter, 2001). Defining these conditions is important for understanding the mechanisms that cause major shifts in climate, as the tropics are a primary driver of atmospheric and oceanic circulation. This study aims to constrain the timing of maximum glacier extents in the Cordillera Oriental in southern Peru during the last glacial period by applying surface exposure (beryllium-10) dating to the Huancané III (Hu-III) moraines. The Hu-III moraines mark the maximum extent of Quelccaya Ice Cap (QIC) (13.93°S, 70.83°W), the largest tropical ice cap, during the last ice age. The eight beryllium-10 ages presented here yield 17,056 ± 520 yrs ago as a minimum age for the onset of recession from the ice cap advance marked by the Hu-III moraines. Comparing this age to other paleoclimate records indicates that the ice cap advance marked by the Hu-III moraines is more likely associated with a North Atlantic climate event known as Heinrich I (H1; 16,800 yrs ago, Bond et al., 1992, 1993) than with global cooling at the Last Glacial Maximum (LGM; ~21,000 yrs ago, Denton and Hughes, 1981). This result suggests that climate processes in the North Atlantic region are linked to climatic conditions in the tropical Andes. A mesoscale climate model and an ice-flow model are currently being developed for QIC. The moraine data presented in this study will be used with these two models to test response of QIC to North Atlantic and global climate events.

  15. On Sea Ice Characterisation By Multi-Frequency SAR

    NASA Astrophysics Data System (ADS)

    Grahn, Jakob; Brekke, Camilla; Eltoft, Torbjorn; Holt, Benjamin

    2013-12-01

    By means of polarimetric target decomposition, quad-pol SAR data of sea ice is analysed at two frequency bands. In particular, the non negative eigenvalue decomposition (NNED) is applied on L- and C-band NASA/JPL AIR- SAR data acquired over the Beaufort sea in 2004. The de- composition separates the scattered radar signal into three types, dominated by double, volume and single bounce scattering respectively. Using ground truth derived from RADARSAT-1 and meteorological data, we investigate how the different frequency bands compare in terms of these scattering types. The ground truth contains multi year ice and three types of first year ice of different age and thickness. We find that C-band yields a higher scattered intensity in most ice and scattering types, as well as a more homogeneous intensity. L-band on the other hand yields more pronounced deformation features, such as ridges. The mean intensity contrast between the two thinnest ice types is highest in the double scattering component of C- band, although the contrast of the total signal is greater in L-band. This may indicate that the choice of polarimetric parameters is important for discriminating thin ice types.

  16. Influence of the Little Ice Age on the biological structure of lakes in South West Greenland

    NASA Astrophysics Data System (ADS)

    McGowan, S.; Hogan, E. J.; Jones, V.; Anderson, N. J.; Simpson, G.

    2013-12-01

    Arctic lakes are considered to be particularly sensitive to environmental change, with biological remains in lake sediment records being interpreted as reflecting climate forcing. However the influence that differences in catchment properties and lake morphometries have on the sedimentary record is rarely considered. We investigated sediment cores from three lakes located close to the inland ice sheet margin in the Kangerlussuaq area of South West Greenland but within a few kilometres of one another. This regional replication allowed for direct comparisons of biological change in lakes exposed to identical environmental pressures (cooling, increased wind speeds) over the past c.2000 years. Sedimentary pigments were used as a proxy for whole-lake production and to investigate differences in phytoplankton community structure whilst fossil diatom assemblages were studied to determine differences in ecological responses during this time. We noted several major effects of the Little Ice Age cooling (LIA, c. 1400-1850AD). The organic content of sediments in all three lakes declined, and this effect was most pronounced in lakes closest to the inland ice sheet margin, which suggests that aeolian inputs derived from the glacial outwash plains (sandurs), and wind-scouring of the thin catchment soils by strong katabatic winds associated with the regional cooling might have both contributed to this sedimentary change. During the LIA total algal production (as indicated by chlorophyll and carotenoid pigments) was lower in all three lakes, most likely because of extended ice-cover and shorter growing seasons, and the ratio of planktonic: benthic diatom taxa increased, possibly because of lower light availability or fertilization from loess material. Despite this coherence in lake response to the LIA, diatom community composition changes in individual lakes differed, reflecting individual lake morphometry and catchment characteristics. These findings highlight the importance of regionally-replicated palaeo-studies when interpreting ecological impacts of long-term climate variability, and in assessing likely future response to climate change.

  17. Ice cores and SeaRISE: What we do (and don't) know

    NASA Technical Reports Server (NTRS)

    Alley, Richard B.

    1991-01-01

    Ice core analyses are needed in SeaRISE to learn what the West Antarctic ice sheet and other marine ice sheets were like in the past, what climate changes led to their present states, and how they behave. The major results of interest to SeaRISE from previous ice core analyses in West Antarctic are that the end of the last ice age caused temperature and accumulation rate increases in inland regions, leading to ice sheet thickening followed by thinning to the present.

  18. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, Ana; Laute, Katja; Beylich, Achim A.; Gaspar, Leticia

    2013-04-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the upper valley part is sub-arctic oceanic with an annual areal precipitation of ca 1500 mm. The lithology in Erdalen and Bødalen consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. Parts of the valleys were affected by the Little Ice Age glacier advance with the maximum glacier extent around 1750 BP. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties of the most representative soils found in the region. The objective was to assess if soil profile characteristics and pattern of fallout radionuclides (FRN's) and environmental radionuclides (ERN's) are affected by different stages of ice retreat. Soil profiles were sampled at 5 cm depth interval increments until 20 cm depth. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. At P2 profile where ice retreated earlier (ca., 1767) depth profile activities of FRŃs are more homogenous than in P1 that became ice-free since ca. 1930. The sampled soils on the colluviums outside the LIA glacier limit became ice free during the Preboral. The Regosols present better developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Lower activities of FRŃs in soils on the moraines are related to the predominant sand material that has less capacity to fix the radionuclides. Lower 40K activities in Erdalen as compared to Bødalen are likely related to soil mineralogical composition. All profiles show disequilibrium in the uranium and thorium series. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbexactivities differs in the soils related to the LIA glacier limits in the drainage basins.

  19. Injury severity in ice skating: an epidemiologic analysis using a standardised injury classification system.

    PubMed

    Ostermann, Roman C; Hofbauer, Marcus; Tiefenböck, Thomas M; Pumberger, Matthias; Tiefenböck, Michael; Platzer, Patrick; Aldrian, Silke

    2015-01-01

    Although injuries sustained during ice skating have been reported to be more serious than other forms of skating, the potential injury risks are often underestimated by skating participants. The purpose of this study was to give a descriptive overview of injury patterns occurring during ice skating. Special emphasis was put on injury severity by using a standardised injury classification system. Over a six month period, all patients treated with ice-skating-related injuries at Europe's largest hospital were included. Patient demographics were collected and all injuries categorised according to the Abbreviated Injury Scale (AIS) 2005. A descriptive statistic and logistic regression analysis was performed. Three hundred and forty-one patients (134 M, 207 F) were included in this study. Statistical analysis revealed that age had a significant influence on injury severity. People > 50 years had a higher risk of sustaining a more severe injury according to the AIS compared with younger skaters. Furthermore, the risk of head injury was significantly lower for people aged between 18 and 50 years than for people < 18 years (p = 0.0007) and significantly higher for people > 50 years than for people aged between 18 and 50 years (p = 0.04). The severity of ice-skating injuries is associated with the patient's age, showing more severe injuries in older patients. Awareness should be raised among the public and physicians about the risks associated with this activity in order to promote further educational interventions and the use of protective gear.

  20. Increase in penguin populations during the Little Ice Age in the Ross Sea, Antarctica.

    PubMed

    Hu, Qi-Hou; Sun, Li-Guang; Xie, Zhou-Qing; Emslie, Steven D; Liu, Xiao-Dong

    2013-01-01

    Penguins are an important seabird species in Antarctica and are sensitive to climate and environmental changes. Previous studies indicated that penguin populations increased when the climate became warmer and decreased when it became colder in the maritime Antarctic. Here we determined organic markers in a sediment profile collected at Cape Bird, Ross Island, high Antarctic, and reconstructed the history of Adélie penguin colonies at this location over the past 700 years. The region transformed from a seal to a penguin habitat when the Little Ice Age (LIA; 1500-1800 AD) began. Penguins then became the dominant species. Penguin populations were the highest during ca. 1490 to 1670 AD, a cold period, which is contrary to previous results in other regions much farther north. Different responses to climate change may occur at low latitudes and high latitudes in the Antarctic, even if for same species.

  1. Using Ice Predictions to Guide Submarines

    DTIC Science & Technology

    2016-01-01

    the Arctic Cap Nowcast/ Forecast System (ACNFS) in September 2013. The ACNFS consists of a coupled ice -ocean model that assimilates available real...of the ice cover. The age of the sea ice serves as an indicator of its physical properties including surface roughness, melt pond coverage, and...the Arctic Cap Nowcast/Forecast System (ACNFS). Ice thickness is in meters for 11 September 2015. Thickness ranges from zero to five meters as shown

  2. Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration

    NASA Astrophysics Data System (ADS)

    Edinburgh, Tom; Day, Jonathan J.

    2016-11-01

    In stark contrast to the sharp decline in Arctic sea ice, there has been a steady increase in ice extent around Antarctica during the last three decades, especially in the Weddell and Ross seas. In general, climate models do not to capture this trend and a lack of information about sea ice coverage in the pre-satellite period limits our ability to quantify the sensitivity of sea ice to climate change and robustly validate climate models. However, evidence of the presence and nature of sea ice was often recorded during early Antarctic exploration, though these sources have not previously been explored or exploited until now. We have analysed observations of the summer sea ice edge from the ship logbooks of explorers such as Robert Falcon Scott, Ernest Shackleton and their contemporaries during the Heroic Age of Antarctic Exploration (1897-1917), and in this study we compare these to satellite observations from the period 1989-2014, offering insight into the ice conditions of this period, from direct observations, for the first time. This comparison shows that the summer sea ice edge was between 1.0 and 1.7° further north in the Weddell Sea during this period but that ice conditions were surprisingly comparable to the present day in other sectors.

  3. Ar-Ar Ages of Detrital Hornblendes from Glacial Sediments of the North Sea Trough Mouth Fan

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Haflidason, H.; Sejrup, H. P.

    2007-12-01

    Determining the relative timing of major iceberg calving from different ice sheet margins around the North Atlantic remains an important goal that will lead to a better understanding of causes and consequences of rapid climate variability during the last glacial period. Characterization of the composition of potential contributors is a necessary step towards this goal. The North Sea trough mouth fan is one of the largest glaciogenic debris flow complexes in the North Atlantic/Arctic region, with an approximate area of 142,000 square km (King et al., 1998, Marine Geology v. 152, pp. 217-246; Nygard et al., 2007, Geology, pp. 395-398). The large ice stream trough crosses the shelf along the southern margin of Norway. The crystalline rocks along the southern margin of Norway are Grenville (approximately 1 Ga old orogen). We undertook a study of the Ar-Ar age populations of individual detrital hornblende grains from a sediment sample of the glacigenic debris lobe created during the last phases of the last glacial maximum from the North Sea trough mouth fan. The goal is to test the hypothesis that the ice stream that fed this fan is the source of abundant Grenville age grains found on Bjorn drift site ODP984, at times when North American Grenville sources are not found in the North Atlantic ice rafted detritus belt (Hemming et al., 2005, AGU Spring meeting, PP23A-04). Hornblende grains from North Sea TMF core NH071-B01\\SC1 (1) (63.24N, 3.36E, 1049m) have a dominant age population of Grenville (921 Ma, 19 of 48 grains) with subordinate populations of 1108 Ma (n=3) and 1779 Ma (n=4). Accordingly they lend support to the hypothesis that this ice stream could be the source of IRD on the Bjorn drift. These results could additionally shed light on the pathways of fine grain sediment transport to the Bjorn drift which would contribute a better understanding of sediment processes in the region. For example, the provenance implied for the IRD by the Ar-Ar hornblende ages is consistent with that implied by the Nd isotope data from fine grained sediments reported for glacial intervals by DePaolo et al. (2006, EPSL, v. 298, pp. 394- 410). It is well known that much of the debris carried by icebergs is fine grained, and thus this provenance match suggests that it is likely that much of the fine grained material may also be carried to this site by icebergs.

  4. Genomic Evidence of Widespread Admixture from Polar Bears into Brown Bears during the Last Ice Age.

    PubMed

    Cahill, James A; Heintzman, Peter D; Harris, Kelley; Teasdale, Matthew D; Kapp, Joshua; Soares, Andre E R; Stirling, Ian; Bradley, Daniel; Edwards, Ceiridwen J; Graim, Kiley; Kisleika, Aliaksandr A; Malev, Alexander V; Monaghan, Nigel; Green, Richard E; Shapiro, Beth

    2018-05-01

    Recent genomic analyses have provided substantial evidence for past periods of gene flow from polar bears (Ursus maritimus) into Alaskan brown bears (Ursus arctos), with some analyses suggesting a link between climate change and genomic introgression. However, because it has mainly been possible to sample bears from the present day, the timing, frequency, and evolutionary significance of this admixture remains unknown. Here, we analyze genomic DNA from three additional and geographically distinct brown bear populations, including two that lived temporally close to the peak of the last ice age. We find evidence of admixture in all three populations, suggesting that admixture between these species has been common in their recent evolutionary history. In addition, analyses of ten fossil bears from the now-extinct Irish population indicate that admixture peaked during the last ice age, whereas brown bear and polar bear ranges overlapped. Following this peak, the proportion of polar bear ancestry in Irish brown bears declined rapidly until their extinction. Our results support a model in which ice age climate change created geographically widespread conditions conducive to admixture between polar bears and brown bears, as is again occurring today. We postulate that this model will be informative for many admixing species pairs impacted by climate change. Our results highlight the power of paleogenomics to reveal patterns of evolutionary change that are otherwise masked in contemporary data.

  5. Tropical Andean and African glacier extent through the Holocene assessed with proglacial in situ 14C and 10Be measurements

    NASA Astrophysics Data System (ADS)

    Vickers, A. C.; Shakun, J. D.; Goehring, B. M.; Kelly, M. A.; Jackson, M. S.; Jomelli, V.

    2017-12-01

    We present measurements of the in situ cosmogenic radionuclides 14C and 10Be from recently exposed proglacial bedrock samples at the margin of the Quelccaya Ice Cap in Peru (n=5) and the Rwenzori mountains in Africa (n=3) to calculate cumulative exposure, burial, and erosion histories at these sites over the Holocene. The Holocene history (11 ka - present) of tropical glaciers gives important context to their observed retreat over the last century, insight into their sensitivity to climate forcing, and constraints on past climate change. Paired in situ 14C/10Be methods are used to exploit the multiple controls on nuclide concentrations and their differing half-lives (5730 years vs 1.38 Myr). In particular, the concentrations of both 14C and 10Be increase with exposure and decrease with glacial erosion; however,14C decreases not only due to glacial erosion, but also in appreciable amounts due to radio-decay during periods of burial as short as 800 years. Our results show similarities at both sites, with moderately high 10Be concentrations but 14C/10Be ratios approximately one-third of the production value, suggesting that both sites experienced several thousand years of exposure followed by burial during the mid-to-late Holocene. Our results are consistent with recently exposed subfossil plant remains at the Quelccaya margin that imply ice extended beyond its current position since 5.2 ka We will also present 10Be ages of several boulders from probable Little Ice Age moraines of the Charquini Sur Glacier in Bolivia (n=2) and Ritacuba Negro Glacier in Colombia (n=4) to better understand the timing of Little Ice Age advances in the tropical Andes.

  6. On the age of the penultimate full glaciation of New England

    USGS Publications Warehouse

    Oldale, R.N.; Colman, S.M.

    1992-01-01

    Tills that discontinuously underlie the late Wisconsinan till throughout New England represent the penultimate full glaciation of the region. In southern New England, the late Wisconsinan till and the tills that locally underlie it are informally referred to as upper and lower tills, respectively. For the most part, the ages of the lower tills are not firmly established, and regional correlations between occurrences of lower till, including those on Long Island, New York, are tenuous. Where a lower till underlies deposits having limiting middle Wisconsinan radiocarbon ages (e.g., the Montauk till member of the Manhassett Formation on Long Island at Port Washington, New York, and the lower till at New Sharon, Maine), many workers have assigned the till an early Wisconsinan age. However, lower tills throughout much of New England may be Illinoian or older in age and may correlate with a lower till exposed at Sankaty Head, Nantucket Island, Massachusetts, that is pre-Sangamonian in age. The till at Sankaty Head lies below marine beds containing marine faunas indicative of sea-water temperatures both warmer and slightly cooler than those off Nantucket today and that have uranium-thorium and amino-acid racemization (AAR) age estimates suggesting a Sangamonian age (marine oxygen-isotope stage 5).The lower till at Sankaty Head and the Montauk till member on Long Island were deposited during a full glaciation of New England that was at least as extensive as the late Wisconsinan advance of the Laurentide ice. Global ice-volume data from the marine oxygen-isotope record and the late Pleistocene eustatic sea-level record inferred from raised coral terraces support an advance of this magnitude during marine oxygenisotope stage 6, but not during stage 4.An early Wisconsinan age of the southern New England lower tills and, hence, of the penultimate glaciation there is problematic in terms of the pre-Sangamonian age of the lower till on Nantucket, and in terms of the late Pleistocene global ice-volume and sea-level records. An Illinoian age for the tills and for the penultimate full glaciation of New England is compatible with all the available evidence except some equivocal radiocarbon ages and AAR age estimates.

  7. Seismic stratigraphic interpretations suggest that sectors of the central and western Ross Sea were near or above sea level during earliest Oligocene time

    NASA Astrophysics Data System (ADS)

    Sorlien, C. C.; Sauli, C.; De Santis, L.; Luyendyk, B. P.; Wardell, N.; Davis, S. M.; Wilson, D. S.; Brazell, S.; Bartek, L., III; Bart, P. J.

    2016-12-01

    Most of West Antarctica has been interpreted as a high-elevation plateau that has subsided between about 100 Ma and present. Ross Sea was characterized by subaerial ridges and islands up to mid-Cenozoic time. It was in such an environment that Oligocene ice sheets and glaciers advanced and retreated within Ross Embayment. The extent to which Oligocene ice affected the embayment north of the current ice shelf has not been established, with either ice caps on islands, or broad glaciers affecting basins having been proposed. We used all available data from the Seismic Data Library System to interpret stratigraphic horizons through most of Ross Sea. A new 3D velocity model was constructed for the western 2/3 of Ross Sea. Stratigraphic age control was provided by deep scientific coring, including Deep Sea Drilling Program sites, the Cape Roberts Drilling Program, and published correlations to ANDRILL sites. The correlation with recent drill records and much additional seismic reflection data allowed a new interpretation of Ross Sea, which differs from the previous comprehensive seismic stratigraphic interpretation (ANTOSTRAT 1995). Sedimentary rocks of given ages are twice as deep within Terror Rift in westernmost Ross Sea in our interpretation. In contrast, acoustic basement is 1 km shallower in part of Central Trough. The 200 km-wide smooth acoustic basement on Central High eroded sub-aerially until it subsided differentially through sea level toward the centers of Cretaceous and Cenozoic rifts. If the subsiding basins were kept filled with sediment eroded by Oligocene ice sheets, then the age the strata aggrading above the planar rock platform date subsidence through sea level at each location. Using such an assumption, much of central and western Ross Sea was near or above sea level during earliest Oligocene time. These assumptions will be tested by backstripping and thermal subsidence models.

  8. Does Relative Age Affect Career Length in North American Professional Sports?

    PubMed

    Steingröver, C; Wattie, N; Baker, J; Schorer, J

    Relative age effects (RAEs) typically favour older members within a cohort; however, research suggests that younger players may experience some long-term advantages, such as longer career length. The purposes of this study were to replicate previous findings on RAEs among National Hockey League (NHL) ice hockey players, National Basketball Association (NBA) basketball players and National Football League (NFL) football players and to investigate the influence of relative age on career length in all three sports. Using official archives, birthdates and number of games played were collected for players drafted into the NBA ( N  = 407), NFL ( N  = 2380) and NHL ( N  = 1028) from 1980 to 1989. We investigated the possibility that younger players might be able to maximize their career length by operationalizing career length as players' number of games played throughout their careers. There was a clear RAE for the NHL, but effects were not significant for the NBA or NFL. Moreover, there was a significant difference in matches played between birth quartiles in the NHL favouring relatively younger players. There were no significant quartiles by career length effects in the NBA or NFL. The significant relationship between relative age and career length provides further support for relative age as an important constraint on expertise development in ice hockey but not basketball or football. Currently, the reason why relatively younger players have longer careers is not known. However, it may be worth exploring the influence of injury risk or the development of better playing skills.

  9. Late glacial and Holocene history of the Greenland Ice Sheet margin, Nunatarssuaq, Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Farnsworth, L. B.; Kelly, M. A.; Axford, Y.; Bromley, G. R.; Osterberg, E. C.; Howley, J. A.; Zimmerman, S. R. H.; Jackson, M. S.; Lasher, G. E.; McFarlin, J. M.

    2015-12-01

    Defining the late glacial and Holocene fluctuations of the Greenland Ice Sheet (GrIS) margin, particularly during periods that were as warm or warmer than present, provides a longer-term perspective on present ice margin fluctuations and informs how the GrIS may respond to future climate conditions. We focus on mapping and dating past GrIS extents in the Nunatarssuaq region of northwestern Greenland. During the summer of 2014, we conducted geomorphic mapping and collected rock samples for 10Be surface exposure dating as well as subfossil plant samples for 14C dating. We also obtained sediment cores from an ice-proximal lake. Preliminary 10Be ages of boulders deposited during deglaciation of the GrIS subsequent to the Last Glacial Maximum range from ~30-15 ka. The apparently older ages of some samples indicate the presence of 10Be inherited from prior periods of exposure. These ages suggest deglaciation occurred by ~15 ka however further data are needed to test this hypothesis. Subfossil plants exposed at the GrIS margin on shear planes date to ~ 4.6-4.8 cal. ka BP and indicate less extensive ice during middle Holocene time. Additional radiocarbon ages from in situ subfossil plants on a nunatak date to ~3.1 cal. ka BP. Geomorphic mapping of glacial landforms near Nordsø, a large proglacial lake, including grounding lines, moraines, paleo-shorelines, and deltas, indicate the existence of a higher lake level that resulted from a more extensive GrIS margin likely during Holocene time. A fresh drift limit, characterized by unweathered, lichen-free clasts approximately 30-50 m distal to the modern GrIS margin, is estimated to be late Holocene in age. 10Be dating of samples from these geomorphic features is in progress. Radiocarbon ages of subfossil plants exposed by recent retreat of the GrIS margin suggest that the GrIS was at or behind its present location at AD ~1650-1800 and ~1816-1889. Results thus far indicate that the GrIS margin in northwestern Greenland responded sensitively to Holocene climate changes. Ongoing research will improve the chronological constraints on these fluctuations.

  10. Implications of 36Cl exposure ages from Skye, northwest Scotland for the timing of ice stream deglaciation and deglacial ice dynamics

    NASA Astrophysics Data System (ADS)

    Small, David; Rinterknecht, Vincent; Austin, William E. N.; Bates, Richard; Benn, Douglas I.; Scourse, James D.; Bourlès, Didier L.; Hibbert, Fiona D.

    2016-10-01

    Geochronological constraints on the deglaciation of former marine based ice streams provide information on the rates and modes by which marine based ice sheets have responded to external forcing factors such as climate change. This paper presents new 36Cl cosmic ray exposure dating from boulders located on two moraines (Glen Brittle and Loch Scavaig) in southern Skye, northwest Scotland. Ages from the Glen Brittle moraines constrain deglaciation of a major marine terminating ice stream, the Barra-Donegal Ice Stream that drained the former British-Irish Ice Sheet, depending on choice of production method and scaling model this occurred 19.9 ± 1.5-17.6 ± 1.3 ka ago. We compare this timing of deglaciation to existing geochronological data and changes in a variety of potential forcing factors constrained through proxy records and numerical models to determine what deglaciation age is most consistent with existing evidence. Another small section of moraine, the Scavaig moraine, is traced offshore through multibeam swath-bathymetry and interpreted as delimiting a later stillstand/readvance stage following ice stream deglaciation. Additional cosmic ray exposure dating from the onshore portion of this moraine indicate that it was deposited 16.3 ± 1.3-15.2 ± 0.9 ka ago. When calculated using the most up-to-date scaling scheme this time of deposition is, within uncertainty, the same as the timing of a widely identified readvance, the Wester Ross Readvance, observed elsewhere in northwest Scotland. This extends the area over which this readvance has potentially occurred, reinforcing the view that it was climatically forced.

  11. Lateglacial retreat chronology of the Scandinavian Ice Sheet in Finnmark, northern Norway, reconstructed from surface exposure dating of major end moraines

    NASA Astrophysics Data System (ADS)

    Romundset, Anders; Akçar, Naki; Fredin, Ola; Tikhomirov, Dmitry; Reber, Regina; Vockenhuber, Christof; Christl, Marcus; Schlüchter, Christian

    2017-12-01

    We report results from a comprehensive surface exposure dating campaign in eastern Finnmark, located in the northernmost part of Norway and close to the Norwegian-Russian border. This is a palaeo-glaciologically important region as it sits near the proposed border-zone between the former Scandinavian and Barents Sea Ice Sheets. However, until now the deglaciation history has few direct dates onshore and the chronology of ice front retreat is instead found by correlating ice-marginal deposits with isostatically raised shorelines and marine sediment cores. We measured the content of 10Be (N = 22) and 36Cl (N = 17) from boulders located at the crest of major moraine ridges at four localities; Kjæs, Kongsfjorden, Vardø and Kirkenes. These are key localities of existing regional reconstructions of ice recession in this area. Despite some spread in age results from each locality due to methodological challenges associated with surface exposure dating, the large numbers of samples from each site except Kjæs still allow for obtaining clusters of similar ages which are used for arriving at a likely chronology of ice front retreat. Our results show that the Kongsfjorden and Vardø moraines were deposited 14.3 ± 1.7 ka and 13.6 ± 1.4 ka, respectively, and thus point to a Older Dryas age of the proposed 'Outer Porsanger' deglaciation sub-stage. Moraine ridges belonging to the 'Main' sub-stage near Kirkenes were dated to 11.9 ± 1.2 ka, corresponding well with the ice retreat chronology farther west in northern Norway and suggesting that the maximum Younger Dryas ice sheet extent was attained in the late Younger Dryas along a more than 500 km long stretch in northernmost Scandinavia.

  12. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM

    NASA Astrophysics Data System (ADS)

    Anderson, John B.; Conway, Howard; Bart, Philip J.; Witus, Alexandra E.; Greenwood, Sarah L.; McKay, Robert M.; Hall, Brenda L.; Ackert, Robert P.; Licht, Kathy; Jakobsson, Martin; Stone, John O.

    2014-09-01

    Onshore and offshore studies show that an expanded, grounded ice sheet occupied the Ross Sea Embayment during the Last Glacial Maximum (LGM). Results from studies of till provenance and the orientation of geomorphic features on the continental shelf show that more than half of the grounded ice sheet consisted of East Antarctic ice flowing through Transantarctic Mountain (TAM) outlet glaciers; the remainder came from West Antarctica. Terrestrial data indicate little or no thickening in the upper catchment regions in both West and East Antarctica during the LGM. In contrast, evidence from the mouths of the southern and central TAM outlet glaciers indicate surface elevations between 1000 m and 1100 m (above present-day sea level). Farther north along the western margin of the Ross Ice Sheet, surface elevations reached 720 m on Ross Island, and 400 m at Terra Nova Bay. Evidence from Marie Byrd Land at the eastern margin of the ice sheet indicates that the elevation near the present-day grounding line was more than 800 m asl, while at Siple Dome in the central Ross Embayment, the surface elevation was about 950 m asl. Farther north, evidence that the ice sheet was grounded on the middle and the outer continental shelf during the LGM implies that surface elevations had to be at least 100 m above the LGM sea level. The apparent low surface profile and implied low basal shear stress in the central and eastern embayment suggests that although the ice streams may have slowed during the LGM, they remained active. Ice-sheet retreat from the western Ross Embayment during the Holocene is constrained by marine and terrestrial data. Ages from marine sediments suggest that the grounding line had retreated from its LGM outer shelf location only a few tens of kilometer to a location south of Coulman Island by ˜13 ka BP. The ice sheet margin was located in the vicinity of the Drygalski Ice Tongue by ˜11 ka BP, just north of Ross Island by ˜7.8 ka BP, and near Hatherton Glacier by ˜6.8 ka BP. Farther south, 10Be exposure ages from glacial erratics on nunataks near the mouths of Reedy, Scott and Beardmore Glaciers indicate thinning during the mid to late Holocene, but the grounding line did not reach its present position until 2 to 3 ka BP. Marine dates, which are almost exclusively Acid Insoluble Organic (AIO) dates, are consistently older than those derived from terrestrial data. However, even these ages indicate that the ice sheet experienced significant retreat after ˜13 ka BP. Geomorphic features indicate that during the final stages of ice sheet retreat ice flowing through the TAM remained grounded on the shallow western margin of Ross Sea. The timing of retreat from the central Ross Sea remains unresolved; the simplest reconstruction is to assume that the grounding line here started to retreat from the continental shelf more or less in step with the retreat from the western and eastern sectors. An alternative hypothesis, which relies on the validity of radiocarbon ages from marine sediments, is that grounded ice had retreated from the outer continental shelf prior to the LGM. More reliable ages from marine sediments in the central Ross Embayment are needed to test and validate this hypothesis.

  13. Quantifying the sources of atmospheric ice nuclei from carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S.; Galang, A.; Farmer, D.; Friedman, B.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    Ice nucleation on particles is a fundamental atmospheric process, which governs precipitation, cloud lifetimes, and climate. Despite being a basic atmospheric process, our current understanding of ice nucleation in the atmosphere is low. One reason for this low understanding is that ice nuclei concentrations are low (only ~1 in 105 particles in the free troposphere nucleate ice), making it challenging to identify both the composition and sources of ambient ice nuclei. Carbonaceous combustion aerosol produced from biomass and fossil fuel combustion are one potential source of these ice nuclei, as they contribute to over one-third of all aerosol in the North American free troposphere. Unfortunately, previous results from field measurements in-cloud, aircraft measurements, and laboratory studies are in conflict, with estimates of the impact of combustion aerosol ranging from no effect to rivaling the well-known atmospheric ice nuclei mineral dust. It is, however, becoming clear that aerosols from combustion processes are more complex than model particles, and their ice activity depends greatly on both fuel type and combustion conditions. Given these dependencies, we propose that sampling from real-world biomass burning and fossil fuel sources would provide the most useful new information on the contribution of carbonaceous combustion aerosols to atmospheric ice nuclei particles. To determine the specific contribution of refractory black carbon (rBC) to ice nuclei concentrations, we have coupled the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. In this work, we will present recent results looking at contribution of diesel engine exhaust to ice nuclei concentrations. Sampling was done for both diesel and biodiesel on fresh emissions and emissions aged up to 18 days equivalent photochemical aging with a Potential Aerosol Mass chamber. Our results show that, for mixed-phase clouds, both fresh and aged (bio)diesel are not likely a significant source of ice nuclei.

  14. Global ice-sheet system interlocked by sea level

    NASA Astrophysics Data System (ADS)

    Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn

    1986-07-01

    Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This permitted renewed formation of North Atlantic Deep Water, which could well have controlled atmospheric carbon dioxide ( W. S. Broecker, D. M. Peteet, and D. Rind, 1985, Nature ( London) 315, 21-26). Combined melting and consequent sea-level rise from the three warming factors initiated irreversible collapse of the interlocked global ice-sheet system, which was at its largest but most vulnerable configuration.

  15. Cryptic sub-ice geology revealed by a U-Pb zircon study of glacial till in Dronning Maud Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Jacobs, Joachim; Opås, Birgitte; Elburg, Marlina; Läufer, Andreas; Estrada, Solveig; Ksienzyk, Anna K.; Damaske, Detlef; Hofmann, Mandy

    2017-04-01

    We have targeted the southern side of the Dronning Maud Land (DML) Mountains, East Antarctica, in search of moraine material that might reveal the presence and nature of any cryptic terranes in the ice-covered region of the East Antarctic polar plateau. Nine samples of unconsolidated glacial till, carried by the northward flowing East Antarctic Ice Sheet to the southern side of the DML escarpment, were collected and processed for U-Pb zircon analyses. The samples resulted in ca. 1100 new U-Pb zircon ages between ca. 2000 and 500 Ma. The oldest Palaeoproterozoic zircons come from the easternmost localities with a probable source region in the western part of the Ruker Craton. Major Stenian and Tonian age peaks are recognised. Tonian rocks are well known from the SW terrane in the Sør Rondane Mountains and characterise a major Tonian Oceanic Arc Super Terrane. Stenian ages of ca. 1080 Ma on the other hand are far less common in the outcropping region. Although Late Mesoproterozoic ages are common in both the Maud Province of western-central DML as well as in the Rayner Complex, the Stenian rocks in this study differ with respect to composition and/or isotope geochemistry; they are juvenile, subduction-related and resemble an early phase of oceanic arcs that was so far unknown in this region. In the W, the oldest age peak is ca. 800-720 Ma with possible counterparts in the Schirmacher Oasis. All samples show a protracted Late Neoproterozoic/Early Palaeozoic overprint, accompanied by igneous addition, most likely related to the East African-Antarctic Orogen. This overprint appears most intense in the westernmost locality, in the vicinity of the Forster Magnetic Anomaly and lasted for ca. 150 Ma; an E-ward younging of metamorphic ages is observed. The new moraine samples together with previous outcrop studies reveal that this region has undergone two major phases of oceanic arc/terrane accretion; the first one from ca. 1100-900 Ma is probably related to accretion tectonics outboard of Rodinia, the second one from ca. 850 - 580 Ma occurred as a result of ocean closure and finally Gondwana amalgamation.

  16. Iron fertilization of the Subantarctic Ocean during the last ice age

    NASA Astrophysics Data System (ADS)

    Martinez-Garcia, A.

    2015-12-01

    Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. The scarcity of iron limits marine productivity and carbon uptake in one-quarter of the world ocean where the concentration of major nutrients (phosphorus and nitrogen) is perennially high. The Southern Ocean is the region where variations in iron availability can have the largest effect on Earth's carbon cycle through its fertilizing effect on marine ecosystems. Paleoceanographic records from the Subantarctic Atlantic have revealed a remarkable correlation between phytoplankton productivity and aeolian iron flux during glacial periods supporting the iron fertilization hypothesis. In addition, a recent study has shown that peak glacial times and millennial cold events were nearly universally associated not only with increases in dust flux and export production, but also with an increase in nutrient consumption (the last indicated by higher foraminifera-bound δ15N) (Martinez-Garcia et al. 2014). This combination of changes is uniquely consistent with ice age iron fertilization of the Subantarctic Atlantic. The strengthening of the biological pump associated with the observed increase in Subantarctic nutrient consumption during the high-dust intervals of the last two ice ages can explain up to ~40 ppm of the CO2 decrease that characterizes the transitions from mid-climate states to full ice age conditions. However, the impact of iron fertilization in other sectors of the Southern Ocean characterized by lower ice age dust fluxes than the Atlantic remains unclear. A series of recently published records from the Subantarctic Pacific indicate that dust deposition and marine export production were three times higher during glacial periods than during interglacials (Lamy et al. 2014). Here we present new measurements of foraminifera-bound nitrogen isotopes in a sediment core located in the Subantarctic Pacific (PS75/56-1), which allow us to evaluate the impact of iron fertilization on major nutrient consumption in the largest Southern Ocean sector.

  17. Establishing a Reliable Depth-Age Relationship for the Denali Ice Core

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Osterberg, E. C.; Winski, D.; Ferris, D.; Kreutz, K. J.; Introne, D.; Dalton, M.

    2015-12-01

    Reliable climate reconstruction from ice core records requires the development of a reliable depth-age relationship. We have established a sub-annual resolution depth-age relationship for the upper 198 meters of a 208 m ice core recovered in 2013 from Mt. Hunter (3,900 m asl), Denali National Park, central Alaska. The dating of the ice core was accomplished via annual layer counting of glaciochemical time-series combined with identification of reference horizons from volcanic eruptions and atmospheric nuclear weapons testing. Using the continuous ice core melter system at Dartmouth College, sub-seasonal samples have been collected and analyzed for major ions, liquid conductivity, particle size and concentration, and stable isotope ratios. Annual signals are apparent in several of the chemical species measured in the ice core samples. Calcium and magnesium peak in the spring, ammonium peaks in the summer, methanesulfonic acid (MSA) peaks in the autumn, and stable isotopes display a strong seasonal cycle with the most depleted values occurring during the winter. Thin ice layers representing infrequent summertime melt were also used to identify summer layers in the core. Analysis of approximately one meter sections of the core via nondestructive gamma spectrometry over depths from 84 to 124 m identified a strong radioactive cesium-137 peak at 89 m which corresponds to the 1963 layer deposited during extensive atmospheric nuclear weapons testing. Peaks in the sulfate and chloride record have been used for the preliminary identification of volcanic signals preserved in the ice core, including ten events since 1883. We are confident that the combination of robust annual layers combined with reference horizons provides a timescale for the 20th century that has an error of less than 0.5 years, making calibrations between ice core records and the instrumental climate data particularly robust. Initial annual layer counting through the entire 198 m suggests the Denali Ice Core record will span the past 1000 years.

  18. Astronomical dating in the 19th century

    NASA Astrophysics Data System (ADS)

    Hilgen, Frederik J.

    2010-01-01

    Today astronomical tuning is widely accepted as numerical dating method after having revolutionised the age calibration of the geological archive and time scale over the last decades. However, its origin is not well known and tracing its roots is important especially from a science historic perspective. Astronomical tuning developed in consequence of the astronomical theory of the ice ages and was repeatedly used in the second half of the 19th century before the invention of radio-isotopic dating. Building upon earlier ideas of Joseph Adhémar, James Croll started to formulate his astronomical theory of the ice ages in 1864 according to which precession controlled ice ages occur alternatingly on both hemispheres at times of maximum eccentricity of the Earth's orbit. The publication of these ideas compelled Charles Lyell to revise his Principles of Geology and add Croll's theory, thus providing an alternative to his own geographical cause of the ice ages. Both Croll and Lyell initially tuned the last glacial epoch to the prominent eccentricity maximum 850,000 yr ago. This age was used as starting point by Lyell to calculate an age of 240 million years for the beginning of the Cambrium. But Croll soon revised the tuning to a much younger less prominent eccentricity maximum between 240,000 and 80,000 yr ago. In addition he tuned older glacial deposits of late Miocene and Eocene ages to eccentricity maxima around 800,000 and 2,800,000 yr ago. Archibald and James Geikie were the first to recognize interglacials during the last glacial epoch, as predicted by Croll's theory, and attempted to tune them to precession. Soon after Frank Taylor linked a series of 15 end-moraines left behind by the retreating ice sheet to precession to arrive at a possible age of 300,000 yr for the maximum glaciation. In a classic paper, Axel Blytt (1876) explained the scattered distribution of plant groups in Norway to precession induced alternating rainy and dry periods as recorded by the layering in Holocene peat bogs. He specifically linked the exceptionally wet Atlantic period to the prolonged precession minimum at 33,300 yr ago and further related basic stratigraphic alternations to precession induced climate change in general. Such a linkage was also proposed by Grove Karl Gilbert for cyclic alternations in the marine Cretaceous of North America. Extrapolating sedimentation rates, he arrived at an astronomical duration for part of the Cretaceous that was roughly as long as the final estimate of William Thomson for the age of the Earth. Assuming that orbital parameters directly affect sea level, Karl Mayer-Eymar and Blytt correlated the well known succession of Tertiary stages to precession and eccentricity, respectively. Remarkably, Blytt, like Croll before him, used very long-period cycles in eccentricity to establish and validate his tuning. Understandably these studies in the second half of the 19th century were largely deductive in nature and proved partly incorrect later. Nevertheless, this fascinating period marks a crucial phase in the development of the astronomical theory of the ice ages and climate, and in astronomical dating. It preceded the final inductive phase, which started with the recovery of deep-sea cores in 1947 and led to a spectacular revival of the astronomical theory, by a century. The first half of the 20th century can best be regarded as an intermediate phase, despite the significant progress made in both theoretical aspects and tuning.

  19. The Little Ice Age in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Jomelli, V.; Cooley, D.; Naveau, P.; Rabatel, A.

    2003-12-01

    The period known as the Little Ice Age, from the 17th to the 19th century, brought a cooling of around 0.5 degrees Celsius as well as varyingly humid episodes Eurasia and North America. Because of a lack of long paleoclimatic time series in the tropical Andes, it is still unclear if similar cooling occurred over these tropical and Southern Hemisphere regions. Furthermore, if changes did take place, it is currently not well established if they were temporally synchronous or shifted with respect of the variations in the Northern Hemisphere or the globe. To look into this important climatic question and for advancing our understanding of the past climate links between the tropics and higher latitudes, 25 glaciers located in Bolivia and in Peru were carefully selected. Glacial activity and environmental changes were analyzed using lichenometry. Largest lichen diameters were measured in the different glacial basins. To better analyze these maximum diameters and to more appropriately represent uncertainty and the character of this collected data, age estimates of the different moraine systems were derived using extreme value theory rather than the traditional averaging. The results reveal two particular phases of glacier growth, 1550-1600 and 1800-1850. These two phases have also been identified in other proxy records, such as ice-cores and documentary data (particularly from church chronicles). In order to understand the climatic changes that could have contributed to the glacial variations, a simple model based on both precipitations and temperatures is applied to estimate mass balance questions in the basins. A cooling of the order of 0.5 C seems to be the most consistent with the data. Finally, these findings are compared with the better-known histories of Northern Hemisphere mid-latitude glaciers.

  20. Comparison of the timings between abrupt climate changes in Greenland, Antarctica, China and Japan based on robust correlation using Lake Suigetsu as a template.

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-12-01

    High-resolution pollen-derived climate records from Lake Suigetsu varved sediment core were compared with climate archives from other regions and revealed a particular spatio-temporal structure of the monsoon climate change during so-called D-O events. Leads and lags of the climate change between different regions hold the key to understand the climate system. However, robust assessment of the relative timing of the climate change is often very challenging because correlation of the climatic archives from different regions often has inevitable uncertainties. Greenland and Cariaco basin, for example, provide two of the most frequently sited palaeoclimatic proxy data representative of the high- and low-latitudinal Atlantic regions. However, robust correlation of the records from those regions is difficult because of the uncertainties in layer countings, lack of the radiocarbon age control from ice cores, marine reservoir age of the Cariaco sediments, and the absence of the tephra layers shared by both cites. Similarly, Speleothem and ice core records are not robustly correlated to each other, either for the dead carbon fraction in the speleothems and lack of reliable correlation markers. The generally accepted hypothesis of synchronous climate change between China and the Greenland is, therefore, essentially hypothetical. Lake Suigetsu provides solution to this problem. The lake Suigetsu chronology is supposed to be coherent to the speleothems' U-Th age scale. Suigetsu's semi-continuous radiocarbon dataset, which constitutes major component of the IntCal13 radiocarbon calibration model, also provides opportunity to correlate lake Suigetsu and the Greenland and Antarctic ice cores using cosmogenic isotopes as the correlation key. Results of the correlation and timing comparison, which cast new lights to the mechanism of the monsoon change, will be presented.

  1. Modelled rainfall skill assessment against a 1000-year time/space isotope dendro-climatology for southern Africa

    NASA Astrophysics Data System (ADS)

    Woodborne, Stephan; Hall, Grant; Zhang, Qiong

    2016-04-01

    Palaeoclimate reconstruction using isotopic analysis of tree growth increments has yielded a 1000-year record of rainfall variability in southern Africa. Isotope dendro-climatology reconstructions from baobab trees (Adansonia digitata) provide evidence for rainfall variability from the arid Namib Desert and the Limpopo River Valley. Isotopic analysis of a museum specimen of a yellowwood tree (Podocarps falcatus) yields another record from the southwestern part of the subcontinent. Combined with the limited classic denro-climatologies available in the region these records yield palaeo-rainfall variability in the summer and winter rainfall zones as well as the hyper-arid zone over the last 1000 years. Coherent shifts in all of the records indicate synoptic changes in the westerlies, the inter-tropical convergence zone, and the Congo air boundary. The most substantial rainfall shift takes place at about 1600 CE at the onset of the Little Ice Age. Another distinctive feature of the record is a widespread phenomenon that occurs shortly after 1810 CE that in southern Africa corresponds with a widespread social upheaval known as the Difequane or Mfekane. Large scale forcing of the system includes sea-surface temperatures in the Agulhas Current, the El Nino Southern Oscillation and the Southern Annular Mode. The Little Ice Age and Mfekane climate shifts result from different forcing mechanisms, and the rainfall response in the different regions at these times do not have a fixed phase relationship. This complexity provides a good scenario to test climate models. A first order (wetter versus drier) comparison between each of the tree records and a 1000-year palaeoclimate model simulation for the Little Ice Age and Mfekane transitions demonstrates a generally good correspondence.

  2. Age-Dependent Decline of Endogenous Pain Control: Exploring the Effect of Expectation and Depression

    PubMed Central

    Grashorn, Wiebke; Sprenger, Christian; Forkmann, Katarina; Wrobel, Nathalie; Bingel, Ulrike

    2013-01-01

    Although chronic pain affects all age ranges, it is particularly common in the elderly. One potential explanation for the high prevalence of chronic pain in the older population is impaired functioning of the descending pain inhibitory system which can be studied in humans using conditioned pain modulation (CPM) paradigms. In this study we investigated (i) the influence of age on CPM and (ii) the role of expectations, depression and gender as potential modulating variables of an age-related change in CPM. 64 healthy volunteers of three different age groups (young = 20–40 years, middle-aged = 41–60 years, old = 61–80 years) were studied using a classical CPM paradigm that combined moderate heat pain stimuli to the right forearm as test stimuli (TS) and immersion of the contralateral foot into ice water as the conditioning stimulus (CS). The CPM response showed an age-dependent decline with strong CPM responses in young adults but no significant CPM responses in middle-aged and older adults. These age-related changes in CPM responses could not be explained by expectations of pain relief or depression. Furthermore, changes in CPM responses did not differ between men and women. Our results strongly support the notion of a genuine deterioration of descending pain inhibitory mechanisms with age. PMID:24086595

  3. Effect of Chocobar Ice Cream Containing Bifidobacterium on Salivary Streptococcus mutans and Lactobacilli: A Randomised Controlled Trial.

    PubMed

    Nagarajappa, Ramesh; Daryani, Hemasha; Sharda, Archana J; Asawa, Kailash; Batra, Mehak; Sanadhya, Sudhanshu; Ramesh, Gayathri

    2015-01-01

    To examine the effect of chocobar ice cream containing bifidobacteria on salivary mutans streptococci and lactobacilli. A double-blind, randomised controlled trial was conducted with 30 subjects (18 to 22 years of age) divided into 2 groups, test (chocobar ice cream with probiotics) and control (chocobar ice cream without probiotics). The subjects were instructed to eat the allotted chocobar ice cream once daily for 18 days. Saliva samples collected at intervals were cultured on Mitis Salivarius agar and Rogosa agar and examined for salivary mutans streptococci and lactobacilli, respectively. The Mann-Whitney U-test, Friedman and Wilcoxon signed-rank tests were used for statistical analysis. Postingestion in the test group, a statistically significant reduction (p < 0.05) of salivary mutans streptococci was recorded, but a non-significant trend was seen for lactobacilli. Significant differences were was also observed between follow-ups. Short-term daily ingestion of ice cream containing probiotic bifidobacteria may reduce salivary levels of mutans streptococci in young adults.

  4. Brine Pockets in the Icy Shell on Europa: Distribution, Chemistry, and Habitability

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Yu; Shock, E. L.; Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    On Earth, sea ice is rich in brine, salt, and gas inclusions that form through capturing of seawater during ice formation. Cooling of the ice over time leads to sequential freezing of captured sea-water, precipitation of salts, exsolution of gases, and formation of brine channels and pockets. Distribution and composition of brines in sea ice depend on the rate of ice formation, vertical temperature gradient, and the age of the ice. With aging, the abundance of brine pockets decreases through downward migration. De- spite low temperatures and elevated salinities, brines in sea ice provide a habitat for photosynthetic and chemosynthetic organisms. On Europa, brine pockets and channels could exist in the icy shell that may be from a few km to a few tens of km thick and is probably underlain by a water ocean. If the icy shell is relatively thick, convection could develop, affecting the temperature pattern in the ice. To predict the distribution and chemistry of brine pockets in the icy shell we have combined numerical models of the temperature distribution within a convecting shell, a model for oceanic chemistry, and a model for freezing of Europan oceanic water. Possible effects of brine and gas inclusions on ice rheology and tectonics are discussed.

  5. Kame deltas provide evidence for a new glacial lake and suggest early glacial retreat from central Lower Michigan, USA

    NASA Astrophysics Data System (ADS)

    Schaetzl, Randall J.; Lepper, Kenneth; Thomas, Sarah E.; Grove, Leslie; Treiber, Emma; Farmer, Alison; Fillmore, Austin; Lee, Jordan; Dickerson, Bethany; Alme, Kayleigh

    2017-03-01

    In association with an undergraduate Honors Seminar at Michigan State University, we studied two small kame deltas in north-central Lower Michigan. These recently identified deltas provide clear evidence for a previously unknown proglacial lake (Glacial Lake Roscommon) in this large basin located in an interlobate upland. Our first goal was to document and characterize the geomorphology of these deltas. Because both deltas are tied to ice-contact ridges that mark the former position of the retreating ice margin within the lake, our second goal was to establish the age of one of the deltas, thereby constraining the timing of ice retreat in this part of Michigan, for which little information currently exists. Both deltas are composed of well-sorted fine and medium sands with little gravel, and have broad, nearly flat surfaces and comparatively steep fronts. Samples taken from the upper 1.5 m of the deltas show little spatial variation in texture, aside from a general fining toward their outer margins. Gullies on the outer margins of both deltas probably postdate the formation of the deltas proper; we suggest that they formed by runoff during a permafrost period, subsequent to lake drawdown. We named the ice lobe that once covered this area the Mackinac Lobe, because it had likely advanced into the region across the Mackinac Straits area. Five of six optically stimulated luminescence (OSL) ages from one of the deltas had minimal scatter and were within ± 1000 years of one another, with a mean age of 23.1 ± 0.4 ka. These ages suggest that the Mackinac Lobe had started to retreat from the region considerably earlier than previously thought, even while ice was near its maximum extent in Illinois and Indiana, and the remainder of Michigan was ice-covered. This early retreat, which appears to coincide with a short-lived warm period indicated from the Greenland ice core, formed an "opening" that was at least occasionally flooded. Thick and deep, fine-textured deposits, which underlie much of the region, probably date to this time. Our work provides the first evidence of this extremely early ice retreat from central Lower Michigan, occurring almost 4000 years before the southern margin of the ice (Saginaw Lobe) had started its retreat from the state.

  6. 10Be dating of late-glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Thompson, L. G.

    2004-12-01

    The surface exposure method, based on the measurement of cosmogenic 10Be produced in quartz, is applied to determine the age of deposition of glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap (about 13° S, 70° W) in southeastern Peru. These data are useful for examining the timing of past glaciation in the tropical Andes and for comparison with chronologies of glaciation at higher latitudes. The preliminary data set consists of more than ten surface exposure ages. Samples used for dating are from the surfaces of boulders on a set of prominent moraines about four kilometers away from the present ice margins. The age of the moraine set was previously bracketed by radiocarbon dating of peat associated with the glacial deposits. Based on radiocarbon ages, these moraines were formed during the late-glacial period, just prior to the last glacial-interglacial transition. The surface exposure dating method enables the direct dating of the moraines. Surface exposure dates are cross-checked with the previously existing radiocarbon dates and provide a means to improve the chronology of past glaciation in the tropical Andes.

  7. Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington

    NASA Astrophysics Data System (ADS)

    Osborn, Gerald; Menounos, Brian; Ryane, Chanone; Riedel, Jon; Clague, John J.; Koch, Johannes; Clark, Douglas; Scott, Kevin; Davis, P. Thompson

    2012-08-01

    Glaciers on stratovolcanoes of the Pacific Northwest of North America offer opportunities for dating late Pleistocene and Holocene glacier advances because tephra and fossil wood are common in lateral moraines and in glacier forefields. We capitalize on this opportunity by examining the Holocene glacial record at Mount Baker, an active stratovolcano in northwest Washington. Earlier workers concluded that glaciers on Mount Baker during the early Holocene were more extensive than during the Little Ice Age and hypothesized that the explanation lay in unusual climatic or hypsometric effects peculiar to large volcanoes. We show that the main argument for an early Holocene glacier advance on Mount Baker, namely the absence of ca 10,000-year-old tephra on part of the south flank of the mountain, is incorrect. Moreover, a lake-sediment core indicates that a small cirque moraine previously thought be of early Holocene age is also likely older than the tephra and consequently of late Pleistocene age. Lateral and end moraines and wood mats ca 2 km downvalley of the present snout of Deming Glacier indicate that an advance during the Younger Dryas interval was little more extensive than the climactic Little Ice Age advance. Tephra and wood between tills in the left lateral moraine of Easton Glacier suggest that ice on Mount Baker was restricted in the early Holocene and that Neoglaciation began ca 6 ka. A series of progressively more extensive Neoglacial advances, dated to about 2.2, 1.6, 0.9, and 0.4 ka, are recorded by stacked tills in the right lateral moraine of Deming Glacier. Intervening retreats were long enough to allow establishment of forests on the moraine. Wood mats in moraines of Coleman and Easton glaciers indicate that Little Ice Age expansion began before 0.7 ka and was followed by retreat and a readvance ca 0.5 ka. Tree-ring and lichen data indicate glaciers on the south side of the mountain reached their maximum extents in the mid-1800s. The similarity between glacier fluctuations at Mount Baker and those elsewhere in the Cascades and in British Columbia suggests a coherent history of Holocene climate change over a broad area of the western Cordillera. We found no evidence that glaciers on stratovolcanoes behave differently than glaciers elsewhere.

  8. Effects of badminton and ice hockey on bone mass in young males: a 12-year follow-up.

    PubMed

    Tervo, Taru; Nordström, Peter; Nordström, Anna

    2010-09-01

    The purpose of the present study was to investigate the influence of different types of weight bearing physical activity on bone mineral density (BMD, g/cm(2)) and evaluate any residual benefits after the active sports career. Beginning at 17 years of age, BMD was measured 5 times, during 12 years, in 19 badminton players, 48 ice hockey players, and 25 controls. During the active career, badminton players gained significantly more BMD compared to ice hockey players at all sites: in their femoral neck (mean difference (Delta) 0.06 g/cm(2), p=0.04), humerus (Delta 0.06 g/cm(2), p=0.01), lumbar spine (Delta 0.08 g/cm(2), p=0.01), and their legs (Delta 0.05 g/cm(2), p=0.003), after adjusting for age at baseline, changes in weight, height, and active years. BMD gains in badminton players were higher also compared to in controls at all sites (Delta 0.06-0.17 g/cm(2), p<0.01 for all). Eleven badminton players and 37 ice hockey players stopped their active career a mean of 6 years before the final follow-up. Both these groups lost significantly more BMD at the femoral neck and lumbar spine compared to the control group (Delta 0.05-0.12 g/cm(2), p<0.05 for all). At the final follow-up, badminton players had significantly higher BMD of the femoral neck, humerus, lumbar spine, and legs (Delta 0.08-0.20 g/cm(2), p<0.01 for all) than both ice hockey players and controls. In summary, the present study may suggest that badminton is a more osteogenic sport compared to ice hockey. The BMD benefits from previous training were partially sustained with reduced activity. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Chlorine-36 and 14C chronology support a limited last glacial maximum across central Chukotka, northeastern Siberia, and no Beringian ice sheet

    USGS Publications Warehouse

    Brigham-Grette, J.; Gualtieri, L.M.; Glushkova, O.Y.; Hamilton, T.D.; Mostoller, D.; Kotov, A.

    2003-01-01

    The Pekulney Mountains and adjacent Tanyurer River valley are key regions for examining the nature of glaciation across much of northeast Russia. Twelve new cosmogenic isotope ages and 14 new radiocarbon ages in concert with morphometric analyses and terrace stratigraphy constrain the timing of glaciation in this region of central Chukotka. The Sartan Glaciation (Last Glacial Maximum) was limited in extent in the Pekulney Mountains and dates to ???20,000 yr ago. Cosmogenic isotope ages > 30,000 yr as well as non-finite radiocarbon ages imply an estimated age no younger than the Zyryan Glaciation (early Wisconsinan) for large sets of moraines found in the central Tanyurer Valley. Slope angles on these loess-mantled ridges are less than a few degrees and crest widths are an order of magnitude greater than those found on the younger Sartan moraines. The most extensive moraines in the lower Tanyurer Valley are most subdued implying an even older, probable middle Pleistocene age. This research provides direct field evidence against Grosswald's Beringian ice-sheet hypothesis. ?? 2003 Elsevier Science (USA). All rights reserved.

  10. A longitudinal study of ice hockey in boys aged 8--12.

    PubMed

    MacNab, R B

    1979-03-01

    A group of fifteen boys (experimental or competitive) were studied over a five year period of competitive ice hockey beginning at age 8. The subjects were members of a team which averaged 66 games per year, ranging from 50 at age 8 to 78 at age 12. In addition, they practiced twice a week with heavy stress on skating and individual puck handling skills. A second group of eleven boys (control or less competitive) were studied from age 10 to 12. The latter subjects played an average of 25 games per year and practiced once a week. All subjects were measured each year on skating and puck control skills, fitness-performance tests, grip strength, physical work capacity as well as height and weight. The results demonstrate learning curves for skating and puck control tests which, while typical in nature, show extremely high levels of achievement. Fitness-Performance, grip strength and physical work capacity levels of the competitive group are extremely high in comparison with data from other countries.

  11. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  12. Effectiveness of Rapid Cooling as a Method of Euthanasia for Young Zebrafish (Danio rerio).

    PubMed

    Wallace, Chelsea K; Bright, Lauren A; Marx, James O; Andersen, Robert P; Mullins, Mary C; Carty, Anthony J

    2018-01-01

    Despite increased use of zebrafish (Danio rerio) in biomedical research, consistent information regarding appropriate euthanasia methods, particularly for embryos, is sparse. Current literature indicates that rapid cooling is an effective method of euthanasia for adult zebrafish, yet consistent guidelines regarding zebrafish younger than 6 mo are unavailable. This study was performed to distinguish the age at which rapid cooling is an effective method of euthanasia for zebrafish and the exposure times necessary to reliably euthanize zebrafish using this method. Zebrafish at 3, 4, 7, 14, 16, 19, 21, 28, 60, and 90 d postfertilization (dpf) were placed into an ice water bath for 5, 10, 30, 45, or 60 min (n = 12 to 40 per group). In addition, zebrafish were placed in ice water for 12 h (age ≤14 dpf) or 30 s (age ≥14 dpf). After rapid cooling, fish were transferred to a recovery tank and the number of fish alive at 1, 4, and 12-24 h after removal from ice water was documented. Euthanasia was defined as a failure when evidence of recovery was observed at any point after removal from ice water. Results showed that younger fish required prolonged exposure to rapid cooling for effective euthanasia, with the required exposure time decreasing as fish age. Although younger fish required long exposure times, animals became immobilized immediately upon exposure to the cold water, and behavioral indicators of pain or distress rarely occurred. We conclude that zebrafish 14 dpf and younger require as long as 12 h, those 16 to 28 dpf of age require 5 min, and those older than 28 dpf require 30 s minimal exposure to rapid cooling for reliable euthanasia.

  13. Instructional Basics: Oppelt Standard Method of Therapeutic and Recreational Ice Skating.

    ERIC Educational Resources Information Center

    Oppelt, Kurt

    Detailed in the booklet is the standard ice skating method and considered are the benefits of therapeutic ice skating for the handicapped and aged. Values for the mentally retarded and physically handicapped are seen to include physiological (such as increased flexibility and improved posture), psychological (including satifaction and enhanced…

  14. The importance of independent chronology in integrating records of past climate change for the 60-8 ka INTIMATE time interval

    NASA Astrophysics Data System (ADS)

    Brauer, Achim; Hajdas, Irka; Blockley, Simon P. E.; Bronk Ramsey, Christopher; Christl, Marcus; Ivy-Ochs, Susan; Moseley, Gina E.; Nowaczyk, Norbert N.; Rasmussen, Sune O.; Roberts, Helen M.; Spötl, Christoph; Staff, Richard A.; Svensson, Anders

    2014-12-01

    This paper provides a brief overview of the most common dating techniques applied in palaeoclimate and palaeoenvironmental studies including four radiometric and isotopic dating methods (radiocarbon, 230Th disequilibrium, luminescence, cosmogenic nuclides) and two incremental methods based on layer counting (ice layer, varves). For each method, concise background information about the fundamental principles and methodological approaches is provided. We concentrate on the time interval of focus for the INTIMATE (Integrating Ice core, MArine and TErrestrial records) community (60-8 ka). This dating guide addresses palaeoclimatologists who aim at interpretation of their often regional and local proxy time series in a wider spatial context and, therefore, have to rely on correlation with proxy records obtained from different archives from various regions. For this reason, we especially emphasise scientific approaches for harmonising chronologies for sophisticated and robust proxy data integration. In this respect, up-to-date age modelling techniques are presented as well as tools for linking records by age equivalence including tephrochronology, cosmogenic 10Be and palaeomagnetic variations. Finally, to avoid inadequate documentation of chronologies and assure reliable correlation of proxy time series, this paper provides recommendations for minimum standards of uncertainty and age datum reporting.

  15. Long time management of fossil fuel resources to limit global warming and avoid ice age onsets

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary

    2009-02-01

    There are about 5000 billion tons of fossil fuel carbon in accessible reserves. Combustion of all this carbon within the next few centuries would force high atmospheric CO2 content and extreme global warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at high northern latitudes. Here I present Earth System Model projections showing that typical reduction targets for fossil fuel use in the present century could limit ongoing global warming to less than one degree Celcius above present. Furthermore, the projections show that combustion pulses of remaining fossil fuel reserves could then be tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer insolation minima far into the future. Our present interglacial period could be extended by about 500,000 years in this way.

  16. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.

    2016-05-01

    Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.

  17. The impact of past climate change on genetic variation and population connectivity in the Icelandic arctic fox

    PubMed Central

    Mellows, Andrew; Barnett, Ross; Dalén, Love; Sandoval-Castellanos, Edson; Linderholm, Anna; McGovern, Thomas H.; Church, Mike J.; Larson, Greger

    2012-01-01

    Previous studies have suggested that the presence of sea ice is an important factor in facilitating migration and determining the degree of genetic isolation among contemporary arctic fox populations. Because the extent of sea ice is dependent upon global temperatures, periods of significant cooling would have had a major impact on fox population connectivity and genetic variation. We tested this hypothesis by extracting and sequencing mitochondrial control region sequences from 17 arctic foxes excavated from two late-ninth-century to twelfth-century AD archaeological sites in northeast Iceland, both of which predate the Little Ice Age (approx. sixteenth to nineteenth century). Despite the fact that five haplotypes have been observed in modern Icelandic foxes, a single haplotype was shared among all of the ancient individuals. Results from simulations within an approximate Bayesian computation framework suggest that the rapid increase in Icelandic arctic fox haplotype diversity can only be explained by sea-ice-mediated fox immigration facilitated by the Little Ice Age. PMID:22977155

  18. County-Level Climate Uncertainty for Risk Assessments: Volume 24 Appendix W - Historical Sea Ice Age.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  19. County-Level Climate Uncertainty for Risk Assessments: Volume 25 Appendix X - Forecast Sea Ice Age.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less

  20. Geologic and hydrologic hazards in glacierized basins in North America resulting from 19th and 20th century global warming

    USGS Publications Warehouse

    O'Connor, J. E.; Costa, J.E.

    1993-01-01

    Alpine glacier retreat resulting from global warming since the close of the Little Ice Age in the 19th and 20th centuries has increased the risk and incidence of some geologic and hydrologic hazards in mountainous alpine regions of North America. Abundant loose debris in recently deglaciated areas at the toe of alpine glaciers provides a ready source of sediment during rainstorms or outburst floods. This sediment can cause debris flows and sedimentation problems in downstream areas. Moraines built during the Little Ice Age can trap and store large volumes of water. These natural dams have no controlled outlets and can fail without warning. Many glacier-dammed lakes have grown in size, while ice dams have shrunk, resulting in greater risks of ice-dam failure. The retreat and thinning of glacier ice has left oversteepened, unstable valley walls and has led to increased incidence of rock and debris avalanches. ?? 1993 Kluwer Academic Publishers.

  1. The impact of past climate change on genetic variation and population connectivity in the Icelandic arctic fox.

    PubMed

    Mellows, Andrew; Barnett, Ross; Dalén, Love; Sandoval-Castellanos, Edson; Linderholm, Anna; McGovern, Thomas H; Church, Mike J; Larson, Greger

    2012-11-22

    Previous studies have suggested that the presence of sea ice is an important factor in facilitating migration and determining the degree of genetic isolation among contemporary arctic fox populations. Because the extent of sea ice is dependent upon global temperatures, periods of significant cooling would have had a major impact on fox population connectivity and genetic variation. We tested this hypothesis by extracting and sequencing mitochondrial control region sequences from 17 arctic foxes excavated from two late-ninth-century to twelfth-century AD archaeological sites in northeast Iceland, both of which predate the Little Ice Age (approx. sixteenth to nineteenth century). Despite the fact that five haplotypes have been observed in modern Icelandic foxes, a single haplotype was shared among all of the ancient individuals. Results from simulations within an approximate Bayesian computation framework suggest that the rapid increase in Icelandic arctic fox haplotype diversity can only be explained by sea-ice-mediated fox immigration facilitated by the Little Ice Age.

  2. Leads and lags between the Antarctic temperature and carbon dioxide during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Gest, Léa; Parrenin, Frédéric; Raynaud, Dominique; Fudge, Tyler J.

    2017-04-01

    To understand causal relationships in past climate variations, it is essential to have accurate chronologies of paleoclimate records. Ice cores in Antarctica provide important paleoclimate variables, such as local temperature and global atmospheric CO2. Unfortunately, temperature is recorded in the ice while CO2 is recorded in the enclosed air bubbles. The ages of the former and of the latter are different since air is trapped at 50-120 m below the surface. For the last deglacial warming, 18,000 to 11,000 years ago, Parrenin et al. (Science, 2013) inferred that CO2 and Antarctic temperature started to increase in phase while CO2 lagged temperature at the beginning of the Holocene period. However, this study suffers from various uncertainties that we tried to address in the current study. First, Antarctic temperature was inferred from a stack of 5 Antarctic ice cores that were not always accurately synchronized. Here we use a stack of 4 Antarctic ice cores which are all accurately synchronized thanks to volcanic peak matching. Second, Parrenin et al. (Science, 2013) used a relatively low-resolution CO2 record from the EPICA Dome C ice core. Here, we use the more recent and higher resolution CO2 record from the West Antarctic Ice Sheet Divide ice core. Third, the air trapping depth was deduced on the low accumulation EPICA Dome C ice core using the gravitational enrichment of the δ15N isotopes and assuming a zero convective depth, a hypothesis that was not proved. Here, we use the higher accumulation WAIS Divide ice core, where the ice-air age shift is one order of magnitude smaller, and therefore better constrained. Finally, we use an improved mathematical method to infer break points in the Antarctic temperature and atmospheric CO2 records. We find that, at the onset of the last deglaciation and the onset of the Bølling-Allerød period, the phasing between CO2 and Antarctic temperature is negligible within a range of 130 years. Then CO2 slightly leads by 200 ± 90 years at the onset of the Younger-Dryas period. Finally, Antarctic temperature significantly leads by 460 ± 95 years at the onset of the Holocene period. Our results further supports the hypothesis of no convective zone at EPICA Dome C during the last deglaciation, as assumed by Parrenin et al. (Climate of the past, 2012, On the gas-ice depth difference (Delta depth) along the EPICA Dome C ice core)

  3. Oscillators and relaxation phenomena in Pleistocene climate theory

    PubMed Central

    Crucifix, Michel

    2012-01-01

    Ice sheets appeared in the northern hemisphere around 3 Ma (million years) ago and glacial–interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard–Oeschger and Heinrich events. There are numerous theories about these oscillations. Here, we review a number of them in order to draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow–fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronization between internal climate dynamics and astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 Ma ago. All theories on rapid events reviewed here rely on the concept of a limit cycle excited by changes in the surface freshwater balance of the ocean. The article also reviews basic effects of stochastic fluctuations on these models, including the phenomenon of phase dispersion, shortening of the limit cycle and stochastic resonance. It concludes with a more personal statement about the potential for inference with simple stochastic dynamical systems in palaeoclimate science. PMID:22291227

  4. A New Chronology of Late Quaternary Sequences From the Central Arctic Ocean Based on "Extinction Ages" of Their Excesses in 231Pa and 230Th

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, C.; Ghaleb, B.; de Vernal, A.; Maccali, J.; Cuny, K.; Jacobel, A.; Le Duc, C.; McManus, J.

    2017-12-01

    Merging the late Quaternary Arctic paleoceanography into the Earth's global climate history remains challenging due to the lack of robust marine chronostratigraphies. Over ridges notably, low and variable sedimentation rates, scarce biogenic remains ensuing from low productivity and/or poor preservation, and oxygen isotope and paleomagnetic records differing from global stacks represent major impediments. However, as illustrate here based on consistent records from Mendeleev-Alpha and Lomonosov Ridges, disequilibria between U-series isotopes can provide benchmark ages. In such settings, fluxes of the particle-reactive U-daughter isotopes 230Th and 231Pa from the water column, are not unequivocally linked to sedimentation rates, but rather to sea-ice rafting and brine production histories, thus to the development of sea-ice factories over shelves during intervals of high relative sea level. The excesses in 230Th and 231Pa over fractions supported by their parent U-isotopes, collapse down sedimentary sequences, due to radioactive decay, and provide radiometric benchmark ages of approximately 300 and 140 ka, respectively. These "extinction ages" point to mean sedimentation rates of ˜4.3 and ˜1.7 mm/ka, respectively, over the Lomonosov and Mendeleev Ridges, which are significantly lower than assumed in most recent studies, thus highlighting the need for revisiting current interpretations of Arctic lithostratigraphies in relation to the global-scale late Quaternary climatostratigraphy.

  5. Late Pleistocene glaciation of the Mt Giluwe volcano, Papua New Guinea

    USGS Publications Warehouse

    Barrows, T.T.; Hope, G.S.; Prentice, M.L.; Fifield, L.K.; Tims, S.G.

    2011-01-01

    The Mt Giluwe shield volcano was the largest area glaciated in Papua New Guinea during the Pleistocene. Despite minimal cooling of the sea surface during the last glacial maximum, glaciers reached elevations as low as 3200 m. To investigate changes in the extent of ice through time we have re-mapped evidence for glaciation on the southwest flank of Mt Giluwe. We find that an ice cap has formed on the flanks of the mountain on at least three, and probably four, separate occasions. To constrain the ages of these glaciations we present 39 new cosmogenic 36Cl exposure ages complemented by new radiocarbon dates. Direct dating of the moraines identifies that the maximum extent of glaciation on the mountain was not during the last glacial maximum as previously thought. In conjunction with existing potassium/argon and radiocarbon dating, we recognise four distinct glacial periods between 293-306 ka (Gogon Glaciation), 136-158 ka (Mengane Glaciation), centred at 62 ka (Komia Glaciation) and from >20.3-11.5 ka (Tongo Glaciation). The temperature difference relative to the present during the Tongo Glaciation is likely to be of the order of at least 5 ??C which is a minimum difference for the previous glaciations. During the Tongo Glaciation, ice was briefly at its maximum for less than 1000 years, but stayed near maximum levels for nearly 4000 years, until about 15.4 ka. Over the next 4000 years there was more rapid retreat with ice free conditions by the early Holocene. ?? 2011 Elsevier Ltd.

  6. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  7. Detrital Carbonate Events on the Labrador Shelf, a 13 to 7 kyr Template for Freshwater Forcing From the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Jennings, A. E.; Andrews, J. T.

    2008-12-01

    A complex sequence of abrupt glacial advances and retreats punctuate the late phases of Laurentide Ice Sheet deglaciation. These episodes have been reconstructed from interpretation and mapping of glacial deposits on land and in marine basins proximal to the former ice margins in Hudson Strait, Hudson Bay, and the SE Baffin Island shelf. As these events likely produced pulses of freshwater discharge into the North Altantic, which may be responsible for rapid climate change, their timing and magnitude need to be understood. The timing of these events is well constrained by radiocarbon ages, but the ocean reservoir age in ice proximal areas is subject to very large uncertainties, making it difficult to determine calibrated ages for the glacial events so that they can be compared to other climate records. We suggest that the sequence of high detrital carbonate peaks in Holocene and Late Glacial sediments in the Cartwright Saddle of the Labrador shelf provides a template of the abrupt glacial events of the NE margin of the Laurentide Ice Sheet, particularly events that issued from Hudson Strait and Hudson Bay, but possibly including events in Baffin Bay. Once the Labrador Shelf was deglaciated and the local ice had retreated inland, the Cartwright Saddle was a distal trap for sediments released from Hudson Strait and other ice sheet outlets farther north as their sediments and meltwater were carried southwards by surface currents. Core MD99-2236 contains a sediment record beginning c. 13.9 cal ka. We assume a marine reservoir age for the Cartwright Saddle of 450 yrs, which is reasonable given the ice distal and oceanic position of the site. Carbonate was measured on average at a 30 yr time resolution. Carbonate values are elevated between 11.7 and 7 cal kyr BP, with six spikes exceeding 30 percent. Each spike corresponds to a light isotope spike in foraminifers, suggesting that each major spike is associated with a pulse of glacial meltwater. Elevated IRD counts associated with the carbonate spikes suggest that at least some of the meltwater was released by icebergs. Age estimates of these peaks are: 11.5, 10.6, 9.5, 9.1, 8.7, and 8.2 cal kyr BP, and their duration ranges between 50 and 200 years. A 'red bed' is associated with a subsidiary carbonate spike 8.57 cal ka, very close to the estimated age of the timing of the final outburst drainage of lakes Agassiz and Ojibway: about 8.47 cal ka BP. A lower carbonate spike at 11.1 cal ka is associated with a light isotope event. The carbonate record of MD99-2236 promises to be an important key to the timing and role of deglacial episodes in freshwater forcing on North Altantic climate.

  8. Differences in community composition of bacteria in four deep ice sheets in western China

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-De

    2010-02-01

    Microbial community patterns vary in glaciers world wide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 152 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruoganri. The six functional clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequences from the same glacier formed a distinct cluster. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In a summary, the findings provide preliminary evidence of zone distribution of microbial community, support our hypothesis of the spatial and temporal biogeography of microorganisms in glacial ice.

  9. 40Ar/ 39Ar, K-Ar and 230Th- 238U dating of the Laschamp excursion: A radioisotopic tie-point for ice core and climate chronologies

    NASA Astrophysics Data System (ADS)

    Singer, Brad S.; Guillou, Hervé; Jicha, Brian R.; Laj, Carlo; Kissel, Catherine; Beard, Brian L.; Johnson, Clark M.

    2009-08-01

    A brief period of enhanced 10Be flux that straddles the interstadial warm period known as Dansgaard-Oeschger event 10 in Greenland and its counterpart in Antarctica, the Antarctic Isotope Maximum 10 is but one consequence of the weakening of Earth's magnetic field associated with the Laschamp excursion. This 10Be peak measured in the GRIP ice core is dated at 41,250 y b2k (= before year 2000 AD) in the most recent GICC05 age model obtained from the NorthGRIP core via multi-parameter counting of annual layers. Uncertainty in the age of the 10Be peak is, however, no better than ± 1630 y at the 95% confidence level, reflecting accumulated error in identifying annual layers. The age of the Laschamp excursion [Guillou, H., Singer, B.S., Laj, C., Kissel, C., Scaillet, S., Jicha, B., 2004. On the age of the Laschamp geomagnetic excursion. Earth Planet. Sci. Lett. 227, 331-343.] is revised on the basis of new 40Ar/ 39Ar, unspiked K-Ar and 238U- 230Th data from three lava flows in the Massif Central, France, together with the 40Ar/ 39Ar age of a transitionally magnetized lava flow at Auckland, New Zealand. Combined, these data yield an age of 40,700 ± 950 y b2k, where the uncertainty includes both analytical and systematic ( 40K and 230Th decay constant) errors. Taking the radioisotopic age as a calibration tie point suggests that the layer-counting chronologies for the NorthGRIP and GISP2 ice cores are more accurate and precise than previously thought at depths corresponding to the Laschamp excursion.

  10. Spatial Variability of Barrow-Area Shore-Fast Sea Ice and Its Relationships to Passive Microwave Emissivity

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Rivas, M. Belmonte; Holmgren, J.; Gasiewski, A. J.; Heinrichs, J. F.; Stroeve, J. C.; Klein, M.; Markus, T.; Perovich, D. K.; Sonntag, J. G.; hide

    2006-01-01

    Aircraft-acquired passive microwave data, laser radar height observations, RADARSAT synthetic aperture radar imagery, and in situ measurements obtained during the AMSR-Ice03 experiment are used to investigate relationships between microwave emission and ice characteristics over several space scales. The data fusion allows delineation of the shore-fast ice and pack ice in the Barrow area, AK, into several ice classes. Results show good agreement between observed and Polarimetric Scanning Radiometer (PSR)-derived snow depths over relatively smooth ice, with larger differences over ridged and rubbled ice. The PSR results are consistent with the effects on snow depth of the spatial distribution and nature of ice roughness, ridging, and other factors such as ice age. Apparent relationships exist between ice roughness and the degree of depolarization of emission at 10,19, and 37 GHz. This depolarization .would yield overestimates of total ice concentration using polarization-based algorithms, with indications of this seen when the NT-2 algorithm is applied to the PSR data. Other characteristics of the microwave data, such as effects of grounding of sea ice and large contrast between sea ice and adjacent land, are also apparent in the PSR data. Overall, the results further demonstrate the importance of macroscale ice roughness conditions such as ridging and rubbling on snow depth and microwave emissivity.

  11. Polar synchronization and the synchronized climatic history of Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Oh, Jeseung; Reischmann, Elizabeth; Rial, José A.

    2014-01-01

    Stable isotope proxies from ice cores show subtle differences in the climatic fluctuations of the Arctic and Antarctic, and recent analyses have revealed evidence of polar synchronization at the millennial time scale. At this scale, we analogize the polar climates of the last ice ages to two coupled nonlinear oscillators, which adjust their natural rhythms until they synchronize at a common frequency and constant phase shift. Heat and mass transfers across the intervening ocean and atmosphere make the coupling possible. Here we statistically demonstrate the existence of this phenomenon in polar proxy records with methane-matched age models, and quantify their phase relationship. We show that the time series of representative proxy records of the last glaciation recorded in Greenland (GRIP, NGRIP) and Antarctica (Byrd, Dome C) satisfy phase synchronization conditions, independently of age, for periods ranging 1-6 ky, and can be transformed into one another by a π/2 phase shift, with Antarctica temperature variations leading Greenland's. Based on these results, we use the polar synchronization paradigm to replicate the 800 ky-long, Antarctic, EPICA time series from a theoretical model that extends Greenland's 100 ky-long GRIP record to 800 ky. Statistical analysis of the simulated and actual Antarctic records shows that the procedure is stable to change in adjustable parameters, and requires the coupling between the polar climates to be proportional mainly to the difference in heat storage between the two regions.

  12. Ice Cores Dating With a New Inverse Method Taking Account of the Flow Modeling Errors

    NASA Astrophysics Data System (ADS)

    Lemieux-Dudon, B.; Parrenin, F.; Blayo, E.

    2007-12-01

    Deep ice cores extracted from Antarctica or Greenland recorded a wide range of past climatic events. In order to contribute to the Quaternary climate system understanding, the calculation of an accurate depth-age relationship is a crucial point. Up to now ice chronologies for deep ice cores estimated with inverse approaches are based on quite simplified ice-flow models that fail to reproduce flow irregularities and consequently to respect all available set of age markers. We describe in this paper, a new inverse method that takes into account the model uncertainty in order to circumvent the restrictions linked to the use of simplified flow models. This method uses first guesses on two flow physical entities, the ice thinning function and the accumulation rate and then identifies correction functions on both flow entities. We highlight two major benefits brought by this new method: first of all the ability to respect large set of observations and as a consequence, the feasibility to estimate a synchronized common ice chronology for several cores at the same time. This inverse approach relies on a bayesian framework. To respect the positive constraint on the searched correction functions, we assume lognormal probability distribution on one hand for the background errors, but also for one particular set of the observation errors. We test this new inversion method on three cores simultaneously (the two EPICA cores : DC and DML and the Vostok core) and we assimilate more than 150 observations (e.g.: age markers, stratigraphic links,...). We analyze the sensitivity of the solution with respect to the background information, especially the prior error covariance matrix. The confidence intervals based on the posterior covariance matrix calculation, are estimated on the correction functions and for the first time on the overall output chronologies.

  13. Theory of amorphous ices.

    PubMed

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  14. Simple energy balance model resolving the seasons and the continents - Application to the astronomical theory of the ice ages

    NASA Technical Reports Server (NTRS)

    North, G. R.; Short, D. A.; Mengel, J. G.

    1983-01-01

    An analysis is undertaken of the properties of a one-level seasonal energy balance climate model having explicit, two-dimensional land-sea geography, where land and sea surfaces are strictly distinguished by the local thermal inertia employed and transport is governed by a smooth, latitude-dependent diffusion mechanism. Solutions of the seasonal cycle for the cases of both ice feedback exclusion and inclusion yield good agreements with real data, using minimal turning of the adjustable parameters. Discontinuous icecap growth is noted for both a solar constant that is lower by a few percent and a change of orbital elements to favor cool Northern Hemisphere summers. This discontinuous sensitivity is discussed in the context of the Milankovitch theory of the ice ages, and the associated branch structure is shown to be analogous to the 'small ice cap' instability of simpler models.

  15. First Younger Dryas moraines in Greenland

    NASA Astrophysics Data System (ADS)

    Funder, Svend; Larsen, Nicolaj K.; Linge, Henriette; Möller, Per; Schomacker, Anders; Fabel, Derek; Kjær, Kurt H.; Xu, Sheng

    2016-04-01

    Over the Greenland ice sheet the Younger Dryas (YD) cold climate oscillation (12.9-11.7 kaBP) began with up to 10°C drop in temperatures and ended with up to 12°C abrupt warming. In the light of the present warming and melting of the ice sheet, and its importance for future climate change, the ice sheet's response to these dramatic changes in the past is of great interest. However, even though much effort has gone into charting YD ice margin behaviour around Greenland in recent years, no clear-cut signal of response to the oscillation has been uncovered. Here we show evidence to suggest that three major outlets from a local ice cap at Greenland's north coast advanced and retreated synchronously during YD. The evidence comprises OSL (optically stimulated luminescence) dates from a marine transgression of the coastal valleys that preceded the advance, and exposure ages from boulders on the moraines, formed by glaciers that overrode the marine sediment. The OSL ages suggest a maximum age of 12.4 ±0.6 kaBP for the marine incursion, and 10 exposure ages on boulders from the three moraines provide an average minimum age of 12.5 ±0.7 kaBP for the moraines, implying that the moraines were formed within the interval 11.8-13.0 kaBP. Elsewhere in Greenland evidence for readvance has been recorded in two areas. Most notably, in the East Greenland fjord zone outlet glaciers over a stretch of 800 km coast advanced through the fjords. In Scoresby Sund, where the moraines form a wide belt, an extensive 14C and exposure dating programme has shown that the readvance here probably culminated before YD, while cessation of moraine formation and rapid retreat from the moraine belt did not commence until c. 11.5 kaBP, but no moraines have so far been dated to YD. Readvance is also seen in Disko Bugt, the largest ice sheet outlet in West Greenland. However, here the advance and retreat of the ice stream took place in mid YD times, and lasted only a few hundred years, while YD in general was characterised by large scale, more than 200 km, retreat on the shelf. Therefore, although readvance and retreat occurred in both areas, the readvance was apparently not triggered by the initial YD cooling nor was the retreat caused by the abrupt warming at the end. At all other sites with a record that run through or into YD - Southeast Greenland, South Greenland, northern West Greenland - the ice margins were apparently retreating through YD, leaving the north coast as the only area with evidence for a climatically conditioned YD readvance/retreat. The apparent mismatch between ice core temperatures and ice margin behaviour is generally seen as a function of reduced AMOC (Atlantic Meridional Overturning Circulation), inducing both higher seasonality with very cold winters and warm summers, and also occurrence of warm subsurface water to melt the ice sheet margin along some coasts. Therefore the ice margin response to the cold oscillation was to some extent determined by the nearness to the North Atlantic - with North Greenland being the farthest away. Although this may explain why glaciers advanced in North Greenland, while they melted in more southerly parts, it still leaves the question with a bearing on the future: why don't we see any ice margin response neither to the initial YD cooling, nor to the abrupt warming at the end?

  16. Assimilating the ICE-6G_C Reconstruction of the Latest Quaternary Ice Age Cycle Into Numerical Simulations of the Laurentide and Fennoscandian Ice Sheets

    NASA Astrophysics Data System (ADS)

    Stuhne, G. R.; Peltier, W. R.

    2017-12-01

    We analyze the effects of nudging 100 kyr numerical simulations of the Laurentide and Fennoscandian ice sheets toward the glacial isostatic adjustment-based (GIA-based) ICE-6G_C reconstruction of the most recent ice age cycle. Starting with the ice physics approximations of the PISM ice sheet model and the SeaRISE simulation protocols, we incorporate nudging at characteristic time scales, τf, through anomalous mass balance terms in the ice mass conservation equation. As should be expected, these mass balances exhibit physically unrealistic details arising from pure GIA-based reconstruction geometry when nudging is very strong (τf=20 years for North America), while weakly nudged (τf=1,000 years) solutions deviate from ICE-6G_C sufficiently to degrade its observational fit quality. For reasonable intermediate time scales (τf=100 years and 200 years), we perturbatively analyze nudged ice dynamics as a superposition of "leading-order smoothing" that diffuses ICE-6G_C in a physically and observationally consistent manner and "higher-order" deviations arising, for instance, from biases in the time dependence of surface climate boundary conditions. Based upon the relative deviations between respective nudged simulations in which these biases follow surface temperature from ice cores and eustatic sea level from marine sediment cores, we compute "ice core climate adjustments" that suggest how local paleoclimate observations may be applied to the systematic refinement of ICE-6G_C. Our results are consistent with a growing body of evidence suggesting that the geographical origins of Meltwater Pulse 1B (MWP1b) may lie primarily in North America as opposed to Antarctica (as reconstructed in ICE-6G_C).

  17. Terrestrial ages of ordinary chondrites from the lewis cliff stranding area, East Antarctica

    NASA Astrophysics Data System (ADS)

    Welten, K. C.; Lindner, L.; Alderliesten, C.; van der Borg, K.

    1999-07-01

    We determined terrestrial ages of ordinary chondrites from the Lewis Cliff stranding area, East Antarctica, on the basis of the concentrations of cosmogenic 10Be (t1/2 = 1.51 Ma), 26Al (t1/2 = 0.705 Ma) and 36Cl (t1/2 = 0.301 Ma). After an initial 26Al -ray survey of 91 meteorites suggested that many have terrestrial ages larger than 0.1 Ma, we selected 62 meteorites for 10Be and 26Al measurements by accelerator mass spectrometry (AMS) and measured 36Cl in twelve of those. Low terrestrial ages (<0.1 Ma) were found for about 60% of the meteorites, whereas all others have ages between 0.1 and 0.5 Ma, except for one exceptional age of >2 Ma (Welten et al., 1997). Our major conclusions are: (1) The Lewis Cliff H-chondrites show similar ages as those from the Allan Hills Ice-fields, but the L-chondrites are about a factor of two younger than those from Allan Hills, which indicates that Lewis Cliff is a younger stranding area. (2) The terrestrial age distributions at different parts of the Lewis Cliff stranding area generally agree with simple meteorite concentration models, although differences in weathering rate may also play a role. (3) We confirm that meteorites with natural thermoluminescence (TL) levels >80 krad are associated with low terrestrial ages (Benoit et al., 1992), but conclude that natural TL levels <80 krad can not be used to calculate the terrestrial age of a meteorite. Natural TL levels do seem useful to estimate relative terrestrial ages of large groups of meteorites and to determine differences in surface exposure age of paired meteorite fragments. (4) Of the 62 meteorites measured with AMS, 31 were assigned to eleven different pairing groups, mainly on the basis of their cosmogenic nuclide record. The meteorites are estimated to represent between 42 and 52 distinct falls.

  18. Carbon cycle instability as a cause of the late Pleistocene ice age oscillations - Modeling the asymmetric response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzman, B.; Maasch, K.A.

    1988-06-01

    A dynamical model of the Pleistocene ice ages is presented, which incorporates many of the qualitative ideas advanced recently regarding the possible role of ocean circulation, chemistry, temperature, and productivity in regulating long-term atmospheric carbon dioxide variations. This model involves one additional term (and free parameter) beyond that included in a previous model (Saltzman and Sutera, 1987), providing the capacity for an asymmetric response. It is shown that many of the main features exhibited by the delta(O-18)-derived ice record and the Vostok core/delta(C-13)-derived carbon dioxide record in the late Pleistocene can be deduced as a free oscillatory solution of themore » model. 35 refs.« less

  19. Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition

    NASA Astrophysics Data System (ADS)

    Pierce, Elizabeth L.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Cook, Carys P.; Passchier, Sandra

    2017-11-01

    The East Antarctic ice sheet underwent a major expansion during the Mid-Miocene Climate Transition, around 14 Ma, lowering sea level by ∼60 m. However, direct or indirect evidence of where changes in the ice sheet occurred is limited. Here we present new insights on timing and locations of ice sheet change from two drill sites offshore East Antarctica. IODP Site U1356, Wilkes Land, and ODP Site 1165, Prydz Bay are located adjacent to two major ice drainage areas, the Wilkes Subglacial Basin and the Lambert Graben. Ice-rafted detritus (IRD), including dropstones, was deposited in concentrations far exceeding those known in the rest of the Miocene succession at both sites between 14.1 and 13.8 Ma, indicating that large amounts of IRD-bearing icebergs were calved from independent drainage basins during this relatively short interval. At Site U1356, the IRD was delivered in distinct pulses, suggesting that the overall ice advance was punctuated by short periods of ice retreat in the Wilkes Subglacial Basin. Provenance analysis of the mid-Miocene IRD and fine-grained sediments provides additional insights on the movement of the ice margin and subglacial geology. At Site U1356, the dominant 40Ar/39Ar thermochronological age of the ice-rafted hornblende grains is 1400-1550 Ma, differing from the majority of recent IRD in the area, from which we infer an inland source area of this thermochronological age extending along the eastern part of the Adélie Craton, which forms the western side of the Wilkes Subglacial Basin. Neodymium isotopic compositions from the terrigenous fine fraction at Site U1356 imply that the ice margin periodically expanded from high ground well into the Wilkes Subglacial Basin during periods of MMCT ice growth. At Site 1165, MMCT pebble-sized IRD are sourced from both the local Lambert Graben and the distant Aurora Subglacial Basin drainage area. Together, the occurrence and provenance of the IRD and glacially-eroded sediment at these two marine drill sites proximal to the Antarctic continent provide a previously undocumented record of dynamic ice margin change during the 14.1-13.8 Ma interval in three major East Antarctic drainage basins.

  20. Scientific Assessment of the Effects of Global Change on the United States: A Report of the Committee on Environment and Natural Resources, National Science and Technology Council

    DTIC Science & Technology

    2008-05-01

    Combined heating and cooling 186 V.7.b Energy production and distribution 187 Fossil and nuclear energy 190 Renewable energy 191 Extreme events 193...Period’) and a relatively cold period (or ‘Little Ice Age ’) centered around 1700 are evident. (Figure IV.6 shows the aggregate results from several...warming leading out of ice ages (NRC, 2002). IV. Trends and Projections of Global Environmental Change 95 • Greenhouse warming and other human

  1. Differences in community composition of bacteria in four glaciers in western China

    NASA Astrophysics Data System (ADS)

    An, L. Z.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-D.

    2010-06-01

    Microbial community patterns vary in glaciers worldwide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 151 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruogangri. Six phylogenetic clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile, and their proportion varied by seasons. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequence clusters from the same glacier more closely grouped together than those from the geographically isolated glaciers. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In summary, the findings provide preliminary evidence of zonal distribution of microbial community, and suggest biogeography of microorganisms in glacier ice.

  2. U-Pb Detrital Zircon Geochronologic Constraints on Depositional Age and Sediment Source Terrains of the Late Paleozoic Tepuel-Genoa Basin

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Montanez, I. P.; Isbell, J.; Gulbranson, E. L.; Wimpenny, J.; Yin, Q. Z.; Cúneo, N. R.; Pagani, M. A.; Taboada, A. C.

    2014-12-01

    The late Paleozoic Ice Age (LPIA) is the longest-lived icehouse of the Phanerozoic and the only time a metazoan dominated and vegetated world transitioned from an icehouse climate into a greenhouse. Despite several decades of research, the timing, extent of glaciation and the location of ice centers remain unresolved, which prohibits reconstruction of ice volume. The Permo-Carboniferous sediments in the Tepuel-Genoa Basin, Patagonia contains a near complete record of sedimentation from the lower Carboniferous through lower Permian. Outsized clasts, thin pebble-rich diamictites and slumps represent the last of the late Paleozoic glacially influenced deep-water marine sediments in the Mojón de Hierro Fm. and the Paleozoic of Patagonia. U-Pb analysis of detrital zircons separated from slope sediments reveal groupings (20 myr bins, n≥5 zircons) with peak depositional ages of 420, 540 to 660 and 1040 Ma. Zircon age populations recovered from the Mojón de Hierro Fm. compare well with bedrock ages of the Deseado Massif of SE Patagonia, suggesting this may be a potential source of sediments. The maximum depositional age of the sediments is 306.05 ± 3.7 Ma (2σ) as determined by the median age of the two youngest concordant zircons that overlap in error. The youngest zircon from the analysis yields a 238U/206Pb age of 301.3 ± 4.5 Ma (2σ; MSWD = 2.3). Younger zircons from the analysis compare well with the age of granite bedrock exposed along the basin margin to the E-NE suggesting they may reflect a more proximal source. These data, which indicate a maximum age of late Carboniferous for the Mojón de Hierro Fm, provide the first geochemical constraints for the timing of final deposition of glaciomarine sediments in the Tepuel-Genoa Basin, and contributes to the biostratigraphic correlation of the late Paleozoic succession in Patagonia with other key LPIA basins that has thus far been hindered by faunal provincialism.

  3. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" contained the following reports:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape; Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  4. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  5. Holocene glacier fluctuations inferred from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    LaBrecque, Taylor S.; Kaufman, Darrell S.

    2016-01-01

    Physical and biological characteristics of lacustrine sediment from Emerald Lake were used to reconstruct the Holocene glacier history of Grewingk Glacier, southern Alaska. Emerald Lake is an ice-marginal threshold lake, receiving glaciofluvial sediment when Grewingk Glacier overtops the topographic divide that separates it from the lake. Sub-bottom acoustical profiles were used to locate core sites to maximize both the length and resolution of the sedimentary sequence recovered in the 4-m-long cores. The age model for the composite sequence is based on 13 14C ages and a 210Pb profile. A sharp transition from the basal inorganic mud to organic-rich mud at 11.4 ± 0.2 ka marks the initial retreat of Grewingk Glacier below the divide of Emerald Lake. The overlaying organic-rich mud is interrupted by stony mud that records a re-advance between 10.7 ± 0.2 and 9.8 ± 0.2 ka. The glacier did not spill meltwater into the lake again until the Little Ice Age, consistent with previously documented Little Ice Ages advances on the Kenai Peninsula. The retreat of Grewingk Glacier at 11.4 ka took place as temperature increased following the Younger Dryas, and the subsequent re-advance corresponds with a climate reversal beginning around 11 ka across southern Alaska.

  6. Age of marginal Wisconsin drift at corry, northwestern Pennsylvania

    USGS Publications Warehouse

    Droste, J.B.; Rubin, M.; White, G.W.

    1959-01-01

    Marl began to accumulate about 14,000 years ago, as determined by radiocarbon dating, in a pond in a kettle hole in Kent drift at Corry, Pa., 9 miles inside the Wisconsin drift margin. This radiocarbon age represents the minimum time since the disappearance of the ice from Corry and confirms an assignment of Cary age to the drift.

  7. Toward unified ice core chronologies with the DatIce tool

    NASA Astrophysics Data System (ADS)

    Toye Mahamadou Kele, H.; Lemieux-Dudon, B.; Blayo, E.

    2012-04-01

    Antarctic and Greenland ice cores provide a means to study the phase relationships of climate changes in both hemispheres. They also enable to study the timing between climate, and greenhouse gases or orbital forcings. One key step for such studies is to improve the absolute and relative precisions of ice core age scales (for ice and trapped gas), and beyond that, to try to reach the best consistency between chronologies of paleo records of any kind. The DatIce tool is designed to increase the consistency between pre-existing (also called background) core chronologies. It formulates a variational inverse problem which aims at correcting three key quantities that uniquely define the core age scales: the accumulation rate, the total thinning function, and the close-off depth. For that purpose, it integrates paleo data constraints of many types among which age markers (with for instance documented volcanoes eruptions), and stratigraphic links (with for instance abrupt changes in methane concentration). A cost function is built that enables to calculate new chronologies by making a trade-off between all the constraints (background chronologies and paleo data). The method presented in Lemieux-Dudon et al (2010) has already been applied simultaneously to EPICA EDML and EDC, Vostok and NGRIP. Currently, on going works are conducted at LSCE Saclay and LGGE Grenoble laboratories to construct unified Antarctic chronologies by applying the DatIce tool with new ice cores and new sets of paleo measurements. We here present the DatIce tool, the underlying methodology, and its potential applications. We further show some improvements that have been made recently. We especially adress the issue related to the calibration of the error of pre-existing core chronologies. They are inputs that may have a strong impact on the results. However these uncertainties are uneasy to analyze, since prior chronologies are most of the time assessed on the basis of glaciological models (firn densification and ice flow models) which still face large uncertainties (forcing fields, model parameters, mechanic and physic formulation). For that reason, we chose to calibrate errors by applying consistency diagnostics, a classical method in data assimilation (Desrozier et al, 2009).

  8. Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica

    USGS Publications Warehouse

    Bockheim, James G.; Prentice, M.L.; McLeod, M.

    2008-01-01

    We provide a map of lower and central Taylor Valley, Antarctica, that shows deposits from Taylor Glacier, local alpine glaciers, and grounded ice in the Ross Embayment. From our electronic database, which includes 153 sites from the coast 50 km upvalley to Pearse Valley, we show the distribution of permafrost type and soil subgroups according to Soil Taxonomy. Soils in eastern Taylor Valley are of late Pleistocene age, cryoturbated due to the presence of ground ice or ice-cemented permafrost within 70 cm of the surface, and classified as Glacic and Typic Haploturbels. In central Taylor Valley, soils are dominantly Typic Anhyorthels of mid-Pleistocene age that have dry-frozen permafrost within the upper 70 cm. Salt-enriched soils (Salic Anhyorthels and Petrosalic Anhyorthels) are of limited extent in Taylor Valley and occur primarily on drifts of early Pleistocene and Pliocene age. Soils are less developed in Taylor Valley than in nearby Wright Valley, because of lesser salt input from atmospheric deposition and salt weathering. Ice-cemented permafrost is ubiquitous on Ross Sea, pre-Ross Sea, and Bonney drifts that occur within 28 km of the McMurdo coast. In contrast, dry-frozen permafrost is prevalent on older (???115 ky) surfaces to the west. ?? 2008 Regents of the University of Colorado.

  9. The Photographic History of Greenland's Glaciers - and how the historical data plays an important role in today's glacier research

    NASA Astrophysics Data System (ADS)

    Bjork, A. A.; Kjeldsen, K. K.; Korsgaard, N. J.; Aagaard, S.; Andresen, C. S.; Bamber, J. L.; van den Broeke, M.; Colgan, W. T.; Funder, S.; Khan, S. A.; Larsen, N. K.; Machguth, H.; Nuth, C.; Schomacker, A.; Kjaer, K. H.

    2015-12-01

    As the Greenland Ice Sheet and Greenland's glaciers are continuing to loss mass at high rates, knowledge of their past response to climatic changes is ever important. By harvesting the archives for images, both terrestrial and airborne, we are able to expand the record of glacier observation by several decades, thus supplying crucial knowledge on glacier behavior to important climatic transitions such as the end of the Little Ice Age and the early 20th Century warming. Here we show how a large collection of historical aerial images portray the glacial response to the Little Ice Age deglaciation in Greenland and document frontal change throughout the 20th Century. A detailed story of the LIA-deglaciation is told by supplementing with terrestrial photos that capture the onset of retreat and high resolution aerial images that portray geomorphological evidence of the Little Ice Age maximum extent. This work is the result of several generations of Greenland researches and their efforts to portray and document the state of the glaciers, and highlights that while interpretations and conclusions may be challenged and changed through time, the raw observations remain extremely valuable. Finally, we also show how archival data besides photos may play an important role in future glacier research in Greenland.

  10. Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations

    NASA Astrophysics Data System (ADS)

    Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.

    2003-08-01

    Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B ice cores. Significant shard concentrations are found at a number of depths in all three cores. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome ice core, and layers between 97.2 and 97.7 m depth in the Siple B core. This correlation, and the highly accurate depth-age scale of the Siple B core suggest that the age of this horizon in the Taylor Dome ice core presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].

  11. Glaciological studies in the central Andes using AIRSAR/TOPSAR

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Klein, Andrew G.; Blodgett, Troy A.; Isacks, Bryan L.

    1993-01-01

    The interaction of climate and topography in mountainous regions is dramatically expressed in the spatial distribution of glaciers and snowcover. Monitoring existing alpine glaciers and snow extent provides insight into the present mountain climate system and how it is changing, while mapping the positions of former glaciers as recorded in landforms such as cirques and moraines provide a record of the large past climate change associated with the last glacial maximum. The Andes are an ideal mountain range in which to study the response of snow and ice to past and present climate change. Their expansive latitudinal extent offers the opportunity to study glaciers in diverse climate settings from the tropical glaciers of Peru and Bolivia to the ice caps and tide-water glaciers of sub-polar Patagonia. SAR has advantages over traditional passive remote sensing instruments for monitoring present snow and ice and differentiating moraine relative ages. The cloud penetrating ability of SAR is indispensable for perennially cloud covered mountains. Snow and ice facies can be distinguished from SAR's response to surface roughness, liquid water content and grain size distribution. The combination of SAR with a coregestered high-resolution DEM (TOPSAR) provides a promising tool for measuring glacier change in three dimensions, thus allowing ice volume change to be measured directly. The change in moraine surface roughness over time enables SAR to differentiate older from younger moraines. Polarimetric SAR data have been used to distinguish snow and ice facies and relatively date moraines. However, both algorithms are still experimental and require ground truth verification. We plan to extend the SAR classification of snow and ice facies and moraine age beyond the ground truth sites to throughout the Cordillera Real to provide a regional view of past and present snow and ice. The high resolution DEM will enhance the SAR moraine dating technique by discriminating relative ages based on moraine slope degradation.

  12. The Unexpected Re-Growth of Ice-Entombed Bryophytes in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    La Farge, C.

    2014-12-01

    The rapid retreat of glaciers and ice caps throughout the Canadian Arctic is exposing pristine vegetation preserved beneath cold-based ice. For the past half century this vegetation has been consistently reported as dead. This interpretation has been overturned by the successful re-growth of Little Ice Age (1550-1850 AD) bryophytes emerging from the Teardrop Glacier, Sverdrup Pass, Ellesmere Island (79° N) collected in 2009. Some populations showed regeneration in the field and lab experiments confirmed their capacity to regrow. The species richness of these subglacial populations is exceptional, comprising >62 species that represent 44% of the extant bryophyte flora of Sverdrup Pass. Cold-based glaciers are known to provide critical habitats for a variety of microbiota (i.e., fungi, algae, cyanobacteria, bacteria and viruses) in high latitude ecosystems. The regeneration of Little Ice Age bryophytes fundamentally expands the concept of biological refugia to land plants that was previously restricted to survival above and beyond glacial margins. Given this novel understanding of subglacial ecosystems, fieldwork is now being extended southward to plateau ice caps on Baffin Island, Nunavut, where ice retreat is exposing subglacial populations of greater antiquity (thousands to tens of thousands of radiocarbon years before present). Bryophytes by nature are totipotent (stem cell equivalency) and poikilohydric (desiccation tolerance), which facilitate their unique adaptation to extreme environments. Continuity of the Arctic bryophyte flora extends back through the Holocene to the late Tertiary [Beaufort Fm, 2-5 Ma], when the majority of taxa were the same, based on records spanning the archipelago from Ellesmere to Banks Island. This record contrasts with that of vascular plants, which have had a number of extinctions, necessitating recolonization of arctic populations from outside the region. The biological significance of a stable bryophyte element highlights their capacity, resilience and persistence throughout arctic climate fluctuations, suggesting they - like those entombed during the Little Ice Age - have survived glaciation in situ, frozen in time.

  13. Allan Hills Pleistocene Ice Project (PIP)

    NASA Astrophysics Data System (ADS)

    Kurbatov, A.; Brook, E.; Campbell, S. W.; Conway, H.; Dunbar, N. W.; Higgins, J. A.; Iverson, N. A.; Kehrl, L. M.; McIntosh, W. C.; Spaulding, N. E.; Yan, Y.; Mayewski, P. A.

    2016-12-01

    A major international effort to identify at least 1.5 Ma old ice for paleoclimate reconstructions has successfully resulted in the selection of several potential drill sites in East Antarctica. At this point it is indisputable that the Antarctic ice sheet captures a continuous envinronmental record of the Earth that spans the Mid Pleistocene Transition (MPT). In addition to traditional ice coring approaches, the oldest ice can also be recovered in Antarctic Blue Ice Areas (BIA). We have already successfully demonstrated that the Allan Hills (AH) BIA captures a regional climate signal and robust record of 1Ma atmosphere that can be studied with a relatively uncomplicated logistical imprint and essentially unlimited sampling volume. The attractiveness of unlimited sampling of known age ice is the basis for the "ice park" concept proposed earlier by our research team. The idea is that, once the age of ice exposed along the flow line at the surface of BIA is mapped, it could be sampled for numerous research projects as needed. Here we propose an intermediate ( 1,150 m deep) ice core drill site, located only 240 km away from McMurdo base that will help to develop a, continuous, high quality regional paleoclimate record that is at least 1Ma old. We will introduce and discuss the glaciological settings, paleoclimate signals and possible limitations and advantages of the 1 Ma AH BIA regional paleoclimate record. The research was funded by NSF Division of Polar Programs.

  14. Evidence and biogeochemical implications for glacially-derived sediments in an active margin cold seep

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Novosel, Ivana; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Coffin, Richard B.; Grabowski, Kenneth S.; Knies, David L.; Hyndman, Roy D.; Spence, George D.

    2011-01-01

    Delineating sediment organic matter origins and sediment accumulation rates at gas hydratebearing and hydrocarbon seeps is complicated by the microbial transfer of 13C-depleted and 14Cdepleted methane carbon into sedimentary pools. Sediment 13C and 14C measurements from four cores recovered at Bullseye vent on the northern Cascadia margin are used to identify methane carbon assimilation into different carbon pools. While the total organic carbon (TOC) is mostly unaltered and primarily terrigenous in origin, planktonic foraminifera and the bulk carbonate display evidence of methane overprinting. Mass balance models are applied to determine the extent to which methane overprinting increased the radiocarbon ages of the biogenic foraminifera. The corrected and calibrated foraminifera ages between sediment depths of 70 and 573 cm are from 14.9 to 15.9 ka BP, which coincides with the retreat of the late Quaternary Cordilleran Ice Sheet from Vancouver Island. Uniform TOC _13C values of -24.5 ± 0.5‰ from the upper 8 meters of sediment at Bullseye vent suggest all cored material is Pleistocene-derived glacimarine material deposited as the ice edge retreated landward. Bullseye vent is located within an uplifted sediment block isolated from turbidite deposition and has been a site of non-deposition since the ice sheet retreated from the shelf. Biogeochemical implications of seep sediments being dominated by aged, organic-poor (<0.4 wt% TOC) material are that methane is the primary energy source, and microbes directly and indirectly associated with the anaerobic oxidation of methane (AOM) will dominate the seep microbial community.

  15. Evaluation of dental pulp sensibility tests in a clinical setting.

    PubMed

    Jespersen, James J; Hellstein, John; Williamson, Anne; Johnson, William T; Qian, Fang

    2014-03-01

    The goal of this project was to evaluate the performance of dental pulp sensibility testing with Endo Ice (1,1,1,2-tetrafluoroethane) and an electric pulp tester (EPT) and to determine the effect of several variables on the reliability of these tests. Data were collected from 656 patients seen in the University of Iowa College of Dentistry Endodontic graduate clinic. The results of pulpal sensibility tests, along with the tooth number, age, sex, number of restored surfaces, presence or absence of clinical or radiographic caries, and reported recent use of analgesic medications, were recorded. The presence of vital tissue within the pulp chamber was used to verify the diagnosis. The Endo Ice results showed accuracy, 0.904; sensitivity, 0.916; specificity, 0.896; positive predictive value, 0.862; and negative predictive value, 0.937. The EPT results showed accuracy, 0.75; sensitivity, 0.84; specificity, 0.74; positive predictive value, 0.58; and negative predictive value, 0.90. Patients aged 21-50 years exhibited a more accurate response to cold testing (P = .0043). Vital teeth with caries responded more accurately to cold testing (P = .0077). There was no statistically significant difference noted with any other variable examined. Pulpal sensibility testing with Endo Ice and EPT are accurate and reliable methods of determining pulpal vitality. Patients aged 21-50 exhibited a more accurate response to cold. Sex, tooth type, number of restored surfaces, presence of caries, and recent analgesic use did not significantly alter the results of pulpal sensibility testing in this study. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Combining cosmogenic radionuclides and amino acid racemization to date late Pliocene glacial deposits exposed on Baffin Island, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Refsnider, K. A.; Miller, G. H.

    2009-12-01

    Sequences of glacial deposits spanning the Quaternary are valuable archives recording the effects of glaciation on landscapes through time, but determining the age of such deposits has long challenged geologists. The recent advances in cosmogenic radionuclide (CRN) measurement has made it possible to date some of these deposits, but dating buried glacial sediments in most settings remains problematic. Here we explore a new approach to date the oldest glacial deposits in the Plio-Pleistocene Clyde Foreland Formation of Baffin Island. This formation, approximately 40 m thick, includes interlayered shell-bearing marine, glaciomarine, and glacial sediments deposited along the northern margin of the Laurentide Ice Sheet and earlier continental ice sheets. Previous work on foraminifera assemblages suggests that the deposits span the last ≥2 Ma. By combining CRN measurements (10Be and 26Al) from the glacial units and measurements of the D-alloisoleucine:L-isoleucine ratios (A/I) in valves of the mollusk Hiatella arctica in the marine units overlying a particular glacial deposit, we can calculate the age of the glacial deposit. Because the post-burial temperature history for the mollusks preserved in the Clyde Foreland Formation is poorly constrained, A/I ratios alone cannot be used to determine absolute ages. Instead, we use A/I ratios to identify sediment packages of discrete ages and define a step-wise burial history function for glacial units. A/I ratios of all packages (<0.3 for the total hydrolysate fraction) fall within the A/I interval characterized by linear racemization kinetics, so the age of each package in the burial history function can simply be defined as a fractional age with respect to the total burial age for the glacial deposit of interest. The long duration of burial (26Al/10Be as low as 1.6±0.6 at 2σ) and low initial CRN inventories require that post-burial muogenic production is accounted for using the burial history function. We apply a numerical model to calculate the duration of burial from the measured CRN concentrations for a given inherited CRN inventory. But because this initial inventory is unknown, a single CRN sample/burial history combination will not provide a unique age solution. Instead, measurements from multiple localities where a particular glacial deposit has differing burial histories (i.e., the thickness of overlying units or ages of overlying units differ) are required to statistically determine the total burial age that most closely matches the observed CRN inventories and burial histories.

  17. No iron fertilization in the equatorial Pacific Ocean during the last ice age.

    PubMed

    Costa, K M; McManus, J F; Anderson, R F; Ren, H; Sigman, D M; Winckler, G; Fleisher, M Q; Marcantonio, F; Ravelo, A C

    2016-01-28

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age--the Last Glacial Period (LGP)--but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the (232)Th proxy), phytoplankton productivity (using opal, (231)Pa/(230)Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ(15)N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity.

  18. Science support for the Earth radiation budget sensor on the Nimbus-7 spacecraft

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1982-01-01

    Experimental data supporting the Earth radiation budget sensor on the Nimbus 7 Satellite is given. The data deals with the empirical relations between radiative flux, cloudiness, and other meteorological parameters; response of a zonal climate ice sheet model to the orbital perturbations during the quaternary ice ages; and a simple parameterization for ice sheet ablation rate.

  19. Glacier fluctuations in the Kenai Fjords, Alaska, U.S.A.: An evaluation of controls on Iceberg-calving glaciers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, G.C.; Calkin, P.E.; Post, A.

    The histories of four iceberg-calving outlet-glacier systems in the Kenai Fjords National Park underscore the importance of fiord depth, sediment supply, and fiord geometry on glacier stability. These parameters, in turn, limit the reliability of calving glacier chronologies as records of climatic change. Tree-ring analysis together with radiocarbon dating show that the Northwestern and McCarty glaciers, with large drainage basins, were advancing in concert with nearby land-terminating glaciers about A.D. 600. After an interval of retreat and possible nonclimatically induced extension during the Medieval Warm Period, these ice margins advanced again through the Little Ice Age and then retreated synchronouslymore » with the surrounding land-terminating glaciers about A.D. 1900. In contrast, Holgate and Aialik glaciers, with deeper fiords and smaller basins, retreated about 300 yr earlier. Reconstructions of Little Ice Age glaciers suggest that equilibrium-line altitudes of Northwestern and McCarty glaciers were, respectively, 270 and 500 m lower than now. Furthermore, the reconstructions show that these two glaciers were climatically sensitive when at their terminal moranies. However, with ice margins at their present recessional positions and accumulation area ratios between 0.8 and 0.9, only McCarty Glacier shows evidence of advance. Aialik and Holgate glaciers were climatically insensitive during the Little Ice Age maxima and remain insensitive to climate. 40 refs., 7 figs., 2 tabs.« less

  20. Eating habits and caloric intake of physically active young boys, ages 10 to 14 years.

    PubMed

    Thomson, M J; Cunningham, D A; Wearring, G A

    1980-03-01

    Eating habits of 104 male participants (ages 10 to 14 years) in organized ice hockey were compared across age groups and levels of competition. The boys were members of either a highly skilled and intensively active competitive league group (CL) or a less skilled, moderately active house league group (HL). Eating habits were recorded during a school day from a 24 hour recall questionnaire administered by a trained interviewer. The types and amounts of foods eaten were recorded and caloric intake was calculated. The total caloric intakes were not significantly different by age or competitive group. The boys had higher caloric intakes by age (200 kcal day-1) than reported by other studies but the caloric intake by kilogram of body weight was similar. There was a trend towards larger caloric intake by the CL boys (ages 10 and 11 years), however when divided by body weight the differences were not significant suggesting that this trend was due to a greater body weight of the CL boys and not a significantly increased caloric expenditure. The types of foods eaten (fruit, vegetables, dairy, meat, bread or "empty calories") were similar for the two activity groups and across ages 10 to 14 years. The caloric intakes of dairy and meat products of both groups were significantly higher than for the other food groups.

  1. Implication of azelaic acid in a Greenland Ice Core for oceanic and atmospheric changes in high latitudes

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Yokoyama, K.; Fujii, Y.; Watanabe, O.

    A Greenland ice core (450 years) has been studied for low molecular weight dicarboxylic acids (C2-C10) using a capillary gas chromatography and mass spectrometer. Their molecular distribution generally showed a predominance of succinic acid (C4) followed by oxalic (C2), malonic (C3), glutaric (C5), adipic (C6), and azelaic (C9) acids. Azelaic acid, that is a specific photochemical reaction product of biogenic unsaturated fatty acids, gave a characteristic historical trend in the ice core; i.e., the concentrations are relatively low during late 16th to 19th century (Little Ice Age) but become very high in late 19th to 20th century (warmer periods) with a large peak in 1940s AD. Lower concentrations of azelaic acid may have been caused by a depressed emission of unsaturated fatty acids from seawater microlayers due to enhanced sea ice coverage during Little Ice Age. Inversely, increased concentrations of azelaic acid in late 19th to 20th century are likely interpreted by an enhanced sea-to-air emission of the precursor unsaturated fatty acids due to a retreat of sea ice and/or by the enhanced production due to a potentially increased oxidizing capability of the atmosphere.

  2. Marine sources of ice nucleating particles: results from phytoplankton cultures and samples collected at sea

    NASA Astrophysics Data System (ADS)

    Wilbourn, E.; Thornton, D.; Brooks, S. D.; Graff, J.

    2016-12-01

    The role of marine aerosols as ice nucleating particles is currently poorly understood. Despite growing interest, there are remarkably few ice nucleation measurements on representative marine samples. Here we present results of heterogeneous ice nucleation from laboratory studies and in-situ air and sea water samples collected during NAAMES (North Atlantic Aerosol and Marine Ecosystems Study). Thalassiosira weissflogii (CCMP 1051) was grown under controlled conditions in batch cultures and the ice nucleating activity depended on the growth phase of the cultures. Immersion freezing temperatures of the lab-grown diatoms were determined daily using a custom ice nucleation apparatus cooled at a set rate. Our results show that the age of the culture had a significant impact on ice nucleation temperature, with samples in stationary phase causing nucleation at -19.9 °C, approximately nine degrees warmer than the freezing temperature during exponential growth phase. Field samples gathered during the NAAMES II cruise in May 2016 were also tested for ice nucleating ability. Two types of samples were gathered. Firstly, whole cells were fractionated by size from surface seawater using a BD Biosciences Influx Cell Sorter (BD BS ISD). Secondly, aerosols were generated using the SeaSweep and subsequently size-selected using a PIXE Cascade Impactor. Samples were tested for the presence of ice nucleating particles (INP) using the technique described above. There were significant differences in the freezing temperature of the different samples; of the three sample types the lab-grown cultures tested during stationary phase froze at the warmest temperatures, followed by the SeaSweep samples (-25.6 °C) and the size-fractionated cell samples (-31.3 °C). Differences in ice nucleation ability may be due to size differences between the INP, differences in chemical composition of the sample, or some combination of these two factors. Results will be presented and atmospheric implications discussed.

  3. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau.

    PubMed

    Li, Xiaofei; Kang, Shichang; He, Xiaobo; Qu, Bin; Tripathee, Lekhendra; Jing, Zhefan; Paudyal, Rukumesh; Li, Yang; Zhang, Yulan; Yan, Fangping; Li, Gang; Li, Chaoliu

    2017-06-01

    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD) deposited on the glacier surface can reduce albedo, thus accelerating the glacier melt. Surface fresh snow, aged snow, granular ice, and snowpits samples were collected between August 2014 and October 2015 on the Xiao Dongkemadi (XDKMD) glacier (33°04'N, 92°04'E) in the central Tibetan Plateau (TP). The spatiotemporal variations of LAIs concentrations in the surface snow/ice were observed to be consistent, differing mainly in magnitudes. LAIs concentrations were found to be in the order: granular ice>snowpit>aged snow>fresh snow, which must be because of post-depositional effects and enrichment. In addition, more intense melting led to higher LAIs concentrations exposed to the surface at a lower elevation, suggesting a strong negative relationship between LAIs concentrations and elevation. The scavenging efficiencies of OC and BC were same (0.07±0.02 for OC, 0.07±0.01 for BC), and the highest enrichments was observed in late September and August for surface snow and granular ice, respectively. Meanwhile, as revealed by the changes in the OC/BC ratios, intense glacier melt mainly occurred between August and October. Based on the SNow ICe Aerosol Radiative (SNICAR) model simulations, BC and MD in the surface snow/ice were responsible for about 52%±19% and 25%±14% of the albedo reduction, while the radiative forcing (RF) were estimated to be 42.74±40.96Wm -2 and 21.23±22.08Wm -2 , respectively. Meanwhile, the highest RF was observed in the granular ice, suggesting that the exposed glaciers melt and retreat more easily than the snow distributed glaciers. Furthermore, our results suggest that BC was the main forcing factor compared with MD in accelerating glacier melt during the melt season in the Central TP. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Improvements in the chronology, geochemistry and correlation techniques of tephra in Antarctic ice

    NASA Astrophysics Data System (ADS)

    Iverson, N. A.; Dunbar, N. W.; McIntosh, W. C.; Pearce, N. J.; Kyle, P. R.

    2013-12-01

    Visible and crypto tephra layers found in West Antarctic ice provide an excellent record of Antarctic volcanism over the past 100ka. Tephra layers are deposited almost instantaneously across wide areas creating horizons that, if found in several locations, provide 'pinning points' to adjust ice time scales that may otherwise be lacking detailed chronology. Individual tephra layers can have distinct chemical fingerprints allowing them to correlate over great distances. Advances in sample preparation, geochemical analyses (major and trace elements) of fine grained tephra and higher precision 40Ar/39Ar dating of young (<100ka) proximal volcanic deposits are improving an already established tephra record in West Antarctica. Forty three of the potential hundreds of silicate layers found in a recently drilled deep West Antarctic Ice Sheet Divide core (WDC06A) have been analyzed for major elements and a subset for trace elements. Of these layers, at least 16 are homogenous tephra that could be correlated to other ice cores (e.g. Siple Dome, SDMA) and/or to source volcanoes found throughout Antarctica and even extra-continental eruptions (e.g. Sub-Antarctic islands and South America). Combining ice core tephra with those exposed in blue ice areas provide more locations to correlate widespread eruptions. For example, a period of heightened eruptive activity at Mt. Berlin, West Antarctica between 24 and 28ka produced a set of tephra layers that are found in WDC06A and SDMA ice cores, as well as at a nearby blue ice area at Mt. Moulton (BIT-151 and BIT-152). Possible correlative tephra layers are found at ice ages of 26.4, 26.9 and 28.8ka in WDC06A and 26.5, 27.0, and 28.7ka in SDMA cores. The geochemical similarities of major elements in these layers mean that ongoing trace element analyses will be vital to decipher the sequence of events during this phase of activity at Mt. Berlin. Sample WDC06A-2767.117 (ice age of 28.6×1.0ka) appears to correlate to blue ice tephra BIT-152 and to tephra layer SDMA-5683 (ice age of 28.5ka). This tephra layer also appears to be present in blue ice at Mt. Terra Nova on Ross Island, 1400km away, suggesting that it may be a possible to link ice cores in East Antarctica (e.g. Talos Dome and Law Dome). The amount of feldspar in ice core tephra is typically too small to be directly dated by 40Ar/39Ar method, making it very important to geochemically correlate these layers to proximal deposits where more and larger feldspar can be sampled. The correlation of WDC06A-2767.117 to the coarse, proximal BIT-152 provides one such link. The New Mexico Geochronology Research Lab (NMGRL) has two new multi-collector ARGUS VI mass spectrometers that can provide single crystal laser fusion ages that are approximately an order of magnitude more precise than the previous determinations. With these advancements in analytical technology, we hope to improve precision on 'pinning points' in the deep ice cores where annual layer counting becomes less precise.

  5. JPSS Cryosphere Algorithms: Integration and Testing in Algorithm Development Library (ADL)

    NASA Astrophysics Data System (ADS)

    Tsidulko, M.; Mahoney, R. L.; Meade, P.; Baldwin, D.; Tschudi, M. A.; Das, B.; Mikles, V. J.; Chen, W.; Tang, Y.; Sprietzer, K.; Zhao, Y.; Wolf, W.; Key, J.

    2014-12-01

    JPSS is a next generation satellite system that is planned to be launched in 2017. The satellites will carry a suite of sensors that are already on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. The NOAA/NESDIS/STAR Algorithm Integration Team (AIT) works within the Algorithm Development Library (ADL) framework which mimics the operational JPSS Interface Data Processing Segment (IDPS). The AIT contributes in development, integration and testing of scientific algorithms employed in the IDPS. This presentation discusses cryosphere related activities performed in ADL. The addition of a new ancillary data set - NOAA Global Multisensor Automated Snow/Ice data (GMASI) - with ADL code modifications is described. Preliminary GMASI impact on the gridded Snow/Ice product is estimated. Several modifications to the Ice Age algorithm that demonstrates mis-classification of ice type for certain areas/time periods are tested in the ADL. Sensitivity runs for day time, night time and terminator zone are performed and presented. Comparisons between the original and modified versions of the Ice Age algorithm are also presented.

  6. Late Wisconsinan glaciation and postglacial relative sea-level change on western Banks Island, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Lakeman, Thomas R.; England, John H.

    2013-07-01

    The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22-40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.

  7. On the nature of the dirty ice at the bottom of the GISP2 ice core

    USGS Publications Warehouse

    Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.

    2010-01-01

    We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty ice. The Ar/N2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.

  8. The Asian monsoon over the past 640,000 years and ice age terminations.

    PubMed

    Cheng, Hai; Edwards, R Lawrence; Sinha, Ashish; Spötl, Christoph; Yi, Liang; Chen, Shitao; Kelly, Megan; Kathayat, Gayatri; Wang, Xianfeng; Li, Xianglei; Kong, Xinggong; Wang, Yongjin; Ning, Youfeng; Zhang, Haiwei

    2016-06-30

    Oxygen isotope records from Chinese caves characterize changes in both the Asian monsoon and global climate. Here, using our new speleothem data, we extend the Chinese record to cover the full uranium/thorium dating range, that is, the past 640,000 years. The record's length and temporal precision allow us to test the idea that insolation changes caused by the Earth's precession drove the terminations of each of the last seven ice ages as well as the millennia-long intervals of reduced monsoon rainfall associated with each of the terminations. On the basis of our record's timing, the terminations are separated by four or five precession cycles, supporting the idea that the '100,000-year' ice age cycle is an average of discrete numbers of precession cycles. Furthermore, the suborbital component of monsoon rainfall variability exhibits power in both the precession and obliquity bands, and is nearly in anti-phase with summer boreal insolation. These observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and 'unfinished terminations'.

  9. Cosmogenic 10Be and 26Al exposure ages of tors and erratics, Cairngorm Mountains, Scotland: Timescales for the development of a classic landscape of selective linear glacial erosion

    USGS Publications Warehouse

    Phillips, W.M.; Hall, A.M.; Mottram, R.; Fifield, L.K.; Sugden, D.E.

    2006-01-01

    The occurrence of tors within glaciated regions has been widely cited as evidence for the preservation of relic pre-Quaternary landscapes beneath protective covers of non-erosive dry-based ice. Here, we test for the preservation of pre-Quaternary landscapes with cosmogenic surface exposure dating of tors. Numerous granite tors are present on summit plateaus in the Cairngorm Mountains of Scotland where they were covered by local ice caps many times during the Pleistocene. Cosmogenic 10Be and 26Al data together with geomorphic relationships reveal that these landforms are more dynamic and younger than previously suspected. Many Cairngorm tors have been bulldozed and toppled along horizontal joints by ice motion, leaving event surfaces on tor remnants and erratics that can be dated with cosmogenic nuclides. As the surfaces have been subject to episodic burial by ice, an exposure model based upon ice and marine sediment core proxies for local glacial cover is necessary to interpret the cosmogenic nuclide data. Exposure ages and weathering characteristics of tors are closely correlated. Glacially modified tors and boulder erratics with slightly weathered surfaces have 10Be exposure ages of about 15 to 43 ka. Nuclide inheritance is present in many of these surfaces. Correction for inheritance indicates that the eastern Cairngorms were deglaciated at 15.6 ?? 0.9 ka. Glacially modified tors with moderate to advanced weathering features have 10Be exposure ages of 19 to 92 ka. These surfaces were only slightly modified during the last glacial cycle and gained much of their exposure during the interstadial of marine Oxygen Isotope Stage 5 or earlier. Tors lacking evidence of glacial modification and exhibiting advanced weathering have 10Be exposure ages between 52 and 297 ka. Nuclide concentrations in these surfaces are probably controlled by bedrock erosion rates instead of discrete glacial events. Maximum erosion rates estimated from 10Be range from 2.8 to 12.0 mm/ka, with an error weighted mean of 4.1 ?? 0.2 mm/ka. Three of these surfaces yield model exposure-plus-burial ages of 295-71+84, 520-141+178, and 626-85+102 ka. A vertical cosmogenic nuclide profile across the oldest sampled tor indicates a long-term emergence rate of 31 ?? 2 mm/ka. These findings show that dry-based ice caps are capable of substantially eroding tors by entraining blocks previously detached by weathering processes. Bedrock surfaces and erratic boulders in such settings are likely to have nuclide inheritance and may yield erroneous (too old) exposure ages. While many Cairngorm tors have survived multiple glacial cycles, rates of regolith stripping and bedrock erosion are too high to permit the widespread preservation of pre-Quaternary rock surfaces. ?? 2005 Elsevier B.V. All rights reserved.

  10. Theory of amorphous ices

    PubMed Central

    Limmer, David T.; Chandler, David

    2014-01-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957

  11. Feeding Frequency and appetite in Lean and Obese Prepubertal children

    PubMed Central

    Mehra, Rinku; Tsalikian, Eva; Chenard, Catherine A.; Zimmerman, M. Bridget; Sivitz, William I.

    2016-01-01

    To determine the effect of feeding frequency on appetite in normal weight (NW) and obese (OB) prepubertal children, we carried out a prospective, randomized interventional study of 18 NW and 17 OB children ages 6–10. Children received three or five feedings in random order on separate days. Total calories, carbohydrate, protein, and fat composition on each day were equal. Two hours following the last feeding, children were offered ice cream ad lib. The major outcome variable was kilocalories ice cream consumed. A visual analog scale to assess fullness was also administered before consumption of ice cream. We observed that OB children consumed 73.0 ± 37.4 kcal more after five feedings than after three feedings whereas the NW children consumed 47.1 ± 27.8 kcal less. There was significant interaction between meal pattern and weight group indicating that this change in ice cream consumption differed significantly between groups (P = 0.014 by two-factor analysis). Ice cream intake/kg was less in OB compared to NW subjects (P = 0.012). Fullness ratings before ice cream did not differ by meal pattern or weight group. However, pre-ice cream fullness predicted ice cream intake in NW but not OB children. In summary, OB and NW children differed in appetite response to meal frequency. Our data suggest that: (i) satiety in OB children is related more to proximity of calories (larger supper) than to antecedent distribution of calories and; (ii) NW children may be more prone to restrict intake based on subjective fullness. PMID:20847731

  12. Holocene history of drift ice in the northern North Atlantic: Evidence for different spatial and temporal modes

    USGS Publications Warehouse

    Moros, M.; Andrews, John T.; Eberl, D.D.; Jansen, E.

    2006-01-01

    We present new high-resolution proxy data for the Holocene history of drift ice off Iceland based on the mineralogy of the <2-mm sediment fraction using quantitative X-ray diffraction. These new data, bolstered by a comparison with published proxy records, point to a long-term increasing trend in drift ice input into the North Atlantic from 6 to 5 ka toward the present day at sites influenced by the cold east Greenland Current. This feature reflects the late Holocene Neoglacial or cooling period recorded in ice cores and further terrestrial archives on Greenland. In contrast, a decrease in drift ice during the same period is recorded at sites underlying the North Atlantic Drift, which may reflect a warming of this region. The results document that Holocene changes in iceberg rafting and sea ice advection did not occur uniformly across the North Atlantic. Centennial-scale climate variability in the North Atlantic region over the last ???4 kyr is linked to the observed changes in drift ice input. Increased drift ice may have played a role in the increase of cold intervals during the late Holocene, e.g., the Little Ice Age cooling. Copyright 2006 by the American Geophysical Union.

  13. Climate variability reflected by tree-ring width and δ18O in a heavily glaciated area of the Patagonian Andes since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Meier, W. J. H.; Wernicke, J., Jr.; Braun, M.; Aravena, J. C.; Jaña, R.; Griessinger, J.

    2016-12-01

    Since the end of the Little Ice Age, the area of the Northern and Southern Patagonian ice sheet decreased by more than 14% and 11%, respectively. The melting increased since the last decade by 2.3%. The glaciers of Cordillera Darwin recorded a surface decrease of approximately 14% for the last 140 years. The reason for the excessive glacial change is often explained through the rise in temperature combined with a decrease in precipitation or a change in seasonality. Since a spatially coherent coverage of climatological measurement is lacking it is not possible to verify this assumption in a differentiated manner. Hence, the German- Chilean joint project "Responses of GlAciers, Biosphere and hYdrology to climate Variability and climate chAnge across the Southern Andes (GABY-VASA)" aims to determine the influence of long and short term climate variabilities (El Niño-Southern Oscillation (ENSO), Southern Hemisphere Annular Mode (SAM)) on the cryo- and biosphere. Trees growing at the glacier margins and at the natural treeline were sampled at four different locations ranging from the humid western part of the southern Andes (annual precipitation > 10.000mma-1) to the distinct dryer eastern part (annual precipitation < 500mma-1). Besides the tree-ring width based temperature reconstruction the precipitation variability reflected by δ18O in tree-rings is a promising approach to obtain detailed information of small-scaled hydro climatic conditions. Furthermore the use of δ18O as a proxy in combination with tree-ring width offers the opportunity of meteorological back trajectories and the derivation of air masses since the Little Ice Age. It thus interlinks past and present climate and allows to draw conclusions about the driving forces of glacial change.

  14. Seasonal-Scale Dating of a Shallow Ice Core From Greenland Using Oxygen Isotope Matching Between Data and Simulation

    NASA Astrophysics Data System (ADS)

    Furukawa, Ryoto; Uemura, Ryu; Fujita, Koji; Sjolte, Jesper; Yoshimura, Kei; Matoba, Sumito; Iizuka, Yoshinori

    2017-10-01

    A precise age scale based on annual layer counting is essential for investigating past environmental changes from ice core records. However, subannual scale dating is hampered by the irregular intraannual variabilities of oxygen isotope (δ18O) records. Here we propose a dating method based on matching the δ18O variations between ice core records and records simulated by isotope-enabled climate models. We applied this method to a new δ18O record from an ice core obtained from a dome site in southeast Greenland. The close similarity between the δ18O records from the ice core and models enables correlation and the production of a precise age scale, with an accuracy of a few months. A missing δ18O minimum in the 1995/1996 winter is an example of an indistinct δ18O seasonal cycle. Our analysis suggests that the missing δ18O minimum is likely caused by a combination of warm air temperature, weak moisture transport, and cool ocean temperature. Based on the age scale, the average accumulation rate from 1960 to 2014 is reconstructed as 1.02 m yr-1 in water equivalent. The annual accumulation rate shows an increasing trend with a slope of 3.6 mm yr-1, which is mainly caused by the increase in the autumn accumulation rate of 2.6 mm yr-1. This increase is likely linked to the enhanced hydrological cycle caused by the decrease in Arctic sea ice area. Unlike the strong seasonality of precipitation amount in the ERA reanalysis data in the southeast dome region, our reconstructed accumulation rate suggests a weak seasonality.

  15. Antarctic Firn Compaction Rates from Repeat-Track Airborne Radar Data: I. Methods

    NASA Technical Reports Server (NTRS)

    Medley, B.; Ligtenberg, S. R. M.; Joughin, I.; Van Den Broeke, M. R.; Gogineni, S.; Nowicki, S.

    2015-01-01

    While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009-10, 2010-11 and 2009-11. The average compaction rate to approximately 25m depth is 0.33ma(exp -1), with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12ma(exp -1) over distances less than 6km and were on average greater than 20% larger during the 2010-11 interval than during 2009-10.

  16. Critical porosity of gas enclosure in polar firn independent of climate

    NASA Astrophysics Data System (ADS)

    Florian Schaller, Christoph; Freitag, Johannes; Eisen, Olaf

    2017-11-01

    In order to interpret the paleoclimatic record stored in the air enclosed in polar ice cores, it is crucial to understand the fundamental lock-in process. Within the porous firn, bubbles are sealed continuously until the respective horizontal layer reaches a critical porosity. Present-day firn air models use a postulated temperature dependence of this value as the only parameter to adjust to the surrounding conditions of individual sites. However, no direct measurements of the firn microstructure could confirm these assumptions. Here we show that the critical porosity is a climate-independent constant by providing an extensive data set of micrometer-resolution 3-D X-ray computer tomographic measurements for ice cores representing different extremes of the temperature and accumulation ranges. We demonstrate why indirect measurements suggest a climatic dependence and substantiate our observations by applying percolation theory as a theoretical framework for bubble trapping. The incorporation of our results significantly influences the dating of trace gas records, changing gas-age-ice-age differences by up to more than 1000 years. This may further help resolve inconsistencies, such as differences between East Antarctic δ15N records (as a proxy for firn height) and model results. We expect our findings to be the basis for improved firn air and densification models, leading to lower dating uncertainties. The reduced coupling of proxies and surrounding conditions may allow for more sophisticated reinterpretations of trace gas records in terms of paleoclimatic changes and will benefit the development of new proxies, such as the air content as a marker of local insolation.

  17. Laurentide ice sheet meltwater routing along the Iro-Mohawk River, eastern New York, USA

    NASA Astrophysics Data System (ADS)

    Porreca, Charles; Briner, Jason P.; Kozlowski, Andrew

    2018-02-01

    The rerouting of meltwater as the configuration of ice sheets evolved during the last deglaciation is thought to have led to some of the most significant perturbations to the climate system in the late Quaternary. However, the complex pattern of ice sheet meltwater drainage off the continents, and the timing of rerouting events, remains to be fully resolved. As the Laurentide Ice Sheet (LIS) retreated north of the Adirondack Uplands of northeastern New York State during the last deglaciation, a large proglacial lake, Lake Iroquois, found a lower outlet that resulted in a significant flood event. This meltwater rerouting event, from outflow via the Iro-Mohawk River valley (southern Adirondack Mountains) to the spillway at Covey Hill (northeastern Adirondack Mountains), is hypothesized to have taken place 13.2 ka and disturbed meridional circulation in the North Atlantic Ocean. However, the timing of the rerouting event is not certain because the event has not been directly dated. With improving the history of Lake Iroquois drainage in mind, we obtained cosmogenic 10Be exposure ages on a strath terrace on Moss Island, along the Iro-Mohawk River spillway. We hypothesize that Moss Island's strath terrace became abandoned during the rerouting event. Six 10Be ages from the strath surface average 14.8 ± 1.3 ka, which predates the previously published bracketing radiocarbon ages of 13.2 ka. Several possibilities for the discrepancy exist: (1) the 10Be age accurately represents the timing of a decrease in discharge through the Iro-Mohawk River spillway; (2) the age is influenced by inheritance. The 10Be ages from glacially sculpted surfaces on Moss Island above the strath terrace predate the deglaciation of the site by 5 to 35 ky; and (3) the abandonment of the Moss Island strath terrace relates to knickpoint migration and not the final abandonment of the Iro-Mohawk River as the Lake Iroquois spillway. Further study and application of cosmogenic 10Be exposure dating in the region may lead to tighter chronologic constraints of meltwater history of the LIS.

  18. Experimental Analysis of Sublimation Dynamics for Buried Glacier Ice in Beacon Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Ehrenfeucht, S.; Dennis, D. P.; Marchant, D. R.

    2017-12-01

    The age of the oldest known buried ice in Beacon Valley, McMurdo Dry Valleys (MDV) Antarctica is a topic of active debate due to its implications for the stability of the East Antarctic Ice Sheet. Published age estimates range from as young as 300 ka to as old as 8.1 Ma. In the upland MDV, ablation occurs predominantly via sublimation. The relict ice in question (ancient ice from Taylor Glacier) lies buried beneath a thin ( 30-70 cm) layer of sublimation till, which forms as a lag deposit as underlying debris-rich ice sublimes. As the ice sublimates, the debris held within the ice accumulates slowly on the surface, creating a porous boundary between the buried-ice surface and the atmosphere, which in turn influences gas exchange between the ice and the atmosphere. Additionally, englacial debris adds several salt species that are ultimately concentrated on the ice surface. It is well documented the rate of ice sublimation varies as a function of overlying till thickness. However, the rate-limiting dynamics under varying environmental conditions, including the threshold thicknesses at which sublimation is strongly retarded, are not yet defined. To better understand the relationships between sublimation rate, till thickness, and long-term surface evolution, we build on previous studies by Lamp and Marchant (2017) and evaluate the role of till thickness as a control on ice loss in an environmental chamber capable of replicating the extreme cold desert conditions observed in the MDV. Previous work has shown that this relationship exhibits exponential decay behavior, with sublimation rate significantly dampened under less than 10 cm of till. In our experiments we pay particular attention to the effect of the first several cm of till in order to quantify the dynamics that govern the transition from bare ice to debris-covered ice. We also examine this transition for various forms of glacier ice, including ice with various salt species.

  19. The microphysical and radiative properties of tropical cirrus from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE)

    NASA Astrophysics Data System (ADS)

    Um, Jun Shik

    During the 2006 Tropical Warm Pool International Cloud Experiment conducted in the region near Darwin, Australia, the Scaled Composites Proteus aircraft executed spiral profiles and flew horizontal legs through aging cirrus, fresh anvils, and cirrus of unknown origin. Data from 27 Jan., 29 Jan., and 2 Feb., when all the microphysical probes a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Cloud Imaging Probe (CIP), and a Cloud Particle Imager (CPI) were working, are used to investigate whether a single parameterization can be used to characterize tropical cirrus in terms of prognostic variables used in large-scale models, to calculate the single-scattering properties (scattering phase function P11 and asymmetry parameter g) of aggregates and small ice crystals that more closely match observed ice crystals, and to quantify the influences of small ice crystals on the bulk scattering properties of tropical cirrus. A combination of CDP (D < 50 mum), fits (50 < D < 125 microm), and CIP (D > 125 mum) distributions is used to represent ice crystal size distributions. The CDP measurements are used for small ice crystals because comparison between the CAS and CDP suggested the CAS was artificially amplifying small ice crystal concentrations by detecting remnants of shattered large ice crystals. Artifacts in CIP images are removed or corrected and then CIP measurements are used to represent large ice crystals. Because of the uncertainties in both the CPI and CIP for 50 < D < 125 mum, the incomplete gamma fitting method with the CDP (D < 50 mum) and CIP (D > 125 mum) measurements as input is used to characterize these distributions. A new quasi-automatic habit classification scheme is developed. For all days, small quasi-spheres dominated the contributions from all ice crystal sizes (D > 0 mum, by number) for all 3 days. The areal fraction (D > 200 mum) from bullet rosettes and their aggregates was 48% and 60% for 27 and 29 Jan., respectively, but only 7% for 2 Feb, whereas the fraction of aggregates of plates was 46.2% for 2 Feb. and only 7.2% and 1% for 27 and 29 Jan., respectively. The difference in ice crystal habits sampled on the different days is likely associated with the difference between fresh anvil cirrus on 2 Feb. and aged cirrus bands on the 27 and 29 of Jan. Because of variations in microphysical properties (i.e., number concentration, median mass dimension, and fit variables of gamma distributions) it is also shown that variables in addition to ice water content and temperature are required to represent the characteristics of cirrus with different origins in large-scale models. Aggregates of bullet rosettes and aggregates of plates are shown to scatter more light in the lateral and backward scattering region and less light in the forward scattering region compared to their component crystals, leading to a decrease in g for aggregates. To represent the three-dimensional shape of aggregates of plates, three parameters, the aggregation index ( AI), the area ratio (AR), and the normalized projected area (An), are introduced and the single-scattering properties of aggregates of plates are shown to depend heavily on AI. A new model (budding Bucky ball, 3B) for the shape of small ice crystals is developed based on the shapes of ice analogues grown in laboratory experiments. The 3B scatters more light in the lateral, and backward direction and less in the forward direction compared with other existing models currently used to describe small crystal shape (i.e., Gaussian random sphere and droxtal). The combination of the reduction in the forward scattering and enhancement in the lateral and backward scattering causes 11.13% and 8.74% decreases in g for the 3B compared with that for Gaussian random sphere and droxtal, respectively. The impacts of variations in small ice crystal shapes and concentrations on bulk scattering properties of tropical cirrus are quantified. The calculated mean asymmetry parameter ḡ for the fresh anvil (i.e., 2 Feb) is larger than that for cirrus bands of varying ages (i.e., 27 and 29 Jan.) for -60 < T < -45°C and -45 < T < -30°C where the fractional contributions of small ice crystals to total cross sectional area are small. The impact using different models for small ice crystals on ḡ is largest at lower temperatures (T < -60°C). The impact of enhanced number concentrations of small ice crystals on the bulk scattering properties depends on the assumed shapes of small ice crystals, which is largest (smallest) in the temperature ranges of -45 < T < -30 T (T < -60°C) where the CAS/CDP ratio of N of small ice crystals is maximum (minimum).

  20. C-Band Backscatter Measurements of Winter Sea-Ice in the Weddell Sea, Antarctica

    NASA Technical Reports Server (NTRS)

    Drinkwater, M. R.; Hosseinmostafa, R.; Gogineni, P.

    1995-01-01

    During the 1992 Winter Weddell Gyre Study, a C-band scatterometer was used from the German ice-breaker R/V Polarstern to obtain detailed shipborne measurement scans of Antarctic sea-ice. The frequency-modulated continuous-wave (FM-CW) radar operated at 4-3 GHz and acquired like- (VV) and cross polarization (HV) data at a variety of incidence angles (10-75 deg). Calibrated backscatter data were recorded for several ice types as the icebreaker crossed the Weddell Sea and detailed measurements were made of corresponding snow and sea-ice characteristics at each measurement site, together with meteorological information, radiation budget and oceanographic data. The primary scattering contributions under cold winter conditions arise from the air/snow and snow/ice interfaces. Observations indicate so e similarities with Arctic sea-ice scattering signatures, although the main difference is generally lower mean backscattering coefficients in the Weddell Sea. This is due to the younger mean ice age and thickness, and correspondingly higher mean salinities. In particular, smooth white ice found in 1992 in divergent areas within the Weddell Gyre ice pack was generally extremely smooth and undeformed. Comparisons of field scatterometer data with calibrated 20-26 deg incidence ERS-1 radar image data show close correspondence, and indicate that rough Antarctic first-year and older second-year ice forms do not produce as distinctively different scattering signatures as observed in the Arctic. Thick deformed first-year and second-year ice on the other hand are clearly discriminated from younger undeformed ice. thereby allowing successful separation of thick and thin ice. Time-series data also indicate that C-band is sensitive to changes in snow and ice conditions resulting from atmospheric and oceanographic forcing and the local heat flux environment. Variations of several dB in 45 deg incidence backscatter occur in response to a combination of thermally-regulated parameters including sea-ice brine volume, snow and ice complex dielectric properties, and snow physical properties.

  1. Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: Evidence from 36Cl dating

    NASA Astrophysics Data System (ADS)

    Jomelli, Vincent; Schimmelpfennig, Irene; Favier, Vincent; Mokadem, Fatima; Landais, Amaelle; Rinterknecht, Vincent; Brunstein, Daniel; Verfaillie, Deborah; Legentil, Claude; Aumaitre, Georges; Bourlès, Didier L.; Keddadouche, Karim

    2018-03-01

    Documenting sub-Antarctic glacier variations during the local last glacial maximum is of major interest to better understand their sensitivity to atmospheric and oceanic temperature changes in conjunction with Antarctic ice sheet changes. However, data are sparse because evidence of earlier glacier extents is for most sub-Antarctic islands located offshore making their observation complex. Here, we present 22 cosmogenic 36Cl surface exposure ages obtained from five sites at Kerguelen to document the glacial history. The 36Cl ages from roche moutonnee surfaces, erratics and boulders collected on moraines span from 41.9 ± 4.4 ka to 14.3 ± 1.1 ka. Ice began to retreat on the eastern part of the main island before 41.4 ± 4.4 ka. Slow deglaciation occurred from ∼41 to ∼29 ka. There is no evidence of advances between 29 ka and the Antarctic Cold Reversal (ACR) period (∼14.5-12.9 ka) period. During the ACR, however, the Bontemps and possibly Belvedere moraines were formed by the advance of a Cook Ice Cap outlet glacier and a local glacier on the Presque Ile Jeanne d'Arc, respectively. This glacier evolution differs partly from that of glaciers in New Zealand and in Patagonia. These asynchronous glacier changes in the sub-Antarctic region are however in agreement with sea surface temperature changes recorded around Antarctica, which suggest differences in the climate evolution of the Indo-Pacific and Atlantic sectors of Antarctica.

  2. The last glaciation of Bear Peninsula, central Amundsen Sea Embayment of Antarctica: Constraints on timing and duration revealed by in situ cosmogenic 14C and 10Be dating

    NASA Astrophysics Data System (ADS)

    Johnson, Joanne S.; Smith, James A.; Schaefer, Joerg M.; Young, Nicolás E.; Goehring, Brent M.; Hillenbrand, Claus-Dieter; Lamp, Jennifer L.; Finkel, Robert C.; Gohl, Karsten

    2017-12-01

    Ice streams in the Pine Island-Thwaites region of West Antarctica currently dominate contributions to sea level rise from the Antarctic ice sheet. Predictions of future ice-mass loss from this area rely on physical models that are validated with geological constraints on past extent, thickness and timing of ice cover. However, terrestrial records of ice sheet history from the region remain sparse, resulting in significant model uncertainties. We report glacial-geological evidence for the duration and timing of the last glaciation of Hunt Bluff, in the central Amundsen Sea Embayment. A multi-nuclide approach was used, measuring cosmogenic 10Be and in situ14C in bedrock surfaces and a perched erratic cobble. Bedrock 10Be ages (118-144 ka) reflect multiple periods of exposure and ice-cover, not continuous exposure since the last interglacial as had previously been hypothesized. In situ14C dating suggests that the last glaciation of Hunt Bluff did not start until 21.1 ± 5.8 ka - probably during the Last Glacial Maximum - and finished by 9.6 ± 0.9 ka, at the same time as ice sheet retreat from the continental shelf was complete. Thickening of ice at Hunt Bluff most likely post-dated the maximum extent of grounded ice on the outer continental shelf. Flow re-organisation provides a possible explanation for this, with the date for onset of ice-cover at Hunt Bluff providing a minimum age for the timing of convergence of the Dotson and Getz tributaries to form a single palaeo-ice stream. This is the first time that timing of onset of ice cover has been constrained in the Amundsen Sea Embayment.

  3. Improved age constraints for the retreat of the Irish Sea Ice Stream

    NASA Astrophysics Data System (ADS)

    Smedley, Rachel; Chiverrell, Richard; Duller, Geoff; Scourse, James; Small, David; Fabel, Derek; Burke, Matthew; Clarke, Chris; McCarroll, Danny; McCarron, Stephen; O'Cofaigh, Colm; Roberts, David

    2016-04-01

    BRITICE-CHRONO is a large (> 45 researchers) consortium project working to provide an extensive geochronological dataset constraining the rate of retreat of a number of ice streams of the British-Irish Ice Sheet following the Last Glacial Maximum. When complete, the large empirical dataset produced by BRITICE-CHRONO will be integrated into model simulations to better understand the behaviour of the British-Irish Ice Sheet in response to past climate change, and provide an analogue for contemporary ice sheets. A major feature of the British-Irish Ice Sheet was the dynamic Irish Sea Ice Stream, which drained a large proportion of the ice sheet and extended to the proposed southern limit of glaciation upon the Isles of Scilly (Scourse, 1991). This study will focus on a large suite of terrestrial samples that were collected along a transect of the Irish Sea basin, covering the line of ice retreat from the Isles of Scilly (50°N) in the south, to the Isle of Man (54°N) in the north; a distance of 500 km. Ages are determined for both the eastern and western margins of the Irish Sea using single-grain luminescence dating (39 samples) and terrestrial cosmogenic nuclide dating (10 samples). A Bayesian sequence model is then used in combination with the prior information determined for deglaciation to integrate the geochronological datasets, and assess retreat rates for the Irish Sea Ice Stream. Scourse, J.D., 1991. Late Pleistocene stratigraphy and palaeobotany of the Isles of Scilly. Philosophical Transactions of the Royal Society of London B334, 405 - 448.

  4. Characterizing post-drainage succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI data

    USGS Publications Warehouse

    Regmi, Prajna; Grosse, Guido; Jones, Miriam C.; Jones, Benjamin M.; Walter Anthony, Katey

    2012-01-01

    Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR) data of the German TerraSAR-X satellite from the 2009 growing season (July–September) for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI) calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a) TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b) Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c) TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old). No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.

  5. Age and Stratigraphic Relationships in Massif-Debris-Apron Terrain in Western Phlegra Montes, Mars

    NASA Astrophysics Data System (ADS)

    Kress, A.; Head, J. W.; Safaeinili, A.; Holt, J.; Plaut, J.; Posiolova, L.; Phillips, R.; Seu, R.; Sharad Team

    2010-03-01

    SHARAD returns from lobate debris aprons (LDA) near Phlegra Montes may show similarly high ice contents to other LDA on Mars; geomorphology and surface ages of the deposits confirm this detection and support a debris-covered-glacier origin for LDA.

  6. Neoglacial fluctuations of terrestrial, tidewater, and calving lacustrine glaciers, Blackstone-Spencer Ice Complex, Kenai Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Crossen, Kristine June

    1997-12-01

    The glaciers surrounding the Blackstone-Spencer Ice Complex display a variety of termini types: Tebenkov, Spencer, Bartlett, Skookum, Trail, Burns, Shakespeare, Marquette, Lawrence, and Ripon glaciers end in terrestrial margins; Blackstone and Beloit glaciers have tidewater termini; and Portage Glacier has a calving lacustrine margin. In addition, steep temperature and precipitation gradients exist across the ice complex from the maritime environment of Prince William Sound to the colder, drier interior. The Neoglacial history of Tebenkov Glacier, as based on overrun trees near the terminus, shows advances ca. 250- 430 AD (calibrated date), ca. 1215-1275 AD (calibrated date), and ca. 1320-1430 AD (tree ring evidence), all intervals of glacier advance around the Gulf of Alaska. However, two tidewater glaciers in Blackstone Bay retreated from their outermost moraines by 1350 AD, apparently asynchronously with respect to the regional climate signal. The most extensive Kenai Mountain glacier expansions during Neoglaciation occurred in the late Little Ice Age. The outermost moraines are adjacent to mature forest stands and bog peats that yield dates as old as 5,600 BP. Prince William Sound glaciers advanced during two Little Ice Age cold periods, 1380-1680 and 1830-1900 AD. The terrestrial glaciers around the Blackstone-Spencer Ice Complex all built moraines during the 19th century and began retreating between 1875 and 1900 AD. Portage and Burns glaciers began retreating between 1790 and 1810 AD, but their margins remained close to the outermost moraines during the 19th century. Regional glacier fluctuations are broadly synchronous in the Gulf of Alaska region. With the exception of the two tidewater glaciers in Blackstone Bay, all glaciers in the Kenai Mountains, no matter their sizes, altitudes, orientations, or types of margins, retreated at the end of the Little Ice Age. The climate signal, especially temperature, appears to be the strongest control on glacier behavior during the last millennium.

  7. Sub-Antarctic glacier extensions in the Kerguelen region (49°S, Indian Ocean) over the past 24,000 years constrained by 36Cl moraine dating

    NASA Astrophysics Data System (ADS)

    Jomelli, Vincent; Mokadem, Fatima; Schimmelpfennig, Irene; Chapron, Emmanuel; Rinterknecht, Vincent; Favier, Vincent; Verfaillie, Deborah; Brunstein, Daniel; Legentil, Claude; Michel, Elisabeth; Swingedouw, Didier; Jaouen, Alain; Aumaitre, Georges; Bourlès, Didier L.; Keddadouche, Karim

    2017-04-01

    Similar to many other regions in the world, glaciers in the southern sub-polar regions are currently retreating. In the Kerguelen Islands (49°S, 69°E), the mass balance of the Cook Ice Cap (CIC), the largest ice cap in this region, experienced dramatic shrinking between 1960 and 2013 with retreat rates among the highest in the world. This observation needs to be evaluated in a long-term context. However, data on the past glacier extents are sparse in the sub-Antarctic regions. To investigate the deglaciation pattern since the Last Glacial Maximum (LGM) period, we present the first 13 cosmogenic 36Cl surface exposure ages from four sites in the Kerguelen Islands. The 36Cl ages from erratic and moraine boulders span from 24.4 ± 2.7 ka to 0.3 ± 0.1 ka. We combined these ages with existing glacio-marine radiocarbon ages and bathymetric data to document the temporal and spatial changes of the island's glacial history. Ice began to retreat on the main island before 24.4 ± 2.7 ka until around the time of the Antarctic Cold Reversal (ACR) period (∼14.5-12.9 ka), during which the Bontemps moraine was formed by the advance of a CIC outlet glacier. Deglaciation continued during the Holocene probably until 3 ka with evidence of minor advances during the last millennium. This chronology is in pace with major changes in δ18O in a recent West Antarctica ice core record, showing that Kerguelen Islands glaciers are particularly sensitive and relevant to document climate change in the southern polar regions.

  8. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.

    2018-02-01

    Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.

  9. Effect of knee joint icing on knee extension strength and knee pain early after total knee arthroplasty: a randomized cross-over study.

    PubMed

    Holm, Bente; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas

    2012-08-01

    To investigate the acute effect of knee joint icing on knee extension strength and knee pain in patients shortly after total knee arthroplasty. A prospective, single-blinded, randomized, cross-over study. A fast-track orthopaedic arthroplasty unit at a university hospital. Twenty patients (mean age 66 years; 10 women) scheduled for primary unilateral total knee arthroplasty. The patients were treated on two days (day 7 and day 10) postoperatively. On one day they received 30 minutes of knee icing (active treatment) and on the other day they received 30 minutes of elbow icing (control treatment). The order of treatments was randomized. Maximal knee extension strength (primary outcome), knee pain at rest and knee pain during the maximal knee extensions were measured 2-5 minutes before and 2-5 minutes after both treatments by an assessor blinded for active or control treatment. The change in knee extension strength associated with knee icing was not significantly different from that of elbow icing (knee icing change (mean (1 SD)) -0.01 (0.07) Nm/kg, elbow icing change -0.02 (0.07) Nm/kg, P = 0.493). Likewise, the changes in knee pain at rest (P = 0.475), or knee pain during the knee extension strength measurements (P = 0.422) were not different between treatments. In contrast to observations in experimental knee effusion models and inflamed knee joints, knee joint icing for 30 minutes shortly after total knee arthroplasty had no acute effect on knee extension strength or knee pain.

  10. Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages.

    USGS Publications Warehouse

    Croft, S.K.; Kieffer, S.W.; Ahrens, T.J.

    1979-01-01

    We produced a series of decimeter-sized impact craters in blocks of ice near 0oC and -70oC and in ice-saturated sand near -70oC as a preliminary investigation of cratering in materials analogous to those found on Mars and the outer solar satellites. Crater diameters in the ice-saturated sand were 2 times larger than craters in the same energy and velocity range in competent blocks of granite, basalt and cement. Craters in ice were c.3 times larger. Martian impact crater energy versus diameter scaling may thus be a function of latitude. -from Authors

  11. Glaciers of Greenland

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    1995-01-01

    Landsat imagery, combined with aerial photography, sketch maps, and diagrams, is used as the basis for a description of the geography, climatology, and glaciology, including mass balance, variation, and hazards, of the Greenland ice sheet and local ice caps and glaciers. The Greenland ice sheet, with an estimated area of 1,736,095+/-100 km2 and volume of 2,600,000 km3, is the second largest glacier on the planet and the largest relict of the Ice Age in the Northern Hemisphere. Greenland also has 48,599+/-100 km2 of local ice caps and other types of glaciers in coastal areas and islands beyond the margin of the ice sheet.

  12. Lake carbonate-δ18 records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns

    USGS Publications Warehouse

    Anderson, Lesleigh; Finney, Bruce P.; Shapley, Mark D.

    2011-01-01

    A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ∼AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ∼AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ∼250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.

  13. Lake carbonate-δ 18O records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh; Finney, Bruce P.; Shapley, Mark D.

    2011-04-01

    A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ 18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake's hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ 18O values decrease. Past lake-water δ 18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ 18O, supplemented by those in carbonate and organic δ 13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ˜AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ˜AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ 18O, a similarly small, stratified, alkaline lake located ˜250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.

  14. Ring-Mold Craters on Lineated Valley Fill, Lobate Debris Aprons, and Concentric Crater Fill on Mars: Implications for Near-Surface Structure, Composition, and Age.

    NASA Astrophysics Data System (ADS)

    Kress, A.; Head, J. W.

    2009-03-01

    Analysis of ring-mold crater populations on lineated valley fill, lobate debris aprons, and concentric crater fill on Mars and of ice-impact experiments suggest crater-count-derived ages may be erroneously old.

  15. Late Pleistocene glacial chronology of the Retezat Mts, Southern Carpathians, using 10Be exposure ages

    NASA Astrophysics Data System (ADS)

    Ruszkiczay-Rüdiger, Zsófia; Kern, Zoltán; Urdea, Petru; Braucher, Régis; Madarász, Balázs; Schimmelpfennig, Irene

    2015-04-01

    Our knowledge on the timing of glacial advances in the Southern Carpathians is limited. Recently, some attempts have been made to develop an improved temporal framework for the glaciations of the region using cosmogenic 10Be exposure dating. However, glacial chronology of the Romanian Carpathians remains contradictory. E.g. the timing of the maximum ice advance appears to be asynchronous within the area and also with other dated glacial events in Europe. Main objective of our study is to utilize cosmogenic in situ produced 10Be dating to disentangle the contradictions of the Southern Carpathian Late Pleistocene glacial chronology. Firstly, previously published 10Be data are recalculated in accordance with the new half-life, standardization and production rate of 10Be. The recalculated 10Be exposure ages of the second largest (M2) moraines in the Retezat Mts. appear to be ca. 19-24% older than exposure ages calculated by Reuther et al. (2007, Quat. Int. 164-165, 151-169). This contradicts the earlier conclusions suggesting post LGM age of M2 glacial advance and suggests that M2 moraines can be connected to the end of the LGM with final stabilization possibly at the beginning of the Late Glacial. We emphasize that it is ambiguous to correlate directly the exposure-dated glacier chronologies with millennial scale climate changes due to uncertainties in sample collection and in computation of exposure ages from measured nuclide concentrations. New 10Be samples were collected in order to determine the 10Be exposure age of moraines outside the most prominent generation (M2) including the largest and oldest moraine (M1) and the landforms connected to the smallest ice advances (M4), which remained undated so far. The new exposure ages of M2 moraines are well in harmony with the recalculated ages of Reuther at al. (2007). 10Be exposure age of boulders on the smallest moraine suggest that the last glaciers disappeared in the area during the Late Glacial, indicating no glaciation during the Younger Dryas and Holocene. Previous works, based on geomorphologic analogies and pedological properties suggested that the M1 ice advance was older than LGM, and possibly occurred during the MIS4. Our 10Be exposure dating provided LGM ages for boulders on the M1 side moraine. It is question of further research whether these ages show the time when the glacier abandoned the moraine or they only indicate an LGM erosional event affecting an older moraine. If we accept the LGM age of maximum ice extent (M1), our 10Be exposure age data enables the calculation of a mean glacier retreat rate of 1.3 m/a for the period between M1 and M4 (21.4 to 13.6ka). Alternatively, considering only the oldest 10Be exposure age of the M2 moraine, the M2 to M4 (20.2-13.6ka) glacier retreat rate was slightly lower: 1.1 m/a. Our research was supported by the OTKA PD83610, by the MTA-CNRS cooperation (NKM-96/2014), by the Bolyai Scholarship, and by the 'Lendület' program of the HAS (LP2012-27/2012). The 10Be measurements were performed at the ASTER AMS national facility (CEREGE, Aix en Provence, France).

  16. Implementation of an all-ages mandatory helmet policy for ice skating.

    PubMed

    Thibault-Halman, Ginette; Fenerty, Lynne; Wheadon-Hore, Kathie; Walling, Simon; Cusimano, Michael D; Clarke, David B

    2015-12-01

    Ice skaters sustain a significant number of head injuries each winter. We are the first to implement an all-ages helmet policy at a university-based Canadian arena. We report our experience from a cross-sectional observational study as well as the policy's consequences on helmet use and skating participation. Educational programming was provided prior to policy implementation. Observations of helmet use, falls and skater demographics were conducted prior to education/implementation and after policy implementation. The number of skaters observed was essentially unchanged by the policy; 361 skaters were observed pre-implementation, while 358 were observed post-implementation during the same number of observation-hours. Pre-implementation, helmet use ranged from 97% among children under 12 to 10% among adults; post-implementation use in all skaters was 99%. Falls were observed among all age groups, with preponderance among those aged 4-12. An all-ages helmet policy was successful both in achieving helmet use among all skaters and in maintaining participation rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Project Ice Storm: Prenatal Maternal Stress Affects Cognitive and Linguistic Functioning in 5 1/2-Year-Old Children

    ERIC Educational Resources Information Center

    Laplante, David P.; Brunet, Alain; Schmitz, Norbert; Ciampi, Antonio; King, Suzanne

    2008-01-01

    The study used data from Project Ice Storm to determine the extent to which exposure to prenatal maternal stress due to a natural disaster can explain variance in the intellectual and language performance of offspring at age 5 1/2.

  18. Precise Surface Exposure Dating of Early Holocene and Little Ice Age Moraines in the Cordillera Vilcabamba of Southern Peru

    NASA Astrophysics Data System (ADS)

    Licciardi, J. M.; Schaefer, J. M.; Lund, D. C.; Taggart, J. R.

    2008-12-01

    We have established precise ages of two glacial events in the tropical Andean highlands of southern Peru. The field site is located on the flanks of Nevado Salcantay (6271 m asl; 13°20'S latitude), the highest peak in the Cordillera Vilcabamba. A two-fold sequence of nested lateral and end moraines was mapped in a glacial trough emanating from the south face of Salcantay. Well-defined outer and inner moraines were deposited by valley glaciers that terminated 5 km and 3 km, respectively, from their head on the Salcantay massif. Cosmogenic 10Be surface exposure dating of boulders on the outer (n = 7) and inner (n = 7) moraine crests expands upon initial age control for these deposits and improves substantially on the precision of earlier 10Be measurements. The new results yield mean ages of 9.0 ± 0.3 ka for the outer moraine and 195 ± 24 years for the inner moraine, corresponding to glacial events during the early and latest Holocene. These ages are derived using the CRONUS-Earth 10Be exposure age calculator with Lal-Stone production rate scaling and the default height-pressure relationship. The inner moraine age correlates with the timing of the Little Ice Age as defined from northern mid- and high latitude records, and indicates considerable expansion of glaciers heading on Nevado Salcantay during this climatic minimum. Recent geomorphic mapping has identified similar sequences of moraines in adjacent drainages on and near Salcantay, suggesting a broader regional signal of two prominent Holocene glacial events in this segment of the southern Peruvian Andes; 10Be dating of these additional moraines is underway. Our new glacier chronologies complement ice core and lacustrine paleoclimate records in the vicinity, thereby increasing spatial and temporal coverage for identifying patterns of climate change in the tropical Andes during the Holocene. Apart from their paleoclimatic significance, the results also demonstrate a newly- developed capability of 10Be exposure dating for establishing high-resolution chronologies from historical glacial deposits.

  19. A minimal cost function method for optimizing the age-Depth relation of deep-sea sediment cores

    NASA Astrophysics Data System (ADS)

    Brüggemann, Wolfgang

    1992-08-01

    The question of an optimal age-depth relation for deep-sea sediment cores has been raised frequently. The data from such cores (e.g., δ18O values) are used to test the astronomical theory of ice ages as established by Milankovitch in 1938. In this work, we use a minimal cost function approach to find simultaneously an optimal age-depth relation and a linear model that optimally links solar insolation or other model input with global ice volume. Thus a general tool for the calibration of deep-sea cores to arbitrary tuning targets is presented. In this inverse modeling type approach, an objective function is minimized that penalizes: (1) the deviation of the data from the theoretical linear model (whose transfer function can be computed analytically for a given age-depth relation) and (2) the violation of a set of plausible assumptions about the model, the data and the obtained correction of a first guess age-depth function. These assumptions have been suggested before but are now quantified and incorporated explicitly into the objective function as penalty terms. We formulate an optimization problem that is solved numerically by conjugate gradient type methods. Using this direct approach, we obtain high coherences in the Milankovitch frequency bands (over 90%). Not only the data time series but also the the derived correction to a first guess linear age-depth function (and therefore the sedimentation rate) itself contains significant energy in a broad frequency band around 100 kyr. The use of a sedimentation rate which varies continuously on ice age time scales results in a shift of energy from 100 kyr in the original data spectrum to 41, 23, and 19 kyr in the spectrum of the corrected data. However, a large proportion of the data variance remains unexplained, particularly in the 100 kyr frequency band, where there is no significant input by orbital forcing. The presented method is applied to a real sediment core and to the SPECMAP stack, and results are compared with those obtained in earlier investigations.

  20. Eemian and penultimate transition reflected in the chemical ice core record from Dome C

    NASA Astrophysics Data System (ADS)

    Bigler, M.; Lambert, F.; Stauffer, B.; Röthlisberger, R.; Wolff, E. W.

    2003-04-01

    Within the scope of the European Project for Ice Coring in Antarctica (EPICA) chemical analyses have been done along the Dome C ice core. Among other substances, Ca2+, dust, Na+, NH_4{}+, NO_3{}- and electrolytical melt water conductivity have been measured at 1 cm resolution with the Bern Continuous Flow Analysis (CFA) system. Here we present new data from the Eemian and the preceding transition covering an age interval from approximately 180 kyr to 110 kyr before present. This sequence is compared with the Holocene and the last transition, mainly with emphasis on terrestrial and marine tracers. Concentration levels for the two periods compare quite well, but the general shape differs considerably. The changes in dust input to Dome C seemed to have been much more abrupt during the penultimate transition than during the last transition (18 to 15 kyr BP). This may reflect different conditions and/or processes in the dust source region.

  1. Ice stream behaviour in the western sector of the North Sea during the end of the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Roberts, David; Evans, David; Clark, Chris; Bateman, Mark; Livingstone, Stephen; Medialdea, Alicia; Cofaigh, Colm O.; Grimoldi, Elena; Callard, Louise; Dove, Dayton; Stewart, Heather; Davies, Bethan; Chiverell, Richard

    2016-04-01

    During the last glacial cycle the East coast of the UK was overrun by the British-Irish Ice Sheet (BIIS) flowing eastwards and southwards. In recent years it has become evident that several ice streams including the Tweed, Tyne, and Stainmore Gap ice streams, as well as the late stage North Sea Lobe (NSL), all played a role in shaping the glacial landscape during this period, but understanding the flow phasing of these ice streams during advance and collapse has proved challenging. Here we present new data from the seafloor collected during recent work undertaken by the Britice Chrono and Glanam project teams during cruise JC123 in the North Sea. Sub-bottom seafloor data together with new swath data clearly show that the final phases of the collapse of the NSL were controlled by ice sourced from the Firth of Forth ice stream which deglaciated in a NNW trajectory. Other ice streams being fed from the west (e.g. Stainmore, Tyne, Tweed) were not influential in final phase ice retreat from the southern North Sea. The Forth ice imprint is characterised by several grounding zone/till wedges marking dynamic, oscillatory retreat of the ice as it retreated along an offshore corridor between North Yorkshire and Northumberland. Repeated packages of tills, ice marginal and glaciomarine sediments, which drape glacially scoured bedrock terrain and drumlins along this corridor, point to marine inundation accompanying ice retreat. New TCN ages suggest decoupling of the Tyne Gap ice stream and NSL between 17.8 and 16.5 ka and this coincides with rapid, regional collapse of the NSL between 17.2 and 16.0 ka along the Yorkshire and Durham coasts (new OSL ages; Britice Chrono). Hence, both the central and northern sectors of the BIIS were being strongly influenced by marine margin instability during the latter phases of the last glacial cycle.

  2. Uranium-series coral ages from the US Atlantic Coastal Plain-the "80 ka problem" revisited

    USGS Publications Warehouse

    Wehmiller, J. F.; Simmons, K.R.; Cheng, H.; Edwards, R. Lawrence; Martin-McNaughton, J.; York, L.L.; Krantz, D.E.; Shen, C.-C.

    2004-01-01

    Uranium series coral ages for emergent units from the passive continental margin US Atlantic Coastal Plain (ACP) suggest sea level above present levels at the end of marine oxygen isotope stage (MIS) 5, contradicting age-elevation relations based on marine isotopic or coral reef models of ice equivalent sea level. We have reexamined this problem by obtaining high precision 230Th/238U and 231Pa/235U thermal ionization mass spectrometric ages for recently collected and carefully cleaned ACP corals, many in situ. We recognize samples that show no evidence for diagenesis on the basis of uranium isotopic composition and age concordance. Combining new and earlier data, among those ages close to or within the age range of MIS 5, over 85% cluster between 65 and 85 ka BP. Of the corals that we have analyzed, those that show the least evidence for diagenesis on the basis of uranium isotopic composition and age concordance have ages between 80 and 85 ka BP, consistent with a MIS 5a correlation. The units from which these samples have been collected are all emergent and have elevations within ???3-5m of those few units where early stage 5 (???125,000 ka BP) coral ages have been obtained. The ACP appears to record an unusual history of relative sea level throughout MIS 5, a history that is also apparent in the dated coral record for Bermuda. We speculate that this history is related to the regional (near-to intermediate-field) effects of ancestral Laurentide Ice sheets on last interglacial shorelines of the western North Atlantic. ?? 2004 Elsevier Ltd and INQUA. All rights reserved.

  3. Frozen in Time? Microbial strategies for survival and carbon metabolism over geologic time in a Pleistocene permafrost chronosequence

    NASA Astrophysics Data System (ADS)

    Mackelprang, R.; Douglas, T. A.; Waldrop, M. P.

    2014-12-01

    Permafrost soils have received tremendous interest due to their importance as a global carbon store with the potential to be thawed over the coming centuries. Instead of being 'frozen in time,' permafrost contains active microbes. Most metagenomic studies have focused on Holocene aged permafrost. Here, we target Pleistocene aged ice and carbon rich permafrost (Yedoma), which can differ in carbon content and stage of decay. Our aim was to understand how microbes in the permafrost transform organic matter over geologic time and to identify physiological and biochemical adaptations that enable long-term survival. We used next-generation sequencing to characterize microbial communities along a permafrost age gradient. Samples were collected from the Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel near Fox, AK, which penetrates a hillside providing access to permafrost ranging in age from 12 to 40 kyr. DNA was extracted directly from unthawed samples. 16S rRNA amplicon (16S) and shotgun metagenome sequencing revealed significant age-driven differences. First, microbial diversity declines with permafrost age, likely due to long-term exposure to environmental stresses and a reduction in metabolic resources. Second, we observed taxonomic differences among ages, with an increasing abundance of Firmicutes (endospore-formers) in older samples, suggesting that dormancy is a common survival strategy in older permafrost. Ordination of 16S and metagenome data revealed age-based clustering. Genes differing significantly between age categories included those involved in lipopolysaccharide assembly, cold-response, and carbon processing. These data point to the physiological adaptations to long-term frozen conditions and to the metabolic processes utilized in ancient permafrost. In fact, a gene common in older samples is involved in cadaverine production, which could potentially explain the putrefied smell of Pleistocene aged permafrost. Coupled with soil chemistry analysis, these processes show how a tightly linked microbial food web can survive over geologic time with no influx of new energy or materials. This web may also help to explain differences in Pleistocene carbon chemistry and why this carbon is highly bioavailable for microbial consumption post thaw.

  4. Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk.

    PubMed

    van der Hee, Regine M; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S M J E; Rietveld, Anton G; Wilkinson, Joy E; Quail, Patricia J; Berry, Mark J; Dainty, Jack R; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-05-01

    Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Effects on calcium absorption were evaluated by analysis of variance. Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.

  5. Transesophageal echocardiography and intracardiac echocardiography differently predict potential technical challenges or failures of interatrial shunts catheter-based closure.

    PubMed

    Rigatelli, Gianluca; Rigateli, Gianluca; Cardaioli, Paolo; Braggion, Gabriele; Aggio, Silvio; Giordan, Massimo; Magro, Beatrice; Nascimben, Alberto; Favaro, Alberto; Roncon, Loris; Rincon, Loris

    2007-02-01

    We sought to prospectively assess the role of transesophageal (TEE) and intracardiac echocardiography (ICE) in detecting potential technical difficulties or failures in patients submitted to interatrial shunts percutaneous closure. We prospectively enrolled 46 consecutive patients (mean age 35+/-28, 8 years, 30 female) referred to our center for catheter-based closure of interatrial shunts. All patients were screened with TEE before the intervention. Patients who met the inclusion criteria underwent ICE study before the closure attempt (40 patients). TEE detected potential technical difficulties in 22.5% (9/40) patients, whereas ICE detected technical difficulties in 32.5% (13/40 patients). In patients with positive TEE/ICE the procedural success (92.4% versus 100% and, P = ns) and follow-up failure rate (7.7% versus 0%, P = ns) were similar to patients with negative TEE/ICE, whereas the fluoroscopy time (7 +/- 1.2 versus 5 +/- 0.7 minutes, P < 0.03), the procedural time (41 +/- 4.1 versus 30 +/- 8.2 minutes, P +/- 0.03), and technical difficulties rate (23.1% versus 0%, P = 0.013) were higher. Differences between ICE and TEE in the evaluation of rims, measurement of ASD or fossa ovalis, and detection of venous valve and embryonic septal membrane remnants impacted on technical challenges and on procedural and fluoroscopy times but did not influence the success rate and follow-up failure rate.

  6. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    USGS Publications Warehouse

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif G.; Backman, Jan; Bjork, Goran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Macho, Natalia Barrientos; Cherniykh, Dennis; Coxall, Helen; Eriksson, Bjorn; Floden, Tom; Gemery, Laura; Gustafsson, Orjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (~140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  7. Medieval Warm Period and Little Ice Age Signatures in the Distribution of Modern Ocean Temperatures

    NASA Astrophysics Data System (ADS)

    Gebbie, G.; Huybers, P. J.

    2017-12-01

    It is well established both that global temperatures have varied overthe last millenium and that the interior ocean reflects surfaceproperties inherited over these timescales. Signatures of theMedieval Warm Period and Little Ice Age are thus to be expected in themodern ocean state, though the magnitude of these effects and whetherthey are detectable is unclear. Analysis of changes in temperatureacross those obtained in the 1870s as part of the theH.M.S. Challenger expedition, the 1990s World Ocean CirculationExperiment, and recent Argo observations shows a consistent pattern:the upper ocean and Atlantic have warmed, but the oldest waters inthe deep Pacific appear to have cooled. The implications of pressureeffects on the H.M.S. Challenger thermometers and uncertainties indepth of observations are non-negligible but do not appear tofundamentally alter this pattern. Inversion of the modern hydrographyusing ocean transport estimates derived from passive tracer andradiocarbon observations indicates that deep Pacific cooling could bea vestige of the Medieval Warm Period, and that warming elsewhere reflects thecombined effects of emergence from the Little Ice Age and modernanthropogenic warming. Implications for longterm variations in oceanheat uptake and separating natural and anthropogenic contributions to themodern energy imbalance are discussed.

  8. Ice Core Depth-Age Relation for Vostok delta-D and Dome Fuji delta-18O Records Based on the Devils Hole Paleotemperature Chronology

    USGS Publications Warehouse

    Landwehr, Jurate Maciunas

    2002-01-01

    This report presents the data for the Vostok - Devils Hole chronology, termed V-DH chronology, for the Antarctic Vostok ice core record. This depth - age relation is based on a join between the Vostok deuterium profile (D) and the stable oxygen isotope ratio (18O) record of paleotemperature from a calcitic core at Devils Hole, Nevada, using the algorithm developed by Landwehr and Winograd (2001). Both the control points defining the V-DH chronology and the numeric values for the chronology are given. In addition, a plausible chronology for a deformed bottom portion of the Vostok core developed with this algorithm is presented. Landwehr and Winograd (2001) demonstrated the broader utility of their algorithm by applying it to another appropriate Antarctic paleotemperature record, the Antarctic Dome Fuji ice core 18O record. Control points for this chronology are also presented in this report but deemed preliminary because, to date, investigators have published only the visual trace and not the numeric values for the Dome Fuji 18O record. The total uncertainty that can be associated with the assigned ages is also given.

  9. Comments on Hamaker's hypothesis of a coming CO/sub 2/-induced ice age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCracken, M.C.

    1989-06-01

    Over the past several years, John Hamaker and a number of followers have put forth a hypothesis that the imminent demise of the world's forests from lack of vital mineral nutrients will trigger an ice age. Their evidence in support of this hypothesis has recently appeared as a videotape entitled ''Stopping the Coming Ice Age.'' These comments were prepared in response to the arguments presented on this tape, which several people have suggested presents a highly important scientific analysis unfairly receiving too little attention. I will focus primarily on analysis of the climatic aspects of the Hamaker hypothesis. The videotapemore » attempts to put forth a coherent and appealing story, but does so by taking comments of some scientists out of context, by quoting some scientists out of their field of expertise, by skimming over some serious shortcomings, by facile assumptions not easily spotted by the non-specialist, and by mixing in many true statements (which makes it especially difficult for the lay listener to spot the problems). Overall, these actions combine to make the presentation of the hypothesis very appealing, but also very deceptive.« less

  10. Climate hazards, adaptation and "resilience" of societies (early Little Ice Age, west of France).

    NASA Astrophysics Data System (ADS)

    Athimon, Emmanuelle; Maanan, Mohamed

    2016-04-01

    Over the past ten to fifteen years, climate hazards and adaptation have received more attention due to the current climate change. Climate historians have gathered strong evidence that the world's climate has evolved over the past millennium and one of the most significant changes took place during the Little Ice Age. Recently, a set of questions has emerged: what were the effects of the Little Ice Age on human's societies? How did humans adapt to these climate changes? How did they react to extreme weather-related events? Using examples of climate hazards from the West of France during the beginning of the Little Ice Age (xivth-xviith centuries) such as storms, flooding, drought, harsh winters, the poster aims at showing how the past societies can constitute a source of inspiration for present ones. Through schemas, this research exposes the system's rebound capacity, points out the importance of the historical depth in research on human's adaptation and resilience and shows the value of integrating a historical approach. It reveals that History contributes to the knowledge of the relationship between societies and climate hazards. Data on climate hazards and adaptation of societies stem from historical sources such as chronicles, diaries, books of accounts, records of cities repairs. To protect themselves and their goods, medieval and modern societies had developed specific skills, practices and strategies. From the xivth to the xviiith century, there is an increase of defense by dikes in the low Loire, as for example the construction of those amongst Longué and Ponts-de-Cé between the early xivth century and 1407. The French kingdom's authorities also tried increasingly to provide technical, material, logistical and fiscal support: for instance, during the winter 1564-1565, several bridges have been destroyed by a river flooding in Nantes. The King Charles IX then offered to people of Nantes part of the funds from taxes on the main activities such as the exports of wine or salt to finance the restoration of the bridges. So it appears that these societies have been able to adapt through a collective memory, a lifestyle, a significant perception of risks, a territory management, the construction of infrastructures, etc. Key words : Little Ice Age, West of France, climate hazards, resilience, adaptation. This work was supported by grants from the Fondation de France through the research program « Quels littoraux pour demain? ».

  11. The Mount Logan (Yukon) Ice Cores: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Fisher, D. A.

    2004-05-01

    Three ice cores were taken at different elevations on or near My Logan in the years 2001 and 2002. The summit core (PRCol) comes from the summit plateau ( 5340 masl, length 187 m to bedrock, mean temperature -29 C ) and was done by the Geological Survey of Canada. The NIPR group cored 210m on the flanks of the mountain at King Col (4200 masl mean temperature -16C) and the UNH group cored 20 km from the mountain at Eclipse "Dome" (3015 masl,length 345 m mean temperature -5C) . The three cores were done cooperatively by GSC, NIPR and UNH and cover nominally 30 ka, 1 ka and 2ka respectively . Located very close to the Gulf of Alaska these core records are thought to reflect the climate history of the Pacific Ocean and having three widely spaced elevations, the sites "see" different distances to different sources. The lowest site (Eclipse) has excellent seasonals but a very muted δ 18O history with no obvious little ice age, whereas the most recent 1ka of the PRCol summit sites contains two very large and sudden δ 18O and d (deuterium excess) shifts at 1850 AD and ~ 800 AD. The δ 18O shifts which happen from one year to the next are about 4 o/oo . The summit site (PRCol) δ 18O response is "backwards", ie the Little Ice Age δ 18O values are 4 o/oo more positive than recent ones. The PRCol δ 18O and d suggest that the source water can either be ëlocalí (Gulf of Alaska) or very distant (tropics) . The Eclipse site seems only to get the local water . A massive dust storm originating in central Asia (Gobi) in April 2001 dumped a visible layer all over the St Elias Mountains and this layer was sampled, to provide a calibration "Asian dust event". The satellite and isotoic signatures both agreed that Gobi was the source. The PRCol record covers the Holocene and well back into the ice age. The transition is defined by a sudden ECM shift on the flanks of a more gradual O18 shift. Acknowledgements. Logan consortium consists of : Geological Survey of Canada : Jocelyne Bourgeois, Mike Demuth, David Fisher, Roy Koerner,Chris Zdanowicz, James Zheng. University of Ottawa: Ian Clarke,Raphaelle Cardyn. National Institute of Polar Research (Japan): Kumiko Goto-Azuma University of New Hampshire: Cam Wake, Kaplan Yalcin. University of Maine: Karl Kreutz, Paul Mayewski, Erich Osterberg. Arctic Institute of North America: Gerald Holdsworth. University of Washington: Eric J. Steig, Summer B. Rupper. University of Copenhagen: Dorthe Dahl-Jensen. David Fisher is the presenter but many contributed to what is a joint preliminary offering.

  12. Low-latitude ice cores and freshwater availability

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie Marie

    2009-12-01

    Recent retreat of Tibetan Plateau glaciers affects at least half a billion people. Himalayan glaciers seasonally release meltwater into tributaries of the Indus, Ganges, and Brahmaputra Rivers and supply freshwater necessary to support agricultural and economic practices. Tibetan Plateau glaciers are retreating more rapidly than mountain glaciers elsewhere in the world, and this retreat is accelerating. The Naimona'nyi (30°27'N; 81°91'E, 6050 m a.s.l), Guliya (35°17'N; 81°29'E, 6710 m a.s.l.) and Dasuopu (28°23'N; 85°43'E, 7200 m a.s.l.) ice cores place this recent retreat into a longer time perspective through quantifying climate parameters such as past temperature, aridity, and atmospheric chemistry. Naimona'nyi has not accumulated mass since at least 1950, as evidenced by the virtual lack of radiogenic isotopes (36Cl, 3 H, and beta radioactivity) present in the ice core. These isotopes were produced by U.S. and Soviet atmospheric thermonuclear bomb tests conducted in the 1950s and 1960s and provide independent dating horizons for the ice cores. Lead-210 dates imply that the uppermost preserved glacial ice on Naimona'nyi formed during the 1940s. While this is the highest documented glacial thinning in the world other glaciers at elevations similar to that of Naimona'nyi, such as Kilimanjaro (3°4'S; 37°21'E, 5893 m a.s.l.), are also losing mass at their summits. The global scope of high-elevation glacial thinning suggests that ablation on the Earth's highest ice fields may be more prevalent as global mean temperatures continue to increase. Glacial thinning has not been taken into account in future projections of regional freshwater availability, and the net mass loss indicates that Himalayan glaciers currently store less freshwater than assumed in models. The acceleration of Tibetan Plateau glacial retreat has been hypothesized to be due in part to deposition of black carbon (BC) from biomass burning on to ice fields, thereby lowering the reflectivity of the glacier surface and melting the upper ice. The application of a novel technique of measuring and radiocarbon-dating ultra-small samples (< 100mug) of the BC and total organic carbon (TOC) fractions of Naimona'nyi demonstrates a decrease (˜12 to 14 ka versus ˜7 ka) in the composite age of BC in the upper 40 m and lowest 20 m of the 137 m ice core, suggesting the incorporation of radiocarbon-dead BC. Precambrian black shale in the Lesser Himalaya provide a natural source material which may be operationally defined as black carbon and which may incorporate radiocarbon-dead sediments into the bulk 14C measurements, yet as the mean 14C age is ˜10 ka, modern BC from biomass burning must also be incorporated into the ice core record. While the uppermost sample (5 m) contains 38% BC, 210 Pb dates show that this depth corresponds to an age before 1850 AD, or before the regional Industrial Revolution. As BC is a hydrophobic substance, the BC is unlikely to have migrated through the firn and glacial ice. Therefore, the high-elevation thinning on Naimona'nyi appears to be a response to increased temperatures rather than primarily driven by changes in surface albedo. This technique was applied to the annually-dated ice core from the accumulating summit of the Quleccaya ice cap, Peru (13'56'S; 70°50'W; 5670 m a.s.l.). A marked increase in modern BC and TOC was measured since 1880 AD. No increase in radiocarbon-dead (> 60,000 ka) BC or TOC was noted, suggesting that the source of the carbon was from biomass burning, with a possible contribution of Amazon slash and burn clearing, rather than the input of fossil fuel combustion. The age of the BC and TOC is thousands of years older than the age of the surrounding ice, and should not be used to date the ice core. Although Naimona'nyi provides challenges for constructing an ice core chronology due to its lack of independent horizons such as volcanic activity, methane gas measurements, 14C dates, 3H, 36Cl, or beta radioactivity, the oxygen isotopic record can be correlated with the neighboring Dasuopu and Guliya ice cores. Naimona'nyi contains a pronounced positive ˜10‰ shift in delta18O in the basal 37 m of the core which mimics similar isotopic shifts in regional speleothems, lacustrian sediments, and planktonic foraminifera proxy records. This distinct shift is attributed to amplified monsoon intensity caused by increased summer insolation at 30°N. This correlation between regional proxy records results in a basal age of ˜8.6 ka for Naimona'nyi, suggesting that the ice field grew as a response to tropical rather than polar climate forcings.

  13. Age-related changes in the thermoregulatory capacity of tryptophan-deficient rats.

    PubMed

    Segall, P E; Timiras, P S

    1975-01-01

    From a larger study seeking to develop indexes of physiological aging, the present experiment was designed 1) to test thermoregulatory capacity in the aging and old rat subjected to 3 minutes of whole-body ice water immersion, and 2) using this index of physiological age, to determine whether tryptophan deficiency from time of weaning can retard the onset of senescence. Results indicate a progressive prolongation of temperature recovery time from young to middle age to old, and tryptophan-deficient animals restored to commercial diet at middle age show the thermoregulatory capacity of young adults. The implications of tryptophan deficiency with respect to brain development, serotonin metabolism, and temperature regulation are also discussed in terms of the possibility of intervening with the aging process.

  14. Thinning and Pruning Influence Glaze Damage in a Loblolly Pine Plantation

    Treesearch

    James D. Burton

    1981-01-01

    An old-field plantation was thinned and pruned at age 11 and again at age 14 to 4 basal area levels and 3 crown percent levels. A survey was made to determine how damage by an ice storm at age 15 was influenced by treatment. Severe damage was heaviest in the densest stands and in stands with the shortest crowns, while the percent of stand destroyed was least under the...

  15. Towards multi-decadal to multi-millennial ice core records from coastal west Greenland ice caps

    NASA Astrophysics Data System (ADS)

    Das, Sarah B.; Osman, Matthew B.; Trusel, Luke D.; McConnell, Joseph R.; Smith, Ben E.; Evans, Matthew J.; Frey, Karen E.; Arienzo, Monica; Chellman, Nathan

    2017-04-01

    The Arctic region, and Greenland in particular, is undergoing dramatic change as characterized by atmospheric warming, decreasing sea ice, shifting ocean circulation patterns, and rapid ice sheet mass loss, but longer records are needed to put these changes into context. Ice core records from the Greenland ice sheet have yielded invaluable insight into past climate change both regionally and globally, and provided important constraints on past surface mass balance more directly, but these ice cores are most often from the interior ice sheet accumulation zone, at high altitude and hundreds of kilometers from the coast. Coastal ice caps, situated around the margins of Greenland, have the potential to provide novel high-resolution records of local and regional maritime climate and sea surface conditions, as well as contemporaneous glaciological changes (such as accumulation and surface melt history). But obtaining these records is extremely challenging. Most of these ice caps are unexplored, and thus their thickness, age, stratigraphy, and utility as sites of new and unique paleoclimate records is largely unknown. Access is severely limited due to their high altitude, steep relief, small surface area, and inclement weather. Furthermore, their relatively low elevation and marine moderated climate can contribute to significant surface melting and degradation of the ice stratigraphy. We recently targeted areas near the Disko Bay region of central west Greenland where maritime ice caps are prevalent but unsampled, as potential sites for new multi-decadal to multi-millennial ice core records. In 2014 & 2015 we identified two promising ice caps, one on Disko Island (1250 m. asl) and one on Nuussuaq Peninsula (1980 m. asl) based on airborne and ground-based geophysical observations and physical and glaciochemical stratigraphy from shallow firn cores. In spring 2015 we collected ice cores at both sites using the Badger-Eclipse electromechanical drill, transported by a medley of small fixed wing and helicopter aircraft, and working out of small tent camps. On Disko Island, despite high accumulation rates and ice thickness of 250 meters, drilling was halted twice due to the encounter of liquid water at depths ranging from 18-20 meters, limiting the depth of the final core to 21 m, providing a multi-decadal record (1980-2015.) On Nuussuaq Peninsula, we collected a 138 m ice core, almost to bedrock, representing a 2500 year record. The ice cores were subsequently analyzed using a continuous flow analysis system (CFA). Age-depth profiles and accumulation histories were determined by combining annual layer counting and an ice flow thinning model, both constrained by glaciochemical tie points to other well-dated Greenland ice core records (e.g. volcanic horizons and continuous heavy metal records). Here we will briefly provide an overview of the project and the new sites, and the novel dating methodology, and describe the latest stratigraphic, isotopic and glaciochemical results. We will also provide a particular focus on new regional climatological insight gained from our records during three climatically sensitive time periods: the late 20th & early 21st centuries; the Little Ice Age; and the Medieval Climate Anomaly.

  16. Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Flowers, Gwenn E.; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna Th; Geirsdóttir, Áslaug; Miller, Gifford H.; Harning, David J.; Thorsteinsson, Thorsteinn; Magnússon, Eyjólfur; Pálsson, Finnur

    2018-06-01

    Drangajökull is a maritime ice cap located in northwest (Vestfirðir) Iceland. Drangajökull's evolution is therefore closely linked to atmospheric and ocean variability. In order to better constrain the Holocene climate and glacier history of Vestfirðir we model the past evolution of Drangajökull ice cap. Simulations from 10 ka to present are forced by general circulation model output, ice-core-based temperature reconstructions, and sea-surface temperature reconstructions. Based on these 10-thousand year simulations, Drangajökull did not persist through the Holocene. We estimate that air temperatures were 2.5-3.0 °C higher during the Holocene Thermal Maximum than the local 1960-1990 average. Simulations support Drangajökull's late Holocene inception between 2 and 1 ka, though intermittent ice likely occupied cirques as early as 2.6 ka. Drangajökull is primarily a Little Ice Age ice cap: it expanded between 1300 and 1750 CE, with the most rapid growth occurring between 1600 and 1750 CE. The maximum Holocene extent of Drangajökull occurred between 1700 and 1925 CE, despite the lowest late Holocene temperatures, occurring between 1650 and 1720 CE. Between 1700 and 1925 CE temperatures were likely 0.6-0.8 °C lower than the 1950-2015 reference temperature. The modern equilibrium line altitude (ELA) is bracketed by topographic thresholds: a 1 °C temperature increase from the modern ELA would eliminate the ice cap's accumulation area, while a reduction of 0.5 °C would lead to the rapid expansion of the ice cap across Vestfirðir. The proximity of Drangajökull to topographic thresholds may explain its late inception and rapid expansion during the Little Ice Age.

  17. Timing and east-west correlation of south Swedish ice marginal lines during the Late Weichselian

    NASA Astrophysics Data System (ADS)

    Lundqvist, Jan; Wohlfarth, Barbara

    2000-01-01

    The retreat of the Late Weichselian ice sheet over the southern part of Sweden is marked along the southwest coast by distinct marginal moraine ridges. Their timing can directly and indirectly be assessed based on a number of radiocarbon dates and pollen stratigraphic investigations on lake sediment sequences adjacent to the ice marginal lines. Along the southeastern side of the peninsula, the ice recession has been reconstructed based on a combination of clay-varve chronology, pollen and radiocarbon stratigraphy. A morphological correlation of ice marginal lines between the west and east coast is problematic since the distinct west-coast moraines cannot be followed through the central part of the peninsula towards the east coast. This paper is an attempt to reconstruct an age-equivalent west-east extension of the ice-recession lines on the basis of existing data sets. For our correlation we use calibrated radiocarbon ages for ice marginal deposits on the west coast and compare these with a partly radiocarbon-dated clay-varve chronology on the east coast. We conclude that the two oldest moraines on the west coast formed at ˜18,000-16,000 and ˜15,400-14,500 cal yr BP, respectively. During the following rapid deglaciation, which may have coincided with the beginning of the Bølling pollen zone, large parts of southernmost Sweden became ice free, except for higher elevated areas, where stagnant ice remained for another 400-500 yr. A best guess is that the formation of the next younger ice marginal lines may have occurred at ˜14,400-14,200, ˜14,200 and ˜13,400 cal yr BP and during the Younger Dryas cold event.

  18. On the use of δ18Oatm for ice core dating

    NASA Astrophysics Data System (ADS)

    Extier, Thomas; Landais, Amaelle; Bréant, Camille; Prié, Frédéric; Bazin, Lucie; Dreyfus, Gabrielle; Roche, Didier M.; Leuenberger, Markus

    2018-04-01

    Deep ice core chronologies have been improved over the past years through the addition of new age constraints. However, dating methods are still associated with large uncertainties for ice cores from the East Antarctic plateau where layer counting is not possible. Indeed, an uncertainty up to 6 ka is associated with AICC2012 chronology of EPICA Dome C (EDC) ice core, which mostly arises from uncertainty on the delay between changes recorded in δ18Oatm and in June 21st insolation variations at 65°N used for ice core orbital dating. Consequently, we need to enhance the knowledge of this delay to improve ice core chronologies. We present new high-resolution EDC δ18Oatm record (153-374 ka) and δO2/N2 measurements (163-332 ka) performed on well-stored ice to provide continuous records of δ18Oatm and δO2/N2 between 100 and 800 ka. The comparison of δ18Oatm with the δ18Ocalcite from East Asian speleothems shows that both signals present similar orbital and millennial variabilities, which may represent shifts in the InterTropical Convergence Zone position, themselves associated with Heinrich events. We thus propose to use the δ18Ocalcite as target for δ18Oatm orbital dating. Such a tuning method improves the ice core chronology of the last glacial inception compared to AICC2012 by reconciling NGRIP and mid-latitude climatic records. It is especially marked during Dansgaard-Oeschger 25 where the proposed chronology is 2.2 ka older than AICC2012. This δ18Oatm - δ18Ocalcite alignment method applied between 100 and 640 ka improves the EDC ice core chronology, especially over MIS 11, and leads to lower ice age uncertainties compared to AICC2012.

  19. Thinning History of the Weddell Sea Embayment Using in situ 14C Exposure Ages from the Lassiter Coast

    NASA Astrophysics Data System (ADS)

    Nichols, K. A.; Johnson, J.; Goehring, B. M.; Balco, G.

    2017-12-01

    We present a suite of in situ 14C cosmogenic nuclide exposure ages from nunataks at the Lassiter Coast in West Antarctica on the west side of the Weddell Sea Embayment (WSE) to constrain the thinning history of the Ronne-Filchner Ice Shelf. Constraints on past ice extents in the WSE remain relatively understudied, despite the WSE draining 22% of the Antarctic Ice Sheet (AIS). Information lacking includes unambiguous geological evidence for the maximum Last Glacial Maximum (LGM) ice thickness and the timing of subsequent ice retreat in key peripheral locations. Past studies using long-lived cosmogenic nuclides have shown that, due to the cold-based nature of the AIS, inheritance of nuclide concentrations from previous periods of exposure is a common problem. We utilised the cosmogenic nuclide 14C to circumvent the issue of inheritance. The short half-life of 14C means measured concentrations are largely insensitive to inheritance, as relatively short periods of ice cover (20-30 kyr) result in significant 14C decay. Furthermore, samples saturated in 14C will demonstrate that their location was above the maximum LGM thickness of the ice sheet and exposed for at least the past ca. 35 kyr. Preliminary results from four samples indicate elevations between 63 and 360 m above the present-day ice surface elevations were deglaciated between 7 and 6 ka. With little exposed rock above these elevations (ca. 70 m), this may indicate that the locality was entirely covered by ice during the LGM. Additional 14C measurements will form a full elevation transect of samples to decipher the post-LGM thinning history of ice at this location.

  20. Discovery of meteorites on a blue-ice field near the Frontier Mountains, North Victoria Land, Antarctica

    NASA Technical Reports Server (NTRS)

    Delisle, G.; Hoefle, H. C.; Thierbach, R.; Schultz, L.

    1986-01-01

    A high concentration of meteorites were discovered on a blue ice field northeast of the Frontier Mountains. As a result of a systematic search, a total of 42 meteorites were recovered. The current glacial situation has evolved through various stages, which are discussed in relationship to the concentration of meteorites. Ice flow patterns are summarized. The chemical composition and terrestrial ages of the meteorites are discussed.

  1. Paleoclimate: A fresh look at glacial floods

    USGS Publications Warehouse

    Colman, S. M.

    2002-01-01

    Over the last 20 years, it has become clear that ice ages are characterized by glacial as well as climatic instability on millennial time scales. In his Perspective, Colman highlights two recent papers investigating the role of glacial meltwater and continental drainage in this instability. The results suggest a fundamental instability feedback between ocean circulation and ice sheet dynamics and provides an explanation for why instability was greatest at times of intermediate ice volume.

  2. A fresh look at glacial foods

    USGS Publications Warehouse

    Colman, Steven M.

    2002-01-01

    Over the last 20 years, it has become clear that ice ages are characterized by glacial as well as climatic instability on millennial time scales. In his Perspective, Colman highlights two recent papers investigating the role of glacial meltwater and continental drainage in this instability. The results suggest a fundamental instability feedback between ocean circulation and ice sheet dynamics and provides an explanation for why instability was greatest at times of intermediate ice volume.

  3. Differences between the bacterial community structures of first- and multi-year Arctic sea ice in the Lincoln Sea.

    NASA Astrophysics Data System (ADS)

    Hatam, I.; Beckers, J. F.; Haas, C.; Lanoil, B. D.

    2014-12-01

    The Arctic sea ice composition is shifting from predominantly thick perennial ice (multiyear ice -MYI) to thinner, seasonal ice (first year ice -FYI). The effects of the shift on the Arctic ecosystem and macro-organisms of the Arctic Ocean have been the focus of many studies and have also been extensively debated in the public domain. The effect of this shift on the microbial constituents of the Arctic sea ice has been grossly understudied, although it is a vast habitat for a microbial community that plays a key role in the biogeochemical cycles and energy flux of the Arctic Ocean. MYI and FYI differ in many chemical and physical attributes (e.g. bulk salinity, brine volume, thickness and age), therefore comparing and contrasting the structure and composition of microbial communities from both ice types will be crucial to our understanding of the challenges that the Arctic Ocean ecosystem faces as MYI cover continues to decline. Here, we contend that due to the differences in abiotic conditions, differences in bacterial community structure will be greater between samples from different ice types than within samples from the same ice type. We also argue that since FYI is younger, its community structure will be closer to that of the surface sea water (SW). To test this hypotheses, we extracted DNA and used high throughput sequencing to sequence V1-V3 regions of the bacterial 16s rRNA gene from 10 sea ice samples (5 for each ice type) and 4 surface sea water (SW) collected off the shore of Northern Ellesmere Island, NU, CAN, during the month of May from 2010-2012. Our results showed that observed richness was higher in FYI than MYI. FYI and MYI shared 26% and 36% of their observed richness respectively. While FYI shared 23% of its observed richness with SW, MYI only shared 17%. Both ice types showed similar levels of endemism (61% of the observed richness). This high level of endemism results in the grouping of microbial communities from MYI, FYI, and SW to three distinct groups when looking at membership (jclass dissimilarity index, tested by AMOVA). However, when looking at composition (θYC dissimilarity index) while communities from MYI and SW samples still clustered as two distinct groups, communities from FYI samples show no significant clustering (tested by AMOVA).

  4. Past and future ice age initiation: the role of an intrinsic deep-ocean millennial oscillation

    NASA Astrophysics Data System (ADS)

    Johnson, R. G.

    2014-05-01

    This paper offers three interdependent contributions to studies of climate variation: (1) the recognition and analysis of an intrinsic millennial oceanic oscillation that affects both Northern and Southern high latitude climates, (2) The recognition of an oceanographic switch to ice-free seas west of Greenland that explains the initiation of the Last Ice Age, and (3) an analysis of the effect of increasing salinity in the seas east of Greenland that suggests the possibility of the initiation of an ice age threshold climate in the near future. In the first contribution the millennial oscillation in the flow of the North Atlantic Drift reported by Bond et al. (1997) is proposed to be part of a 1500 yr intrinsic deep ocean oscillation. This oscillation involves the exchange of North Atlantic intermediate-level deep water (NADW) formed in the seas east of Greenland with Antarctic Bottom Water formed in a shallow-water zone at the edge of the Antarctic continent. The concept of NADW formation is already well known, with details of the sinking water flowing out of the Greenland Sea observed by Smethie et al. (2000) using chlorofluorocarbon tracers. The concept of Antarctic Bottom Water formation is also already well established. However, its modulation by the changing fraction of NADW in the Southern Ocean, which I infer from the analysis of Weyl (1968), has not been previously discussed. The modulated lower-salinity Antarctic Bottom Water that reaches the northern North Atlantic then provides negative feedback for the cyclic variation of NADW formation as proposed here. This causes the 1500 yr bipolar oscillation. The feedback suggests the possible sinusoidal character of the proposed oscillation model. The model is consistent with the cooling of the Little Ice Age (Lamb, 1972, 1995), and it also correctly predicts NASA's observation of today's record maximum area of winter sea ice on the Southern Ocean and the present observed record low rate of Antarctic Bottom Water production cited by Broecker (2000). The sinusoidal form of this conceptual model is therefore reinforced by both old and new data, and provides insights into world-wide climate change. The second contribution of this paper is a hypothesis for the initiation of Pleistocene ice ages, typified by the Last Ice Age that began 120 000 yr BP. Instead of the classical Northern high-latitude summer cooling caused by orbital precession and changes in Earth's axis inclination, this hypothesis proposes the sudden onset of year-round ice-free seas west of Greenland, with greatly increased precipitation in the ice sheet nucleation regions of Baffin Island, northern Quebec, and Labrador. Devon Island ice-core studies by Koerner at al. (1988) and deep-sea sediment data reported by Fillon (1985) support the concept of ice-free seas west of Greenland and imply the initial meteorological conditions that are proposed here. These conditions are consistent with the heavy precipitation inferred by Adkins et al. (1997) from deep-sea sediment data. The changes in northeastern Canada were accompanied by quite cold conditions in northern Europe, inferred by Field et al. (1994) from tree pollen data. The European cooling was probably caused by loss of the recurring Iceland low-pressure system due to the dominant effect of a frequent stronger low-pressure system over the Labrador Sea, as postulated in this paper. The key to ice-free seas west of Greenland is the loss of the near-surface stratification that normally enables sea ice to freeze. Using the high-resolution European Space Agency's ENVISAT system, I have monitored the flows through the Nares Strait and found that the dominant southward flow of lower density polar water into Baffin Bay correlated with the growing area of seasonal sea ice forming early in the winter in the Bay near the southern end of the Strait. This implies that low-salinity polar water was the cause of the stratification. A search for the cause of the stratification loss then became a search for the cause of the loss of the southward flow of polar water. The loss could have occurred if denser and more saline Atlantic water replaced the polar water in-flow. Medieval historical records suggest that an analogous partial replacement probably did occur during the early medieval climatic optimum, with some warmer Atlantic water removing the thick perennial sea ice along Greenland's north coast. The NADW formation rate and the Spitsbergen-Atlantic Current (SAC) flow were then near maximum values. I hypothesize that enough of the thick perennial sea ice along Greenland's north coast was removed by the penetration of the SAC flow into the polar ocean to enable a medieval voyage eastward along the coast in AD 1118. This voyage is implied by an old map record showing Greenland realistically as an island. An even stronger SAC flow associated with a stronger maximum in the 1500 yr intrinsic oscillation of the oceanic system was the likely trigger for the initial conditions of ice-sheet growth when the Last Ice Age began. The third contribution of this paper is the hypothesis that modern society's activities might cause a repetition of the transition to an ice age threshold climate within one or two decades from 2013. This possibility depends on a continuing increase of salinity in the seas east of Greenland, with a corresponding increase of NADW formation and the SAC flow. The increase is currently being driven by the increasing rate of the saline Mediterranean outflow that contributes to the North Atlantic Drift. The rate increase is a consequence of the increasing salinity of the Mediterranean Sea as reported by European oceanographers (Science, 279, 483-484, 1998). The rising salinity of the Mediterranean and its increasing outflow is attributed to the diversion of nearly all the in-flowing rivers for irrigation. A further substantial salinity increase should occur with the loss of all perennial polar sea ice possibly within one or two decades from 2013 if the present trend of loss continues. The trend is displayed on the University of Illinois internet site: http://arctic.atmos.uiuc.edu/cryosphere/. The increasing salinity of the Greenland Sea is now reflected in an increasing northward winter penetration by the SAC flow. According to Lamb (1972), during the early 20th century at the time of maximum extension of sea ice in April, open water normally extended only as far north as the southern cape of Spitsbergen at about 76.6° N. But in Aprils of 2013 and 2014, open water extended 380 km farther northward to the north coast of Spitsbergen. When the SAC was running strongly to replace sinking NADW in February of 2014, I observed open water extending about 730 km north from the cape into the polar ocean to latitude 83° N, where the penetration of the SAC flow was beginning to obstruct the southward flow of polar water. Even greater seasonal extensions of the SAC flow are expected with an additional Greenland Sea salinity increase after the loss of all perennial polar sea ice. This could cut off southward movement of polar water through the Fram Strait during much of the winter, and send annual pulses of the denser Atlantic water of the SAC flow into the sea north of Greenland. If these annual pulses begin to occur and allow enough denser Atlantic water to flow southward through the Nares Strait, the Baffin Bay stratification would be lost and a switch to an ice age threshold would occur. The severity of the resulting cold regional climate might have a disruptive effect on higher-latitude societies.

  5. Radiocarbon ages of terrestrial gastropods extend duration of ice-free conditions at the Two Creeks forest bed, Wisconsin, USA

    USGS Publications Warehouse

    Rech, Jason A.; Nekola, Jeffrey C.; Pigati, Jeffrey S.

    2012-01-01

    Analysis of terrestrial gastropods that underlie the late Pleistocene Two Creeks forest bed (~ 13,800–13,500 cal yr BP) in eastern Wisconsin, USA provides evidence for a mixed tundra-taiga environment prior to formation of the taiga forest bed. Ten new AMS 14C analyses on terrestrial gastropod shells indicate the mixed tundra-taiga environment persisted from ~ 14,500 to 13,900 cal yr BP. The Twocreekan climatic substage, representing ice-free conditions on the shore of Lake Michigan, therefore began near the onset of peak warming conditions during the Bølling–Allerød interstadial and lasted ~ 1000 yr, nearly 600 yr longer than previously thought. These results provide important data for understanding the response of continental ice sheets to global climate forcing and demonstrate the potential of using terrestrial gastropod fossils for both environmental reconstruction and age control in late Quaternary sediments.

  6. PHYSICAL THERAPY MANAGEMENT OF ICE HOCKEY ATHLETES: FROM THE RINK TO THE CLINIC AND BACK.

    PubMed

    Wolfinger, Christopher R; Davenport, Todd E

    2016-06-01

    The increasing number of athletes playing hockey compels rehabilitation professionals working in orthopedic and sports settings to understand the unique functional demands of ice hockey and the patterns of injuries they may promote. The purpose of this clinical perspective is to: (1) discuss the functional implications of different positions and age levels on injury prevalence within the sport; (2) summarize the seven most common injuries sustained by ice hockey athletes; and (3) present a conceptual model for the clinical management and prevention of these injuries by rehabilitation professionals. A narrative review and synthesis was conducted of currently available literature on prevalence, etiology, rehabilitative intervention, prognosis, and prevention of ice hockey injuries. Research evidence is available to support the prevalence of injuries sustained while participating in ice hockey, as well as the most effective clinical treatment protocols to treat them. Most of the existing protocols are based on clinical and sports experience with incorporation of scientific data. This clinical commentary reviews the current concepts of ice hockey injury care and prevention, based on scientific information regarding the incidence, mechanism, rehabilitation protocols, prognosis, and prevention of injuries. Science-based, patient-centered reasoning is integral to provide the highest quality of rehabilitative and preventative care for ice hockey athletes by physical therapists. 5.

  7. Morphology and mixing state of atmospheric particles: Links to optical properties and cloud processing

    NASA Astrophysics Data System (ADS)

    China, Swarup

    Atmospheric particles are ubiquitous in Earth's atmosphere and impact the environment and the climate while affecting human health and Earth's radiation balance, and degrading visibility. Atmospheric particles directly affect our planet's radiation budget by scattering and absorbing solar radiation, and indirectly by interacting with clouds. Single particle morphology (shape, size and internal structure) and mixing state (coating by organic and inorganic material) can significantly influence the particle optical properties as well as various microphysical processes, involving cloud-particle interactions and including heterogeneous ice nucleation and water uptake. Conversely, aerosol cloud processing can affect the morphology and mixing of the particles. For example, fresh soot has typically an open fractal-like structure, but aging and cloud processing can restructure soot into more compacted shapes, with different optical and ice nucleation properties. During my graduate research, I used an array of electron microscopy and image analysis tools to study morphology and mixing state of a large number of individual particles collected during several field and laboratory studies. To this end, I investigated various types of particles such as tar balls (spherical carbonaceous particles emitted during biomass burning) and dust particles, but with a special emphasis on soot particles. In addition, I used the Stony Brook ice nucleation cell facility to investigate heterogeneous ice nucleation and water uptake by long-range transported particles collected at the Pico Mountain Observatory, in the Archipelago of the Azores. Finally, I used ice nucleation data from the SAAS (Soot Aerosol Aging Study) chamber study at the Pacific Northwest National Laboratory to understand the effects that ice nucleation and supercooled water processing has on the morphology of residual soot particles. Some highlights of our findings and implications are discussed next. We found that the morphology of fresh soot emitted by vehicles depends on the driving conditions (i.e.; the vehicle specific power). Soot emitted by biomass burning is often heavily coated by other materials while processing of soot in urban environment exhibits complex mixing. We also found that long-range transported soot over the ocean after atmospheric processing is very compacted. In addition, our results suggest that freezing process can facilitate restructuring of soot and results into collapsed soot. Furthermore, numerical simulations showed strong influence on optical properties when fresh open fractal-like soot evolved to collapsed soot. Further investigation of long-range transported aged particles exhibits that they are efficient in water uptake and can induce ice nucleation in colder temperature. Our results have implications for assessing the impact of the morphology and mixing state of soot particles on human health, environment and climate. Our findings can provide guidance to numerical models such as particle-resolved mixing state models to account for, and better understand, vehicular emissions and soot evolution since its emission to atmospheric processing in urban environment and finally in remote regions after long-range transport. Morphology and mixing state information can be used to model observational-constrained optical properties. The details of morphology and mixing state of soot particles are crucial to assess the accuracy of climate models in describing the contribution of soot radiative forcing and their direct and indirect climate effects. Finally, our observations of ice nucleation ability by aged particles show that nucleated particles are internally mixed and coated with several materials.

  8. Coach Selections and the Relative Age Effect in Male Youth Ice Hockey

    ERIC Educational Resources Information Center

    Hancock, David J.; Ste-Marie, Diane M.; Young, Bradley W.

    2013-01-01

    Relative age effects (RAEs; when relatively older children possess participation and performance advantages over relatively younger children) are frequent in male team sports. One possible explanation is that coaches select players based on physical attributes, which are more likely witnessed in relatively older athletes. Purpose: To determine if…

  9. ARC-1979-A79-7097

    NASA Image and Video Library

    1979-07-08

    Range : 85,000 kilometers (53,000 miles) This photo of Jupiter's satellite Ganymede shows ancient cratered terrain. A variety of impact craters of different ages are shown. The brightest craters are the youngest. The ejecta blankets fade with age. The center shows a bright patch that represents the rebounding of the floor of the crater. The dirty ice has lost all topography except for faint circular patterns. Also shown are the 'Callisto type' curved troughs and ridges that mark an ancient enormous impact basin. The basin itself has been destroyed by later geologic processes. Only the ring features are preserved on the ancient surface. Near the bottom of the picture, these curved features are trumcated by the younger grooved terrain.

  10. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories

    NASA Astrophysics Data System (ADS)

    Argus, Donald F.; Peltier, W. R.; Drummond, R.; Moore, Angelyn W.

    2014-07-01

    A new model of the deglaciation history of Antarctica over the past 25 kyr has been developed, which we refer to herein as ICE-6G_C (VM5a). This revision of its predecessor ICE-5G (VM2) has been constrained to fit all available geological and geodetic observations, consisting of: (1) the present day uplift rates at 42 sites estimated from GPS measurements, (2) ice thickness change at 62 locations estimated from exposure-age dating, (3) Holocene relative sea level histories from 12 locations estimated on the basis of radiocarbon dating and (4) age of the onset of marine sedimentation at nine locations along the Antarctic shelf also estimated on the basis of 14C dating. Our new model fits the totality of these data well. An additional nine GPS-determined site velocities are also estimated for locations known to be influenced by modern ice loss from the Pine Island Bay and Northern Antarctic Peninsula regions. At the 42 locations not influenced by modern ice loss, the quality of the fit of postglacial rebound model ICE-6G_C (VM5A) is characterized by a weighted root mean square residual of 0.9 mm yr-1. The Southern Antarctic Peninsula is inferred to be rising at 2 mm yr-1, requiring there to be less Holocene ice loss there than in the prior model ICE-5G (VM2). The East Antarctica coast is rising at approximately 1 mm yr-1, requiring ice loss from this region to have been small since Last Glacial Maximum. The Ellsworth Mountains, at the base of the Antarctic Peninsula, are inferred to be rising at 5-8 mm yr-1, indicating large ice loss from this area during deglaciation that is poorly sampled by geological data. Horizontal deformation of the Antarctic Plate is minor with two exceptions. First, O'Higgins, at the tip of the Antarctic Peninsula, is moving southeast at a significant 2 mm yr-1 relative to the Antarctic Plate. Secondly, the margins of the Ronne and Ross Ice Shelves are moving horizontally away from the shelf centres at an approximate rate of 0.8 mm yr-1, in viscous response to the early Holocene unloading of ice from the current locations of the ice shelf centers. ICE-6G_C (VM5A) fits the horizontal observations well (wrms residual speed of 0.7 mm yr-1), there being no need to invoke any influence of lateral variation in mantle viscosity. ICE-6G_C (VM5A) differs in several respects from the recently published W12A model of Whitehouse et al. First, the upper-mantle viscosity in VM5a is 5 × 1020 Pa s, half that in W12A. The VM5a profile, which is identical to that inferred on the basis of the Fennoscandian relaxation spectrum, North American relative sea level histories and Earth rotation constraints, when coupled with the revised ICE-6G_C deglaciation history, fits all of the available constraints. Secondly, the net contribution of Antarctica ice loss to global sea level rise is 13.6 m, 2/3 greater than the 8 m in W12A. Thirdly, ice loss occurs quickly from 12 to 5 ka, and the contribution to global sea level rise during Meltwater Pulse 1B (11.5 ka) is large (5 m), consistent with sedimentation constraints from cores from the Antarctica ice shelf. Fourthly, in ICE-6G_C there is no ice gain in the East Antarctica interior, as there is in W12A. Finally, the new model of Antarctic deglaciation reconciles the global constraint upon the global mass loss during deglaciation provided by the Barbados record of relative sea level history when coupled with the Northern Hemisphere counterpart of this new model.

  11. Taste CREp: the Cosmic-Ray Exposure program

    NASA Astrophysics Data System (ADS)

    Martin, Léo; Blard, Pierre-Henri; Balco, Greg; Lavé, Jérôme; Delunel, Romain; Lifton, Nathaniel

    2017-04-01

    We present here the CREp program and the ICE-D production rate database, an online system to compute Cosmic Ray Exposure (CRE) ages with cosmogenic 3He and 10Be (crep.crpg.cnrs-nancy.fr). The CREp calculator is designed to automatically reflect the current state of the global calibration database production rate stored in ICE-D (http://calibration.ice-d.org). ICE-D will be regularly updated in order to incorporate new calibration data and reflect the current state of the available literature. The CREp program permits to calculate ages in a flexible way: 1) Two scaling models are available, i.e. i) the empirical Lal-Stone time-dependent model (Balco et al., 2008; Lal, 1991; Stone, 2000) with the muon parameters of Braucher et al. (2011), and ii) the Lifton-Sato-Dunai (LSD) theoretical model (Lifton et al., 2014). 2) Users may also test the impact of the atmosphere model, using either i) the ERA-40 database (Uppala et al., 2005), or ii) the standard atmosphere (N.O.A.A., 1976). 3) For the time-dependent correction, users or choose among the three proposed geomagnetic datasets (Lifton, 2016; Lifton et al., 2014; Muscheler et al., 2005) or import their own database. 4) For the important choice of the production rate, CREp is linked to a database of production rate calibration data, ICE-D. This database includes published empirical calibration rate studies that are publicly available at present, including those of the CRONUS-Earth and CRONUS-EU projects, as well as studies from other projects. Users may select the production rates either: i) using a worldwide mean value, ii) a regionally averaged value (not available in regions with no data), iii) a local unique value, which can be chosen among the existing dataset or imported by the user, or iv) any combination of single or multiple calibration data. We tested the efficacy of the different scaling models by looking at the statistical dispersion of the computed Sea Level High Latitude (SLHL) calibrated production rates. Lal/Stone and LSD models have comparable efficacies, and the impact of the tested atmospheric model and the geomagnetic database is also limited. If a global mean is chosen, the 1σ uncertainty arising from the production rate is about 5% for 10Be and 10% for 3He. If a regional production rate is picked, these uncertainties are potentially lower.

  12. Mass Balance of Multiyear Sea Ice in the Southern Beaufort Sea

    DTIC Science & Technology

    2014-09-30

    Petty et al. We will extend these results by combining them with satelite -derived ice age data (Maslanik et al., 2007) to focus on the areal...from buoys and satelites with thickness data from AEM surveys, while for the repeat- Figure 1: “Pseudo-plumes” of icepass analysis we are also using

  13. Pattern and forcing of Northern Hemisphere glacier variations during the last millennium

    NASA Astrophysics Data System (ADS)

    Porter, Stephen C.

    1986-07-01

    Time series depicting mountain glacier fluctuations in the Alps display generally similar patterns over the last two centuries, as do chronologies of glacier variations for the same interval from elsewhere in the Northern Hemisphere. Episodes of glacier advance consistently are associated with intervals of high average volcanic aerosol production, as inferred from acidity variations in a Greenland ice core. Advances occur whenever acidity levels rise sharply from background values to reach concentrations ≥1.2 μequiv H +/kg above background. A phase lag of about 10-15 yr, equivalent to reported response lags of Alpine glacier termini, separates the beginning of acidity increases from the beginning of subsequent ice advances. A similar relationship, but based on limited and less-reliable historical data and on lichenometric ages, is found for the preceding 2 centuries. Calibrated radiocarbon dates related to advances of non-calving and non-surging glaciers during the earlier part of the Little Ice Age display a comparable consistent pattern. An interval of reduced acidity values between about 1090 and 1230 A.D. correlates with a time of inferred glacier contraction during the Medieval Optimum. The observed close relation between Noothern Hemisphere glacier fluctuations and variations in Greenland ice-core acidity suggests that sulfur-rich aerosols generated by volcanic eruptions are a primary forcing mechanism of glacier fluctuations, and therefore of climate, on a decadal scale. The amount of surface cooling attributable to individual large eruptions or to episodes of eruptions is simlar to the probable average temperature reduction during culminations of Little Ice Age alacier advances (ca. 0.5°-1.2°C), as inferred from depression of equilibrium-line altitudes.

  14. Coupling landscapes to solid-Earth deformation over the ice-age

    NASA Astrophysics Data System (ADS)

    Pico, T.; Mitrovica, J. X.; Ferrier, K.; Braun, J.

    2016-12-01

    We present initial results of a coupled ice-age sea level - landscape evolution code. Deformation of the solid Earth in response to the growth and ablation of continental ice sheets produces spatially-variable patterns of sea-level change. Recent modeling has considered the impact of sedimentation and erosion on sea level predictions across the last glacial cycle, but these studies have imposed, a-priori, a record of sediment flux and erosion, rather than computing them from a physics-based model of landscape evolution in the presence of sea-level (topography) changes. These topography changes range from 1-10 m/kyr in the near and intermediate field of the Late Pleistocene ice cover, and are thus comparable to (or exceed) tectonic rates in such regions. Our simulations aim to address the following question: how does solid-Earth deformation influence the evolution of landscapes over glacial periods? To address this issue, we couple a highly-efficient landscape evolution code, Fastscape (Braun & Willett, 2013), to a global, gravitationally-self consistent sea-level theory. Fastscape adopts standard geomorphic laws governing incision and marine deposition, and the sea-level model is based on the canonical work of Farrell & Clark (1976), with extensions to include the effects of rotation and time varying shoreline geometries (Kendall et al., 2005), and sediment erosion and deposition (Dalca et al, 2013). We will present global results and focus on a few regional case studies where deposition rates from a dataset of sedimentary cores can be used as a check on the simulations. These predictions quantify the influence of sea-level change (including that associated with sedimentation and erosion) on geomorphic drivers of landscape evolution, and in turn, the solid Earth deformation caused by these surface processes over an ice age.

  15. Late Pleistocene eolian features in southeastern Maryland and Chesapeake Bay region indicate strong WNW-NW winds accompanied growth of the Laurentide Ice Sheet

    USGS Publications Warehouse

    Markewich, H.W.; Litwin, R.J.; Pavich, M.J.; Brook, G.A.

    2009-01-01

    Inactive parabolic dunes are present in southeastern Maryland, USA, along the east bank of the Potomac River. More elongate and finer-grained eolian deposits and paha-like ridges characterize the Potomac River-Patuxent River upland and the west side of Chesapeake Bay. These ridges are streamlined erosional features, veneered with eolian sediment and interspersed with dunes in the low-relief headwaters of Potomac- and Patuxent-river tributaries. Axis data for the dunes and ridges indicate formation by WNW-NW winds. Optically stimulated luminescence and radiocarbon age data suggest dune formation from ??? 33-15??ka, agreeing with the 30-13??ka ages Denny, C.S., Owens, J.P., Sirkin, L., Rubin, M., 1979. The Parsonburg Sand in the central Delmarva Peninsula, Maryland and Delaware. U.S. Geol. Surv. Prof. Pap. 1067-B, 16??pp. suggested for eolian deposits east of Chesapeake Bay. Age range and paleowind direction(s) for eolian features in the Bay region approximate those for late Wisconsin loess in the North American midcontinent. Formation of midcontinent loess and Bay-region eolian features was coeval with rapid growth of the Laurentide Ice Sheet and strong cooling episodes (??18O minima) evident in Greenland ice cores. Age and paleowind-direction coincidence, for eolian features in the midcontinent and Bay region, indicates strong mid-latitude WNW-NW winds for several hundred kilometers south of the Laurentide glacial terminus that were oblique to previously simulated anticyclonic winds for the last glacial maximum.

  16. Anthropometry, Physical Fitness and Coordination of Young Figure Skaters of Different Levels.

    PubMed

    Mostaert, M; Deconinck, F; Pion, J; Lenoir, M

    2016-06-01

    The aim of the present study was to identify anthropometric, physical, coordinative and ice-skating specific characteristics that discriminate young elite ice skaters from non-elite skaters and their non-skating peers. 32 skaters aged 9-12 years old (11 elites and 21 non-elites) voluntarily participated in the study. They were submitted to 5 anthropometric, 7 physical, 3 coordination and 5 ice-skating specific tests. Reference values of a representative healthy non-skating sample were taken from the Flemish Sports Compass dataset. Figure skaters appeared to be predominantly average mature (93.8%), were lighter and leaner than the reference sample, and demonstrated better physical characteristics and motor coordination. There was no difference between the elite and non-elite group regarding maturity status and anthropometric or physical parameters. Still, elite skaters scored better than non-elites on the coordination tests jumping sideways and tended to do so on the moving sideways test. Profiles of figure skaters differ clearly from a reference population, while non-sport-specific motor coordination tests allow discrimination between elite and non-elite skaters. The relevance of these findings with respect to talent detection and identification in young ice skaters are discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Multiple Nonconformities in Ice-Walled Lake Successions Indicate Periods with Cold Summers (24.4 - 22.5 ka, 21.1 - 19.2 ka, 18.5 - 18.1 ka) during the Last Deglaciation in Northeastern Illinois, USA

    NASA Astrophysics Data System (ADS)

    Curry, B. B.

    2014-12-01

    Unprecedented age control on many last glacial stratigraphic units and morainal ice-margin positions are interpreted from AMS radiocarbon ages of tundra plant macrofossils archived in low-relief ice-walled lake plain (IWLP) deposits the Lake Michigan Lobe (south-central Laurentide Ice Sheet). IWLPs are periglacial features that formed on morainal dead-ice permafrost. Lacustrine sediment, and the fossils contained therein, had physical and temporal proximity to the glacier which formed the underlying moraine. In modern ice-walled lakes, as the lake's ice cover begins to melt, moats form which allows access of sloughing tundra-mantled active layer sediment (soil) into the lakes. Multiple AMS ages from two sites with proglacial sediment buried by glacial max LIS diamicton, and IWLPs reveal evidence of episodic plant growth and sedimentation including ca. 24.0 to 24.4 ka (post Shelby Phase), 22.5 to 21.1 ka (post Livingston Phase), 18.1 to 17.4 ka (post Woodstock Phase). Although presently based on negative evidence, the associated nonconformities (listed in title) indicate periods when cold conditions did not promote development of the estival moat. Although the evidence does not preclude tundra growth during the cold summers, there was little landscape modification due to limited thawing of the active layer. At approximately the onset of the 19.2-18.5 "warm" period, at least two large deglacial discharge events flooded the Fox and Kankakee tributary valleys of the Illinois River. The latter, known as the Kankakee Torrent, occurred at 19.05 - 18.85 ka (σ1 range) at the Oswego channel complex. The temporal coincidence of the torrents and sedimentation in ice-walled lakes suggests that the post-Livingston Phase nonconformity (21.1 - 19.2 ka) was a period of lessened meltwater discharge through subglacial conduits (tunnel valleys) as the frozen toe promoted formation of subglacial lakes, buildup of pore-water pressures, and the release of subglacial water as "torrents". In the case of the Fox and Kankakee torrents, ice-marginal discharge first flowed into proglacial lakes which ultimately breached moraines, resulting in catastrophic "torrents". Hence, present knowledge does not allow determination of the nature of the subglacial release (catastrophic vs. large, steady discharge).

  18. Comparative Results of Using Different Methods for Discovery of Microorganisms in very Ancient Layers of the Central Antarctic Glacier above the Lake Vostok

    NASA Technical Reports Server (NTRS)

    Abyzov, S. S.; Hoover, R. B.; Imura, S.; Mitskevich, I. N.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.

    2002-01-01

    The ice sheet of the Central Antarctic is considered by the scientific community worldwide, as a model to elaborate on different methods to search for life outside Earth. This became especially significant in connection with the discovery of the underglacial lake in the vicinity of the Russian Antarctic Station Vostok. Lake Vostok is considered by many scientists as an analog of the ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is the possibility that relict forms of microorganisms, well preserved since the Ice Age, may be present in this lake. Investigations throughout the thickness of the ice sheet above Lake Vostok show the presence of microorganisms belonging to different well-known taxonomic groups, even in the very ancient horizons near close to floor of the glacier. Different methods were used to search for microorganisms that are rarely found in the deep ancient layers of an ice sheet. The method of aseptic sampling from the ice cores and the results of controlled sterile conditions in all stages when conducting these investigations, are described in detail in previous reports. Primary investigations tried the usual methods of sowing samples onto different nutrient media, and the result was that only a few microorganisms grew on the media used. The possibility of isolating the organisms obtained for further investigations, by using modern methods including DNA-analysis, appears to be the preferred method. Further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence, and scanning electron microscopy methods at different modifications, revealed the quantity and morphological diversity of the cells of microorganisms that were distributed on the different horizons. Investigations over many years have shown that the microflora in the very ancient strata of the Antarctic ice cover, nearest to the bedrock, support the effectiveness of using a combination of different methods to search for signs of life in ancient icy formations, which might play a role in the long-term preservation and transportation of microbial life throughout the Universe.

  19. Comparative results of using different methods for discovery of microorganisms in very ancient layers of the Central Antartic Glacier above the Lake Vostok

    NASA Astrophysics Data System (ADS)

    Abyzov, S.; Hoover, R.; Imura, S.; Mitskevich, I.; Naganuma, T.; Poglazova, M.; Ivanov, M.

    The ice sheet of the Central Antarctic is considered by world-wide scientific community as a model for elaboration of different methods for search of the life outside of the Earth. This problem became especially significant in connection with discovery the under glacial lake in the vicinity of the Russian Antarctic Station Vostok. This lake, later named "Lake Vostok" is considered by many scientists as an analog ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is great possibility of presence in this lake of relict forms of microorganisms well preserved since Ice Age period. The investigations through out the thickness of the ice sheet above the Lake Vostok shows the presence of microorganisms belonging to well-known different taxonomic groups even in the very ancient horizons close to floor of the glacier. Different methods were used for search of microorganisms which were rarely found in the deep ancient layers of the ice sheet. The method of aseptic sampling from the ice cores and results of control sterile conditions in all stages of conducting of these investigations are described in detail in previous reports. Primary investigations used try usual methods of sowing samples onto the different nutrient media permitted to obtain only a few part of the microorganisms which grow on the media used. The possibility of isolation of obtained organisms for further investigations by using modern methods including DNA-analysis appears to be preferential importance of this method. In the further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence and scanning electron microscopy methods of different modifications, were determined as quantity of microorganisms distributed on its different horizons, as well as the morphological diversity of obtained cells of microorganisms. Experience of many years standing investigations of micro flora in the very ancient strata of the Antarctic ice cover close to the bedrock testified the effectiveness of combination of different methods for search for signs of life in ancient icy formations evidently which may preserve and transport life in the Universe.

  20. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-08-01

    The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  1. Geothermal Flux, Basal Melt Rates, and Subglacial Lakes in Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Carter, S. P.; Blankenship, D. D.; Morse, D. L.

    2002-12-01

    The lakes beneath the East Antarctic ice sheet represent a unique environment on Earth, entirely untouched by human interference. Life forms which survive in this cold, lightless, high pressure environment may resemble the life forms which survived through "snowball earth" and evolved into the life forms we know today (Kirchvink, 2000). Recent airborne radar surveys over Dome C and the South Pole regions allow us to assess where these lakes are most likely to exist and infer melting and freezing rates at base of the ice sheet. Lakes appear as strong, flat basal reflectors in airborne radar sounding data. In order to determine the absolute strength of the reflector it is important to accurately estimate signal loss due to absorption by the ice. As this quantity is temperature sensitive, especially in regions where liquid water is likely to exist, we have developed a one dimensional heat transfer model, incorporating surface temperature, accumulation, ice sheet thickness, and geothermal flux. Of the four quantities used for our temperature model, geothermal flux has usually proven to be the most difficult to asses, due to logistical difficulties. A technique developed by Fahnestock et al 2001 is showing promise for inferring geothermal flux, with airborne radar data. This technique assumes that internal reflectors, which result from varying electrical properties within the ice column, can be approximated as constant time horizons. Using ice core data from our study area, we can place dates upon these internal layers and develop an age versus depth relationship for the surveyed region, with margin of error of +- 50 m for each selected layer. Knowing this relationship allows us to infer the vertical strain response of the ice to the stress of vertical loading by snow accumulation. When ice is frozen to the bed the deeper ice will accommodate the increased stress of by deforming and thinning (Patterson 1994). This thinning of deeper layers occurs throughout most of our study area. However, analysis of dated internal layers over several bright, flat, "lake-like" reflectors reveals a very different age versus depth relationship in which deeper layers actually thicken with depth. This thickening of deep layers results from ice flowing in from the sides to accommodate significant liquid water production at the base of the ice sheet. This melt is occurring today and can be quantified. With our knowledge of melt rates we can begin to estimate inputs and assess hydrologic parameters for the subglacial lake systems of East Antarctica.

  2. Phreatomagmatic eruptions under the West Antarctic Ice Sheet: potential hazard for ice sheet stability

    NASA Astrophysics Data System (ADS)

    Iverson, N. A.; Dunbar, N. W.; Lieb-Lappen, R.; Kim, E. J.; Golden, E. J.; Obbard, R. W.

    2014-12-01

    Volcanic tephra layers have been seen in most ice cores in Antarctica. These tephra layers are deposited almost instantaneously across wide areas of ice sheets, creating horizons that can provide "pinning points" to adjust ice time scales that may otherwise be lacking detailed chronology. A combination of traditional particle morphology characterization by SEM with new non-destructive X-ray micro-computed tomography (Micro-CT) has been used to analyze selected coarse grained tephra in the West Antarctica Ice Sheet (WAIS) Divide WDC06A ice core. Micro-CT has the ability to image particles as small as 50µm in length (15µm resolution), quantifying both particle shape and size. The WDC06A contains hundreds of dusty layers of which 36 have so far been identified as primary tephra layers. Two of these tephra layers have been characterized as phreatomagmatic eruptions based on SEM imagery and are blocky and platy in nature, with rare magmatic particles. These layers are strikingly different in composition from the typical phonolitic and trachytic tephra produced from West Antarctic volcanoes. These two layers are coarser in grain size, with many particles (including feldspar crystals) exceeding 100µm in length. One tephra layer found at 3149.138m deep in the ice core is a coarse ~1mm thick basanitic tephra layer with a WDC06-7 ice core age of 45,381±2000yrs. The second layer is a ~1.3 cm thick zoned trachyandesite to trachydacite tephra found at 2569.205m deep with an ice core age 22,470±835yrs. Micro-CT analysis shows that WDC06A-3149.138 has normal grading with the largest particles at the bottom of the sample (~160μm). WDC06A-2569.205 has a bimodal distribution of particles with large particles at the top and bottom of the layer. These large particles are more spherical in shape at the base and become more irregular and finer grained higher in the layer, likely showing changes in eruption dynamics. The distinct chemistry as well as the blocky and large grain size of the two tephra lead us to believe that these eruptions are from volcanoes proximal to WAIS Divide and did not transport far because neither tephra was observed in the Byrd core (<100km away). It is likely that these tephra are sourced from volcanoes beneath the WAIS and have since been buried and if they were to erupt again, may contribute to ice sheet instability.

  3. Timing and Distribution of Single-Layered Ejecta Craters Imply Sporadic Preservation of Tropical Subsurface Ice on Mars

    NASA Astrophysics Data System (ADS)

    Kirchoff, Michelle R.; Grimm, Robert E.

    2018-01-01

    Determining the evolution of tropical subsurface ice is a key component to understanding Mars's climate and geologic history. Study of an intriguing crater type on Mars—layered ejecta craters, which likely form by tapping subsurface ice—may provide constraints on this evolution. Layered ejecta craters have a continuous ejecta deposit with a fluidized-flow appearance. Single-layered ejecta (SLE) craters are the most common and dominate at tropical latitudes and therefore offer the best opportunity to derive new constraints on the temporal evolution of low-latitude subsurface ice. We estimate model formation ages of 54 SLE craters with diameter (D) ≥ 5 km using the density of small, superposed craters with D < 1 km on their continuous ejecta deposits. These model ages indicate that SLE craters have formed throughout the Amazonian and at a similar rate expected for all Martian craters. This suggests that tropical ice has remained at relatively shallow depths at least where these craters formed. In particular, the presence of equatorial SLE craters with D 1 km indicates that ice could be preserved as shallow as 100 m or less at those locations. Finally, there is a striking spatial mixing in an area of highlands near the equator of layered and radial (lunar-like ballistic) ejecta craters; the latter form where there are insufficient concentrations of subsurface ice. This implies strong spatial heterogeneity in the concentration of tropical subsurface ice.

  4. Cosmogenic Surface-Exposure Dating of Boulders on Last-Glacial and Late-Glacial Moraines, Lago Buenos Aires, Argentina: Interpretive Strategies and Paleoclimate Implications

    NASA Astrophysics Data System (ADS)

    Douglass, D. C.; Singer, B. S.; Kaplan, M. R.; Mickelson, D. M.; Caffee, M.

    2005-12-01

    The most substantial and least quantifiable source of uncertainty in cosmogenic surface-exposure datasets is the variable exposure histories of boulders from the same landform. The development of precise and accurate chronologies requires distinguishing boulders that best reflect the age of the landform from those which are outliers. We use the Mean Square of Weighted Deviates statistic and cumulative frequency plots to identify groups of samples that have statistically similar ages based on the number of samples and the uncertainty associated with the analyses. This group of samples most likely represents the best estimate of the landform age. We use these tools to interpret 49 surface-exposure ages from six last-glacial and late-glacial moraines at Lago Buenos Aires, Argentina (LBA; 71.0W, 46.5S). Seven of the orty-nine samples are identified as anomalously young, and are interpreted to have been exhumed after moraine deposition. The remaining samples indicate that glacial advances or still-stands of the ice margin occurred at 22.7±0.9, 21.4±1.9, 19.8±1.1, 17.0±0.8, 15.7±0.6, and 14.4±0.9 ka (±2 σ). This maximum ice extent is roughly synchronous with maximum global ice volume and several of the re-advances are contemporaneous with Heinrich events and other Northern Hemisphere cold periods. The late-glacial readvance at ca. 14.4 ka is contemporaneous with the Antarctic Cold Reversal (ACR), and precedes the Younger Dryas Chronozone (YD). No evidence for a Younger Dryas glacial advance has been found in the Lago Buenos Aires basin. This precise glacial chronology indicates there were significant and important differences in climate across southern South America. The timing of maximum ice extent and onset of deglaciation at LBA occur ~4000 years later than in the Chilean Lake District (41S). Fossil pollen from the CLD area indicates cooler conditions between ca. 14.2 and 11.2, and increased silt in a nearby lake core provides indirect evidence for glacial advances at this time. The onset of this late-glacial cool period precedes the YD, but post-dates the ACR. The LBA glacial record is in better accord with the Strait of Magellan (SM; 52S) than with the CLD. There ice reached its maximum around 25 ka, and a significant late-glacial re-advance occurred between ca. 15 and 11.5 ka. Both LBA and the SM have climate records similar to Antarctica, whereas the climate records from the CLD are combinations of Antarctic and Northern Hemisphere signals.

  5. Geomorphic influences of the Little Ice Age glacial advance on selected hillslope systems in Nordfjord, Western Norway (Erdalen and Bødalen valleys)

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2010-05-01

    Hillslopes in glacially formed landscapes are typically characterized by talus cones developed beneath free rock faces. Studying hillslopes as sedimentary source, storage and transfer zones as well as surface processes acting on hillslopes since the end of the deglaciation is of importance in order to gain a better understanding of the complex sedimentary source-to-sink fluxes in cold climate environments. Hillslopes function as a key component within the geomorphic process response system. Large areas of the Norwegian fjord landscapes are covered by hillslopes and are characterized by the influences of the glacial inheritance. This PhD project is part of the NFR funded SedyMONT-Norway project within the ESF TOPO-EUROPE SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) programme. The focus of this study is on geomorphic influences of the Little Ice Age glacial advance on postglacial hillslope systems in four distinct headwater areas of the Erdalen and Bødalen valleys in the Nordfjord valley-fjord system (inner Nordfjord, Western Norway). Both valleys can be described as steep, U-shaped and glacier-fed, subarctic tributary valleys. Approximately 14% of the 49 km2 large headwater areas of Erdalen are occupied by hillslope deposits and 41% by rock surfaces; in Bødalen hillslope deposits occupy 12% and rock surfaces occupy 38% of the 42 km2 large headwater areas. The main aims of this study are (i) to analyze and compare the morphometric characteristics as well as the composition of hillslope systems inside and outside of the Little Ice Age glacial limit, (ii) to detect possible changes within the mass balances of these hillslope systems, (iii) to identify the type and intensity of currently acting hillslope processes as well as (iv) to determine possible sediment sources and delivery pathways within the headwater areas of the catchments. The process-based approach includes orthophoto- and topographical map interpretation, hillslope profile surveying, photo monitoring, geomorphological mapping as well as GIS and DEM computing. Two appropriate hillslope test sites within each headwater area are selected in order to follow the main aims of this study. The designed monitoring instrumentation of the slope test sites includes nets for collecting freshly accumulated rockfall debris, stone tracer lines for measuring surface movements, wooden sticks for monitoring of slow surface creep movements and peg lines for depth-integrated measurements of slow mass movements. In addition, remote site cameras for monitoring rapid mass movement events (avalanches, slush- and debris flows) and slope wash traps for analyzing slope wash denudation are installed and measurements of solute concentrations at small hillslope drainage creeks for investigating the role of chemical denudation are conducted. Measurements of morphometric characteristics and longitudinal profiles along the main axis of the talus cones are carried out at each test site. The manually obtained longitudinal profile data are combined with data derived from a DEM in order to generate complete longitudinal hillslope profiles reaching from the apex until the slope foot. Preliminary results show a steepening trend of the talus cones located inside the Little Ice Age glacier limit which is due to erosion during the Little Ice Age glacial advance. In addition, some of these talus cones are characterized by a recognizable more complex talus cone morphometry and composition, resulting from implementation of Little Ice Age glacier side moraines. The combination of (i) steepened talus cones and (ii) complex composition seems to increase currently acting hillslope processes which leads to a higher sediment delivery from these slopes as compared to hillslopes outside the Little Ice Age glacier limit. The implementation of moraine material but also the increased intensity of denudative processes has a recognizable influence on the mass balance of the hillslope systems inside the Little Ice Age glacier limit. Research on the complex development of hillslope systems from a postglacial to contemporary time perspective in combination with analyses of contemporary sedimentary fluxes contributes to a better understanding of hillslopes acting as source, storage and transfer zones in cold climate environments (paraglacial systems).

  6. Comment on "Last glacial maximum cirque glaciation in Ireland and implications for reconstructions of the Irish ice sheet. Quaternary Science Reviews 141, 85-93"

    NASA Astrophysics Data System (ADS)

    Knight, Jasper

    2016-10-01

    Southwest Ireland is a critical location to examine the sensitivity of late Pleistocene glaciers to climate variability in the northeast Atlantic, because of its proximal location to Atlantic moisture sources and the presence of high mountains in the Macgillycuddy's Reeks range which acted as a focus for glacierization (Harrison et al., 2010). The extent of Last Glacial Maximum (LGM) glaciers in southwest Ireland and their link to the wider British-Irish Ice Sheet (BIIS), however, is under debate. Some models suggest that during the LGM the region was wholly inundated by ice from the larger BIIS (Warren, 1992; Sejrup et al., 2005), whereas others suggest north-flowing ice from the semi-independent Cork-Kerry Ice Cap (CKIC) was diverted around mountain peaks, resulting in exposed nunataks in the Macgillycuddy's Reeks (Anderson et al., 2001; Ballantyne et al., 2011). Cirque glaciers may also have been present on mountain slopes above this regional ice surface (Warren, 1979; Rea et al., 2004). More recently, investigations have focused on the extent and age of cirque glaciers in the Reeks, based on the mapped distribution of end moraines (Warren, 1979; Harrison et al., 2010), and on cosmogenic dates on boulders on these moraines (Harrison et al., 2010) and on associated scoured bedrock surfaces across the region (Ballantyne et al., 2011). The recent paper by Barth et al. (2016) contributes to this debate by providing nine cosmogenic 10Be ages on boulders from two moraines from one small (∼1.7 km2) and low (373 m elevation of the cirque floor) cirque basin at Alohart (52°00‧50″N, 9°40‧30″W) within the Reeks range. These dates are welcomed because they add to the lengthening list of age constraints on geomorphic activity in the region that spans the time period from the LGM to early Holocene.

  7. High-Resolution Zircon U-Pb CA-TIMS Dating of the Carboniferous—Permian Successions, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Mundil, R.; Montanez, I. P.; Isbell, J.; Fedorchuk, N.; Lopes, R.; Vesely, F.; Iannuzzi, R.

    2015-12-01

    The late Paleozoic Ice Age (LPIA) is Earth's only record of a CO2-forced climatic transition from an icehouse to greenhouse state in a vegetated world. Despite a refined framework of Gondwanan ice distribution, questions remain about the timing, volume, and synchronicity of high-latitude continental ice and the subsequent deglaciation. These questions ultimately preclude our understanding of linkages between ice volume, sea level, and high- and low-latitude climate. Poor constraints on the timing and synchronicity of glacial and interglacial transitions reflect a lack of high-resolution radioisotopic dates from high-latitude, ice-proximal Carboniferous-Permian successions. The Rio Bonito Fm in Rio Grande do Sul State of southern Brazil hosts the oldest non-glaciogenic Carboniferous- Permian deposits of the Paraná Basin, thus recording the icehouse-to-greenhouse transition. Despite a widespread effort over the last two decades to constrain these deposits in time by means of U-Pb zircon geochronology, published data sets of the Candiota and Faxinal coals of the Rio Bonito Fm host discrepancies that may reflect post- eruptive open system behavior of zircon and analytical artifacts. These discrepancies have hindered the correlation of the Candiota and Faxinal sediments within the larger Gondwanan framework. Here we present the first U-Pb ages on closed system single zircons using CA-TIMS techniques on Permo-Carboniferous ash deposits of the Paraná Basin. Preliminary results indicate two major and distinct coal-forming periods that are separated by ca 10 Ma. Our results and conclusions are not in agreement with multi- crystal U-Pb TIMS and SIMS ages that suggest coeval deposition of the Candiota and Faxinal coals. CA-TIMS analyses applied to zircons from additional ash deposits are aimed at constructing a robust chronostratigraphic framework for the Carboniferous- Permian succession of the Paraná Basin, which will facilitate a better understanding of the timing and ice dynamics of the LPIA.

  8. South Greenland, North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This spectacular north looking view of south Greenland (62.0N, 46.0W) shows numerous indentations along the coastline, many of which contain small settlements. These indentations are fiords carved by glaciers of the last ice age. Even today, ice in the center of Greenland is as much as 10,000 ft. thick and great rivers of ice continuously flow toward the sea, where they melt or break off as icebergs - some of which may be seen floating offshore.

  9. South Greenland, North Atlantic Ocean

    NASA Image and Video Library

    1992-04-02

    This spectacular north looking view of south Greenland (62.0N, 46.0W) shows numerous indentations along the coastline, many of which contain small settlements. These indentations are fiords carved by glaciers of the last ice age. Even today, ice in the center of Greenland is as much as 10,000 ft. thick and great rivers of ice continuously flow toward the sea, where they melt or break off as icebergs - some of which may be seen floating offshore.

  10. Asynchronous behavior of the Antarctic Ice Sheet and local glaciers during and since Termination 1, Salmon Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Jackson, Margaret S.; Hall, Brenda L.; Denton, George H.

    2018-01-01

    The stability of the Antarctic Ice Sheet under future warming remains an open question with broad implications for sea-level prediction and adaptation. In particular, knowledge of whether the ice sheet has the capacity for rapid drawdown or collapse, or whether it can remain stable during periods of warming, is essential for predicting its future behavior. Here we use 55 radiocarbon dates, coupled with geomorphologic mapping, to reconstruct the timing of changes in ice extent and elevation during the last ice-age termination in Salmon Valley, adjacent to McMurdo Sound in the western Ross Sea Embayment. Results indicate that a grounded ice sheet in the Ross Sea Embayment achieved its maximum elevation and extent along the headlands of Salmon Valley at ∼18,000 yr BP, during a period of increasing temperatures and accumulation over the Antarctic continent. This ice remained at or near its maximum on the headlands near the valley mouth until after ∼14,000 yr BP. Removal of grounded Ross Sea ice from Salmon Valley was complete shortly after ∼7900 yr BP, indicating that the grounding line had retreated through southern McMurdo Sound by that time. We suggest the primary driver of Ross Sea ice removal from McMurdo Sound was marine-based, either through basal melting or calving due to sea-level rise. When combined with regional data, the Salmon Valley record suggests that this sector of the Antarctic Ice Sheet did not contribute in a significant way to deglacial meltwater pulses, such as meltwater pulse 1a. In contrast to the Ross Sea ice, our work also shows that local, independent alpine glaciers in Salmon Valley have advanced through the Holocene. Land-terminating glaciers such as these elsewhere in the region show a similar pattern, and may reflect the continued influence of increased accumulation following the termination of the last ice age.

  11. The Age of Lunar South Circumpolar Craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for Regional Geology, Surface Processes, and Volatile Sequestration

    NASA Technical Reports Server (NTRS)

    Tye, A. R.; Fassett, C. I.; Head, J. W.; Mazarico, E.; Basilevsky, A. T.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-01-01

    The interiors of the lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton contain permanently shadowed regions (PSRs) and have been interpreted to contain sequestered volatiles including water ice. Altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter provide a new means of examining the permanently shadowed interiors of these craters in unprecedented detail. In this study, we used extremely high-resolution gridded LOLA data of Haworth, Shoemaker, Faustini, and Shackleton to determine the size-frequency distributions and the spatial density of craters superposing their rims, inner slopes, and floors. Based on their population of superposed D greater than or equal to 2 km craters, Haworth, Shoemaker, and Faustini have pre-Nectarian formation ages. Shackleton is interpreted as having a Late Imbrian age on the basis of craters with diameter D greater than or equal to 0.5 km superposed on its rim. The local density of craters with sub-km diameters across our study area is strongly dependent on slope; because of its steep interior slopes, the lifetime of craters on the interior of Shackleton is limited. The slope-dependence of the small crater population implies that the population in this size range is controlled primarily by the rate at which craters are destroyed. This is consistent with the hypothesis that crater removal and resurfacing is a result of slopedependent processes such as diffusive mass wasting and seismic shaking, linked to micrometeorite and meteorite bombardment. Epithermal neutron flux data and UV albedo data show that these circumpolar PSRs, particularly Shoemaker, may have approximately 1-2% water ice by mass in their highly porous surface regolith, and that Shoemaker may have approximately 5% or more water ice by mass in the near subsurface. The ancient formation ages of Shoemaker, Faustini and Haworth, and the Late Imbrian (approximately 3.5 Ga) crater retention ages of their floors suggests that any water ice that might have been deposited in their permanently shadowed areas was insufficient to modify the superposed crater population since that time.

  12. Episodic expansion of Drangajökull, Vestfirðir, Iceland, over the last 3 ka culminating in its maximum dimension during the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Anderson, Leif

    2016-11-01

    Non-linear climate change is often linked to rapid changes in ocean circulation, especially around the North Atlantic. As the Polar Front fluctuated its latitudinal position during the Holocene, Iceland's climate was influenced by both the warm Atlantic currents and cool, sea ice-bearing Arctic currents. Drangajökull is Iceland's fifth largest ice cap. Climate proxies in lake sediment cores, dead vegetation emerging from beneath the ice cap, and moraine segments identified in a new DEM constrain the episodic expansion of the ice cap over the past 3 ka. Collectively, our data show that Drangajökull was advancing at ∼320 BCE, 180 CE, 560 CE, 950 CE and 1400 CE and in a state of recession at ∼450 CE, 1250 CE and after 1850 CE. The Late Holocene maximum extent of Drangajökull occurred during the Little Ice Age (LIA), occupying 262 km2, almost twice its area in 2011 CE and ∼20% larger than recent estimates of its LIA dimensions. Biological proxies from the sediment fill in a high- and low-elevation lake suggest limited vegetation and soil cover at high elevations proximal to the ice cap, whereas thick soil cover persisted until ∼750 CE at lower elevations near the coast. As Drangajökull expanded into the catchment of the high-elevation lake beginning at ∼950 CE, aquatic productivity diminished, following a trend of regional cooling supported by proxy records elsewhere in Iceland. Correlations between episodes of Drangajökull's advance and the documented occurrence of drift ice on the North Icelandic Shelf suggest export and local production of sea ice influenced the evolution of NW Iceland's Late Holocene climate.

  13. No iron fertilization in the equatorial Pacific Ocean during the last ice age

    NASA Astrophysics Data System (ADS)

    Costa, K. M.; McManus, J. F.; Anderson, R. F.; Ren, H.; Sigman, D. M.; Winckler, G.; Fleisher, M. Q.; Marcantonio, F.; Ravelo, A. C.

    2016-01-01

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP)—but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity.

  14. A High Resolution Late Holocene Paleo-atmospheric Co2 Reconstruction From Stomatal Frequency Analysis of Conifer Needles

    NASA Astrophysics Data System (ADS)

    Kouwenberg, L. L. R.; Kurschner, W. M.; Wagner, F.; Visscher, H.

    An inverse relation of stomatal frequency in leaves of many plant taxa and atmospheric CO2 concentration has been repeatedly demonstrated. Response curves based on this species-specific relation are increasingly used to reconstruct paleo-CO2 levels from stomatal frequency analysis on fossil leaves. This type of atmospheric CO2 records have been produced for a large part of geological history, varying from the Paleozoic to the Holocene. Quaternary glaciochemical records from Antarctica and Greenland suggest that CO2 concentration and temperature are strongly linked, in general CO2 appears to lag temperature change. However, in order to assess this relation, high res- olution records with a precise chronology are needed. During the Holocene, several century-scale climatic fluctuations took place, such as the 8.2 kyr event and the Lit- tle Ice age. Linking these temperature fluctuations to paleo-CO2 concentrations in glaciochemical records can be difficult, because the resolution of ice-cores is gen- erally low and the ice-gas age difference complicates accurate dating. An excellent alternative tool for high-resolution Holocene CO2 reconstructions can be provided by stomatal frequency analysis of leaves from Holocene peat and lake sediments. In this study, it is demonstrated that the western hemlock (Tsuga heterophylla) also ad- justs its stomatal frequency to the historical CO2 rise. After careful proxy-validation, a high resolution paleo-atmospheric CO2 record over the last 2000 years based on subfossil Tsuga heterophylla needles from Mount Rainier (Washington, USA) was re- constructed. Chronology is provided by a suite of AMS carbon isotope dates and the presence of tephra layers from nearby Mt. St Helens. The record reproduces CO2 lev- els around 280 ppmv for the Little Ice Age and the CO2 rise to 365 ppmv over the last 150 years. A prominent feature is a marked rise in CO2 at 350 years AD, gradu- ally declining over the next centuries. The CO2 record will be discussed in terms of its relation to local volcanic CO2 production, paleoclimate data and changes in the terrestrial and marine carbon sources and sinks.

  15. Comparison of silvicultural and natural disturbance effects on terrestrial salamanders in northern hardwood forests

    Treesearch

    Daniel J. Hocking; Kimberly J. Babbitt; Mariko Yamasaki

    2013-01-01

    In forested ecosystems timber harvesting has the potential to emulate natural disturbances, thereby maintaining the natural communities adapted to particular disturbances. We compared the effects of even-aged (clearcut and patch cut) and uneven-aged (group cut, single-tree selection) timber management techniques with natural ice-storm damage and unmanipulated reference...

  16. Interhemispheric ice-sheet synchronicity during the last glacial maximum

    USGS Publications Warehouse

    Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard

    2011-01-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  17. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.

    PubMed

    Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard

    2011-12-02

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  18. Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band samples, including Ir. Iridium determinations were made using INAA, with synthetical and natural (meteorite) standards. These findings are discussed.

  19. Abrupt transitions to a cold North Atlantic in the late Holocene

    NASA Astrophysics Data System (ADS)

    Geirsdóttir, Áslaug; Miller, Gifford; Larsen, Darren; Florian, Christopher; Pendleton, Simon

    2015-04-01

    The Holocene provides a time interval with boundary conditions similar to present, except for greenhouse gas concentrations. Recent high-resolution Northern Hemisphere records show general cooling related to orbital terms through the late Holocene, but also highly non-linear abrupt departures of centennial scale summer cold periods. These abrupt departures are evident within the last two millennia (the transitions between the Roman Warm Period (RWP, ~2,000 yr BP), the Dark Ages Cold Period (DACP, ~500-900 years AD), the Medieval Warm Period (MWP, 1000-1200 years AD) and the Little Ice Age (LIA, ~1300-1900 AD). A series of new, high-resolution and securely dated lake records from Iceland also show abrupt climate departures over the past 2 ka, characterized by shifts to persistent cold summers and an expanded cryosphere. Despite substantial differences in catchment-specific processes that dominate the lake records, the multi-proxy reconstructions are remarkably similar. After nearly a millennium with little evidence of significant climate shifts, the beginning of the first millennium AD is characterized by renewed summer cooling that leads to an expanding cryosphere. Slow summer cooling over the first five centuries is succeeded by widespread substantial cooling, with evidence for substantial expansion of glaciers and ice caps throughout our field areas between 530 and 900 AD, and an accompanying reduction in vegetation cover across much of Iceland that led to widespread landscape instability. These data suggest that the North Atlantic system began a transition into a new cold state early in the first millennium AD, which was amplified after 500 AD, until it was interrupted by warmer Medieval times between ~1000 and 1250 AD. Although severe soil erosion in Iceland is frequently associated with human settlement dated to 871 ±2 AD our reconstructions indicate that soil erosion began several centuries before settlement, during the DACP, whereas for several centuries after settlement during the warmer Medieval times, there was little or no soil erosion. During the transition into the Little Ice Age (LIA), between 1250 and 1300 AD, soil erosion and landscape instability returned. A more severe drop in summer temperatures followed this initial LIA summer cooling, culminating between 1500 and 1900 AD. The Icelandic lake records compare favorably to paleo-environmental records from the North Atlantic such as the sea-ice reconstruction North of Iceland and ice-cap expansion dates based on a composite of Arctic Canada calibrated 14C dates on tundra plants emerging from beneath receding ice caps. Global modeling experiments suggest that changes in sea ice extent and duration provides one of the strongest feedbacks that may explain both the magnitude of the change and the abrupt nature of summer-cold departures over this time. An expansion of Arctic Ocean sea ice and its export into the North Atlantic subpolar gyre could have been a major amplifier of abrupt summertime cooling and a mechanism to explain persistent cold summers during the LIA in the northern North Atlantic.

  20. Greenhouse Gas Concentration Records Extended Back to 800,000 Years From the EPICA Dome C Ice Core

    NASA Astrophysics Data System (ADS)

    Chappellaz, J.; Luethi, D.; Loulergue, L.; Barnola, J.; Bereiter, B.; Blunier, T.; Jouzel, J.; Lefloch, M.; Lemieux, B.; Masson-Delmotte, V.; Raynaud, D.; Schilt, A.; Siegenthaler, U.; Spahni, R.; Stocker, T.

    2007-12-01

    The deep ice core recovered from Dome Concordia in the framework of EPICA, the European Project for Ice Coring in Antarctica, has extended the record of Antarctic climate history back to 800,000 years [Jouzel et al., 2007]. We present the current status of measurements of CO2, CH4 and N2O on air trapped in the bubbles of the Dome C ice core. CO2 is measured in two laboratories using different techniques (laser absorption spectroscopy or gas chromatography on samples of 8 and 40 g of ice which are mechanically crushed or milled, respectively). CH4 and N2O are extracted using a melt-refreeze technique and then measured by gas chromatography (in two laboratories for CH4). The greenhouse gas concentrations have now been measured on the lowest 200 m of the Dome C core, going back to Marine Isotope Stage 20 (MIS 20) as verified by a consistent gas age/ice age difference determined at termination IX [Jouzel et al., 2007]. The atmospheric CO2 concentration mostly lagged the Antarctic temperature with a rather strong correlation throughout the eight and a half glacial cycles, but with significantly lower CO2 values between 650 and 750 kyr BP. Its lowest level ever measured in ice cores (172 ppmv) is observed during MIS 16 (minimum centered at 667 kyr BP according to the EDC3 chronology) redetermining the natural span of CO2 to 172-300 ppmv. With 2245 individual measurements, the CH4 concentration is now reconstructed over 800,000 years from a single core, with an average time resolution of 380 years. Spectral analyses of the CH4 signal show an increasing contribution of precession during the last four climatic cycles compared with the four older ones, suggesting an increasing impact of low latitudes sources/sinks. Millennial scale features in this very detailed signal allows us to compare their occurrence with ice volume reconstructions and the isotopic composition of precipitation over the East Antarctic plateau. N2O is still affected by glaciological artefacts involving dust content in the ice, and its exact temporal evolution remains to be deciphered. These measurements represent the basis of the so-called "EPICA Challenge" [Wolff et al., 2005]: they will put the climate and carbon cycle modelers under the challenge of fully understanding how orbital parameters and climate system configurations could have built such tight coupling between atmospheric composition and natural climate change during the late Quaternary. Jouzel et al., Science 317, 793-796, 10 August 2007 Wolff et al., EOS 86, N°38, 341-345, 20 September 2005

  1. Lake Sediment Records as an Indicator of Holocene Fluctuations of Quelccaya Ice Cap, Peru and Regional Climate

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.

    2012-12-01

    The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87°W, 4910 m asl), a lake that has not received glacial meltwater since late glacial time. We used the clastic sediment record to determine the input from non-glacial sources, representing ambient climate. This information tests our hypothesis that increased clastic sediment is from a glacial source in the Challpacocha record. The Yanacocha cores are composed primarily of organic-rich sediment with little clastic sediment. Eight radiocarbon ages in stratigraphic order indicate a continuous sedimentation in the lake since 11,240±90 cal. yr BP. Till at the base of the core indicates likely ice recession from the basin at this time. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, and gray scale suggest only minor changes in sedimentation relative to those in the Challpacocha core. Our new continuous lake sediment record provides complementary data to the discontinuous records of QIC Holocene extents as marked by moraines and exposed sections (e.g. Buffen et al. 2009; Thompson et al. 2006). Our record has some similarities with the nearby lacustrine record from Laguna Pacococha, which also receives meltwater from QIC (Rodbell and Seltzer, 2000; Abbott et al., 2003).

  2. Satellite Gravity and the Geosphere: Contributions to the Study of the Solid Earth and Its Fluid Earth

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Bentley, C. R.; Bilham, R.; Carton, J. A.; Eanes, R. J.; Herring, T. A.; Kaula, W. M.; Lagerloef, G. S. E.; Rojstaczer, S.; Smith, W. H. F.; hide

    1998-01-01

    The Earth is a dynamic system-it has a fluid, mobile atmosphere and oceans, a continually changing distribution of ice, snow, and groundwater, a fluid core undergoing hydromagnetic motion, a mantle undergoing both thermal convection and rebound from glacial loading of the last ice age, and mobile tectonic plates.

  3. Castles of Ice.

    ERIC Educational Resources Information Center

    Lied, Nils

    Intended for students aged 11 to 13 years, this is the true story of an Antarctic exploration as told by one of the participants. In 1956, he and two companions, along with a team of huskies started from the Australian base at Mawson, Antarctica and journeyed across the sea ice to locate the Douglas Islands and fix them on the map. The story tells…

  4. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    PubMed Central

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening. PMID:26778247

  5. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains

    NASA Astrophysics Data System (ADS)

    Thompson, Lonnie G.; Yao, Tandong; Davis, Mary E.; Mosley-Thompson, Ellen; Wu, Guangjian; Porter, Stacy E.; Xu, Baiqing; Lin, Ping-Nan; Wang, Ninglian; Beaudon, Emilie; Duan, Keqin; Sierra-Hernández, M. Roxana; Kenny, Donald V.

    2018-05-01

    Records of recent climate from ice cores drilled in 2015 on the Guliya ice cap in the western Kunlun Mountains of the Tibetan Plateau, which with the Himalaya comprises the Third Pole (TP), demonstrate that this region has become warmer and moister since at least the middle of the 19th century. Decadal-scale linkages are suggested between ice core temperature and snowfall proxies, North Atlantic oceanic and atmospheric processes, Arctic temperatures, and Indian summer monsoon intensity. Correlations between annual-scale oxygen isotopic ratios (δ18O) and tropical western Pacific and Indian Ocean sea surface temperatures are also demonstrated. Comparisons of climate records during the last millennium from ice cores acquired throughout the TP illustrate centennial-scale differences between monsoon and westerlies dominated regions. Among these records, Guliya shows the highest rate of warming since the end of the Little Ice Age, but δ18O data over the last millennium from TP ice cores support findings that elevation-dependent warming is most pronounced in the Himalaya. This, along with the decreasing precipitation rates in the Himalaya region, is having detrimental effects on the cryosphere. Although satellite monitoring of glaciers on the TP indicates changes in surface area, only a few have been directly monitored for mass balance and ablation from the surface. This type of ground-based study is essential to obtain a better understanding of the rate of ice shrinkage on the TP.

  6. Holocene geologic and climatic history around the Gulf of Alaska

    USGS Publications Warehouse

    Mann, D.H.; Crowell, A.L.; Hamilton, T.D.; Finney, B.P.

    1998-01-01

    Though not as dramatic as during the last Ice Age, pronounced climatic changes occurred in the northeastern Pacific over the last 10,000 years. Summers warmer and drier than today's accompanied a Hypsithermal interval between 9 and 6 ka. Subsequent Neoglaciation was marked by glacier expansion after 5-6 ka and the assembly of modern-type plant communities by 3-4 ka. The Neoglacial interval contained alternating cold and warm intervals, each lasting several hundred years to one millennium, and including both the Medieval Warm Period (ca. AD 900-1350) and the Little Ice Age (ca. AD 1350-1900). Salmon abundance fluctuated during the Little Ice Age in response to local glaciation and probably also to changes in the intensity of the Aleutian Low. Although poorly understood at present, climate fluctuations at all time scales were intimately connected with oceanographic changes in the North Pacific Ocean. The Gulf of Alaska region is tectonically highly active, resulting in a history of frequent geological catastrophes during the Holocene. Twelve to 14 major volcanic eruptions occurred since 12 ka. At intervals of 20-100 years, large earthquakes have raised and lowered sea level instantaneously by meters and generated destructive tsunamis. Sea level has often varied markedly between sites only 50-100 km apart due to tectonism and the isostatic effects of glacier fluctuations.

  7. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering

    NASA Astrophysics Data System (ADS)

    Goddéris, Yves; Donnadieu, Yannick; Carretier, Sébastien; Aretz, Markus; Dera, Guillaume; Macouin, Mélina; Regard, Vincent

    2017-04-01

    The onset of the late Palaeozoic ice age about 340 million years ago has been attributed to a decrease in atmospheric CO2 concentrations associated with expansion of land plants, as plants both enhance silicate rock weathering--which consumes CO2--and increase the storage of organic carbon on land. However, plant expansion and carbon uptake substantially predate glaciation. Here we use climate and carbon cycle simulations to investigate the potential effects of the uplift of the equatorial Hercynian mountains and the assembly of Pangaea on the late Palaeozoic carbon cycle. In our simulations, mountain uplift during the Late Carboniferous caused an increase in physical weathering that removed the thick soil cover that had inhibited silicate weathering. The resulting increase in chemical weathering was sufficient to cause atmospheric CO2 concentrations to fall below the levels required to initiate glaciation. During the Permian, the lowering of the mountains led to a re-establishment of thick soils, whilst the assembly of Pangaea promoted arid conditions in continental interiors that were unfavourable for silicate weathering. These changes allowed CO2 concentrations to rise to levels sufficient to terminate the glacial event. Based on our simulations, we suggest that tectonically influenced carbon cycle changes during the late Palaeozoic were sufficient to initiate and terminate the late Palaeozoic ice age.

  8. Palaeoclimate: ocean tides and Heinrich events.

    PubMed

    Arbic, Brian K; Macayeal, Douglas R; Mitrovica, Jerry X; Milne, Glenn A

    2004-11-25

    Climate varied enormously over the most recent ice age--for example, large pulses of ice-rafted debris, originating mainly from the Labrador Sea, were deposited into the North Atlantic at roughly 7,000-year intervals, with global climatic implications. Here we show that ocean tides within the Labrador Sea were exceptionally large over the period spanning these huge, abrupt ice movements, which are known as Heinrich events. We propose that tides played a catalytic role in liberating iceberg armadas during that time.

  9. Latest Results from and Plans for the New Horizons Pluto-Kuiper Belt Mission

    NASA Astrophysics Data System (ADS)

    Weaver, Harold; Stern, Alan

    2016-07-01

    On 2015 July 14 NASA's New Horizons spacecraft flew 12,500 km above the surface of Pluto revealing a world of remarkable complexity and diversity. A giant basin filled with nitrogen ice dominated the encounter hemisphere and is the site of vigorous ongoing solid state convection that generates glacier-like transport along the surface. Giant mountains of water ice appear to be floating in the nitrogen ice. The periphery of the basin has a wide variety of landforms, including ice flow channels and chaotically arranged blocks of water ice. Extensive sublimation pitting is observed within the nitrogen ice sheet, testifying to active volatile transport. Peculiar bladed terrain to the east of the nitrogen ice sheet appears to be coated by methane ice. Pluto's equatorial region is dominated by an ancient dark red belt of material, probably tholins created either by irradiation of surface ices or by haze precipitation from the atmosphere. Pluto sports a wide variety of surface craters with some terrains dating back approximately 4 billion years while some terrains are geologically young. New Horizons discovered trace hydrocarbons in Pluto's atmosphere, multiple global haze layers, and a surface pressure near 10 microbars. Charon, Pluto's largest moon, displays tectonics, evidence for a heterogeneous crustal composition, and a puzzling giant hood of dark material covering its North Pole. Crater density statistics for Charon's surface give a crater retention age of 4-4.5 Ga, indicating that Charon's geological evolution largely ceased early in its history. All of Pluto's four small moons (Styx, Nix, Kerberos, and Hydra) have high albedos, highly elongated shapes, and are rotating much faster then synchronous with their orbital periods, with rotational poles clustered near the Pluto-Charon orbital plane. The surfaces of Nix and Hydra are coated with nearly pristine crystalline water ice, despite having crater retention ages greater than 4 billion years. The New Horizons spacecraft remains healthy and was targeted toward the flyby of a small (~30-40 km) KBO in late-2015, enabling the study of an object (2014 MU69) in a completely different dynamical class (cold classical) than Pluto, if NASA approves an Extended Mission phase. In addition to the flyby of 2014 MU69 on 2019-Jan-01, the proposed Extended Mission would also include observations of more than 20 other KBOs at resolutions and geometries not feasible from Earth, and studies of the heliospheric plasma, neutral H and He, and the dust environment out to 50 AU from the Sun.

  10. Permian U-Pb (CA-TIMS) zircon ages from Australia and China: Constraining the time scale of environmental and biotic change

    NASA Astrophysics Data System (ADS)

    Denyszyn, S. W.; Mundil, R.; Metcalfe, I.; He, B.

    2010-12-01

    In eastern Australia, the interconnected Bowen and Sydney Basins are filled with terrestrial sediments of late Paleozoic to early Mesozoic age. These sedimentary units record significant evolutionary events of eastern Gondwana during the time interval between two major mass extinctions (end Middle Permian and Permian-Triassic), and also provide lithological evidence for the Carboniferous-Permian Late Paleozoic Ice Age of southern Pangea, considered to be divisible into up to seven discrete glaciation events in Australia [e.g., 1]. These glaciations are currently assigned ages that indicate that the last of the glaciations predate the end Middle Permian mass extinction at ca. 260 Ma. However, the estimates for the time and durations are largely based on biostratigraphy and lithostratigraphy that, in the absence of robust and precise radioisotopic ages, are unacceptably fragile for providing an accurate high-resolution framework. Interbedded with the sediments are numerous tuff layers that contain zircon, many of which are associated with extensive coal measures in the Sydney and Bowen Basins. Published SHRIMP U-Pb zircon ages [2, 3] have been shown to be less precise and inaccurate when compared to ages applying the CA-TIMS method to the same horizons. Also within the late Middle Permian, the eruption of the Emeishan flood basalts in SW China has been proposed to have caused the end Middle Permian mass extinction [e.g., 4], though a causal link between these events demands a rigorous test that can only be provided by high-resolution geochronology. We present new U-Pb (CA-TIMS) zircon ages on tuff layers from the Sydney and Bowen Basins, with the purpose of generating a timescale for the Upper Permian of Australia to allow correlation with different parts of the world. Initial results, with permil precision, date a tuff layer within the uppermost Bandanna Fm. to ca. 252 Ma, a tuff within the Moranbah Coal Measures to ca. 256 Ma, and a tuff within the Ingelara Fm. to ca. 257 Ma, the latter two units lying stratigraphically below the latest identified glacial deposits. U-Pb (CA-TIMS) results on zircons from the Emeishan flood basalts and related volcanic products confirm the end-Guadalupian age (ca. 260 Ma) of the magmatism, and based on present data, place the Emeishan volcanic event (and its possibly associated mass extinction) within the occurrence of the Late Paleozoic Ice Age. This study’s primary goal is the establishment of a chronostratigraphic framework that would allow the integration of calibrated records from both terrestrial and marine units from different parts of the world in order to constrain the timing and rates of extinctions and recoveries in different locations and physical environments. [1] Fielding et al. (2008), J. Geol Soc. Lon., v. 165, pp. 129-140 [2] Michaelsen et al. (2001), Aus. J. Earth Sci., v. 48, pp. 183-192 [3] Roberts et al. (1996), Aus. J. Earth Sci., v. 43, pp. 401-421 [4] He et al. (2007), EPSL, v. 255, pp. 306-323

  11. The probable importance of snow and sediment shielding on cosmogenic ages of north-central Colorado Pinedale and pre-Pinedale moraines

    USGS Publications Warehouse

    Benson, L.; Madole, R.; Phillips, W.; Landis, G.; Thomas, T.; Kubik, P.

    2004-01-01

    Eight uncorrected 36Cl ages for Pinedale boulders in north-central Colorado fall in the range 16.5 to 20.9 kyr. 10Be age determinations on four of five boulders are in close agreement (???6% difference) with 36Cl determinations. Hypothetical corrections for snow shielding increased the 36Cl ages of Pinedale boulder surfaces by an average of ???12%. Most ages for pre-Pinedale (Bull Lake) boulders fall within marine-isotope stage (MIS) 5, a time when continental and Sierran ice accumulations were small or nonexistent. Under the assumption that these boulders were deposited on moraines that formed before the end of MIS 6 (???140 kyr BP), calculations indicated that rock-surface erosion rates would have had to range from 5.9 to 10.7 mm kyr-1 to produce the observed 36Cl values. When compared to rates that have been documented for the past 20 kyr, these erosion rates are extremely high. Snow shielding accounts for 0-48% of the additional years needed to shift pre-Pinedale dates to MIS 6. This suggests that some combination of snow shielding, sediment shielding, or 36Cl leakage has greatly decreased the apparent ages of most pre-Pinedale boulders. Inability to account for the effects of these processes seriously hinders the use of cosmogenic ages of pre-Pinedale boulders as estimators of the timing of alpine glaciation.

  12. Radar systems for a polar mission, volume 3, appendices A-D, S, T

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    Success is reported in the radar monitoring of such features of sea ice as concentration, floe size, leads and other water openings, drift, topographic features such as pressure ridges and hummocks, fractures, and a qualitative indication of age and thickness. Scatterometer measurements made north of Alaska show a good correlation with a scattering coefficient with apparent thickness as deduced from ice type analysis of stereo aerial photography. Indications are that frequencies from 9 GHz upward seem to be better for sea ice radar purposes than the information gathered at 0.4 GHz by a scatterometer. Some information indicates that 1 GHz is useful, but not as useful as higher frequencies. Either form of like-polarization can be used and it appears that cross-polarization may be more useful for thickness measurement. Resolution requirements have not been fully established, but most of the systems in use have had poorer resolution than 20 meters. The radar return from sea ice is found to be much different than that from lake ice. Methods to decrease side lobe levels of the Fresnel zone-plate processor and to decrease the memory requirements of a synthetic radar processor are discussed.

  13. Distribution of juvenile Pacific herring relative to environmental and geospatial factors in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Lewandoski, Sean; Bishop, Mary Anne

    2018-01-01

    Documenting distribution patterns of juvenile Pacific herring (Clupea pallasii) can clarify habitat preferences and provide insight into ecological factors influencing early life survival. However, few analyses relating juvenile Pacific herring density to habitat characteristics have been conducted. We sampled age-0 Pacific herring in nine bays and fjords distributed throughout Alaska's Prince William Sound during November over a 3-year period (2013-2015) and investigated associations between catch rate and habitat covariates using generalized linear mixed models. Our results indicated that the night-time distribution of age-0 Pacific herring in the pelagic environment was influenced by proximity to eelgrass (Zostera marina) beds, salinity, and water depth. Age-0 Pacific herring catch rate was negatively associated with tow depth, with herring favoring shallower water across the range of depths sampled (7.2-35.4 m). In addition, Pacific herring distribution was positively associated with fresher water within the sampled salinity gradient (24.1-32.3 psu) and proximity to eelgrass beds. Seasonal changes in juvenile Pacific herring distribution were investigated by sampling one bay over a seven month period (October-April). Age-0 Pacific herring tended to remain in the inner bay region throughout the seven months, while age-1 Pacific herring had shifted from the inner to the outer bay by spring (March-April). Additionally, catch rate of age-0 Pacific herring in areas where ice breakup had just occurred was higher than in open water, suggesting that age-0 herring preferentially select ice-covered habitats when available. Based on our results we recommend that habitat preferences of age-0 Pacific herring should be considered in the development of Pacific herring year-class strength indices from catch data.

  14. The surface of the ice-age Earth.

    PubMed

    1976-03-19

    In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based ice sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of pack ice and marine-based ice sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea ice. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent ice and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.

  15. Climate change on Mars and the formation of gullies, lobate debris aprons, and softened craters

    NASA Astrophysics Data System (ADS)

    Parsons, Reid Allen

    Recent data acquired from spacecraft missions has bettered our understanding of the nature and distribution of ice- and water-related features formed during recent periods of climate change on Mars. Numerical modeling of physical processes constrained by these newly acquired observations is an important tool with which hypotheses relating to the Martian climate can be tested. This work describes the development and implementation of a set of these models focused on the formation of a few young, ice- and water-related features. The subjects of this research are gullies, lobate debris aprons (LDAs), and craters with subdued topography known as "softened" craters. Flow of liquid water and ice over and/or within the Martian surface has been invoked in the formation of these features. Quantifying processes such as fluvial erosion and ice deformation using laboratory experiments is a Rosetta stone with which we can read into the climate history of Mars that is written on its surface. We test the hypothesis that sediment transport on gully slopes occurs via fluvial transport processes by developing a numerical sediment transport model based on steep flume experiments performed by Smart [1984]. At 20° slopes, channels 1 m deep by 8m wide and 0.1 m deep by 3 m wide transport a sediment volume equal to the alcove volume of 6 x 105 m3 in 10 hours and 40 days, respectively, under constant flow conditions. Snowpack melting cannot produce the water discharge rates necessary for fluvial sediment transport, unless long-term (kyr) storage of the resulting meltwater occurs. If these volumes of water are discharged as groundwater, the required aquifer thicknesses and aquifer drawdown lengths would be unrealistically large for a single discharge event. More plausibly, the water volume required by the fluvial transport model could be discharged in ˜ 10 episodes for an aquifer 30 m thick, with a recurrence interval similar to that of Martian obliquity cycles (˜0.1 My). Radar observations in the Deuteronilus Mensae region by Mars Reconnaissance Orbiter have constrained the thickness and dust concentration found within mid-latitude ice deposits, providing an opportunity to more accurately estimate the rheology of the ice within lobate debris aprons based on their apparent age of 100 My. We developed a numerical model simulating ice flow under Martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. We find that an ice temperature of 205 K, an ice grain size of 5 mm, and a flat subsurface slope give reasonable ages for many LDAs in the northern mid-latitudes of Mars. Assuming that the ice grain size is limited by the grain boundary pinning effect of incorporated dust, these results limit the dust volume concentration to less than 4%. However, assuming all LDAs were emplaced by a single event, we find that there is no single combination of grain size, temperature, and subsurface slope which can give realistic ages for all LDAs, suggesting that some or all of these variables are spatially heterogeneous. Based on our model we conclude that the majority of northern mid-latitude LDAs are composed of clean (≤ 4vol%), coarse (≥ 1 mm) grained ice, but regional differences in either the amount of dust mixed in with the ice, or in the presence of a basal slope below the LDA ice must be invoked. Alternatively, the ice temperature and/or timing of ice deposition may vary significantly between different mid-latitude regions. The presence of an extensive ice-rich layer in the near subsurface of the Martian regolith could result in viscous creep responsible for softening of craters at middle and high latitudes. The temperature of ground ice will vary both temporally and spatially due, respectively, to changes in Mars' obliquity and due to the slope effect on the effective angle of insolation. Numerical simulations of viscous creep indicate that these temperature variations cause the pole-facing slopes of craters to be systematically steeper than those of equator-facing slopes. Crater slopes should be most asymmetric between 25° and 400 latitude, depending on the thickness of the creeping layer. On the basis of the lack of any systematic slope asymmetry observed in the craters, we can place a conservative upper limit of ˜ 150 m on the thickness of the ice-rich creeping layer assuming a volumetric dust content of ≤ 70% and an exponentially decreasing regolith porosity with depth. If the creeping layer contains relatively clean ice, then the thickness of ice-rich material is limited to ˜ 100 m or less. The observations also suggest that the thickness of this creeping layer is reduced by ˜ 30% toward the equator. These results imply a global ice-rich regolith water volume of <˜ 10 7 km3, comparable to that proposed for a modest-sized northern plains ocean.

  16. Holocene Paleolimnological Records from Thule, Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Corbett, L.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.

    2012-12-01

    Assessing Holocene climatic and environmental variability around the margin of the Greenland Ice Sheet provides important information against which to compare ice sheet margin fluctuations. Here, we report preliminary results from ongoing research in northwestern Greenland. We present records of physical properties of lake sediments and use these to make inferences about the evolution of the lake and its surroundings over the latter half of the Holocene. We collected two sediment cores, 90 and 72 cm in length, from a small (surface area ~0.3 km2), shallow (maximum depth ~4.5 m) lake at 76°33'40''N 68°26'31''W near Thule Air Base in July 2012. The length of the cores was limited by the length of the core barrel and does not reflect the total thickness of sediment in the lake. The lake is situated within the glacial limit and likely formed subsequent to deglaciation of the region during early Holocene time. No glaciers exist within the lake's catchment today; the primary modern source of sediment is a perennial inflow from the west. We developed a preliminary depth-age model using radiocarbon ages of terrestrial organic macrofossils. Thus far, we have analyzed the sediments for magnetic susceptibility and loss-on-ignition. A radiocarbon age of 6069 ± 90 cal yr BP at the base of the core indicates that the sediments preserve a continuous record of middle to late Holocene conditions. The top of both cores consists of a thick (~12 cm) layer of dark gray unlaminated sediments, while the rest of the material in both cores is lighter brown to olive, finely laminated sediment. The upper layer is characterized by low water content (<25%), low loss-on-ignition (<5%), and high magnetic susceptibility (~150-250 x10-6). Conversely, the laminated sediments beneath have higher water content (~40-50%), higher loss-on-ignition (~5-10%), and much lower magnetic susceptibility (<50 x10-6). We hypothesize that the upper, less organic unit may represent a single event in the lake's recent history. We are refining the depth-age model with more radiocarbon ages, measuring grain size and carbon to nitrogen ratios of the sediments, and evaluating possible linkages between the sediment physical properties and precipitation as recorded by annual accumulation in ice cores in northwestern Greenland and Arctic Canada. This project will provide a foundation for future work in Thule investigating Holocene fluctuations of local ice cap and ice sheet margin positions.

  17. Connection of the Late Paleolithic archaeological sites of the Chuya depression with geological evidence of existence of the Late Pleistocene ice-dammed lakes

    NASA Astrophysics Data System (ADS)

    Agatova, A. R.; Nepop, R. K.

    2017-07-01

    The complexity of the age dating of the Pleistocene ice-dammed paleolakes in the Altai Mountains is a reason why geologists consider the Early Paleolithic archaeological sites as an independent age marker for dating geological objects. However, in order to use these sites for paleogeographic reconstructions, their locations, the character of stratification, and the age of stone artifacts need to be comprehensively studied. We investigate 20 Late Paleolithic archaeological sites discovered in the Chuya depression of the Russian Altai (Altai Mountains) with the aim of their possible use for reconstructions of the period of development of the Kurai-Chuya glacio-limnosystem in the Late Neopleistocene. The results of our investigation show that it is improper to use the Paleolithic archaeological sites for the dating of the existence period and the draining time of ice-dammed lakes of the Chuya Depression in the modern period of their study owing to a lack of quantitative age estimates, a wide age range of possible existence of these sites, possible redeposition of the majority of artifacts, and their surface occurrence. It is established that all stratified sites where cultural layers are expected to be dated in the future lie above the uppermost and well-expressed paleolake level (2100 m a.s.l.). Accordingly, there are no grounds to determine the existence time of shallower paleolakes. Since the whole stone material collected below the level of 2100 m a.s.l. is represented by surface finds, it is problematic to use these artifacts for absolute geochronology. The Late Paleolithic Bigdon and Chechketerek sites are of great interest for paleogeographic reconstructions of ice-dammed lakes. The use of iceberg rafting products as cores is evidence that these sites appeared after the draining of a paleolake (2000 m a.s.l.). At this time, the location of these archaeological sites on the slope of the Chuya Depression allows one to assume the existence of a large lake as deep as 250 m synchronously with the above paleolake or later. The location of the lowermost archaeological sites is evidence that a paleolake could have existed at an altitude below 1770 m a.s.l. in the Late Neopleistocene-Early Holocene. The absolute geochronology of the archaeological sites (cultural layers in multilayered sites, split surfaces on dropstones, etc.) can be useful for further reconstructions of the existence time, depths, and a number of ice-dammed lakes in the Kurai-Chuya system of depressions.

  18. Geochronology and Equilibrium Line Altitudes of LLGM through Holocene Glaciations from the Tropical Cordillera Huayhuash, Peru

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Ramage, J. M.; Rodbell, D. T.; Finkel, R. C.; Smith, J. A.; Mark, B. G.; Farber, D. L.

    2006-12-01

    Geomorphologic relationships and cosmogenic 10Be ages from the Central Peruvian Andes reveal a rich record of glaciations from at least the late Holocene, Late Glacial, Last Local Glacial Maximum (LLGM), and older more extensive glaciations - dated between 50ka and 440ka in both the Cordillera Blanca, to the north and the Junin Region to the south. The Cordillera Huayhuash (10.3°S, 76.9°W) is located between these two well-studied regions. The spine of the range trends nearly north-south and contains a substantial east-west spur which together can be used to evaluate the spatial variation in paleo-ELAs. The range is thus a key location to study changes in ice extent and equilibrium line altitudes (ELAs) between the LLGM and modern periods. Modern glaciers are confined to altitudes >4800 m and the present (1997) ELA is 4800- 5100m. In order to determine the paleo-ice positions of glaciers in different valleys we have developed a new chronology from cosmogenic 10Be ages of moraine boulder and 14C basal bog core ages. Through field mapping of glacial features, analysis of satellite imagery, digital elevation models (DEMs), and geochronology, we have delineated the ice limits associated with the LLGM, Late Glacial, and Late Holocene advances. Ages in the three valleys we have studied cluster at ~29ka, ~13ka, and ~9ka and overall we have identified surfaces with ages that range from 39.9±1.4ka to 0.2ka±0.05ka. Based on these data, we have mapped the extent of the correlative paleo-glaciers in these three drainages and extracted the modern hypsometry for each paleo-glacier from the DEMs. From this data set, we have generated paleo- ELAs using a range of methods: Toe-to-Headwall-Altitude Ratio (THAR), the Accumulation Area Ratio (AAR), and Accumulation Area Balance Ratio (AABR). For each of the LLGM, Late Glacial and Holocene stages, we have calculated both: (1) the temperature depression assuming no moisture variations, and (2) the potential relative moisture gradients assuming a constant temperature depression. Our results suggest that variations in glacial extent (and therefore paleo-ELAs) are strongly correlated with differences in valley orientation and morphology as eastern drainages receive more moisture and have shallower topographic gradients than western drainages. Additionally, while there is an extensive record of older (>39.9±1.4ka) advances to the north (Cordillera Blanca) and to the south (Junin region), the confined morphology of the Cordillera Huayhaush valleys may have inhibited the preservation of older glacial geomorphologic features, thereby explaining the apparent lack of old moraines in this range.

  19. Paraglacial dynamics in Little Ice Age glaciated environments in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Serrano, Enrique; Ruiz-Fernández, Jesús; Gómez-Ortiz, Antonio; Palacios, David

    2017-04-01

    Three Iberian mountain ranges encompassed glaciers during the Little Ice Age (LIA): the Pyrenees, Cantabrian Mountains and Sierra Nevada. The gradual warming trend initiated during the second half of the XIX century promoted the progressive shrinking of these glaciers, which completely melted during the first half of the 20th century in the Cantabrian Mountains and Sierra Nevada and reduced by 80% of their LIA extent in the Pyrenees. Currently, the formerly glaciated environments are located within the periglacial belt and still present to a major or lesser degree signs of paraglacial activity. LIA moraines are devoid of vegetation and composed of highly unstable sediments that are being intensely mobilized by slope processes. Inside the moraines, different landforms and processes generated following LIA glacial retreat have generated: (i) buried ice trapped within rock debris supplied from the cirque walls, which has also generated rock glaciers and protalus lobes; (ii) semi-permanent snow fields distributed above the ice-patches remnants of the LIA glaciers, and (iii) small periglacial features such as frost mounds, sorted circles and solifluction landforms generated by processes such as solifluction and cryoturbation. Present-day morphodynamics is mostly related to seasonal frost conditions, though patches of permafrost have formed in some areas in contact with the buried ice. This 'geomorphic permafrost' is undergoing a process of degradation since it is not balanced with present-day climate conditions. This is reflected in the occurrence of multiple collapses and subsidences of the debris cover where the frozen bodies sit. In the highest areas of the Pyrenees there is a permafrost belt next to the small glaciated environments in the highest massifs. Finally, we propose a model for paraglacial activity in Iberian mountain ranges and compare it to other mid-latitude mountain environments as well as to other past deglaciation stages.

  20. Timing of the Late Paleozoic Ice Age: A Review of the Status Quo and New U-Pb Zircon Ages From Southern Gondwana

    NASA Astrophysics Data System (ADS)

    Mundil, R.; Griffis, N. P.; Keller, C. B.; Fedorchuk, N.; Montanez, I. P.; Isbell, J.; Vesely, F.; Iannuzzi, R.

    2017-12-01

    Throughout the Carboniferous and Permian Late Paleozoic Ice Age (LPIA), glaciations in southern Gondwana exerted a profound influence on global climate and environment, ocean chemistry, and the nature of sedimentary processes. The LPIA is widely regarded as an analogue for Pleistocene glaciations. Our understanding of the latter, as well as the validity of predictions for the future global climate and environment, depends therefore on our ability to reconstruct the LPIA. A robust chronostratigraphic framework built on high precision/high accuracy geochronology is crucial for the reconstruction of events and processes that occurred during the LPIA, particularly in the absence of high-resolution terrestrial biostratigraphic constraints that apply to both near- and far-field proxy records. The occurrence of volcaniclastic layers containing primary volcanic zircon at many levels throughout southern Gondwana makes such a reconstruction feasible, but complications inevitably arise due to the mixing of older age components with primary volcanic crystals, as well as the potential of unrecognized open system behavior to produce spurious younger ages. These pitfalls cause age dispersion that may be difficult to interpret, or is unrecognized if low precision geochronological techniques are used, resulting in inaccurate radioisotopic ages. Our current efforts in the Parana Basin (Southern Brazil) and the Karoo Basin (South Africa/Namibia) concentrate on building a robust and exportable chronostratigraphic framework based on U-Pb zircon CA-TIMS ages with sub-permil level precision combined with Bayesian approaches for resolving the eruption age of dispersed age spectra to facilitate the reconstruction of glaciogenic processes through the Carboniferous-Permian transition, as well as their implications for global sea level, atmospheric pCO2 and ocean chemistry. We will also review currently available geochronological data from contemporaneous Australian successions and their potential for robust correlations and paleo-environmental reconstruction.

  1. Late Pleistocene eolian features in southeastern Maryland and Chesapeake Bay region indicate strong WNW-NW winds accompanied growth of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Markewich, Helaine W.; Litwin, Ronald J.; Pavich, Milan J.; Brook, George A.

    2009-05-01

    Inactive parabolic dunes are present in southeastern Maryland, USA, along the east bank of the Potomac River. More elongate and finer-grained eolian deposits and paha-like ridges characterize the Potomac River-Patuxent River upland and the west side of Chesapeake Bay. These ridges are streamlined erosional features, veneered with eolian sediment and interspersed with dunes in the low-relief headwaters of Potomac- and Patuxent-river tributaries. Axis data for the dunes and ridges indicate formation by WNW-NW winds. Optically stimulated luminescence and radiocarbon age data suggest dune formation from ˜ 33-15 ka, agreeing with the 30-13 ka ages Denny, C.S., Owens, J.P., Sirkin, L., Rubin, M., 1979. The Parsonburg Sand in the central Delmarva Peninsula, Maryland and Delaware. U.S. Geol. Surv. Prof. Pap. 1067-B, 16 pp. suggested for eolian deposits east of Chesapeake Bay. Age range and paleowind direction(s) for eolian features in the Bay region approximate those for late Wisconsin loess in the North American midcontinent. Formation of midcontinent loess and Bay-region eolian features was coeval with rapid growth of the Laurentide Ice Sheet and strong cooling episodes (δ 18O minima) evident in Greenland ice cores. Age and paleowind-direction coincidence, for eolian features in the midcontinent and Bay region, indicates strong mid-latitude WNW-NW winds for several hundred kilometers south of the Laurentide glacial terminus that were oblique to previously simulated anticyclonic winds for the last glacial maximum.

  2. Valley-fill alluviation during the Little Ice Age (ca. A.D. 1400-1880), Paria River basin and southern Colorado Plateau, United States

    USGS Publications Warehouse

    Hereford, R.

    2002-01-01

    Valley-fill alluvium deposited from ca. A.D. 1400 to 1880 is widespread in tributaries of the Paria River and is largely coincident with the Little Ice Age epoch of global climate variability. Previous work showed that alluvium of this age is a mappable stratigraphic unit in many of the larger alluvial valleys of the southern Colorado Plateau. The alluvium is bounded by two disconformities resulting from prehistoric and historic arroyo cutting at ca. A.D. 1200-1400 and 1860-1910, respectively. The fill forms a terrace in the axial valleys of major through-flowing streams. This terrace and underlying deposits are continuous and interfinger with sediment in numerous small tributary valleys that head at the base of hillslopes of sparsely vegetated, weakly consolidated bedrock, suggesting that eroded bedrock was an important source of alluvium along with in-channel and other sources. Paleoclimatic and high-resolution paleoflood studies indicate that valley-fill alluviation occured during a long-term decrease in the frequency of large, destructive floods. Aggradation of the valleys ended about A.D. 1880, if not two decades earlier, with the beginning of historic arroyo cutting. This shift from deposition to valley entrenchment near the close of the Little Ice Age generally coincided with the beginning of an episode of the largest floods in the preceding 400-500 yr, which was probably caused by an increased recurrence and intensity of flood-producing El Nin??o events beginning at ca. A.D. 1870.

  3. Rapid thinning of the Laurentide Ice Sheet in coastal Maine, USA during late Heinrich Stadial 1

    NASA Astrophysics Data System (ADS)

    Koester, A. J.; Shakun, J. D.; Bierman, P. R.; Davis, P. T.; Corbett, L. B.; Zimmerman, S. R. H.

    2016-12-01

    Direct measurements of Laurentide Ice Sheet (LIS) thickness during the last deglaciation are limited, especially in coastal Maine where the LIS had a marine-terminating margin that was susceptible to abrupt climate shifts in the North Atlantic. We measured 31 10Be exposure ages down coastal mountainsides in Acadia National Park and from the slightly inland Pineo Ridge Moraine Complex, a 100 km long glaciomarine delta, to date the timing and rate of LIS thinning and subsequent retreat in coastal Maine. The vertical transects in Acadia have indistinguishable exposure ages over a 300 m range of elevation, suggesting rapid, century-scale thinning centered at 15 ka, similar to abrupt thinning inferred from cosmogenic nuclide ages at Mt. Katahdin in central Maine (Davis et al., 2015). This rapid ice sheet surface lowering during the latter part of the cold Heinrich Stadial 1 event may have been due to rapid calving in the Gulf of Maine, perhaps related to regional oceanic warming associated with weakened Atlantic Meridional Overturning Circulation (AMOC) at this time. Our 10Be ages are substantially younger than radiocarbon constraints on LIS retreat in the coastal lowlands, suggesting that the deglacial marine reservoir effect in this area was greater than the 450 - 600 year correction previously used, perhaps also related to the sluggish AMOC. In addition, the Pineo Ridge Moraine Complex dates to 14.4 ± 0.4 ka, indicating that the LIS margin began retreating from coastal Maine near the onset of the Bølling Interstadial warming.

  4. PHYSICAL THERAPY MANAGEMENT OF ICE HOCKEY ATHLETES: FROM THE RINK TO THE CLINIC AND BACK

    PubMed Central

    Davenport, Todd E.

    2016-01-01

    ABSTRACT Background The increasing number of athletes playing hockey compels rehabilitation professionals working in orthopedic and sports settings to understand the unique functional demands of ice hockey and the patterns of injuries they may promote. Purpose The purpose of this clinical perspective is to: (1) discuss the functional implications of different positions and age levels on injury prevalence within the sport; (2) summarize the seven most common injuries sustained by ice hockey athletes; and (3) present a conceptual model for the clinical management and prevention of these injuries by rehabilitation professionals. Methods A narrative review and synthesis was conducted of currently available literature on prevalence, etiology, rehabilitative intervention, prognosis, and prevention of ice hockey injuries. Results Research evidence is available to support the prevalence of injuries sustained while participating in ice hockey, as well as the most effective clinical treatment protocols to treat them. Most of the existing protocols are based on clinical and sports experience with incorporation of scientific data. Conclusion This clinical commentary reviews the current concepts of ice hockey injury care and prevention, based on scientific information regarding the incidence, mechanism, rehabilitation protocols, prognosis, and prevention of injuries. Science-based, patient-centered reasoning is integral to provide the highest quality of rehabilitative and preventative care for ice hockey athletes by physical therapists. Level of Evidence 5 PMID:27274432

  5. Troughs on Martian Ice Sheets: Analysis of Their Closure and Mass Balance

    NASA Technical Reports Server (NTRS)

    Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, J.

    2000-01-01

    At the Copenhagen workshop on Martian polar processes, Ralf Greve commented that the flow regime surrounding scarps and troughs of the Martian polar ice sheets cannot be modeled using traditional "plan view" ice-sheet models. Such models are inadequate because they typically use reduced equations that embody certain simplifications applicable only to terrestrial ice sheets where the upper ice sheet surface is smooth. In response to this suggestion, we have constructed a 2-dimensional, time dependent "side view" (two spatial dimensions: one horizontal, one vertical) model of scarp closure that is designed to overcome the difficulties described by Greve. The purpose of the model is to evaluate the scales of stress variation and styles of flow closure so as to estimate errors that may be encountered by "plan view" models. We show that there may be avenues whereby the complications associated with scarp closure can be overcome in "plan view" models through appropriate parameterizations of 3-dimensional effects. Following this, we apply the flow model to simulate the evolution of a typical scarp on the North Polar Cap of Mars. Our simulations investigate: (a) the role of "radiation trapping" (see our companion abstract) in creating and maintaining "spiral-like" scarps on the ice sheet, (b) the consequences of different flowlaws and ice compositions on scarp evolution and, in particular, scarp age, and (c) the role of dust and debris in scarp evolution.

  6. Relative role of astronomical forcings and the atmospheric carbon dioxide during the glacial cycles of the last 1.5 million years

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Chan, W. L.; Kino, K.; Watanabe, Y.; Oishi, R.

    2017-12-01

    Climate change with wax and wane of large Northern Hemisphere ice sheet occurred in the past 800 thousand years characterized by about 100 thousand year cycle with a large amplitude of sawtooth pattern, following a transition from a period of 40 thousand years cycle with small amplitude of ice sheet change at about 1 million years ago. Although the importance of insolation as the ultimate driver is now appreciated, the mechanism what determines the timing and strength of ice age termination as well as the amplitude of glacial cycles are far from clearly understood. Here we simulate the glacial cycles of the last 1.5 Ma and investigate the origin of 100ka periodicity and the role of astronomical forcing and atmospheric carbon dioxide content using a three dimensional ice sheet model with the input examined by the MIROC 4m GCM. The model is forced by astronomical parameters (Berger, 1978) and atmospheric CO2 change obtained from ice cores (Vostok, EPICA and DomeF), where available. Ice age cycles with a saw-tooth shape 100 ka periodicity are simulated at low CO2 levels, with the major NH ice sheet volume as well as geographical distribution and timing of interglacials successfully simulated. The model shows the interglacials at the right timings even under constant CO2 levels, with few exceptions, e.g. MIS11 around 400 thousand years ago (400 kyr BP). Through sensitivity experiments we examine individual factors determining the glacial termination, such as constant and variable CO2 levels, obliquity, precession and eccentricity.

  7. Analysis and Characterization of Dissolved Organic Matter in Ice Cores as Indicators of Past Environmental Conditions Using High Resolution FTICR-MS

    NASA Astrophysics Data System (ADS)

    Boschi, V.; Grannas, A. M.; Willoughby, A. S.; Catanzano, V.; Hatcher, P.

    2015-12-01

    With rapid changes in global temperatures, research aimed at better understanding past climatic events in order to predict future trends is an area of growing importance. Carbonaceous gases stored in ice cores are known to correlate with temperature change and provide evidence of such events. However, more complex forms of carbon preserved in ice cores such as dissolved organic matter (DOM) can provide additional information relating to changes in environmental conditions over time. The examination of ice core samples presents unique challenges including detection of ultra-low concentrations of organic material and extremely limited sample amounts. In this study, solid phase extraction techniques combined with ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR-MS) were utilized to successfully extract, concentrate and analyze the low concentrations of DOM in only 100 mL of ice core samples originating from various regions of Antarctica and Greenland. We characterize the DOM composition in each sample by evaluating elemental ratios, molecular formula distribution (CHO, CHON, CHOS and CHNOS) and compound class composition (lignin, tannin, lipid, condensed aromatic, protein and unsaturated hydrocarbon content). Upon characterization, we identified molecular trends in ice core DOM chemistry that correlated with past climatic events in addition to observing possible photochemical and microbial influences affecting DOM chemistry. Considering these samples range in age from 350-1175 years old, thus being formed during the Medieval Warm Period and Little Ice Age, we observed that DOM properties reflected anticipated changes in composition as influenced by warming and cooling events occurring during that time period.

  8. Rapid Holocene thinning of outlet glaciers followed by readvance in the western Ross Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Jones, R. S.; Whitmore, R.; Mackintosh, A.; Norton, K. P.; Eaves, S.; Stutz, J.

    2017-12-01

    Investigating Antarctic deglaciation following the LGM provides an opportunity to better understand patterns, mechanisms and drivers of ice sheet retreat. In the Ross Sea sector, geomorphic features preserved on the seafloor indicate that streaming East Antarctic outlet glaciers once extended >100 km offshore of South Victoria Land prior to back-stepping towards their modern configurations. In order to adequately interpret the style and causes of this retreat, the timing and magnitude of corresponding ice thickness change is required. We present new constraints on ice surface lowering from Mawson Glacier, an outlet of the East Antarctic Ice Sheet that flows into the western Ross Sea. Surface-exposure (10Be) ages from samples collected in elevation transects above the modern ice surface reveal that rapid thinning occurred at 5-8 ka, broadly coeval with new ages of grounding-line retreat at 6 ka and rapid thinning recorded at nearby Mackay Glacier at 7 ka. Our data also show that a moraine formed near to the modern ice margin of Mawson Glacier at 0.8 ka, which, together with historical observations, indicates that glaciers in this region readvanced during the last thousand years. We argue that 1) the accelerated thinning of outlet glaciers was driven by local grounding-line retreat through overdeepened basins during the early-mid Holocene, and 2) the glaciers subsequently readvanced, possibly linked to late Holocene sea-ice expansion, before retreating to their current positions. Our work demonstrates that these outlet glaciers were closely coupled to environmental and topography-induced perturbations near their termini throughout the Holocene.

  9. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    PubMed

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  10. Summary of Quaternary geology of the Municipality of Anchorage, Alaska

    USGS Publications Warehouse

    Schmoll, H.R.; Yehle, L.A.; Updike, R.G.

    1999-01-01

    Quaternary geology of the Upper Cook Inlet region is dominated by deposits of glacier retreats that followed repeated advances from both adjacent and more distant mountains. At several levels high on the mountains, there are remnant glacial deposits and other features of middle or older Pleistocene age. Late Pleistocene lateral moraines along the Chugach Mountain front represent successively younger positions of ice retreat from the last glacial maximum. As the trunk glacier retreated northeastward up the Anchorage lowland, Cook Inlet transgressed the area, depositing the Bootlegger Cove Formation and Tudor Road deposits. The glacier then readvanced to form the latest Pleistocene Elmendorf Moraine, a prominent feature that trends across the Anchorage lowland. Extensive alluvium was deposited both concurrently and somewhat later as Cook Inlet regressed. Mountain valleys contain (1) locally preserved moraines possibly of early Holocene age; (2) poorly preserved moraine remnants of older late Holocene age; and (3) well-preserved moraines formed mainly during the Little Ice Age. Glaciers still occupy large parts of the mountains, the upper ends of some mountain valleys, and small cirques. Holocene landslide deposits, including those formed during the great Alaska earthquake of 1964, occur throughout the area, especially along bluffs containing the Bootlegger Cove Formation.

  11. Surface changes in the North Atlantic meridional overturning circulation during the last millennium

    PubMed Central

    Wanamaker, Alan D.; Butler, Paul G.; Scourse, James D.; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A.

    2012-01-01

    Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector. PMID:22692542

  12. Surface changes in the North Atlantic meridional overturning circulation during the last millennium.

    PubMed

    Wanamaker, Alan D; Butler, Paul G; Scourse, James D; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A

    2012-06-12

    Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector.

  13. The beginnings of human palaeontology: prehistory, craniometry and the 'fossil human races'.

    PubMed

    Goodrum, Matthew R

    2016-09-01

    Since the nineteenth century, hominid palaeontology has offered critical information about prehistoric humans and evidence for human evolution. Human fossils discovered at a time when there was growing agreement that humans existed during the Ice Age became especially significant but also controversial. This paper argues that the techniques used to study human fossils from the 1850s to the 1870s and the way that these specimens were interpreted owed much to the anthropological examination of Stone, Bronze, and Iron Age skeletons retrieved by archaeologists from prehistoric tombs throughout Europe. What emerged was the idea that a succession of distinct human races, which were identified using techniques such as craniometry, had occupied and migrated into Europe beginning in the Ice Age and continuing into the historic period. This marks a phase in the history of human palaeontology that gradually gave way to a science of palaeoanthropology that viewed hominid fossils more from the perspective of evolutionary theory and hominid phylogeny.

  14. Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site.

    PubMed

    Stevens, T; Buylaert, J-P; Thiel, C; Újvári, G; Yi, S; Murray, A S; Frechen, M; Lu, H

    2018-03-07

    The International Commission on Stratigraphy (ICS) utilises benchmark chronostratigraphies to divide geologic time. The reliability of these records is fundamental to understand past global change. Here we use the most detailed luminescence dating age model yet published to show that the ICS chronology for the Quaternary terrestrial type section at Jingbian, desert marginal Chinese Loess Plateau, is inaccurate. There are large hiatuses and depositional changes expressed across a dynamic gully landform at the site, which demonstrates rapid environmental shifts at the East Asian desert margin. We propose a new independent age model and reconstruct monsoon climate and desert expansion/contraction for the last ~250 ka. Our record demonstrates the dominant influence of ice volume on desert expansion, dust dynamics and sediment preservation, and further shows that East Asian Summer Monsoon (EASM) variation closely matches that of ice volume, but lags insolation by ~5 ka. These observations show that the EASM at the monsoon margin does not respond directly to precessional forcing.

  15. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  16. Pain Intensity after an Ice Pack Application Prior to Venipuncture among School-Age Children: An Experimental Study

    ERIC Educational Resources Information Center

    Alalo, Fadeelah Mansour Ahmed; Ahmad, Awatef El Sayed; El Sayed, Hoda Mohamed Nafee

    2016-01-01

    Venipuncture and other invasive procedures as blood draws, intramuscular injections or heel pricks are the most commonly performed painful procedures in children. These can be a terrifying and painful experience for children and their families. The present study aimed to identify Pain intensity after an ice pack application prior to venipuncture…

  17. Glacier advance during Marine Isotope Stage 11 in the McMurdo Dry Valleys of Antarctica

    PubMed Central

    Swanger, Kate M.; Lamp, Jennifer L.; Winckler, Gisela; Schaefer, Joerg M.; Marchant, David R.

    2017-01-01

    We mapped six distinct glacial moraines alongside Stocking Glacier in the McMurdo Dry Valleys, Antarctica. Stocking Glacier is one of several alpine glaciers in the Dry Valleys fringed by multiple cold-based drop moraines. To determine the age of the outermost moraine, we collected 10 boulders of Ferrar Dolerite along the crest of the moraine and analyzed mineral separates of pyroxene for cosmogenic 3He. On the basis of these measurements, the exposure age for the outermost moraine is 391 ± 35 ka. This represents the first documented advance of alpine glacier ice in the Dry Valleys during Marine Isotope Stage (MIS) 11. At this time, Stocking Glacier was ~20–30% larger than today. The cause of ice expansion is uncertain, but most likely it is related to increased atmospheric temperature and precipitation, associated with reduced ice extent in the nearby Ross Embayment. The data suggest complex local environmental response to warm climates in Antarctica and have implications for glacial response to Holocene warming. The study also demonstrates the potential for using alpine glacier chronologies in the Transantarctic Mountains as proxies for retreat of grounded glacier ice in the Ross Embayment. PMID:28139676

  18. Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1?

    NASA Astrophysics Data System (ADS)

    Zale, R.; Huang, Y.-T.; Bigler, C.; Wood, J. R.; Dalén, L.; Wang, X.-R.; Segerström, U.; Klaminder, J.

    2018-04-01

    Unglaciated forelands and summits protruding from ice-sheets are commonly portrayed as areas where plants first establish at the end of glacial cycles. But is this prevailing view of ice-free refugia too simplistic? Here, we present findings suggesting that surface debris supported plant communities far beyond the rim of the Late Weichselian Ice-sheet during Greenland interstadial 1 (GI-1 or Bølling-Allerød interstadial). We base our interpretations upon findings from terrigenous sediments largely resembling 'plant-trash' deposits in North America (known to form as vegetation established on stagnant ice became buried along with glacial debris during the deglaciation). In our studied deposit, we found macrofossils (N = 10) overlapping with the deglaciation period of the area (9.5-10 cal kyr BP) as well as samples (N = 2) with ages ranging between 12.9 and 13.3 cal kyr BP. The latter ages indicate growth of at least graminoids during the GI-1 interstadial when the site was near the geographic center of the degrading ice-sheet. We suggest that exposure of englacial material during GI-1 created patches of supraglacial debris capable of supporting vascular plants three millennia before deglaciation. The composition and resilience of this early plant community remain uncertain. Yet, the younger group of macrofossils, in combination with pollen and ancient DNA analyses of inclusions, imply that shrubs (Salix sp., Betula sp. and Ericaceae sp) and even tree species (Larix) were present in the debris during the final deglaciation stage.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending onmore » the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.« less

  20. Characterising Late-Holocene glacier variability in the southern tropical Andes

    NASA Astrophysics Data System (ADS)

    Bromley, G.; Winckler, G.; Hall, B. L.; Schaefer, J. M.

    2011-12-01

    Accurate resolution of both the timing and magnitude of Late-Holocene climate events, such as the Little Ice Age, is vital in order to test different hypotheses for the causes and propagation of such climate variability. However, in contrast to higher latitudes, well-dated records from the tropics are relatively rare and the overall climatic structure of the last millennium remains unresolved. Much of this uncertainty stems from difficulties associated with radiocarbon dating in these dry, often high-altitude environments, a situation that now is being addressed through the application and refinement of cosmogenic surface-exposure methods. We present detailed Late-Holocene moraine records, resolved with radiocarbon and surface-exposure dating, from sites across the Andes of southern Peru. Specifically, we describe glacial records from both the arid Western Cordillera, where glaciation is limited by moisture availability, and the humid Eastern Cordillera, where ablation is controlled primarily by air temperature. In both locations, the most recent advance is marked by two to three unweathered terminal moraines located several hundred metres beyond the modern ice margins. Our chronology indicates that, while the advance occurred broadly in step with the classic 'Little Ice Age', the maximum glacial extent in southern Peru was achieved relatively early on and that the 18th and 19th centuries were dominated by glacier retreat. In a broader temporal context, our data also confirm that, in contrast to northern temperate latitudes, the event in southern Peru was the most recent significant interruption in a progressive Holocene retreat. The consistency in glacier response between the different climate zones suggests (i) that this pattern of Late-Holocene climate variability was of at least regional extent and (ii) that temperature fluctuations were the primary driving mechanism.

  1. Correcting anthropogenic ocean heat uptake estimates for the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey

    2017-04-01

    Estimates of anthropogenic ocean heat uptake typically assume that the ocean was in equilibrium during the pre-industrial era. Recent reconstructions of the Common Era, however, show a multi-century surface cooling trend before the Industrial Revolution. Using a time-evolving state estimation method, we find that the 1750 C.E. ocean must have been out of equilibrium in order to fit the H.M.S. Challenger, WOCE, and Argo hydrographic data. When the disequilibrated ocean conditions are taken into account, the inferred ocean heat uptake from 1750-2014 C.E. is revised due to the deep ocean memory of Little Ice Age surface forcing. These effects of ocean disequilibrium should also be considered when interpreting climate sensitivity estimates.

  2. Marine sedimentary provenance evidence for massive discharges of icebergs from the Aurora and Wilkes sub-glacial basins

    NASA Astrophysics Data System (ADS)

    Pierce, E. L.; Williams, T.; van de Flierdt, T.; Hemming, S. R.; Brachfeld, S. A.; Goldstein, S. L.

    2010-12-01

    Understanding the evolution of the East Antarctic Ice Sheet (EAIS) is a fundamental goal in the field of paleoclimate today. Given the current and projected state of global warming, it is important to know how an ice sheet that holds over 50 m of sea-level has behaved under warmer conditions in the past. Despite the fact that over 98% of the East Antarctica continent is covered by thick (2.1 km on average) ice, the chronological characterization of glaciogenic detrital hornblende grains has been proven an excellent provenance tool in the investigation of the source areas for ice rafted detritus around Antarctica (Roy et al., 2007, Chem. Geo.). A circum-Antarctica core-top survey of Ar-Ar ages in hornblende grains demonstrates that East Antarctica can be simply divided into several sectors that correspond to modern ice divides and published geochronological evidence from sparse outcrops around the margins of the continent. Williams et al., (2010, EPSL) found evidence in ice rafted detritus layers in ODP Site 1165 from the Wilde drift off Prydz Bay for large discharges of icebergs from the Adélie and Wilkes Land coasts occurring during the late Miocene and early Pliocene. Sourcing from the Adélie and Wilkes Land coasts requires iceberg transport more than 1500 km around the Antarctic perimeter, and this is therefore evidence for massive discharges of icebergs from these sectors. In the Aurora and Wilkes Basins in these sectors, the ice sheet is grounded well below sea level, and is therefore thought to be potentially unstable under warmer conditions. Such long distant transport of sediments with distinctive sources is reminiscent of Heinrich Events in the North Atlantic. A model often invoked as the cause of these events is the collapse and retreat of ice-streams, which leads to massive discharges of icebergs, laden with sediment, into the ocean. The importance of this interpretation, if true, has led us to make more detailed studies of Quaternary sediments from the Adélie and Wilkes Land coasts as well as glaciogenic sediments throughout the Cenozoic in Prydz Bay. We will present Ar-Ar ages of detrital hornblende and biotite grains (>150 µm), as well as epsilon-Nd values measured on the terrigenous fine fraction (<63 µm), from 9 marine sediment cores along the Adélie and Wilkes Land coasts of East Antarctica (95° to 165°E), and compare them and proximal Prydz Bay data with IRD layers in ODP Site 1165. We have also compared the Ar-Ar biotite age populations from the same IRD layers in ODP site 1165 that Williams et al., (2010, EPSL) examined to explore the use of Ar-Ar biotite ages as a tracer of IRD; given the high K content in biotite, it may be possible to use the 63-150 µm fraction for provenance studies which may be particularly useful for tracing sources of IRD into the Southern Ocean where IRD abundances are low and thus grain sizes tend to be finer. The combined application of these tracers will allow interpretation of the average crust formation age of the sources, as well as provide information on major tectonothermal pulses and cooling through approximately 300°C.

  3. Expanding research capabilities with sea ice climate records for analysis of long-term climate change and short-term variability

    NASA Astrophysics Data System (ADS)

    Scott, D. J.; Meier, W. N.

    2008-12-01

    Recent sea ice analysis is leading to predictions of a sea ice-free summertime in the Arctic within 20 years, or even sooner. Sea ice topics, such as concentration, extent, motion, and age, are predominately studied using satellite data. At the National Snow and Ice Data Center (NSIDC), passive microwave sea ice data sets provide timely assessments of seasonal-scale variability as well as consistent long-term climate data records. Such data sets are crucial to understanding changes and assessing their impacts. Noticeable impacts of changing sea ice conditions on native cultures and wildlife in the Arctic region are now being documented. With continued deterioration in Arctic sea ice, global economic impacts will be seen as new shipping routes open. NSIDC is at the forefront of making climate data records available to address the changes in sea ice and its global impacts. By focusing on integrated data sets, NSIDC leads the way by broadening the studies of sea ice beyond the traditional cryospheric community.

  4. Calcium Absorption from Fortified Ice Cream Formulations Compared with Calcium Absorption from Milk

    PubMed Central

    van der Hee, Regine M.; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S.M.J.E.; Rietveld, Anton G.; Wilkinson, Joy E.; Quail, Patricia J.; Berry, Mark J.; Dainty, Jack R.; Teucher, Birgit; Fairweather-Tait, Susan J.

    2009-01-01

    Objective Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Subjects/setting Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Statistical analysis Effects on calcium absorption were evaluated by analysis of variance. Results Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%±8%, 28%±5%, and 31%±9%, respectively, and did not differ significantly (P=0.159). Conclusions Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium. PMID:19394469

  5. Modest Little Ice Age cooling of the Western Tropical Atlantic inferred from Sr-U Coral Paleothermometry

    NASA Astrophysics Data System (ADS)

    Alpert, A.; Cohen, A. L.; Oppo, D.; Gaetani, G. A.

    2016-12-01

    Proxy records of the Little Ice Age (LIA; 1450-1850CE) at high latitude Northern Hemisphere indicate temperatures 1-2°C cooler relative to the mid-20th century. However, estimates of sea surface temperatures (SSTs) from the western tropical Atlantic (WTA) range widely, indicating SSTs from 0- 4°C cooler than the mid-20th century. The largest of these cooling estimates indicate that the LIA tropics were more sensitive than the high latitudes, inconsistent with model predictions. Here we apply a novel coral thermometer, Sr-U, that has been demonstrated to accurately capture spatial and temporal variability across coral genera in both the Pacific and Atlantic Oceans. A continuous section of reconstructed SSTs in the WTA (Puerto Rico) during the LIA (1465-1560CE) reveals a modest cooling relative to the late 20th century but no significant difference from the early 20th century prior. At this site sensitive to the modern Atlantic Multidecadal Oscillation (AMO) multidecadal variability was present during the LIA with amplitude comparable to the 20th century. Our record is consistent with weaker tropical sensitivity to external forcing than at higher latitudes during the LIA.

  6. Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlbauer, Andreas; Ackerman, Thomas P.; Comstock, Jennifer M.

    2014-04-16

    In situ microphysical observations 3 of mid-latitude cirrus collected during the Department of Energy Small Particles in Cirrus (SPAR-TICUS) field campaign are combined with an atmospheric state classification for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site to understand statistical relationships between cirrus microphysics and the large-scale meteorology. The atmospheric state classification is informed about the large-scale meteorology and state of cloudiness at the ARM SGP site by combining ECMWF ERA-Interim reanalysis data with 14 years of continuous observations from the millimeter-wavelength cloud radar. Almost half of the cirrus cloud occurrences in the vicinity of the ARM SGPmore » site during SPARTICUS can be explained by three distinct synoptic condi- tions, namely upper-level ridges, mid-latitude cyclones with frontal systems and subtropical flows. Probability density functions (PDFs) of cirrus micro- physical properties such as particle size distributions (PSDs), ice number con- centrations and ice water content (IWC) are examined and exhibit striking differences among the different synoptic regimes. Generally, narrower PSDs with lower IWC but higher ice number concentrations are found in cirrus sam- pled in upper-level ridges whereas cirrus sampled in subtropical flows, fronts and aged anvils show broader PSDs with considerably lower ice number con- centrations but higher IWC. Despite striking contrasts in the cirrus micro- physics for different large-scale environments, the PDFs of vertical velocity are not different, suggesting that vertical velocity PDFs are a poor predic-tor for explaining the microphysical variability in cirrus. Instead, cirrus mi- crophysical contrasts may be driven by differences in ice supersaturations or aerosols.« less

  7. Antarctic Ocean Nutrient Conditions During the Last Two Glacial Cycles

    NASA Astrophysics Data System (ADS)

    Studer, A.; Sigman, D. M.; Martinez-Garcia, A.; Benz, V.; Winckler, G.; Kuhn, G.; Esper, O.; Lamy, F.; Jaccard, S.; Wacker, L.; Oleynik, S.; Gersonde, R.; Haug, G. H.

    2014-12-01

    The high concentration of the major nutrients nitrate and phosphate in the Antarctic Zone of the Southern Ocean dictates the nature of Southern Ocean ecosystems and permits these nutrients to be carried from the deep ocean into the nutrient-limited low latitudes. Incomplete nutrient consumption in the Antarctic also allows the leakage of deeply sequestered carbon dioxide (CO2) back to the atmosphere, and changes in this leakage may have driven glacial/interglacial cycles in atmospheric CO2. In a sediment core from the Pacific sector of the Antarctic Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two assemblages of diatom species. These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Measurements in the same sediment core indicate that export production was reduced during ice ages, pointing to an ice age reduction in the supply of deep ocean-sourced nitrate to the Antarctic Ocean surface. The reduced export production of peak ice ages also implies a weaker winter-to-summer decline (i.e. reduced seasonality) in mixed layer nitrate concentration, providing a plausible explanation for an observed reduction in the inter-assemblage δ15Ndb difference during these coldest times. Despite the weak summertime productivity, the reduction in wintertime nitrate supply from deep waters left the Antarctic mixed layer with a low nitrate concentration, and this wintertime change also would have reduced the outgassing of CO2. Relief of light limitation fails to explain the intermediate degree of nitrate consumption that characterizes early glacial conditions, as improved light limitation coincident with reduced nitrate supply would drive nitrate consumption to completion. Thus, the data favor iron availability as the dominant control on annual Antarctic Ocean export production over glacial cycles.

  8. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Bazin, L.; Capron, E.; Landais, A.; Lemieux-Dudon, B.; Masson-Delmotte, V.

    2015-05-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age-scale uncertainty are essential to interpret the climate and environmental records that they contain. It is, however, a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the lock-in depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice- and air-dated horizons, ice and air depth intervals with known durations, depth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 (Antarctic ice core chronology) for four Antarctic ice cores and one Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono1 are demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono1 and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as air intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the General Public License v3 open source license.

  9. Historical Carbon Dioxide Record from the Vostok Ice Core (417,160 - 2,342 years BP)

    DOE Data Explorer

    Barnola, J. M. [CNRS, Saint Martin d'Heres Cedex, France; Raynaud, D. [CNRS, Saint Martin d'Heres Cedex, France; Lorius, C. [CNRS, Saint Martin d'Heres Cedex, France; Barkov, N. I.

    2003-01-01

    In January 1998, the collaborative ice-drilling project between Russia, the United States, and France at the Russian Vostok station in East Antarctica yielded the deepest ice core ever recovered, reaching a depth of 3,623 m (Petit et al. 1997, 1999). Ice cores are unique with their entrapped air inclusions enabling direct records of past changes in atmospheric trace-gas composition. Preliminary data indicate the Vostok ice-core record extends through four climate cycles, with ice slightly older than 400 kyr (Petit et al. 1997, 1999). Because air bubbles do not close at the surface of the ice sheet but only near the firn-ice transition (that is, at ~90 m below the surface at Vostok), the air extracted from the ice is younger than the surrounding ice (Barnola et al. 1991). Using semiempirical models of densification applied to past Vostok climate conditions, Barnola et al. (1991) reported that the age difference between air and ice may be ~6000 years during the coldest periods instead of ~4000 years, as previously assumed. Ice samples were cut with a bandsaw in a cold room (at about -15°C) as close as possible to the center of the core in order to avoid surface contamination (Barnola et al. 1983). Gas extraction and measurements were performed with the "Grenoble analytical setup," which involved crushing the ice sample (~40 g) under vacuum in a stainless steel container without melting it, expanding the gas released during the crushing in a pre-evacuated sampling loop, and analyzing the CO2 concentrations by gas chromatography (Barnola et al. 1983). The analytical system, except for the stainless steel container in which the ice was crushed, was calibrated for each ice sample measurement with a standard mixture of CO2 in nitrogen and oxygen. For further details on the experimental procedures and the dating of the successive ice layers at Vostok, see Barnola et al. (1987, 1991), Lorius et al. (1985), and Petit et al. (1999).

  10. Features of shoreline displacement in the Holocene of Franz josef Land Archipelago

    NASA Astrophysics Data System (ADS)

    Barliaev, A.; Anisimov, M.

    2014-12-01

    Changes in the global sea level after the LGM caused the significant alteration in relation of land and sea in Arctic. The rise of the sea level in Arctic was accompanied with present tectonic processes. Marine terraces are formed with the combination of eustatic sea level fluctuations and glacioisostatic uplift of the territory with the significant role of complicated tectonic block movements. There are nearly about 150 radiocarbon ages data for Franz-Josef Land archipelago now. The represented conclusions are a generalization of the published data and results of our field researches with series of new radiocarbon dates. We managed to collect valuable factual material during the Russian Arctic National Park expedition in 2012. The distinctions of post-glacial rise of different islands and peculiarities of Holocene deglaciation were identified with the help of marine terraces analysis. The altitude of the terraces with the same age on different islands exceeds 15 meters in some cases. However, analysis of the data suggests that the continuous series of raised beaches from 35 m a.s.l. formed during the last 10000 years. It is impossible to build up an univocal model of emergence isobases with the existing data. Alexandra Land Island was the special object of this investigation. The large beach ridge from Lunar Ice Cap to Kropotkina Ice Cap divides the island on two parts. The northern one is covered with marine sediments, whereas the southern - with glaciofluvial sediments with negligible areas of marine sediments. The difference between the terraces' ages of Alexandra Land on the Dezhneva Bay shore and the northern shore of island suggests that: 1) In the early Holocene the rate of the transgression exceeded the tectonic uplift of the territory; 2) Formation of the large central beach ridge occurred near 6700 years ago, the maximum marine limit in the Alexandra Land Island; 3) The rate of the tectonic rise of the territory exceeded the eustatic sea level rise in the period after 6700 years ago; 4) The formation of the large central beach ridge took place when the Ice Capes occupied less space than now. We express our gratitude to the administration of Russian Arctic National Park for providing access to FJL archipelago and organization of the expedition.

  11. Ice Age terrestrial carbon changes revisited

    NASA Astrophysics Data System (ADS)

    Crowley, Thomas J.

    1995-09-01

    N. Shackleton (1977) first proposed that changes in the marine δ13C record (Δδ13C) could be used to infer ice age changes in carbon storage on land. The previously published best estimate from the marine record is equivalent to about 490 Gt (0.32 Δδ13C). However, Adams et al. (1990) utilized a pollen database to estimate a 1350 Gt change in carbon storage, which would cause a Δδ13C of about 0.90‰. The nearly trillion ton difference in estimates amounts to almost half of the total carbon stored on land. To address the nature of this discrepancy, I have reexamined the terrestrial carbon record based on a new pollen database compiled by R. Webb and the Cooperative Holocene Mapping Project (COHMAP) group. I estimate about 750-1050 Gt glacial-interglacial change in terrestrial carbon storage, with the range reflecting uncertainties in carbon storage values for different biomes. Additional uncertainties apply to rainforest and wetland extent and presence of C4 plants, which have a significantly different isotopic signature than C3 plants. Although some scenarios overlap a new estimate of carbon storage based on the oceanic Δδ13C record (revised to 0.40‰ and 610 Gt), most estimates seem to fall outside the envelope of uncertainty in the marine record. Several possible explanations for this gap involve: (1) a missing sink may be involved in land-sea carbon exchange (e.g., continental slopes); (2) the geochemistry of the exchange process is not understood; (3) carbon storage by biome may have changed under ice age boundary conditions; or (4) the standard interpretation of whole ocean changes in the marine δ13C record requires reevaluation. This latter conclusion receives some support from comparison of the δ13C records for δ18O Stages 2 and 6. For the Stage 6 glacial, the δ13C changes are 50-60% larger than for the Stage 2 glacial. Yet implications of increased aridity are not supported by longterm trends in atmospheric dust loading. To summarize, the above analysis implies that, despite the uncertainties remaining in estimates of terrestrial carbon storage changes, a case can be made that our understanding of the transfer process is incomplete and that the eventual explanation may require clarification of factors affecting the marine δ13C record.

  12. Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone. The “Marginal Ice Zone Observations and Processes Experiment” (MIZOPEX) Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMott, P. J.; Hill, T. C.J.

    Despite the significance of the marginal ice zones of the Arctic Ocean, basic parameters such as sea surface temperature (SST) and a range of sea-ice characteristics are still insufficiently understood in these areas, and especially so during the summer melt period. The field campaigns summarized here, identified collectively as the “Marginal Ice Zone Ocean and Ice Observations and Processes Experiment” (MIZOPEX), were funded by U.S. National Aeronautic and Space Administration (NASA) with the intent of helping to address these information gaps through a targeted, intensive observation field campaign that tested and exploited unique capabilities of multiple classes of unmanned aerialmore » systems (UASs). MIZOPEX was conceived and carried out in response to NASA’s request for research efforts that would address a key area of science while also helping to advance the application of UASs in a manner useful to NASA for assessing the relative merits of different UASs. To further exercise the potential of unmanned systems and to expand the science value of the effort, the field campaign added further challenges such as air deployment of miniaturized buoys and coordinating missions involving multiple aircraft. Specific research areas that MIZOPEX data were designed to address include relationships between ocean skin temperatures and subsurface temperatures and how these evolve over time in an Arctic environment during summer; variability in sea-ice conditions such as thickness, age, and albedo within the marginal ice zone (MIZ); interactions of SST, salinity, and ice conditions during the melt cycle; and validation of satellite-derived SST and ice concentration fields provided by satellite imagery and models.« less

  13. Properties of different aged jicama (Pachyrhizus Erozus) plants

    NASA Astrophysics Data System (ADS)

    Nursandi, F.; Machmudi, M.; Santoso, U.; Indratmi, D.

    2017-07-01

    Jicama crop potential is very large, the tuber is used as a fresh fruit, ice mix fruit, salad, and can be made into flour, starch and inulin. The nutritional content of yam tubers depends on the age of the harvest, while farmers harvest jicama tubers at the age varying between 4-6 months. The research objective is to analyze the content of proximate fresh tubers and three kinds of flour (flour, starch and starch dregs) by harvesting different age plants. The study was conducted in Malang at a height of 560 m above sea level. Planting was done using plastic mulch with a spacing of 80 cm × 20 cm. Research using complete Randomized block Design with one factor harvesting consisting of 16, 18, 20 and 22 weeks after planting. Jicama tubers were harvested and analyzed the proximate for moisture, ash, fat, protein and carbohydrates in the fresh tubers, flour, starch and jicama flour dregs. The results showed that the late harvest resulted in moisture content, ash content, fiber and fat increase while the protein and carbohydrate decreased. The content of carbohydrates in the flour, starch and starch dregs was almost the same at different harvest time. The protein content of the flour is from 4.22 to 5.87%; while protein content of starch and protein content flour dregs is from 1.05 to 1.90% and 3.95 to 4.84%. Flour fiber content increased with increasing age of plants, while the fiber content of starch decreased but the dregs flour fiber content is almost the same

  14. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric; Bazin, Lucie; Capron, Emilie; Landais, Amaëlle; Lemieux-Dudon, Bénédicte; Masson-Delmotte, Valérie

    2016-04-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age scale uncertainty are essential to interpret the climate and environmental records that they contain. It is however a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and air dated horizons, ice and air depth intervals with known durations, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 chronology for 4 Antarctic ice cores and 1 Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono is demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as gas intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the GPL v3 open source license.

  15. Ancient ice islands in salt lakes of the Central Andes

    USGS Publications Warehouse

    Hurlbert, S.H.; Chang, Cecily C.Y.

    1984-01-01

    Massive blocks of freshwater ice and frozen sediments protrude from shallow, saline lakes in the Andes of southwestern Bolivia and northeastern Chile. These ice islands range up to 1.5 kilometers long, stand up to 7 meters above the water surface, and may extend out tens of meters and more beneath the unfrozen lake sediments. The upper surfaces of the islands are covered with dry white sediments, mostly aragonite or calcite. The ice blocks may have formed by freezing of the fresh pore water of lake sediments during the "little ice age." The largest blocks are melting rapidly because of possibly recent increases in geothermal heat flux through the lake bottom and undercutting by warm saline lake water during the summer.

  16. Reducing injury risk from body checking in boys' youth ice hockey.

    PubMed

    Brooks, Alison; Loud, Keith J; Brenner, Joel S; Demorest, Rebecca A; Halstead, Mark E; Kelly, Amanda K Weiss; Koutures, Chris G; LaBella, Cynthia R; LaBotz, Michele; Martin, Stephanie S; Moffatt, Kody

    2014-06-01

    Ice hockey is an increasingly popular sport that allows intentional collision in the form of body checking for males but not for females. There is a two- to threefold increased risk of all injury, severe injury, and concussion related to body checking at all levels of boys' youth ice hockey. The American Academy of Pediatrics reinforces the importance of stringent enforcement of rules to protect player safety as well as educational interventions to decrease unsafe tactics. To promote ice hockey as a lifelong recreational pursuit for boys, the American Academy of Pediatrics recommends the expansion of nonchecking programs and the restriction of body checking to elite levels of boys' youth ice hockey, starting no earlier than 15 years of age.

  17. IceAge: Chemical Evolution of Ices during Star Formation

    NASA Astrophysics Data System (ADS)

    McClure, Melissa; Bailey, J.; Beck, T.; Boogert, A.; Brown, W.; Caselli, P.; Chiar, J.; Egami, E.; Fraser, H.; Garrod, R.; Gordon, K.; Ioppolo, S.; Jimenez-Serra, I.; Jorgensen, J.; Kristensen, L.; Linnartz, H.; McCoustra, M.; Murillo, N.; Noble, J.; Oberg, K.; Palumbo, M.; Pendleton, Y.; Pontoppidan, K.; Van Dishoeck, E.; Viti, S.

    2017-11-01

    Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. We propose to trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R 1500-3000) and sensitivity (S/N 100-300) observations from 3 to 15 um to template spectra, we will map the spatial distribution of ices down to 20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies,thermal histories, and mixing environments. The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.

  18. Wisconsinan and early Holocene glacial dynamics of Cumberland Peninsula, Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Margreth, Annina; Gosse, John C.; Dyke, Arthur S.

    2017-07-01

    Three glacier systems-an ice sheet with a large marine-based ice stream, an ice cap, and an alpine glacier complex-coalesced on Cumberland Peninsula during the Late Wisconsinan. We combine high-resolution mapping of glacial deposits with new cosmogenic nuclide and radiocarbon age determinations to constrain the history and dynamics of each system. During the Middle Wisconsinan (Oxygen Isotope Stage 3, OIS-3) the Cumberland Sound Ice Stream of the Laurentide Ice Sheet retreated well back into Cumberland Sound and the alpine ice retreated at least to fiord-head positions, a more significant recession than previously documented. The advance to maximal OIS-2 ice positions beyond the mouth of Cumberland Sound and beyond most stretches of coastline remains undated. Partial preservation of an over-ridden OIS-3 glaciomarine delta in a fiord-side position suggests that even fiord ice was weakly erosive in places. Moraines formed during deglaciation represent stillstands and re-advances during three major cold events: H-1 (14.6 ka), Younger Dryas (12.9-11.7 ka), and Cockburn (9.5 ka). Distinctly different responses of the three glacial systems are evident, with the alpine system responding most sensitively to Bølling-Allerød warming whereas the larger systems retreated mainly during Pre-Boreal warming. While the larger ice masses were mainly influenced by internal dynamics, the smaller alpine glacier system responded sensitively to local climate effects. Asymmetrical recession of the alpine glacier complex indicates topoclimatic control on deglaciation and perhaps migration of the accumulation area toward moisture source.

  19. Polar oceans in a changing climate.

    PubMed

    Barnes, David K A; Tarling, Geraint A

    2017-06-05

    Most of Earth's surface is blue or white, but how much of each would depend on the time of observation. Our planet has been through phases of snowball (all frozen), greenhouse (all liquid seas) and icehouse (frozen and liquid). Even during current icehouse conditions, the extent of ice versus water has changed considerably between ice ages and interglacial periods. Water has been vital for life on Earth and has driven and been influenced by transitions between greenhouse and icehouse. However, neither the possession of water nor having liquid and frozen seas are unique to Earth (Figure 1). Frozen water oceans on the moons Enceladus and Europa (and possibly others) and the liquid and frozen hydrocarbon oceans on Titan probably represent the most likely areas to find extraterrestrial life. We know very little about life in Earth's polar oceans, yet they are the engine of the thermohaline 'conveyor-belt', driving global circulation of heat, oxygen, carbon and nutrients as well as setting sea level through change in ice-mass balance. In regions of polar seas, where surface water is particularly cold and dense, it sinks to generate a tropic-ward flow on the ocean floor of the Pacific, Atlantic and Indian Oceans. Cold water holds more gas, so this sinking water exports O 2 and nutrients, thereby supporting life in the deep sea, as well as soaking up CO 2 from the atmosphere. Water from mid-depths at lower latitudes flows in to replace the sinking polar surface water. This brings heat. The poles are cold because they receive the least energy from the sun, and this extreme light climate varies on many different time scales. To us, the current warm, interglacial conditions seem normal, yet such phases have represented only ∼10% of Homo sapiens' existence. Variations in Earth's orbit (so called 'Milankovitch cycles') have driven cyclical alternation of glaciations (ice ages) and warmer interglacials. Despite this, Earth's polar regions have been our planet's most environmentally constant surface regions for several millions of years, with most land ice-covered and much of the ocean seasonally freezing. The two poles have much in common, such as light climate, temperature and water viscosity, winter calm and summer (iceberg and storm) disturbance and resources. However, they are also regions of striking contrasts: the Arctic Ocean is near surrounded by land compared with the Antarctic continent, which is surrounded by the Southern Ocean. Polar oceans contrast in size, age, isolation, depth, oceanography, biology and human factors, such as governance and human habitation. The simplest foodwebs with the smallest residents live on the 1% of Antarctica that is ice free, whilst the largest animals that have ever lived on Earth (Blue and Fin whales) feed in the Arctic and Southern Oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assessing the Response of Alaska's Glaciers to Post-Little Ice Age Climate Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2001-12-01

    A comprehensive survey of the eleven mountain ranges and three island areas in Alaska that presently support glaciers was conducted to determine how glaciers in each area have responded to post-Little Ice Age (LIA) climate change. Today, glaciers cover 5 percent of Alaska, about 75,000 sq. km., range in elevation from 6,000 m to below sea level, and span latitudes from south of 55 degrees N to north of 69 degrees N. During the LIA, Alaskan glaciers expanded significantly, covering 10 percent more area than today. Many different types of data were used to construct baselines and determine glacier change. These include: published descriptions of glaciers (1794 - 2000), historic and modern maps (1794 - 2000), aerial photography (1926 - 2001), ground photography (1884 - 2001), airborne radar (1981 - 1991), satellite radar (1978 - 1998), space photography (1984 - 1994), multi-spectral satellite imagery (1972 - 2001), aerial reconnaissance and field observations by the author (1968 - 2001), and various types of proxy data. Data available varied for each region and glacier. Every mountain range and island group investigated is characterized by significant glacier retreat, thinning, and/or stagnation, especially at lower elevations. At some locations, glaciers have completely disappeared during the twentieth century. In other areas, retreat that started as early as the early eighteenth century, has continued into the twenty-first century. Ironically, in several areas, retreat is resulting in the number of glaciers is actually increasing, but the volume and area of ice is decreasing. The key survey findings are: ALEXANDER ARCHIPELAGO, KODIAK ISLAND, ALEUTIAN ISLANDS: every glacier examined showed evidence of thinning and retreat. Some have disappeared since last being mapped in the mid-twentieth century; COAST MOUNTAINS, ST. ELIAS MOUNTAINS, CHUGACH MOUNTAINS, KENAI MOUNTAINS, WRANGELL MOUNTAINS, ALASKA RANGE, AND THE ALEUTIAN RANGE: more than 95 percent of glaciers ending below an elevation of 1,500 m are retreating, thinning, and/or stagnating. Some advancing glaciers have tidewater termini. The two largest glaciers, Bering and Malaspina Glaciers, are thinning and retreating, losing several cubic kilometers of ice each year to melting and calving; TALKEETNA MOUNTAINS, AHKLUN-WOOD RIVER MOUNTAINS, KIGLUAIK MOUNTAINS, AND THE BROOKS RANGE: every glacier examined is retreating. Some disappeared during the twentieth century. Glaciers at higher elevations show little or no change. Perhaps, at these locations, regional climate change has not resulted in temperatures being elevated to a level where they impact existing glacier ice. Increases in precipitation may also be compensating for increases in melting. Throughout Alaska, in response to post-Little Ice Age climate change, all but a few glaciers that descent below an elevation of 1,500 m have thinned, stagnated, and/or retreated. Of the nearly 700 named Alaskan glaciers, less than a dozen are currently advancing.

  1. Stand-age profile of North Carolina's timberland

    Treesearch

    Herbert A. Knight

    1977-01-01

    Most timber stands in North Carolina are even aged and appeared after some act of nature or man. The most common acts which lead to the establishment of a new stand are timber harvesting, retirement of farmland, wildfire, wind and ice storms, or insect and disease outbreaks. Most frequently, the new stand is a product of nature’s healing process. Less often, some land...

  2. Timing of Expansions of the Quelccaya Ice Cap, Peru, and Implications for Cosmogenic Nuclide Production Rate Calibration

    NASA Astrophysics Data System (ADS)

    Lowell, T. V.; Kelly, M. A.; Applegate, P. J.; Smith, C. A.; Phillips, F. M.; Hudson, A. M.

    2010-12-01

    We calibrate the production rate of the cosmogenic nuclide beryllium-10 (10Be) at a low-latitude, high-elevation site, using nuclide concentrations measured in moraine boulders and an independent chronology determined with bracketing radiocarbon dates. The measurement of terrestrial cosmogenic nuclide (TCN) concentrations in earth surface materials has been an important development for understanding a host of earth surface processes. Uncertainty in cosmogenic nuclide production rates has hampered application of this method. Here, we contribute to the estimation of 10Be production rates by reporting both preliminary 10Be concentrations and independent radiocarbon dates from a low latitude, high elevation site. Our study site in the southeastern Peruvian Andes (~13.9°S, 70.9°W, 4850 m asl) is centered on a moraine set, known as the Huancané II moraines, that represents a ~4 km expansion of Quelccaya Ice Cap during late glacial time. At this location, organic material situated both stratigraphically below and above moraines in two adjacent valleys provide material for radiocarbon dating. Based on geomorphic arguments, we correlate results from the two valleys. The timing of ice cap margin advance is bracketed by 13 radiocarbon ages on organic material within the outermost Huancané II moraines that range from 13.6 to 12.5 ka. Two stratigraphic sections upvalley from the moraines yield 6 radiocarbon ages from 11.3 to 12.4 ka, indicating the time of retreat . We computed the probability density function that lies between these two sets of dates, and assign an age of 12.4 ka (+/-???) for the formation of the Huancané II moraines. Calculating beryllium-10 exposure dates from the measured concentrations yield exposure dates that significantly underestimate the independently determined age of the moraine (~8-30%), if existing production rate estimates are used. We suggest that the radiocarbon age for the moraines can be used as a robust independent calibration for 10Be production rates at this site.

  3. Gene flow on ice: the role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in bowhead whales (Balaena mysticetus)

    PubMed Central

    Elizabeth Alter, S; Rosenbaum, Howard C; Postma, Lianne D; Whitridge, Peter; Gaines, Cork; Weber, Diana; Egan, Mary G; Lindsay, Melissa; Amato, George; Dueck, Larry; Brownell, Robert L; Heide-Jørgensen, Mads-Peter; Laidre, Kristin L; Caccone, Gisella; Hancock, Brittany L

    2012-01-01

    Sea ice is believed to be a major factor shaping gene flow for polar marine organisms, but it remains unclear to what extent it represents a true barrier to dispersal for arctic cetaceans. Bowhead whales are highly adapted to polar sea ice and were targeted by commercial whalers throughout Arctic and subarctic seas for at least four centuries, resulting in severe reductions in most areas. Both changing ice conditions and reductions due to whaling may have affected geographic distribution and genetic diversity throughout their range, but little is known about range-wide genetic structure or whether it differed in the past. This study represents the first examination of genetic diversity and differentiation across all five putative stocks, including Baffin Bay-Davis Strait, Hudson Bay-Foxe Basin, Bering-Beaufort-Chukchi, Okhotsk, and Spitsbergen. We also utilized ancient specimens from Prince Regent Inlet (PRI) in the Canadian Arctic and compared them with modern stocks. Results from analysis of molecular variance and demographic simulations are consistent with recent and high gene flow between Atlantic and Pacific stocks in the recent past. Significant genetic differences between ancient and modern populations suggest PRI harbored unique maternal lineages in the past that have been recently lost, possibly due to loss of habitat during the Little Ice Age and/or whaling. Unexpectedly, samples from this location show a closer genetic relationship with modern Pacific stocks than Atlantic, supporting high gene flow between the central Canadian Arctic and Beaufort Sea over the past millennium despite extremely heavy ice cover over much of this period. PMID:23170222

  4. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium

    NASA Astrophysics Data System (ADS)

    Bohleber, Pascal; Erhardt, Tobias; Spaulding, Nicole; Hoffmann, Helene; Fischer, Hubertus; Mayewski, Paul

    2018-01-01

    Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a Little Ice Age cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100-1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.

  5. Iceberg discharges of the last glacial period driven by oceanic circulation changes

    PubMed Central

    Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa; Ritz, Catherine

    2013-01-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted detritus in the North Atlantic Ocean during the last glacial period interpreted as massive iceberg discharges from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence of the crucial role that the ocean plays both for past and future behavior of the cryosphere suggests a climatic control of these ice surges. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet–ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg discharge that closely agrees with ice-rafted debris records over the past 80 ka, indicating that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age. PMID:24062437

  6. Cold-season patterns of reserve and soluble carbohydrates in sugar maple and ice-damaged trees of two age classes following drought

    Treesearch

    B. L. Wong; K. L. Baggett; A. H. Rye

    2009-01-01

    This study examines the effects of summer drought on the composition and profiles of cold-season reserve and soluble carbohydrates in sugar maple (Acer saccharum Marsh.) trees (50-100 years old or ~200 years old) in which the crowns were nondamaged or damaged by the 1998 ice storm. The overall cold season reserve...

  7. Living with a Chronic Disabling Illness and Then Some: Data from the 1998 Ice Storm

    ERIC Educational Resources Information Center

    Gignac, Monique A. M.; Cott, Cheryl A.; Badley, Elizabeth M.

    2003-01-01

    This study examined the impact of the 1998 Canadian ice storm on the physical and psychological health of older adults (age greater than 55 years) living with a chronic physical illness, namely osteoarthritis and/or osteoporosis. Although disasters are relatively rare, they are a useful means of examining the impact of a single stressor on a group…

  8. Assimilation of old carbon by stream food webs in arctic Alaska

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. A.; Carey, M.; Xu, X.; Koch, J. C.; Walker, J. C.; Zimmerman, C. E.

    2017-12-01

    Permafrost thaw in arctic and sub-arctic region is mobilizing old carbon (C) from perennially frozen soils, driving the release of old C to the atmosphere and to aquatic ecosystems. Much research has focused on the transport and lability of old dissolved organic C (DOC) as a possible feedback to the climate system following thaw. However, little is known about the role of old C as a source to aquatic food webs in watersheds underlain by thawing permafrost. To quantify the contributions of old C to Arctic stream food-webs, we measured the radiocarbon (Δ14C) and stable isotope (δ13C, δ15N) contents of periphyton, macroinvertebrates, and resident fish species (Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma)). We also characterized the isotopic composition of possible C sources, including DOC, dissolved inorganic carbon (DIC), and soil organic matter. Samples were collected across 10 streams in Arctic Alaska, draining watersheds underlain by varying parent material and ground-ice content, from ice-poor bedrock to ice-rich loess (i.e. Yedoma). Fraction modern (FM) values for Arctic Grayling and Dolly Varden ranged from 0.6720 to 1.0101 (3195 years BP to modern) across all streams, and closely tracked spatial variation in Δ14C content of periphyton. Parent material and ground-ice content appear to govern the age and form of dissolved C sources to stream biota. For instance, in watersheds underlain by ice-poor bedrock, old DIC (< 5000 years BP) was the dominant C source to stream biota, reflecting contributions from carbonate weathering and soil respiration. In streams draining ice-rich Yedoma, high concentrations of younger DOC were the primary C source to stream biota, reflecting leaching of DOC from saturated, peaty soils of the active layer. These findings highlight the importance of permafrost characteristics as a control on subsurface hydrology and the delivery of aged C to surface waters. Given the large stores Pleistocene-aged organic C in Yedoma deposits, we hypothesize that older C may become a more important contribution to stream biota under warmer conditions that promote thaw.

  9. Holocene evolution of aquatic bioactivity and terrestrial erosion inferred from Skorarvatn, Vestfirðir, Iceland: Where is the Little Ice Age?

    NASA Astrophysics Data System (ADS)

    Harning, D.; Geirsdottir, A.; Miller, G. H.

    2016-12-01

    Icelandic lake sediment is well suited to provide high-resolution, well-dated continuous archives of North Atlantic climate variability. We provide new insight into the Holocene climate evolution of Vestfirðir, NW Iceland, from a 10.3 ka multi-proxy lake sediment record from non-glacial lake Skorarvatn. Age control is derived from a combination of tephrochronology and 14C-dated macrofossils. Sediment samples were analyzed for both physical (MS, density) and biological (TC, TN, δ13C, δ15N, C/N, BSi) climate proxies, providing a sub-centennial record of aquatic bioactivity and terrestrial landscape stability, and hence, summer temperature. The lake basin was ice free by at least 10.3 ka yet the waning Icelandic Ice Sheet persisted in the catchment until 9.3 ka. The local Holocene Thermal Maximum (HTM), inferred from maximum aquatic bioactivity, spans 8.9 to 7.2 ka but was interrupted by significant cooling at 8.2 ka. In accordance with other Icelandic climate records documenting progressively cooler summers following the HTM, our record reveals reduced aquatic productivity and elevated terrestrial erosion toward the present. Superimposed on this 1st order trend are abrupt episodes of cooling, inferred from low aquatic bioactivity and/or enhanced landscape instability, at 6.4, 4.2, 3, 2.5 and 1.5 ka. Surprisingly, there is no clear indication of the Little Ice Age (LIA) in our record despite evidence for the local ice cap, Drangajökull, attaining maximum areal coverage at this time. Persistently low temperatures inferred from reduced aquatic productivity plateau at 2 ka whereas increasing terrestrial erosion ceases at 1 ka. Lack of a catchment erosion signal during the LIA may be the result of depleted catchment soils and/or perennially frozen ground preventing the mobilization of soil and vegetation. With the exception of the LIA, Skorarvatn's qualitative summer temperature record corresponds closely to summer sea surface temperature and sea ice records on the North Iceland Shelf, supporting previous evidence that the North Atlantic imparts a significant impact of the state of Iceland's terrestrial climate.

  10. First identification and characterization of Borrobol‐type tephra in the Greenland ice cores: new deposits and improved age estimates

    PubMed Central

    Davies, Siwan M.; Guðmundsdóttir, Esther R.; Abbott, Peter M.; Pearce, Nicholas J. G.

    2018-01-01

    ABSTRACT Contiguous sampling of ice spanning key intervals of the deglaciation from the Greenland ice cores of NGRIP, GRIP and NEEM has revealed three new silicic cryptotephra deposits that are geochemically similar to the well‐known Borrobol Tephra (BT). The BT is complex and confounded by the younger closely timed and compositionally similar Penifiler Tephra (PT). Two of the deposits found in the ice are in Greenland Interstadial 1e (GI‐1e) and an older deposit is found in Greenland Stadial 2.1 (GS‐2.1). Until now, the BT was confined to GI‐1‐equivalent lacustrine sequences in the British Isles, Sweden and Germany, and our discovery in Greenland ice extends its distribution and geochemical composition. However, the two cryptotephras that fall within GI‐1e ice cannot be separated on the basis of geochemistry and are dated to 14358 ± 177 a b2k and 14252 ± 173 a b2k, just 106 ± 3 years apart. The older deposit is consistent with BT age estimates derived from Scottish sites, while the younger deposit overlaps with both BT and PT age estimates. We suggest that either the BT in Northern European terrestrial sequences represents an amalgamation of tephra from both of the GI‐1e events identified in the ice‐cores or that it relates to just one of the ice‐core events. A firm correlation cannot be established at present due to their strong geochemical similarities. The older tephra horizon, found within all three ice‐cores and dated to 17326 ± 319 a b2k, can be correlated to a known layer within marine sediment cores from the North Iceland Shelf (ca. 17179‐16754 cal a BP). Despite showing similarities to the BT, this deposit can be distinguished on the basis of lower CaO and TiO2 and is a valuable new tie‐point that could eventually be used in high‐resolution marine records to compare the climate signals from the ocean and atmosphere. PMID:29576671

  11. Biochemical evidence for minimal vegetation change in peatlands of the West Siberian Lowland during the Medieval Climate Anomaly and Little Ice Age

    NASA Astrophysics Data System (ADS)

    Philben, Michael; Kaiser, Karl; Benner, Ronald

    2014-05-01

    Peatland vegetation is controlled primarily by the depth of the water table, making peat paleovegetation a useful climate archive. We applied a biochemical approach to quantitatively estimate the plant sources of peat carbon based on (1) neutral sugar compositions of Sphagnum, vascular plants, and lichens and (2) lignin phenol compositions of vascular plants. We used these biochemical indices to characterize vegetation change over the last 2000 years in four peat cores from the West Siberian Lowland (Russia) to investigate climate change during the Medieval Climate Anomaly and Little Ice Age. The vegetation was dominated by Sphagnum in all four cores, but was punctuated by several rapid but transient transitions to vascular plant dominance in the two cores from the southern West Siberian Lowland (<60°N latitude). Lichen contributions were evident at the end of the Medieval Climate Anomaly and during the Little Ice Age in the two cores from northern West Siberian Lowland (>60°N), possibly indicating permafrost development. However, there was no evidence for sustained vegetation change in response to either climatic event in cores from southern West Siberian Lowland. This suggests that these climatic events were relatively mild in the southern West Siberian Lowland, although the sensitivity of bog plant communities to climate change remains poorly understood.

  12. Reassessment of ice-age cooling of the tropical ocean and atmosphere

    USGS Publications Warehouse

    Hostetler, S.W.; Mix, A.C.

    1999-01-01

    The CLIMAP project's reconstruction of past sea surface temperature inferred limited ice-age cooling in the tropical oceans. This conclusion has been controversial, however, because of the greater cooling indicated by other terrestrial and ocean proxy data. A new faunal sea surface temperature reconstruction, calibrated using the variation of foraminiferal species through time, better represents ice-age faunal assemblages and so reveals greater cooling than CLIMAP in the equatorial current systems of the eastern Pacific and tropical Atlantic oceans. Here we explore the climatic implications of this revised sea surface temperature field for the Last Glacial Maximum using an atmospheric general circulation model. Relative to model results obtained using CLIMAP sea surface temperatures, the cooler equatorial oceans modify seasonal air temperatures by 1-2??C or more across parts of South America, Africa and southeast Asia and cause attendant changes in regional moisture patterns. In our simulation of the Last Glacial Maximum, the Amazon lowlands, for example, are cooler and drier, whereas the Andean highlands are cooler and wetter than the control simulation. Our results may help to resolve some of the apparent disagreements between oceanic and continental proxy climate data. Moreover, they suggest a wind-related mechanism for enhancing the export of water vapour from the Atlantic to the Indo-Pacific oceans, which may link variations in deep-water production and high-latitude climate changes to equatorial sea surface temperatures.

  13. Chronology of the last glacial maximum in the upper Bear River Basin, Utah

    USGS Publications Warehouse

    Laabs, B.J.C.; Munroe, Jeffrey S.; Rosenbaum, J.G.; Refsnider, K.A.; Mickelson, D.M.; Singer, B.S.; Caffee, M.W.

    2007-01-01

    The headwaters of the Bear River drainage were occupied during the Last Glacial Maximum (LGM) by outlet glaciers of the Western Uinta Ice Field, an extensive ice mass (???685 km2) that covered the western slope of the Uinta Mountains. A well-preserved sequence of latero-frontal moraines in the drainage indicates that outlet glaciers advanced beyond the mountain front and coalesced on the piedmont. Glacial deposits in the Bear River drainage provide a unique setting where both 10Be cosmogenic surface-exposure dating of moraine boulders and 14C dating of sediment in Bear Lake downstream of the glaciated area set age limits on the timing of glaciation. Limiting 14C ages of glacial flour in Bear Lake (corrected to calendar years using CALIB 5.0) indicate that ice advance began at 32 ka and culminated at about 24 ka. Based on a Bayesian statistical analysis of cosmogenic surface-exposure ages from two areas on the terminal moraine complex, the Bear River glacier began its final retreat at about 18.7 to 18.1 ka, approximately coincident with the start of deglaciation elsewhere in the central Rocky Mountains and many other alpine glacial localities worldwide. Unlike valleys of the southwestern Uinta Mountains, deglaciation of the Bear River drainage began prior to the hydrologie fall of Lake Bonneville from the Provo shoreline at about 16 ka. ?? 2007 Regents of the University of Colorado.

  14. Chronologic evidence for multiple periods of loess deposition during the Late Pleistocene in the Missouri and Mississippi River Valley, United States: Implications for the activity of the Laurentide ice sheet

    USGS Publications Warehouse

    Forman, S.L.; Bettis, E. Arthur; Kemmis, T.J.; Miller, B.B.

    1992-01-01

    The loess stratigraphy of the mid-continental U.S. is an important proxy record for the activity of the Laurentide Ice Sheet in North America. One of the most outstanding problems is deciphering the age of loess deposits in this area during the late Pleistocene. Radiocarbon dating of snails and thermoluminescence dating of the fine-silt fraction (4-11 ??m) from loess at the Loveland Loess type section, Loveland, Iowa and a recent excavation at the Pleasant Grove School section. Madison County, Illinois provide new chronologic control on loess deposition in the Mississippi/Missouri River Valley chronology indicates that the Loveland Loess is Illinoian in age (135??20 ka) but is not correlative with the Teneriffe Silt which is dated to 77 ?? 8 ka. Concordant radiocarbon and thermoluminescence age estimates demonstrate that the Roxana Silt and a correlative loess in Iowa, the Pisgah Formation, is probably 40-30 ka old. These age estimates in conjunction with previous results indicate that there were four periods of loess deposition during the last 150 ka at 25-12 ka, 45-30 ka, 85-70 ka and at ca. 135 ?? 20 ka. This chronology of loess deposition supports the presence of both a late Illinoian and early Wisconsinan loess and associated soils. Thus, there may be more than one soil in the loess stratigraphy of the mid-continental U.S. with morphologies similar to the Sangamon Soil. The last three periods of loess deposition may be correlative with periods of elevated dust concentrations recorded in the Dye 3 ice core from southern Greenland. This is particularly significant because both areas possibly had the same source for eolian particles. Reconstructions of atmospheric circulation for glacial periods show a southerly deflected jet stream that could have transported dust from the mid-continental USA to southern Greenland. Lastly, the inferred record of loess deposition is parallel to a chronology for deglaciation of the Laurentide Ice Sheet deciphered from chronologic and stratigraphic studies of raised glacial and marine sediments in the Hudson Bay Lowlands, Canada. These chronologies indicate that the Laurentide Ice Sheet was quite dynamic during the late Pleistocene, advancing and retreating across North America at least four times during the last 150 ka. ?? 1992.

  15. Latest Pleistocene advance and collapse of the Matanuska - Knik glacier system, Anchorage Lowland, southern Alaska

    NASA Astrophysics Data System (ADS)

    Kopczynski, Sarah E.; Kelley, Samuel E.; Lowell, Thomas V.; Evenson, Edward B.; Applegate, Patrick J.

    2017-01-01

    At the end of the last ice age, glacier systems worldwide underwent dramatic retreat. Here, we document the advance and retreat of a glacier system with adjacent marine- and land-based components during the latter part of the Termination. We utilize three lines of evidence: lithologic provenance, geomorphic mapping, and radiocarbon ages derived from lake cores to reconstruct glacier extent and timing of advance and retreat within our study area centered at N 61.50°, W 149.50°, just north of Anchorage, Alaska. Two glaciers, sourced in the Talkeetna and Chugach Mountains, flowed down the Matanuska and Knik Valleys forming a coalesced lobe that advanced onto the Anchorage Lowlands and terminated at Elmendorf Moraine. We use the presence of lithologies unique to the Matanuska catchment in glacial drift to delineate the paleoflow lines and to estimate the suture line of the two glacier systems. The eastern side of the lobe, attributed to ice flow from the Knik Valley, was in contact with elevated marine waters within the Knik Arm fjord, and thus retreat was likely dominated by calving. Geomorphic evidence suggests the western side of the lobe, attributed to ice flow from Matanuska Valley, retreated due to stagnation. We constrain retreat of the combined Matanuska and Knik lobe with thirteen new radiocarbon ages, in addition to previously published radiocarbon ages, and with geomorphic evidence suggesting the retreat occurred in two phases. Retreat from the Elmendorf Moraine began between 16.8 and 16.4 ka BP. A second, faster retreat phase occurred later and was completed by 13.7 ka BP. With the 140 km of total retreat occurring over ∼3000 years or less. This pattern of glacial advance and retreats agrees well with the deglacial histories from the southern sectors of the Cordilleran Ice Sheet, as well as many other alpine glacier systems in the western U.S. and northern Alaska. This consistent behavior of glacier systems may indicate that climate oscillated over western North America early in deglaciation before it was recorded in other proxies such as ice cores. Furthermore, the period in which we note mountain glacier collapse in northwestern North America is synchronous with the worldwide glacial termination raising questions about intrahemispheric linkages.

  16. Preservation of Late Amazonian Mars ice and water-related deposits in a unique crater environment in Noachis Terra: Age relationships between lobate debris tongues and gullies

    NASA Astrophysics Data System (ADS)

    Morgan, Gareth A.; Head, James W.; Marchant, David R.

    2011-01-01

    The Amazonian period of Mars has been described as static, cold, and dry. Recent analysis of high-resolution imagery of equatorial and mid-latitude regions has revealed an array of young landforms produced in association with ice and liquid water; because near-surface ice in these regions is currently unstable, these ice-and-water-related landforms suggest one or more episodes of martian climate change during the Amazonian. Here we report on the origin and evolution of valley systems within a degraded crater in Noachis Terra, Asimov Crater. The valleys have produced a unique environment in which to study the geomorphic signals of Amazonian climate change. New high-resolution images reveal Hesperian-aged layered basalt with distinctive columnar jointing capping interior crater fill and providing debris, via mass wasting, for the surrounding annular valleys. The occurrence of steep slopes (>20°), relatively narrow (sheltered) valleys, and a source of debris have provided favorable conditions for the preservation of shallow-ice deposits. Detailed mapping reveals morphological evidence for viscous ice flow, in the form of several lobate debris tongues (LDT). Superimposed on LDT are a series of fresh-appearing gullies, with typical alcove, channel, and fan morphologies. The shift from ice-rich viscous-flow formation to gully erosion is best explained as a shift in martian climate, from one compatible with excess snowfall and flow of ice-rich deposits, to one consistent with minor snow and gully formation. Available dating suggests that the climate transition occurred >8 Ma, prior to the formation of other small-scale ice-rich flow features identified elsewhere on Mars that have been interpreted to have formed during the most recent phases of high obliquity. Taken together, these older deposits suggest that multiple climatic shifts have occurred over the last tens of millions of years of martian history.

  17. Past collapse and late Holocene reestablishment of the Petermann Ice Tongue, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.

    2017-12-01

    Petermann Glacier, Northwest Greenland, has been a stable outlet glacier of the Greenland Ice Sheet on historical timescales. Yet, anomalous calving events in 2010 and 2012 and oceanographic studies over the last decade indicate that Petermann Glacier and its ice tongue are especially sensitive to ice-ocean interactions, leading many to speculate on its future stability. To place these observations in the context of a longer timeframe and better understand the sensitivity of Petermann Glacier to future climate change, a 2015 international and interdisciplinary expedition of the Icebreaker Oden collected a suite of sediment cores from Petermann Fjord, spanning the mid to late Holocene and forming a transect from beneath the modern ice tongue to the mouth of the fjord (25 - 80 km from the modern grounding line). We characterize the stratigraphy ( 5.5 - 6.5 m at piston core sites) using a combination of X-ray fluorescence (XRF) scanning geochemistry, computed tomography (CT) scanning, and particle-size specific magnetic measurements on these cores and nearby terrestrial samples. Age-depth modeling, based on radiocarbon dated benthic foraminifera, is in progress with reservoir age corrections assessed using paleomagnetic comparisons to regional and global records. We observe changes in the composition and spatial pattern of ice rafted debris (IRD) and sediment fabric that reveal a dynamic history. Following early Holocene deglaciation of the region, a paleo-ice tongue broke up and an extended period of seasonally open marine conditions ensued through the middle Holocene. This ice-tongue collapse was followed by a large increase in the relative abundance of Petermann sourced IRD of non-local granitic composition. This granitic IRD component steadily declined through the middle Holocene, reaching negligible contributions when the ice tongue was reestablished in the late Holocene. Regional paleoenvironmental studies suggest warmer oceanographic and atmospheric conditions around Northwest Greenland in the middle Holocene, offering an opportunity to study the sensitivity of one of Greenland's major outlet glaciers to environmental forcing.

  18. Records of past ice sheet fluctuations in interior East Antarctica

    USGS Publications Warehouse

    Liu, Xiaohan; Huang, Feixin; Kong, Ping; Fang, Aimin; Li, Xiaoli

    2007-01-01

    The results of a land-based multi-disciplinary study of the past ice surface elevation in the Grove Mountains of interior East Antarctica support a dynamic evolution of the East Antarctic Ice Sheet (EAIS). Moraine boulders of sedimentary rocks and spore pollen assemblage imply a significant shrinkage of the EAIS, with its margin retreating south of the Grove Mountains (~450 km south of recent coast line) before the middle Pliocene. The exposure ages indicate that the ice sheet subsequently re-advanced, with the ice surface rising locally at least 450 m higher than today. It then went back down constantly from before 2.3 Ma to 1.6 Ma. The glacial topography and existence of soil show that the ice surface fluctuation continued since the early Quaternary, but with highest levels never exceeding ~100 m higher than today.

  19. Reconstructing lake ice cover in subarctic lakes using a diatom-based inference model

    NASA Astrophysics Data System (ADS)

    Weckström, Jan; Hanhijärvi, Sami; Forsström, Laura; Kuusisto, Esko; Korhola, Atte

    2014-03-01

    A new quantitative diatom-based lake ice cover inference model was developed to reconstruct past ice cover histories and applied to four subarctic lakes. The used ice cover model is based on a calculated melting degree day value of +130 and a freezing degree day value of -30 for each lake. The reconstructed Holocene ice cover duration histories show similar trends to the independently reconstructed regional air temperature history. The ice cover duration was around 7 days shorter than the average ice cover duration during the warmer early Holocene (approximately 10 to 6.5 calibrated kyr B.P.) and around 3-5 days longer during the cool Little Ice Age (approximately 500 to 100 calibrated yr B.P.). Although the recent climate warming is represented by only 2-3 samples in the sediment series, these show a rising trend in the prolonged ice-free periods of up to 2 days. Diatom-based ice cover inference models can provide a powerful tool to reconstruct past ice cover histories in remote and sensitive areas where no measured data are available.

  20. Atmospheric form drag over Arctic sea ice derived from high-resolution IceBridge elevation data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-02-01

    Here we present a detailed analysis of atmospheric form drag over Arctic sea ice, using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea ice cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear ice regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in ice type/age. The transition from a perennial to a seasonal ice cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic sea ice in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic sea ice in global climate models.

Top