Sample records for age-matched control mice

  1. Sost deficiency leads to reduced mechanical strains at the tibia midshaft in strain-matched in vivo loading experiments in mice.

    PubMed

    Albiol, Laia; Cilla, Myriam; Pflanz, David; Kramer, Ina; Kneissel, Michaela; Duda, Georg N; Willie, Bettina M; Checa, Sara

    2018-04-01

    Sclerostin, a product of the Sost gene, is a Wnt-inhibitor and thus negatively regulates bone accrual. Canonical Wnt/β-catenin signalling is also known to be activated in mechanotransduction. Sclerostin neutralizing antibodies are being tested in ongoing clinical trials to target osteoporosis and osteogenesis imperfecta but their interaction with mechanical stimuli on bone formation remains unclear. Sost knockout (KO) mice were examined to gain insight into how long-term Sost deficiency alters the local mechanical environment within the bone. This knowledge is crucial as the strain environment regulates bone adaptation. We characterized the bone geometry at the tibial midshaft of young and adult Sost KO and age-matched littermate control (LC) mice using microcomputed tomography imaging. The cortical area and the minimal and maximal moment of inertia were higher in Sost KO than in LC mice, whereas no difference was detected in either the anterior-posterior or medio-lateral bone curvature. Differences observed between age-matched genotypes were greater in adult mice. We analysed the local mechanical environment in the bone using finite-element models (FEMs), which showed that strains in the tibiae of Sost KO mice are lower than in age-matched LC mice at the diaphyseal midshaft, a region commonly used to assess cortical bone formation and resorption. Our FEMs also suggested that tissue mineral density is only a minor contributor to the strain distribution in tibial cortical bone from Sost KO mice compared to bone geometry. Furthermore, they indicated that although strain gauging experiments matched strains at the gauge site, strains along the tibial length were not comparable between age-matched Sost KO and LC mice or between young and adult animals within the same genotype. © 2018 The Author(s).

  2. The effect of methylmercury exposure on behavior and cerebellar granule cell physiology in aged mice.

    PubMed

    Bellum, Sairam; Thuett, Kerry A; Bawa, Bhupinder; Abbott, Louise C

    2013-09-01

    Epidemiology studies have clearly documented that the central nervous system is highly susceptible to methylmercury toxicity, and exposure to this neurotoxicant in humans primarily results from consumption of contaminated fish. While the effects of methylmercury exposure have been studied in great detail, comparatively little is known about the effects of moderate to low dose methylmercury toxicity in the aging central nervous system. We examined the toxic effects of a moderate dose of methylmercury on the aging mouse cerebellum. Male and female C57BL/6 mice at 16-20 months of age were exposed to methylmercury by feeding a total dose of 5.0 mg kg(-1) body weight and assessed using four behavioral tests. Methylmercury-treated aged mice performed significantly worse in open field, footprint analysis and the vertical pole test compared with age-matched control mice. Isolated cerebellar granule cells from methylmercury-treated aged mice exhibited higher levels of reactive oxygen species and reduced mitochondrial membrane potentials, but no differences in basal intracellular calcium ion levels compared with age-matched control mice. When aged mice were exposed to a moderate dose of methylmercury, they exhibited a similar degree of impairment when compared with young adult mice exposed to the same moderate dose of methylmercury, as reported in earlier studies from this laboratory. Thus, at least in mice, exposure of the aged brain to moderate concentrations methylmercury does not pose greater risk compared with the young adult brain exposed to similar concentrations of methylmercury. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Age-related T2 changes in hindlimb muscles of mdx mice.

    PubMed

    Vohra, Ravneet S; Mathur, Sunita; Bryant, Nathan D; Forbes, Sean C; Vandenborne, Krista; Walter, Glenn A

    2016-01-01

    Magnetic resonance imaging (MRI) was used to monitor changes in the transverse relaxation time constant (T2) in lower hindlimb muscles of mdx mice at different ages. Young (5 weeks), adult (44 weeks), and old mdx (96 weeks), and age-matched control mice were studied. Young mdx mice were imaged longitudinally, whereas adult and old mdx mice were imaged at a single time-point. Mean muscle T2 and percent of pixels with elevated T2 were significantly different between mdx and control mice at all ages. In young mdx mice, mean muscle T2 peaked at 7-8 weeks and declined at 9-11 weeks. In old mdx mice, mean muscle T2 was decreased compared with young and adult mice, which could be attributed to fibrosis. MRI captured longitudinal changes in skeletal muscle integrity of mdx mice. This information will be valuable for pre-clinical testing of potential therapeutic interventions for muscular dystrophy. © 2015 Wiley Periodicals, Inc.

  4. Adiposity-Related Biochemical Phenotype in Senescence-Accelerated Mouse Prone 6 (SAMP6)

    PubMed Central

    Niimi, Kimie; Takahashi, Eiki; Itakura, Chitoshi

    2009-01-01

    Senescence-accelerated mouse prone 6 (SAMP6) is a model of senile osteoporosis. From 10 to 22 wk of age, SAMP6 mice were heavier than age-matched AKR/J and SAMR1 mice. Body mass indices of 10- and 25-wk-old SAMP6 mice were higher than those of age-matched AKR/J and SAMR1 mice, indicating obesity in the SAMP6 animals. We compared the blood biochemical values among SAMP6, SAMR1, and AKR/J mice to assess whether the SAMP6 strain has abnormal obesity-related parameters. Plasma glucose, triglyceride, insulin, and leptin levels were higher in 10-wk-old SAMP6 mice than in age-matched SAMR1 and AKR/J mice, whereas plasma glucagon and adiponectin levels in 25-wk-old SAMP6 were lower compared with those in age-matched SAMR1 and AKR/J. Total cholesterol levels in SAMR1 and SAMP6 mice at 10 and 25 wk of age were higher than those in AKR/J mice. Hepatic lipid levels were higher in 10- and 25-wk-old SAMP6 mice compared with age-matched AKR/J and SAMR1 animals. These results indicate that SAMP6 mice exhibit obesity and hyperlipidemia, suggesting that the SAMP6 strain is a potential tool for the study of hyperlipidemia. PMID:19887026

  5. Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health.

    PubMed

    Deming, Janise D; Pak, Joseph S; Brown, Bruce M; Kim, Moon K; Aung, Moe H; Eom, Yun Sung; Shin, Jung-A; Lee, Eun-Jin; Pardue, Machelle T; Craft, Cheryl Mae

    2015-08-01

    Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4-/-) compared with age-matched control, wild-type mice. When 2-month-old Arr4-/- mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4-/- mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4-/- mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Our study demonstrates that Arr4-/- mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy.

  6. Experimental febrile seizures induce age-dependent structural plasticity and improve memory in mice.

    PubMed

    Tao, K; Ichikawa, J; Matsuki, N; Ikegaya, Y; Koyama, R

    2016-03-24

    Population-based studies have demonstrated that children with a history of febrile seizure (FS) perform better than age-matched controls at hippocampus-dependent memory tasks. Here, we report that FSs induce two distinct structural reorganizations in the hippocampus and bidirectionally modify future learning abilities in an age-dependent manner. Compared with age-matched controls, adult mice that had experienced experimental FSs induced by hyperthermia (HT) on postnatal day 14 (P14-HT) performed better in a cognitive task that requires dentate granule cells (DGCs). The enhanced memory performance correlated with an FS-induced persistent increase in the density of large mossy fiber terminals (LMTs) of the DGCs. The memory enhancement was not observed in mice that had experienced HT-induced seizures at P11 which exhibited abnormally located DGCs in addition to the increased LMT density. The ectopic DGCs of the P11-HT mice were abolished by the diuretic bumetanide, and this pharmacological treatment unveiled the masked memory enhancement. Thus, this work provides a novel basis for age-dependent structural plasticity in which FSs influence future brain function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Regulated Apoptosis and Immunogene Therapy for Prostate Cancer

    DTIC Science & Technology

    2006-04-01

    was sutured. The castrated mice were put on a heating pad until recovery and were given injectable Buprenex (buprenorphine hydrochloride; Reckitt ... Benckiser Healthcare UK, Ltd., England, United Kingdom). Sham-operated, age-matched males were used as controls. The orchiectomized mice were imaged

  8. Single-Dose and Fractionated Irradiation Promote Initiation and Progression of Atherosclerosis and Induce an Inflammatory Plaque Phenotype in ApoE{sup -/-} Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J.J.

    2008-07-01

    Purpose: Increased risk of atherosclerosis and stroke has been demonstrated in patients receiving radiotherapy for Hodgkin's lymphoma and head-and-neck cancer. We previously showed that 14 Gy to the carotid arteries of hypercholesterolemic ApoE{sup -/-} mice resulted in accelerated development of macrophage-rich, inflammatory atherosclerotic lesions. Here we investigate whether clinically relevant fractionated irradiation schedules and lower single doses also predispose to an inflammatory plaque phenotype. Methods and Materials: ApoE{sup -/-} mice were given 8 or 14 Gy, or 20 x 2.0 Gy in 4 weeks to the neck, and the carotid arteries were subsequently examinated for presence of atherosclerotic lesions, plaquemore » size, and phenotype. Results: At 4 weeks, early atherosclerotic lesions were found in 44% of the mice after single doses of 14 Gy but not in age-matched controls. At 22 to 30 weeks after irradiation there was a twofold increase in the mean number of carotid lesions (8-14 Gy and 20 x 2.0 Gy) and total plaque burden (single doses only), compared with age-matched controls. The majority of lesions seen at 30 to 34 weeks after fractionated irradiation or 14-Gy single doses were granulocyte rich (100% and 63%, respectively), with thrombotic features (90% and 88%), whereas these phenotypes were much less common in age-matched controls or after a single dose of 8 Gy. Conclusions: We showed that fractionated irradiation accelerated the development of atherosclerosis in ApoE{sup -/-} mice and predisposed to the formation of an inflammatory, thrombotic plaque phenotype.« less

  9. Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health

    PubMed Central

    Deming, Janise D.; Pak, Joseph S.; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Eom, Yun Sung; Shin, Jung-a; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae

    2015-01-01

    Purpose Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. Methods A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4−/−) compared with age-matched control, wild-type mice. Results When 2-month-old Arr4−/− mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4−/− mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4−/− mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Conclusions Our study demonstrates that Arr4−/− mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy. PMID:26284544

  10. Granulopoietic Growth Factor Secretion in Ovarian Carcinoma as a Mechanism for the Emergence of Immune Suppressive Myeloid Subsets

    DTIC Science & Technology

    2014-08-01

    levels will be determined and tracked biweekly during the course of tumor growth. Age/ gender -matched non-tumor-bearing mice will serve as controls for...parameter flow cytometry, we compared 21 ovarian cancer patients reflecting stages II - IV to 22 gender - race- and age-matched controls. All patient...Sitkovsky, M. A2A adenosine receptors protect tumors from anti- tumor T cells. (*equal authorship ) Proc. Natl. Acad. Sci. USA 103: 13132-13137, 2006

  11. Haploinsufficiency of the Myc regulator Mtbp extends survival and delays tumor development in aging mice.

    PubMed

    Grieb, Brian C; Boyd, Kelli; Mitra, Ramkrishna; Eischen, Christine M

    2016-10-30

    Alterations of specific genes can modulate aging. Myc, a transcription factor that regulates the expression of many genes involved in critical cellular functions was shown to have a role in controlling longevity. Decreased expression of Myc inhibited many of the deleterious effects of aging and increased lifespan in mice. Without altering Myc expression, reduced levels of Mtbp, a recently identified regulator of Myc, limit Myc transcriptional activity and proliferation, while increased levels promote Myc-mediated effects. To determine the contribution of Mtbp to the effects of Myc on aging, we studied a large cohort of Mtbp heterozygous mice and littermate matched wild-type controls. Mtbp haploinsufficiency significantly increased longevity and maximal survival in mice. Reduced levels of Mtbp did not alter locomotor activity, litter size, or body size, but Mtbp heterozygous mice did exhibit elevated markers of metabolism, particularly in the liver. Mtbp +/- mice also had a significant delay in spontaneous cancer development, which was most prominent in the hematopoietic system, and an altered tumor spectrum compared to Mtbp +/+ mice. Therefore, the data suggest Mtbp is a regulator of longevity in mice that mimics some, but not all, of the properties of Myc in aging.

  12. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  13. Constitutive expression of tert in thymocytes leads to increased incidence and dissemination of T-cell lymphoma in Lck-Tert mice.

    PubMed

    Canela, Andrés; Martín-Caballero, Juan; Flores, Juana M; Blasco, María A

    2004-05-01

    Here we describe a new mouse model with constitutive expression of the catalytic subunit of telomerase (Tert) targeted to thymocytes and peripheral T cells (Lck-Tert mice). Two independent Lck-Tert mouse lines showed higher incidences of spontaneous T-cell lymphoma than the corresponding age-matched wild-type controls, indicating that constitutive expression of Tert promotes lymphoma. Interestingly, T-cell lymphomas in Lck-Tert mice were more disseminated than those in wild-type controls and affected both lymphoid and nonlymphoid tissues, while nonlymphoid tissues were never affected with lymphoma in age-matched wild-type controls. Importantly, these roles of Tert constitutive expression in promoting tumor progression and dissemination were independent of the role of telomerase in telomere length maintenance, since telomere length distributions on a single-cell basis were identical in Lck-Tert and wild-type thymocytes. Finally, Tert constitutive expression did not interfere with telomere capping in Lck-Tert primary thymocytes, although it resulted in greater chromosomal instability upon gamma irradiation in Lck-Tert primary lymphocytes than in controls, suggesting that Tert overexpression may interfere with the cellular response to DNA damage.

  14. Aging-related renal injury and inflammation are associated with downregulation of Klotho and induction of RIG-I/NF-κB signaling pathway in senescence-accelerated mice.

    PubMed

    Zeng, Yi; Wang, Ping-Han; Zhang, Mao; Du, Jun-Rong

    2016-02-01

    The predominant distribution of the antiaging Klotho protein in both the kidneys and brain may point to its essential role in protecting against dysfunction of the kidney-brain axis during the aging process. Our previous study showed that the downregulation of Klotho was involved in aging-related cognitive impairment in aged senescence-accelerated mouse prone-8 (SAMP8) mice. The present study investigated the potential role of Klotho in aging-associated inflammation and renal injury. Age- and gender-matched groups of SAMP8 mice and their corresponding normal control senescence-accelerated mouse resistant-1 (SAMR1) were used to investigate the potential role of Klotho in aging-associated inflammation and renal injury. Compared with aged SAMR1 controls, early-stage chronic kidney disease (CKD), which is associated with an increase in the urinary albumin-to-creatinine ratio, inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis, was observed in aged SAMP8 mice. Furthermore, the aging-related loss of Klotho-induced activation of the retinoic acid-inducible gene 1/nuclear factor-κB (RIG-I/NF-κB) signaling pathway and subsequent production of the proinflammatory mediators tumor necrosis factor α, interleukin-6, and inducible nitric oxide synthase in the kidneys of aged SAMP8 mice compared with SAMR1 controls. The present results suggest that aging-related inflammation and the development of early-stage CKD are likely associated with the downregulation of Klotho and induction of the RIG-I/NF-κB signaling pathway in 12-month-old SAMP8 mice. Moreover, aged SAMP8 mice with cognitive deficits and renal damage may be a potential mouse model for investigating the kidney-brain axis in the aging process.

  15. Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption

    PubMed Central

    Siddiqui, Sana; Lustig, Ana; Carter, Arnell; Sankar, Mathavi; Daimon, Caitlin M.; Premont, Richard T.; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Becker, Kevin G.; Zhang, Yongqing; Wood, William; Lehrmann, Elin; Martin, James G.; Martin, Bronwen; Taub, Dennis D.; Maudsley, Stuart

    2017-01-01

    Recent research has proposed that GIT2 (G protein-coupled receptor kinase interacting protein 2) acts as an integrator of the aging process through regulation of ‘neurometabolic’ integrity. One of the commonly accepted hallmarks of the aging process is thymic involution. At a relatively young age, 12 months old, GIT2−/− mice present a prematurely distorted thymic structure and dysfunction compared to age-matched 12 month-old wild-type control (C57BL/6) mice. Disruption of thymic structure in GIT2−/− (GIT2KO) mice was associated with a significant reduction in the expression of the cortical thymic marker, Troma-I (cytokeratin 8). Double positive (CD4+CD8+) and single positive CD4+ T cells were also markedly reduced in 12 month-old GIT2KO mice compared to age-matched control wild-type mice. Coincident with this premature thymic disruption in GIT2KO mice was the unique generation of a novel cervical ‘organ’, i.e. ‘parathymic lobes’. These novel organs did not exhibit classical peripheral lymph node-like characteristics but expressed high levels of T cell progenitors that were reflexively reduced in GIT2KO thymi. Using signaling pathway analysis of GIT2KO thymus and parathymic lobe transcriptomic data we found that the molecular signaling functions lost in the dysfunctional GIT2KO thymus were selectively reinstated in the novel parathymic lobe – suggestive of a compensatory effect for the premature thymic disruption. Broader inspection of high-dimensionality transcriptomic data from GIT2KO lymph nodes, spleen, thymus and parathymic lobes revealed a systemic alteration of multiple proteins (Dbp, Tef, Per1, Per2, Fbxl3, Ddit4, Sin3a) involved in the multidimensional control of cell cycle clock regulation, cell senescence, cellular metabolism and DNA damage. Altered cell clock regulation across both immune and non-immune tissues therefore may be responsible for the premature ‘aging’ phenotype of GIT2KO mice. PMID:28260693

  16. Zinc metabolism in genetically obese (ob/ob) mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, M.L.; Failla, M.L.

    1987-05-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from those in lean controls. In the present studies the absorption, retention and tissue distribution of zinc and constitutive levels of zinc-metallothionein (Zn-MT) in selected tissues were compared in obese (ob/ob) and lean (+/.) C57BL/6J mice. When 5-, 10- and 22-wk-old mice were administered 1.2 mumol /sup 65/Zn by stomach tube the apparent absorption of /sup 65/Zn by obese mice was 1.5, 2.2 and 3.9 times higher, respectively, than that in age-matched lean mice. Retention of orallymore » administered /sup 65/Zn after 96 h was also substantially higher in obese mice than in lean mice. To assess the possible influences of hyperphagia and intestinal hypertrophy on the enhanced apparent absorption of /sup 65/Zn by obese mice food intake by an additional group of obese mice was restricted to that of age-matched lean controls. When actual absorption of zinc was determined according to the method of Heth and Hoekstra, groups of ad libitum--fed obese, pair-fed obese and lean mice absorbed 38, 32 and 18% of administered /sup 65/Zn, respectively. In contrast, the rate of /sup 65/Zn excretion 2-6 d after oral or subcutaneous administration of the metal was similar for obese and lean mice. Unrestricted and pair-fed obese mice had significantly lower percentages of carcass /sup 65/Zn present in skin, muscle plus bone, spleen and testes and higher percentages present in liver, small intestine and adipose tissue than lean mice.« less

  17. Effect of epithalon on the incidence of chromosome aberrations in senescence-accelerated mice.

    PubMed

    Rosenfeld, S V; Togo, E F; Mikheev, V S; Popovich, I G; Khavinson, V Kh; Anisimov, V N

    2002-03-01

    The incidence of chromosome aberrations in bone marrow cells of 12-month-old SAMP-1 female mice characterized by accelerated aging was 1.8 times higher than in wild-type SAMR-1 females and 2.2 times higher than in SHR females of the same age. Treatment with Epithalon (Ala-Glu-Asp-Gly) starting from the age of 2 months decreased the incidence of chromosome aberrations in SAMP-1, SAMR-1, and SHR mice by 20%, 30.1%, and 17.9%, respectively, compared to age-matched controls (p<0.05). Treatment with melatonin (given with drinking water in a dose of 20 mg/liter in night hours) had no effect on the incidence of chromosome aberrations in SHR mice. These data indicate antimutagenic effect of Epithalon, which probably underlies the geroprotective effect of this peptide.

  18. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment.

    PubMed

    Wang, Tina; Tsui, Brian; Kreisberg, Jason F; Robertson, Neil A; Gross, Andrew M; Yu, Michael Ku; Carter, Hannah; Brown-Borg, Holly M; Adams, Peter D; Ideker, Trey

    2017-03-28

    Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of mammalian aging; however, epigenetic clocks have thus far been formulated only in humans. We first examined whether mice and humans experience similar patterns of change in the methylome with age. We found moderate conservation of CpG sites for which methylation is altered with age, with both species showing an increase in methylome disorder during aging. Based on this analysis, we formulated an epigenetic-aging model in mice using the liver methylomes of 107 mice from 0.2 to 26.0 months old. To examine whether epigenetic aging signatures are slowed by longevity-promoting interventions, we analyzed 28 additional methylomes from mice subjected to lifespan-extending conditions, including Prop1 df/df dwarfism, calorie restriction or dietary rapamycin. We found that mice treated with these lifespan-extending interventions were significantly younger in epigenetic age than their untreated, wild-type age-matched controls. This study shows that lifespan-extending conditions can slow molecular changes associated with an epigenetic clock in mice livers.

  19. Effects of p75NTR deficiency on cholinergic innervation of the amygdala and anxiety-like behavior.

    PubMed

    Busch, Ruben; Baldus, Marian; Vogt, Miriam A; Berger, Stefan M; Bartsch, Dusan; Gass, Peter; von Bohlen Und Halbach, Oliver

    2017-05-01

    The p75 neurotrophin receptor (p75NTR) is a low-affinity receptor that is capable of binding neurotrophins. Two different p75NTR knockout mouse lines are available either with a deletion in Exon III (p75NTR E x III -/- ) or in Exon IV (p75NTR E x IV -/- ). In p75NTR E x III knockout mice, only the full-length p75NTR is deleted, whereas in p75NTR E x IV knockout mice, the full-length as well as the truncated isoform of the receptor is deleted. Deletion of p75NTR has been shown to affect, among others, the septohippocampal cholinergic innervation pattern and neuronal plasticity within the hippocampus. We hypothesize that deletion of p75NTR also alters the morphology and physiology of a further key structure of the limbic system, the amygdala. Our results indicate that deletion of p75NTR also increases cholinergic innervation in the basolateral amygdala in adult as well as aged p75NTR E x III -/- and p75NTR E x IV -/- mice. The p75NTR E x IV -/- mice did not display altered long-term potentiation (LTP) in the basolateral amygdala as compared to age-matched control littermates. However, p75NTR E x III -/- mice display stronger LTP in the basolateral amygdala compared to age-matched controls. Bath-application of K252a (a trk antagonist) did not inhibit the induction of LTP in the basolateral amygdala, but reduced the level of LTP in p75NTR E x III -/- mice to levels seen in respective controls. Moreover, p75NTR E x III -/- mice display altered behavior in the dark/light box. Thus, deletion of p75NTR in mice leads to physiological and morphological changes in the amygdala and altered behavior that is linked to the limbic system. © 2017 International Society for Neurochemistry.

  20. The bcl-2 knockout mouse exhibits marked changes in osteoblast phenotype and collagen deposition in bone as well as a mild growth plate phenotype

    PubMed Central

    BOOT-HANDFORD, R. P.; MICHAELIDIS, T. M.; HILLARBY, M. C.; ZAMBELLI, A.; DENTON, J.; HOYLAND, J. A.; FREEMONT, A. J.; GRANT, M. E.; WALLIS, G. A.

    1998-01-01

    Histological examination of long bones from 1-day-old bcl-2 knockout and age-matched control mice revealed no obvious differences in length of bone, growth plate architecture or stage of endochondral ossification. In 35-day-old bcl-2 knockout mice that are growth retarded or ‘dwarfed’, the proliferative zone of the growth plate appeared slightly thinner and the secondary centres of ossification less well developed than their age-matched wild-type controls. The most marked histological effects of bcl-2 ablation were on osteoblasts and bone. 35-day-old knockout mouse bones exhibited far greater numbers of osteoblasts than controls and the osteoblasts had a cuboidal phenotype in comparison with the normal flattened cell appearance. In addition, the collagen deposited by the osteoblasts in the bcl-2 knockout mouse bone was disorganized in comparison with control tissue and had a pseudo-woven appearance. The results suggest an important role for Bcl-2 in controlling osteoblast phenotype and bone deposition in vivo. PMID:10193316

  1. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology.

    PubMed

    Grossi, Cristina; Rigacci, Stefania; Ambrosini, Stefano; Ed Dami, Teresa; Luccarini, Ilaria; Traini, Chiara; Failli, Paola; Berti, Andrea; Casamenti, Fiorella; Stefani, Massimo

    2013-01-01

    The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and "fluffy"; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet.

  2. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  3. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  4. Joint dysfunction and functional decline in middle age myostatin null mice.

    PubMed

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Iron dysregulation combined with aging prevents sepsis-induced apoptosis.

    PubMed

    Javadi, Pardis; Buchman, Timothy G; Stromberg, Paul E; Turnbull, Isaiah R; Vyas, Dinesh; Hotchkiss, Richard S; Karl, Irene E; Coopersmith, Craig M

    2005-09-01

    Sepsis, iron loading, and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Hfe-/- mice (a murine homologue of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24-26 months) or mature (16-18 months) Hfe-/- mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 h later and assessed for apoptosis and cytokine levels. Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe-/- mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe-/- mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe-/- mice than septic mature Hfe-/- animals. Interleukin-6 was elevated in septic aged Hfe-/- mice compared to sham mice. Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe-/- mice are able to mount an inflammatory response following CLP and mature Hfe-/- mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation.

  6. The Small GTP-Binding Protein Rhes Influences Nigrostriatal-Dependent Motor Behavior During Aging.

    PubMed

    Pinna, Annalisa; Napolitano, Francesco; Pelosi, Barbara; Di Maio, Anna; Wardas, Jadwiga; Casu, Maria Antonietta; Costa, Giulia; Migliarini, Sara; Calabresi, Paolo; Pasqualetti, Massimo; Morelli, Micaela; Usiello, Alessandro

    2016-04-01

    Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging. © 2016 International Parkinson and Movement Disorder Society.

  7. Effects of social isolation, re-socialization and age on cognitive and aggressive behaviors of Kunming mice and BALB/c mice.

    PubMed

    An, Dong; Chen, Wei; Yu, De-Qin; Wang, Shi-Wei; Yu, Wei-Zhi; Xu, Hong; Wang, Dong-Mei; Zhao, Dan; Sun, Yi-Ping; Wu, Jun-Cheng; Tang, Yi-Yuan; Yin, Sheng-Ming

    2017-05-01

    Both Kunming (KM) mice and BALB/c mice have been widely used as rodent models to investigate stress-associated mental diseases. However, little is known about the different behaviors of KM mice and BALB/c mice after social isolation, particularly cognitive and aggressive behaviors. In this study, the behaviors of KM and BALB/c mice isolated for 2, 4 and 8 weeks and age-matched controls were evaluated using object recognition, object location and resident-intruder tests. The recovery of behavioral deficits by re-socialization was also examined for the isolated mice in adolescence. Our study showed that isolation for 2, 4 and 8 weeks led to cognitive deficits and increased aggressiveness for both KM and BALB/c mice. An important finding is that re-socialization could completely recover spatial/non-spatial cognitive deficits resulted from social isolation for both KM and BALB/c mice. In addition, age only impacted aggressiveness of KM mice. Moreover, isolation duration showed different impacts on cognitive and aggressive behaviors for both KM and BALB/c mice. Furthermore, BALB/c mice showed weak spatial/non-spatial memory and low aggressiveness when they were at the same age and isolation duration, compared to KM mice. In conclusion, KM mice and BALB/c mice behaved characteristically under physiology and isolation conditions. © 2016 Japanese Society of Animal Science.

  8. Transient early food restriction leads to hypothalamic changes in the long-lived crowded litter female mice.

    PubMed

    Sadagurski, Marianna; Landeryou, Taylor; Cady, Gillian; Bartke, Andrzej; Bernal-Mizrachi, Ernesto; Miller, Richard A

    2015-04-01

    Transient nutrient restriction in the 3 weeks between birth and weaning (producing "crowded litter" or CL mice) leads to a significant increase in lifespan and is associated with permanent changes in energy homeostasis, leptin, and insulin sensitivity. Here, we show this brief period of early food restriction leads to permanent modulation of the arcuate nucleus of the hypothalamus (ARH), markedly increasing formation of both orexigenic agouti-related peptide (AgRP) and anorexigenic proopiomelanocortin (POMC) projections to the paraventricular nucleus of the hypothalamus (PVH). An additional 4 weeks of caloric restriction, after weaning, does not further intensify the formation of AgRP and POMC projections. Acute leptin stimulation of 12-month-old mice leads to a stronger increase in the levels of hypothalamic pStat3 and cFos activity in CL mice than in controls, suggesting that preweaning food restriction leads to long-lasting enhancement of leptin signaling. In contrast, FoxO1 nuclear exclusion in response to insulin is equivalent in young adult CL and control mice, suggesting that hypothalamic insulin signaling is not modulated by the crowded litter intervention. Markers of hypothalamic reactive gliosis associated with aging, such as Iba1-positive microglia and GFAP-positive astrocytes, are significantly reduced in CL mice as compared to controls at 12 and 22 months of age. Lastly, age-associated overproduction of TNF-α in microglial cells is reduced in CL mice than in age-matched controls. Together, these results suggest that transient early life nutrient deprivation leads to long-term hypothalamic changes which may contribute to the longevity of CL mice. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice

    PubMed Central

    Prasher, Joanna M; Lalai, Astrid S; Heijmans-Antonissen, Claudia; Ploemacher, Robert E; Hoeijmakers, Jan H J; Touw, Ivo P; Niedernhofer, Laura J

    2005-01-01

    The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-associated changes for which the cause is unknown. To determine if DNA repair is critical to prolonged hematopoietic function, hematopoiesis in Ercc1−/− mice was compared to that in young and old wild-type mice. Ercc1−/− mice (3-week-old) exhibited multilineage cytopenia and fatty replacement of bone marrow, similar to old wild-type mice. In addition, the proliferative reserves of hematopoietic progenitors and stress erythropoiesis were significantly reduced in Ercc1−/− mice compared to age-matched controls. These features were not seen in nucleotide excision repair-deficient Xpa−/− mice, but are characteristic of Fanconi anemia, a human cancer syndrome caused by defects in interstrand crosslink repair. These data support the hypothesis that spontaneous interstrand crosslink damage contributes to the functional decline of the hematopoietic system associated with aging. PMID:15692571

  10. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome

    PubMed Central

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D.

    2018-01-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aorta wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1mgR/mgR mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy (AFM) was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1mgR/mgR tissues, whereas the media layer of mutant aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, mutant mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS. PMID:27090893

  11. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome.

    PubMed

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D

    2016-10-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.

  12. Norrie gene product is necessary for regression of hyaloid vessels.

    PubMed

    Ohlmann, Anne V; Adamek, Edith; Ohlmann, Andreas; Lütjen-Drecoll, Elke

    2004-07-01

    To investigate the nature and origin of the vitreous membranes in mice with knock-out of the Norrie gene product (ND mice). Eighty-two eyes of ND mice of different age groups (postnatal day [P]0-13 months) and 95 age-matched wild-type control mice were investigated. In vitreoretinal wholemounts and in sagittal sections, vessels and free cells were visualized by labeling for lectin. In addition, staining with a marker for macrophages (F4/80) and collagen XVIII/endostatin known to be involved in regression of hyaloid vessels was performed for light and electron microscopic investigations. Endostatin expression was confirmed by Western blot analysis. Wild-type controls showed the typical pattern of hyaloid vessels, their regression and concomitantly retinal vasculogenesis and angiogenesis. Hyaloid vessels all stained for endostatin, whereas retinal vessels remained unstained. In ND mice, 1 to 5 days after birth, the hyaloid and retinal vasculatures were comparable to that in control mice. The hyaloid vessels also stained for endostatin. Numerous F4/80-positive cells were present adjacent to the vessels. With increasing age, only a few connecting branches of the hyaloid vessels regressed. Even in old mice most of the hyaloid vessels persisted. The vessels still stained for endostatin. Retinal angiogenesis was impaired. Retrolental membranes in ND mice consist of persistent hyaloid vessels, indicating that the ND gene product is important for the process of regression of these vessels. The ND gene product neither influences endostatin expression nor the presence of macrophages.

  13. Iron dysregulation combined with aging prevents sepsis-induced apoptosis

    PubMed Central

    Javadi, Pardis; Buchman, Timothy G.; Stromberg, Paul E.; Turnbull, Isaiah R.; Vyas, Dinesh; Hotchkiss, Richard S.; Karl, Irene E.; Coopersmith, Craig M.

    2005-01-01

    Background Sepsis, iron loading and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Methods Hfe−/− mice (a murine homolog of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24–26 months) or mature (16–18 months) Hfe−/− mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 hours later and assessed for apoptosis and cytokine levels. Results Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe−/− mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe−/− mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe−/− mice than septic mature Hfe−/− animals. Interleukin-6 was elevated in septic aged Hfe−/− mice compared to sham mice. Conclusions Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe−/− mice are able to mount an inflammatory response following CLP and mature Hfe−/− mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation. PMID:15921699

  14. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain.

    PubMed

    Hardas, Sarita S; Sultana, Rukhsana; Clark, Amy M; Beckett, Tina L; Szweda, Luke I; Murphy, M Paul; Butterfield, D Allan

    2013-01-01

    Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  15. Locomotor activity and gait in aged mice deficient for type IX collagen

    PubMed Central

    Costello, Kerry E.; Guilak, Farshid; Griffin, Timothy M.

    2010-01-01

    Osteoarthritis (OA) is a risk factor for physical inactivity and impaired mobility, but it is not well understood how these locomotor behaviors are affected by the age of onset of OA and disease severity. Male mice homozygous for a Col9a1 gene inactivation (Col9a1−/−) develop early onset knee OA, increased tactile pain sensitivity, and gait alterations by 9 mo of age. We hypothesized that aged Col9a1−/− mice would reduce joint pain by adopting locomotor behaviors that reduce both the magnitude and daily frequency of joint loading. We tested this hypothesis by evaluating gait and spontaneous locomotor activity in 15- to 17-mo-old male Col9a1−/− (n = 5) and Col9a1+/+(WT) (n = 5) mice using well-controlled measures of voluntary activity in overground and running wheel conditions, as well as studies of gait in a velocity-controlled treadmill. We found no difference due to genotype in freely chosen locomotor velocity, stride frequency, hindfoot duty factor, dark phase activity time, or dark-phase travel distance during overground, running wheel, or speed-matched treadmill locomotion. Interpretation of these findings is potentially confounded by the observation that WT mice have greater knee OA than Col9a1−/− mice in the lateral tibial plateau by 17 mo of age. When accounting for individual differences in knee OA, functional locomotor impairments in aged Col9a1−/− and WT mice are manifested as reductions in total locomotor activity levels (e.g., both distance traveled and time active), particularly for wheel running. These results support the concept that current disease status, rather than age of disease onset, is the primary determinant of impaired locomotor activity with aging. PMID:20360435

  16. Cerebral amyloid angiopathy increases susceptibility to infarction after focal cerebral ischemia in Tg2576 mice.

    PubMed

    Milner, Eric; Zhou, Meng-Liang; Johnson, Andrew W; Vellimana, Ananth K; Greenberg, Jacob K; Holtzman, David M; Han, Byung Hee; Zipfel, Gregory J

    2014-10-01

    We and others have shown that soluble amyloid β-peptide (Aβ) and cerebral amyloid angiopathy (CAA) cause significant cerebrovascular dysfunction in mutant amyloid precursor protein (APP) mice, and that these deficits are greater in aged APP mice having CAA compared with young APP mice lacking CAA. Amyloid β-peptide in young APP mice also increases infarction after focal cerebral ischemia, but the impact of CAA on ischemic brain injury is unknown. To determine this, we assessed cerebrovascular reactivity, cerebral blood flow (CBF), and extent of infarction and neurological deficits after transient middle cerebral artery occlusion in aged APP mice having extensive CAA versus young APP mice lacking CAA (and aged-matched littermate controls). We found that aged APP mice have more severe cerebrovascular dysfunction that is CAA dependent, have greater CBF compromise during and immediately after middle cerebral artery occlusion, and develop larger infarctions after middle cerebral artery occlusion. These data indicate CAA induces a more severe form of cerebrovascular dysfunction than amyloid β-peptide alone, leading to intra- and postischemic CBF deficits that ultimately exacerbate cerebral infarction. Our results shed mechanistic light on human studies identifying CAA as an independent risk factor for ischemic brain injury. © 2014 American Heart Association, Inc.

  17. Effect of Ezetimibe on Insulin Secretion in db/db Diabetic Mice

    PubMed Central

    Zhong, Yong; Wang, Jun; Gu, Ping; Shao, Jiaqing; Lu, Bin; Jiang, Shisen

    2012-01-01

    Objective. To investigate the effect of ezetimibe on the insulin secretion in db/db mice. Methods. The db/db diabetic mice aged 8 weeks were randomly assigned into 2 groups and intragastrically treated with ezetimibe or placebo for 6 weeks. The age matched db/m mice served as controls. At the end of experiment, glucose tolerance test was performed and then the pancreas was collected for immunohistochemistry. In addition, in vitro perfusion of pancreatic islets was employed for the detection of insulin secretion in the first phase. Results. In the ezetimibe group, the fasting blood glucose was markedly reduced, and the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly lowered when compared with those in the control group (P < 0.05). At 120 min after glucose tolerance test, the area under curve in the ezetimibe group was significantly smaller than that in the control group (P < 0.05), but the AUCINS0−30 was markedly higher. In vitro perfusion of pancreatic islets revealed the first phase insulin secretion was improved. In addition, the insulin expression in the pancreas in the ezetimibe group was significantly increased as compared to the control group. Conclusion. Ezetimibe can improve glucose tolerance, recover the first phase insulin secretion, and protect the function of β cells in mice. PMID:23118741

  18. Effects of chronic nitric oxide synthase inhibition on V'O2max and exercise capacity in mice.

    PubMed

    Wojewoda, M; Przyborowski, K; Sitek, B; Zakrzewska, A; Mateuszuk, L; Zoladz, J A; Chlopicki, S

    2017-03-01

    Acute inhibition of NOS by L-NAME (N ω -nitro-L-arginine methyl ester) is known to decrease maximal oxygen consumption (V'O 2max ) and impair maximal exercise capacity, whereas the effects of chronic L-NAME treatment on V'O 2max and exercise performance have not been studied so far. In this study, we analysed the effect of L-NAME treatment, (LN2 and LN12, respectively) on V'O 2max and exercise capacity (in maximal incremental running and prolonged sub-maximal incremental running tests), systemic NO bioavailability (plasma nitrite (NO 2 - ) and nitrate (NO 3 - )) and prostacyclin (PGI 2 ) production in C57BL6/J mice. Mice treated with L-NAME for 2 weeks (LN2) displayed higher V'O 2max and better running capacity than age-matched control mice. In LN2 mice, NO bioavailability was preserved, as evidenced by maintained NO 2 - plasma concentration. PGI 2 production was activated (increased 6-keto-PGF 1α plasma concentration) and the number of circulating erythrocytes (RBC) and haemoglobin concentration were increased. In mice treated with L-NAME for 12 weeks (LN12), NO bioavailability was decreased (lower NO 2 - plasma concentration), and 6-keto-PGF 1α plasma concentration and RBC number were not elevated compared to age-matched control mice. However, LN12 mice still performed better during the maximal incremental running test despite having lower V'O 2max . Interestingly, the LN12 mice showed poorer running capacity during the prolonged sub-maximal incremental running test. To conclude, short-term (2 weeks) but not long-term (12 weeks) treatment with L-NAME activated robust compensatory mechanisms involving preservation of NO2- plasma concentration, overproduction of PGI 2 and increased number of RBCs, which might explain the fully preserved exercise capacity despite the inhibition of NOS.

  19. Ovarian kisspeptin expression is related to age and to monocyte chemoattractant protein-1.

    PubMed

    Merhi, Zaher; Thornton, Kimberley; Bonney, Elizabeth; Cipolla, Marilyn J; Charron, Maureen J; Buyuk, Erkan

    2016-04-01

    The objective of this study was to test the hypothesis that ovarian kisspeptin (kiss1) and its receptor (kiss1r) expression are affected by age, obesity, and the age- and obesity-related chemokine monocyte chemoattractant protein-1 (MCP-1). Ovaries from reproductive-aged and older C57BL/6J mice fed normal chow (NC) or high-fat (HF) diet, ovaries from age-matched young MCP-1 knockout and young control mice on NC, and finally, cumulus and mural granulosa cells (GCs) from women who underwent in vitro fertilization (IVF) were collected. Kiss1, kiss1r, anti-Mullerian hormone (AMH), and AMH receptor (AMHR-II) messenger RNA (mRNA) expression levels were quantified using real-time polymerase chain reaction (RT-PCR). In mouse ovaries, kiss1 and kiss1r mRNA levels were significantly higher in old compared to reproductive-aged mice, and diet-induced obesity did not alter kiss1 or kiss1r mRNA levels. Compared to young control mice, young MCP-1 knockout mice had significantly lower ovarian kiss1 mRNA but significantly higher AMH and AMHR-II mRNA levels. In human cumulus GCs, kiss1r mRNA levels were positively correlated with age but not with BMI. There was no expression of kiss1 mRNA in either cumulus or mural GCs. These data suggest a possible age-related physiologic role for the kisspeptinergic system in ovarian physiology. Additionally, the inflammatory MCP-1 may be associated with kiss1 and AMH genes, which are important in ovulation and folliculogenesis, respectively.

  20. On the nature of the Cu-rich aggregates in brain astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Brendan; Robison, Gregory; Osborn, Jenna

    Fulfilling a bevy of biological roles, copper is an essential metal for healthy brain function. Cu dyshomeostasis has been demonstrated to be involved in some neurological conditions including Menkes and Alzheimer’s diseases. We have previously reported localized Cu-rich aggregates in astrocytes of the subventricular zone (SVZ) in rodent brains with Cu concentrations in the hundreds of millimolar. Metallothionein, a cysteine-rich protein critical to metal homeostasis and known to participate in a variety of neuroprotective and neuroregenerative processes, was proposed as a binding protein. Here, we present an analysis of metallothionein(1,2) knockout (MTKO) mice and age-matched controls using X-ray fluorescence microscopy.more » In large structures such as the corpus callosum, cortex, and striatum, there is no significant difference in Cu, Fe, or Zn concentrations in MTKO mice compared to age-matched controls. In the astrocyte-rich subventricular zone where Cu-rich aggregates reside, approximately 1/3 as many Cu-rich aggregates persist in MTKO mice resulting in a decrease in periventricular Cu concentration. Aggregates in both wild-type and MTKO mice show XANES spectra characteristic of CuxSy multimetallic clusters and have similar [S]/[Cu] ratios. Consistent with assignment as a CuxSy multimetallic cluster, the astrocyte-rich SVZ of both MTKO and wild-type mice exhibit autofluorescent bodies, though MTKO mice exhibit fewer. Furthermore, XRF imaging of Au-labeled lysosomes and ubiquitin demonstrates a lack of co-localization with Cu-rich aggregates suggesting they are not involved in a degradation pathway. Overall, these data suggest that Cu in aggregates is bound by either metallothionein-3 or a yet unknown protein similar to metallothionein.« less

  1. Specific anti-EL4-lymphoma immunity in mice cured 2 years earlier with doxorubicin and interleukin-2.

    PubMed

    Ehrke, M J; Verstovsek, S; Zaleskis, G; Ho, R L; Ujházy, P; Maccubbin, D L; Mihich, E

    1996-05-01

    This laboratory has reported the conditions for an effective, non-toxic, chemoimmunotherapy utilizing doxorubicin in combination with prolonged administration of interleukin-2 and the identification of the critical role of activated CD8+ T cells in the therapeutic effect. Mice (C57BL/6) cured in those studies have been followed for the remainder of their life spans. These mice, approximately 2 months of age when initially inoculated with syngeneic EL4 lymphoma, survived for more than 2 years, the normal life span of C57BL/6 mice. Mice 4 months old reinoculated with the EL4 cells all survived. At about 1 year of age mice were sacrificed and the ability of their thymocytes and splenocytes to develop specific CD8+ anti-EL4 activity was as high as it had been at the time of tumor rejection. At about 2 years of age EL4 was reimplanted into mice; all of them survived. These surviving mice, at 2 years 2 months of age, as well as a group of 2-year-old mice not rechallenged, were killed and functional antitumor activity and phenotype characteristics of various lymphocyte populations were determined in comparison to those of young and age-matched control mice. The phenotyping of the lymphocytes from the cured mice indicated very notable differences in subset distribution and increased CD44 expression. Functionally they developed high levels of anti-EL4 activity, which was ablated by combined treatment with monoclonal antibodies against CD8 and CD44, indicating the role of memory cells. Consistent with cells from aged mice, these same cell populations had a very reduced allogeneic responsiveness. It appears that cured mice have developed an immune memory specific for EL4.

  2. Observation of the density and size of cells in hippocampus and vascular lesion in thalamus of GFAP-apoE transgenic mice.

    PubMed

    Tang, Ke-Feng; Cai, Li; Zhou, Jiang-Ning

    2009-08-01

    Apolipoprotein E (apoE) is associated with increased risk of age-related diseases, such as Alzheimer's disease (AD) and cerebrovascular disease (CVD). The present study aims to investigate the age-related general morphological changes of the brain in GFAP-apoE transgenic mice, especially the alterations in number and size of hippocampal pyramidal cells and the microvascular lesions in the thalamus. Nine female apoE4/4 mice were divided into 3 groups (n=3 in each group): 3-4 months (young group), 9-10 months (middle-aged group) and 20-21 months (old group). Age-matched apoE3/3 mice were employed as control group (n=3 in each group). The paraffin sections of brain tissue were stained by 2 conventional staining methods, thionin staining and hematoxylin-esion(HE) staining, the former of which was to observe the hippocampal cells, while the latter was used to examine the brain microvasculature. There was no apparent difference in the cortical layer between apoE3/3 and apoE4/4 mice, neither any significant difference in the number of cells in hippocampal CA1-CA3 subfields between apoE3/3 and apoE4/4 mice at various age points (P>0.05). However, the mean size of pyramidal cells in CA1 subfield in apoE3/3 and apoE4/4 mice decreased as mice were getting older (P<0.001). At the age of 20-21 months, this cellular atrophy in apoE4/4 mice was more severe than that in old apoE3/3 mice (P<0.05). Furthermore, microvascular lesion in the thalamus was detected in all the 3 old apoE4/4 mice, at varying degrees (5.24%, 1.41% and 3.97%, respectively), while only one apoE3/3 mouse exhibited microvascular lesion in the thalamus, at a low level (0.85%). The current study suggests that the cell size in hippocampal CA1 subfield decreases with aging, irrespective of apoE genotype. Cellular atrophy in CA1 subfield and the microvascular lesion in the thalamus are both more severe in old apoE4/4 mice as compared with those in age-matched apoE3/3 mice. Doubts still exist on whether the decreased cell size in hippocampal CA1 subfield in old apoE4/4 mice is associated with dysfunction in learning and memory and whether the microvascular lesions indicate a higher risk of stroke in human apoE4 allele mice. To clarify these issues, further investigations are needed.

  3. Ultraviolet radiation-induced cataract in mice: the effect of age and the potential biochemical mechanism.

    PubMed

    Zhang, Jie; Yan, Hong; Löfgren, Stefan; Tian, Xiaoli; Lou, Marjorie F

    2012-10-19

    To study the effect of age on the morphologic and biochemical alterations induced by in vivo exposure of ultraviolet radiation (UV). Young and old C57BL/6 mice were exposed to broadband UVB+UVA and euthanized after 2 days. Another batch of UV-exposed young mice was monitored for changes after 1, 2, 4, and 8 days. Age-matched nonexposed mice served as controls. Lens changes were documented in vivo by slit-lamp biomicroscopy and dark field microscopy photographs ex vivo. Lens homogenates were analyzed for glutathione (GSH) level, and the activities of thioredoxin (Trx), thioltransferase (TTase), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Glutathionylated lens proteins (PSSGs) were detected by immunoblotting using GSH antibody. Western blot analysis was also done for the expression levels of TTase and Trx. Both age groups developed epithelial and superficial anterior subcapsular cataract at 2 days postexposure. The lens GSH level and G3PD activity were decreased, and PSSGs were elevated in both age groups, but more prominent in the older mice. TTase and Trx activity and protein expression were elevated only in the young mice. Interestingly, lens TTase and Trx in the young mice showed a transient increase, peaking at 2 days after UV exposure and returning to baseline at day 8, corroborated by lens transparency. The lenses of old mice were more susceptible to UV radiation-induced cataract. The upregulated TTase and Trx likely provided oxidation damage repair in the young mice.

  4. Increased Age, but Not Parity Predisposes to Higher Bacteriuria Burdens Due to Streptococcus Urinary Tract Infection and Influences Bladder Cytokine Responses, Which Develop Independent of Tissue Bacterial Loads.

    PubMed

    Sullivan, Matthew J; Carey, Alison J; Leclercq, Sophie Y; Tan, Chee K; Ulett, Glen C

    2016-01-01

    Streptococcus agalactiae causes urinary tract infection (UTI) in pregnant adults, non-pregnant adults, immune-compromised individuals and the elderly. The pathogenesis of S. agalactiae UTI in distinct patient populations is poorly understood. In this study, we used murine models of UTI incorporating young mice, aged and dam mice to show that uropathogenic S. agalactiae causes bacteriuria at significantly higher levels in aged mice compared to young mice and this occurs coincident with equivalent levels of bladder tissue colonisation at 24 h post-infection (p.i.). In addition, aged mice exhibited significantly higher bacteriuria burdens at 48 h compared to young mice, confirming a divergent pattern of bacterial colonization in the urinary tract of aged and young mice. Multiparous mice, in contrast, exhibited significantly lower urinary titres of S. agalactiae compared to age-matched nulliparous mice suggesting that parity enhances the ability of the host to control S. agalactiae bacteriuria. Additionally, we show that both age and parity alter the expression levels of several key regulatory and pro-inflammatory cytokines, which are known to be important the immune response to UTI, including Interleukin (IL)-1β, IL-12(p40), and Monocyte Chemoattractant Protein-1 (MCP-1). Finally, we demonstrate that other cytokines, including IL-17 are induced significantly in the S. agalactiae-infected bladder regardless of age and parity status. Collectively, these findings show that the host environment plays an important role in influencing the severity of S. agalactiae UTI; infection dynamics, particularly in the context of bacteriuria, depend on age and parity, which also affect the nature of innate immune responses to infection.

  5. Increased Age, but Not Parity Predisposes to Higher Bacteriuria Burdens Due to Streptococcus Urinary Tract Infection and Influences Bladder Cytokine Responses, Which Develop Independent of Tissue Bacterial Loads

    PubMed Central

    Sullivan, Matthew J.; Carey, Alison J.; Leclercq, Sophie Y.; Tan, Chee K.

    2016-01-01

    Streptococcus agalactiae causes urinary tract infection (UTI) in pregnant adults, non-pregnant adults, immune-compromised individuals and the elderly. The pathogenesis of S. agalactiae UTI in distinct patient populations is poorly understood. In this study, we used murine models of UTI incorporating young mice, aged and dam mice to show that uropathogenic S. agalactiae causes bacteriuria at significantly higher levels in aged mice compared to young mice and this occurs coincident with equivalent levels of bladder tissue colonisation at 24 h post-infection (p.i.). In addition, aged mice exhibited significantly higher bacteriuria burdens at 48 h compared to young mice, confirming a divergent pattern of bacterial colonization in the urinary tract of aged and young mice. Multiparous mice, in contrast, exhibited significantly lower urinary titres of S. agalactiae compared to age-matched nulliparous mice suggesting that parity enhances the ability of the host to control S. agalactiae bacteriuria. Additionally, we show that both age and parity alter the expression levels of several key regulatory and pro-inflammatory cytokines, which are known to be important the immune response to UTI, including Interleukin (IL)-1β, IL-12(p40), and Monocyte Chemoattractant Protein-1 (MCP-1). Finally, we demonstrate that other cytokines, including IL-17 are induced significantly in the S. agalactiae-infected bladder regardless of age and parity status. Collectively, these findings show that the host environment plays an important role in influencing the severity of S. agalactiae UTI; infection dynamics, particularly in the context of bacteriuria, depend on age and parity, which also affect the nature of innate immune responses to infection. PMID:27936166

  6. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice

    PubMed Central

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal. PMID:26962395

  7. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice.

    PubMed

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal.

  8. Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores

    PubMed Central

    Ryzhov, Sergey; Tikhomirov, Oleg; Duarte, Christine W.; Congdon, Clare Bates; Lessard, Craig R.; McFarland, Samuel; Rochette-Egly, Cecile; Tran, Truc-Linh; Galindo, Cristi L.; Favreau-Lessard, Amanda J.; Sawyer, Douglas B.

    2016-01-01

    To determine whether hepatic depletion of vitamin A (VA) stores has an effect on the postnatal heart, studies were carried out with mice lacking liver retinyl ester stores fed either a VA-sufficient (LRVAS) or VA-deficient (LRVAD) diet (to deplete circulating retinol and extrahepatic stores of retinyl esters). There were no observable differences in the weights or gross morphology of hearts from LRVAS or LRVAD mice relative to sex-matched, age-matched, and genetically matched wild-type (WT) controls fed the VAS diet (WTVAS), but changes in the transcription of functionally relevant genes were consistent with a state of VAD in LRVAS and LRVAD ventricles. In silico analysis revealed that 58/67 differentially expressed transcripts identified in a microarray screen are products of genes that have DNA retinoic acid response elements. Flow cytometric analysis revealed a significant and cell-specific increase in the number of proliferating Sca-1 cardiac progenitor cells in LRVAS animals relative to WTVAS controls. Before myocardial infarction, LRVAS and WTVAS mice had similar cardiac systolic function and structure, as measured by echocardiography, but, unexpectedly, repeat echocardiography demonstrated that LRVAS mice had less adverse remodeling by 1 wk after myocardial infarction. Overall, the results demonstrate that the adult heart is responsive to retinoids, and, most notably, reducing hepatic VA stores (while maintaining circulating levels of VA) impacts ventricular gene expression profiles, progenitor cell numbers, and response to injury. PMID:27084391

  9. Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores.

    PubMed

    Asson-Batres, Mary Ann; Ryzhov, Sergey; Tikhomirov, Oleg; Duarte, Christine W; Congdon, Clare Bates; Lessard, Craig R; McFarland, Samuel; Rochette-Egly, Cecile; Tran, Truc-Linh; Galindo, Cristi L; Favreau-Lessard, Amanda J; Sawyer, Douglas B

    2016-06-01

    To determine whether hepatic depletion of vitamin A (VA) stores has an effect on the postnatal heart, studies were carried out with mice lacking liver retinyl ester stores fed either a VA-sufficient (LRVAS) or VA-deficient (LRVAD) diet (to deplete circulating retinol and extrahepatic stores of retinyl esters). There were no observable differences in the weights or gross morphology of hearts from LRVAS or LRVAD mice relative to sex-matched, age-matched, and genetically matched wild-type (WT) controls fed the VAS diet (WTVAS), but changes in the transcription of functionally relevant genes were consistent with a state of VAD in LRVAS and LRVAD ventricles. In silico analysis revealed that 58/67 differentially expressed transcripts identified in a microarray screen are products of genes that have DNA retinoic acid response elements. Flow cytometric analysis revealed a significant and cell-specific increase in the number of proliferating Sca-1 cardiac progenitor cells in LRVAS animals relative to WTVAS controls. Before myocardial infarction, LRVAS and WTVAS mice had similar cardiac systolic function and structure, as measured by echocardiography, but, unexpectedly, repeat echocardiography demonstrated that LRVAS mice had less adverse remodeling by 1 wk after myocardial infarction. Overall, the results demonstrate that the adult heart is responsive to retinoids, and, most notably, reducing hepatic VA stores (while maintaining circulating levels of VA) impacts ventricular gene expression profiles, progenitor cell numbers, and response to injury. Copyright © 2016 the American Physiological Society.

  10. Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1.

    PubMed

    Chen, Jianglei; Fan, Jun; Wang, Shirley; Sun, Zhongjie

    2018-05-01

    Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho ( Skl ) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease. © 2018 American Heart Association, Inc.

  11. Neonatal Iron Supplementation Induces Striatal Atrophy in Female YAC128 Huntington's Disease Mice.

    PubMed

    Berggren, Kiersten L; Lu, Zhen; Fox, Julia A; Dudenhoeffer, Megan; Agrawal, Sonal; Fox, Jonathan H

    2016-01-01

    Dysregulation of iron homeostasis is implicated in the pathogenesis of Huntington's disease. We have previously shown that increased iron intake in R6/2 HD neonatal mice, but not adult R6/2 HD mice potentiates disease outcomes at 12-weeks of age corresponding to advanced HD [Redox Biol. 2015;4 : 363-74]. However, whether these findings extend to other HD models is unknown. In particular, it is unclear if increased neonatal iron intake can promote neurodegeneration in mouse HD models where disease onset is delayed to mid-adult life. To determine if increased dietary iron intake in neonatal and adult life-stages potentiates HD in the slowly progressive YAC128 HD mouse model. Female neonatal mice were supplemented daily from days 10-17 with 120μg/g body weight of carbonyl iron. Adult mice were provided diets containing low (50 ppm), medium (150 ppm) and high (500 ppm) iron concentrations from 2-months of age. HD progression was determined using behavioral, brain morphometric and biochemical approaches. Neonatal-iron supplemented YAC128 HD mice had significantly lower striatal volumes and striatal neuronal cell body volumes as compared to control HD mice at 1-year of age. Neonatal-iron supplementation of HD mice had no effect on rota-rod motor endurance and brain iron or glutathione status. Adult iron intake level had no effect on HD progression. YAC128 HD mice had altered peripheral responses to iron intake compared to iron-matched wild-type controls. Female YAC128 HD mice supplemented with nutritionally-relevant levels of iron as neonates demonstrate increased striatal degeneration 1-year later.

  12. Neonatal Iron Supplementation Induces Striatal Atrophy in Female YAC128 Huntington’s Disease Mice

    PubMed Central

    Berggren, Kiersten L.; Lu, Zhen; Fox, Julia A.; Dudenhoeffer, Megan; Agrawal, Sonal; Fox, Jonathan H.

    2016-01-01

    Background: Dysregulation of iron homeostasis is implicated in the pathogenesis of Huntington’s disease. We have previously shown that increased iron intake in R6/2 HD neonatal mice, but not adult R6/2 HD mice potentiates disease outcomes at 12-weeks of age corresponding to advanced HD [Redox Biol. 2015;4 : 363–74]. However, whether these findings extend to other HD models is unknown. In particular, it is unclear if increased neonatal iron intake can promote neurodegeneration in mouse HD models where disease onset is delayed to mid-adult life. Objective: To determine if increased dietary iron intake in neonatal and adult life-stages potentiates HD in the slowly progressive YAC128 HD mouse model. Methods: Female neonatal mice were supplemented daily from days 10–17 with 120μg/g body weight of carbonyl iron. Adult mice were provided diets containing low (50 ppm), medium (150 ppm) and high (500 ppm) iron concentrations from 2-months of age. HD progression was determined using behavioral, brain morphometric and biochemical approaches. Results: Neonatal-iron supplemented YAC128 HD mice had significantly lower striatal volumes and striatal neuronal cell body volumes as compared to control HD mice at 1-year of age. Neonatal-iron supplementation of HD mice had no effect on rota-rod motor endurance and brain iron or glutathione status. Adult iron intake level had no effect on HD progression. YAC128 HD mice had altered peripheral responses to iron intake compared to iron-matched wild-type controls. Conclusions: Female YAC128 HD mice supplemented with nutritionally-relevant levels of iron as neonates demonstrate increased striatal degeneration 1-year later. PMID:27079948

  13. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging.

    PubMed

    Lustgarten, Michael S; Jang, Youngmok C; Liu, Yuhong; Qi, Wenbo; Qin, Yuejuan; Dahia, Patricia L; Shi, Yun; Bhattacharya, Arunabh; Muller, Florian L; Shimizu, Takahiko; Shirasawa, Takuji; Richardson, Arlan; Van Remmen, Holly

    2011-06-01

    In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2(fl/fl) mice). In this study, we used TnIFastCreSod2(fl/fl) mice to examine the effect of elevated oxidative stress on mitochondrial function and to test the hypothesis that elevated oxidative stress and decreased mitochondrial function over the lifespan of the TnIFastCreSod2(fl/fl) mice would be sufficient to accelerate muscle atrophy associated with aging. We found that mitochondrial function is reduced in both young and old TnIFastCreSod2(fl/fl) mice, when compared with control mice. Complex II activity is reduced by 47% in young and by approximately 90% in old TnIFastCreSod2(fl/fl) mice, and was found to be associated with reduced levels of the catalytic subunits for complex II, SDHA and SDHB. Complex II-linked mitochondrial respiration is reduced by approximately 70% in young TnIFastCreSod2(fl/fl) mice. Complex II-linked mitochondrial Adenosine-Tri-Phosphate (ATP) production is reduced by 39% in young and was found to be almost completely absent in old TnIFastCreSod2(fl/fl) mice. Furthermore, in old TnIFastCreSod2(fl/fl) mice, aconitase activity is almost completely abolished; mitochondrial superoxide release remains > 2-fold elevated; and oxidative damage (measured as F(2) - isoprostanes) is increased by 30% relative to age-matched controls. These data show that despite elevated skeletal muscle-specific mitochondrial oxidative stress, oxidative damage, and complex II-linked mitochondrial dysfunction, age-related muscle atrophy was not accelerated in old TnIFastCreSod2(fl/fl) mice, suggesting mitochondrial oxidative stress may not be causal for age-related muscle atrophy. No claim to original US government works. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  14. Ultraviolet Radiation–Induced Cataract in Mice: The Effect of Age and the Potential Biochemical Mechanism

    PubMed Central

    Zhang, Jie; Yan, Hong; Löfgren, Stefan; Tian, Xiaoli; Lou, Marjorie F.

    2012-01-01

    Purpose. To study the effect of age on the morphologic and biochemical alterations induced by in vivo exposure of ultraviolet radiation (UV). Methods. Young and old C57BL/6 mice were exposed to broadband UVB+UVA and euthanized after 2 days. Another batch of UV-exposed young mice was monitored for changes after 1, 2, 4, and 8 days. Age-matched nonexposed mice served as controls. Lens changes were documented in vivo by slit-lamp biomicroscopy and dark field microscopy photographs ex vivo. Lens homogenates were analyzed for glutathione (GSH) level, and the activities of thioredoxin (Trx), thioltransferase (TTase), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Glutathionylated lens proteins (PSSGs) were detected by immunoblotting using GSH antibody. Western blot analysis was also done for the expression levels of TTase and Trx. Results. Both age groups developed epithelial and superficial anterior subcapsular cataract at 2 days postexposure. The lens GSH level and G3PD activity were decreased, and PSSGs were elevated in both age groups, but more prominent in the older mice. TTase and Trx activity and protein expression were elevated only in the young mice. Interestingly, lens TTase and Trx in the young mice showed a transient increase, peaking at 2 days after UV exposure and returning to baseline at day 8, corroborated by lens transparency. Conclusions. The lenses of old mice were more susceptible to UV radiation–induced cataract. The upregulated TTase and Trx likely provided oxidation damage repair in the young mice. PMID:23010639

  15. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.

    PubMed

    Cisterna, Barbara; Giagnacovo, Marzia; Costanzo, Manuela; Fattoretti, Patrizia; Zancanaro, Carlo; Pellicciari, Carlo; Malatesta, Manuela

    2016-05-01

    During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age. © 2016 Anatomical Society.

  16. Mitochondrial Dysfunction in the Liver and Antiphospholipid Antibody Production Precede Disease Onset and Respond to Rapamycin in Lupus-Prone Mice.

    PubMed

    Oaks, Zachary; Winans, Thomas; Caza, Tiffany; Fernandez, David; Liu, Yuxin; Landas, Steve K; Banki, Katalin; Perl, Andras

    2016-11-01

    Antiphospholipid antibodies (aPL) constitute a diagnostic criterion of systemic lupus erythematosus (SLE), and aPL have been functionally linked to liver disease in patients with SLE. Since the mechanistic target of rapamycin (mTOR) is a regulator of oxidative stress, a pathophysiologic process that contributes to the development of aPL, this study was undertaken in a mouse model of SLE to examine the involvement of liver mitochondria in lupus pathogenesis. Mitochondria were isolated from lupus-prone MRL/lpr, C57BL/6.lpr, and MRL mice, age-matched autoimmunity-resistant C57BL/6 mice as negative controls, and transaldolase-deficient mice, a strain that exhibits oxidative stress in the liver. Electron transport chain (ETC) activity was assessed using measurements of oxygen consumption. ETC proteins, which are regulators of mitochondrial homeostasis, and the mTOR complexes mTORC1 and mTORC2 were examined by Western blotting. Anticardiolipin (aCL) and anti-β 2 -glycoprotein I (anti-β 2 GPI) autoantibodies were measured by enzyme-linked immunosorbent assay in mice treated with rapamycin or mice treated with a solvent control. Mitochondrial oxygen consumption was increased in the livers of 4-week-old, disease-free MRL/lpr mice relative to age-matched controls. Levels of the mitophagy initiator dynamin-related protein 1 (Drp1) were depleted while the activity of mTORC1 was increased in MRL/lpr mice. In turn, mTORC2 activity was decreased in MRL and MRL/lpr mice. In addition, levels of aCL and anti-β 2 GPI were elevated preceding the development of nephritis in 4-week-old MRL, C57BL/6.lpr, and MRL/lpr mice. Transaldolase-deficient mice showed increased oxygen consumption, depletion of Drp1, activation of mTORC1, and elevated expression of NADH:ubiquinone oxidoreductase core subunit S3 (NDUFS3), a pro-oxidant subunit of ETC complex I, as well as increased production of aCL and anti-β 2 GPI autoantibodies. Treatment with rapamycin selectively blocked mTORC1 activation, NDUFS3 expression, and aPL production both in transaldolase-deficient mice and in lupus-prone mice. In lupus-prone mice, mTORC1-dependent mitochondrial dysfunction contributes to the generation of aPL, suggesting that such mechanisms may represent a treatment target in patients with SLE. © 2016, The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.

  17. White spotting variant mouse as an experimental model for ovarian aging and menopausal biology.

    PubMed

    Smith, Elizabeth R; Yeasky, Toni; Wei, Jain Qin; Miki, Roberto A; Cai, Kathy Q; Smedberg, Jennifer L; Yang, Wan-Lin; Xu, Xiang-Xi

    2012-05-01

    Menopause is a unique phenomenon in modern women, as most mammalian species possess a reproductive period comparable with their life span. Menopause is caused by the depletion of germ cell-containing ovarian follicles and in laboratory studies is usually modeled in animals in which the ovarian function is removed through ovariectomy or chemical poisoning of the germ cells. Our objective was to explore and characterize the white spotting variant (Wv) mice that have reduced ovarian germ cell abundance, a result of a point mutation in the c-kit gene that decreases kinase activity, as a genetic model for use in menopause studies. Physiological and morphological features associated with menopause were determined in female Wv/Wv mice compared with age-matched wildtype controls. Immunohistochemistry was used to evaluate the presence and number of follicles in paraffin-embedded ovaries. Bone density and body composition were evaluated using the PIXImus x-ray densitometer, and lipids, calcium, and hormone levels were determined in serum using antigen-specific enzyme immunoassays. Heart and body weight were measured, and cardiac function was evaluated using transthoracic echocardiography. The ovaries of the Wv/Wv females have a greatly reduced number of normal germ cells at birth compared with wildtype mice. The remaining follicles are depleted by around 2 months, and the ovaries develop benign epithelial lesions that resemble morphological changes that occur during ovarian aging, whereas a normal mouse ovary has numerous follicles at all stages of development and retains some follicles even in advanced age. Wv mice have elevated plasma gonadotropins and reduced estrogen and progesterone levels, a significant reduction in bone mass density, and elevated serum cholesterol and lipoprotein levels. Moreover, the Wv female mice have enlarged hearts and reduced cardiac function. The reduction of c-kit activity in Wv mice leads to a substantially diminished follicular endowment in newborn mice and premature depletion of follicles in young mice, although mutant females have a normal life span after cessation of ovarian function. The Wv female mice exhibit consistent physiological changes that resemble common features of postmenopausal women. These alterations include follicle depletion, morphological aging of the ovary, altered serum levels of cholesterol, gonadotropins and steroid hormones, decreased bone density, and reduced cardiac function. These changes were not observed in male mice, either age-matched male Wv/Wv or wildtype mice, and are improbably caused by global loss of c-kit function. The Wv mouse may be a genetic, intact-ovary model that mimics closely the phenotypes of human menopause to be used for further studies to understand the mechanisms of menopausal biology.

  18. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging.

    PubMed

    Xiong, Yuyan; Yepuri, Gautham; Necetin, Sevil; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2017-06-01

    Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L -arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II -/- ) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II -/- ) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice. © 2017 by the American Diabetes Association.

  19. Oxygen-induced retinopathy induces short-term glial stress and long-term impairment of photoentrainment in mice.

    PubMed

    Mehdi, Madah Khawn-I-Muhammad; Sage-Ciocca, Dominique; Challet, Etienne; Malan, André; Hicks, David

    2014-04-01

    Retinopathy of prematurity is a serious potentially blinding disease of pre-term infants. There is extensive vascular remodeling and tissue stress, but data concerning alterations in retinal neurons and glia, and long-term functional sequelae are still incomplete. ROP was induced using the oxygen-induced retinopathy (OIR) mouse model. Postnatal day 7 (P7) 129SVE mice were exposed to hyperoxia (75 ± 0.5 % oxygen) for 5 days, and then returned to normoxia to induce OIR. Exposed animals were euthanized at 5 (P17-OIR) and 14 days (P26-OIR) after return to normal air, together with corresponding age-matched control mice (P17-C and P26-C respectively) raised only in room air. Their retinas were examined by immunohistochemistry using a battery of antibodies against key glial and neuronal proteins. A further group of OIR mice and controls were examined at 10 weeks of age for their ability to re-entrain to changing 12 h light/12 h dark cycles, assayed by wheel-running actimetry. In this protocol, animals were subjected to three successive conditions of 300 lux, 15 lux and 1 lux ambient light intensity coupled with 6 hours of jetlag. Animals were euthanized at 4 months of age and used in immunoblotting for rhodopsin. Compared to P17-C, immunohistochemical staining of P17-OIR sections showed up-regulation of stress-related and glutamate-regulatory proteins in astrocytes and Müller glial cells. In contrast, glial phenotypic expression in P26-OIR retinas largely resembled that in P26-C. There was no loss in total retinal ganglion cells (RGC) at either P17-OIR or P26-OIR compared to corresponding controls, whereas intrinsically photosensitive RGC showed significant decreases, with 375 ± 13/field in P26-OIR compared to 443 ± 30/field in P26-C (p < 0.05). Wheel actimetry performed on control and OIR-treated mice at 4 months demonstrated that animals raised in hyperoxic conditions had impaired photoentrainment at low illuminance of 1 lux, as well as significantly reduced levels of rhodopsin compared to age-matched controls. OIR leads to transient up-regulation of retinal glial proteins involved in metabolism, and partial degeneration of intrinsically photosensitive RGC and rod photoreceptors. OIR affects circadian photo-entrainment at low illuminance values, possibly by affecting the rod pathway and/or intrinsically photosensitive RGC input to the circadian clock. This study hence shows that retinopathy of prematurity affects light-regulated circadian behavior in an animal model, and may induce similar problems in humans.

  20. High-fat simple carbohydrate (HFSC) diet impairs hypothalamic and corpus striatal serotonergic metabolic pathway in metabolic syndrome (MetS) induced C57BL/6J mice.

    PubMed

    Stephen, DSouza Serena; Abraham, Asha

    2017-07-26

    To study the effect of specially formulated high-fat simple carbohydrate diet (HFSC) on the serotonin metabolic pathway in male C57BL/6J mice. Previous studies from our laboratory have shown that specially formulated HFSC induces metabolic syndrome in C57BL/6J mice. In the present investigation, 5-hydroxytryptophan, serotonin and 5-hydroxyindoleacetic acid were analyzed in two brain regions (hypothalamus, corpus striatum), urine and plasma of HFSC-fed mice on a monthly basis up to 5 months using high-performance liquid chromatography fitted with electrochemical detector. The data were analyzed using Graph pad Prism v7.3 by two-way ANOVA and post hoc Tukey's test (to assess the effect of time on the serotonergic metabolic pathway). HFSC feed was observed to lower the hypothalamic serotonergic tone as compared to the age-matched control-fed C57BL/6J mice. Although the hypothalamic serotonergic tone was unaltered over time due to consumption of diet per se, hypothalamic 5-HTP levels were observed to be lower on consumption of HFSC feed over duration of 5 months as compared to 1st month of consumption of HFSC feed. The striatal 5-HTP levels were lowered in the HFSC-fed mice after 4 months of feeding as compared to the age-matched control-fed mice. The striatal 5-HTP levels were also lower in both control and HFSC-fed mice due to consumption of the respective diet over a duration of 5 months. Increased plasma 5-HTP levels were observed due to consumption of HFSC feed over duration of 5 months in the HFSC-fed group. However, higher breakdown of serotonin was observed in both the plasma and urine of HFSC-fed C57BL/6J mice as per the turnover studies. The central and peripheral serotonergic pathway is affected differentially by both the type of diet consumed and the duration for which the diet is consumed. The hypothalamic, striatal and plasma serotonergic pathway were altered both by the type of feed consumed and the duration of feeding. The urine serotonergic pathway was affected by mainly the duration for which a particular diet was consumed. These findings may have implications in the feeding behavior, cognitive decline and depression associated with metabolic syndrome patients.

  1. Behavioral Characterization of the Hyperphagia Synphilin-1 Overexpressing Mice

    PubMed Central

    Moghadam, Alexander; Smith, Megan; Ofeldt, Erica; Yang, Dejun; Li, Tianxia; Tamashiro, Kellie; Choi, Pique; Moran, Timothy H.; Smith, Wanli W.

    2014-01-01

    Synphilin-1 is a cytoplasmic protein that has been shown to be involved in the control of energy balance. Previously, we reported on the generation of a human synphilin-1 transgenic mouse model (SP1), in which overexpression of human synphilin-1 resulted in hyperphagia and obesity. Here, behavioral measures in SP1 mice were compared with those of their age-matched controls (NTg) at two time points: when there was not yet a group body weight difference (“pre-obese”) and when SP1 mice were heavier (“obese”). At both time points, meal pattern analyses revealed that SP1 mice displayed higher daily chow intake than non-transgenic control mice. Furthermore, there was an increase in meal size in SP1 mice compared with NTg control mice at the obese stage. In contrast, there was no meal number change between SP1 and NTg control mice. In a brief-access taste procedure, both “pre-obese” and “obese“ SP1 mice displayed concentration-dependent licking across a sucrose concentration range similar to their NTg controls. However, at the pre-obese stage, SP1 mice initiated significantly more trials to sucrose across the testing sessions and licked more vigorously at the highest concentration presented, than the NTg counterparts. These group differences in responsiveness to sucrose were no longer apparent in obese SP1 mice. These results suggest that at the pre-obese stage, the increased trials to sucrose in the SP1 mice reflects increased appetitive behavior to sucrose that may be indicative of the behavioral changes that may contribute to hyperphagia and development of obesity in SP1 mice. These studies provide new insight into synphilin-1 contributions to energy homeostasis. PMID:24829096

  2. Behavioral characterization of the hyperphagia synphilin-1 overexpressing mice.

    PubMed

    Li, Xueping; Treesukosol, Yada; Moghadam, Alexander; Smith, Megan; Ofeldt, Erica; Yang, Dejun; Li, Tianxia; Tamashiro, Kellie; Choi, Pique; Moran, Timothy H; Smith, Wanli W

    2014-01-01

    Synphilin-1 is a cytoplasmic protein that has been shown to be involved in the control of energy balance. Previously, we reported on the generation of a human synphilin-1 transgenic mouse model (SP1), in which overexpression of human synphilin-1 resulted in hyperphagia and obesity. Here, behavioral measures in SP1 mice were compared with those of their age-matched controls (NTg) at two time points: when there was not yet a group body weight difference ("pre-obese") and when SP1 mice were heavier ("obese"). At both time points, meal pattern analyses revealed that SP1 mice displayed higher daily chow intake than non-transgenic control mice. Furthermore, there was an increase in meal size in SP1 mice compared with NTg control mice at the obese stage. In contrast, there was no meal number change between SP1 and NTg control mice. In a brief-access taste procedure, both "pre-obese" and "obese" SP1 mice displayed concentration-dependent licking across a sucrose concentration range similar to their NTg controls. However, at the pre-obese stage, SP1 mice initiated significantly more trials to sucrose across the testing sessions and licked more vigorously at the highest concentration presented, than the NTg counterparts. These group differences in responsiveness to sucrose were no longer apparent in obese SP1 mice. These results suggest that at the pre-obese stage, the increased trials to sucrose in the SP1 mice reflects increased appetitive behavior to sucrose that may be indicative of the behavioral changes that may contribute to hyperphagia and development of obesity in SP1 mice. These studies provide new insight into synphilin-1 contributions to energy homeostasis.

  3. Progressive Functional Impairments of Hippocampal Neurons in a Tauopathy Mouse Model

    PubMed Central

    Ciupek, Sarah M.; Cheng, Jingheng; Ali, Yousuf O.; Lu, Hui-Chen

    2015-01-01

    The age-dependent progression of tau pathology is a major characteristic of tauopathies, including Alzheimer's disease (AD), and plays an important role in the behavioral phenotypes of AD, including memory deficits. Despite extensive molecular and cellular studies on tau pathology, it remains to be determined how it alters the neural circuit functions underlying learning and memory in vivo. In rTg4510 mice, a Tau-P301L tauopathy model, hippocampal place fields that support spatial memories are abnormal at old age (7–9 months) when tau tangles and neurodegeneration are extensive. However, it is unclear how the abnormality in the hippocampal circuit function arises and progresses with the age-dependent progression of tau pathology. Here we show that in young (2–4 months of age) rTg4510 mice, place fields of hippocampal CA1 cells are largely normal, with only subtle differences from those of age-matched wild-type control mice. Second, high-frequency ripple oscillations of local field potentials in the hippocampal CA1 area are significantly reduced in young rTg4510 mice, and even further deteriorated in old rTg4510 mice. The ripple reduction is associated with less bursty firing and altered synchrony of CA1 cells. Together, the data indicate that deficits in ripples and neuronal synchronization occur before overt deficits in place fields in these mice. The results reveal a tau-pathology-induced progression of hippocampal functional changes in vivo. PMID:26019329

  4. Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice

    PubMed Central

    Blue, Mary E.; Kaufmann, Walter E.; Bressler, Joseph; Eyring, Charlotte; O’Driscoll, Cliona; Naidu, SakkuBai; Johnston, Michael V.

    2014-01-01

    Our previous postmortem study of girls with Rett Syndrome (RTT), a development disorder caused by MECP2 mutations, found increases in the density of NMDA receptors in the prefrontal cortex of 2–8 year-old girls, while girls older than 10 years had reductions in NMDA receptors compared to age matched controls (Blue et al., 1999b). Using [3H]-CGP to label NMDA type glutamate receptors in 2 and 7 week old wildtype (WT), Mecp2-null and Mecp2-heterozygous (HET) mice (Bird model), we found that frontal areas of the brain also exhibited a bimodal pattern in NMDA expression, with increased densities of NMDA receptors in Mecp2-null mice at 2 weeks of age, but decreased densities at 7 weeks of age. Visual cortex showed a similar pattern, while other cortical regions only exhibited changes in NMDA receptor densities at 2 weeks (retrosplenial granular) or 7 weeks (somatosensory). In thalamus of null mice, NMDA receptors were increased at 2 and 7 weeks. No significant differences in density were found between HET and WT mice at both ages. Western blots for NMDAR1 expression in frontal brain showed higher levels of expression in Mecp2-null mice at two weeks of age, but not at 1 or 7 weeks of age. Our mouse data support the notion that deficient MeCP2 function is the primary cause of the NMDA receptor changes we observed in RTT. Furthermore, the findings of regional and temporal differences in NMDA expression illustrate the importance of age and brain region in evaluating different genotypes of mice. PMID:21901842

  5. Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease

    PubMed Central

    Poisnel, Géraldine; Hérard, Anne-Sophie; El Tannir El Tayara, Nadine; Bourrin, Emmanuel; Volk, Andreas; Kober, Frank; Delatour, Benoit; Delzescaux, Thierry; Debeir, Thomas; Rooney, Thomas; Benavides, Jésus; Hantraye, Philippe; Dhenain, Marc

    2013-01-01

    Alzheimer’s disease (AD), the most common age-related neurodegenerative disorder, is characterized by the invariant cerebral accumulation of β-amyloid peptide. This event occurs early in the disease process. In humans, [18F]-Fluoro-2-deoxy-D-Glucose-Positron Emission Tomography ([18F]-FDG-PET) is largely used to follow-up in vivo cerebral glucose utilisation (CGU) and brain metabolism modifications associated to the AD pathology. Here, [18F]-FDG-PET was used to study age-related changes of CGU under resting conditions in 3, 6 and 12-month-old APPSweLon/PS1M146L, a mouse model of amyloidosis. We showed an age-dependent increase of glucose uptake in several brain regions of APP/PS1 mice but not in control animals and a higher [18F]-FDG uptake in the cortex and the hippocampus of 12-month-old APP/PS1 mice as compared to age-matched control mice. We then developed a method of 3D-microscopic autoradiography to evaluate glucose uptake at the level of amyloid plaques and showed an increased glucose uptake close to the plaques rather than in amyloid-free cerebral tissues. These data suggest a macroscopic and microscopic reorganisation of glucose uptake in relation to cerebral amyloidosis. PMID:22079157

  6. Effect of long-term treatment with melatonin on vascular markers of oxidative stress/inflammation and on the anticontractile activity of perivascular fat in aging mice.

    PubMed

    Agabiti-Rosei, Claudia; Favero, Gaia; De Ciuceis, Carolina; Rossini, Claudia; Porteri, Enzo; Rodella, Luigi Fabrizio; Franceschetti, Lorenzo; Maria Sarkar, Anna; Agabiti-Rosei, Enrico; Rizzoni, Damiano; Rezzani, Rita

    2017-01-01

    Some reports have suggested that inflammation in perivascular adipose tissue (PVAT) may be implicated in vascular dysfunction by causing the disappearance of an anticontractile effect. The aim of this study was to investigate the effects of chronic melatonin treatment on the functional responses of the small mesenteric arteries and on the expression of markers of inflammation/oxidative stress in the aortas of senescence-accelerated prone mice (SAMP8), a model of age-related vascular dysfunction. We investigated seven SAMP8 and seven control senescence-accelerated resistant mice (SAMR1) treated for 10 months with melatonin, as well as equal numbers of age-matched untreated SAMP8 and SAMR1. The mesenteric small resistance arteries were dissected and mounted on a wire myograph, and the concentration-response to norepinephrine was evaluated in vessels with intact PVAT and after the removal of the PVAT. The expression of markers of oxidative stress, inflammation and aging in the aortas was evaluated by immunostaining. In addition, the adiponectin content and the expression of adiponectin receptor 1 were evaluated in the visceral adipose tissue. In untreated SAMP8 mice, we observed an overexpression of oxidative stress and inflammatory markers in the vasculature compared with the controls. No anticontractile effect of the PVAT was observed in untreated SAMP8 mice. Long-term treatment of SAMP8 mice with melatonin increased the expression of some markers of vasoprotection, decreased oxidative stress and inflammation and restored the anticontractile effect of the PVAT. Decreased expression of adiponectin and adiponectin receptor 1 was also observed in visceral fat of untreated SAMP8, whereas a significant increase was observed after melatonin treatment.

  7. [Testicular testosterone production in male mice of inbred strains PT and CBA/Lac after a long-term period of stable social hierarchy].

    PubMed

    Osadchuk, L V; Gutorova, N V; Kleshchev, M A

    2014-04-01

    Social dominance can alter testicular testosterone production, although there is pronounced variability in the relationship between social status and pattern of the testosterone response. The study designed to investigate how a long-term period of stable social hierarchy effects on testicular testosterone production in male mice of inbred strains PT and CBA/Lac. Paired males of different genotypes were housed together for 32 days beginning 38 day of age. Dyadic interactions of males generated dominance-subordination relationships during the first day after a social group has been produced and the social rank of each opponent was assessed by asymmetry in agonistic behaviour. Serum level of testosterone and its testicular content were evaluated in male mice of both inbred strains at 70 day of age after pair housing. Control animals were age- and genotype-matched single males that were housed in conventional cages. After a long-term period of pair housing, the serum testosterone level and its testicular content in males of both PT and CBA/Lac strains were not significantly different from the control. There were no significant differences in androgenic parameters between social ranks in male mice of both strains. The results indicate that in laboratory mice the pattern of testicular testosterone response to social hierarchy determined by a social situation, for example, a stability of social interactions, when the importance of aggressive competition for rank is minimal.

  8. Immunohistochemical Characterization of Connexin43 Expression in a Mouse Model of Diabetic Retinopathy and in Human Donor Retinas

    PubMed Central

    Mugisho, Odunayo O.; Green, Colin R.; Zhang, Jie; Binz, Nicolette; Acosta, Monica L.; Rakoczy, Elizabeth

    2017-01-01

    Diabetic retinopathy (DR) develops due to hyperglycemia and inflammation-induced vascular disruptions in the retina with connexin43 expression patterns in the disease still debated. Here, the effects of hyperglycemia and inflammation on connexin43 expression in vitro in a mouse model of DR and in human donor tissues were evaluated. Primary human retinal microvascular endothelial cells (hRMECs) were exposed to high glucose (HG; 25 mM) or pro-inflammatory cytokines IL-1β and TNF-α (10 ng/mL each) or both before assessing connexin43 expression. Additionally, connexin43, glial fibrillary acidic protein (GFAP), and plasmalemma vesicular associated protein (PLVAP) were labeled in wild-type (C57BL/6), Akita (diabetic), and Akimba (DR) mouse retinas. Finally, connexin43 and GFAP expression in donor retinas with confirmed DR was compared to age-matched controls. Co-application of HG and cytokines increased connexin43 expression in hRMECs in line with results seen in mice, with no significant difference in connexin43 or GFAP expression in Akita but higher expression in Akimba compared to wild-type mice. On PLVAP-positive vessels, connexin43 was higher in Akimba but unchanged in Akita compared to wild-type mice. Connexin43 expression appeared higher in donor retinas with confirmed DR compared to age-matched controls, similar to the distribution seen in Akimba mice and correlating with the in vitro results. Although connexin43 expression seems reduced in diabetes, hyperglycemia and inflammation present in the pathology of DR seem to increase connexin43 expression, suggesting a causal role of connexin43 channels in the disease progression. PMID:29186067

  9. Acute acetaminophen toxicity in transgenic mice with elevated hepatic glutathione.

    PubMed

    Rzucidlo, S J; Bounous, D I; Jones, D P; Brackett, B G

    2000-06-01

    Previous studies demonstrated that elevation of hepatic glutathione (GSH) concentrations protect against acetaminophen (APAP) hepatotoxicity in mice. Employing transgenic mice overexpressing glutathione synthetase, this study was conducted to determine if sustained elevation of hepatic GSH concentrations could ameliorate or prevent APAP toxicity. International Cancer Research transgenic mouse males and matched (ie same strain, sex, and age) control nontransgenic mice were pretreated ip with GSH synthetase substrate gamma-glutamylcysteinyl ethyl ester (gamma-GCE) or with saline. After a 16-h fast, mice received a single dose of 500 mg APAP/kg bw in saline ip and were sacrificed 4 h later. Other mice similarly pretreated were killed without APAP challenge. The elevated GSH concentrations in transgenic mice livers did not lessen APAP hepatotoxicity. Instead higher degrees of hepatotoxicity and nephrotoxicity were observed in transgenic mice than in controls as indicated by higher serum alanine aminotransferase activity and more severe histopathological lesions in transgenic mice livers and kidneys. Pretreatment with gamma-GCE did not affect either initial or post-APAP treatment tissue GSH concentrations or observed degrees of toxicity. Detection of a higher level of serum APAP in transgenic mice and the histopathological lesions found in transgenic mice kidneys together with no observable nephrotoxicity in control mice indicated early kidney damage in transgenic mice. Our findings suggest that high levels of GSH-APAP conjugates resulting from increased GSH concentrations in the livers of transgenic mice caused rapid kidney damage. Compromised excretory ability may have caused retention of APAP, which, in effect, elicited higher hepatotoxicity than that observed in nontransgenic mice.

  10. White spotting variant (Wv) mouse as an experimental model for ovarian aging and menopausal biology

    PubMed Central

    Smith, Elizabeth R.; Yeasky, Toni; Wei, Jain Qin; Miki, Roberto A.; Cai, Kathy Q.; Smedberg, Jennifer L.; Yang, Wan-Lin; Xu, Xiang-Xi

    2011-01-01

    Objective Menopause is a unique phenomenon in modern women, as most mammalian species possess a reproductive period comparable to their lifespan. Menopause is caused by the depletion of germ cell-containing ovarian follicles, and in laboratory studies is usually modeled in animals in which the ovarian function is removed by ovariectomy or chemical poisoning of the germ cells. Our objective was to explore and characterize the white spotting variant (Wv) mice that have reduced ovarian germ cell abundance, a result of a point mutation in the c-kit gene that decreases the kinase activity, as a genetic model for use in menopausal studies. Methods Physiological and morphological features associated with menopause were determined in female Wv/Wv mice compared to age-matched wildtype controls. Immunohistochemistry was used to evaluate the presence and number of follicles in paraffin-embedded ovaries. Bone density and body composition were evaluated using the PIXImus X-ray densitometer, and lipids, calcium, and hormone levels were determined in serum using antigen-specific EIAs. Heart and body weight were measured, and cardiac function was evaluated by transthoracic echocardiography. Results The ovaries of the Wv/Wv females have a greatly reduced number of normal germ cells at birth compared to wildtype mice. The remaining follicles are depleted by around 2 months, and the ovaries develop benign epithelial lesions that resemble morphological changes that occur during ovarian aging, whereas a normal mouse ovary has numerous follicles at all stages of development and retains some follicles even in advanced age. Wv mice have elevated plasma gonadotrophins and reduced estrogen and progesterone levels, a significant reduction in bone mass density, and elevated serum cholesterol and lipoprotein levels. Moreover, the Wv female mice have enlarged hearts and reduced cardiac function. Conclusions The reduction of c-kit activity in Wv mice leads to a substantially diminished follicular endowment in newborn mice and premature depletion of follicles in young mice, though the mutant females have a normal lifespan after cessation of ovarian function. The Wv female mice exhibit consistent physiological changes that resemble common features of postmenopausal women. These alterations include follicle depletion, morphological aging of the ovary, altered serum levels of cholesterol, gonadotropins, and steroid hormones, decreased bone density, and reduced cardiac function. These changes were not observed in male mice, either age-matched male Wv/Wv or WT mice, and are unlikely caused by global loss of c-kit function. The Wv mouse may be a genetic, intact-ovary model that mimics closely the phenotypes of human menopause to be used for further studies to understand mechanisms of menopausal biology. PMID:22228319

  11. CNGA3 deficiency affects cone synaptic terminal structure and function and leads to secondary rod dysfunction and degeneration.

    PubMed

    Xu, Jianhua; Morris, Lynsie M; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J; Sherry, David M; Ding, Xi-Qin

    2012-03-01

    To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3-/- mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3-/- mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3-/- retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%-40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3-/- retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised.

  12. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis.

    PubMed

    Mor, Adi; Planer, David; Luboshits, Galia; Afek, Arnon; Metzger, Shula; Chajek-Shaul, Tova; Keren, Gad; George, Jacob

    2007-04-01

    Naturally occurring CD4+ CD25+ regulatory T cells (Tregs) exert suppressive effects on effector CD4 cells and downregulate experimental autoimmune disorders. We investigated the importance and potential role of Tregs in murine atherogenesis. Tregs were investigated comparatively between aged and young apolipoprotein E-knockout (ApoE-KO) mice and age-matched C57BL/6 littermates. The effect of oxidized LDL (oxLDL) was tested on the functional suppressive properties of Tregs from ApoE-KO and C57BL/6 mice. Tregs, CD4+ CD25- cells, and saline were infused into ApoE-KO mice to study their effects on atherogenesis. Treg numbers were reduced in atherosclerotic compared with nonatherosclerotic ApoE-KO mice. The functional suppressive properties of Tregs from ApoE-KO mice were compromised in comparison with those from their C57BL/6 littermates. Thus, oxLDL attenuated the suppressive properties of Tregs from C57BL/6 mice and more so in ApoE-KO mice. Transfer of Tregs from age-matched ApoE-KO mice resulted in significant attenuation of atherosclerosis compared with that after delivery of CD4+ CD25+/- T cells or phosphate-buffered saline. CD4+ CD25+ Tregs may play a protective role in the progression of atherosclerosis and could be considered a therapeutic tool if results from human studies can solidify observations in murine models.

  13. Daumone fed late in life improves survival and reduces hepatic inflammation and fibrosis in mice.

    PubMed

    Park, Jong Hee; Chung, Hae Young; Kim, Minkyu; Lee, Jung Hwa; Jung, Mankil; Ha, Hunjoo

    2014-08-01

    The liver is one of the most susceptible organs to aging, and hepatic inflammation and fibrosis increase with age. Chronic inflammation has been proposed as the major molecular mechanism underlying aging and age-related diseases, whereas calorie restriction has been shown to be the most effective in extending mammalian lifespan and to have anti-aging effects through its anti-inflammatory action. Thus, it is necessary to develop effective calorie restriction mimetics. Daumone [(2)-(6R)-(3,5-dihydroxy-6-methyltetrahydropyran-2-yloxy)heptanoic acid], a pheromone secreted by Caenorhabditis elegans, forces them to enter the dauer stage when facing inadequate conditions. Because Caenorhabditis elegans live longer during the dauer stage under energy deprivation, it was hypothesized that daumone may improve survival in mammals by mimicking calorie restriction. Daumone (2 mg kg(-1) day(-1) ) was administered orally for 5 months to 24-month-old male C57BL/6J mice. Daumone was found to reduce the risk of death by 48% compared with age-matched control mice, and the increased plasma insulin normally presented in old mice was significantly reduced by daumone. The increased hepatic hypertrophy, senescence-associated β-galactosidase activity, insulin resistance, lipid accumulation, inflammation, oxidative stress, and fibrosis in old mice were significantly attenuated by daumone. From a mechanistic view, daumone reduced the phosphorylation of the IκBα and upregulation of Rela and Nfkbia mRNA in the livers of old mice. The anti-inflammatory effect of daumone was confirmed in lipopolysaccharide-induced liver injury model. Oral administration of daumone improves survival in mice and delivers anti-aging effects to the aged liver by modulating chronic inflammation, indicating that daumone could be developed as an anti-aging compound. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice

    PubMed Central

    Sidor, Michelle M.; Sakic, Boris; Malinowski, Paul M.; Ballok, David A.; Oleschuk, Curtis J.; Macri, Joseph

    2006-01-01

    The systemic autoimmune disease lupus erythematosus (SLE) is frequently accompanied by neuropsychiatric manifestations and brain lesions of unknown etiology. The MRL-lpr mice show behavioral dysfunction concurrent with progression of a lupus-like disease, thus providing a valuable model in understanding the pathogenesis of autoimmunity-induced CNS damage. Profound neurodegeneration in the limbic system of MRL-lpr mice is associated with cytotoxicity of their cerebrospinal fluid (CSF) to mature and immature neurons. We have recently shown that IgG-rich CSF fraction largely accounts for this effect. The present study examines IgG levels in serum and CSF, as well as the permeability of the blood–brain barrier in mice that differ in immune status, age, and brain morphology. In comparison to young MRL-lpr mice and age-matched congenic controls, a significant elevation of IgG and albumin levels were detected in the CSF of aged autoimmune MRL-lpr mice. Two-dimensional gel electrophoresis and MALDI-TOF MS confirmed elevation in IgG heavy and Ig light chain isoforms in the CSF. Increased permeability of the blood–brain barrier correlated with neurodegeneration (as revealed by Fluoro Jade B staining) in periventricular areas. Although the source and specificity of neuropathogenic antibodies remain to be determined, these results support the hypothesis that a breached blood–brain barrier and IgG molecules are involved in the etiology of CNS damage during SLE-like disease. PMID:15972238

  15. Stereological Investigation of the Effects of Treadmill Running Exercise on the Hippocampal Neurons in Middle-Aged APP/PS1 Transgenic Mice.

    PubMed

    Chao, Fenglei; Jiang, Lin; Zhang, Yi; Zhou, Chunni; Zhang, Lei; Tang, Jing; Liang, Xin; Qi, Yingqiang; Zhu, Yanqing; Ma, Jing; Tang, Yong

    2018-01-01

    The risk of cognitive decline during Alzheimer's disease (AD) can be reduced if physical activity is maintained; however, the specific neural events underlying this beneficial effect are still uncertain. To quantitatively investigate the neural events underlying the effect of running exercise on middle-aged AD subjects, 12-month-old male APP/PS1 mice were randomly assigned to a control group or running group, and age-matched non-transgenic littermates were used as a wild-type group. AD running group mice were subjected to a treadmill running protocol (regular and moderate intensity) for four months. Spatial learning and memory abilities were assessed using the Morris water maze. Hippocampal amyloid plaques were observed using Thioflavin S staining and immunohistochemistry. Hippocampal volume, number of neurons, and number of newborn cells (BrdU+ cells) in the hippocampus were estimated using stereological techniques, and newborn neurons were observed using double-labelling immunofluorescence. Marked neuronal loss in both the CA1 field and dentate gyrus (DG) and deficits in both the neurogenesis and survival of new neurons in the DG of middle-aged APP/PS1 mice were observed. Running exercise could improve the spatial learning and memory abilities, reduce amyloid plaques in the hippocampi, delay neuronal loss, induce neurogenesis, and promote the survival of newborn neurons in the DG of middle-aged APP/PS1 mice. Exercise-induced protection of neurons and adult neurogenesis within the DG might be part of the important structural basis of the improved spatial learning and memory abilities observed in AD mice.

  16. Omigapil treatment decreases fibrosis and improves respiratory rate in dy(2J) mouse model of congenital muscular dystrophy.

    PubMed

    Yu, Qing; Sali, Arpana; Van der Meulen, Jack; Creeden, Brittany K; Gordish-Dressman, Heather; Rutkowski, Anne; Rayavarapu, Sree; Uaesoontrachoon, Kitipong; Huynh, Tony; Nagaraju, Kanneboyina; Spurney, Christopher F

    2013-01-01

    Congenital muscular dystrophy is a distinct group of diseases presenting with weakness in infancy or childhood and no current therapy. One form, MDC1A, is the result of laminin alpha-2 deficiency and results in significant weakness, respiratory insufficiency and early death. Modification of apoptosis is one potential pathway for therapy in these patients. dy(2J) mice were treated with vehicle, 0.1 mg/kg or 1 mg/kg of omigapil daily via oral gavage over 17.5 weeks. Untreated age matched BL6 mice were used as controls. Functional, behavioral and histological measurements were collected. dy(2J) mice treated with omigapil showed improved respiratory rates compared to vehicle treated dy(2J) mice (396 to 402 vs. 371 breaths per minute, p<0.03) and similar to control mice. There were no statistical differences in normalized forelimb grip strength between dy(2J) and controls at baseline or after 17.5 weeks and no significant differences seen among the dy(2J) treatment groups. At 30-33 weeks of age, dy(2J) mice treated with 0.1 mg/kg omigapil showed significantly more movement time and less rest time compared to vehicle treated. dy(2J) mice showed normal cardiac systolic function throughout the trial. dy(2J) mice had significantly lower hindlimb maximal (p<0.001) and specific force (p<0.002) compared to the control group at the end of the trial. There were no statistically significant differences in maximal or specific force among treatments. dy(2J) mice treated with 0.1 mg/kg/day omigapil showed decreased percent fibrosis in both gastrocnemius (p<0.03) and diaphragm (p<0.001) compared to vehicle, and in diaphragm (p<0.013) when compared to 1 mg/kg/day omigapil treated mice. Omigapil treated dy(2J) mice demonstrated decreased apoptosis. Omigapil therapy (0.1 mg/kg) improved respiratory rate and decreased skeletal and respiratory muscle fibrosis in dy(2J) mice. These results support a putative role for the use of omigapil in laminin deficient congenital muscular dystrophy patients.

  17. Effects of exercise on capillaries in the white matter of transgenic AD mice

    PubMed Central

    Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong

    2017-01-01

    Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer’s disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD. PMID:29029478

  18. Effects of exercise on capillaries in the white matter of transgenic AD mice.

    PubMed

    Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong

    2017-09-12

    Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer's disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD.

  19. Effects of Subretinal Electrical Stimulation in Mer-KO Mice

    PubMed Central

    Mocko, Julie A.; Kim, Moon; Faulkner, Amanda E.; Cao, Yang; Ciavatta, Vincent T.

    2011-01-01

    Purpose. Subretinal electrical stimulation (SES) from microphotodiode arrays protects photoreceptors in the RCS rat model of retinitis pigmentosa. The authors examined whether merkd mice, which share a Mertk mutation with RCS rats, showed similar neuroprotective effects from SES. Methods. Merkd mice were implanted with a microphotodiode array at postnatal day (P) 14. Weekly electroretinograms (ERGs) followed by retinal histology at week 4 were compared with those of age-matched controls. RT-PCR for fibroblast growth factor beta (Fgf2), ciliary nerve trophic factor (Cntf), glial-derived neurotrophic factor (Gdnf), insulin growth factor 1 (Igf1), and glial fibrillary acidic protein (Gfap) was performed on retinas at 1 week after surgery. Rates of degeneration using ERG parameters were compared between merkd mice and RCS rats from P28 to P42. Results. SES-treated merkd mice showed no differences in ERG a- and b-wave amplitudes or photoreceptor numbers compared with controls. However, the expression of Fgf2 and Cntf was greater (6.5 ± 1.9- and 2.5 ± 0.5-fold, respectively; P < 0.02) in SES-treated merkd retinas. Rates of degeneration were faster for dark-adapted maximal b-wave, log σ, and oscillatory potentials in merkd mice than in RCS rats. Conclusions. Although SES upregulated Fgf2 in merkd retinas, as reported previously for RCS retinas, this was not accompanied by neuroprotection of photoreceptors. Comparisons of ERG responses from merkd mice and RCS rats across different ages showed inner retinal dysfunction in merkd mice but not in RCS rats. This inner retinal dysfunction and the faster rate of degeneration in merkd mice may produce a retinal environment that is not responsive to neuroprotection from SES. PMID:21467171

  20. Contribution of dietary and loading changes to the effects of suspension on mouse femora

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Broz, J. J.; Fleet, M. L.; Schmeister, T. A.; Gayles, E. C.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The present study assessed the contributions of feeding changes and unloading to the overall measured effects of 2-wk hindlimb (Tail) suspension on the mouse femora. Feeding changes were addressed by considering the effects of matched feeding among suspended and control mice. The effects of hind limb unloading were considered by comparing suspended mice to mice equipped identically (though not suspended) and matched-fed. The feeding and unloading aspects of suspension appear to cause distinctly differing effects on the stereotypic modeling of the femora. Matched-feeding was accompanied by increased resorption surface in comparison to suspended mice, while unloading led to reduced bone formation at the mid-diaphysis of the femora. Reduced mineral content was observed in the bones of suspended mice when compared to the other mice groups, but without increased resorption surface. Thus, the unloading aspects of the antiorthostatic suspension protocol apparently causes reduced formation and mineralization in the femur.

  1. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    PubMed

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair follicle stem cells to epidermal regeneration after wounding in 6-month-old Med1(epi-/-) mice. This study sheds light on the novel function of MED1 in keratinocytes and suggests a possible new therapeutic approach for skin wound healing and aging.

  2. Acceleration of atherogenesis in ApoE-/- mice exposed to acute or low-dose-rate ionizing radiation.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J; Saran, Anna

    2015-10-13

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE-/- mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE-/- females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response.

  3. Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice.

    PubMed

    Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian; Italiano, Joseph; Hoffmeister, Karin; Bihorel, Sihem; Mager, Donald; Hu, Zhongbo; Slayton, William B; Kile, Benjamin T; Sola-Visner, Martha; Ferrer-Marin, Francisca

    2017-12-01

    Congenital amegakaryocytic thrombocytopaenia (CAMT) is a disorder caused by c-MPL mutations that impair thrombopoietin (TPO) signalling, resulting in a near absence of megakaryocytes (MKs). While this phenotype is consistent in adults, neonates with CAMT can present with severe thrombocytopaenia despite normal MK numbers. To investigate this, we characterized MKs and platelets in newborn c-MPL –/– mice. Liver MKs in c-MPL –/– neonates were reduced in number and size compared with wild-type (WT) age-matched MKs, and exhibited ultrastructural abnormalities not found in adult c-MPL –/– MKs. Platelet counts were lower in c-MPL –/– compared with WT mice at birth and did not increase over the first 2 weeks of life. In vivo biotinylation revealed a significant reduction in the platelet half-life of c-MPL –/– newborn mice (P2) compared with age-matched WT pups, which was not associated with ultrastructural abnormalities. Genetic deletion of the pro-apoptotic Bak did not rescue the severely reduced platelet half-life of c-MPL –/– newborn mice, suggesting that it was due to factors other than platelets entering apoptosis early. Indeed, adult GFP+ (green fluorescent protein transgenic) platelets transfused into thrombocytopenic c-MPL –/– P2 pups also had a shortened lifespan, indicating the importance of cell-extrinsic factors. In addition, neonatal platelets from WT and c-MPL –/– mice exhibited reduced P-selectin surface expression following stimulation compared with adult platelets of either genotype, and platelets from c-MPL –/– neonates exhibited reduced glycoprotein IIb/IIIa (GPIIb/IIIa) activation in response to thrombin compared with age-matched WT platelets. Taken together, our findings indicate that c-MPL deficiency is associated with abnormal maturation of neonatal MKs and developmental stage-specific defects in platelet function.

  4. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice.

    PubMed

    Murach, Kevin A; Confides, Amy L; Ho, Angel; Jackson, Janna R; Ghazala, Lina S; Peterson, Charlotte A; Dupont-Versteegden, Esther E

    2017-10-01

    Satellite cell depletion does not affect diaphragm adaptations to voluntary wheel running in young or aged mice. Satellite cell depletion early in life (4 months of age) has minimal effect on diaphragm phenotype by old age (24 months). Prolonged satellite cell depletion in the diaphragm does not result in excessive extracellular matrix accumulation, in contrast to what has been reported in hind limb muscles. Up-regulation of Pax3 mRNA+ cells after satellite cell depletion in young and aged mice suggests that Pax3+ cells may compensate for a loss of Pax7+ satellite cells in the diaphragm. Future investigations should focus on the role of Pax3+ cells in the diaphragm during adaptation to exercise and ageing. Satellite cell contribution to unstressed diaphragm is higher compared to hind limb muscles, which is probably attributable to constant activation of this muscle to drive ventilation. Whether satellite cell depletion negatively impacts diaphragm quantitative and qualitative characteristics under stressed conditions in young and aged mice is unknown. We therefore challenged the diaphragm with prolonged running activity in the presence and absence of Pax7+ satellite cells in young and aged mice using an inducible Pax7 CreER -R26R DTA model. Mice were vehicle (Veh, satellite cell-replete) or tamoxifen (Tam, satellite cell-depleted) treated at 4 months of age and were then allowed to run voluntarily at 6 months (young) and 22 months (aged). Age-matched, cage-dwelling, Veh- and Tam-treated mice without wheel access served as activity controls. Diaphragm muscles were analysed from young (8 months) and aged (24 months) mice. Satellite cell depletion did not alter diaphragm mean fibre cross-sectional area, fibre type distribution or extracellular matrix content in young or aged mice, regardless of running activity. Resting in vivo diaphragm function was also unaffected by satellite cell depletion. Myonuclear density was maintained in young satellite cell-depleted mice regardless of running, although it was modestly reduced in aged sedentary (-7%) and running (-19%) mice without satellite cells (P < 0.05). Using fluorescence in situ hybridization, we detected higher Pax3 mRNA+ cell density in both young and aged satellite cell-depleted diaphragm muscle (P < 0.05), which may compensate for the loss of Pax7+ satellite cells. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  5. CNGA3 Deficiency Affects Cone Synaptic Terminal Structure and Function and Leads to Secondary Rod Dysfunction and Degeneration

    PubMed Central

    Xu, Jianhua; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J.; Sherry, David M.

    2012-01-01

    Purpose. To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Methods. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3−/− mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. Results. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3−/− mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3−/− retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%–40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3−/− retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. Conclusions. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised. PMID:22247469

  6. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age☆

    PubMed Central

    Sikka, Gautam; Miller, Karen L.; Steppan, Jochen; Pandey, Deepesh; Jung, Sung M.; Fraser, Charles D.; Ellis, Carla; Ross, Daniel; Vandegaer, Koenraad; Bedja, Djahida; Gabrielson, Kathleen; Walston, Jeremy D.; Berkowitz, Dan E.; Barouch, Lili A.

    2013-01-01

    Cardiovascular dysfunction is a primary independent predictor of age-related morbidity and mortality. Frailty is associated with activation of inflammatory pathways and fatigue that commonly presents and progresses with age. Interleukin 10 (IL-10), the cytokine synthesis inhibitory factor, is an anti-inflammatory cytokine produced by immune and non-immune cells. Homozygous deletion of IL-10 in mice yields a phenotype that is consistent with human frailty, including age-related increases in serum inflammatory mediators, muscular weakness, higher levels of IGF-1 at midlife, and early mortality. While emerging evidence suggests a role for IL-10 in vascular protection, a clear mechanism has not yet been elucidated. Methods In order to evaluate the role of IL-10 in maintenance of vascular function, force tension myography was utilized to access ex-vivo endothelium dependent vasorelaxation in vessels isolated from IL-10 knockout IL-10(tm/tm) and control mice. Pulse wave velocity ((PWV), index of stiffness) of vasculature was measured using ultrasound and blood pressure was measured using the tail cuff method. Echocardiography was used to elucidated structure and functional changes in the heart. Results Mean arterial pressures were significantly higher in IL-10(tm/tm) mice as compared to C57BL6/wild type (WT) controls. PWV was increased in IL-10(tm/tm) indicating stiffer vasculature. Endothelial intact aortic rings isolated from IL-10(tm/tm) mice demonstrated impaired vasodilation at low acetylcholine doses and vasoconstriction at higher doses whereas vasorelaxation responses were preserved in rings from WT mice. Cyclo-oxygenase (COX-2)/thromboxane A2 inhibitors improved endothelial dependent vasorelaxation and reversed vasoconstriction. Left ventricular end systolic diameter, left ventricular mass, isovolumic relaxation time, fractional shortening and ejection fraction were all significantly different in the aged IL-10(tm/tm) mice compared to WT mice. Conclusion Aged IL-10(tm/tm) mice have stiffer vessels and decreased vascular relaxation due to an increase in eicosanoids, specifically COX-2 activity and resultant thromboxane A2 receptor activation. Our results also suggest that aging IL-10(tm/tm) mice have an increased heart size and impaired cardiac function compared to age-matched WT mice. While further studies will be necessary to determine if this age-related phenotype develops as a result of inflammatory pathway activation or lack of IL-10, it is essential for maintaining the vascular compliance and endothelial function during the aging process. Given that a similar cardiovascular phenotype is present in frail, older adults, these findings further support the utility of the IL-10(tm/tm) mouse as a model of frailty. PMID:23159957

  7. The development of behavioral abnormalities in the motor neuron degeneration (mnd) mouse.

    PubMed

    Bolivar, Valerie J; Scott Ganus, J; Messer, Anne

    2002-05-24

    The motor neuron degeneration (mnd) mouse, which has widespread abnormal accumulating lipoprotein and neuronal degeneration, has a mutation in CLN8, the gene for human progressive epilepsy with mental retardation (EPMR). EPMR is one of the neuronal ceroid lipofuscinoses (NCLs), a group of neurological disorders characterized by autofluorescent lipopigment accumulation, blindness, seizures, motor deterioration, and dementia. The human phenotype of EPMR suggests that, in addition to the motor symptoms previously categorized, various types of progressive behavioral abnormalities would be expected in mnd mice. We have therefore examined exploratory behavior, fear conditioning, and aggression in 2-3 month and 4-5 month old male mnd mice and age-matched C57BL/6 (B6) controls. The mnd mice displayed increased activity with decreased habituation in the activity monitor, poor contextual and cued memory, and heightened aggression relative to B6 controls. These behavioral deficits were most prominent at 4-5 months of age, which is prior to the onset of gross motor symptoms at 6 months. Our results provide a link from the mutation via pathology to a quantifiable multidimensional behavioral phenotype of this naturally occurring mouse model of NCL.

  8. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice

    PubMed Central

    Ozkosem, Burak; Feinstein, Sheldon I.; Fisher, Aron B.; O’Flaherty, Cristian

    2015-01-01

    Due to socioeconomic factors, more couples are choosing to delay conception than ever. Increasing average maternal and paternal age in developed countries over the past 40 years has raised the question of how aging affects reproductive success of males and females. Since oxidative stress in the male reproductive tract increases with age, we investigated the impact of advanced paternal age on the integrity of sperm nucleus and reproductive success of males by using a Prdx6−/− mouse model. We compared sperm motility, cytoplasmic droplet retention sperm chromatin quality and reproductive outcomes of young (2-month-old), adult (8-month-old), and old (20-month-old) Prdx6−/− males with their age-matched wild type (WT) controls. Absence of PRDX6 caused age-dependent impairment of sperm motility and sperm maturation and increased sperm DNA fragmentation and oxidation as well as decreased sperm DNA compaction and protamination. Litter size, total number of litters and total number of pups per male were significantly lower in Prdx6−/− males compared to WT controls. These abnormal reproductive outcomes were severely affected by age in Prdx6−/− males. In conclusion, the advanced paternal age affects sperm chromatin integrity and fertility more severely in the absence of PRDX6, suggesting a protective role of PRDX6 in age-associated decline in the sperm quality and fertility in mice. PMID:25796034

  9. In vivo treatment with the NF-κB inhibitor ursodeoxycholic acid (UDCA) improves tension development in the isolated mdx costal diaphragm.

    PubMed

    Carlson, C George; Potter, Ross; Yu, Vivien; Luo, Kevin; Lavin, Jesse; Nielsen, Cory

    2016-03-01

    Previous experiments have indicated that in vivo administration of ursodeoxycholic acid (UDCA) inhibits nuclear NF-κB activation and has beneficial effects on the structure and function of dystrophic (mdx) muscle. We examined the effect of UDCA on tension development in dystrophic muscle. Isometric tension development was examined in costal diaphragms that were freshly isolated from vehicle and UDCA treated mdx mice. Percent recovery scores were obtained by directly comparing these measurements to those obtained from age-matched nondystrophic mice. Vehicle treated mdx mice exhibited significantly reduced optimal muscle lengths (lo ) and specific twitch and tetanic tensions compared with age-matched nondystrophic mice. UDCA treated preparations exhibited significantly improved tension development with a 33% recovery score. Because UDCA is used in treating certain clinical disorders, these results provide a rationale for human clinical trials using this and related drugs for treatment of Duchenne and related muscular dystrophies. © 2015 Wiley Periodicals, Inc.

  10. Increased Th9 cells and IL-9 levels accelerate disease progression in experimental atherosclerosis.

    PubMed

    Li, Qing; Ming, Tingting; Wang, Yuanmin; Ding, Shaowei; Hu, Chaojie; Zhang, Cuiping; Cao, Qi; Wang, Yiping

    2017-01-01

    Atherosclerosis (AS) is the number one killer in developed countries, and currently considered a chronic inflammatory disease. The central role of T cells in the pathogenesis of atherosclerosis is well documented. However, little is known about the newly described T cell subset-Th9 cells and their role in AS pathogenesis. Here, the amounts of Th9 cells as well as their key transcription factors and relevant cytokines during atherosclerosis were assessed in ApoE -/- mice and age-matched C57BL/6J mice. Significantly increased Th9 cell number, Th9 related cytokine (IL-9), and key transcription factor (PU.1) were found in ApoE -/- mice compared with age-matched C57BL/6J mice. Additionally, treatment with rIL-9 accelerated atherosclerotic development, which was attenuated by anti-IL-9 antibodies. These data suggested that both Th9 cells and related IL-9 play key roles in the pathogenesis of atherosclerosis, and antibodies against these antigens offer a novel therapeutic approach in AS treatment.

  11. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    PubMed

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  12. Does Telomere Shortening Precede the Onset of Hypertension in Spontaneously Hypertensive Mice?

    PubMed

    Chiu, Christine L; Hearn, Nerissa L; Paine, Devin; Steiner, Nicole; Lind, Joanne M

    2016-10-01

    Telomere length is widely considered as a marker of biological aging. Clinical studies have reported associations between reduced telomere length and hypertension. The aim of this study was to compare telomere length in hypertensive and normotensive mice at pre-disease and established disease time points to determine whether telomere length differs between the strains before and after the onset of disease. Genomic DNA was extracted from kidney and heart tissues of 4-, 12-, and 20-week-old male hypertensive (BPH/2J) and normotensive (BPN/3J) mice. Relative telomere length (T/S) was measured using quantitative PCR. Age was inversely correlated with telomere length in both strains. In 4-week-old pre-hypertensive animals, no difference in T/S was observed between BPH/2J and BPN/3J animals in kidney or heart tissue (kidney p = 0.14, heart p = 0.06). Once the animals had established disease, at 12 and 20 weeks, BPH/2J mice had significantly shorter telomeres when compared to their age-matched controls in both kidney (12 weeks p < 0.001 and 20 weeks p = 0.004) and heart tissues (12 weeks p < 0.001 and 20 weeks p < 0.001). This is the first study to show that differences in telomere lengths between BPH/2J and BPN/3J mice occur after the development of hypertension and do not cause hypertension in the BPH/2J mice.

  13. Ablation of the Sam68 RNA Binding Protein Protects Mice from Age-Related Bone Loss

    PubMed Central

    Richard, Stéphane; Torabi, Nazi; Franco, Gladys Valverde; Tremblay, Guy A; Chen, Taiping; Vogel, Gillian; Morel, Mélanie; Cléroux, Patrick; Forget-Richard, Alexandre; Komarova, Svetlana; Tremblay, Michel L; Li, Wei; Li, Ailian; Gao, Yun Jing; Henderson, Janet E

    2005-01-01

    The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68−/− mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68−/− mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68−/− mice. Sam68−/− bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68−/− littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68−/− mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68−/− mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice. PMID:16362077

  14. Constitutive and Stress-induced Expression of CCL5 Machinery in Rodent Retina

    PubMed Central

    Duncan, D'Anne S.; McLaughlin, William M.; Vasilakes, Noah; Echevarria, Franklin D.; Formichella, Cathryn R.; Sappington, Rebecca M.

    2017-01-01

    Signaling by inflammatory cytokines and chemokines is associated with neurodegeneration in disease and injury. Here we examined expression of the β-chemokine CCL5 and its receptors in the mouse retina and evaluated its relevance in glaucoma, a common optic neuropathy associated with sensitivity to intraocular pressure (IOP). Using quantitative PCR, fluorescent in situ hybridization, immunohistochemistry and quantitative image analysis, we found CCL5 mRNA and protein was constitutively expressed in the inner retina and synaptic layers. CCL5 appeared to associate with Müller cells and RGCs as well as synaptic connections between horizontal cells and bipolar cells in the OPL and amacrine cells, bipolar cells and RGCs in the IPL. Although all three high-affinity receptors (CCR5, CCR3, CCR1) for CCL5 were expressed constitutively, CCR5 expression was significantly higher than CCR3, which was also markedly greater than CCR1. Localization patterns for constitutive CCR5, CCR3 and CCR1 expression differed, particularly with respect to expression in inner retinal neurons. Stress-related expression of CCL5 was primarily altered in aged DBA/2 mice with elevated IOP. In contrast, changes in expression and localization of both CCR3 and CCR5 were evident not only in aged DBA/2 mice, but also in age-matched control mice and young DBA/2 mice. These groups do not exhibit elevated IOP, but possess either the aging stress (control mice) or the genetic predisposition to glaucoma (DBA/2 mice). Together, these data indicate that CCL5 and its high-affinity receptors are constitutively expressed in murine retina and differentially induced by stressors associated with glaucomatous optic neuropathy. Localization patterns further indicate that CCL5 signaling may be relevant for modulation of synapses in both health and disease, particularly in the inner plexiform layer. PMID:28936366

  15. No consistent bioenergetic defects in presynaptic nerve terminals isolated from mouse models of Alzheimer’s disease

    PubMed Central

    Choi, Sung W.; Gerencser, Akos A.; Ng, Ryan; Flynn, James M.; Melov, Simon; Danielson, Steven R.; Gibson, Bradford W.; Nicholls, David G.; Bredesen, Dale E.; Brand, Martin D.

    2012-01-01

    Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer’s disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months and APP/PS age 9 and 14 months) to age-matched controls. No consistent bioenergetic deficiencies were detected in synaptosomes from the three models, only APP/PS cortical synaptosomes from 14 month old mice showed an increase in respiration associated with proton leak. J20 mice were chosen for a highly stringent investigation of mitochondrial function and content. There were no significant differences in the quality of the synaptosomal preparations or the mitochondrial volume fraction. Furthermore, respiratory variables, calcium handling, and membrane potentials of synaptosomes from symptomatic J20 mice under calcium-imposed stress were not consistently impaired. The recovery of marker proteins during synaptosome preparation was the same, ruling out the possibility that the lack of functional bioenergetic defects in synaptosomes from J20 mice was due to the selective loss of damaged synaptosomes during sample preparation. Our results support the conclusion that the intrinsic bioenergetic capacities of presynaptic nerve terminals are maintained in these symptomatic AD mouse models. PMID:23175831

  16. Carotid Catheterization and Automated Blood Sampling Induce Systemic IL-6 Secretion and Local Tissue Damage and Inflammation in the Heart, Kidneys, Liver and Salivary Glands in NMRI Mice.

    PubMed

    Teilmann, Anne Charlotte; Rozell, Björn; Kalliokoski, Otto; Hau, Jann; Abelson, Klas S P

    2016-01-01

    Automated blood sampling through a vascular catheter is a frequently utilized technique in laboratory mice. The potential immunological and physiological implications associated with this technique have, however, not been investigated in detail. The present study compared plasma levels of the cytokines IL-1β, IL-2, IL-6, IL-10, IL-17A, GM-CSF, IFN-γ and TNF-α in male NMRI mice that had been subjected to carotid artery catheterization and subsequent automated blood sampling with age-matched control mice. Body weight and histopathological changes in the surgical area, including the salivary glands, the heart, brain, spleen, liver, kidneys and lungs were compared. Catheterized mice had higher levels of IL-6 than did control mice, but other cytokine levels did not differ between the groups. No significant difference in body weight was found. The histology revealed inflammatory and regenerative (healing) changes at surgical sites of all catheterized mice, with mild inflammatory changes extending into the salivary glands. Several catheterized mice had multifocal degenerative to necrotic changes with inflammation in the heart, kidneys and livers, suggesting that thrombi had detached from the catheter tip and embolized to distant sites. Thus, catheterization and subsequent automated blood sampling may have physiological impact. Possible confounding effects of visceral damage should be assessed and considered, when using catheterized mouse models.

  17. Acarbose Decreases the Rheumatoid Arthritis Risk of Diabetic Patients and Attenuates the Incidence and Severity of Collagen-induced Arthritis in Mice

    PubMed Central

    Chen, Hsin-Hua; Chen, Der-Yuan; Chao, Ya-Hsuan; Chen, Yi-Ming; Wu, Chao-Liang; Lai, Kuo-Lung; Lin, Ching-Heng; Lin, Chi-Chen

    2015-01-01

    Acarbose has been found to decrease some inflammatory parameters in diabetic patients. This study aimed to examine the influence of acarbose on rheumatoid arthritis (RA) risk in diabetes mellitus (DM) patients and on the incidence and severity of collagen-induced arthritis (CIA) in mice. In a nationwide, matched case–control study, we identified 723 incident RA cases and selected 7,230 age-, sex- and RA diagnosis date–matched controls from all newly treated DM patients. We found that use of acarbose at > 16,950 mg per year was associated with a lower RA risk (odds ratio 0.60; 95% CI, 0.41–0.89). In the CIA mouse study, acarbose was orally administered from days -7 to 38 relative to type II collagen (CII) immunization. The results revealed that acarbose at the dose of 500 mg/kg/day attenuated the incidence and severity of arthritis and the expression of proinflammatory cytokines, including TNF-α, IL-6 and IL-17 in the paw tissues. Acarbose further decreased the productions of anti-CII-IgG, IL-17 and IFN-γ by collagen-reactive lymph node cells. This work suggests that the use of acarbose decreased RA risk in DM patients and the incidence of CIA in mice. Acarbose also attenuated the severity of CIA via anti-inflammatory and immunomodulatory effects. PMID:26678745

  18. Acarbose Decreases the Rheumatoid Arthritis Risk of Diabetic Patients and Attenuates the Incidence and Severity of Collagen-induced Arthritis in Mice.

    PubMed

    Chen, Hsin-Hua; Chen, Der-Yuan; Chao, Ya-Hsuan; Chen, Yi-Ming; Wu, Chao-Liang; Lai, Kuo-Lung; Lin, Ching-Heng; Lin, Chi-Chen

    2015-12-18

    Acarbose has been found to decrease some inflammatory parameters in diabetic patients. This study aimed to examine the influence of acarbose on rheumatoid arthritis (RA) risk in diabetes mellitus (DM) patients and on the incidence and severity of collagen-induced arthritis (CIA) in mice. In a nationwide, matched case-control study, we identified 723 incident RA cases and selected 7,230 age-, sex- and RA diagnosis date-matched controls from all newly treated DM patients. We found that use of acarbose at > 16,950 mg per year was associated with a lower RA risk (odds ratio 0.60; 95% CI, 0.41-0.89). In the CIA mouse study, acarbose was orally administered from days -7 to 38 relative to type II collagen (CII) immunization. The results revealed that acarbose at the dose of 500 mg/kg/day attenuated the incidence and severity of arthritis and the expression of proinflammatory cytokines, including TNF-α, IL-6 and IL-17 in the paw tissues. Acarbose further decreased the productions of anti-CII-IgG, IL-17 and IFN-γ by collagen-reactive lymph node cells. This work suggests that the use of acarbose decreased RA risk in DM patients and the incidence of CIA in mice. Acarbose also attenuated the severity of CIA via anti-inflammatory and immunomodulatory effects.

  19. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI)

    PubMed Central

    Yu, Xichun; Tesiram, Yasvir A; Towner, Rheal A; Abbott, Andrew; Patterson, Eugene; Huang, Shijun; Garrett, Marion W; Chandrasekaran, Suresh; Matsuzaki, Satoshi; Szweda, Luke I; Gordon, Brian E; Kem, David C

    2007-01-01

    Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy. PMID:17309798

  20. The anti-diabetic effects of ethanol extract from two variants of Artemisia princeps Pampanini in C57BL/KsJ-db/db mice.

    PubMed

    Jung, U J; Baek, N-I; Chung, H-G; Bang, M-H; Yoo, J-S; Jeong, T S; Lee, K-T; Kang, Y J; Lee, M K; Kim, H J; Yeo, J Y; Choi, M S

    2007-10-01

    The anti-diabetic effects of two variants of Artemisia princeps Pampanini, sajabalssuk (SB) and sajuarissuk (SS), were investigated in type 2 diabetic animal using their ethanol extracts. Male C57BL/KsJ-db/db (db/db) mice were divided into control, SB ethanol extract (SBE), SS ethanol extract (SSE), or rosiglitazone (RG) groups and their age-matched littermates (db/+) were used. Supplementation of the SBE (0.171 g/100g diet), SSE (0.154 g/100g diet), and RG (0.005 g/100g diet) improved glucose and insulin tolerance and significantly lowered blood glycosylated hemoglobin levels, as compared to the control group. Plasma insulin, C-peptide and glucagon levels in db/db mice were higher in the db/+ mice, however these values were significantly lowered by SBE, SSE or RG-supplement. Hepatic GK activity was significantly lower in the db/db mice than in the db/+ mice, while hepatic G6Pase activity was vice versa. Supplementation of SBE, SSE and RG reversed these hepatic glucose-regulating enzyme activities. In addition, SBE and SSE markedly increased the hepatic glycogen content and muscle ratio as compared to the control group, but they did not alter the food intake, body weight and plasma leptin level. The RG group, however, showed a significant increase in the food intake, body weight and plasma leptin. These results suggest that SBE and SSE exert an anti-diabetic effect in type 2 diabetic mice.

  1. Differential expression of a novel seven transmembrane domain protein in epididymal fat from aged and diabetic mice.

    PubMed

    Yang, H; Egan, J M; Rodgers, B D; Bernier, M; Montrose-Rafizadeh, C

    1999-06-01

    To identify novel seven transmembrane domain proteins from 3T3-L1 adipocytes, we used PCR to amplify 3T3-L1 adipocyte complementary DNA (cDNA) with primers homologous to the N- and C-termini of pancreatic glucagon-like peptide-1 (GLP-1) receptor. We screened a cDNA library prepared from fully differentiated 3T3-L1 adipocytes using a 500-bp cDNA PCR product probe. Herein describes the isolation and characterization of a 1.6-kb cDNA clone that encodes a novel 298-amino acid protein that we termed TPRA40 (transmembrane domain protein of 40 kDa regulated in adipocytes). TPRA40 has seven putative transmembrane domains and shows little homology with the known GLP-1 receptor or with other G protein-coupled receptors. The levels of TPRA40 mRNA and protein were higher in 3T3-L1 adipocytes than in 3T3-L1 fibroblasts. TPRA40 is present in a number of mouse and human tissues. Interestingly, TPRA40 mRNA levels were significantly increased by 2- to 3-fold in epididymal fat of 24-month-old mice vs. young controls as well as in db/db and ob/ob mice vs. nondiabetic control littermates. No difference in TPRA40 mRNA levels was observed in brain, heart, skeletal muscle, liver, or kidney. Furthermore, no difference in TPRA40 expression was detected in brown fat of ob/ob mice when compared with age-matched controls. Taken together, these data suggest that TPRA40 represents a novel membrane-associated protein whose expression in white adipose tissue is altered with aging and type 2 diabetes.

  2. THE HUMAN FETAL LUNG XENOGRAFT: VALIDATION AS MODEL OF MICROVASCULAR REMODELING IN THE POSTGLANDULAR LUNG

    PubMed Central

    De Paepe, Monique E.; Chu, Sharon; Hall, Susan; Heger, Nicholas; Thanos, Chris; Mao, Quanfu

    2012-01-01

    Background Coordinated remodeling of epithelium and vasculature is essential for normal postglandular lung development. The value of the human-to-rodent lung xenograft as model of fetal microvascular development remains poorly defined. Aim The aim of this study was to determine the fate of the endogenous (human-derived) microvasculature in fetal lung xenografts. Methods Lung tissues were obtained from spontaneous pregnancy losses (14–22 weeks’ gestation) and implanted in the renal subcapsular or dorsal subcutaneous space of SCID-beige mice (T, B and NK-cell-deficient) and/or nude rats (T-cell-deficient). Informed parental consent was obtained. Lung morphogenesis, microvascular angiogenesis and epithelial differentiation were assessed at two and four weeks post-transplantation by light microscopy, immunohistochemical and gene expression studies. Archival age-matched postmortem lungs served as control. Results The vascular morphology, density and proliferation of renal subcapsular grafts in SCID-beige mice were similar to age-matched control lungs, with preservation of the physiologic association between epithelium and vasculature. The microvasculature of subcutaneous grafts in SCID-beige mice was underdeveloped and dysmorphic, associated with significantly lower VEGF, endoglin, and angiopoietin-2 mRNA expression than renal grafts. Grafts at both sites displayed mild airspace dysplasia. Renal subcapsular grafts in nude rats showed frequent infiltration by host lymphocytes and obliterating bronchiolitis-like changes, associated with markedly decreased endogenous angiogenesis. Conclusion This study demonstrates the critical importance of host and site selection to ensure optimal xenograft development. When transplanted to severely immune suppressed, NK-cell-deficient hosts and engrafted in the renal subcapsular site, the human-to-rodent fetal lung xenograft provides a valid model of postglandular microvascular lung remodeling. PMID:22811288

  3. Islet Hypersensitivity to Glucose Is Associated With Disrupted Oscillations and Increased Impact of Proinflammatory Cytokines in Islets From Diabetes-Prone Male Mice

    PubMed Central

    Corbin, Kathryn L.; Waters, Christopher D.; Shaffer, Brett K.; Verrilli, Gretchen M.

    2016-01-01

    Pulsatile insulin release is the primary means of blood glucose regulation. The loss of pulsatility is thought to be an early marker and possible factor in developing type 2 diabetes. Another early adaptation in islet function to compensate for obesity is increased glucose sensitivity (left shift) associated with increased basal insulin release. We provide evidence that oscillatory disruptions may be linked with overcompensation (glucose hypersensitivity) in islets from diabetes-prone mice. We isolated islets from male 4- to 5-week-old (prediabetic) and 10- to 12-week-old (diabetic) leptin-receptor-deficient (db/db) mice and age-matched heterozygous controls. After an overnight incubation in media with 11 mM glucose, we measured islet intracellular calcium in 5, 8, 11, or 15 mM glucose. Islets from heterozygous 10- to 12-week-old mice were quiescent in 5 mM glucose and displayed oscillations with increasing amplitude and/or duration in 8, 11, and 15 mM glucose, respectively. Islets from diabetic 10- to 12-week-old mice, in contrast, showed robust oscillations in 5 mM glucose that declined with increasing glucose. Similar trends were observed at 4–5-weeks of age. A progressive left shift in maximal insulin release was also observed in islets as db/db mice aged. Reducing glucokinase activity with 1 mM D-mannoheptulose restored oscillations in 11 mM glucose. Finally, overnight low-dose cytokine exposure negatively impacted oscillations preferentially in high glucose in diabetic islets compared with heterozygous controls. Our findings suggest the following: 1) islets from frankly diabetic mice can produce oscillations, 2) elevated sensitivity to glucose prevents diabetic mouse islets from producing oscillations in normal postprandial (11–15 mM glucose) conditions, and 3) hypersensitivity to glucose may magnify stress effects from inflammation or other sources. PMID:26943366

  4. Serotonin systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors and induce anorexia via a leptin-independent pathway in mice.

    PubMed

    Nonogaki, Katsunori; Ohba, Yukie; Sumii, Makiko; Oka, Yoshitomo

    2008-07-18

    NEFA/nucleobindin2 (NUCB2), a novel satiety molecule, is associated with leptin-independent melanocortin signaling in the central nervous system. Here, we show that systemic administration of m-chlorophenylpiperazine (mCPP), a serotonin 5-HT1B/2C receptor agonist, significantly increased the expression of hypothalamic NUCB2 in wild-type mice. The increases in hypothalamic NUCB2 expression induced by mCPP were attenuated in 5-HT2C receptor mutant mice. Systemic administration of mCPP suppressed food intake in db/db mice with leptin receptor mutation as well as lean control mice. On the other hand, the expression of hypothalamic NUCB2 and proopiomelanocortin (POMC) was significantly decreased in hyperphagic and non-obese 5-HT2C receptor mutants compared with age-matched wild-type mice. Interestingly, despite increased expression of hypothalamic POMC, hypothalamic NUCB2 expression was decreased in 5-HT2C receptor mutant mice with heterozygous mutation of beta-endorphin gene. These findings suggest that 5-HT systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors, and induce anorexia via a leptin-independent pathway in mice.

  5. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice

    NASA Technical Reports Server (NTRS)

    Roten, L.; Nemoto, S.; Simsic, J.; Coker, M. L.; Rao, V.; Baicu, S.; Defreyte, G.; Soloway, P. J.; Zile, M. R.; Spinale, F. G.

    2000-01-01

    Alterations in the expression and activity of the matrix metalloproteinases (MMPs) and the tissue inhibitors of the MMPs (TIMPs) have been implicated in tissue remodeling in a number of disease states. One of the better characterized TIMPs, TIMP-1, has been shown to bind to active MMPs and to regulate the MMP activational process. The goal of this study was to determine whether deletion of the TIMP-1 gene in mice, which in turn would remove TIMP-1 expression in LV myocardium, would produce time-dependent effects on LV geometry and function. Age-matched sibling mice (129Sv) deficient in the TIMP-1 gene (TIMP-1 knock-out (TIMP-1 KO), n=10) and wild-type mice (n=10) underwent comparative echocardiographic studies at 1 and 4 months of age. LV catheterization studies were performed at 4 months and the LV harvested for histomorphometric studies. LV end-diastolic volume and mass increased (18+/-4 and 38+/-3%, respectively, P<0.05) at 4 months in the TIMP-1 KO group; a significant increase compared to wild-type controls (P<0.05). At 4 months, LV and end-diastolic wall stress was increased by over two-fold in the TIMP-1 KO compared to wild type (P<0.05). However, LV systolic pressure and ejection performance were unchanged in the two groups of mice. LV myocyte cross-sectional area was unchanged in the TIMP-1 KO mice compared to controls, but myocardial fibrillar collagen content was reduced. Changes in LV geometry occurred in TIMP-1 deficient mice and these results suggest that constitutive TIMP-1 expression participates in the maintenance of normal LV myocardial structure. Copyright 2000 Academic Press.

  6. The Delayed Effects of Acute Radiation Syndrome: Evidence of Long-Term Functional Changes in the Clonogenic Cells of the Small Intestine.

    PubMed

    Booth, Catherine; Tudor, Gregory L; Katz, Barry P; MacVittie, Thomas J

    2015-11-01

    Long term or residual damage post-irradiation has been described for many tissues. In hematopoietic stem cells (HSC), this is only revealed when the HSC are stressed and required to regenerate and repopulate a myeloablated host. Such an assay cannot be used to assess the recovery potential of previously irradiated intestinal stem cells (ISC) due to their incompatibility with transplantation. The best approximation to the HSC assay is the crypt microcolony assay, also based on clonogen survival. In the current study, the regenerative capacity of intestinal clonogenic cells in mice that had survived 13 Gy irradiation (with 5% bone marrow shielding to allow survival through the hematopoietic syndrome) and were then aged for 200 d was compared to previously unirradiated age-matched controls. Interestingly, at 200 d following 13 Gy, there remained a statistically significant reduction in crypts present in the various small intestinal regions (illustrating that the gastrointestinal epithelium had not fully recovered despite the 200-d interval). However, upon re-irradiation on day 196, those mice previously irradiated had improved crypt survival and regeneration compared to the age-matched controls. This was evident in all regions of the small intestine following 11-13 Gy re-exposure. Thus, there were either more clonogens per crypt within those previously irradiated and/or those that were present were more radioresistant (possibly because a subpopulation was more quiescent). This is contrary to the popular belief that previously irradiated animals may have an impaired/delayed regenerative response and be more radiosensitive.

  7. Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis.

    PubMed

    Mir-Coll, Joan; Duran, Jordi; Slebe, Felipe; García-Rocha, Mar; Gomis, Ramon; Gasa, Rosa; Guinovart, Joan J

    2016-05-01

    Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.

  8. Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age.

    PubMed

    Weidner, Kate L; Buenaventura, Diego F; Chadman, Kathryn K

    2014-07-15

    Evidence from clinical studies suggests that abnormal activity of brain derived neurotrophic factor (BDNF) contributes to the pathogenesis of autism spectrum disorders (ASDs). A genetically modified line of mice over-expressing a BDNF transgene in forebrain neurons was used to investigate if this mutation leads to changes in behavior consistent with ASD. The mice used in these experiments were behaviorally tested past 5 months of age when spontaneous seizures were evident. These seizures were not observed in age-matched wildtype (WT) mice or younger mice from this transgenic line. The BDNF mice in these experiments weighed less than their WT littermates. The BDNF transgenic (BDNF-tg) mice demonstrated similar levels of sociability in the social approach test. Conversely, the BDNF-tg mice demonstrated less obsessive compulsive-like behavior in the marble burying test, less anxiety-like behavior in the elevated plus maze test, and less depressive-like behavior in the forced swim test. Changes in behavior were found in these older mice that have not been observed in younger mice from this transgenic line, which may be due to the development of seizures as the mice age. These mice do not have an ASD phenotype but may be useful to study adult onset epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smietana, Michael J.; Arruda, Ellen M.; Mechanical Engineering, University of Michigan, 2250 GG Brown, 2350 Hayward, Ann Arbor, MI 48109

    Research highlights: {yields} Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. {yields} Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. {yields} Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Micemore » deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1{sup -/-} mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1{sup -/-} mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm{sup 2}) and strength (MPa) is diminished in Sod1{sup -/-} compared to WT mice. Femurs were obtained from male and female WT and Sod1{sup -/-} mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1{sup -/-} mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1{sup -/-} mice compared to WT as well as between genders. These data indicate that increased oxidative stress, due to the deficiency of Sod1 is associated with decreased bone stiffness and strength and Sod1{sup -/-} mice may represent an appropriate model for studying disease processes in aging bone.« less

  10. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice.

    PubMed

    Ozkosem, Burak; Feinstein, Sheldon I; Fisher, Aron B; O'Flaherty, Cristian

    2015-08-01

    Due to socioeconomic factors, more couples are choosing to delay conception than ever. Increasing average maternal and paternal age in developed countries over the past 40 years has raised the question of how aging affects reproductive success of males and females. Since oxidative stress in the male reproductive tract increases with age, we investigated the impact of advanced paternal age on the integrity of sperm nucleus and reproductive success of males by using a Prdx6(-/-) mouse model. We compared sperm motility, cytoplasmic droplet retention sperm chromatin quality and reproductive outcomes of young (2-month-old), adult (8-month-old), and old (20-month-old) Prdx6(-/-) males with their age-matched wild type (WT) controls. Absence of PRDX6 caused age-dependent impairment of sperm motility and sperm maturation and increased sperm DNA fragmentation and oxidation as well as decreased sperm DNA compaction and protamination. Litter size, total number of litters and total number of pups per male were significantly lower in Prdx6(-/-) males compared to WT controls. These abnormal reproductive outcomes were severely affected by age in Prdx6(-/-) males. In conclusion, the advanced paternal age affects sperm chromatin integrity and fertility more severely in the absence of PRDX6, suggesting a protective role of PRDX6 in age-associated decline in the sperm quality and fertility in mice. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Lipoprotein(A) with An Intact Lysine Binding Site Protects the Retina From an Age-Related Macular Degeneration Phenotype in Mice (An American Ophthalmological Society Thesis)

    PubMed Central

    Handa, James T.; Tagami, Mizuki; Ebrahimi, Katayoon; Leibundgut, Gregor; Janiak, Anna; Witztum, Joseph L.; Tsimikas, Sotirios

    2015-01-01

    Purpose: To test the hypothesis that the accumulation of oxidized phospholipids (OxPL) in the macula is toxic to the retina unless neutralized by a variety of mechanisms, including binding by lipoprotein(a) [Lp(a)], which is composed of apolipoprotein(a) [apo(a)] and apolipoprotein B-100 (apoB). Methods: Human maculas and eyes from two Lp(a) transgenic murine models were subjected to morphologic, ultrastructural, and immunohistochemical analysis. “Wild-type Lp(a)” mice, which express human apoB-100 and apo(a) that contains oxidized phospholipid, and “mutant LBS− Lp(a)” mice with a defective apo(a) lysine binding site (LBS) for oxidized phospholipid binding, were fed a chow or high-fat diet for 2 to 12 months. Oxidized phospholipid–containing lipoproteins were detected by immunoreactivity to E06, a murine monoclonal antibody binding to the phosphocholine headgroup of oxidized, but not native, phospholipids. Results: Oxidized phospholipids, apo(a), and apoB accumulate in maculas, including drusen, of age-related macular degeneration (AMD) samples and age-matched controls. Lp(a) mice fed a high-fat diet developed age-related changes. However, mutant LBS− Lp(a) mice fed a high-fat diet developed retinal pigment epithelial cell degeneration and drusen. These changes were associated with increased OxPL, decreased antioxidant defenses, increased complement, and decreased complement regulators. Conclusions: Human maculas accumulate Lp(a) and OxPL. Mutant LBS− Lp(a) mice, lacking the ability to bind E06-detectable oxidized phospholipid, develop AMD-like changes. The ability of Lp(a) to bind E06-detectable OxPL may play a protective role in AMD. PMID:26538774

  12. Tail-flick test response in 3×Tg-AD mice at early and advanced stages of disease.

    PubMed

    Baeta-Corral, Raquel; Defrin, Ruti; Pick, Chagi G; Giménez-Llort, Lydia

    2015-07-23

    Despite the impact of pain in cognitive dysfunctions and affective disorders has been largely studied, the research that examines pain dimensions in cognitive impairment or dementia is still scarce. In patients with Alzheimer's disease (AD) and related dementias, management of pain is challenging. While the sensory-discriminative dimension of pain is preserved, the cognitive-evaluative and the affective-motivational pain dimensions are affected. Due to the complexity of the disease and the poor self-reports, pain is underdiagnosed and undertreated. In confluence with an impaired thermoregulatory behavior, the patients' ability to confront environmental stressors such as cold temperature can put them at risk of fatal accidental hypothermia. Here, 3xTg-AD mice demonstrate that the sensorial-discriminative threshold to a noxious cold stimulus, as measured by the latency of tail-flicking, was preserved at early and advances stages of disease (7 and 11 month-old, respectively) as compared to age-matched (adulthood and middle aged, respectively) non-transgenic mice (NTg). In both genotypes, the sensory deterioration and poor thermoregulatory behavior associated to age was observed as an increase of tail-flick response and poor sensorimotor performance. At both stages studied, 3xTg-AD mice exhibited BPSD (Behavioral and Psychological Symptoms of Dementia)-like alterations in the corner, open-field, dark-light box and the T-maze tests. In the adult NTg mice, this nociceptive withdrawal response was correlated with copying with stress-related behaviors. This integrative behavioral profile was lost in both groups of 3xTg-AD mice and middle aged controls, suggesting derangements in their subjacent networks and the complex interplay between the pain dimensions in the elderly with dementia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice.

    PubMed

    Wang, Ningning; Liu, Yang; Ma, Yanan; Wen, Deliang

    2017-12-15

    Exercise is beneficial in obesity, however, the debate about the value of high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) has been long lasting. Therefore, here we have compared the possible beneficial effects of two different exercise training regimes in a mouse model of diet-induced obesity (DIO). Following 7wk. on high fat diet (HFD), ten-week-old male ICR mice (n=30) were assigned to HIIT, distance-matched MICT or remained sedentary for the next 8 constitutive weeks while maintaining the dietary treatments. Age-matched sedentary mice with standard diet were used as a control (n=10). Exercise was performed on a motorized treadmill for 5days a week. Both modes of exercise ameliorated adiposity and related metabolic dysfunction induced by HFD and sedentary lifestyle, while mice following HIIT exhibited significantly lower body weight, percentage of fat mass and smaller adipocyte size. HIIT was more favorable in preventing liver lipid accumulation by restoring mRNA levels of genes involved in hepatic lipogenesis (SREBP1, ACC1, FAS) and β-oxidation (PPARα, CPT1a, HAD). In addition, HIIT was more efficient in mitigating adipose tissue inflammation and insulin insensitivity, partly dependent on abrogating phosphorylation of JNK/IRS1 (Ser307) pathway. Moreover, only HIIT led to pronounced beige adipocyte recruitment in inguinal subcutaneous adipose tissue. We conclude that HIIT contribute a more favorable regulation of metabolic dysfunctions in DIO mice compared with MICT. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Increasing the number of unloading/reambulation cycles does not adversely impact body composition and lumbar bone mineral density but reduces tissue sensitivity

    NASA Astrophysics Data System (ADS)

    Gupta, Shikha; Manske, Sarah L.; Judex, Stefan

    2013-11-01

    A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.

  15. Effects of a single bout of strenuous exercise on platelet activation in female ApoE/LDLR-/- mice.

    PubMed

    Przyborowski, K; Kassassir, H; Wojewoda, M; Kmiecik, K; Sitek, B; Siewiera, K; Zakrzewska, A; Rudolf, A M; Kostogrys, R; Watala, C; Zoladz, J A; Chlopicki, S

    2017-11-01

    Strenuous physical exercise leads to platelet activation that is normally counterbalanced by the production of endothelium-derived anti-platelet mediators, including prostacyclin (PGI 2 ) and nitric oxide (NO). However, in the case of endothelial dysfunction, e.g. in atherosclerosis, there exists an increased risk for intravascular thrombosis during exercise that might be due to an impairment in endothelial anti-platelet mechanisms. In the present work, we evaluated platelet activation at rest and following a single bout of strenuous treadmill exercise in female ApoE/LDLR - /- mice with early (3-month-old) and advanced (7-month-old) atherosclerosis compared to female age-matched WT mice. In sedentary and post-exercise groups of animals, we analyzed TXB 2 generation and the expression of platelet activation markers in the whole blood ex vivo assay. We also measured pre- and post-exercise plasma concentration of 6-keto-PGF 1α , nitrite/nitrate, lipid profile, and blood cell count. Sedentary 3- and 7-month-old ApoE/LDLR - /- mice displayed significantly higher activation of platelets compared to age-matched wild-type (WT) mice, as evidenced by increased TXB 2 production, expression of P-selectin, and activation of GPIIb/IIIa receptors, as well as increased fibrinogen and von Willebrand factor (vWf) binding. Interestingly, in ApoE/LDLR - /- but not in WT mice, strenuous exercise partially inhibited TXB 2 production, the expression of activated GPIIb/IIIa receptors, and fibrinogen binding, with no effect on the P-selectin expression and vWf binding. Post-exercise down-regulation of the activated GPIIb/IIIa receptor expression and fibrinogen binding was not significantly different between 3- and 7-month-old ApoE/LDLR - /- mice; however, only 7-month-old ApoE/LDLR - /- mice showed lower TXB 2 production after exercise. In female 4-6-month-old ApoE/LDLR - /- but not in WT mice, an elevated pre- and post-exercise plasma concentration of 6-keto-PGF 1α was observed. In turn, the pre- and post-exercise plasma concentrations of nitrite (NO 2 - ) and nitrate (NO 3 - ) were decreased in ApoE/LDLR - /- as compared to that in age-matched WT mice. In conclusion, we demonstrated overactivation of platelets in ApoE/LDLR - /- as compared to WT mice. However, platelet activation in ApoE/LDLR - /- mice was not further increased by strenuous exercise, but was instead attenuated, a phenomenon not observed in WT mice. This phenomenon could be linked to compensatory up-regulation of PGI 2 -dependent anti-platelet mechanisms in ApoE/LDLR - /- mice.

  16. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S

    2005-05-01

    This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

  17. A model of chronic diabetic polyneuropathy: benefits from intranasal insulin are modified by sex and RAGE deletion

    PubMed Central

    de la Hoz, Cristiane L.; Cheng, Chu; Fernyhough, Paul

    2017-01-01

    Human diabetic polyneuropathy (DPN) is a progressive complication of chronic diabetes mellitus. Preliminary evidence has suggested that intranasal insulin, in doses insufficient to alter hyperglycemia, suppresses the development of DPN. In this work we confirm this finding, but demonstrate that its impact is modified by sex and deletion of RAGE, the receptor for advanced glycosylation end products. We serially evaluated experimental DPN in male and female wild-type mice and male RAGE null (RN) mice, each with nondiabetic controls, during 16 wk of diabetes, the final 8 wk including groups given intranasal insulin. Age-matched nondiabetic female mice had higher motor and sensory conduction velocities than their male counterparts and had lesser conduction slowing from chronic diabetes. Intranasal insulin improved slowing in both sexes. In male RN mice, there was less conduction slowing with chronic diabetes, and intranasal insulin provided limited benefits. Rotarod testing and hindpaw grip power offered less consistent impacts. Mechanical sensitivity and thermal sensitivity were respectively but disparately changed and improved with insulin in wild-type female and male mice but not RN male mice. These studies confirm that intranasal insulin improves indexes of experimental DPN but indicates that females with DPN may differ in their underlying phenotype. RN mice had partial but incomplete protection from underlying DPN and lesser impacts from insulin. We also identify an important role for sex in the development of DPN and report evidence that insulin and AGE-RAGE pathways in its pathogenesis may overlap. PMID:28223295

  18. Dental and Cranial Pathologies in Mice Lacking the Cl−/H+-Exchanger ClC-7

    PubMed Central

    WEN, Xin; LACRUZ, Rodrigo S.; PAINE, Michael L.

    2015-01-01

    ClC-7 is a 2Cl−/1H+-exchanger expressed at late endosomes and lysosomes, as well as the ruffled border of osteoclasts. ClC-7 deficiencies in mice and humans lead to impaired osteoclast function and therefore osteopetrosis. Failure of tooth eruption is also apparent in ClC-7 mutant animals, and this has been attributed to the osteoclast dysfunction and the subsequent defect in alveolar bone resorptive activity surrounding tooth roots. Ameloblasts also express ClC-7, and this study aims to determine the significance of ClC-7 in enamel formation by examining the dentitions of ClC-7 mutant mice. Micro-CT analysis revealed that the molar teeth of 3-week old ClC-7 mutant mice had no roots, and the incisors were smaller than their age-matched controls. Despite these notable developmental differences, the enamel and dentin densities of the mutant mice were comparable to those of the wild type littermates. Scanning electron microscopy (SEM) showed normal enamel crystallite and prismatic organization in the ClC-7 mutant mice, although the enamel was thinner (hypoplastic) than in controls. These results suggested that ClC-7 was not critical to enamel and dentin formation, and the observed tooth defects may be related more to a resulting alveolar bone phenotype. Micro-CT analysis also revealed abnormal features in the calvarial bones of the mutant mice. The cranial sutures in ClC-7 mutant mice remained open compared to the closed sutures seen in the control mice at 3 weeks. These data demonstrate that ClC-7 deficiency impacts the development of the dentition and calvaria, but does not significantly disrupt amelogenesis. PMID:25663454

  19. Deletion of the alpha-arrestin protein Txnip in mice promotes adiposity and adipogenesis while preserving insulin sensitivity.

    PubMed

    Chutkow, William A; Birkenfeld, Andreas L; Brown, Jonathan D; Lee, Hui-Young; Frederick, David W; Yoshioka, Jun; Patwari, Parth; Kursawe, Romy; Cushman, Samuel W; Plutzky, Jorge; Shulman, Gerald I; Samuel, Varman T; Lee, Richard T

    2010-06-01

    Thioredoxin interacting protein (Txnip), a regulator of cellular oxidative stress, is induced by hyperglycemia and inhibits glucose uptake into fat and muscle, suggesting a role for Txnip in type 2 diabetes pathogenesis. Here, we tested the hypothesis that Txnip-null (knockout) mice are protected from insulin resistance induced by a high-fat diet. Txnip gene-deleted (knockout) mice and age-matched wild-type littermate control mice were maintained on a standard chow diet or subjected to 4 weeks of high-fat feeding. Mice were assessed for body composition, fat development, energy balance, and insulin responsiveness. Adipogenesis was measured from ex vivo fat preparations, and in mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes after forced manipulation of Txnip expression. Txnip knockout mice gained significantly more adipose mass than controls due to a primary increase in both calorie consumption and adipogenesis. Despite increased fat mass, Txnip knockout mice were markedly more insulin sensitive than controls, and augmented glucose transport was identified in both adipose and skeletal muscle. RNA interference gene-silenced preadipocytes and Txnip(-/-) MEFs were markedly adipogenic, whereas Txnip overexpression impaired adipocyte differentiation. As increased adipogenesis and insulin sensitivity suggested aspects of augmented peroxisome proliferator-activated receptor-gamma (PPARgamma) response, we investigated Txnip's regulation of PPARgamma function; manipulation of Txnip expression directly regulated PPARgamma expression and activity. Txnip deletion promotes adiposity in the face of high-fat caloric excess; however, loss of this alpha-arrestin protein simultaneously enhances insulin responsiveness in fat and skeletal muscle, revealing Txnip as a novel mediator of insulin resistance and a regulator of adipogenesis.

  20. Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure

    NASA Technical Reports Server (NTRS)

    Ding, B.; Price, R. L.; Goldsmith, E. C.; Borg, T. K.; Yan, X.; Douglas, P. S.; Weinberg, E. O.; Bartunek, J.; Thielen, T.; Didenko, V. V.; hide

    2000-01-01

    BACKGROUND: To determine potential mechanisms of the transition from hypertrophy to very early failure, we examined apoptosis in a model of ascending aortic stenosis (AS) in male FVB/n mice. METHODS AND RESULTS: Compared with age-matched controls, 4-week and 7-week AS animals (n=12 to 16 per group) had increased ratios of left ventricular weight to body weight (4.7+/-0.7 versus 3.1+/-0.2 and 5. 7+/-0.4 versus 2.7+/-0.1 mg/g, respectively, P<0.05) with similar body weights. Myocyte width was also increased in 4-week and 7-week AS mice compared with controls (19.0+/-0.8 and 25.2+/-1.8 versus 14. 1+/-0.5 microm, respectively, P<0.01). By 7 weeks, AS myocytes displayed branching with distinct differences in intercalated disk size and staining for beta(1)-integrin on both cell surface and adjacent extracellular matrix. In vivo left ventricular systolic developed pressure per gram as well as endocardial fractional shortening were similar in 4-week AS and controls but depressed in 7-week AS mice. Myocyte apoptosis estimated by in situ nick end-labeling (TUNEL) was extremely rare in 4-week AS and control mice; however, a low prevalence of TUNEL-positive myocytes and DNA laddering were detected in 7-week AS mice. The specificity of TUNEL labeling was confirmed by in situ ligation of hairpin oligonucleotides. CONCLUSIONS: Our findings indicate that myocyte apoptosis develops during the transition from hypertrophy to early failure in mice with chronic biomechanical stress and support the hypothesis that the disruption of normal myocyte anchorage to adjacent extracellular matrix and cells, a process called anoikis, may signal apoptosis.

  1. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice

    PubMed Central

    Seimon, Radhika V.; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A.; Nguyen, Amy D.; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F.; Lau, Jackie

    2016-01-01

    Background Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Methods Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Results Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Conclusion Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice. PMID:26784324

  2. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice.

    PubMed

    Seimon, Radhika V; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A; Nguyen, Amy D; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F; Lau, Jackie; Herzog, Herbert; Sainsbury, Amanda

    2016-01-01

    Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)-(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice.

  3. Morphology of ovaries in laron dwarf mice, with low circulating plasma levels of insulin-like growth factor-1 (IGF-1), and in bovine GH-transgenic mice, with high circulating plasma levels of IGF-1

    PubMed Central

    2012-01-01

    Background It is well known that somatotrophic/insulin signaling affects lifespan in experimental animals, and one of the signs of aging is progressive gonadal dysfunction. Methods To study the effects of insulin-like growth factor-1 (IGF-1) plasma level on ovaries, we analyzed ovaries isolated from 2-year-old growth hormone receptor knockout (GHR-KO) Laron dwarf mice, with low circulating plasma levels of IGF-1, and 6-month-old bovine growth hormone transgenic (bGHTg) mice, with high circulating plasma levels of IGF-1. The ages of the Laron dwarf mutants employed in our studies were selected based on their overall survival (up to ~ 4 years for Laron dwarf mice and ~ 1 year for bGHTg mice). Results Morphological analysis of the ovaries of mice that reached ~50% of their maximal life span revealed a lower biological age for the ovaries isolated from 2-year-old Laron dwarf mice than their normal-lifespan wild type littermates. By contrast, the ovarian morphology of increased in size 6 month old bGHTg mice was generally normal. Conclusion Ovaries isolated from 2-year-old Laron dwarf mice exhibit a lower biological age compared with ovaries from normal WT littermates at the same age. At the same time, no morphological features of accelerated aging were found in 0.5-year-old bGHTg mice compared with ovaries from normal the same age-matched WT littermates. PMID:22747742

  4. The effects of aging on the BTBR mouse model of autism spectrum disorder

    PubMed Central

    Jasien, Joan M.; Daimon, Caitlin M.; Wang, Rui; Shapiro, Bruce K.; Martin, Bronwen; Maudsley, Stuart

    2014-01-01

    Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including “Neural synaptic plasticity regulation” and “Neurotransmitter secretion regulation.” Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype. PMID:25225482

  5. The mouse age phenome knowledgebase and disease-specific inter-species age mapping.

    PubMed

    Geifman, Nophar; Rubin, Eitan

    2013-01-01

    Similarities between mice and humans lead to generation of many mouse models of human disease. However, differences between the species often result in mice being unreliable as preclinical models for human disease. One difference that might play a role in lowering the predictivity of mice models to human diseases is age. Despite the important role age plays in medicine, it is too often considered only casually when considering mouse models. We developed the mouse-Age Phenotype Knowledgebase, which holds knowledge about age-related phenotypic patterns in mice. The knowledgebase was extensively populated with literature-derived data using text mining techniques. We then mapped between ages in humans and mice by comparing the age distribution pattern for 887 diseases in both species. The knowledgebase was populated with over 9800 instances generated by a text-mining pipeline. The quality of the data was manually evaluated, and was found to be of high accuracy (estimated precision >86%). Furthermore, grouping together diseases that share similar age patterns in mice resulted in clusters that mirror actual biomedical knowledge. Using these data, we matched age distribution patterns in mice and in humans, allowing for age differences by shifting either of the patterns. High correlation (r(2)>0.5) was found for 223 diseases. The results clearly indicate a difference in the age mapping between different diseases: age 30 years in human is mapped to 120 days in mice for Leukemia, but to 295 days for Anemia. Based on these results we generated a mice-to-human age map which is publicly available. We present here the development of the mouse-APK, its population with literature-derived data and its use to map ages in mice and human for 223 diseases. These results present a further step made to bridging the gap between humans and mice in biomedical research.

  6. Role of TRPA1 in acute cardiopulmonary toxicity of inhaled acrolein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conklin, Daniel J., E-mail: dj.conklin@louisville.

    Acrolein is a highly toxic, volatile, unsaturated aldehyde generated during incomplete combustion as in tobacco smoke and indoor fires. Because the transient receptor potential ankyrin 1 (TRPA1) channel mediates tobacco smoke-induced lung injury, we assessed its role in high-level acrolein-induced toxicity in mice. Acrolein (100–275 ppm, 10–30 min) caused upper airway epithelial sloughing, bradypnea and oral gasping, hypothermia, cardiac depression and mortality. Male wild-type mice (WT, C57BL/6; 5–52 weeks) were significantly more sensitive to high-level acrolein than age-matched, female WT mice. Both male and female TRPA1-null mice were more sensitive to acrolein-induced mortality than age- and sex-matched WT mice. Acroleinmore » exposure increased lung weight:body weight ratios and lung albumin and decreased plasma albumin to a greater extent in TRPA1-null than in WT mice. Lung and plasma protein-acrolein adducts were not increased in acrolein-exposed TRPA1-null mice compared with WT mice. To assess TRPA1-dependent protective mechanisms, respiratory parameters were monitored by telemetry. TRPA1-null mice had a slower onset of breathing rate suppression (‘respiratory braking’) than WT mice suggesting TRPA1 mediates this protective response. Surprisingly, WT male mice treated either with a TRPA1 antagonist (HC030031; 200 mg/kg) alone or with combined TRPA1 (100 mg/kg) and TRPV1 (capsazepine, 10 mg/kg) antagonists at 30 min post-acrolein exposure (i.e., “real world” delay in treatment) were significantly protected from acrolein-induced mortality. These data show TRPA1 protects against high-level acrolein-induced toxicity in a sex-dependent manner. Post-exposure TRPA1 antagonism also protected against acrolein-induced mortality attesting to a complex role of TRPA1 in cardiopulmonary injury. - Highlights: • TRPA1 protects mice against toxicity and mortality of inhaled high-level acrolein. • TRPA1 protection against inhaled high-level acrolein is sex-dependent in mice. • Age (5–52 weeks old) was not a determinant of acrolein-induced mortality in mice. • TRPA1 antagonist is protective after inhaled high-level acrolein in male mice.« less

  7. Comparative Analysis of Pain Behaviours in Humanized Mouse Models of Sickle Cell Anemia

    PubMed Central

    Lei, Jianxun; Benson, Barbara; Tran, Huy; Ofori-Acquah, Solomon F.; Gupta, Kalpna

    2016-01-01

    Pain is a hallmark feature of sickle cell anemia (SCA) but management of chronic as well as acute pain remains a major challenge. Mouse models of SCA are essential to examine the mechanisms of pain and develop novel therapeutics. To facilitate this effort, we compared humanized homozygous BERK and Townes sickle mice for the effect of gender and age on pain behaviors. Similar to previously characterized BERK sickle mice, Townes sickle mice show more mechanical, thermal, and deep tissue hyperalgesia with increasing age. Female Townes sickle mice demonstrate more hyperalgesia compared to males similar to that reported for BERK mice and patients with SCA. Mechanical, thermal and deep tissue hyperalgesia increased further after hypoxia/reoxygenation (H/R) treatment in Townes sickle mice. Together, these data show BERK sickle mice exhibit a significantly greater degree of hyperalgesia for all behavioral measures as compared to gender- and age-matched Townes sickle mice. However, the genetically distinct “knock-in” strategy of human α and β transgene insertion in Townes mice as compared to BERK mice, may provide relative advantage for further genetic manipulations to examine specific mechanisms of pain. PMID:27494522

  8. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging

    PubMed Central

    Umanskaya, Alisa; Santulli, Gaetano; Andersson, Daniel C.; Reiken, Steven R.; Marks, Andrew R.

    2014-01-01

    Age-related skeletal muscle dysfunction is a leading cause of morbidity that affects up to half the population aged 80 or greater. Here we tested the effects of increased mitochondrial antioxidant activity on age-dependent skeletal muscle dysfunction using transgenic mice with targeted overexpression of the human catalase gene to mitochondria (MCat mice). Aged MCat mice exhibited improved voluntary exercise, increased skeletal muscle specific force and tetanic Ca2+ transients, decreased intracellular Ca2+ leak and increased sarcoplasmic reticulum (SR) Ca2+ load compared with age-matched wild type (WT) littermates. Furthermore, ryanodine receptor 1 (the sarcoplasmic reticulum Ca2+ release channel required for skeletal muscle contraction; RyR1) from aged MCat mice was less oxidized, depleted of the channel stabilizing subunit, calstabin1, and displayed increased single channel open probability (Po). Overall, these data indicate a direct role for mitochondrial free radicals in promoting the pathological intracellular Ca2+ leak that underlies age-dependent loss of skeletal muscle function. This study harbors implications for the development of novel therapeutic strategies, including mitochondria-targeted antioxidants for treatment of mitochondrial myopathies and other healthspan-limiting disorders. PMID:25288763

  9. Suppression of Oxidative Stress by Resveratrol After Isometric Contractions in Gastrocnemius Muscles of Aged Mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Williamson, Courtney L.; Dabkowski, Erinne R.; Hollander, John M.

    2010-01-01

    This study tested the hypothesis that resveratrol supplementation would lower oxidative stress in exercised muscles of aged mice. Young (3 months) and aged (27 months) C57BL/6 mice received a control or a 0.05% trans-resveratrol-supplemented diet for 10 days. After 7 days of dietary intervention, 20 maximal electrically evoked isometric contractions were obtained from the plantar flexors of one limb in anesthetized mice. Exercise was conducted for three consecutive days. Resveratrol supplementation blunted the exercise-induced increase in xanthine oxidase activity in muscles from young (25%) and aged (53%) mice. Resveratrol lowered H2O2 levels in control (13%) and exercised (38%) muscles from aged animals, reduced Nox4 protein in both control and exercised muscles of young (30%) and aged mice (40%), and increased the ratio of reduced glutathione to oxidized glutathione in exercised muscles from young (38%) and aged (135%) mice. Resveratrol prevented the increase in lipid oxidation, increased catalase activity, and increased MnSOD activity in exercised muscles from aged mice. These data show that dietary resveratrol suppresses muscle indicators of oxidative stress in response to isometric contractions in aged mice. PMID:20507922

  10. Cyclophosphamide-induced male subfertility in mice: An assessment of the potential benefits of Maca supplement.

    PubMed

    Onaolapo, A Y; Oladipo, B P; Onaolapo, O J

    2018-04-01

    Effects of Lepidium meyenii (Maca) on cyclophosphamide (CYP)-induced gonadal toxicity in male mice were investigated. Mice were assigned to six treatment groups: Vehicle control, CYP control, CYP plus oral Maca (500 or 1,000 mg/kg), and oral Maca (500 or 1,000 mg/kg). CYP was administered via the intraperitoneal route (days 1-2), while vehicle or Maca were administered daily for 28 days. On day 28, half of the animals in each group were either sacrificed or paired with age-matched females for fertility assessment. Plasma testosterone assay, sperm analysis and assessment of tissue antioxidant/morphological status were also carried out. CYP administration was associated with oxidative stress, subfertility and morphometric/morphological indices of gonadal injury, while administration of Maca mitigated CYP-induced gonadal toxicity and subfertility. This study shows that Maca is beneficial in the mitigation of CYP-induced male gonadal insufficiency and/or testicular morphological changes; however, further studies will be needed to ascertain its usability for this purpose in humans. © 2017 Blackwell Verlag GmbH.

  11. Losartan Improves Measures of Activity, Inflammation, and Oxidative Stress in Older Mice

    PubMed Central

    Lin, Chung-Hao; Yang, Huanle; Xue, Qian-Li; Chuang, Yi-Fang; Roy, Cindy N.; Abadir, Peter; Walston, Jeremy D.

    2014-01-01

    Sarcopenia is an age-related decline in skeletal muscle mass and function that is multifactorial in etiology. Age-related changes in the renin-angiotensin system (RAS), increased oxidative stress, and chronic inflammation likely all contribute to its development. Losartan, an angiotensin II type I receptor blocker (ARB) decreases RAS activity and likely influences oxidative stress and inflammation. Given this, we hypothesized that losartan would improve activity levels and parameters related to inflammation and oxidative stress in older mice. We sought to test this hypothesis by comparing functional and molecular parameters between 18-month-old C57BL/6 mice treated with 50-70 mg/kg/day of losartan over a 4 month-period and age- and gender-matched mice receiving placebo. Losartan treatment significantly improved several activity measurements during treatment period compared to placebo controlled group, including increased time on treadmill, traveling activity, standing activity, and decreased grid contacts (p-values < 0.05, 0.001, 0.01; and 0.04 respectively). Grip strength did not improve in treatment group relative to control group over time. Serum IL-6 level in the treated group was significantly lower than that in the control group at the end of treatment, (30.3±12.9 vs. 173.0±59.5 pg/ml, p< 0.04), and mRNA expression of antioxidant enzymes catalase (3.9±0.9 vs. 1.0±0.4) and glutathione peroxidase (4.7±1.1 vs. 1.0±0.4) was significantly higher, P-value: 0.02, and 0.03 respectively) in quadriceps muscle after 4 months of treatment in treated and control groups. These results support the hypothesis that chronic losartan treatment improves skeletal muscle related activity measures in older mice, and that it is associated with more favorable relevant biological profiles in the treatment group. Additional studies are needed to 1) further quantify this functional improvement, 2) further identify mechanisms that influence this improvement, and 3) provide additional rationale for translating these findings into older adults. PMID:25077714

  12. Age-dependent increment of hydroxymethylation in the brain cortex in the triple-transgenic mouse model of Alzheimer's disease.

    PubMed

    Cadena-del-Castillo, Carla; Valdes-Quezada, Christian; Carmona-Aldana, Francisco; Arias, Clorinda; Bermúdez-Rattoni, Federico; Recillas-Targa, Félix

    2014-01-01

    Alzheimer's disease (AD) is a complex disorder whose etiology is associated with environmental and genetic factors. Recently there have been several attempts to analyze the role of epigenetic alterations in the origin and progression of this neurodegenerative condition. To evaluate the potential participation of the methylation status of the genome that may contribute to AD progression, we have studied the levels and distribution of the 5-methylcytosine and 5-hydroxymethylcytosine in different brain regions at different ages. We analyzed and quantified the immunosignal of these two epigenetic marks in young versus old wild-type mice and in the triple-transgenic mouse model of AD (3xTg-AD). The results show a decline in global 5-methylcytosine mark over time in all studied brain regions concomitant with a significant and widespread increase in 5-hydroxymethylcytosine mark in the aged transgenic mice in contrast to the age-matched controls. These differences in the methylation pattern of brain DNA in the 3xTg-AD that accumulates along age indicates abnormal formation of permissive chromatin structure associated with the increase in AD-related markers.

  13. Enhanced Cognition and Hypoglutamatergic Signaling in a Growth Hormone Receptor Knockout Mouse Model of Successful Aging.

    PubMed

    Hascup, Kevin N; Lynn, Mary K; Fitzgerald, Patrick J; Randall, Shari; Kopchick, John J; Boger, Heather A; Bartke, Andrzej; Hascup, Erin R

    2017-03-01

    Growth hormone receptor knockout (GHR-KO) mice are long lived with improved health span, making this an excellent model system for understanding biochemical mechanisms important to cognitive reserve. The purpose of the present study was to elucidate differences in cognition and glutamatergic dynamics between aged (20- to 24-month-old) GHR-KO and littermate controls. Glutamate plays a critical role in hippocampal learning and memory and is implicated in several neurodegenerative disorders, including Alzheimer's disease. Spatial learning and memory were assessed using the Morris water maze (MWM), whereas independent dentate gyrus (DG), CA3, and CA1 basal glutamate, release, and uptake measurements were conducted in isoflurane anesthetized mice utilizing an enzyme-based microelectrode array (MEA) coupled with constant potential amperometry. These MEAs have high temporal and low spatial resolution while causing minimal damage to the surrounding parenchyma. Littermate controls performed worse on the memory portion of the MWM behavioral task and had elevated DG, CA3, and CA1 basal glutamate and stimulus-evoked release compared with age-matched GHR-KO mice. CA3 basal glutamate negatively correlated with MWM performance. These results support glutamatergic regulation in learning and memory and may have implications for therapeutic targets to delay the onset of, or reduce cognitive decline, in Alzheimer's disease. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Impaired contractile responses and altered expression and phosphorylation of Ca2+ sensitization proteins in gastric antrum smooth muscles from ob/ob mice

    PubMed Central

    Bhetwal, Bhupal P.; An, Changlong; Baker, Salah A.; Lyon, Kristin L.

    2013-01-01

    Diabetic gastroparesis is a common complication of diabetes, adversely affecting quality of life with symptoms of abdominal discomfort, nausea, and vomiting. The pathogenesis of this complex disorder is not well understood, involving abnormalities in the extrinsic and enteric nervous systems, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The ob/ob mouse model of obesity and diabetes develops delayed gastric emptying, providing an animal model for investigating how gastric smooth muscle dysfunction contributes to the pathophysiology of diabetic gastroparesis. Although ROCK2, MYPT1, and CPI-17 activities are reduced in intestinal motility disorders, their functioning has not been investigated in diabetic gastroparesis. We hypothesized that reduced expression and phosphorylation of the myosin light chain phosphatase (MLCP) inhibitory proteins MYPT1 and CPI-17 in ob/ob gastric antrum smooth muscles could contribute to the impaired antrum smooth muscle function of diabetic gastroparesis. Spontaneous and carbachol- and high K+-evoked contractions of gastric antrum smooth muscles from 7 to 12 week old male ob/ob mice were reduced compared to age- and strain-matched controls. There were no differences in spontaneous and agonist-evoked intracellular Ca2+ transients and myosin light chain kinase expression. The F-actin:G-actin ratios were similar. Rho kinase 2 (ROCK2) expression was decreased at both ages. Basal and agonist-evoked MYPT1 and myosin light chain 20 phosphorylation, but not CPI-17 phosphorylation, was reduced compared to age-matched controls. These findings suggest that reduced MLCP inhibition due to decreased ROCK2 phosphorylation of MYPT1 in gastric antrum smooth muscles contributes to the antral dysmotility of diabetic gastroparesis. PMID:23576331

  15. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    PubMed

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  16. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

    PubMed

    Gambara, Guido; Salanova, Michele; Ciciliot, Stefano; Furlan, Sandra; Gutsmann, Martina; Schiffl, Gudrun; Ungethuem, Ute; Volpe, Pompeo; Gunga, Hanns-Christian; Blottner, Dieter

    2017-01-01

    Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.

  17. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice

    PubMed Central

    Gambara, Guido; Salanova, Michele; Ciciliot, Stefano; Furlan, Sandra; Gutsmann, Martina; Schiffl, Gudrun; Ungethuem, Ute; Volpe, Pompeo; Gunga, Hanns-Christian; Blottner, Dieter

    2017-01-01

    Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight. PMID:28076365

  18. Role of TRPA1 in acute cardiopulmonary toxicity of inhaled acrolein.

    PubMed

    Conklin, Daniel J; Haberzettl, Petra; Jagatheesan, Ganapathy; Kong, Maiying; Hoyle, Gary W

    2017-06-01

    Acrolein is a highly toxic, volatile, unsaturated aldehyde generated during incomplete combustion as in tobacco smoke and indoor fires. Because the transient receptor potential ankyrin 1 (TRPA1) channel mediates tobacco smoke-induced lung injury, we assessed its role in high-level acrolein-induced toxicity in mice. Acrolein (100-275ppm, 10-30min) caused upper airway epithelial sloughing, bradypnea and oral gasping, hypothermia, cardiac depression and mortality. Male wild-type mice (WT, C57BL/6; 5-52weeks) were significantly more sensitive to high-level acrolein than age-matched, female WT mice. Both male and female TRPA1-null mice were more sensitive to acrolein-induced mortality than age- and sex-matched WT mice. Acrolein exposure increased lung weight:body weight ratios and lung albumin and decreased plasma albumin to a greater extent in TRPA1-null than in WT mice. Lung and plasma protein-acrolein adducts were not increased in acrolein-exposed TRPA1-null mice compared with WT mice. To assess TRPA1-dependent protective mechanisms, respiratory parameters were monitored by telemetry. TRPA1-null mice had a slower onset of breathing rate suppression ('respiratory braking') than WT mice suggesting TRPA1 mediates this protective response. Surprisingly, WT male mice treated either with a TRPA1 antagonist (HC030031; 200mg/kg) alone or with combined TRPA1 (100mg/kg) and TRPV1 (capsazepine, 10mg/kg) antagonists at 30min post-acrolein exposure (i.e., "real world" delay in treatment) were significantly protected from acrolein-induced mortality. These data show TRPA1 protects against high-level acrolein-induced toxicity in a sex-dependent manner. Post-exposure TRPA1 antagonism also protected against acrolein-induced mortality attesting to a complex role of TRPA1 in cardiopulmonary injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice

    PubMed Central

    Friedrich, O; Both, M; Gillis, J M; Chamberlain, J S; Fink, RHA

    2004-01-01

    L-type calcium currents (iCa) were recorded using the two-microelectrode voltage-clamp technique in single short toe muscle fibres of three different mouse strains: (i) C57/SV129 wild-type mice (wt); (ii) mdx mice (an animal model for Duchenne muscular dystrophy; and (iii) transgenically engineered mini-dystrophin (MinD)-expressing mdx mice. The activation and inactivation properties of iCa were examined in 2- to 18-month-old animals. Ca2+ current densities at 0 mV in mdx fibres increased with age, but were always significantly smaller compared to age-matched wild-type fibres. Time-to-peak (TTP) of iCa was prolonged in mdx fibres compared to wt fibres. MinD fibres always showed similar TTP and current amplitudes compared to age-matched wt fibres. In all three genotypes, the voltage-dependent inactivation and deactivation of iCa were similar. Intracellular resting calcium concentration ([Ca2+]i) and the distribution of dihydropyridine binding sites were also not different in young animals of all three genotypes, whereas iCa was markedly reduced in mdx fibres. We conclude, that dystrophin influences L-type Ca2+ channels via a direct or indirect linkage which may be disrupted in mdx mice and may be crucial for proper excitation–contraction coupling initiating Ca2+ release from the sarcoplasmic reticulum. This linkage seems to be fully restored in the presence of mini-dystrophin. PMID:14594987

  20. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice.

    PubMed

    Cheon, Eric C; Strouch, Matthew J; Barron, Morgan R; Ding, Yongzeng; Melstrom, Laleh G; Krantz, Seth B; Mullapudi, Bhargava; Adrian, Kevin; Rao, Sambasiva; Adrian, Thomas E; Bentrem, David J; Grippo, Paul J

    2011-06-15

    Diets containing omega-6 (ω-6) fat have been associated with increased tumor development in carcinogen-induced pancreatic cancer models. However, the effects of ω-6 fatty acids and background strain on the development of genetically-induced pancreatic neoplasia is unknown. We assessed the effects of a diet rich in ω-6 fat on the development of pancreatic neoplasia in elastase (EL)-Kras(G12D) (EL-Kras) mice in two different backgrounds. EL-Kras FVB mice were crossed to C57BL/6 (B6) mice to produce EL-Kras FVB6 F1 (or EL-Kras F1) and EL-Kras B6 congenic mice. Age-matched EL-Kras mice from each strain were compared to one another on a standard chow. Two cohorts of EL-Kras FVB and EL-Kras F1 mice were fed a 23% corn oil diet and compared to age-matched mice fed a standard chow. Pancreata were scored for incidence, frequency, and size of neoplastic lesions, and stained for the presence of mast cells to evaluate changes in the inflammatory milieu secondary to a high fat diet. EL-Kras F1 mice had increased incidence, frequency, and size of pancreatic neoplasia compared to EL-Kras FVB mice. The frequency and size of neoplastic lesions and the weight and pancreatic mast cell densities in EL-Kras F1 mice were increased in mice fed a high ω-6 fatty acid diet compared to mice fed a standard chow. We herein introduce the EL-Kras B6 mouse model which presents with increased frequency of pancreatic neoplasia compared to EL-Kras F1 mice. The phenotype in EL-Kras F1 and FVB mice is promoted by a diet rich in ω-6 fatty acid. Copyright © 2010 UICC.

  1. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer's pathology.

    PubMed

    Brownlow, Milene L; Benner, Leif; D'Agostino, Dominic; Gordon, Marcia N; Morgan, Dave

    2013-01-01

    Dietary manipulations are increasingly viewed as possible approaches to treating neurodegenerative diseases. Previous studies suggest that Alzheimer's disease (AD) patients present an energy imbalance with brain hypometabolism and mitochondrial deficits. Ketogenic diets (KDs), widely investigated in the treatment and prevention of seizures, have been suggested to bypass metabolic deficits present in AD brain by providing ketone bodies as an alternative fuel to neurons. We investigated the effects of a ketogenic diet in two transgenic mouse lines. Five months old APP/PS1 (a model of amyloid deposition) and Tg4510 (a model of tau deposition) mice were offered either a ketogenic or a control (NIH-31) diet for 3 months. Body weight and food intake were monitored throughout the experiment, and blood was collected at 4 weeks and 4 months for ketone and glucose assessments. Both lines of transgenic mice weighed less than nontransgenic mice, yet, surprisingly, had elevated food intake. The ketogenic diet did not affect these differences in body weight or food consumption. Behavioral testing during the last two weeks of treatment found that mice offered KD performed significantly better on the rotarod compared to mice on the control diet independent of genotype. In the open field test, both transgenic mouse lines presented increased locomotor activity compared to nontransgenic, age-matched controls, and this effect was not influenced by KD. The radial arm water maze identified learning deficits in both transgenic lines with no significant differences between diets. Tissue measures of amyloid, tau, astroglial and microglial markers in transgenic lines showed no differences between animals fed the control or the ketogenic diet. These data suggest that ketogenic diets may play an important role in enhancing motor performance in mice, but have minimal impact on the phenotype of murine models of amyloid or tau deposition.

  2. Glutathione S-transferase pi isoform (GSTP1) expression in murine retina increases with developmental maturity.

    PubMed

    Lee, Wen-Hsiang; Joshi, Pratibha; Wen, Rong

    2014-01-01

    Glutathione S-transferase pi isoform (GSTP1) is an intracellular detoxification enzyme that catalyzes reduction of chemically reactive electrophiles and is a zeaxanthin-binding protein in the human macula. We have previously demonstrated that GSTP1 levels are decreased in human age-related macular degeneration (AMD) retina compared to normal controls (Joshi et al., Invest Ophthalmol Vis Sci, e-abstract, 2009). We also showed that GSTP1 levels parallel survival of human retinal pigment epithelial (RPE) cells exposed to ultraviolet (UV) light, and GSTP1 over-expression protects them against UV light damage (Joshi et al., Invest Ophthalmol Vis Sci, e-abstract, 2010). In the present work, we determined the developmental time course of GSTP1 expression in murine retina and in response to light challenge. Eyes from BALB/c mice at postnatal day 20, 1 month, and 2 months of age were prepared for retinal protein extraction and cryo sectioning, and GSTP1 levels in the retina were analyzed by Western blot and immunohistochemistry (IHC). Another group of BALB/c mice with the same age ranges was exposed to 1000 lx of white fluorescent light for 24 h, and their retinas were analyzed for GSTP1 expression by Western blot and IHC in a similar manner. GSTP1 levels in the murine retina increased in ascending order from postnatal day 20, 1 month, and 2 months of age. Moreover, GSTP1 expression in murine retina at postnatal day 20, 1 month, and 2 months of age increased in response to brief light exposure compared to age-matched controls under normal condition. GSTP1 expression in retina increases with developmental age in mice and accompanies murine retinal maturation. Brief exposure to light induces GSTP1 expression in the murine retina across various developmental ages. GSTP1 induction may be a protective response to light-induced oxidative damage in the murine retina.

  3. Glutathione S-Transferase Pi Isoform (GSTP1) Expression in Murine Retina Increases with Developmental Maturity

    PubMed Central

    Lee, Wen-Hsiang; Joshi, Pratibha; Wen, Rong

    2014-01-01

    Background and Aims Glutathione S-transferase pi isoform (GSTP1) is an intracellular detoxification enzyme that catalyzes reduction of chemically reactive electrophiles and is a zeaxanthin-binding protein in the human macula. We have previously demonstrated that GSTP1 levels are decreased in human age-related macular degeneration (AMD) retina compared to normal controls [1]. We also showed that GSTP1 levels parallel survival of human retinal pigment epithelial (RPE) cells exposed to UV light, and GSTP1 over-expression protects them against UV light damage [2]. In the present work, we determined the developmental time course of GSTP1 expression in murine retina and in response to light challenge. Methods Eyes from BALB/c mice at post-natal day 20, 1 month, and 2 months of age were prepared for retinal protein extraction and cryo sectioning, and GSTP1 levels in the retina were analyzed by Western blot and immunohistochemistry (IHC). Another group of BALB/c mice with the same age ranges was exposed to 1000 lux of white fluorescent light for 24 hours, and their retinas were analyzed for GSTP1 expression by Western blot and IHC in a similar manner. Results GSTP1 levels in the murine retina increased in ascending order from post-natal day 20, 1 month, and 2 months of age. Moreover, GSTP1 expression in murine retina at post-natal day 20, 1 month, and 2 months of age increased in response to brief light exposure compared to age-matched controls under normal condition. Conclusions GSTP1 expression in retina increases with developmental age in mice and accompanies murine retinal maturation. Brief exposure to light induces GSTP1 expression in the murine retina across various developmental ages. GSTP1 induction may be a protective response to light-induced oxidative damage in the murine retina. PMID:24664677

  4. The role of connexin-36 gap junctions in alcohol intoxication and consumption.

    PubMed

    Steffensen, Scott C; Bradley, Katie D; Hansen, David M; Wilcox, Jeffrey D; Wilcox, Rebecca S; Allison, David W; Merrill, Collin B; Edwards, Jeffrey G

    2011-08-01

    Ventral tegmental area (VTA) GABA neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in alcohol reward. The aim of this study was to examine the role of midbrain connexin-36 (Cx36) gap junctions (GJs) in ethanol intoxication and consumption. Using behavioral, molecular, and electrophysiological methods, we compared the effects of ethanol in mature Cx36 knockout (KO) mice and age-matched wild-type (WT) controls. Compared to WT mice, Cx36 KO mice exhibited significantly more ethanol-induced motor impairment in the open field test, but less disruption in motor coordination in the rotarod paradigm. Cx36 KO mice, and WT mice treated with the Cx36 antagonist mefloquine (MFQ), consumed significantly less ethanol than their WT controls in the drink-in-the-dark procedure. The firing rate of VTA GABA neurons in WT mice was inhibited by ethanol with an IC₅₀ of 0.25 g/kg, while VTA GABA neurons in KO mice were significantly less sensitive to ethanol. Dopamine neuron GABA-mediated sIPSC frequency was reduced by ethanol (30 mM) in WT mice, but not affected in KO mice. Cx36 KO mice evinced a significant up-regulation in DAT and D2 receptors in the VTA, as assessed by quantitative RT-PCR. These findings demonstrate the behavioral relevance of Cx36 GJ-mediated electrical coupling between GABA neurons in mature animals, and suggest that loss of coupling between VTA GABA neurons results in disinhibition of DA neurons, a hyper-DAergic state and lowered hedonic valence for ethanol consumption. Copyright © 2010 Wiley-Liss, Inc.

  5. Altered cerebral protein synthesis in fragile X syndrome: studies in human subjects and knockout mice

    PubMed Central

    Qin, Mei; Schmidt, Kathleen C; Zametkin, Alan J; Bishu, Shrinivas; Horowitz, Lisa M; Burlin, Thomas V; Xia, Zengyan; Huang, Tianjiang; Quezado, Zenaide M; Smith, Carolyn Beebe

    2013-01-01

    Dysregulated protein synthesis is thought to be a core phenotype of fragile X syndrome (FXS). In a mouse model (Fmr1 knockout (KO)) of FXS, rates of cerebral protein synthesis (rCPS) are increased in selective brain regions. We hypothesized that rCPS are also increased in FXS subjects. We measured rCPS with the ℒ-[1-11C]leucine positron emission tomography (PET) method in whole brain and 10 regions in 15 FXS subjects who, because of their impairments, were studied under deep sedation with propofol. We compared results with those of 12 age-matched controls studied both awake and sedated. In controls, we found no differences in rCPS between awake and propofol sedation. Contrary to our hypothesis, FXS subjects under propofol sedation had reduced rCPS in whole brain, cerebellum, and cortex compared with sedated controls. To investigate whether propofol could have a disparate effect in FXS subjects masking usually elevated rCPS, we measured rCPS in C57Bl/6 wild-type (WT) and KO mice awake or under propofol sedation. Propofol decreased rCPS substantially in most regions examined in KO mice, but in WT mice caused few discrete changes. Propofol acts by decreasing neuronal activity either directly or by increasing inhibitory synaptic activity. Our results suggest that changes in synaptic signaling can correct increased rCPS in FXS. PMID:23299245

  6. Muscle contractility decrement and correlated morphology during the pathogenesis of streptozotocin-diabetic mice.

    PubMed

    Fahim, M A; el-Sabban, F; Davidson, N

    1998-06-01

    Peripheral neuropathy of both motor and sensory nerves has been well documented in diabetes mellitus, but the evidence for physiological and correlated morphological changes during the pathogenesis of myopathy is scarce. In the present report, we have chosen the dorsiflexor muscle of adult male mice as a model for studying in situ muscle contraction and neuromuscular ultrastructure during the pathogenesis of streptozotocin-induced diabetes. Thirty mice (30 g bodyweight) were injected once i.p. with streptozotocin solution (200 mg/Kg) to induce experimental diabetes mellitus. Comparative analyses of in situ muscle isometric contractile characteristics were studied (at 1 Hz, 5 Hz and 30 Hz nerve stimulation) in urethane-anesthetized (2 mg/g, i.p.) control and diabetic mice at three time points, 2 weeks, 4 weeks, and 8 weeks postinjection. Synaptic delay was also recorded in diabetic and age-matched control mice. There was a significant increase in synaptic delay in both 4-week and 8-week diabetic mice compared with control mice (8.9 +/- 1.2 msec and 7.6 +/- 0.6 msec, respectively, compared with 6.1 +/- 0.5 msec). At all three stimulation frequencies, diabetes did not affect muscle contractile speed but significantly reduced the twitch tension after 8 weeks, with no changes at 2 weeks or 4 weeks. The recorded single-twitch tension values were 2.6 +/- 0.3 g, 2.1 +/- 0.6 g, 2.2 +/- 0.7 g, and 1.2 +/- 0.1 g for control, 2 weeks, 4 weeks, and 8 weeks, respectively. At 30 Hz, the recorded tension values were 4.6 +/- 1.6 g, 3.1 +/- 1.2 g, 3.1 +/- 1.1 g, and 2.1 +/- 1.0 g for control, 2 weeks, 4 weeks, and 8 weeks, respectively. Ultrastructural changes in neuromuscular junctions were similar to those that have been described in disuse and aging. These changes were observed after 8 weeks and included serve loss of synaptic vesicles, electron-dense bodies, and myelin-like figures as well as degeneration of mitochondria. The results reveal that streptozotocin-induced diabetes affects presynaptically the neuromuscular junction as well as muscle itself. Actions at both sites may contribute to the functional alterations seen in muscle contractile properties and may play a role in the pathogenesis of diabetic neuromyopathy.

  7. Delayed-matching-to-place Task in a Dry Maze to Measure Spatial Working Memory in Mice.

    PubMed

    Feng, Xi; Krukowski, Karen; Jopson, Timothy; Rosi, Susanna

    2017-07-05

    The delayed-matching-to-place (DMP) dry maze test is a variant of DMP water maze (Steele and Morris, 1999; Faizi et al. , 2012) which measures spatial working/episodic-like learning and memory that depends on both hippocampal and cortical functions (Wang and Morris, 2010; Euston et al. , 2012). Using this test we can detect normal aging related spatial working memory decline, as well as trauma induced working memory deficits. Furthermore, we recently reported that fractionated whole brain irradiation does not affect working memory in mice (Feng et al. , 2016). Here we describe the experimental setup and procedures of this behavioral test.

  8. Low body temperature in long-lived Ames dwarf mice at rest and during stress.

    PubMed

    Hunter, W S; Croson, W B; Bartke, A; Gentry, M V; Meliska, C J

    1999-09-01

    Among homeothermic animals, larger species generally have lower metabolic rates and live longer than do smaller species. Because Ames dwarf mice (dwarfs) live approximately 1 year longer than their larger normal sex- and age-matched siblings (normals), we hypothesized that they would have lower body core temperature (Tco). We, therefore, measured Tco of six dwarfs and six normals during 24-h periods of ad lib feeding, 24-h food deprivation, and emotional stress induced by cage switching. With ad lib feeding, Tco of dwarfs averaged 1.6 degrees C lower than normals; during food deprivation, Tco of both dwarfs and controls was significantly lower than when food was available ad lib; and following cage switch, Tco was elevated in both groups. However, during all three experiments, Tco was significantly lower in dwarfs than in normals. These data support the hypothesis that Ames dwarf mice, which live longer than normal size controls, maintain lower Tco than normals. Because dwarfs are deficient in thyroid stimulating hormone (TSH) and growth hormone (GH), their low Tco may be a result of reduced thermogenesis due to lack of those hormones. However, whether low Tco per se is related to the increased longevity of the dwarf mice remains an interesting possibility to be investigated.

  9. Advanced age-related denervation and fiber-type grouping in skeletal muscle of SOD1 knockout mice.

    PubMed

    Kostrominova, Tatiana Y

    2010-11-30

    In this study skeletal muscles from 1.5- and 10-month-old Cu/Zn superoxide dismutase (SOD1) homozygous knockout (JLSod1(-/-)) mice obtained from The Jackson Laboratory (C57Bl6/129SvEv background) were compared with muscles from age- and sex-matched heterozygous (JLSod1(+/-)) littermates. The results of this study were compared with previously published data on two different strains of Sod1(-/-) mice: one from Dr. Epstein's laboratory (ELSod1(-/-); C57Bl6 background) and the other from Cephalon, Inc. (CSod1(-/-); 129/CD-1 background). Grouping of succinate dehydrogenase-positive fibers characterized muscles of Sod1(-/-) mice from all three strains. The 10-month-old Sod1(-/-)C and JL mice displayed pronounced denervation of the gastrocnemius muscle, whereas the ELSod1(-/-) mice displayed a small degree of denervation at this age, but developed accelerated age-related denervation later on. Denervation markers were up-regulated in skeletal muscle of 10-month-old JLSod1(-/-) mice. This study is the first to show that metallothionein mRNA and protein expression was up-regulated in the skeletal muscle of 10-month-old JLSod1(-/-) mice and was mostly localized to the small atrophic muscle fibers. In conclusion, all three strains of Sod1(-/-) mice develop accelerated age-related muscle denervation, but the genetic background has significant influence on the progress of denervation. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Joint pathology and behavioral performance in autoimmune MRL-lpr Mice.

    PubMed

    Sakić, B; Szechtman, H; Stead, R H; Denburg, J A

    1996-09-01

    Young autoimmune MRL-lpr mice perform more poorly than age-matched controls in tests of exploration, spatial learning, and emotional reactivity. Impaired behavioral performance coincides temporally with hyperproduction of autoantibodies, infiltration of lymphoid cells into the brain, and mild arthritic-like changes in hind paws. Although CNS mechanisms have been suggested to mediate behavioral deficits, it was not clear whether mild joint pathology significantly affected behavioral performance. Previously we observed that 11-week-old MRL-lpr mice showed a trend for disturbed performance when crossing a narrow beam. The first aim of the present study was to test the significance of this trend by increasing the sample size and, second, to examine the possibility that arthritis-like changes interfere with performance in brief locomotor tasks. For the purpose of the second goal, 18-week-old mice that differ widely in severity of joint disease were selectively taken from the population and tested in beam walking and swimming tasks. It was expected that the severity of joint inflammation would be positively correlated with the degree of locomotor impairment. The larger sample size revealed that young MRL-lpr mice perform significantly more poorly than controls on the beam-walking test, as evidenced by more foot slips and longer traversing time. However, significant correlation between joint pathology scores and measures of locomotion could not be detected. The lack of such relationship suggests that mild joint pathology does not significantly contribute to impaired performance in young, autoimmune MRL-lpr mice tested in short behavioral tasks.

  11. Progression of Behavioral and CNS Deficits in a Viable Murine Model of Chronic Neuronopathic Gaucher Disease.

    PubMed

    Dai, Mei; Liou, Benjamin; Swope, Brittany; Wang, Xiaohong; Zhang, Wujuan; Inskeep, Venette; Grabowski, Gregory A; Sun, Ying; Pan, Dao

    2016-01-01

    To study the neuronal deficits in neuronopathic Gaucher Disease (nGD), the chronological behavioral profiles and the age of onset of brain abnormalities were characterized in a chronic nGD mouse model (9V/null). Progressive accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) in the brain of 9V/null mice were observed at as early as 6 and 3 months of age for GC and GS, respectively. Abnormal accumulation of α-synuclein was present in the 9V/null brain as detected by immunofluorescence and Western blot analysis. In a repeated open-field test, the 9V/null mice (9 months and older) displayed significantly less environmental habituation and spent more time exploring the open-field than age-matched WT group, indicating the onset of short-term spatial memory deficits. In the marble burying test, the 9V/null group had a shorter latency to initiate burying activity at 3 months of age, whereas the latency increased significantly at ≥12 months of age; 9V/null females buried significantly more marbles to completion than the WT group, suggesting an abnormal response to the instinctive behavior and an abnormal activity in non-associative anxiety-like behavior. In the conditional fear test, only the 9V/null males exhibited a significant decrease in response to contextual fear, but both genders showed less response to auditory-cued fear compared to age- and gender-matched WT at 12 months of age. These results indicate hippocampus-related emotional memory defects. Abnormal gait emerged in 9V/null mice with wider front-paw and hind-paw widths, as well as longer stride in a gender-dependent manner with different ages of onset. Significantly higher liver- and spleen-to-body weight ratios were detected in 9V/null mice with different ages of onsets. These data provide temporal evaluation of neurobehavioral dysfunctions and brain pathology in 9V/null mice that can be used for experimental designs to evaluate novel therapies for nGD.

  12. Progression of Behavioral and CNS Deficits in a Viable Murine Model of Chronic Neuronopathic Gaucher Disease

    PubMed Central

    Dai, Mei; Liou, Benjamin; Swope, Brittany; Wang, Xiaohong; Zhang, Wujuan; Inskeep, Venette; Grabowski, Gregory A.; Sun, Ying; Pan, Dao

    2016-01-01

    To study the neuronal deficits in neuronopathic Gaucher Disease (nGD), the chronological behavioral profiles and the age of onset of brain abnormalities were characterized in a chronic nGD mouse model (9V/null). Progressive accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) in the brain of 9V/null mice were observed at as early as 6 and 3 months of age for GC and GS, respectively. Abnormal accumulation of α-synuclein was present in the 9V/null brain as detected by immunofluorescence and Western blot analysis. In a repeated open-field test, the 9V/null mice (9 months and older) displayed significantly less environmental habituation and spent more time exploring the open-field than age-matched WT group, indicating the onset of short-term spatial memory deficits. In the marble burying test, the 9V/null group had a shorter latency to initiate burying activity at 3 months of age, whereas the latency increased significantly at ≥12 months of age; 9V/null females buried significantly more marbles to completion than the WT group, suggesting an abnormal response to the instinctive behavior and an abnormal activity in non-associative anxiety-like behavior. In the conditional fear test, only the 9V/null males exhibited a significant decrease in response to contextual fear, but both genders showed less response to auditory-cued fear compared to age- and gender-matched WT at 12 months of age. These results indicate hippocampus-related emotional memory defects. Abnormal gait emerged in 9V/null mice with wider front-paw and hind-paw widths, as well as longer stride in a gender-dependent manner with different ages of onset. Significantly higher liver- and spleen-to-body weight ratios were detected in 9V/null mice with different ages of onsets. These data provide temporal evaluation of neurobehavioral dysfunctions and brain pathology in 9V/null mice that can be used for experimental designs to evaluate novel therapies for nGD. PMID:27598339

  13. Differences in glutathione S-transferase pi expression in transgenic mice with symptoms of neurodegeneration.

    PubMed

    Kaźmierczak, Beata; Kuźma-Kozakiewicz, Magdalena; Usarek, Ewa; Barańczyk-Kuźma, Anna

    2011-01-01

    Glutathione S-transferase pi (GST pi) is an enzyme involved in cell protection against toxic electrophiles and products of oxidative stress. GST pi expression was studied in transgenic mice hybrids (B6-C3H) with symptoms of neurodegeneration harboring SOD1G93A (SOD1/+), Dync1h1 (Cra1/+) and double (Cra1/SOD1) mutations, at presymptomatic and symptomatic stages (age 70, 140, 365 days) using RT-PCR and Western blotting. The main changes in GST pi expression were observed in mice with the SODG93A mutation. In SOD1/+ and Cra1/SOD1 transgenics, with the exception of cerebellum, the changes in GST pi-mRNA accompanied those in GST pi protein. In brain cortex of both groups the expression was unchanged at the presymptomatic (age 70 days) but was lower at the symptomatic stage (age 140 days) and at both stages in hippocampus and spinal cord of SOD1/+ but not of Cra1/SOD1 mice compared to age-matched wild-type controls. In cerebellum of the presymptomatic and the symptomatic SOD1/+ mice and presymptomatic Cra1/SOD1 mice, the GST pi-mRNA was drastically elevated but the protein level remained unchanged. In Cra1/+ transgenics there were no changes in GST pi expression in any CNS region both on the mRNA and on the protein level. It can be concluded that the SOD1G93A but not the Dync1h1 mutation significantly decreases detoxification efficiency of GST pi in CNS, however the Dync1h1 mutation reduces the effects caused by the SOD1G93A mutation. Despite similarities in neurological symptoms, the differences in GST pi expression between SOD1/+ and Cra1/+ transgenics indicate a distinct pathogenic entity of these two conditions.

  14. Intrinsic hyporesponsiveness of invariant natural killer T cells precedes the onset of lupus

    PubMed Central

    Yang, J-Q; Kim, P J; Halder, R C; Singh, R R

    2013-01-01

    Patients with systemic lupus erythematosus (SLE) display reduced numbers and functions of invariant natural killer T (iNK T) cells, which are restored upon treatment with corticosteroids and rituximab. It is unclear whether the iNK T cell insufficiency is a consequence of disease or is a primary abnormality that precedes the onset of disease. To address this, we analysed iNK T cell function at different stages of disease development using the genetically lupus-susceptible NZB × NZW F1 (BWF1) model. We found that iNK T cell in-vivo cytokine responses to an iNK T cell ligand α-galactosylceramide (α-GalCer) were lower in BWF1 mice than in non-autoimmune BALB/c and major histocompatibility complex (MHC)-matched NZB × N/B10.PL F1 mice, although iNK T cell numbers in the periphery were unchanged in BWF1 mice compared to control mice. Such iNK T cell hyporesponsiveness in BWF1 mice was detected at a young age long before the animals exhibited any sign of autoimmunity. In-vivo activation of iNK T cells is known to transactivate other immune cells. Such transactivated T and B cell activation markers and/or cytokine responses were also lower in BWF1 mice than in BALB/c controls. Finally, we show that iNK T cell responses were markedly deficient in the NZB parent but not in NZW parent of BWF1 mice, suggesting that BWF1 might inherit the iNK T cell defect from NZB mice. Thus, iNK T cells are functionally insufficient in lupus-prone BWF1 mice. Such iNK T cell insufficiency precedes the onset of disease and may play a pathogenic role during early stages of disease development in SLE. PMID:23607366

  15. Metallothionein Is Downstream of Nrf2 and Partially Mediates Sulforaphane Prevention of Diabetic Cardiomyopathy.

    PubMed

    Gu, Junlian; Cheng, Yanli; Wu, Hao; Kong, Lili; Wang, Shudong; Xu, Zheng; Zhang, Zhiguo; Tan, Yi; Keller, Bradley B; Zhou, Honglan; Wang, Yuehui; Xu, Zhonggao; Cai, Lu

    2017-02-01

    We have reported that sulforaphane (SFN) prevented diabetic cardiomyopathy in both type 1 and type 2 diabetes (T2DM) animal models via the upregulation of nuclear transcription factor erythroid 2-related factor 2 (Nrf2) and metallothionein (MT). In this study, we tested whether SFN protects the heart from T2DM directly through Nrf2, MT, or both. Using Nrf2-knockout (KO), MT-KO, and wild-type (WT) mice, T2DM was induced by feeding a high-fat diet for 3 months followed by a small dose of streptozotocin. Age-matched controls were given a normal diet. Both T2DM and control mice were then treated with or without SFN for 4 months by continually feeding a high-fat or normal diet. SFN prevented diabetes-induced cardiac dysfunction as well as diabetes-associated cardiac oxidative damage, inflammation, fibrosis, and hypertrophy, with increases in Nrf2 and MT expressions in the WT mice. Both Nrf2-KO and MT-KO diabetic mice exhibited greater cardiac damage than WT diabetic mice. SFN did not provide cardiac protection in Nrf2-KO mice, but partially or completely protected the heart from diabetes in MT-KO mice. SFN did not induce MT expression in Nrf2-KO mice, but stimulated Nrf2 function in MT-KO mice. These results suggest that Nrf2 plays the indispensable role for SFN cardiac protection from T2DM with significant induction of MT and other antioxidants. MT expression induced by SFN is Nrf2 dependent, but is not indispensable for SFN-induced cardiac protection from T2DM. © 2017 by the American Diabetes Association.

  16. Astaxanthin affects oxidative stress and hyposalivation in aging mice

    PubMed Central

    Kuraji, Manatsu; Matsuno, Tomonori; Satoh, Tazuko

    2016-01-01

    Oral dryness, a serious problem for the aging Japanese society, is induced by aging-related hyposalivation and causes dysphagia, dysgeusia, inadaptation of dentures, and growth of oral Candida albicans. Oxidative stress clearly plays a role in decreasing saliva secretion and treatment with antioxidants such astaxanthin supplements may be beneficial. Therefore, we evaluated the effects of astaxanthin on the oral saliva secretory function of aging mice. The saliva flow increased in astaxanthin-treated mice 72 weeks after administration while that of the control decreased by half. The plasma d-ROMs values of the control but not astaxanthin-treated group measured before and 72 weeks after treatment increased. The diacron-reactive oxygen metabolites (d-ROMs) value of astaxanthin-treated mice 72 weeks after treatment was significantly lower than that of the control group was. The plasma biological antioxidative potential (BAP) values of the control but not astaxanthin-treated mice before and 72 weeks after treatment decreased. Moreover, the BAP value of the astaxanthin-treated group 72 weeks after treatment was significantly higher than that of the control was. Furthermore, the submandibular glands of astaxanthin-treated mice had fewer inflammatory cells than the control did. Specifically, immunofluorescence revealed a significantly large aquaporin-5 positive cells in astaxanthin-treated mice. Our results suggest that astaxanthin treatment may prevent age-related decreased saliva secretion. PMID:27698533

  17. Chronic Endurance Exercise Impairs Cardiac Structure and Function in Middle-Aged Mice with Impaired Nrf2 Signaling

    PubMed Central

    Shanmugam, Gobinath; Narasimhan, Madhusudhanan; Conley, Robbie L.; Sairam, Thiagarajan; Kumar, Ashutosh; Mason, Ronald P.; Sankaran, Ramalingam; Hoidal, John R.; Rajasekaran, Namakkal S.

    2017-01-01

    Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling maintains the redox homeostasis and its activation is shown to suppress cardiac maladaptation. Earlier we reported that acute endurance exercise (2 days) evoked antioxidant cytoprotection in young WT animals but not in aged WT animals. However, the effect of repeated endurance exercise during biologic aging (WT) characterized by an inherent deterioration in Nrf2 signaling and pathological aging (pronounced oxidative susceptibility—Nrf2 absence) in the myocardium remains elusive. Thus, the purpose of our study was to determine the effect of chronic endurance exercise-induced cardiac adaptation in aged mice with and without Nrf2. Age-matched WT and Nrf2-null mice (Nrf2−/−) (>22 months) were subjected to 6 weeks chronic endurance exercise (25 meter/min, 12% grade). The myocardial redox status was assessed by expression of antioxidant defense genes and proteins along with immunochemical detection of DMPO-radical adduct, GSH-NEM, and total ubiquitination. Cardiac functions were assessed by echocardiography and electrocardiogram. At sedentary state, loss of Nrf2 resulted in significant downregulation of antioxidant gene expression (Nqo1, Ho1, Gclm, Cat, and Gst-α) with decreased GSH-NEM immuno-fluorescence signals. While Nrf2−/− mice subjected to CEE showed an either similar or more pronounced reduction in the transcript levels of Gclc, Nqo1, Gsr, and Gst-α in relation to WT littermates. In addition, the hearts of Nrf2−/− on CEE showed a substantial reduction in specific antioxidant proteins, G6PD and CAT along with decreased GSH, a pronounced increase in DMPO-adduct and the total ubiquitination levels. Further, CEE resulted in a significant upregulation of hypertrophy genes (Anf, Bnf, and β-Mhc) (p < 0.05) in the Nrf2−/− hearts in relation to WT mice. Moreover, the aged Nrf2−/− mice exhibited a higher degree of cardiac remodeling in association with a significant decrease in fractional shortening, pronounced ST segment, and J wave elevation upon CEE compared to age-matched WT littermates. In conclusion, our findings indicate that while the aged WT and Nrf2 knockout animals both exhibit hypertrophy after CEE, the older Nrf2 knockouts showed ventricular remodeling coupled with profound cardiac functional abnormalities and diastolic dysfunction. PMID:28515695

  18. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle

    PubMed Central

    Dagdeviren, Sezin; Jung, Dae Young; Friedline, Randall H.; Noh, Hye Lim; Kim, Jong Hun; Patel, Payal R.; Tsitsilianos, Nicholas; Inashima, Kunikazu; Tran, Duy A.; Hu, Xiaodi; Loubato, Marilia M.; Craige, Siobhan M.; Kwon, Jung Yeon; Lee, Ki Won; Kim, Jason K.

    2017-01-01

    Altered energy balance and insulin resistance are important characteristics of aging. Skeletal muscle is a major site of glucose disposal, and the role of aging-associated inflammation in skeletal muscle insulin resistance remains unclear. To investigate, we examined glucose metabolism in 18-mo-old transgenic mice with muscle-specific overexpression of IL-10 (MIL10) and in wild-type mice during hyperinsulinemic–euglycemic clamping. Despite similar fat mass and energy balance, MIL10 mice were protected from aging-associated insulin resistance with significant increases in glucose infusion rates, whole-body glucose turnover, and skeletal muscle glucose uptake (∼60%; P < 0.05), as compared to age-matched WT mice. This protective effect was associated with decreased muscle inflammation, but no changes in adipose tissue inflammation in aging MIL10 mice. These results demonstrate the importance of skeletal muscle inflammation in aging-mediated insulin resistance, and our findings further implicate a potential therapeutic role of anti-inflammatory cytokine in the treatment of aging-mediated insulin resistance.—Dagdeviren, S., Jung, D. Y., Friedline, R. H., Noh, H. L., Kim, J. H., Patel, P. R., Tsitsilianos, N., Inashima, K., Tran, D. A., Hu, X., Loubato, M. M., Craige, S. M., Kwon, J. Y., Lee, K. W., Kim, J. K. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. PMID:27811060

  19. Helminth infections predispose mice to pneumococcal pneumonia but not to other pneumonic pathogens.

    PubMed

    Apiwattanakul, Nopporn; Thomas, Paul G; Kuhn, Raymond E; Herbert, De'Broski R; McCullers, Jonathan A

    2014-10-01

    Pneumonia is the leading killer of children worldwide. Here, we report that helminth-infected mice develop fatal pneumonia when challenged with Streptococcus pneumoniae. Mice were chronically infected with either the flatworm Taenia crassiceps or the roundworm Heligmosomoides polygyrus. Upon challenge with a pneumonic type 3 strain of S. pneumoniae (A66.1), the worm-infected mice developed pneumonia at a rate and to a degree higher than age-matched control mice as measured by bioluminescent imaging and lung titers. This predisposition to pneumonia appears to be specific to S. pneumoniae, as worm-infected mice did not show evidence of increased morbidity when challenged with a lethal dose of influenza virus or sublethal doses of Staphylococcus aureus or Listeria monocytogenes. The defect was also present when worm-infected mice were challenged with a type 2 sepsis-causing strain (D39); an increased rate of pneumonia, decreased survival, and increased lung and blood titers were found. Pneumococcal colonization and immunity against acute otitis media were unaffected. Anti-helminthic treatment in the H. polygyrus model reversed this susceptibility. We conclude that helminth coinfection predisposes mice to fatal pneumococcal pneumonia by promoting increased outgrowth of bacteria in the lungs and blood. These data have broad implications for the prevention and treatment for pneumonia in the developing world, where helminth infections are endemic and pneumococcal pneumonia is common.

  20. [Influence of Aging on Severity and Anti-Inflammatory Treatment of Experimental Dry Eye Disease].

    PubMed

    Steven, Philipp; Braun, Tobias; Krösser, Sonja; Gehlsen, Uta

    2017-05-01

    Purpose Aging is an important factor in dry-eye disease that has not been studied in the context of therapeutic measures. Aging-associated modifications of the ocular immune system implicate that anti-inflammatory therapies may act differently among younger individuals in terms of onset and effect of different substances. The goal of this study was to determine differences in clinical phenotype and topical anti-inflammatory therapy using a desiccating stress mouse model. Methods An experimental dry-eye disease (desiccating stress model) was induced in 12-week and 12-month-old female BALB/c mice. Topical therapy included 0.05% cyclosporine/F4H5 (Novaliq), F4H5, 0.05% cyclosporine (Restasis ® , Allergan) and dexamethasone (Monodex ® , Thea Pharma) for 3 consecutive weeks. A control group received no therapy whatsoever. Readout parameters included tear secretion, corneal fluorescein staining at 5 timepoints and histological analysis of goblet cell count at the end of the experiments. Results The older mice demonstrated a significantly stronger dry eye phenotype than the younger mice. Following therapy, the older mice responded to topical anti-inflammatory therapy significantly later than the younger individuals. Regarding the different substances used, cyclosporine/F4H5 showed a significantly faster decrease in corneal fluoresceine staining after only 1 week of therapy in comparison to all other groups. This substance was also superior regarding tear secretion and goblet cell count in age matched groups and in comparison to younger mice. Conclusions These experimental data support the implication that aging should be considered as an important factor in daily clinical practice. Furthermore, the differences found between substance classes, such as calcineurin antagonists and steroids, as well as different drug formulations, should be considered in future pre-clinical and clinical trials. Georg Thieme Verlag KG Stuttgart · New York.

  1. Suppression of brain cholesterol synthesis in male Mecp2-deficient mice is age dependent and not accompanied by a concurrent change in the rate of fatty acid synthesis.

    PubMed

    Lopez, Adam M; Chuang, Jen-Chieh; Posey, Kenneth S; Turley, Stephen D

    2017-01-01

    Mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2) are the principal cause of Rett syndrome, a progressive neurodevelopmental disorder afflicting 1 in 10,000 to 15,000 females. Studies using hemizygous Mecp2 mouse models have revealed disruptions to some aspects of their lipid metabolism including a partial suppression of cholesterol synthesis in the brains of mature Mecp2 mutants. The present studies investigated whether this suppression is evident from early neonatal life, or becomes manifest at a later stage of development. We measured the rate of cholesterol synthesis, in vivo, in the brains of male Mecp2 - /y and their Mecp2 +/y littermates at 7, 14, 21, 28, 42 and 56 days of age. Brain weight was consistently lower in the Mecp2 -/y mice than in their Mecp2 +/y controls except at 7 days of age. In the 7- and 14-day-old mice there was no genotypic difference in the rate of brain cholesterol synthesis but, from 21 days and later, it was always marginally lower in the Mecp2 -/y mice than in age-matched Mecp2 +/y littermates. At no age was a genotypic difference detected in either the rate of fatty acid synthesis or cholesterol concentration in the brain. Cholesterol synthesis rates in the liver and lungs of 56-day-old Mecp2 -/y mice were normal. The onset of lower rates of brain cholesterol synthesis at about the time closure of the blood brain barrier purportedly occurs might signify a disruption to mechanism(s) that dictate intracellular levels of cholesterol metabolites including oxysterols known to exert a regulatory influence on the cholesterol biosynthetic pathway. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Caloric restriction and spatial learning in old mice.

    PubMed

    Bellush, L L; Wright, A M; Walker, J P; Kopchick, J; Colvin, R A

    1996-08-01

    Spatial learning in old mice (19 or 24 months old), some of which had been calorically restricted beginning at 14 weeks of age, was compared to that of young mice, in two separate experiments using a Morris water maze. In the first experiment, only old mice reaching criterion performance on a cued learning task were tested in a subsequent spatial task. Thus, all old mice tested for spatial learning had achieved escape latencies equivalent to those of young controls. Despite equivalent swimming speeds, only about half the old mice in each diet group achieved criterion performance in the spatial task. In the second experiment, old and young mice all received the same number of training trials in a cued task and then in a spatial task. Immediately following spatial training, they were given a 60-s probe trial, with no platform in the pool. Both groups of old mice spent significantly less time in the quadrant where the platform had been and made significantly fewer direct crosses over the previous platform location than did the young control group. As in Experiment 1, calorie restriction failed to provide protection against aging-related deficits. However, in both experiments, some individual old mice evidenced performance in spatial learning indistinguishable from that of young controls. Separate comparisons of "age-impaired" and "age-unimpaired" old mice with young controls may facilitate the identification of neurobiological mechanisms underlying age-related cognitive decline.

  3. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult.

    PubMed

    Rodgers, Shaefali P; Born, Heather A; Das, Pritam; Jankowsky, Joanna L

    2012-06-18

    Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. We show that overexpression of the Alzheimer's-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer's disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.

  4. Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice

    PubMed Central

    Maier, Elizabeth A.; Weage, Kristina J.; Guedes, Marjorie M; Denson, Lee A.; McNeal, Monica M.; Bernstein, David I.; Moore, Sean R.

    2013-01-01

    Background Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. Methods We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams’ diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (RRV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. Results RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (P<.0001). RRV vaccination induced higher levels of serum anti-RV IgA responses in RBD vs. CD mice (P<.0001). Vaccination protected CD and RBD mice equally against EDIM infection, as measured by viral shedding. In unvaccinated RBD mice, EDIM shedding peaked 1 day earlier (P<.05), however we detected no effects of undernutrition on viral clearance nor of infection on bodyweight. EDIM infection provoked higher anti-RV serum IgA levels in RBD vs. CD mice, regardless of vaccination (P<.0001). Last, RRV vaccination mitigated stool IgA responses to EDIM more in CD vs. RBD mice (P<.0001). Conclusions Despite modulated IgA responses to vaccination and infection, undernutrition does not impair rotavirus vaccine efficacy nor exacerbate infection in this mouse model of protein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings. PMID:24200975

  5. Retinal degeneration increases susceptibility to myopia in mice

    PubMed Central

    Park, Hanna; Tan, Christopher C.; Faulkner, Amanda; Jabbar, Seema B.; Schmid, Gregor; Abey, Jane; Iuvone, P. Michael

    2013-01-01

    Purpose Retinal diseases are often associated with refractive errors, suggesting the importance of normal retinal signaling during emmetropization. For instance, retinitis pigmentosa, a disease characterized by severe photoreceptor degeneration, is associated with myopia; however, the underlying link between these conditions is not known. This study examines the influence of photoreceptor degeneration on refractive development by testing two mouse models of retinitis pigmentosa under normal and form deprivation visual conditions. Dopamine, a potential stop signal for refractive eye growth, was assessed as a potential underlying mechanism. Methods Refractive eye growth in mice that were homozygous for a mutation in Pde6b, Pde6brd1/rd1 (rd1), or Pde6brd10/rd10 (rd10) was measured weekly from 4 to 12 weeks of age and compared to age-matched wild-type (WT) mice. Refractive error was measured using an eccentric infrared photorefractor, and axial length was measured with partial coherence interferometry or spectral domain ocular coherence tomography. A cohort of mice received head-mounted diffuser goggles to induce form deprivation from 4 to 6 weeks of age. Dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were measured with high-performance liquid chromatography in each strain after exposure to normal or form deprivation conditions. Results The rd1 and rd10 mice had significantly greater hyperopia relative to the WT controls throughout normal development; however, axial length became significantly longer only in WT mice starting at 7 weeks of age. After 2 weeks of form deprivation, the rd1 and rd10 mice demonstrated a faster and larger myopic shift (−6.14±0.62 and −7.38±1.46 diopter, respectively) compared to the WT mice (−2.41±0.47 diopter). Under normal visual conditions, the DOPAC levels and DOPAC/dopamine ratios, a measure of dopamine turnover, were significantly lower in the rd1 and rd10 mice compared to the WT mice, while the dopamine levels were similar or higher than WT in the rd10 mice. Lower basal levels of DOPAC were highly correlated with increasing myopic shifts. Conclusions Refractive development under normal visual conditions was disrupted toward greater hyperopia from 4 to 12 weeks of age in these photoreceptor degeneration models, despite significantly lower DOPAC levels. However, the retinal degeneration models with low basal levels of DOPAC had increased susceptibility to form deprivation myopia. These results indicate that photoreceptor degeneration may alter dopamine metabolism, leading to increased susceptibility to myopia with an environmental visual challenge. PMID:24146540

  6. Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease.

    PubMed

    Samuels, Ivy S; Lee, Chieh-Allen; Petrash, J Mark; Peachey, Neal S; Kern, Timothy S

    2012-11-01

    Streptozotocin (STZ)-induced diabetes is associated with reductions in the electrical response of the outer retina and retinal pigment epithelium (RPE) to light. Aldose reductase (AR) is the first enzyme required in the polyol-mediated metabolism of glucose, and AR inhibitors have been shown to improve diabetes-induced electroretinogram (ERG) defects. Here, we used control and AR -/- mice to determine if genetic inactivation of this enzyme likewise inhibits retinal electrophysiological defects observed in a mouse model of type 1 diabetes. STZ was used to induce hyperglycemia and type 1 diabetes. Diabetic and age-matched nondiabetic controls of each genotype were maintained for 22 weeks, after which ERGs were used to measure the light-evoked components of the RPE (dc-ERG) and the neural retina (a-wave, b-wave). In comparison to their nondiabetic controls, wildtype (WT) and AR -/- diabetic mice displayed significant decreases in the c-wave, fast oscillation, and off response components of the dc-ERG but not in the light peak response. Nondiabetic AR -/- mice displayed larger ERG component amplitudes than did nondiabetic WT mice; however, the amplitude of dc-ERG components in diabetic AR -/- animals were similar to WT diabetics. ERG a-wave amplitudes were not reduced in either diabetic group, but b-wave amplitudes were lower in WT and AR -/-diabetic mice. These findings demonstrate that the light-induced responses of the RPE and outer retina are disrupted in diabetic mice, but these defects are not due to photoreceptor dysfunction, nor are they ameliorated by deletion of AR. This latter finding suggests that benefits observed in other studies utilizing pharmacological inhibitors of AR might have been secondary to off-target effects of the drugs.

  7. Hematopoietic Stem Cells from Ts65Dn Mice Are Deficient in the Repair of DNA Double-Strand Breaks.

    PubMed

    Wang, Yingying; Chang, Jianhui; Shao, Lijian; Feng, Wei; Luo, Yi; Chow, Marie; Du, Wei; Meng, Aimin; Zhou, Daohong

    2016-06-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra partial or whole copy of chromosome 21. In addition to musculoskeletal and neurodevelopmental abnormalities, children with DS exhibit various hematologic disorders and have an increased risk of developing acute lymphoblastic leukemia and acute megakaryocytic leukemia. Using the Ts65Dn mouse model, we investigated bone marrow defects caused by trisomy for 132 orthologs of the genes on human chromosome 21. The results showed that, although the total bone marrow cellularity as well as the frequency of hematopoietic progenitor cells (HPCs) was comparable between Ts65Dn mice and their age-matched euploid wild-type (WT) control littermates, human chromosome 21 trisomy led to a significant reduction in hematopoietic stem cell (HSC) numbers and clonogenic function in Ts65Dn mice. We also found that spontaneous DNA double-strand breaks (DSBs) were significantly increased in HSCs from the Ts65Dn mice, which was correlated with the significant reduction in HSC clonogenic activity compared to those from WT controls. Moreover, analysis of the repair kinetics of radiation-induced DSBs revealed that HSCs from Ts65Dn mice were less proficient in DSB repair than the cells from WT controls. This deficiency was associated with a higher sensitivity of Ts65Dn HSCs to radiation-induced suppression of HSC clonogenic activity than that of euploid HSCs. These findings suggest that an additional copy of genes on human chromosome 21 may selectively impair the ability of HSCs to repair DSBs, which may contribute to DS-associated hematological abnormalities and malignancies.

  8. Delayed-matching-to-place Task in a Dry Maze to Measure Spatial Working Memory in Mice

    PubMed Central

    Feng, Xi; Krukowski, Karen; Jopson, Timothy; Rosi, Susanna

    2017-01-01

    The delayed-matching-to-place (DMP) dry maze test is a variant of DMP water maze (Steele and Morris, 1999; Faizi et al., 2012) which measures spatial working/episodic-like learning and memory that depends on both hippocampal and cortical functions (Wang and Morris, 2010; Euston et al., 2012). Using this test we can detect normal aging related spatial working memory decline, as well as trauma induced working memory deficits. Furthermore, we recently reported that fractionated whole brain irradiation does not affect working memory in mice (Feng et al., 2016). Here we describe the experimental setup and procedures of this behavioral test. PMID:28944261

  9. Redox Proteomic Profiling of Specifically Carbonylated Proteins in the Serum of Triple Transgenic Alzheimer's Disease Mice.

    PubMed

    Shen, Liming; Chen, Youjiao; Yang, Aochu; Chen, Cheng; Liao, Liping; Li, Shuiming; Ying, Ming; Tian, Jing; Liu, Qiong; Ni, Jiazuan

    2016-04-12

    Oxidative stress is a key event in the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD). To investigate the role of oxidative stress in AD and to search for potential biomarkers in peripheral blood, serums were collected in this study from the 3-, 6-, and 12-month-old triple transgenic AD mice (3×Tg-AD mice) and the age- and sex-matched non-transgenic (non-Tg) littermates. The serum oxidized proteins were quantified by slot-blot analysis and enzyme-linked immunosorbent assay (ELISA) to investigate the total levels of serum protein carbonyl groups. Western blotting, in conjunction with two-dimensional gel electrophoresis (2D-Oxyblot), was employed to identify and quantify the specifically-carbonylated proteins in the serum of 3×Tg-AD mice. The results showed that the levels of serum protein carbonyls were increased in the three month old 3×Tg-AD mice compared with the non-Tg control mice, whereas no significant differences were observed in the six and 12 months old AD mice, suggesting that oxidative stress is an early event in AD progression. With the application of 2D-Oxyblot analysis, (immunoglobin) Ig gamma-2B chain C region (IGH-3), Ig lambda-2 chain C region (IGLC2), Ig kappa chain C region (IGKC), and Ig kappa chain V-V region HP R16.7 were identified as significantly oxidized proteins compared with the control. Among them IGH-3 and IGKC were validated via immunoprecipitation and Western blot analysis. Identification of oxidized proteins in the serums of 3×Tg-AD mice can not only reveal potential roles of those proteins in the pathogenesis of AD but also provide potential biomarkers of AD at the early stage.

  10. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice.

    PubMed

    Bedrosian, Tracy A; Herring, Kamillya L; Weil, Zachary M; Nelson, Randy J

    2011-07-12

    Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is "sundowning syndrome," which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome.

  11. Improved fatigue resistance in Gsα-deficient and aging mouse skeletal muscles due to adaptive increases in slow fibers

    PubMed Central

    Feng, Han-Zhong; Chen, Min; Weinstein, Lee S.

    2011-01-01

    Genetically modified mice with deficiency of the G protein α-subunit (Gsα) in skeletal muscle showed metabolic abnormality with reduced glucose tolerance, low muscle mass, and low contractile force, along with a fast-to-slow-fiber-type switch (Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, Hunt D, Jou W, Gavrilova O, Jin JP, Weinstein LS. Am J Physiol Cell Physiol 296: C930–C940, 2009). Here we investigated a hypothesis that the switching to more slow fibers is an adaptive response with specific benefit. The results showed that, corresponding to the switch of myosin isoforms, the thin-filament regulatory proteins troponin T and troponin I both switched to their slow isoforms in the atrophic soleus muscle of 3-mo-old Gsα-deficient mice. This fiber-type switch involving coordinated changes of both thick- and thin-myofilament proteins progressed in the Gsα-deficient soleus muscles of 18- to 24-mo-old mice, as reflected by the expression of solely slow isoforms of myosin and troponin. Compared with age-matched controls, Gsα-deficient soleus muscles with higher proportion of slow fibers exhibited slower contractile and relaxation kinetics and lower developed force, but significantly increased resistance to fatigue, followed by a better recovery. Gsα-deficient soleus muscles of neonatal and 3-wk-old mice did not show the increase in slow fibers. Therefore, the fast-to-slow-fiber-type switch in Gsα deficiency at older ages was likely an adaptive response. The benefit of higher fatigue resistance in adaption to metabolic deficiency and aging provides a mechanism to sustain skeletal muscle function in diabetic patients and elderly individuals. PMID:21680879

  12. Aged Tg2576 mice are impaired on social memory and open field habituation tests.

    PubMed

    Deacon, R M J; Koros, E; Bornemann, K D; Rawlins, J N P

    2009-02-11

    In a previous publication [Deacon RMJ, Cholerton LL, Talbot K, Nair-Roberts RG, Sanderson DJ, Romberg C, et al. Age-dependent and -independent behavioral deficits in Tg2576 mice. Behav Brain Res 2008;189:126-38] we found that very few cognitive tests were suitable for demonstrating deficits in Tg2576 mice, an amyloid over-expression model of Alzheimer's disease, even at 23 months of age. However, in a retrospective analysis of a separate project on these mice, tests of social memory and open field habituation revealed large cognitive impairments. Controls showed good open field habituation, but Tg2576 mice were hyperactive and failed to habituate. In the test of social memory for a juvenile mouse, controls showed considerably less social investigation on the second meeting, indicating memory of the juvenile, whereas Tg2576 mice did not show this decrement.As a control for olfactory sensitivity, on which social memory relies, the ability to find a food pellet hidden under wood chip bedding was assessed. Tg2576 mice found the pellet as quickly as controls. As this test requires digging ability, this was independently assessed in tests of burrowing and directly observed digging. In line with previous results and the hippocampal dysfunction characteristic of aged Tg2576 mice, they both burrowed and dug less than controls.

  13. Life-Span Extension in Mice by Preweaning Food Restriction and by Methionine Restriction in Middle Age

    PubMed Central

    Sun, Liou; Sadighi Akha, Amir A.; Miller, Richard A.

    2009-01-01

    Life span can be extended in rodents by restricting food availability (caloric restriction [CR]) or by providing food low in methionine (Meth-R). Here, we show that a period of food restriction limited to the first 20 days of life, via a 50% enlargement of litter size, shows extended median and maximal life span relative to mice from normal sized litters and that a Meth-R diet initiated at 12 months of age also significantly increases longevity. Furthermore, mice exposed to a CR diet show changes in liver messenger RNA patterns, in phosphorylation of Erk, Jnk2, and p38 kinases, and in phosphorylation of mammalian target of rapamycin and its substrate 4EBP1, HE-binding protein 1 that are not observed in liver from age-matched Meth-R mice. These results introduce new protocols that can increase maximal life span and suggest that the spectrum of metabolic changes induced by low-calorie and low-methionine diets may differ in instructive ways. PMID:19414512

  14. Urinary Podocyte Microparticles Identify Prealbuminuric Diabetic Glomerular Injury

    PubMed Central

    Burger, Dylan; Thibodeau, Jean-Francois; Holterman, Chet E.; Burns, Kevin D.; Touyz, Rhian M.

    2014-01-01

    Microparticles (MPs) are small (0.1–1.0 µm) vesicles shed from the surface of cells in response to stress. Whether podocytes produce MPs and whether this production reflects glomerular injury are unclear. We examined MP formation in cultured human podocytes (hPODs) and diabetic mice. hPODs were exposed to cyclical stretch, high glucose (HG; 25 mM), angiotensin II, or TGF-β. Urinary podocyte MPs were assessed in three mouse models of diabetic nephropathy: streptozotocin (STZ)-treated, OVE26, and Akita mice. Cyclic stretch and HG increased MP release as assessed by flow cytometry (P<0.01 and P<0.05, respectively, versus controls). Inhibition of Rho-kinase (ROCK) with fasudil blocked HG-induced podocyte MP formation. STZ-treated (8 weeks) mice exhibited increased urinary podocyte MPs compared with age-matched nondiabetic mice. Similarly, 16-week-old OVE26 mice had elevated levels of urinary podocyte MPs compared with wild-type littermates (P<0.01). In 1 week post-STZ–treated and 6- and 12-week-old Akita mice, urinary podocyte MPs increased significantly compared with those MPs in nondiabetic mice, despite normal urinary albumin levels. Our results indicate that podocytes produce MPs that are released into urine. Podocyte-derived MPs are generated by exposure to mechanical stretch and high glucose in vitro and could represent early markers of glomerular injury in diabetic nephropathy. PMID:24676640

  15. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Joshi, Mandar; Tabbey, Rebeka; Katz, Barry P; MacVittie, Thomas J; Orschell, Christie M

    2012-10-01

    Residual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS). Survivors were analyzed at various time points up to 19 mo post-TBI for hematopoietic function. The competitive bone marrow (BM) repopulating potential of 150 purified c-Kit+ Sca-1+ lineage- CD150+ cells (KSLCD150+) remained severely deficient throughout the study compared to KSLCD150+ cells from non-TBI age-matched controls. The minimal engraftment from these TBI HSCs is predominantly myeloid, with minimal production of lymphocytes both in vitro and in vivo. All classes of blood cells as well as BM cellularity were significantly decreased in TBI mice, especially at later time points as mice aged. Primitive BM hematopoietic cells (KSLCD150+) displayed significantly increased cell cycling in TBI mice at all time points, which may be a physiological attempt to maintain HSC numbers in the post-irradiation state. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to long-term HSC exhaustion and subsequent RBMD, exacerbated by the added insult of aging at later time points.

  16. Long-term changes in open field activity of male mice irradiated with low levels of gamma rays at late stage of development.

    PubMed

    Minamisawa, T; Hirokaga, K

    1996-06-01

    The open field activity of first generation (F1) hybrid male C57BL/6 x C3H mice irradiated with gamma-rays on the 14th day of gestation was studied at the following ages: 6-7 months, 12-13 months and 19-20 months. Doses were 0.1 Gy or 0.2 Gy. Open field activity was recorded with a camera. The camera output signal was recorded every sec through an A/D converter to a personal computer. The field was divided into 25 units of 8 cm square. All recordings were continuous for 60 min. The time which the 0.2-Gy group recorded at 6-7 months, spent in the 4 squares in the corner fields was high in comparison with the control group at the same age. The walking distance of the 0.1-Gy group recorded at 12-13 months was longer than that for the age matched control group. No effect of radiation was found on any of the behaviors observed and recorded at 19-20 months. The results demonstrate that exposure to low levels of gamma-rays on the 14th day of gestation results in behavioral changes, which occur at 6-7 and 12-13 months but not 19-20 months.

  17. Visual abnormalities associated with enhanced optic nerve myelination.

    PubMed

    Yu, Minzhong; Narayanan, S Priyadarshini; Wang, Feng; Morse, Emily; Macklin, Wendy B; Peachey, Neal S

    2011-02-16

    Expression of the constitutively active serine/threonine kinase Akt in oligodendrocytes results in enhanced myelination in the CNS. Here, we have examined the effects of this Akt overexpression on optic nerve structure and on optic nerve function, assessed using the visual evoked potential (VEP). Transgenic mice have been generated with the Plp promoter driving expression of a modified form of Akt, in which aspartic acids are substituted for Thr308 and Ser473. These Plp-Akt-DD (Akt-DD) mice, and littermate controls, were studied at different ages. Optic nerves were examined anatomically at 2 and 6 months of age. At 2 months of age, optic nerves were substantially thicker in Akt-DD mice, reflecting an increase in myelination of optic nerve axons. By electron microscopy, myelin thickness was increased in Akt-DD optic nerve, with extended paranodal domains having excess paranodal loops, and the density of nodes of Ranvier was reduced, relative to control mice. We recorded VEPs in response to strobe flash ganzfeld stimuli presented after overnight dark- and light-adapted conditions at ages ranging from 1 to 10 months. It was possible to record a clear VEP from Akt-DD mice at all ages examined. At 1 month of age, VEP implicit times were somewhat shorter in Akt-DD transgenic mice than in control animals. Beyond 6months of age, VEP latencies were consistently delayed in Akt-DD transgenic mice. These abnormalities did not reflect an alteration in retinal function as there were no significant differences between ERGs obtained from control or Akt-DD transgenic mice. In young mice, the somewhat faster responses may reflect improved transmission due to increased myelination of optic nerve axons. In older mice, where the Akt-DD optic nerve is markedly thicker than control, it is remarkable that optic nerves continue to function. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. 1D-¹H-nuclear magnetic resonance metabolomics reveals age-related changes in metabolites associated with experimental venous thrombosis.

    PubMed

    Obi, Andrea T; Stringer, Kathleen A; Diaz, Jose A; Finkel, Michael A; Farris, Diana M; Yeomans, Larisa; Wakefield, Thomas; Myers, Daniel D

    2016-04-01

    Age is a significant risk factor for the development of venous thrombosis (VT), but the mechanism(s) that underlie this risk remain(s) undefined and poorly understood. Aging is known to adversely influence inflammation and affect metabolism. Untargeted metabolomics permits an agnostic assessment of the physiological landscape and lends insight into the mechanistic underpinnings of clinical phenotypes. The objective of this exploratory study was to test the feasibility of a metabolomics approach for identifying potential metabolic mechanisms of age-related VT. We subjected whole blood samples collected from young and old nonthrombosed controls and VT mice 2 days after thrombus induction using the electrolytic inferior vena cava, to a methanol:chloroform extraction and assayed the resulting aqueous fractions using 1D-(1)H- nuclear magnetic resonance. Normalized mouse metabolite data were compared across groups using analysis of variance (ANOVA) with Holm-Sidak post-testing. In addition, associations between metabolite concentrations and parameters of thrombosis such as thrombus and vein wall weights, and markers of inflammation, vein wall P- and E-selectin levels, were assessed using linear regression. The relatedness of the found significant metabolites was visually assessed using a bioinformatics tool, Metscape, which generates compound-reaction-enzyme-gene networks to aid in the interpretation of metabolomics data. Old mice with VT had a greater mean vein wall weight compared with young mice with VT (P < .05). Clot weight differences between old and young mice followed the same trend as vein wall weight (0.011 ± 0.04 g vs 0.008 ± 0.003 g; P = not significant). Glutamine (ANOVA, P < .01), proline (ANOVA, P < .01), and phenylalanine (ANOVA, P < .05) levels were increased in old VT mice compared with age-matched controls and young VT mice. Betaine and/or trimethylamine N-oxide levels were increased in aged mice compared with young animals. Vein wall weight was strongly associated with glutamine (P < .05), and phenylalanine (P < .01) concentrations and there was a trend toward an association with proline (P = .09) concentration. Vein wall P-selectin, but not E-selectin levels, were increased in old VT mice and were associated with the three found metabolites of age-related VT. Collectively, with the addition of glutamate, these metabolites form a single compound-reaction-enzyme-gene network that was generated by Metscape. We used 1D-(1)H-nuclear magnetic resonance-metabolite profiling to identify, for the first time, in an experimental model, three potential metabolites, glutamine, phenylalanine, and proline, associated with age-related VT. These metabolites are metabolically related and their levels are associated with vein wall weight and P-selectin concentrations. In aggregate, these findings provide a "roadmap" of pathways that could be interrogated in future studies, which could include provocation of the glutamine, phenylalanine, and proline pathways in the vein wall. This study introduces metabolomics as a new approach to furthering knowledge about the mechanisms of age-related VT. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. Phospho-eIF2α level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice.

    PubMed

    Devi, Latha; Ohno, Masuo

    2010-09-23

    β-Site APP-cleaving enzyme 1 (BACE1) initiates amyloid-β (Aβ) generation and thus represents a prime therapeutic target in treating Alzheimer's disease (AD). Notably, increasing evidence indicates that BACE1 levels become elevated in AD brains as disease progresses; however, it remains unclear how the BACE1 upregulation may affect efficacies of therapeutic interventions including BACE1-inhibiting approaches. Here, we crossed heterozygous BACE1 knockout mice with AD transgenic mice (5XFAD model) and compared the abilities of partial BACE1 reduction to rescue AD-like phenotypes at earlier (6-month-old) and advanced (15-18-month-old) stages of disease, which expressed normal (∼100%) and elevated (∼200%) levels of BACE1, respectively. BACE1(+/-) deletion rescued memory deficits as tested by the spontaneous alternation Y-maze task in 5XFAD mice at the earlier stage and prevented their septohippocampal cholinergic deficits associated with significant neuronal loss. Importantly, BACE1(+/-) deletion was no longer able to rescue memory deficits or cholinergic neurodegeneration in 5XFAD mice at the advanced stage. Moreover, BACE1(+/-) deletion significantly reduced levels of Aβ42 and the β-secretase-cleaved C-terminal fragment (C99) in 6-month-old 5XFAD mouse brains, while these neurotoxic β-cleavage products dramatically elevated with age and were not affected by BACE1(+/-) deletion in 15-18-month-old 5XFAD brains. Interestingly, although BACE1(+/-) deletion lowered BACE1 expression by ∼50% in 5XFAD mice irrespective of age in concordance with the reduction in gene copy number, BACE1 equivalent to wild-type controls remained in BACE1(+/-)·5XFAD mice at the advanced age. In accord, phosphorylation of the translation initiation factor eIF2α, an important mediator of BACE1 elevation, was dramatically increased (∼9-fold) in 15-18-month-old 5XFAD mice and remained highly upregulated (∼6-fold) in age-matched BACE1(+/-)·5XFAD mice. Together, our results indicate that partial reduction of BACE1 is not sufficient to block the phospho-eIF2α-dependent BACE1 elevation during the progression of AD, thus limiting its abilities to reduce cerebral Aβ/C99 levels and rescue memory deficits and cholinergic neurodegeneration.

  20. Lifelong obesity in a polygenic mouse model prevents age- and diet-induced glucose intolerance- obesity is no road to late-onset diabetes in mice.

    PubMed

    Renne, Ulla; Langhammer, Martina; Brenmoehl, Julia; Walz, Christina; Zeissler, Anja; Tuchscherer, Armin; Piechotta, Marion; Wiesner, Rudolf J; Bielohuby, Maximilian; Hoeflich, Andreas

    2013-01-01

    Visceral obesity holds a central position in the concept of the metabolic syndrome characterized by glucose intolerance in humans. However, until now it is unclear if obesity by itself is responsible for the development of glucose intolerance. We have used a novel polygenic mouse model characterized by genetically fixed obesity (DU6) and addressed age- and high fat diet-dependent glucose tolerance. Phenotype selection over 146 generations increased body weight by about 2.7-fold in male 12-week DU6 mice (P<0.0001) if compared to unselected controls (Fzt:DU). Absolute epididymal fat mass was particularly responsive to weight selection and increased by more than 5-fold (P<0.0001) in male DU6 mice. At an age of 6 weeks DU6 mice consumed about twice as much food if compared to unselected controls (P<0.001). Absolute food consumption was higher at all time points measured in DU6 mice than in Fzt:DU mice. Between 6 and 12 weeks of age, absolute food intake was reduced by 15% in DU6 mice (P<0.001) but not in Fzt:DU mice. In both mouse lines feeding of the high fat diet elevated body mass if compared to the control diet (P<0.05). In contrast to controls, DU6 mice did not display high fat diet-induced increases of epididymal and renal fat. Control mice progressively developed glucose intolerance with advancing age and even more in response to the high fat diet. In contrast, obese DU6 mice did neither develop a glucose intolerant phenotype with progressive age nor when challenged with a high fat diet. Our results from a polygenic mouse model demonstrate that genetically pre-determined and life-long obesity is no precondition of glucose intolerance later in life.

  1. Follistatin-like 3 is a mediator of exercise-driven bone formation and strengthening

    PubMed Central

    Nam, J; Perera, P; Gordon, R; Jeong, Y; Blazek, AD; Kim, DG; Tee, BC; Sun, Z; Eubank, TD; Zhao, Y; Lablebecioglu, B; Liu, S; Litsky, A; Weisleder, NL; Lee, BS; Butterfield, T; Schneyer, AL; Agarwal, S

    2015-01-01

    Exercise is vital for maintaining bone strength and architecture. Follistatin like 3 (FSTL3), a member of Follistatin family, is a mechanosensitive protein upregulated in response to exercise and is involved in regulating musculoskeletal health, we investigated the potential role of FSTL3 in exercise-driven bone remodeling. Exercise-dependent regulation of bone structure and functions was compared in mice with global Fstl3 gene deletion (Fstl3−/−) and their age-matched Fstl3+/+ littermates. Mice were exercised by low-intensity treadmill walking. The mechanical properties and mineralization were determined by μCT, three-point bending test and sequential incorporation of calcein and alizarin complexone. ELISA, Western-blot analysis and qRT-PCR were used to analyze the regulation of FSTL3 and associated molecules in the serum specimens and tissues. Daily exercise significantly increased circulating FSTL3 levels in mice, rats and humans. Compared to age-matched littermates, Fstl3−/− mice exhibited significantly lower fracture tolerance, having greater stiffness, but lower strain at fracture and yield energy. Furthermore, increased levels of circulating FSTL3 in young mice paralleled greater strain at fracture compared to the lower levels of FSTL3 in older mice. More significantly, Fstl3−/− mice exhibited loss of mechanosensitivity and irresponsiveness to exercise-dependent bone formation as compared to their Fstl3+/+ littermates. In addition, FSTL3 gene deletion resulted in loss of exercise-dependent sclerostin regulation in osteocytes and osteoblasts, as compared to Fstl3+/+ osteocytes and osteoblasts, in vivo and in vitro. The data identifies FSTL3 as a critical mediator of exercise-dependent bone formation and strengthening and point to its potential role in bone health and in musculoskeletal diseases. PMID:25937185

  2. Differential Effects of Fibromodulin Deficiency on Mouse Mandibular Bones and Teeth: A Micro-CT Time Course Study

    PubMed Central

    Goldberg, Michel; Marchadier, Arnaud; Vidal, Catherine; Harichane, Yassine; Kamoun-Goldrat, Agnès; Kellermann, Odile; Kilts, Tina; Young, Marian

    2011-01-01

    Fibromodulin (Fmod) is a keratan sulfate small leucine-rich proteoglycan which is enriched in bones and teeth. In order to determine its functions on bone and tooth mineralization we characterized the phenotype of Fmod-deficient (Fmod-KO) mice using a new-generation microfocus computerized tomography system (micro-CT) and software allowing advanced visualization of 3-D data. Three-week-old and 10- week-old Fmod-KO mandibles and teeth were compared with those of age-matched wild-type (WT) mice. In both young and mature mice the Fmod-KO mandibles were hypomineralized, especially the posterior (proximal) part of the mandible as it appeared to be the main target of the molecule deficiency whereas less extensive alterations were found in the alveolar bone. In transverse sections, larger marrow spaces were observed in the Fmod-KO mice compared with age-matched young or mature WT mice. Quantitative evaluation of the pulp volume of the first molar and 3-D reconstructions suggested that dentinogenesis was diminished in 3-week-old Fmod-KO teeth. In contrast, increased dentin formation was found in 10-week-old Fmod-KO mice and it was accompanied by a reduced pulp volume. Thus, the differential effects of Fmod deficiency on bones and teeth appear to diverge in adult mice. This may result from the previously reported differences in the molecular weight of Fmod in the 2 tissues or from compensatory mechanisms due to the overexpression of DSP and DMP-1 in the dental pulp of Fmod-KO. It is also possible that a single molecule plays diverging roles in a tissue-specific or region-specific manner. PMID:21597266

  3. Tau Deficiency Down-Regulated Transcription Factor Orthodenticle Homeobox 2 Expression in the Dopaminergic Neurons in Ventral Tegmental Area and Caused No Obvious Motor Deficits in Mice

    PubMed Central

    Tang, Xiaolu; Jiao, Luyan; Zheng, Meige; Yan, Yan; Nie, Qi; Wu, Ting; Wan, Xiaomei; Zhang, Guofeng; Li, Yonglin; Wu, Song; Jiang, Bin; Cai, Huaibin; Xu, Pingyi; Duan, Jinhai; Lin, Xian

    2018-01-01

    Tau protein participates in microtubule stabilization, axonal transport, and protein trafficking. Loss of normal tau function will exert a negative effect. However, current knowledge on the impact of tau deficiency on the motor behavior and related neurobiological changes is controversial. In this study, we examined motor functions and analyzed several proteins implicated in the maintenance of midbrain dopaminergic (DA) neurons (mDANs) function of adult and aged tau+/+, tau+/−, tau−/− mice. We found tau deficiency could not induce significant motor disorders. However, we discovered lower expression levels of transcription factors Orthodenticle homeobox 2 (OTX2) of mDANs in older aged mice. Compared with age-matched tau+/+ mice, there were 54.1% lower (p = 0.0192) OTX2 protein (OTX2-fluorescence intensity) in VTA DA neurons of tau+/−mice and 43.6% lower (p = 0.0249) OTX2 protein in VTA DA neurons of tau−/−mice at 18 months old. Combined with the relevant reports, our results suggested that tau deficiency alone might not be enough to mimic the pathology of Parkinson’s disease. However, OTX2 down-regulation indicates that mDANs of tau-deficient mice will be more sensitive to toxic damage from MPTP. PMID:29337233

  4. Comprehensive and differential long-term characterization of the alpha-galactosidase A deficient mouse model of Fabry disease focusing on the sensory system and pain development

    PubMed Central

    Biko, Lydia; Hose, Dorothea; Hofmann, Lukas; Sommer, Claudia

    2016-01-01

    Background Fabry disease is an X-linked lysosomal storage disorder due to impaired activity of alpha-galactosidase A with intracellular accumulation of globotriaosylceramide. Associated small fiber pathology leads to characteristic pain in Fabry disease. We systematically assessed sensory system, physical activity, metabolic parameters, and morphology of male and female mice with alpha-galactosidase A deficiency (Fabry ko) from 2 to 27 months of age and compared results with those of age- and gender-matched wild-type littermates of C57Bl/6J background. Results From the age of two months, male and female Fabry mice showed mechanical hypersensitivity (p < 0.001 each) compared to wild-type littermates. Young Fabry ko mice of both genders were hypersensitive to heat stimulation (p < 0.01) and developed heat hyposensitivity with aging (p < 0.05), while cold hyposensitivity was present constantly in young (p < 0.01) and old (p < 0.05) Fabry ko mice compared to wild-type littermates. Stride angle increased only in male Fabry ko mice with aging (p < 0.01) in comparison to wild-type littermates. Except for young female mice, male (p < 0.05) and female (p < 0.01) Fabry ko mice had a higher body weight than wild-type littermates. Old male Fabry ko mice were physically less active than their wild-type littermates (p < 0.05), had lower chow intake (p < 0.001), and lost more weight (p < 0.001) in a one-week treadmill experiment than wild-type littermates. Also, Fabry ko mice showed spontaneous pain protective behavior and developed orofacial dysmorphism resembling patients with Fabry disease. Conclusions Mice with alpha-galactosidase A deficiency show age-dependent and distinct deficits of the sensory system. alpha-galactosidase A-deficient mice seem to model human Fabry disease and may be helpful when studying the pathophysiology of Fabry-associated pain. PMID:27145802

  5. Effect of pretreatment with chromium picolinate on haematological parameters during dengue virus infection in mice.

    PubMed

    Shrivastava, Richa; Nagar, R; Ravishankar, G A; Upreti, R K; Chaturvedi, U C

    2007-11-01

    Dengue virus (DV) has caused severe epidemics of dengue fever (DF) and dengue haemorrhagic fever (DHF) and is endemic all over India. We have earlier reported that exposure of mice to hexavalent chromium [Cr(VI)] compounds increased the severity of dengue virus infection. Trivalent chromium picolinate (CrP) is used worldwide as micronutrient and nutritional supplement. The present study was therefore, carried out to investigate the effects of CrP on various haematological parameters during DV infection of mice. The Swiss Albino smice were inoculated with dengue virus (1000 LD50, intracerebrally) and fed with chromium picolinate (CrP) in drinking water (100 and 250 mg/l) for 24 wk. Peripheral blood leucocytes and other haematological parameters, and spleens were studied on days 4 and 8 after virus inoculations and the findings were compared with those given only CrP and the normal control age matched mice. CrP in drinking water for 24 wk had no significant effects on peripheral blood cells of mice. On the other hand, there was significant decrease in different haematological parameters following inoculation of normal mice with DV. In CrP fed mice the effects of DV infection were abolished on most of the haematological parameters. The findings of present study showed that the adverse effects of DV infection, specially on platelets and leucocytes, were abrogated by pretreatment of mice with CrP. The therapeutic utility of CrP in viral infections including dengue needs to be studied in depth.

  6. Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice.

    PubMed

    Chang, Hui-Hua; Moro, Aune; Takakura, Kazuki; Su, Hsin-Yuan; Mo, Allen; Nakanishi, Masako; Waldron, Richard T; French, Samuel W; Dawson, David W; Hines, O Joe; Li, Gang; Go, Vay Liang W; Sinnett-Smith, James; Pandol, Stephen J; Lugea, Aurelia; Gukovskaya, Anna S; Duff, Michael O; Rosenberg, Daniel W; Rozengurt, Enrique; Eibl, Guido

    2017-01-01

    Epidemiologic data has linked obesity to a higher risk of pancreatic cancer, but the underlying mechanisms are poorly understood. To allow for detailed mechanistic studies in a relevant model mimicking diet-induced obesity and pancreatic cancer, a high-fat, high-calorie diet (HFCD) was given to P48+/Cre;LSL-KRASG12D (KC) mice carrying a pancreas-specific oncogenic Kras mutation. The mice were randomly allocated to a HFCD or control diet (CD). Cohorts were sacrificed at 3, 6, and 9 months and tissues were harvested for further analysis. Compared to CD-fed mice, HFCD-fed animals gained significantly more weight. Importantly, the cancer incidence was remarkably increased in HFCD-fed KC mice, particularly in male KC mice. In addition, KC mice fed the HFCD showed more extensive inflammation and fibrosis, and more advanced PanIN lesions in the pancreas, compared to age-matched CD-fed animals. Interestingly, we found that the HFCD reduced autophagic flux in PanIN lesions in KC mice. Further, exome sequencing of isolated murine PanIN lesions identified numerous genetic variants unique to the HFCD. These data underscore the role of sustained inflammation and dysregulated autophagy in diet-induced pancreatic cancer development and suggest that diet-induced genetic alterations may contribute to this process. Our findings provide a better understanding of the mechanisms underlying the obesity-cancer link in males and females, and will facilitate the development of interventions targeting obesity-associated pancreatic cancer.

  7. Effect of aged garlic extract on immune responses to experimental fibrosarcoma tumor in BALB/c mice.

    PubMed

    Tabari, M Abouhosseini; Ebrahimpour, S

    2014-01-01

    Aged garlic extract (AGE) has many biological activities including radical scavenging, antioxidative and immunomodulative effects. In this research work, the antitumor and immunomodulatory effects of AGE against fibrosarcoma implanted tumor were studied. WEHI-164 fibrosarcoma cells were implanted subcutaneously on day 0 into the right flank of 40 BALB/c mice at age of 8 weeks. Mice were randomly categorized in two separate groups: First received AGE (100 mg/kg, IP), second group as the control group received phosphate buffered saline. Treatments were carried out 3 times/week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flow cytometry. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of interferon gamma (IFN-γ) and interleukin-4 cytokines were measured. The mice received AGE had significantly longer survival time compared with the control mice. The inhibitory effect on tumor growth was seen in AGE treated mice. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE group. WEHI-164 specific cytotoxicity of splenocytes from AGE mice was also significantly increased at 25:1 E: T ratio. Administration of AGE resulted in improved immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. AGE showed significant effects on inhibition of tumor growth and longevity of survival times.

  8. Impaired peripheral nerve regeneration in type-2 diabetic mouse model.

    PubMed

    Pham, Vuong M; Tu, Nguyen Huu; Katano, Tayo; Matsumura, Shinji; Saito, Akira; Yamada, Akihiro; Furue, Hidemasa; Ito, Seiji

    2018-01-01

    Peripheral neuropathy is one of the most common and serious complications of type-2 diabetes. Diabetic neuropathy is characterized by a distal symmetrical sensorimotor polyneuropathy, and its incidence increases in patients 40 years of age or older. In spite of extensive research over decades, there are few effective treatments for diabetic neuropathy besides glucose control and improved lifestyle. The earliest changes in diabetic neuropathy occur in sensory nerve fibers, with initial degeneration and regeneration resulting in pain. To seek its effective treatment, here we prepared a type-2 diabetic mouse model by giving mice 2 injections of streptozotocin and nicotinamide and examining the ability for nerve regeneration by using a sciatic nerve transection-regeneration model previously established by us. Seventeen weeks after the last injection, the mice exhibited symptoms of type-2 diabetes, that is, impaired glucose tolerance, decreased insulin level, mechanical hyperalgesia, and impaired sensory nerve fibers in the plantar skin. These mice showed delayed functional recovery and nerve regeneration by 2 weeks compared with young healthy mice and by 1 week compared with age-matched non-diabetic mice after axotomy. Furthermore, type-2 diabetic mice displayed increased expression of PTEN in their DRG neurons. Administration of a PTEN inhibitor at the cutting site of the nerve for 4 weeks promoted the axonal transport and functional recovery remarkably. This study demonstrates that peripheral nerve regeneration was impaired in type-2 diabetic model and that its combination with sciatic nerve transection is suitable for the study of the pathogenesis and treatment of early diabetic neuropathy. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Glial-derived neurotrophic factor is essential for blood-nerve barrier functional recovery in an experimental murine model of traumatic peripheral neuropathy.

    PubMed

    Dong, Chaoling; Helton, E Scott; Zhou, Ping; Ouyang, Xuan; d'Anglemont de Tassigny, Xavier; Pascual, Alberto; López-Barneo, José; Ubogu, Eroboghene E

    2018-06-18

    There is emerging evidence that glial-derived neurotrophic factor (GDNF) is a potent inducer of restrictive barrier function in tight junction-forming microvascular endothelium and epithelium, including the human blood-nerve barrier (BNB) in vitro. We sought to determine the role of GDNF in restoring BNB function in vivo by evaluating sciatic nerve horseradish peroxidase (HRP) permeability in tamoxifen-inducible GDNF conditional knockout (CKO) adult mice following non-transecting crush injury via electron microscopy, with appropriate wildtype (WT) and heterozygous (HET) littermate controls. A total of 24 age-, genotype- and sex-matched mice >12 weeks of age were injected with 30 mg/kg HRP via tail vein injection 7 or 14 days following unilateral sciatic nerve crush, and both sciatic nerves were harvested 30 minutes later for morphometric assessment by light and electron microscopy. The number and percentage of HRP-permeable endoneurial microvessels were ascertained to determine the effect of GDNF in restoring barrier function in vivo. Following sciatic nerve crush, there was significant upregulation in GDNF protein expression in WT and HET mice that was abrogated in CKO mice. GDNF significantly restored sciatic nerve BNB HRP impermeability to near normal levels by day 7, with complete restoration seen by day 14 in WT and HET mice. A significant recovery lag was observed in CKO mice. This effect was independent on VE-Cadherin or claudin-5 expression on endoneurial microvessels. These results imply an important role of GDNF in restoring restrictive BNB function in vivo, suggesting a potential strategy to re-establish the restrictive endoneurial microenvironment following traumatic peripheral neuropathies.

  10. Early VGLUT1-specific parallel fiber synaptic deficits and dysregulated cerebellar circuit in the KIKO mouse model of Friedreich ataxia.

    PubMed

    Lin, Hong; Magrane, Jordi; Clark, Elisia M; Halawani, Sarah M; Warren, Nathan; Rattelle, Amy; Lynch, David R

    2017-12-19

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder with progressive ataxia that affects both the peripheral and central nervous system (CNS). While later CNS neuropathology involves loss of large principal neurons and glutamatergic and GABAergic synaptic terminals in the cerebellar dentate nucleus, early pathological changes in FRDA cerebellum remain largely uncharacterized. Here, we report early cerebellar VGLUT1 (SLC17A7)-specific parallel fiber (PF) synaptic deficits and dysregulated cerebellar circuit in the frataxin knock-in/knockout (KIKO) FRDA mouse model. At asymptomatic ages, VGLUT1 levels in cerebellar homogenates are significantly decreased, whereas VGLUT2 (SLC17A6) levels are significantly increased, in KIKO mice compared with age-matched controls. Additionally, GAD65 (GAD2) levels are significantly increased, while GAD67 (GAD1) levels remain unaltered. This suggests early VGLUT1-specific synaptic input deficits, and dysregulation of VGLUT2 and GAD65 synaptic inputs, in the cerebellum of asymptomatic KIKO mice. Immunohistochemistry and electron microscopy further show specific reductions of VGLUT1-containing PF presynaptic terminals in the cerebellar molecular layer, demonstrating PF synaptic input deficiency in asymptomatic and symptomatic KIKO mice. Moreover, the parvalbumin levels in cerebellar homogenates and Purkinje neurons are significantly reduced, but preserved in other interneurons of the cerebellar molecular layer, suggesting specific parvalbumin dysregulation in Purkinje neurons of these mice. Furthermore, a moderate loss of large principal neurons is observed in the dentate nucleus of asymptomatic KIKO mice, mimicking that of FRDA patients. Our findings thus identify early VGLUT1-specific PF synaptic input deficits and dysregulated cerebellar circuit as potential mediators of cerebellar dysfunction in KIKO mice, reflecting developmental features of FRDA in this mouse model. © 2017. Published by The Company of Biologists Ltd.

  11. Enhanced responsiveness to selective serotonin reuptake inhibitors during lactation.

    PubMed

    Jury, Nicholas J; McCormick, Betsy A; Horseman, Nelson D; Benoit, Stephen C; Gregerson, Karen A

    2015-01-01

    The physiology of mood regulation in the postpartum is poorly understood despite the fact that postpartum depression (PPD) is a common pathology. Serotonergic mechanisms and their dysfunction are widely presumed to be involved, which has led us to investigate whether lactation induces changes in central or peripheral serotonin (5-HT) systems and related affective behaviors. Brain sections from lactating (day 10 postpartum) and age-matched nulliparous (non-pregnant) C57BL/6J mice were processed for 5-HT immunohistochemistry. The total number of 5-HT immunostained cells and optical density were measured. Lactating mice exhibited lower immunoreactive 5-HT and intensity in the dorsal raphe nucleus when compared with nulliparous controls. Serum 5-HT was quantified from lactating and nulliparous mice using radioimmunoassay. Serum 5-HT concentrations were higher in lactating mice than in nulliparous controls. Affective behavior was assessed in lactating and non-lactating females ten days postpartum, as well as in nulliparous controls using the forced swim test (FST) and marble burying task (MBT). Animals were treated for the preceding five days with a selective serotonin reuptake inhibitor (SSRI, citalopram, 5mg/kg/day) or vehicle. Lactating mice exhibited a lower baseline immobility time during the FST and buried fewer marbles during the MBT as compared to nulliparous controls. Citalopram treatment changed these behaviors in lactating mice with further reductions in immobility during the FST and decreased marble burying. In contrast, the same regimen of citalopram treatment had no effect on these behaviors in either non-lactating postpartum or nulliparous females. Our findings demonstrate changes in both central and peripheral 5-HT systems associated with lactation, independent of pregnancy. They also demonstrate a significant interaction of lactation and responsiveness to SSRI treatment, which has important implications in the treatment of PPD. Although recent evidence has cast doubt on the effectiveness of SSRIs, these results support their therapeutic use in the treatment of PPD.

  12. Enhanced Responsiveness to Selective Serotonin Reuptake Inhibitors during Lactation

    PubMed Central

    Jury, Nicholas J.; McCormick, Betsy A.; Horseman, Nelson D.; Benoit, Stephen C.; Gregerson, Karen A.

    2015-01-01

    The physiology of mood regulation in the postpartum is poorly understood despite the fact that postpartum depression (PPD) is a common pathology. Serotonergic mechanisms and their dysfunction are widely presumed to be involved, which has led us to investigate whether lactation induces changes in central or peripheral serotonin (5-HT) systems and related affective behaviors. Brain sections from lactating (day 10 postpartum) and age-matched nulliparous (non-pregnant) C57BL/6J mice were processed for 5-HT immunohistochemistry. The total number of 5-HT immunostained cells and optical density were measured. Lactating mice exhibited lower immunoreactive 5-HT and intensity in the dorsal raphe nucleus when compared with nulliparous controls. Serum 5-HT was quantified from lactating and nulliparous mice using radioimmunoassay. Serum 5-HT concentrations were higher in lactating mice than in nulliparous controls. Affective behavior was assessed in lactating and non-lactating females ten days postpartum, as well as in nulliparous controls using the forced swim test (FST) and marble burying task (MBT). Animals were treated for the preceding five days with a selective serotonin reuptake inhibitor (SSRI, citalopram, 5mg/kg/day) or vehicle. Lactating mice exhibited a lower baseline immobility time during the FST and buried fewer marbles during the MBT as compared to nulliparous controls. Citalopram treatment changed these behaviors in lactating mice with further reductions in immobility during the FST and decreased marble burying. In contrast, the same regimen of citalopram treatment had no effect on these behaviors in either non-lactating postpartum or nulliparous females. Our findings demonstrate changes in both central and peripheral 5-HT systems associated with lactation, independent of pregnancy. They also demonstrate a significant interaction of lactation and responsiveness to SSRI treatment, which has important implications in the treatment of PPD. Although recent evidence has cast doubt on the effectiveness of SSRIs, these results support their therapeutic use in the treatment of PPD. PMID:25689282

  13. Ketogenic Diet Improves Motor Performance but Not Cognition in Two Mouse Models of Alzheimer’s Pathology

    PubMed Central

    Brownlow, Milene L.; Benner, Leif; D’Agostino, Dominic; Gordon, Marcia N.; Morgan, Dave

    2013-01-01

    Dietary manipulations are increasingly viewed as possible approaches to treating neurodegenerative diseases. Previous studies suggest that Alzheimer’s disease (AD) patients present an energy imbalance with brain hypometabolism and mitochondrial deficits. Ketogenic diets (KDs), widely investigated in the treatment and prevention of seizures, have been suggested to bypass metabolic deficits present in AD brain by providing ketone bodies as an alternative fuel to neurons. We investigated the effects of a ketogenic diet in two transgenic mouse lines. Five months old APP/PS1 (a model of amyloid deposition) and Tg4510 (a model of tau deposition) mice were offered either a ketogenic or a control (NIH-31) diet for 3 months. Body weight and food intake were monitored throughout the experiment, and blood was collected at 4 weeks and 4 months for ketone and glucose assessments. Both lines of transgenic mice weighed less than nontransgenic mice, yet, surprisingly, had elevated food intake. The ketogenic diet did not affect these differences in body weight or food consumption. Behavioral testing during the last two weeks of treatment found that mice offered KD performed significantly better on the rotarod compared to mice on the control diet independent of genotype. In the open field test, both transgenic mouse lines presented increased locomotor activity compared to nontransgenic, age-matched controls, and this effect was not influenced by KD. The radial arm water maze identified learning deficits in both transgenic lines with no significant differences between diets. Tissue measures of amyloid, tau, astroglial and microglial markers in transgenic lines showed no differences between animals fed the control or the ketogenic diet. These data suggest that ketogenic diets may play an important role in enhancing motor performance in mice, but have minimal impact on the phenotype of murine models of amyloid or tau deposition. PMID:24069439

  14. Probiotic Bacteria Induce a ‘Glow of Health’

    PubMed Central

    Smillie, Christopher; Varian, Bernard J.; Ibrahim, Yassin M.; Lakritz, Jessica R.; Alm, Eric J.; Erdman, Susan E.

    2013-01-01

    Radiant skin and hair are universally recognized as indications of good health. However, this ‘glow of health’ display remains poorly understood. We found that feeding of probiotic bacteria to aged mice induced integumentary changes mimicking peak health and reproductive fitness characteristic of much younger animals. Eating probiotic yogurt triggered epithelial follicular anagen-phase shift with sebocytogenesis resulting in thick lustrous fur due to a bacteria-triggered interleukin-10-dependent mechanism. Aged male animals eating probiotics exhibited increased subcuticular folliculogenesis, when compared with matched controls, yielding luxuriant fur only in probiotic-fed subjects. Female animals displayed probiotic-induced hyperacidity coinciding with shinier hair, a feature that also aligns with fertility in human females. Together these data provide insights into mammalian evolution and novel strategies for integumentary health. PMID:23342023

  15. Adipose stem cells’ antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function

    PubMed Central

    Wang, Haiying; Wei, Shuyue; Xue, Xinxin; You, Yuntian; Ma, Qiang

    2016-01-01

    This study aims to discuss adipose stem cells’ (ASCs) antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function; the study also aims to explore a new mechanism of anti-aging to provide clinical anti-aging therapy with new thoughts and methods. We selected 40 healthy specific pathogen-free (SPF) nude mice and divided them randomly into four groups which were: blank control group; D-galactose + phosphate buffer saline (PBS) group; D-galactose + ASCs treatment group; and D-galactose + aminoguanidine (AG) group. Results showed that the superoxide dismutase (SOD) level of mice in the D-galactose-induced model group (87.15 ± 4.95 U/g) decreased significantly compared with that of control group (146.21 ± 4.76 U/g), while malonaldehyde (MDA) level of mice in D-galactose induced model group (11.12 ± 2.08 nmol/mg) increased significantly compared with that of control group (5.46 ± 2.05 nmol/mg) (P <0.05); thus D-galactose induced sub-acutely aging mice models were duplicated successfully. Results also indicated that transplantation of ASCs could reverse expression of aging-related biomarkers such as MDA, SOD, and advanced glycosylation end products (AGEs); hematoxylin and eosin (HE) staining showed that thickness of the dermis layer as well as the collagen content of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In addition, immunohistochemical assay showed that expression quantity of CD31 and vascular endothelial growth factor (VEGF) of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In conclusion, ASCs can trace cell distribution successfully through bioluminescence, and they survive for a short time in the skin after transplantation, which provides a basis for the application of ASC transplantation in clinical practices. Moreover, ASCs can control glycosylation level of D-galactose-induced skin aging of nude mice, reverse expression of aging-related biomarkers as well as restrain formation of advanced glycation end products, which are similar to the effects of AG inhibitors of advanced glycation end products. Thus, ASCs can prevent glycosylation-induced skin aging as well as recover functions of skin. PMID:26916459

  16. Adipose stem cells' antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function.

    PubMed

    Wang, Haiying; Wei, Shuyue; Xue, Xinxin; You, Yuntian; Ma, Qiang

    2016-09-01

    This study aims to discuss adipose stem cells' (ASCs) antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function; the study also aims to explore a new mechanism of anti-aging to provide clinical anti-aging therapy with new thoughts and methods. We selected 40 healthy specific pathogen-free (SPF) nude mice and divided them randomly into four groups which were: blank control group; D-galactose + phosphate buffer saline (PBS) group; D-galactose + ASCs treatment group; and D-galactose + aminoguanidine (AG) group. Results showed that the superoxide dismutase (SOD) level of mice in the D-galactose-induced model group (87.15 ± 4.95 U/g) decreased significantly compared with that of control group (146.21 ± 4.76 U/g), while malonaldehyde (MDA) level of mice in D-galactose induced model group (11.12 ± 2.08 nmol/mg) increased significantly compared with that of control group (5.46 ± 2.05 nmol/mg) (P <0.05); thus D-galactose induced sub-acutely aging mice models were duplicated successfully. Results also indicated that transplantation of ASCs could reverse expression of aging-related biomarkers such as MDA, SOD, and advanced glycosylation end products (AGEs); hematoxylin and eosin (HE) staining showed that thickness of the dermis layer as well as the collagen content of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In addition, immunohistochemical assay showed that expression quantity of CD31 and vascular endothelial growth factor (VEGF) of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In conclusion, ASCs can trace cell distribution successfully through bioluminescence, and they survive for a short time in the skin after transplantation, which provides a basis for the application of ASC transplantation in clinical practices. Moreover, ASCs can control glycosylation level of D-galactose-induced skin aging of nude mice, reverse expression of aging-related biomarkers as well as restrain formation of advanced glycation end products, which are similar to the effects of AG inhibitors of advanced glycation end products. Thus, ASCs can prevent glycosylation-induced skin aging as well as recover functions of skin. © The Author(s) 2016.

  17. FOXP2 Expression in Frontotemporal Lobar Degeneration-Tau.

    PubMed

    López-González, Irene; Palmeira, Andre; Aso, Ester; Carmona, Margarita; Fernandez, Liana; Ferrer, Isidro

    2016-09-06

    FOXP2 is altered in a variety of language disorders. We found reduced mRNA and protein expression of FOXP2 in frontal cortex area 8 in Pick's disease, and frontotemporal lobar degeneration-tau linked to P301L mutation presenting with language impairment in comparison with age-matched controls and cases with parkinsonian variant progressive supranuclear palsy. Foxp2 mRNA and protein are also reduced with disease progression in the somatosensory cortex in transgenic mice bearing the P301S mutation in MAPT when compared with wild-type littermates. Our findings support the presence of FOXP2 expression abnormalities in sporadic and familial frontotemporal degeneration tauopathies.

  18. Ultrasonic assessment of hepatic blood flow as a marker of mouse hepatocarcinoma.

    PubMed

    Bonnin, Philippe; Villemain, Aude; Vincent, François; Debbabi, Haythem; Silvestre, Jean Sébastien; Contreres, Jean Olivier; Levy, Bernard I; Tobelem, Gérard; Dupuy, Evelyne

    2007-04-01

    Two-dimensional color-coded pulsed Doppler ultrasonography (US) with a 12-MHz linear transducer was used to follow tumor growth and neoangiogenesis development in 12 transgenic mice developing a whole liver hepatocellular carcinoma (HCC) induced by the expression of SV40-T antigen. In this model, male mice developed HCC at various temporal and histologic stages (hyperplastic, four-eight wk; nodular, 12 wk; diffuse carcinoma, 16-20 wk), whereas female mice remained tumor free. Seven age-matched tumor-free mice were used as controls. Liver volume was calculated from B-mode images of the abdomen. Blood flow waveforms were recorded from the hepatic tumor-feeding artery upstream from the tumor vessels, allowing quantitative blood flow velocity measurements. Measurements were performed every four weeks from four to 20 weeks. As early as the hyperplastic stage (eight weeks), liver volume was increased by 2.7-fold, hepatic artery peak-systolic blood flow velocities (BFV) by 1.5-fold, end-diastolic BFV by 1.6-fold and mean BFV by 2.0-fold compared with control values (p < 0.001). Differences increased until 20 weeks and peak-systolic reached 90 +/- 6, end-diastolic 54 +/- 5 and mean BFV 48 +/- 5 cm s(-1). Successive measurements of BFV were reproducible and intraobserver repeatability coefficient values were <3 cm s(-1). In contrast, mesenteric artery BFV, which did not supply tumor region, did not show any significant difference with respect to control values. Thus, an increase in BFV constitutes a functional evaluation of tumor vascularity. In preclinical studies in small animals, measurements of liver volume and blood flow velocities in hepatic tumor-feeding artery provide a useful, reproducible, noninvasive, easy-to-repeat tool to monitor tumor growth and neoangiogenesis in hepatocellular carcinoma in mice.

  19. Hematopoietic Stem Cells from Ts65Dn Mice Are Deficient in the Repair of DNA Double-Strand Breaks

    PubMed Central

    Wang, Yingying; Chang, Jianhui; Shao, Lijian; Feng, Wei; Luo, Yi; Chow, Marie; Du, Wei; Meng, Aimin; Zhou, Daohong

    2016-01-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra partial or whole copy of chromosome 21. In addition to musculoskeletal and neurodevelopmental abnormalities, children with DS exhibit various hematologic disorders and have an increased risk of developing acute lymphoblastic leukemia and acute megakaryocytic leukemia. Using the Ts65Dn mouse model, we investigated bone marrow defects caused by trisomy for 132 orthologs of the genes on human chromosome 21. The results showed that, although the total bone marrow cellularity as well as the frequency of hematopoietic progenitor cells (HPCs) was comparable between Ts65Dn mice and their age-matched euploid wild-type (WT) control littermates, human chromosome 21 trisomy led to a significant reduction in hematopoietic stem cell (HSC) numbers and clonogenic function in Ts65Dn mice. We also found that spontaneous DNA double-strand breaks (DSBs) were significantly increased in HSCs from the Ts65Dn mice, which was correlated with the significant reduction in HSC clonogenic activity compared to those from WT controls. Moreover, analysis of the repair kinetics of radiation-induced DSBs revealed that HSCs from Ts65Dn mice were less proficient in DSB repair than the cells from WT controls. This deficiency was associated with a higher sensitivity of Ts65Dn HSCs to radiation-induced suppression of HSC clonogenic activity than that of euploid HSCs. These findings suggest that an additional copy of genes on human chromosome 21 may selectively impair the ability of HSCs to repair DSBs, which may contribute to DS-associated hematological abnormalities and malignancies. PMID:27243896

  20. [Experimental study of metabonomics in the diagnosis of allergic rhinitis in mice].

    PubMed

    Wang, A; Li, Q F; Zhang, G Q; Zhao, C Q

    2016-02-01

    To investigate the application of metabonomics in the diagnosis of allergic rhinitis. Eighty male Kunming mice were randomly divided into two groups, control group (30 mice) and allergic rhinitis (AR) group (50 mice). After modeling, removal behavior score more than 6 and retain 30 mice behavior score equal to 6.Collect the mice peripheral blood and preparate blood serum, using UPLC-MS chromatographic separation and detection. The data were pretreated by SPSS and Excel, after chromatographic peak matching by MZmine. Firstly , delete interference data in accordance with the 80% rule .Then, the investigate data were analyzed by PLS-DA and PCA-X. Three-dimensional view of the control group (30 mice) and AR group (30 mice) blood serum data was drawn using PCA-X and PLS-DA method. The two groups of samples could be completely separated through views, which showed that there was a significant difference between the two groups of data. There were some differences in the blood metabolites between the control group and AR group . The study showed that it was scientific and feasible to diagnose AR using the metabonomics.

  1. Deletion of Nrf2 reduces skeletal mechanical properties and decreases load-driven bone formation.

    PubMed

    Sun, Yong-Xin; Li, Lei; Corry, Kylie A; Zhang, Pei; Yang, Yang; Himes, Evan; Mihuti, Cristina Layla; Nelson, Cecilia; Dai, Guoli; Li, Jiliang

    2015-05-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor expressed in many cell types, including osteoblasts, osteocytes, and osteoclasts. Nrf2 has been considered a master regulator of cytoprotective genes against oxidative and chemical insults. The lack of Nrf2 can induce pathologies in multiple organs. The aim of this study was to investigate the role of Nrf2 in load-driven bone metabolism using Nrf2 knockout (KO) mice. Compared to age-matched littermate wild-type controls, Nrf2 KO mice have significantly lowered femoral bone mineral density (-7%, p<0.05), bone formation rate (-40%, p<0.05), as well as ultimate force (-11%, p<0.01). The ulna loading experiment showed that Nrf2 KO mice were less responsive than littermate controls, as indicated by reduction in relative mineralizing surface (rMS/BS, -69%, p<0.01) and relative bone formation rate (rBFR/BS, -84%, p<0.01). Furthermore, deletion of Nrf2 suppressed the load-driven gene expression of antioxidant enzymes and Wnt5a in cultured primary osteoblasts. Taken together, the results suggest that the loss-of-function mutation of Nrf2 in bone impairs bone metabolism and diminishes load-driven bone formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Total-body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts.

    PubMed

    Kondo, Hisataka; Searby, Nancy D; Mojarrab, Rose; Phillips, Jonathan; Alwood, Joshua; Yumoto, Kenji; Almeida, Eduardo A C; Limoli, Charles L; Globus, Ruth K

    2009-03-01

    Ionizing radiation can cause substantial tissue degeneration, which may threaten the long-term health of astronauts and radiotherapy patients. To determine whether a single dose of radiation acutely compromises structural integrity in the postpubertal skeleton, 18-week-old male mice were exposed to (137)Cs gamma radiation (1 or 2 Gy). The structure of high-turnover, cancellous bone was analyzed by microcomputed tomography (microCT) 3 or 10 days after irradiation and in basal controls (tissues harvested at the time of irradiation) and age-matched controls. Irradiation (2 Gy) caused a 20% decline in tibial cancellous bone volume fraction (BV/TV) within 3 days and a 43% decline within 10 days, while 1 Gy caused a 28% reduction 10 days later. The BV/TV decrement was due to increased spacing and decreased thickness of trabeculae. Radiation also increased ( approximately 150%) cancellous surfaces lined with tartrate-resistant, acid phosphatase-positive osteoclasts, an index of increased bone resorption. Radiation decreased lumbar vertebral BV/TV 1 month after irradiation, showing the persistence of cancellous bone loss, although mechanical properties in compression were unaffected. In sum, a single dose of gamma radiation rapidly increased osteoclast surface in cancellous tissue and compromised cancellous microarchitecture in the remodeling appendicular and axial skeleton of postpubertal mice.

  3. MICEST: a Potential Tool for Non-invasive Detection of Molecular Changes in Alzheimer’s Disease

    PubMed Central

    Haris, Mohammad; Singh, Anup; Cai, Kejia; Nath, Kavindra; Crescenzi, Rachelle; Kogan, Feliks; Hariharan, Hari; Reddy, Ravinder

    2012-01-01

    Myo-Inositol (mIns) is a marker of glial cells proliferation and has been shown to increase in early Alzheimer’s disease (AD) pathology. mIns exhibits a concentration dependent chemical-exchange-saturation-transfer (CEST) effect (MICEST) between its hydroxyl groups and bulk water protons. Using the endogenous MICEST technique brain mIns concentration and glial cells proliferation can be mapped at high spatial resolution. The high resolution mapping of mIns was performed using MICEST technique on ~20 months old APP-PS1 transgenic mouse model of AD as well as on age matched wild type (WT) control (n=5). The APP-PS1 mice show ~50% higher MICEST contrast than WT control with concomitant increase in mIns concentration as measured through proton spectroscopy. Immunostaining against glial-fibric-acidic protein also depicts proliferative glial cells in larger extent in APP-PS1 than WT mice, which correspond to the higher mIns concentration. Potential significance of MICEST in early detection of AD pathology is discussed in detail. PMID:23041110

  4. Gravity receptor function in mice with graded otoconial deficiencies.

    PubMed

    Jones, Sherri M; Erway, Lawrence C; Johnson, Kenneth R; Yu, Heping; Jones, Timothy A

    2004-05-01

    The purpose of the present study was to examine gravity receptor function in mutant mouse strains with variable deficits in otoconia: lethal milk (lm), pallid (pa), tilted (tlt), mocha (mh), and muted (mu). Control animals were either age-matched heterozygotes or C57BL/6J (abbr. B6) mice. Gravity receptor function was measured using linear vestibular evoked potentials (VsEPs). Cage and swimming behaviors were also documented. Temporal bones were cleared to assess the overall otoconial deficit and to correlate structure and function for lm mice. Results confirmed the absence of VsEPs for mice that lacked otoconia completely. VsEP thresholds and amplitudes varied in mouse strains with variable loss of otoconia. Some heterozygotes also showed elevated VsEP thresholds in comparison to B6 mice. In lm mice, which have absent otoconia in the utricle and a variable loss of otoconia in the saccule, VsEPs were present and average P1/N1 amplitudes were highly correlated with the average loss of saccular otoconia (R = 0.77,p < 0.001). Cage and swimming behavior were not adversely affected in those animals with recordable VsEPs. Most, but not all, mice with absent VsEPs were unable to swim. Some animals were able to swim despite having no measurable gravity receptor response. The latter finding underscores the remarkable adaptive potential exhibited by neurobehavioral systems following profound sensory loss. It also shows that behavior alone may be an unreliable indicator of the extent of gravity receptor deficits.

  5. Chotosan ameliorates cognitive and emotional deficits in an animal model of type 2 diabetes: possible involvement of cholinergic and VEGF/PDGF mechanisms in the brain

    PubMed Central

    2012-01-01

    Background Diabetes is one of the risk factors for cognitive deficits such as Alzheimer’s disease. To obtain a better understanding of the anti-dementia effect of chotosan (CTS), a Kampo formula, we investigated its effects on cognitive and emotional deficits of type 2 diabetic db/db mice and putative mechanism(s) underlying the effects. Methods Seven-week-old db/db mice received daily administration of CTS (375 – 750 mg/kg, p.o.) and the reference drug tacrine (THA: 2.5 mg/kg, i.p.) during an experimental period of 7 weeks. From the age of 9-week-old, the animals underwent the novel object recognition test, the modified Y-maze test, and the water maze test to elucidate cognitive performance and the elevated plus maze test to elucidate anxiety-related behavior. After completing behavioral studies, Western blotting and immunohistochemical studies were conducted. Results Compared with age-matched non-diabetic control strain (m/m) mice, db/db mice exhibited impaired cognitive performance and an increased level of anxiety. CTS ameliorated cognitive and emotional deficits of db/db mice, whereas THA improved only cognitive performance. The phosphorylated levels of Akt and PKCα in the hippocampus were significantly lower and higher, respectively, in db/db mice than in m/m mice. Expression levels of the hippocampal cholinergic marker proteins and the number of the septal cholinergic neurons were also reduced in db/db mice compared with those in m/m mice. Moreover, the db/db mice had significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2, platelet-derived growth factor-B, and PDGF receptor β, in the hippocampus. CTS and THA treatment reversed these neurochemical and histological alterations caused by diabetes. Conclusion These results suggest that CTS ameliorates diabetes-induced cognitive deficits by protecting central cholinergic and VEGF/PDGF systems via Akt signaling pathway and that CTS exhibits the anxiolytic effect via neuronal mechanism(s) independent of cholinergic or VEGF/PDGF systems in db/db mice. PMID:23082896

  6. Chotosan ameliorates cognitive and emotional deficits in an animal model of type 2 diabetes: possible involvement of cholinergic and VEGF/PDGF mechanisms in the brain.

    PubMed

    Zhao, Qi; Niu, Yimin; Matsumoto, Kinzo; Tsuneyama, Koichi; Tanaka, Ken; Miyata, Takeshi; Yokozawa, Takako

    2012-10-20

    Diabetes is one of the risk factors for cognitive deficits such as Alzheimer's disease. To obtain a better understanding of the anti-dementia effect of chotosan (CTS), a Kampo formula, we investigated its effects on cognitive and emotional deficits of type 2 diabetic db/db mice and putative mechanism(s) underlying the effects. Seven-week-old db/db mice received daily administration of CTS (375 - 750 mg/kg, p.o.) and the reference drug tacrine (THA: 2.5 mg/kg, i.p.) during an experimental period of 7 weeks. From the age of 9-week-old, the animals underwent the novel object recognition test, the modified Y-maze test, and the water maze test to elucidate cognitive performance and the elevated plus maze test to elucidate anxiety-related behavior. After completing behavioral studies, Western blotting and immunohistochemical studies were conducted. Compared with age-matched non-diabetic control strain (m/m) mice, db/db mice exhibited impaired cognitive performance and an increased level of anxiety. CTS ameliorated cognitive and emotional deficits of db/db mice, whereas THA improved only cognitive performance. The phosphorylated levels of Akt and PKCα in the hippocampus were significantly lower and higher, respectively, in db/db mice than in m/m mice. Expression levels of the hippocampal cholinergic marker proteins and the number of the septal cholinergic neurons were also reduced in db/db mice compared with those in m/m mice. Moreover, the db/db mice had significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2, platelet-derived growth factor-B, and PDGF receptor β, in the hippocampus. CTS and THA treatment reversed these neurochemical and histological alterations caused by diabetes. These results suggest that CTS ameliorates diabetes-induced cognitive deficits by protecting central cholinergic and VEGF/PDGF systems via Akt signaling pathway and that CTS exhibits the anxiolytic effect via neuronal mechanism(s) independent of cholinergic or VEGF/PDGF systems in db/db mice.

  7. Systemic Gene Transfer of a Hexosaminidase Variant Using an scAAV9.47 Vector Corrects GM2 Gangliosidosis in Sandhoff Mice.

    PubMed

    Osmon, Karlaina J L; Woodley, Evan; Thompson, Patrick; Ong, Katalina; Karumuthil-Melethil, Subha; Keimel, John G; Mark, Brian L; Mahuran, Don; Gray, Steven J; Walia, Jagdeep S

    2016-07-01

    GM2 gangliosidosis is a group of neurodegenerative diseases caused by β-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and β, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (β-subunit knockout) mouse model. The study utilized a modified human β-hexosaminidase α-subunit (μ-subunit) that contains critical sequences from the β-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD mouse phenotype for long-term. Our data could have implications not only for treatment of SD but also for Tay-Sachs disease (α-subunit deficiency) and similar brain disorders.

  8. The Hajdu Cheney Mutation Is a Determinant of B-Cell Allocation of the Splenic Marginal Zone.

    PubMed

    Yu, Jungeun; Zanotti, Stefano; Walia, Bhavita; Jellison, Evan; Sanjay, Archana; Canalis, Ernesto

    2018-01-01

    The neurogenic locus notch homolog protein (Notch)-2 receptor is a determinant of B-cell allocation, and gain-of-NOTCH2-function mutations are associated with Hajdu-Cheney syndrome (HCS), a disease presenting with osteoporosis and acro-osteolysis. We generated a mouse model reproducing the HCS mutation (Notch2HCS), and heterozygous global mutant mice displayed gain-of-Notch2 function. In the mutant spleen, the characteristic perifollicular rim marking the marginal zone (MZ), which is the interface between the nonlymphoid red pulp and the lymphoid white pulp, merged with components of the white pulp. As a consequence, the MZ of Notch2HCS mice occupied most of the splenic structure. To explore the mechanisms involved, lymphocyte populations from the bone marrow and spleen were harvested from heterozygous Notch2HCS mice and sex-matched control littermates and analyzed by flow cytometry. Notch2HCS mice had an increase in CD21/35 high CD23 - splenic MZ B cells of approximately fivefold and a proportional decrease in splenic follicular B cells (CD21/35 int CD23 + ) at 1, 2, and 12 months of age. Western blot analysis revealed that Notch2HCS mutant splenocytes had increased phospho-Akt and phospho-Jun N-terminal kinase, and gene expression analysis of splenic CD19 + B cells demonstrated induction of Hes1 and Hes5 in Notch2HCS mutants. Anti-Notch2 antibodies decreased MZ B cells in control and Notch2HCS mice. In conclusion, Notch2HCS mutant mice have increased mature B cells in the MZ of the spleen. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Different ketogenesis strategies lead to disparate seizure outcomes.

    PubMed

    Dolce, Alison; Santos, Polan; Chen, Weiran; Hoke, Ahmet; Hartman, Adam L

    2018-07-01

    Despite the introduction of new medicines to treat epilepsy over the last 50 years, the number of patients with poorly-controlled seizures remains unchanged. Metabolism-based therapies are an underutilized treatment option for this population. We hypothesized that two different means of systemic ketosis, the ketogenic diet and intermittent fasting, would differ in their acute seizure test profiles and mitochondrial respiration. Male NIH Swiss mice (aged 3-4 weeks) were fed for 12-13 days using one of four diet regimens: ketogenic diet (KD), control diet matched to KD for protein content and micronutrients (CD), or CD with intermittent fasting (24 h feed/24 h fast) (CD-IF), tested post-feed or post-fast. Mice were subject to the 6 Hz threshold test or, in separate cohorts, after injection of kainic acid in doses based on their weight (Cohort I) or a uniform dose regardless of weight (Cohort II). Mitochondrial respiration was tested in brain tissue isolated from similarly-fed seizure-naïve mice. KD mice were protected against 6 Hz-induced seizures but had more severe seizure scores in the kainic acid test (Cohorts I & II), the opposite of CD-IF mice. No differences were noted in mitochondrial respiration between diet regimens. KD and CD-IF do not share identical antiseizure mechanisms. These differences were not explained by differences in mitochondrial respiration. Nevertheless, both KD and CD-IF regimens protected against different types of seizures, suggesting that mechanisms underlying CD-IF seizure protection should be explored further. Published by Elsevier B.V.

  10. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    PubMed

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  11. Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice.

    PubMed

    Maier, Elizabeth A; Weage, Kristina J; Guedes, Marjorie M; Denson, Lee A; McNeal, Monica M; Bernstein, David I; Moore, Sean R

    2013-12-17

    Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams' diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (RRV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (P<.0001). RRV vaccination induced higher levels of serum anti-RV IgA responses in RBD vs. CD mice (P<.0001). Vaccination protected CD and RBD mice equally against EDIM infection, as measured by viral shedding. In unvaccinated RBD mice, EDIM shedding peaked 1 day earlier (P<.05), however we detected no effects of undernutrition on viral clearance nor of infection on bodyweight. EDIM infection provoked higher anti-RV serum IgA levels in RBD vs. CD mice, regardless of vaccination (P<.0001). Last, RRV vaccination mitigated stool IgA responses to EDIM more in CD vs. RBD mice (P<.0001). Despite modulated IgA responses to vaccination and infection, undernutrition does not impair rotavirus vaccine efficacy nor exacerbate infection in this mouse model of protein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. [STUDY RELATIVE EXPRESSION OF GENES THAT CONTROL GLUCOSE METABOLISM IN THE LIVER IN MICE WITH DEVELOPMENT OF MELANOCORTIN OBESITY].

    PubMed

    Baklanov, A V; Bazhan, N M

    2015-06-01

    The relative gene expressions of glucose-6-phosphatase (G6P), phosphoenolpyruvate carbo- xykinase (PEPCK)--markers of gluconeogenesis, glucokinase (GK)--a marker of glycolysis, glucose transporter type 2 (GLUT2)--a marker of input and output of glucose in the liver were measured during the development of melanocortin (MC) obesity in male mice of C57BL/6J strain with mutation yellow in the Agouti locus (Ay/a mice). The mutation decreases MC receptor activity and induces hyperphagia and MC obesity. The males of the same line with mutation nonagouti were used as control. Tissue samples were taken at age 10 (before obesity), 15 (moderate obesity) and 30 (developed obesity) weeks. It has been shown that Ay/a mice had decreased glucose tolerance since 10-week age. There were age-related changes in mRNA levels in the liver of Ay/a mice, unlike a/a mice. In Ay/a mice the mRNA GLUT2 levels at the age of 10 weeks, mRNA GK levels at the age of 15 weeks, and mRNA G6P levels at the age of 3O weeks were higher than those in Ada mice of other ages. InAYfa mice the mRNA GK levels at the age of 15 weeks and mRNA G6F levels at the age of 30 weeks were increased relatively to those in a/a mice. Thus, Ay/a mice before the development of MK obesity had changes in the mRNA levels genes of proteins that regulate hepatic glucose metabolism, which may contribute to the compensation of glucose metabolism disorders caused by a hereditary decrease of MK system activity

  13. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    PubMed

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  14. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes

    PubMed Central

    Alam, Imranul; Reilly, Austin M.; Alkhouli, Mohammed; Gerard-O’Riley, Rita L.; Kasipathi, Charishma; Oakes, Dana K.; Wright, Weston B.; Acton, Dena; McQueen, Amie K.; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.

    2017-01-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice over-expressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions. PMID:28013361

  15. [The battery of tests for behavioral phenotyping of aging animals in the experiment].

    PubMed

    Gorina, Ya V; Komleva, Yu K; Lopatina, O L; Volkova, V V; Chernykh, A I; Shabalova, A A; Semenchukov, A A; Olovyannikova, R Ya; Salmina, A B

    2017-01-01

    The purpose of the study was to develop a battery of tests to study social and cognitive impairments for behavioral phenotyping of aging experimental animals with physiological neurodegeneration. Object of the study were outbred CD1 mice in the following groups: 1st group - 12-month old male mice (physiological aging); 2nd group - 2-month old male mice (control group). Social recognition test, elevated plus maze test (EPM), open field test, light-dark box test, and Fear conditioning protocol were used to estimate the neurological status of experimental animals. We found that aging male mice in a contrast to young ones have demonstrated lower social interest to female mice in the social recognition task. EPM and light-dark box tests showed increased level of anxiety in the group of aged mice comparing to the control group. Fear conditioning protocol revealed impairment of associative learning and memory in the group of aged mice, particularly, fear memory consolidation was dramatically suppressed. Analysis of behavioral factors, social interactions and anxiety level in the experimental mice has confirmed age-related neurodegeneration in the 1st group. We found that the most informative approach to identifying neurological impairments in aging mice (social interaction deficit, limitation of interests, increased level of anxiety) should be based on the open field test light-dark box test, and Fear conditioning protocol. Such combination allows obtaining new data on behavioral alterations in the age-associated of neurodegeneration and to develop novel therapeutic strategies for the treatment of age-related brain pathology.

  16. IgG3 deficiency extends lifespan and attenuates progression of glomerulonephritis in MRL/lpr mice

    PubMed Central

    2012-01-01

    Background Antibodies of the IgG3 subclass have been implicated in the pathogenesis of the spontaneous glomerulonephritis observed in mice of the MRL/MpJ-Tnfrsf6lpr (MRL/lpr) inbred strain which have been widely studied as a model of systemic lupus erythematosus We have produced IgG3-deficient (-/-) mice with the MRL/lpr genetic background to determine whether IgG3 antibodies are necessary for or at least contributory to MRL/lpr-associated nephritis. Results The gamma3 genotype (+/+ vs. +/- vs. -/-) did not appear to significantly affect serum titers of IgG auto-antibodies specific for double-stranded DNA (dsDNA) or α-actinin. However, while substantial serum titers of IgG3 auto-antibodies specific for double-stranded DNA (dsDNA) or α-actinin were seen in gamma3 +/+ mice, somewhat lower serum titers of these IgG3 auto-antibodies were found in gamma3 +/- mice, and gamma3 -/- mice exhibited baseline concentrations of these auto-antibodies. Analysis of immunoglobulins eluted from snap-frozen kidneys obtained from mice of all three gamma3 genotypes at ~18 weeks of age revealed much higher quantities of IgG in the kidneys from gamma3 +/+ than gamma3 -/- mice, and most IgG eluted from +/+ mice was IgG3. The serum creatinine levels in gamma3 +/+ mice substantially exceeded those of age-matched gamma3 -/- mice after ~21 weeks of age. Histopathological examination of kidneys from mice sacrificed at pre-determined ages also revealed more extensive glomerulosclerosis in gamma3 +/+ or +/- mice than in -/- mice beginning at 21 weeks of age. Survival analysis for IgG3-deficient and IgG3-producing MRL/lpr mice revealed that gamma3 -/- mice lived significantly longer (p = 0.0006) than either gamma3 +/- or +/+ mice. Spontaneous death appeared to be due to irreversible renal failure, because > 85% of glomeruli in kidneys from mice that died spontaneously were obliterated by glomerulosclerosis. Conclusions The available evidence suggests that IgG3 deficiency partially protects MRL/lpr mice against glomerulonephritis-associated morbidity and mortality by slowing or arresting the progression to glomerulosclerosis. Reviewers This article was reviewed by Pushpa Pandiyan, Irun Cohen, and Etienne Joly. PMID:22248284

  17. Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration

    PubMed Central

    Lee, Su Hyun; Kim, Donghoon; Karuppagounder, Senthilkumar S.; Kumar, Manoj; Mao, Xiaobo; Shin, Joo Ho; Lee, Yunjong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2016-01-01

    Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein–induced neuropathology. In mice expressing a human α-synucleinopathy–associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein–induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies. PMID:27348587

  18. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    PubMed

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy particularly for promoting skeletal muscle regeneration.

  19. Comparison of MRI-defined back muscles volume between patients with ankylosing spondylitis and control patients with chronic back pain: age and spinopelvic alignment matched study.

    PubMed

    Bok, Doo Hee; Kim, Jihye; Kim, Tae-Hwan

    2017-02-01

    To compare MRI-defined back muscle volume between AS patients and age, and spinopelvic alignment matched control patients with chronic back pain. 51 male patients with AS were enrolled. Age and spinopelvic alignment matched controls (male) were found among non-AS patients with chronic back pain. After matching procedure, fully matched controls were found in 31 of 51 AS patients (60.8%), who represent AS patients without deformity. However, matched controls were not found in 20 of 51 AS patients (39.2%), who represent AS patients with deformity. MRI parameters of back muscle (paraspinal muscle and psoas muscle) at L4/5 disc level including cross-sectional area (CSA) and fat-free cross-sectional area (FCSA) were compared between AS patients and matched controls. Covariates, including BMI, self-reported physical activity, and the presence of chronic disease, which can influence back muscle volume, were also investigated. There were no statistical differences in age, body mass index, score of back pain (NRS), and spinopelvic alignment, and physical activity between matched AS patients and control patients except for duration of back pain. All MRI parameters for paraspinal muscle volume in matched AS patients (without deformity) were significantly less than those of control patients, and significantly larger than those of non-matched AS patients (with deformity). Body size adjusted MRI parameters (relative CSA and relative FCSA) of paraspinal muscle showed strong correlations with lumbar lordosis and sacral slope. Such relationship between paraspinal muscle and spinopelvic parameters remained significant even after multivariate adjustment. AS patients without deformity already have decreased paraspinal muscle volume compared with age and spinopelvic alignment matched non-AS patients with chronic back pain. Such decrease in paraspinal muscle volume was significantly associated with kyphotic deformity of AS patients even after multivariate adjustment. Although the result of our study supports the causal relationship between muscle degeneration and kyphotic deformity in AS patients, further study is required to prove the causality.

  20. Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB.

    PubMed

    Wang, Yuehui; Sun, Weixia; Du, Bing; Miao, Xiao; Bai, Yang; Xin, Ying; Tan, Yi; Cui, Wenpeng; Liu, Bin; Cui, Taixing; Epstein, Paul N; Fu, Yaowen; Cai, Lu

    2013-02-15

    MG-132, a proteasome inhibitor, can upregulate nuclear factor (NF) erythroid 2-related factor 2 (Nrf2)-mediated antioxidative function and downregulate NF-κB-mediated inflammation. The present study investigated whether through the above two mechanisms MG-132 could provide a therapeutic effect on diabetic cardiomyopathy in the OVE26 type 1 diabetic mouse model. OVE26 mice develop hyperglycemia at 2-3 wk after birth and exhibit albuminuria and cardiac dysfunction at 3 mo of age. Therefore, 3-mo-old OVE26 diabetic and age-matched control mice were intraperitoneally treated with MG-132 at 10 μg/kg daily for 3 mo. Before and after MG-132 treatment, cardiac function was measured by echocardiography, and cardiac tissues were then subjected to pathological and biochemical examination. Diabetic mice showed significant cardiac dysfunction, including increased left ventricular systolic diameter and wall thickness and decreased left ventricular ejection fraction with an increase of the heart weight-to-tibia length ratio. Diabetic hearts exhibited structural derangement and remodeling (fibrosis and hypertrophy). In diabetic mice, there was also increased systemic and cardiac oxidative damage and inflammation. All of these pathogenic changes were reversed by MG-132 treatment. MG-132 treatment significantly increased the cardiac expression of Nrf2 and its downstream antioxidant genes with a significant increase of total antioxidant capacity and also significantly decreased the expression of IκB and the nuclear accumulation and DNA-binding activity of NF-κB in the heart. These results suggest that MG-132 has a therapeutic effect on diabetic cardiomyopathy in OVE26 diabetic mice, possibly through the upregulation of Nrf2-dependent antioxidative function and downregulation of NF-κB-mediated inflammation.

  1. VDR deficiency affects alveolar bone and cementum apposition in mice.

    PubMed

    Zhang, Xueming; Rahemtulla, Firoz; Zhang, Ping; Thomas, Huw F

    2011-07-01

    To compare the mineralisation density (MD), morphology and histology of alveolar bone and cementum amongst VDR +/+, VDR -/-, and VDR -/- groups supplemented with a diet TD 96348, containing 20% lactose, 2.0% calcium and 1.25% phosphorous. Four groups of mice (6 mice/group) were identified by genotyping: VDR +/+ mice (VDR wild type), VDR -/- mice (VDR deficient), VDR -/- offsprings derived from VDR -/- parents receiving a supplemental diet (early rescued), and VDR -/- mice fed with a supplemental diet beginning at age one month (late rescued). All mice were sacrificed at age 70.5 days. Micro-CT was used to compare MD and morphology of alveolar bone and cementum. H-E and Toluidine blue staining was used to examine the ultrastructure of the alveolar bone and cementum at matched locations. In VDR -/- group, alveolar bone and cementum failed to mineralise normally. Early rescue increased MD of alveolar bone in VDR -/- mice with excessive alveolar bone formation, but which not observed in late rescue group. MD and morphology of cementum-dentine complex in both early and late rescue groups were comparable with VDR +/+ group when feeding with high-calcium rescue diet. VDR affects alveolar bone mineralisation and formation systemically and locally. However, cementum apposition and mineralisation is mainly regulated by calcium concentrations in serum. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet.

    PubMed

    Jackson, Ellen E; Rendina-Ruedy, Elisabeth; Smith, Brenda J; Lacombe, Veronique A

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.

  3. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing.

    PubMed

    Gallistel, C R; Tucci, Valter; Nolan, Patrick M; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-03-05

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability.

  4. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing

    PubMed Central

    Gallistel, C. R.; Tucci, Valter; Nolan, Patrick M.; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-01-01

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability. PMID:24446498

  5. Phospho-eIF2α Level Is Important for Determining Abilities of BACE1 Reduction to Rescue Cholinergic Neurodegeneration and Memory Defects in 5XFAD Mice

    PubMed Central

    Devi, Latha; Ohno, Masuo

    2010-01-01

    β-Site APP-cleaving enzyme 1 (BACE1) initiates amyloid-β (Aβ) generation and thus represents a prime therapeutic target in treating Alzheimer's disease (AD). Notably, increasing evidence indicates that BACE1 levels become elevated in AD brains as disease progresses; however, it remains unclear how the BACE1 upregulation may affect efficacies of therapeutic interventions including BACE1-inhibiting approaches. Here, we crossed heterozygous BACE1 knockout mice with AD transgenic mice (5XFAD model) and compared the abilities of partial BACE1 reduction to rescue AD-like phenotypes at earlier (6-month-old) and advanced (15–18-month-old) stages of disease, which expressed normal (∼100%) and elevated (∼200%) levels of BACE1, respectively. BACE1+/− deletion rescued memory deficits as tested by the spontaneous alternation Y-maze task in 5XFAD mice at the earlier stage and prevented their septohippocampal cholinergic deficits associated with significant neuronal loss. Importantly, BACE1+/− deletion was no longer able to rescue memory deficits or cholinergic neurodegeneration in 5XFAD mice at the advanced stage. Moreover, BACE1+/− deletion significantly reduced levels of Aβ42 and the β-secretase-cleaved C-terminal fragment (C99) in 6-month-old 5XFAD mouse brains, while these neurotoxic β-cleavage products dramatically elevated with age and were not affected by BACE1+/− deletion in 15–18-month-old 5XFAD brains. Interestingly, although BACE1+/− deletion lowered BACE1 expression by ∼50% in 5XFAD mice irrespective of age in concordance with the reduction in gene copy number, BACE1 equivalent to wild-type controls remained in BACE1+/−·5XFAD mice at the advanced age. In accord, phosphorylation of the translation initiation factor eIF2α, an important mediator of BACE1 elevation, was dramatically increased (∼9-fold) in 15–18-month-old 5XFAD mice and remained highly upregulated (∼6-fold) in age-matched BACE1+/−·5XFAD mice. Together, our results indicate that partial reduction of BACE1 is not sufficient to block the phospho-eIF2α-dependent BACE1 elevation during the progression of AD, thus limiting its abilities to reduce cerebral Aβ/C99 levels and rescue memory deficits and cholinergic neurodegeneration. PMID:20886088

  6. Ectoparasite Burden, Clinical Disease, and Immune Responses throughout Fur Mite (Myocoptes musculinus) Infestation in C57BL/6 and Rag1–/– Mice

    PubMed Central

    Moats, Cassandra R; Baxter, Victoria K; Pate, Nathan M; Watson, Julie

    2016-01-01

    Immunocompetent weanling mice infested with Myocoptes musculinus harbor high mite loads, yet burdens decrease with age. The development of immunity to the parasite may explain this observation. In this study, we followed M. musculinus burdens in Rag1−/− mice and immunocompetent C57BL/6 controls from 4 to 36 wk of age and compared the clinical signs and body weights of noninfested and infested mice of both strains over time. In addition, histopathology of skin lesions and expression of cytokines and transcription factors associated with Th1- and Th2-type immune responses were assessed. Myocoptes burdens decreased and remained low in B6 mice over time, whereas Rag1−/− mice showed an initial decrease in burdens after 4 wk of age followed by an increase from 24 to 36 wk. In addition, Rag1−/− mice had higher burdens than B6 mice over time. Both strains of infested mice exhibited clinical signs of fur mite infestation—including alopecia, poor weight gain, mite-associated debris, and pruritus—and clinical signs positively correlated with the severity of the Myocoptes burden. Histopathology of skin from both strains of infested mice showed decreased lesion severity with age, likely a result of declining mite populations. Finally, compared with noninfested controls, infested B6 mice had increased expression of markers associated with the Th2-type immune response, which increased in magnitude with increasing age and duration of infestation. These results suggest that development of adaptive immunity plays a role in control of fur mite populations and that heavier infestations may result in more severe clinical signs and skin lesions. PMID:27298244

  7. Age-related decline in oligodendrogenesis retards white matter repair in mice.

    PubMed

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H; Arai, Ken

    2013-09-01

    Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask whether, compared with young brains, white matter regions in older brains may be more vulnerable in part because of decreased rates of compensatory oligodendrogenesis after injury. A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month-old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells to sublethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Baseline myelin density in the corpus callosum was similar in 2-month and 8-month-old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in cyclic AMP response element-binding protein signaling may be involved because activating cyclic AMP response element-binding protein with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of oligodendrocyte precursor cells, alleviated myelin loss, and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of oligodendrocyte precursor cells. An age-related decline in cyclic AMP response element-binding protein-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate cyclic AMP response element-binding protein signaling provide a potential therapeutic approach for treating white matter injury in aging brains.

  8. B lymphocytes not required for progression from insulitis to diabetes in non-obese diabetic mice.

    PubMed

    Charlton, B; Zhang, M D; Slattery, R M

    2001-12-01

    Previous studies have implicated B lymphocytes in the pathogenesis of diabetes in the non-obese diabetic (NOD) mouse. While it is clear that B lymphocytes are necessary, it has not been clear at which stage of disease they play a role; early, late or both. To clarify when B lymphocytes are needed, T lymphocytes were transferred from 5-week-old NOD female mice to age-matched NOD/severe combined immunodeficiency (SCID) recipient mice. NOD/SCID mice, which lack functionally mature T and B lymphocytes, do not normally develop insulitis or insulin-dependent diabetes melitus (IDDM). The NOD/SCID mice that received purified T lymphocytes from 5-week-old NOD mice subsequently developed insulitis and diabetes even though they did not have detectable B lymphocytes. This suggests that while B lymphocytes may be essential for an initial priming event they are not requisite for disease progression in the NOD mouse.

  9. Longitudinal investigation of neuroinflammation and metabolite profiles in the APPswe ×PS1Δe9 transgenic mouse model of Alzheimer's disease.

    PubMed

    Chaney, Aisling; Bauer, Martin; Bochicchio, Daniela; Smigova, Alison; Kassiou, Michael; Davies, Karen E; Williams, Steve R; Boutin, Herve

    2018-02-01

    There is increasing evidence linking neuroinflammation to many neurological disorders including Alzheimer's disease (AD); however, its exact contribution to disease manifestation and/or progression is poorly understood. Therefore, there is a need to investigate neuroinflammation in both health and disease. Here, we investigate cognitive decline, neuroinflammatory and other pathophysiological changes in the APP swe ×PS1 Δe9 transgenic mouse model of AD. Transgenic (TG) mice were compared to C57BL/6 wild type (WT) mice at 6, 12 and 18 months of age. Neuroinflammation was investigated by [ 18 F]DPA-714 positron emission tomography and myo-inositol levels using 1 H magnetic resonance spectroscopy (MRS) in vivo. Neuronal and cellular dysfunction was investigated by looking at N-acetylaspartate (NAA), choline-containing compounds, taurine and glutamate also using MRS. Cognitive decline was first observed at 12 m of age in the TG mice as assessed by working memory tests . A significant increase in [ 18 F]DPA-714 uptake was seen in the hippocampus and cortex of 18 m-old TG mice when compared to age-matched WT mice and 6 m-old TG mice. No overall effect of gene was seen on metabolite levels; however, a significant reduction in NAA was observed in 18 m-old TG mice when compared to WT. In addition, age resulted in a decrease in glutamate and an increase in choline levels. Therefore, we can conclude that increased neuroinflammation and cognitive decline are observed in TG animals, whereas NAA alterations occurring with age are exacerbated in the TG mice. These results support the role of neuroinflammation and metabolite alteration in AD and in ageing. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  10. A Longitudinal Study of Cognition, Proton MR Spectroscopy and Synaptic and Neuronal Pathology in Aging Wild-type and AβPPswe-PS1dE9 Mice

    PubMed Central

    Jansen, Diane; Zerbi, Valerio; Janssen, Carola I. F.; Dederen, Pieter J. W. C.; Mutsaers, Martina P. C.; Hafkemeijer, Anne; Janssen, Anna-Lena; Nobelen, Cindy L. M.; Veltien, Andor; Asten, Jack J.; Heerschap, Arend; Kiliaan, Amanda J.

    2013-01-01

    Proton magnetic resonance spectroscopy (1H MRS) is a valuable tool in Alzheimer’s disease research, investigating the functional integrity of the brain. The present longitudinal study set out to characterize the neurochemical profile of the hippocampus, measured by single voxel 1H MRS at 7 Tesla, in the brains of AβPPSswe-PS1dE9 and wild-type mice at 8 and 12 months of age. Furthermore, we wanted to determine whether alterations in hippocampal metabolite levels coincided with behavioral changes, cognitive decline and neuropathological features, to gain a better understanding of the underlying neurodegenerative processes. Moreover, correlation analyses were performed in the 12-month-old AβPP-PS1 animals with the hippocampal amyloid-β deposition, TBS-T soluble Aβ levels and high-molecular weight Aβ aggregate levels to gain a better understanding of the possible involvement of Aβ in neurochemical and behavioral changes, cognitive decline and neuropathological features in AβPP-PS1 transgenic mice. Our results show that at 8 months of age AβPPswe-PS1dE9 mice display behavioral and cognitive changes compared to age-matched wild-type mice, as determined in the open field and the (reverse) Morris water maze. However, there were no variations in hippocampal metabolite levels at this age. AβPP-PS1 mice at 12 months of age display more severe behavioral and cognitive impairment, which coincided with alterations in hippocampal metabolite levels that suggest reduced neuronal integrity. Furthermore, correlation analyses suggest a possible role of Aβ in inflammatory processes, synaptic dysfunction and impaired neurogenesis. PMID:23717459

  11. Lentivirus-mediated klotho up-regulation improves aging-related memory deficits and oxidative stress in senescence-accelerated mouse prone-8 mice.

    PubMed

    Zhou, Hong-Jing; Zeng, Chen-Ye; Yang, Ting-Ting; Long, Fang-Yi; Kuang, Xi; Du, Jun-Rong

    2018-05-01

    Oxidative stress caused by aging aggravates neuropathological changes and cognitive deficits. Klotho, an anti-aging protein, shows an anti-oxidative effect. The aims of the present study were to determine the potential therapeutic effect of klotho in aging-related neuropathological changes and memory impairments in senescence-accelerated mouse prone-8 (SAMP8) mice, and identify the potential mechanism of these neuroprotective effects. A lentivirus was used to deliver and sustain the expression of klotho. The lentiviral vectors were injected into the bilateral lateral ventricles of 7-month-old SAMP8 mice or age-matched SAMR1 mice. Three months later, the Y-maze alternation task and passive avoidance task were used to assess the memory deficits of the mice. In situ hybridization, immunohistochemistry, immunofluorescence, Nissl staining, quantitative real-time PCR and Western blot assays were applied in the following research. Our results showed that 3 months after injection of the lentiviral vectors encoding the full-length klotho gene, the expression of klotho in the brain was significantly increased in 10-month-old SAMP8 mice. This treatment reduced memory deficits, neuronal loss, synaptic damage and 4-HNE levels but increased mitochondrial manganese-superoxide dismutase (Mn-SOD) and catalase (CAT) expression. Moreover, the up-regulation of klotho expression decreased Akt and Forkhead box class O1 (FoxO1) phosphorylation. The present study provides a novel approach for klotho gene therapy and demonstrates that direct up-regulation of klotho in the brain might improve aging-related memory impairments and decrease oxidative stress. The underlying mechanism of this effect likely involves the inhibition of the Akt/FoxO1 pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Disuse osteopenia induced by botulinum toxin is similar in skeletally mature young and aged female C57BL/6J mice.

    PubMed

    Vegger, Jens Bay; Brüel, Annemarie; Brent, Mikkel Bo; Thomsen, Jesper Skovhus

    2018-03-01

    Osteopenia and osteoporosis predominately occur in the fully grown skeleton. However, it is unknown whether disuse osteopenia in skeletally mature, but growing, mice resembles that of fully grown mice. Twenty-four 16-week-old (young) and eighteen 44-week-old (aged) female C57BL/6J mice were investigated. Twelve young and nine aged mice were injected with botulinum toxin in one hind limb; the remaining mice served as controls. The mice were euthanized after 3 weeks of disuse. The femora were scanned by micro-computed tomography (µCT) and bone strength was determined by mechanically testing the femoral mid-diaphysis and neck. At the distal femoral metaphysis, the loss of trabecular bone volume fraction (BV/TV) differed between the young and aged mice. However, at the distal femoral epiphysis, no age-dependent differences were observed. Thinning of the trabeculae was not affected by the age of the mice at either the distal femoral metaphysis or the epiphysis. Furthermore, the aged mice lost more bone strength at the femoral mid-diaphysis, but not at the femoral neck, compared to the young mice. In general, the bone loss induced by botulinum toxin did not differ substantially between young and aged mice. Therefore, the loss of bone in young mice resembles that of aged mice, even though they are not fully grown.

  13. Activation of FoxM1 Revitalizes the Replicative Potential of Aged β-Cells in Male Mice and Enhances Insulin Secretion

    PubMed Central

    Golson, Maria L.; Dunn, Jennifer C.; Maulis, Matthew F.; Dadi, Prasanna K.; Osipovich, Anna B.; Magnuson, Mark A.; Jacobson, David A.

    2015-01-01

    Type 2 diabetes incidence increases with age, while β-cell replication declines. The transcription factor FoxM1 is required for β-cell replication in various situations, and its expression declines with age. We hypothesized that increased FoxM1 activity in aged β-cells would rejuvenate proliferation. Induction of an activated form of FoxM1 was sufficient to increase β-cell mass and proliferation in 12-month-old male mice after just 2 weeks. Unexpectedly, at 2 months of age, induction of activated FoxM1 in male mice improved glucose homeostasis with unchanged β-cell mass. Cells expressing activated FoxM1 demonstrated enhanced glucose-stimulated Ca2+ influx, which resulted in improved glucose tolerance through enhanced β-cell function. Conversely, our laboratory has previously demonstrated that mice lacking FoxM1 in the pancreas display glucose intolerance or diabetes with only a 60% reduction in β-cell mass, suggesting that the loss of FoxM1 is detrimental to β-cell function. Ex vivo insulin secretion was therefore examined in size-matched islets from young mice lacking FoxM1 in β-cells. Foxm1-deficient islets indeed displayed reduced insulin secretion. Our studies reveal that activated FoxM1 increases β-cell replication while simultaneously enhancing insulin secretion and improving glucose homeostasis, making FoxM1 an attractive therapeutic target for diabetes. PMID:26251404

  14. Aging of the dopaminergic system and motor behavior in mice intoxicated with the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

    PubMed

    Schumm, Sophie; Sebban, Claude; Cohen-Salmon, Charles; Callebert, Jacques; Launay, Jean-Marie; Golmard, Jean-Louis; Boussicault, Lydie; Petropoulos, Isabelle; Hild, Audrey; Rousselet, Estelle; Prigent, Annick; Friguet, Bertrand; Mariani, Jean; Hirsch, Etienne C

    2012-09-01

    1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication of mice is a standard model of Parkinson's disease (PD). However, it does not reproduce functionally PD. Given the occurrence of PD during aging, symptoms might only be detected in MPTP-intoxicated mice after aging. To address this, mice injected with MPTP at 2.5 months were followed up to a maximum age of 21 months. There was no loss of dopamine cells with aging in control mice; moreover, the initial post-MPTP intoxication decrease in dopamine cell was no longer significant at 21 months. With aging, striatal dopamine level remained constant, but concentrations of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were markedly reduced in both groups. There was also a late impairment of fine motor skills. After MPTP intoxication, hyperactivity was immediately detected and it became greater than in control mice from 14 months of age; fine motor skills were also more impaired; both these symptoms were correlated with striatal dopamine, DOPAC and HVA concentrations. In bothgroups, neither motor symptoms nor dopamine changes worsened with age. These findings do not support the notion that PD develops with age in mice after MPTP intoxication and that the motor deficits seen are because of an aging process. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  15. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  16. Deletion of angiotensin II type 1 receptor gene attenuates chronic alcohol-induced retinal ganglion cell death with preservation of VEGF expression.

    PubMed

    Miao, Xiao; Lv, Huayi; Wang, Bo; Chen, Qiang; Miao, Lining; Su, Guanfang; Tan, Yi

    2013-01-01

    To investigate how chronic alcohol consumption affects adult visual nervous system and whether renin-angiotensin system (RAS) is involved in this pathogenic process. Male transgenic mice with angiotensin II (Ang II) type 1 (AT1) receptor gene knockout (AT1-KO) and age-matched wild-type (WT) mice were pair-fed a modified Lieber-DeCarli alcohol or isocaloric maltose dextrin control liquid diet for 2 months. At the end of the study, retinas were harvested and subjected to histopathological and immunohistochemical examination. We found that chronic alcohol consumption significantly increased retinal ganglion cell (RGC) apoptosis in the retina of WT mice, but not AT1-KO mice, detected by terminal deoxynucleotidyl-transferase-mediated dUTP-nick-end labeling staining and caspase 3 activation, along with an up-regulation of AT1 expression in RGC. At the same time, the phosphorylation of P53 in RGCs was significantly increased for both WT and AT1-KO mice exposed to alcohol, which could be significantly, although partially, prevented by AT1 gene deletion. We further examined the expression of vascular endothelial growth factor (VEGF) and CD31, and found that alcohol treatment significantly decreased the expression of VEGF and CD31 in RGCs of WT mice, but not AT1-KO mice. Taken together, our study demonstrates that the induction of RGC apoptosis by chronic alcohol exposure may be related to p53-activation and VEGF depression, all which are partially dependent of AT1 receptor activation.

  17. Characterization of the Genetic Program Linked to the Development of Atrial Fibrillation in CREM-IbΔC-X Mice.

    PubMed

    Seidl, Matthias D; Stein, Juliane; Hamer, Sabine; Pluteanu, Florentina; Scholz, Beatrix; Wardelmann, Eva; Huge, Andreas; Witten, Anika; Stoll, Monika; Hammer, Elke; Völker, Uwe; Müller, Frank U

    2017-08-01

    Reduced expression of genes regulated by the transcription factors CREB/CREM (cAMP response element-binding protein/modulator) is linked to atrial fibrillation (AF) susceptibility in patients. Cardiomyocyte-directed expression of the inhibitory CREM isoform CREM-IbΔC-X in transgenic mice (TG) leads to spontaneous-onset AF preceded by atrial dilatation and conduction abnormalities. Here, we characterized the altered gene program linked to atrial remodeling and development of AF in CREM-TG mice. Atria of young (TGy, before AF onset) and old (TGo, after AF onset) TG mice were investigated by mRNA microarray profiling in comparison with age-matched wild-type controls (WTy/WTo). Proteomic alterations were profiled in young mice (8 TGy versus 8 WTy). Annotation of differentially expressed genes revealed distinct differences in biological functions and pathways before and after onset of AF. Alterations in metabolic pathways, some linked to altered peroxisome proliferator-activated receptor signaling, muscle contraction, and ion transport were already present in TGy. Electron microscopy revealed significant loss of sarcomeres and mitochondria and increased collagen and glycogen deposition in TG mice. Alterations in electrophysiological pathways became prominent in TGo, concomitant with altered gene expression of K + -channel subunits and ion channel modulators, relevant in human AF. The most prominent alterations of the gene program linked to CREM-induced atrial remodeling were identified in the expression of genes related to structure, metabolism, contractility, and electric activity regulation, suggesting that CREM transgenic mice are a valuable experimental model for human AF pathophysiology. © 2017 American Heart Association, Inc.

  18. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior

    PubMed Central

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  19. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor

    PubMed Central

    Brim, B. L.; Haskell, R.; Awedikian, R.; Ellinwood, N.M.; Jin, L.; Kumar, A.; Foster, T.C.; Magnusson, K.

    2012-01-01

    The GluN2B subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced Green Fluorescent Protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines. PMID:23103326

  20. Sulforaphane reduction of testicular apoptotic cell death in diabetic mice is associated with the upregulation of Nrf2 expression and function.

    PubMed

    Wang, Yonggang; Zhang, Zhiguo; Guo, Weiying; Sun, Weixia; Miao, Xiao; Wu, Hao; Cong, Xianling; Wintergerst, Kupper A; Kong, Xiangbo; Cai, Lu

    2014-07-01

    Diabetes-induced testicular cell death is due predominantly to oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important transcription factor in controlling the antioxidative system and is inducible by sulforaphane (SFN). To test whether SFN prevents diabetes-induced testicular cell death, an insulin-defective stage of type 2 diabetes (IDS-T2DM) was induced in mice. This was accomplished by feeding them a high-fat diet (HFD) for 3 mo to induce insulin resistance and then giving one intraperitoneal injection of streptozotocin to induce hyperglycemia while age-matched control mice were fed a normal diet (ND). IDS-T2DM and ND-fed control mice were then further subdivided into those with or without 4-mo SFN treatment. IDS-T2DM induced significant increases in testicular cell death presumably through receptor and mitochondrial pathways, shown by increased ratio of Bax/Bcl2 expression and cleavage of caspase-3 and caspase-8 without significant change of endoplasmic reticulum stress. Diabetes also significantly increased testicular oxidative damage and inflammation. All of these diabetic effects were significantly prevented by SFN treatment with upregulated Nrf2 expression. These results suggest that IDS-T2DM induces testicular cell death presumably through caspase-8 activation and mitochondria-mediated cell death pathways and also by significantly downregulating testicular Nrf2 expression and function. SFN upregulates testicular Nrf2 expression and its target antioxidant expression, which was associated with significant protection of the testis from IDS-T2DM-induced germ cell death. Copyright © 2014 the American Physiological Society.

  1. A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans.

    PubMed

    Nath, Sayantan; Ghosh, Sankar Kumar; Choudhury, Yashmin

    A murine model of type 2 diabetes mellitus was used to compare the antidiabetic effects of the dipeptidyl peptidase-4 (DPP4) inhibitor vildagliptin and biguanide, metformin. Swiss albino mice (n=20 males; n=25 females) were given high fat diet (HFD) ad libitum for 3weeks followed by low dose (40mgkg -1 body weight, bw daily) of streptozotocin (STZ) intraperitoneally five times from the 22nd day of treatment onwards, with HFD continued up to 26th day. Controls (n=15 males; n=15 females) were fed normal balanced diet without administration of STZ. Successful induction of diabetes mellitus was confirmed by testing for fasting blood glucose, intraperitoneal glucose tolerance and intraperitoneal insulin sensitivity. Diabetic mice were administered vildagliptin (10mgkg -1 bw daily) and metformin (50mgkg -1 bw daily) orally for 4weeks. Control, diabetic, vildagliptin and metformin-treated diabetic mice were evaluated for alterations in lipid profile using blood serum and histopathology and oxidative stress using tissues including liver, kidney and heart. Diabetic mice showed significant alterations in lipid profile, tissue histopathology, impaired glucose tolerance, lower insulin sensitivity and elevated lipid peroxidation and protein carbonylation, with depressed catalase activity, when compared to age and gender-matched controls. Metformin and vildagliptin ameliorated the abovementioned diabetic conditions, with vildagliptin found to be more effective. A murine model developed by the combination of HFD and multiple low dose of STZ mimics the metabolic characteristics of type 2 diabetes mellitus in humans, and may be useful for antidiabetic drug screening. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer's disease.

    PubMed

    Shenk, Justin C; Liu, Jiankang; Fischbach, Kathryn; Xu, Kui; Puchowicz, Michel; Obrenovich, Mark E; Gasimov, Eldar; Alvarez, Ludis Morales; Ames, Bruce N; Lamanna, Joseph C; Aliev, Gjumrakch

    2009-08-15

    We measured age-dependent effects of human ApoE4 on cerebral blood flow (CBF) using ApoE4 transgenic mice compared to age-matched wild-type (WT) mice by use of [(14)C] iodoantipyrene autoradiography. ApoE4 associated factors reduce CBF gradually to create brain hypoperfusion when compared to WT, and the differences in CBF are greatest as animals age from 6-weeks to 12-months. Transmission electron microscopy with colloidal gold immunocytochemistry showed structural damage in young and aged microvessel endothelium of ApoE4 animals extended to the cytoplasm of perivascular cells, perivascular nerve terminals and hippocampal neurons and glial cells. These abnormalities coexist with mitochondrial structural alteration and mitochondrial DNA overproliferation and/or deletion in all brain cellular compartments. Spatial memory and temporal memory tests showed a trend in improving cognitive function in ApoE4 mice fed selective mitochondrial antioxidants acetyl-l-carnitine and R-alpha-lipoic acid. Our findings indicate that ApoE4 genotype-induced mitochondrial changes and associated structural damage may explain age-dependent pathology seen in AD, indicating potential for novel treatment strategies in the near future.

  3. Dynamic Temporal Processing of Nonspeech Acoustic Information by Children with Specific Language Impairment.

    ERIC Educational Resources Information Center

    Visto, Jane C.; And Others

    1996-01-01

    Ten children (ages 12-16) with specific language impairments (SLI) and controls matched for chronological or language age were tested with measures of complex sound localization involving the precedence effect phenomenon. SLI children exhibited tracking skills similar to language-age matched controls, indicating impairment in their ability to use…

  4. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle

    PubMed Central

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-01-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca2+ handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca2+] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca2+ handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca2+ handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness. PMID:22687611

  5. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.

    PubMed

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-08-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.

  6. Reversal of fragile X phenotypes by manipulation of AβPP/Aβ levels in Fmr1KO mice.

    PubMed

    Westmark, Cara J; Westmark, Pamela R; O'Riordan, Kenneth J; Ray, Brian C; Hervey, Crystal M; Salamat, M Shahriar; Abozeid, Sara H; Stein, Kelsey M; Stodola, Levi A; Tranfaglia, Michael; Burger, Corinna; Berry-Kravis, Elizabeth M; Malter, James S

    2011-01-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39-43 amino acid peptide mis-expressed in Alzheimer's disease (AD) and Down syndrome (DS). Aβ is over-expressed in the brain of Fmr1(KO) mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS), anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD) in Fmr1(KO) mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ(1-42) was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy.

  7. Association of young and advanced age of pregnant women with the risk of isolated congenital abnormalities in Hungary - a population-based case-matched control study.

    PubMed

    Csermely, Gyula; Susánszky, Éva; Czeizel, Andrew E

    2015-03-01

    To analyze the possible association of maternal age with the risk of all congenital abnormalities (CAs) in a population-based large case-matched control data set. The Hungarian Case-Control Surveillance of Congenital Abnormalities included 21,494 cases with isolated CA and their 34,311 matched controls. First the distribution of maternal age groups in 24 CA-groups and their matched controls was compared. In the second step, young (19 years or less) and advanced (35 years or more) age groups were compared. Finally, the subgroups of neural-tube defects, congenital heart defects and abdominal wall's CA were evaluated separately. A higher risk of gastroschisis, congenital heart defects, particularly left-sided obstructive defects, undescended testis and clubfoot was found in the youngest age group (19 years or less) of cases. The higher proportion of pregnant women with advanced age (i.e. 35 years or more) showed only a borderline excess in cases with clubfoot. The so-called U-shaped risk of maternal age distribution was found in cases with clubfoot and in the total group of isolated CAs. The maternal age is a contributing factor to the origin of some isolated CAs mainly in young pregnant women.

  8. Cancer dormancy: from mice to man.

    PubMed

    Marches, Radu; Scheuermann, Richard; Uhr, Jonathan

    2006-08-01

    In this review, we focused on our studies of cancer dormancy in a murine B cell lymphoma and human breast cancer. Lifelong dormancy was induced in syngeneic mice by prior immunization to the idiotype of the tumor cell (TC) Ig before TC challenge. The mice maintained approximately 10(6) lymphoma cells in their spleen throughout their lifetime despite replication of the TCs at a reduced rate. Recurrences occurred randomly. Because of the balance between replication and cell death, we hypothesized that a similar balance might occur in long-term survivors of breast cancer when the risk of recurrences is very low. We developed a sensitive assay for circulating tumor cells (CTCs) which none were found in normal age-matched women. One third of patients, 7-22 years after mastectomy and without any evidence of disease, had CTCs. The half-life of these CTCs could be deduced from other studies as probably 2-3 hours. Hence, there was a precise balance between replication of TCs (presumably from micrometastases) and cell death. Therefore, a major population of clinically cured breast cancer patients have a chronic disease controlled by their own physiological mechanisms. We speculate on underlying mechanisms based both on studies in experimental models and clinical trials.

  9. Daily energy balance in growth hormone receptor/binding protein (GHR -/-) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency.

    PubMed

    Longo, Kenneth A; Berryman, Darlene E; Kelder, Bruce; Charoenthongtrakul, Soratree; Distefano, Peter S; Geddes, Brad J; Kopchick, John J

    2010-02-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR -/- mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (M(b)) changes and physical activity in 17month-old female GHR -/- mice and their age-matched wild type littermates. The GHR -/- mice were smaller, consumed more food per unit M(b), had greater EE per unit M(b) and had an increase in 24-h EE/M(b) that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR -/- mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, M(b) and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for M(b) and LMA, the GHR -/- mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR -/- mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR -/- mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final 3h of the dark phase. Therefore, we conclude that GHR -/- mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable M(b). Relative to wild type mice, the GHR -/- mice consumed more calories per unit M(b), which offset the disproportionate increase in their daily energy expenditure. While GHR -/- mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Daily energy balance in growth hormone receptor/binding protein (GHR−/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency

    PubMed Central

    Longo, Kenneth A.; Berryman, Darlene E.; Kelder, Bruce; Charoenthongtrakul, Soratree; DiStefano, Peter S.; Geddes, Brad J.; Kopchick, John

    2009-01-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR −/− mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (Mb) changes and physical activity in 17 month-old female GHR −/− mice and their age-matched wild type littermates. The GHR −/− mice were smaller, consumed more food per unit Mb, had greater EE per unit Mb and had an increase in 24-h EE/Mb that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR −/− mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, Mb and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for Mb and LMA, the GHR −/− mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR −/− mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR −/− mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final three hours of the dark phase. Therefore, we conclude that GHR −/− mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable Mb. Relative to wild type mice, the GHR −/− mice consumed more calories per unit Mb, which offset the disproportionate increase in their daily energy expenditure. While GHR −/− mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. PMID:19747867

  11. Myocardial dysfunction occurs prior to changes in ventricular geometry in mice with chronic kidney disease (CKD).

    PubMed

    Winterberg, Pamela D; Jiang, Rong; Maxwell, Josh T; Wang, Bo; Wagner, Mary B

    2016-03-01

    Uremic cardiomyopathy is responsible for high morbidity and mortality rates among patients with chronic kidney disease (CKD), but the underlying mechanisms contributing to this complex phenotype are incompletely understood. Myocardial deformation analyses (ventricular strain) of patients with mild CKD have recently been reported to predict adverse clinical outcome. We aimed to determine if early myocardial dysfunction in a mouse model of CKD could be detected using ventricular strain analyses. CKD was induced in 5-week-old male 129X1/SvJ mice through partial nephrectomy (5/6Nx) with age-matched mice undergoing bilateral sham surgeries serving as controls. Serial transthoracic echocardiography was performed over 16 weeks following induction of CKD. Invasive hemodynamic measurements were performed at 8 weeks. Gene expression and histology was performed on hearts at 8 and 16 weeks. CKD mice developed decreased longitudinal strain (-25 ± 4.2% vs. -29 ± 2.3%; P = 0.01) and diastolic dysfunction (E/A ratio 1.2 ± 0.15 vs. 1.9 ± 0.18; P < 0.001) compared to controls as early as 2 weeks following 5/6Nx. In contrast, ventricular hypertrophy was not apparent until 4 weeks. Hearts from CKD mice developed progressive fibrosis at 8 and 16 weeks with gene signatures suggestive of evolving heart failure with elevated expression of natriuretic peptides. Uremic cardiomyopathy in this model is characterized by early myocardial dysfunction which preceded observable changes in ventricular geometry. The model ultimately resulted in myocardial fibrosis and increased expression of natriuretic peptides suggestive of progressive heart failure. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation.

    PubMed

    Yu, Lixia; Wang, Weiguang; Pang, Wei; Xiao, Zhonghai; Jiang, Yugang; Hong, Yan

    2017-01-01

    Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies and participates in their development by promoting hyperphosphorylation of microtubule-associated protein tau. Lycopene, as an effective antioxidant, combined with vitamin E seemed to be additive against oxidative stress. The present study was undertaken to examine whether lycopene or lycopene/vitamin E could exert protective effects on memory deficit and oxidative stress in tau transgenic mice expressing P301L mutation. P301L transgenic mice were assigned to three groups: P301L group (P301L), P301L+lycopene (Lyc), and P301L+lycopene/vitamin E (Lyc+VE). Age-matched C57BL/6J mice as wild type controls (Con) were used in the present study. Spatial memory was assessed by radial arm while passive memories were evaluated by step-down and step-through tests. Levels of tau phosphorylation were detected by western blot. Oxidative stress biomarkers were measured in the serum using biochemical assay kits. Compared with the control group, P301L mice displayed significant spatial and passive memory impairments, elevated malondialdehyde (MDA) levels and decreased glutathione peroxidase (GSH-Px) activities in serum, and increased tau phosphorylation at Thr231/Ser235, Ser262, and Ser396 in brain. Supplementations of lycopene or lycopene/vitamin E could significantly ameliorate the memory deficits, observably decreased MDA concentrations and increased GSH-Px activities, and markedly attenuated tau hyperphosphorylation at multiple AD-related sites. Our findings indicated that the combination of lycopene and vitamin E antioxidants acted in a synergistic fashion to bring significant effects against oxidative stress in tauopathies.

  13. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    PubMed

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1(-/-) ) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/-) mice. In serum assays, Aldh1a1(-/-) mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/-) mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/-) mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/-) mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  14. Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis.

    PubMed

    Wen, Qing; Zheng, Qiao-Song; Li, Xi-Xia; Hu, Zhao-Yuan; Gao, Fei; Cheng, C Yan; Liu, Yi-Xun

    2014-12-15

    Wilms' tumor 1 (Wt1) is a tumor suppressor gene encoding ∼24 zinc finger transcription factors. In the mammalian testis, Wt1 is expressed mostly by Sertoli cells (SCs) involved in testis development, spermatogenesis, and adult Leydig cell (ALC) steroidogenesis. Global knockout (KO) of Wt1 is lethal in mice due to defects in embryogenesis. Herein, we showed that Wt1 is involved in regulating fetal Leydig cell (FLC) degeneration and ALC differentiation during testicular development. Using Wt1(-/flox);Amh-Cre mice that specifically deleted Wt1 in the SC vs. age-matched wild-type (WT) controls, FLC-like-clusters were found in Wt1-deficient testes that remained mitotically active from postnatal day 1 (P1) to P56, and no ALC was detected at these ages. Leydig cells in mutant adult testes displayed morphological features of FLC. Also, FLC-like cells in adult mutant testes had reduced expression in ALC-associated genes Ptgds, Sult1e1, Vcam1, Hsd11b1, Hsd3b6, and Hsd17b3 but high expression of FLC-associated genes Thbs2 and Hsd3b1. Whereas serum LH and testosterone level in mutant mice were not different from controls, intratesticular testosterone level was significantly reduced. Deletion of Wt1 gene also perturbed the expression of steroidogenic enzymes Star, P450c17, Hsd3b6, Hsd3b1, Hsd17b1, and Hsd17b3. FLCs in adult mutant testes failed to convert androstenedione to testosterone due to a lack of Hsd17b3, and this defect was rescued by coculturing with fetal SCs. In summary, FLC-like cells in mutant testes are putative FLCs that remain mitotically active in adult mice, illustrating that Wt1 dictates the fate of FLC and ALC during postnatal testis development. Copyright © 2014 the American Physiological Society.

  15. Lethal Crimean-Congo hemorrhagic fever virus infection in interferon α/β receptor knockout mice is associated with high viral loads, proinflammatory responses, and coagulopathy.

    PubMed

    Zivcec, Marko; Safronetz, David; Scott, Dana; Robertson, Shelly; Ebihara, Hideki; Feldmann, Heinz

    2013-06-15

    Crimean-Congo hemorrhagic fever (CCHF) is a widely distributed viral hemorrhagic fever characterized by rapid onset of flu-like symptoms often followed by hemorrhagic manifestations. CCHF virus (CCHFV), a bunyavirus in the Nairovirus genus, is capable of infecting a wide range of mammalian hosts in nature but so far only causes disease in humans. Recently, immunocompromised mice have been reported as CCHF disease models, but detailed characterization is lacking. Here, we closely followed infection and disease progression in CCHFV-infected interferon α/β receptor knockout (IFNAR(-/-)) mice and age-matched wild-type (WT) mice. WT mice quickly clear CCHFV without developing any disease signs. In contrast, CCHFV infected IFNAR(-/-) mice develop an acute fulminant disease with high viral loads leading to organ pathology (liver and lymphoid tissues), marked proinflammatory host responses, severe thrombocytopenia, coagulopathy, and death. Disease progression closely mimics hallmarks of human CCHF disease, making IFNAR(-/-) mice an excellent choice to assess medical countermeasures.

  16. Bone metabolism markers and vitamin D in adolescent cyclists.

    PubMed

    Olmedillas, Hugo; Gonzalez-Agüero, Alejandro; Rapún-López, Marta; Gracia-Marco, Luis; Gomez-Cabello, Alba; Pradas de la Fuente, Francisco; Moreno, Luís A; Casajús, José A; Vicente-Rodríguez, Germán

    2018-02-03

    This study aimed to describe bone metabolic activity in adolescent competitive cyclists compared to age-matched controls. The main result is that younger subjects present a higher bone turnover than the older ones. Moreover, cyclists under the age of 17 have higher scores on all markers than age-matched controls. The purpose of this study was to describe bone metabolic activity in adolescent competitive cyclists compared to age-matched controls. Twenty-two male adolescent cyclists between 14 and 20 years (y) and 20 age-matched controls participated in this study. Serum osteocalcin (OC), aminoterminal propeptide of type I procollagen (PINP), and β-isomerized C-telopeptides (β-CTX) were analyzed by electrochemiluminescence immunoassay (ECLIA); plasma 25 hydroxyvitamin D [25(OH)D] was analyzed by enzyme-linked immunosorbent assay (ELISA). Analysis of variance revealed no significant differences in bone metabolism markers and vitamin D between cyclists and controls. Cyclists over 17 y had a significantly lower concentration in bone formation and resorption biochemical markers compared to cyclists under 17 y (all P < 0.05). Moreover, controls over 17 y presented lower concentration for PINP (P < 0.05) compared to their peers under 17 y. Comparisons between cyclists and controls under 17 y revealed higher concentrations of OC and PINP (P < 0.05) in cyclists. Group interaction by age was found for OC, PINP, and β-CTX (P < 0.01). Cyclists over 17 y had higher concentrations of [25(OH)D] (P < 0.05) than age-matched controls. The present results support the idea that cycling during adolescence may be associated to a decrease in bone turnover that may affect bone health later in life.

  17. Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease.

    PubMed

    L'Episcopo, Francesca; Tirolo, Cataldo; Caniglia, Salvatore; Testa, Nunzio; Serra, Pier A; Impagnatiello, Francesco; Morale, Maria C; Marchetti, Bianca

    2010-11-23

    Current evidence suggests a role of neuroinflammation in the pathogenesis of Parkinson's disease (PD) and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of basal ganglia injury. Reportedly, nonsteroidal anti-inflammatory drugs (NSAIDs) mitigate DAergic neurotoxicity in rodent models of PD. Consistent with these findings, epidemiological analysis indicated that certain NSAIDs may prevent or delay the progression of PD. However, a serious impediment of chronic NSAID therapy, particularly in the elderly, is gastric, renal and cardiac toxicity. Nitric oxide (NO)-donating NSAIDs, have a safer profile while maintaining anti-inflammatory activity of parent compounds. We have investigated the oral activity of the NO-donating derivative of flurbiprofen, [2-fluoro-α-methyl (1,1'-biphenyl)-4-acetic-4-(nitrooxy)butyl ester], HCT1026 (30 mg kg(-1) daily in rodent chow) in mice exposed to the parkinsonian neurotoxin MPTP. Ageing mice were fed with a control, flurbiprofen, or HCT1026 diet starting ten days before MPTP administration and continuing for all the experimental period. Striatal high affinity synaptosomal dopamine up-take, motor coordination assessed with the rotarod, tyrosine hydroxylase (TH)- and dopamine transporter (DAT) fiber staining, stereological cell counts, immunoblotting and gene expression analyses were used to assess MPTP-induced nigrostriatal DAergic toxicity and glial activation 1-40 days post-MPTP. HCT1026 was well tolerated and did not cause any measurable toxic effect, whereas flurbiprofen fed mice showed severe gastrointestinal side-effects. HCT1026 efficiently counteracted motor impairment and reversed MPTP-induced decreased synaptosomal [3H]dopamine uptake, TH- and DAT-stained fibers in striatum and TH+ neuron loss in substantia nigra pars compacta (SNpc), as opposed to age-matched mice fed with a control diet. These effects were associated to a significant decrease in reactive macrophage antigen-1 (Mac-1)-positive microglial cells within the striatum and ventral midbrain, decreased expression of iNOS, Mac-1 and NADPH oxidase (PHOX), and downregulation of 3-Nitrotyrosine, a peroxynitrite finger print, in SNpc DAergic neurons. Oral treatment with HCT1026 has a safe profile and a significant efficacy in counteracting MPTP-induced dopaminergic (DAergic) neurotoxicity, motor impairment and microglia activation in ageing mice. HCT1026 provides a novel promising approach towards the development of effective pharmacological neuroprotective strategies against PD.

  18. Effect of verb argument structure on picture naming in children with and without specific language impairment (SLI)

    PubMed Central

    Andreu, Llorenç; Sanz-Torrent, Mònica; Legaz, Lucia Buil; MacWhinney, Brian

    2014-01-01

    Background This study investigated verb argument structure effects in children with specific language impairment (SLI). Aims A picture-naming paradigm was used to compare the response times and naming accuracy for nouns and verbs with differing argument structure between Spanish-speaking children with and without language impairment. Methods & Procedures Twenty-four children with SLI (ages 5;3–8;2 [years;months]), 24 age-matched controls (ages 5;3–8;2), 24 MLU-w controls (ages 3;3–7;1 years), and 31 adults participated in a picture-naming study. Outcomes & Results The results show all groups produced more correct responses and were faster for nouns than all verbs together. As regards verb type accuracy, there were no differences between groups in naming one-argument verbs. However, for both two- and three-argument verbs, children with SLI were less accurate than adults and age-matched controls, but similar to the MLU-matched controls. For verb type latency, children with SLI were slower than both the age-matched controls and adults for one- and two-argument verbs, while no differences were found in three-argument verbs. No differences were found between children with SLI and MLU-matched controls for any verb type. Conclusions & Implications It has been shown that the naming of verbs is delayed in Spanish children with SLI. It is suggested that children with SLI may have problems encoding semantic representations. PMID:23121524

  19. The α-Tocopherol Form of Vitamin E Reverses Age-Associated Susceptibility to Streptococcus pneumoniae Lung Infection by Modulating Pulmonary Neutrophil Recruitment

    PubMed Central

    Ghanem, Elsa N. Bou; Clark, Stacie; Du, Xiaogang; Wu, Dayong; Camilli, Andrew; Leong, John M.; Meydani, Simin N.

    2016-01-01

    Streptococcus pneumoniae infections are an important cause of morbidity and mortality in older patients. Uncontrolled neutrophil-driven pulmonary inflammation exacerbates this disease. To test whether the α-tocopherol (α-Toc) form of vitamin E, a regulator of immunity, can modulate neutrophil responses as a preventive strategy to mitigate the age-associated decline in resistance to S. pneumoniae, young (4 mo) and old (22–24 mo) C57BL/6 mice were fed a diet containing 30-PPM (control) or 500-PPM (supplemented) α-Toc for 4 wk and intratracheally infected with S. pneumoniae. Aged mice fed a control diet were exquisitely more susceptible to S. pneumoniae than young mice. At 2 d postinfection, aged mice suffered 1000-fold higher pulmonary bacterial burden, 2.2-fold higher levels of neutrophil recruitment to the lung, and a 2.25-fold higher rate of lethal septicemia. Strikingly, α-Toc supplementation of aged mice resulted in a 1000-fold lower bacterial lung burden and full control of infection. This α-Toc–induced resistance to pneumococcal challenge was associated with a 2-fold fewer pulmonary neutrophils, a level comparable to S. pneumoniae–challenged, conventionally fed young mice. α-Toc directly inhibited neutrophil egress across epithelial cell monolayers in vitro in response to pneumococci or hepoxilin-A3, an eicosanoid required for pneumococcus-elicited neutrophil trans-epithelial migration. α-Toc altered expression of multiple epithelial and neutrophil adhesion molecules involved in migration, including CD55, CD47, CD18/CD11b, and ICAM-1. These findings suggest that α-Toc enhances resistance of aged mice to bacterial pneumonia by modulating the innate immune response, a finding that has potential clinical significance in combating infection in aged individuals through nutritional intervention. PMID:25512603

  20. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior.

    PubMed

    Townsend, Brigitte E; Chen, Yung-Ju; Jeffery, Elizabeth H; Johnson, Rodney W

    2014-11-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. Sulforaphane increases antioxidant enzymes including NAD(P)H quinone oxidoreductase and heme oxygenase I and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide (LPS)-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days before an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 hours after LPS, and mRNA was quantified in liver and brain at 24 hours. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin-1β (IL-1β) expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. In addition, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior

    PubMed Central

    Townsend, Brigitte E.; Chen, Yung-Ju; Jeffery, Elizabeth H.; Johnson, Rodney W.

    2015-01-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. SFN increases antioxidant enzymes including NAD(P)H quinone oxidoreductase (NQO1) and heme oxygenase I (HMOX1) and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days prior to an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 h following LPS, and mRNA quantified in liver and brain at 24 h. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin (IL)-1β expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. Additionally, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS. PMID:25439028

  2. Resistance to age-dependent thymic atrophy in long-lived mice that are deficient in pregnancy-associated plasma protein A

    PubMed Central

    Vallejo, Abbe N.; Michel, Joshua J.; Bale, Laurie K.; Lemster, Bonnie H.; Borghesi, Lisa; Conover, Cheryl A.

    2009-01-01

    Pregnancy-associated plasma protein A (PAPPA) is a metalloproteinase that controls the tissue availability of insulin-like growth factor (IGF). Homozygous deletion of PAPPA in mice leads to lifespan extension. Since immune function is an important determinant of individual fitness, we examined the natural immune ecology of PAPPA−/− mice and their wild-type littermates reared under specific pathogen-free condition with aging. Whereas wild-type mice exhibit classic age-dependent thymic atrophy, 18-month-old PAPPA−/− mice maintain discrete thymic cortex and medulla densely populated by CD4+CD8+ thymocytes that are capable of differentiating into single-positive CD4 and CD8 T cells. Old PAPPA−/− mice have high levels of T cell receptor excision circles, and have bone marrows enriched for subsets of thymus-seeding progenitors. PAPPA−/− mice have an overall larger pool of naive T cells, and also exhibit an age-dependent accumulation of CD44+CD43+ memory T cells similar to wild-type mice. However, CD43+ T cell subsets of old PAPPA−/− mice have significantly lower prevalence of 1B11 and S7, glycosylation isoforms known to inhibit T cell activation with normal aging. In bioassays of cell activation, splenic T cells of old PAPPA−/− mice have high levels of activation antigens and cytokine production, and also elicit Ig production by autologous B cells at levels equivalent to young wild-type mice. These data suggest an IGF-immune axis of healthy longevity. Controlling the availability of IGF in the thymus by targeted manipulation of PAPPA could be a way to maintain immune homeostasis during postnatal development and aging. PMID:19549878

  3. Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the Huntington's disease mutation.

    PubMed

    Pérez-Severiano, Francisca; Escalante, Bruno; Vergara, Paula; Ríos, Camilo; Segovia, José

    2002-09-27

    Huntington's disease (HD) is an autosomal hereditary neurodegenerative disorder caused by an abnormal expansion of the CAG repeats that code for a polyglutamine tract in a novel protein called huntingtin (htt). Both patients and experimental animals exhibit oxidative damage in specific areas of the brain, particularly the striatum. Nitric oxide (NO) is involved in many different physiological processes, and under pathological conditions it may promote oxidative damage through the formation of the highly reactive metabolite peroxynitrite; however, it may also play a role protecting cells from oxidative damage. We previously showed a correlation between the progression of the neurological phenotype and striatal oxidative damage in a line of transgenic mice, R6/1, which expresses a human mutated htt exon 1 with 116 CAG repeats. The purpose of the present work was to explore the participation of NO in the progressive oxidative damage that occurs in the striata of R6/1 mice. We analyzed the role of NO by measuring the activity of nitric oxide synthase (NOS) in the striata of transgenic and control mice at different ages. There was no difference in NOS activity between transgenic and wild-type mice at 11 weeks of age. In contrast, 19-week-old transgenic mice showed a significant increase in NOS activity, compared with same age controls. By 35 weeks of age, there was a decrease in NOS activity in transgenic mice when compared with wild-type controls. NOS protein expression was also determined in 11-, 19- and 35-week-old transgenic mice and wild-type littermates. Our results show increased neuronal NOS expression in 19-week-old transgenic mice, followed by a decreased level in 35-week-old mice, compared with controls, a phenomenon that parallels the changes in NOS enzyme activity. The present results suggest that NO is involved in the process leading to striatal oxidative damage and that it is associated with the onset of the progressive neurological phenotype in mice transgenic for the HD mutation.

  4. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  5. Protective Effects of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Fetus Brain in Aged and Young Mice.

    PubMed

    Kamali, Mahsa; Bahmanpour, Soghra

    2016-05-01

    One of the major problems of the aged women or older than 35 is getting pregnant in the late fertility life. Fertility rates begin to decline gradually at the age of 30, more so at 35, and markedly at 40. Even with fertility treatments such as in vitro fertilization, women have more difficulty in getting pregnant or may deliver abnormal fetus. The purpose of this study was to assess the effects of flax seed hydroalcoholic extract on the fetal brain of aged mice and its comparison with young mice. In this experimental study, 32 aged and 32 young mice were divided into 4 groups. Controls received no special treatment. The experimental mice groups, 3 weeks before mating, were fed with flax seed hydroalcoholic extract by oral gavages. After giving birth, the brains of the fetus were removed. Data analysis was performed by statistical test ANOVA using SPSS version 18 (P<0.05). The mean fetus brain weight of aged mother groups compared to the control group was increased significantly (P<0.05). This study showed that flax seed hydroalcoholic extract could improve fetal brain weights in the aged groups.

  6. Aging and alcohol interact to alter hepatic DNA hydroxymethylation

    PubMed Central

    Tammen, Stephanie A.; Dolnikowski, Gregory G.; Ausman, Lynne M.; Liu, Zhenhua; Sauer, Julia; SimonettaFriso; Choi, Sang-Woon

    2014-01-01

    Background Aging and chronic alcohol consumption are both modifiers of DNA methylation but it is not yet known whether chronic alcohol consumption also alters DNA hydroxymethylation, a newly discovered epigenetic mark produced by oxidation of methylcytosine. Furthermore, it has not been tested whether aging and alcohol interact to modify this epigenetic phenomenon, thereby having an independent effect on gene expression. Methods Old (18 months) and young (4 months) male C57BL/6 mice were pair-fed either a Lieber-DeCarli liquid diet with alcohol (18% of energy) or an isocaloricLieber-DeCarli control diet for 5 weeks. Global DNA hydroxymethylation and DNA methylation were analyzed from hepatic DNA using a new LC/MS-MS method. Hepatic mRNA expression of the Tet enzymes and Cyp2e1 were measured via qRTPCR. Results In young mice, mild chronic alcohol exposure significantly reduced global DNA hydroxymethylation compared with control mice (0.22%±0.01% vs 0.29±0.06%, p = 0.004). Alcohol did not significantly alter hydroxymethylcytosine levels in old mice. Old mice fed the control diet showed decreased global DNA hydroxymethylation compared with young mice fed the control diet (0.24±0.02% vs 0.29±0.06%, p = 0.04). This model suggests an interaction between aging and alcohol in determining DNA hydroxymethylation (pinteraction = 0.009). Expression of Tet2 and Tet3 enzymes was decreased in the old mice relative to the young (p < 0.005). Conclusions The observation that alcohol alters DNA hydroxymethylation indicates a new epigenetic effect of alcohol. This is the first study demonstrating the interactive effects of chronic alcohol consumption and aging on DNA hydroxymethylation. PMID:25070523

  7. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance.

  8. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  9. Regulation of Bone Formation During Disuse by miRNA

    NASA Technical Reports Server (NTRS)

    Thomas, Nicholas; Choi, Catherine Y.; Alwood, Joshua S.

    2016-01-01

    Astronauts lose bone structure during long-duration spaceflight. These changes are due, in part, to insufficient bone formation by the osteoblast cells. Little is known about the role that small (approximately 22 nucleotide), non-coding micro-RNAs (miRNAs) play in the osteoblast response to microgravity. We hypothesize that osteoblast-lineage cells alter their miRNA status during microgravity exposure, contributing to impaired bone formation during weightlessness. To simulate weightlessness, female mice (C57BL/6, Charles River, 10 weeks of age, n = 6) were hindlimb unloaded for 12 days. Age-matched and normally ambulating mice served as controls (n=6). To assess the expression of miRNAs in skeletal tissue, the right and left tibia of the mice were collected ex vivo and cleaned of soft-tissue and marrow. Total RNA was collected from tibial bone and relative abundance was measured for miRNAs of interest using quantitative real time PCR array looking at 372 unique and well-characterized mature miRNAs using the delta-delta Ct method. Transcripts of interest were normalized to an average of 6 reference RNAs. Preliminary results show that hindlimb unloading decreased the expression of 14 miRNAs to less than 1.4-2.9X control levels and increased the expression of 5 miRNAs relative to the control mice greater than 1-2-1.5X (p less than 0.05, respectively). Using the miRSystem we assessed overlapping target genes predicted to be regulated by multiple members of the 19 differentially expressed miRNAs as well as in silico predicted targets of our individual miRNAs. Our miRSystem results indicated that a number of our differentially expressed miRNAs were regulators of genes related to the Wnt-Beta Catenin pathway-a known regulator of bone health-and, interestingly, the estrogen-mediated cell-cycle regulation pathway, which may indicate that simulated weightlessness induced systemic hormonal changes that contributed to bone loss. We plan to follow up these findings by measuring gene expression of miRNA-regulated genes within these two pathways with the aim of furthering our understanding of the function of miRNAs in the skeletal response to spaceflight.

  10. POLI-mix functional food enhances steady-state bioenergetic status independently of age: an experimental study.

    PubMed

    Rastmanesh, Reza; Marotta, Francesco; Kantah, Makoto Keiichi; Nagpal, Ravinder; Lorenzetti, Aldo; Takadanohara, Hiroshi; Mashizume, Hiroshi; Kobayashi, Riyichi; Chui, De Hua

    2012-04-01

    BALB/c mice were divided into young, middle-aged, and aged groups, and each group was given 3 weeks of oral treatments: (1) 1 mL of VBC1-99 (a mixture of 42 fruits and vegetables extracts) or (2) 1 mL of same amount of antioxidant vitamins as control. Steady-state hepatic adenosine triphosphate (ATP) was assessed by phosphorus-31 nuclear magnetic resonance ((31)P-NMR) spectroscopy as: β-ATP/reference peak, inorganic phosphorus (Pi)/peak and β-ATP/Pi. As compared to untreated control, VBC1-99 significantly enhanced β-ATP/peak and β-ATP/Pi ratios (p<0.01) in all age groups and throughout the observation period (p<0.05) together with a significant decrease of Pi/ref peak ratio (p<0.05). However, this value in middle-aged and aged mice was comparable to antioxidant control mice. These NMR data demonstrate that VBC1-99 has a beneficial effect on hepatic energy metabolism, irrespective of age.

  11. The Cardioprotective Effect of Vitamin E (Alpha-Tocopherol) Is Strongly Related to Age and Gender in Mice

    PubMed Central

    Li, Yan; Lin, Ze-Bang; Liu, Xiang; Wang, Jing-Feng; Chen, Yang-Xin; Wang, Zhi-Ping; Zhang, Xi; Ou, Zhi-Jun; Ou, Jing-Song

    2015-01-01

    Vitamin E (VitE) only prevented cardiovascular diseases in some patients and the mechanisms remain unknown. VitE levels can be affected by aging and gender. We hypothesize that age and gender can influence VitE’s cardioprotective effect. Mice were divided into 4 groups according to age and gender, and each group of mice were divided into a control group and a VitE group. The mice were administered water or VitE for 21 days; Afterward, the cardiac function and myocardial infarct size and cardiomyocyte apoptosis were measured after myocardial ischemia reperfusion(MI/R). VitE may significantly improved cardiac function in young male mice and aged female mice by enhancing ERK1/2 activity and reducing JNK activity. Enhanced expression of HSP90 and Bcl-2 were also seen in young male mice. No changes in cardiac function and cardiac proteins were detected in aged male mice and VitE was even liked to exert a reverse effect in cardiac function in young mice by enhancing JNK activity and reducing Bcl-2 expression. Those effects were in accordance with the changes of myocardial infarction size and cardiomyocyte apoptosis in each group of mice. VitE may reduce MI/R injury by inhibiting cardiomyocyte apoptosis in young male mice and aged female mice but not in aged male mice. VitE was possibly harmful for young female mice, shown as increased cardiomyocyte apoptosis after MI/R. Thus, we speculated that the efficacy of VitE in cardiac protection was associated with age and gender. PMID:26331272

  12. Characterization of regulatory dendritic cells that mitigate acute graft-versus-host disease in older mice following allogeneic bone marrow transplantation.

    PubMed

    Scroggins, Sabrina M; Olivier, Alicia K; Meyerholz, David K; Schlueter, Annette J

    2013-01-01

    Despite improvements in human leukocyte antigen matching and pharmacologic prophylaxis, acute graft-versus-host disease (GVHD) is often a fatal complication following hematopoietic stem cell transplant (HSCT). Older HSCT recipients experience significantly increased morbidity and mortality compared to young recipients. Prophylaxis with syngeneic regulatory dendritic cells (DCreg) in young bone marrow transplanted (BMT) mice has been shown to decrease GVHD-associated mortality. To evaluate this approach in older BMT recipients, young (3-4 months) and older (14-18 months) DCreg were generated using GM-CSF, IL-10, and TGFβ. Analysis of young versus older DCreg following culture revealed no differences in phenotype. The efficacy of DCreg treatment in older BMT mice was evaluated in a BALB/c→C57Bl/6 model of GVHD; on day 2 post-BMT (d +2), mice received syngeneic, age-matched DCreg. Although older DCreg-treated BMT mice showed decreased morbidity and mortality compared to untreated BMT mice (all of which died), there was a small but significant decrease in the survival of older DCreg-treated BMT mice (75% survival) compared to young DCreg-treated BMT mice (90% survival). To investigate differences between dendritic cells (DC) in young and older DCreg-treated BMT mice that may play a role in DCreg function in vivo, DC phenotypes were assessed following DCreg adoptive transfer. Transferred DCreg identified in older DCreg-treated BMT mice at d +3 showed significantly lower expression of PD-L1 and PIR B compared to DCreg from young DCreg-treated BMT mice. In addition, donor DC identified in d +21 DCreg-treated BMT mice displayed increased inhibitory molecule and decreased co-stimulatory molecule expression compared to d +3, suggesting induction of a regulatory phenotype on the donor DC. In conclusion, these data indicate DCreg treatment is effective in the modulation of GVHD in older BMT recipients and provide evidence for inhibitory pathways that DCreg and donor DC may utilize to induce and maintain tolerance to GVHD.

  13. Exacerbated Glial Response in the Aged Mouse Hippocampus Following Controlled Cortical Impact Injury

    PubMed Central

    Sandhir, Rajat; Onyszchuk, Gregory; Berman, Nancy E. J.

    2008-01-01

    Old age is associated with enhanced susceptibility to and poor recovery from brain injury. An exacerbated microglial and astrocyte response to brain injury might be involved in poor outcomes observed in the elderly. The present study was therefore designed to quantitate the expression of markers of microglia and astrocyte activation using real-time RT-PCR, immunoblot and immunohistochemical analysis in aging brain in response to brain injury. We examined the hippocampus, a region that undergoes secondary neuron death, in aged (21–24 month) and adult (5–6 month) mice following controlled cortical impact (CCI) injury to the sensorimotor cortex. Basal mRNA expression of CD11b and Iba1, markers of activated microglia, was higher in aged hippocampus as compared to the adult. The mRNA expression of microglial markers increased and reached maximum 3 days post injury in both adult and aged mice, but was higher in the aged mice at all time points studied, and in the aged mice the return to baseline levels was delayed. Basal mRNA expression of GFAP and S100B, markers of activated astrocytes, was higher in aged mice. Both markers increased and reached maximum 7 days post injury. The mRNA expression of astrocyte markers returned to near basal levels rapidly after injury in the adult mice, whereas again in the aged mice return to baseline was delayed. Immunochemical analysis using Iba1 and GFAP antibodies indicate accentuated glial responses in the aged hippocampus after injury. The pronounced and prolonged activation of microglia and astrocytes in hippocampus may contribute to worse cognitive outcomes in the elderly following TBI. PMID:18692046

  14. Emodin, a compound with putative antidiabetic potential, deteriorates glucose tolerance in rodents.

    PubMed

    Abu Eid, Sameer; Adams, Michael; Scherer, Thomas; Torres-Gómez, Héctor; Hackl, Martina Theresa; Kaplanian, Mairam; Riedl, Rainer; Luger, Anton; Fürnsinn, Clemens

    2017-03-05

    Emodin is found in remedies from Traditional Chinese Medicine. Since antihyperglycaemic action was observed in rodents, non-scientific sources advertise emodin intake as a natural cure for diabetes. Emodin was admixed to high fat-food of obese mice at two doses (2 and 5g/kg; daily emodin uptake 103 and 229mg/kg). Comparison was made to ad libitum fed and to food restricted control groups, the latter showing the same weight gain as the corresponding emodin-treated groups. Emodin blunted food intake by 6% and 20% for the low and high dose, which was accompanied by proportionate reductions in weight gain. Emodin reduced blood glucose relative to freely feeding controls, but comparison to weight-matched controls unmasked deterioration, rather than improvement, of basal glycaemia (mmol/l: fed ad libitum, 9.5±0.4; low emodin, 9.4±0.3, weight-matched, 8.2±0.3; high emodin, 7.2±0.4, weight-matched, 6.1±0.3; P<0.01, emodin vs weight-matched) and glucose tolerance (area under the curve, min*mol/l: fed ad libitum, 2.01±0.08; low emodin, 1.97±0.12, weight-matched, 1.75±0.03; high emodin, 1.89±0.07, weight-matched, 1.65±0.05; P<0.0002, emodin vs weight-matched). An insulin tolerance test suggested insulin desensitisation by prolonged emodin treatment. Furthermore, a single oral emodin dose did not affect glucose tolerance in obese mice, whereas intravenous injection in rats suggested a potential of emodin to acutely impair insulin release. Our results show that the antihyperglycaemic action of emodin as well as associated biochemical alterations could be the mere consequences of a spoilt appetite. Published claims of antidiabetic potential via other mechanisms evoke the danger of misuse of natural remedies by diabetic patients. Copyright © 2017. Published by Elsevier B.V.

  15. Soybean β-Conglycinin Prevents Age-Related Hearing Impairment.

    PubMed

    Tanigawa, Tohru; Shibata, Rei; Kondo, Kazuhisa; Katahira, Nobuyuki; Kambara, Takahiro; Inoue, Yoko; Nonoyama, Hiroshi; Horibe, Yuichiro; Ueda, Hiromi; Murohara, Toyoaki

    2015-01-01

    Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG), one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months) were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV), which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress.

  16. Oxidative Stress Induced Age Dependent Meibomian Gland Dysfunction in Cu, Zn-Superoxide Dismutase-1 (Sod1) Knockout Mice

    PubMed Central

    Ibrahim, Osama M. A.; Dogru, Murat; Matsumoto, Yukihiro; Igarashi, Ayako; Kojima, Takashi; Wakamatsu, Tais Hitomi; Inaba, Takaaki; Shimizu, Takahiko; Shimazaki, Jun; Tsubota, Kazuo

    2014-01-01

    Purpose The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse. Methods Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed. Results Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice. Conclusions Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations. PMID:25036096

  17. Bone density of the radius, spine, and proximal femur in osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazess, R.B.; Barden, H.; Ettinger, M.

    1988-02-01

    Bone mineral density (BMD) was measured in 140 normal young women (aged 20 to 39 years) and in 423 consecutive women over age 40 referred for evaluation of osteoporosis. Lumbar spine and proximal femur BMD was measured using dual-photon absorptiometry (/sup 153/Gd), whereas the radius shaft measurement used single-photon absorptiometry (/sup 125/I). There were 324 older women with no fractures, of which 278 aged 60 to 80 years served as age-matched controls. There were 99 women with fractures including 32 with vertebral and 22 with hip fractures. Subsequently, another 25 women with hip fractures had BMD measured in another laboratory;more » their mean BMD was within 2% of that of the original series. The mean age in both the nonfracture and fracture groups was 70 +/- 5 years. The BMD in the age-matched controls was 20% to 25% below that of normal young women for the radius, spine, and femur, but the Ward's triangle region of the femur showed even greater loss (35%). The mean BMD at all sites in the crush fracture cases was about 10% to 15% below that of age-matched controls. Spinal abnormality was best discriminated by spine and femoral measurements (Z score about 0.9). In women with hip fractures, the BMD was 10% below that of age-matched controls for the radius and the spine, and the BMD for the femoral sites was about 25% to 30% below that of age-matched control (Z score about 1.6). Femoral densities gave the best discrimination of hip fracture cases and even reflected spinal osteopenia. In contrast, neither the spine nor the radius reflected the full extent of femoral osteopenia in hip fracture.« less

  18. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.

    PubMed

    Yasuda, Satoshi; Ikuta, Kenjiro; Uwatoku, Toyokazu; Oi, Keiji; Abe, Kohtaro; Hyodo, Fuminori; Yoshimitsu, Kengo; Sugimura, Kohtaro; Utsumi, Hideo; Katayama, Yoshiki; Shimokawa, Hiroaki

    2008-01-01

    Magnetic resonance imaging (MRI) contrast agents that specifically detect atherosclerotic plaque may be useful for the noninvasive detection of the plaque. We have recently developed a new contrast agent, Evans blue-DTPA-gadolinium (EB-DTPA-Gd), which selectively accumulates vascular lesions with endothelial removal. In this study, we examined whether EB-DTPA-Gd is also useful for in vivo imaging of atherosclerotic plaques. We used male apolipoprotein-E-deficient (ApoE-/-) mice of different ages (3, 6 and 12 months old) and age-matched male wild-type mice. After a single intravenous administration of EB-DTPA-Gd (160 microM/kg body weight), MRI T(1) signal was obtained in vivo. Increased signal intensity in the aortic wall was noted within 10-20 min after intravenous injection of EB-DTPA-Gd and was maintained for 30 min. The MRI enhancement in the aorta of ApoE-/- mice was increased in accordance with age, whereas no such enhancement was noted in wild-type mice. Histological examination demonstrated that there was a topological correlation between the site of MRI enhancement and that of atherosclerotic plaque. These results indicate that EB-DTPA-Gd is a useful MRI contrast medium for the in vivo detection of atherosclerotic plaques. Copyright (c) 2007 S. Karger AG, Basel.

  19. Passive avoidance and complex maze learning in the senescence accelerated mouse (SAM): age and strain comparisons of SAM P8 and R1.

    PubMed

    Spangler, Edward L; Patel, Namisha; Speer, Dorey; Hyman, Michael; Hengemihle, John; Markowska, Alicja; Ingram, Donald K

    2002-02-01

    Two strains of the senescence accelerated mouse, P8 and R1,were tested in footshock-motivated passive avoidance (PA; P8, 3-21 months; R1, 3-24 months) and 14-unit T-maze (P8 and R1, 9, and 15 months) tasks. For PA, entry to a dark chamber from a lighted chamber was followed by a brief shock. Latency to enter the dark chamber 24 hours later served as a measure of retention. Two days of active avoidance training in a straight runway preceded 2 days (8 trials/day) of testing in the 14-unit T-maze. For PA retention, older P8 mice entered the dark chamber more quickly than older R1 mice, whereas no differences were observed between young P8 or R1 mice. In the 14-unit T-maze, age-related learning performance deficits were reflected in higher error scores for older mice. P8 mice were actually superior learners; that is, they had lower error scores compared with those of age-matched R1 counterparts. Although PA learning results were in agreement with other reports, results obtained in the 14-unit T-maze were not consistent with previous reports of learning impairments in the P8 senescence accelerated mouse.

  20. Dermal fibroblasts from long-lived Ames dwarf mice maintain their in vivo resistance to mitochondrial generated reactive oxygen species (ROS)

    PubMed Central

    Hsieh, Ching-Chyuan; Papaconstantinou, John

    2009-01-01

    Activation of p38 MAPK by ROS involves dissociation of an inactive, reduced thioredoxin-ASK1 complex [(SH)2Trx-ASK1]. Release of ASK1 activates its kinase activity thus stimulating the p38 MAPK pathway. The level of p38 MAPK activity is, therefore, regulated by the balance of free vs. bound ASK1. Longevity of Ames dwarf mice is attributed to their resistance to oxidative stress. The levels of (SH)2 Trx-ASK1 are more abundant in young and old dwarf mice compared to their age-matched controls suggesting that the levels of this complex may play a role in their resistance to oxidative stress. In these studies we demonstrate that dermal fibroblasts from these long-lived mice exhibit (a) higher levels of (SH)2Trx-ASK1 that correlate with their resistance to ROS generated by inhibitors of electron transport chain complexes CI (rotenone), CII (3-nitropropionic acid), CIII, (antimycin A), and H2O2-mediated activation of p38 MAPK, and (b) maintain their in vivo resistance to ROS generated by 3NPA. We propose that elevated levels of (SH)2Trx-ASK1 play a role in conferring resistance to mitochondrial generated oxidative stress and decreased endogenous ROS which are characteristics of longevity determination. PMID:20157567

  1. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  2. Skeletal muscle fibrosis in the mdx/utrn+/- mouse validates its suitability as a murine model of Duchenne muscular dystrophy.

    PubMed

    Gutpell, Kelly M; Hrinivich, William T; Hoffman, Lisa M

    2015-01-01

    Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients. Other murine models of DMD are available that lack one or both alleles of utrophin, a functional analog of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson's trichrome stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our results indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not (p = 0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly higher than that found in the corresponding diaphragm muscles of wild-type animals, but not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both diaphragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx diaphragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle in these animals was not fibrotic. We did not measure a significant difference in collagen staining between wild-type and mdx gastrocnemius muscles. The results of this study support previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of DMD, and we show here that this difference is apparent by 2 months of age.

  3. Long-lived crowded-litter mice exhibit lasting effects on insulin sensitivity and energy homeostasis.

    PubMed

    Sadagurski, Marianna; Landeryou, Taylor; Blandino-Rosano, Manuel; Cady, Gillian; Elghazi, Lynda; Meister, Daniel; See, Lauren; Bartke, Andrzej; Bernal-Mizrachi, Ernesto; Miller, Richard A

    2014-06-01

    The action of nutrients on early postnatal growth can influence mammalian aging and longevity. Recent work has demonstrated that limiting nutrient availability in the first 3 wk of life [by increasing the number of pups in the crowded-litter (CL) model] leads to extension of mean and maximal lifespan in genetically normal mice. In this study, we aimed to characterize the impact of early-life nutrient intervention on glucose metabolism and energy homeostasis in CL mice. In our study, we used mice from litters supplemented to 12 or 15 pups and compared those to control litters limited to eight pups. At weaning and then throughout adult life, CL mice are significantly leaner and consume more oxygen relative to control mice. At 6 mo of age, CL mice had low fasting leptin concentrations, and low-dose leptin injections reduced body weight and food intake more in CL female mice than in controls. At 22 mo, CL female mice also have smaller adipocytes compared with controls. Glucose and insulin tolerance tests show an increase in insulin sensitivity in 6 mo old CL male mice, and females become more insulin sensitive later in life. Furthermore, β-cell mass was significantly reduced in the CL male mice and was associated with reduction in β-cell proliferation rate in these mice. Together, these data show that early-life nutrient intervention has a significant lifelong effect on metabolic characteristics that may contribute to the increased lifespan of CL mice.

  4. Mitochondrial Dysfunction in the Liver and Antiphospholipid Antibody Production Precede Disease Onset and Respond to Rapamycin in Lupus‐Prone Mice

    PubMed Central

    Oaks, Zachary; Winans, Thomas; Caza, Tiffany; Fernandez, David; Liu, Yuxin; Landas, Steve K.; Banki, Katalin

    2016-01-01

    Objective Antiphospholipid antibodies (aPL) constitute a diagnostic criterion of systemic lupus erythematosus (SLE), and aPL have been functionally linked to liver disease in patients with SLE. Since the mechanistic target of rapamycin (mTOR) is a regulator of oxidative stress, a pathophysiologic process that contributes to the development of aPL, this study was undertaken in a mouse model of SLE to examine the involvement of liver mitochondria in lupus pathogenesis. Methods Mitochondria were isolated from lupus‐prone MRL/lpr, C57BL/6.lpr, and MRL mice, age‐matched autoimmunity‐resistant C57BL/6 mice as negative controls, and transaldolase‐deficient mice, a strain that exhibits oxidative stress in the liver. Electron transport chain (ETC) activity was assessed using measurements of oxygen consumption. ETC proteins, which are regulators of mitochondrial homeostasis, and the mTOR complexes mTORC1 and mTORC2 were examined by Western blotting. Anticardiolipin (aCL) and anti–β2‐glycoprotein I (anti‐β2GPI) autoantibodies were measured by enzyme‐linked immunosorbent assay in mice treated with rapamycin or mice treated with a solvent control. Results Mitochondrial oxygen consumption was increased in the livers of 4‐week‐old, disease‐free MRL/lpr mice relative to age‐matched controls. Levels of the mitophagy initiator dynamin‐related protein 1 (Drp1) were depleted while the activity of mTORC1 was increased in MRL/lpr mice. In turn, mTORC2 activity was decreased in MRL and MRL/lpr mice. In addition, levels of aCL and anti‐β2GPI were elevated preceding the development of nephritis in 4‐week‐old MRL, C57BL/6.lpr, and MRL/lpr mice. Transaldolase‐deficient mice showed increased oxygen consumption, depletion of Drp1, activation of mTORC1, and elevated expression of NADH:ubiquinone oxidoreductase core subunit S3 (NDUFS3), a pro‐oxidant subunit of ETC complex I, as well as increased production of aCL and anti‐β2GPI autoantibodies. Treatment with rapamycin selectively blocked mTORC1 activation, NDUFS3 expression, and aPL production both in transaldolase‐deficient mice and in lupus‐prone mice. Conclusion In lupus‐prone mice, mTORC1‐dependent mitochondrial dysfunction contributes to the generation of aPL, suggesting that such mechanisms may represent a treatment target in patients with SLE. PMID:27332042

  5. Relationship between fruit and vegetable intake and interference control in breast cancer survivors.

    PubMed

    Zuniga, Krystle E; Mackenzie, Michael J; Roberts, Sarah A; Raine, Lauren B; Hillman, Charles H; Kramer, Arthur F; McAuley, Edward

    2016-06-01

    Nutrition plays an important role in brain structure and function, and the effects of diet may even be greater in those at greater risk of cognitive decline, such as individuals with cancer-related cognitive impairment. However, the relation of dietary components to cognitive function in cancer survivors is unknown. The objective of this study was to determine whether breast cancer survivors (BCS) evidenced impairments in interference control, a component of cognitive control, compared to age-matched women with no prior history of cancer, and to examine the moderating role of diet on cognitive function. In this cross-sectional study, a modified flanker task was used to assess interference control in BCS (n = 31) and age-matched women with no prior history of cancer (n = 30). Diet was assessed with 3-day food records. Differences between BCS and age-matched controls were assessed using linear mixed models, and multilevel regression analyses were conducted to assess the moderating role of diet on cognitive performance. Cognitive performance was not different between groups. Fruit intake and vegetable intake were significantly associated with better performance on the incompatible condition of the flanker task (i.e., shorter reaction time and increased accuracy), independent of disease status. The association between dietary components and cognition was stronger for the incompatible incongruent condition, suggesting that fruit and vegetables may be important for the up-regulation of cognitive control when faced with higher cognitive demands. There was no difference in performance on an interference control task between BCS and age-matched controls. The data suggest that greater fruit intake and vegetable intake were positively associated with interference control in both BCS and age-matched controls.

  6. Cognitive Profiles of Italian Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Tobia, Valentina; Marzocchi, Gian Marco

    2014-01-01

    The aim of this study was to investigate verbal and nonverbal cognitive deficits in Italian students with developmental dyslexia. The performances of 32 dyslexic students, 64 age-matched typically reading controls, and 64 reading age-matched controls were compared on tests of lexical knowledge, phonological awareness, rapid automatized naming,…

  7. Insulin Dynamics in Young Women with Polycystic Ovary Syndrome and Normal Glucose Tolerance across Categories of Body Mass Index

    PubMed Central

    Manco, Melania; Castagneto-Gissey, Lidia; Arrighi, Eugenio; Carnicelli, Annamaria; Brufani, Claudia; Luciano, Rosa; Mingrone, Geltrude

    2014-01-01

    Background Evidence favours insulin resistance and compensatory hyperinsulinemia as the predominant, perhaps primary, defects in polycystic ovary syndrome (PCOS). The aim of the present study was to evaluate insulin metabolism in young women with PCOS but normal glucose tolerance as compared with age, body mass index and insulin resistance-matched controls to answer the question whether women with PCOS hypersecrete insulin in comparison to appropriately insulin resistance-matched controls. Research Design and Methods Sixty-nine cases were divided according to their body mass index (BMI) in normal-weight (N = 29), overweight (N = 24) and obese patients (N = 16). Controls were 479 healthy women (age 16–49 y). Whole body Insulin Sensitivity (WBISI), fasting, and total insulin secretion were estimated following an oral glucose tolerance test (C-peptide deconvolution method). Results Across classes of BMI, PCOS patients had greater insulin resistance than matched controls (p<0.0001 for all the comparisons), but they showed higher fasting and total insulin secretion than their age, BMI and insulin resistance-matched peers (p<0.0001 for all the comparisons). Conclusion Women with PCOS show higher insulin resistance but also larger insulin secretion to maintain normal glucose homeostasis than age-, BMI- and insulin resistance-matched controls. PMID:24705280

  8. Ca2+ mobilization in the aortic endothelium in streptozotocin-induced diabetic and cholesterol-fed mice.

    PubMed

    Kamata, K; Nakajima, M

    1998-04-01

    1. Experiments were performed to compare Ca2+ mobilization in the aortic endothelium in streptozotocin (STZ)-induced diabetic and cholesterol-fed mice with that in age-matched controls. 2. The intracellular free Ca2+ ([Ca2+]i) in the fura PE-3 loaded endothelium of aortic rings was dose-dependently increased by cumulative administration of acetylcholine (ACh). ACh caused a transient rise in [Ca2+]i in Ca2+-free medium. The ACh-induced increase in [Ca2+]i in normal or Ca2+-free medium was significantly weaker in both STZ-induced diabetic and cholesterol-fed mice. 3. The weaker [Ca2+]i response in Ca2+-containing medium in STZ-induced diabetic and cholesterol-fed mice was normalized by chronic administration of cholestyramine. 4. The increased low density lipoprotein (LDL) levels seen in both STZ-induced diabetic and cholesterol-fed mice were normalized by the same chronic administration of cholestyramine (300 mg kg(-1), p.o. daily for 10 weeks). Chronic administration of cholestyramine had no effect on the plasma glucose level. 5. Lysophosphatidylcholine (LPC) decreased the [Ca2+]i responses to ACh in the aortic endothelium from normal mice. 6. These results suggest that ACh increases both Ca2+ influx and Ca2+ release from storage in the aortic endothelium. The weaker [Ca2+]i influx seen in the endothelium of aortae from both STZ-induced diabetic and cholesterol-fed mice was improved by the chronic administration of cholestyramine, and we suggest that this improvement is due, at least in part, to a lowering of the plasma LDL level. It is further suggested that LPC may have an important influence over Ca2+ mobilization in the endothelium.

  9. Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice.

    PubMed

    Hwa, Lara S; Nathanson, Anna J; Shimamoto, Akiko; Tayeh, Jillian K; Wilens, Allison R; Holly, Elizabeth N; Newman, Emily L; DeBold, Joseph F; Miczek, Klaus A

    2015-08-01

    Disrupted social behavior, including occasional aggressive outbursts, is characteristic of withdrawal from long-term alcohol (EtOH) use. Heavy EtOH use and exaggerated responses during withdrawal may be treated using glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonists. The current experiments explore aggression and medial prefrontal cortex (mPFC) glutamate as consequences of withdrawal from intermittent access to EtOH and changes in aggression and mPFC glutamate caused by NMDAR antagonists memantine and ketamine. Swiss male mice underwent withdrawal following 1-8 weeks of intermittent access to 20 % EtOH. Aggressive and nonaggressive behaviors with a conspecific were measured 6-8 h into EtOH withdrawal after memantine or ketamine (0-30 mg/kg, i.p.) administration. In separate mice, extracellular mPFC glutamate after memantine was measured during withdrawal using in vivo microdialysis. At 6-8 h withdrawal from EtOH, mice exhibited more convulsions and aggression and decreased social contact compared to age-matched water controls. Memantine, but not ketamine, increased withdrawal aggression at the 5-mg/kg dose in mice with a history of 8 weeks of EtOH but not 1 or 4 weeks of EtOH or in water drinkers. Tonic mPFC glutamate was higher during withdrawal after 8 weeks of EtOH compared to 1 week of EtOH or 8 weeks of water. Five milligrams per kilogram of memantine increased glutamate in 8-week EtOH mice, but also in 1-week EtOH and water drinkers. These studies reveal aggressive behavior as a novel symptom of EtOH withdrawal in outbred mice and confirm a role of NMDARs during withdrawal aggression and for disrupted social behavior.

  10. Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice

    PubMed Central

    Hwa, Lara S.; Nathanson, Anna J.; Shimamoto, Akiko; Tayeh, Jillian K.; Wilens, Allison R.; Holly, Elizabeth N.; Newman, Emily L.; DeBold, Joseph F.; Miczek, Klaus A.

    2015-01-01

    Rationale Disrupted social behavior, including occasional aggressive outbursts, is characteristic of withdrawal from long-term alcohol (EtOH) use. Heavy EtOH use and exaggerated responses during withdrawal may be treated using glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonists. Objectives The current experiments explore aggression and medial prefrontal cortex (mPFC) glutamate as consequences of withdrawal from intermittent access to EtOH, and changes in aggression and mPFC glutamate caused by NMDAR antagonists memantine and ketamine. Methods Swiss male mice underwent withdrawal following 1-8 weeks of intermittent access to 20% EtOH. Aggressive and non-aggressive behaviors with a conspecific were measured 6-8 h into EtOH withdrawal after memantine or ketamine (0-30 mg/kg, i.p.) administration. In separate mice, extracellular mPFC glutamate after memantine was measured during withdrawal using in vivo microdialysis. Results At 6-8 h withdrawal from EtOH, mice exhibited more convulsions and aggression, and decreased social contact compared to age-matched water controls. Memantine, but not ketamine, increased withdrawal aggression at the 5 mg/kg dose in mice with a history of 8 weeks EtOH but not 1 or 4 weeks of EtOH or in water drinkers. Tonic mPFC glutamate was higher during withdrawal after 8 weeks EtOH compared to 1 week EtOH or 8 weeks water. Five mg/kg memantine increased glutamate in 8 week EtOH mice, but also in 1 week EtOH and water drinkers. Conclusions These studies reveal aggressive behavior as a novel symptom of EtOH withdrawal in outbred mice and confirm a role of NMDARs during withdrawal aggression and for disrupted social behavior. PMID:25899790

  11. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis.

    PubMed

    Antika, Lucia Dwi; Lee, Eun-Jung; Kim, Yun-Ho; Kang, Min-Kyung; Park, Sin-Hye; Kim, Dong Yeon; Oh, Hyeongjoo; Choi, Yean-Jung; Kang, Young-Hee

    2017-11-01

    Osteoporosis is one of the most prevalent forms of age-related bone diseases. Increased bone loss with advancing age has become a grave public health concern. This study examined whether phlorizin and phloretin, dihydrochalcones in apple peels, inhibited senile osteoporosis through enhancing osteoblastogenic bone formation in cell-based and aged mouse models. Submicromolar phloretin and phlorizin markedly stimulated osteoblast differentiation of MC3T3-E1 cells with increased transcription of Runx2 and osteocalcin. Senescence-accelerated resistant mouse strain prone-6 (SAMP6) mice were orally supplemented with 10 mg/kg phlorizin and phloretin daily for 12 weeks. Male senescence-accelerated resistant mouse strain R1 mice were employed as a nonosteoporotic age-matched control. Oral administration of ploretin and phorizin boosted bone mineralization in all the bones of femur, tibia and vertebra of SAMP6. In particular, phlorizin reduced serum RANKL/OPG ratio and diminished TRAP-positive osteoclasts in trabecular bones of SAMP6. Additionally, treating phlorizin to SAMP6 inhibited the osteoporotic resorption in distal femoral bones through up-regulating expression of BMP-2 and collagen-1 and decreasing production of matrix-degrading cathepsin K and MMP-9. Finally, phlorizin and phloretin antagonized GSK-3β induction and β-catenin phosphorylation in osteoblasts and aged mouse bones. Therefore, phlorizin and phloretin were potential therapeutic agents encumbering senile osteoporosis through promoting bone-forming osteoblastogenesis via modulation of GSK-3β/β-catenin-dependent signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models.

    PubMed

    López-González, Irene; Viana, Rosa; Sanz, Pascual; Ferrer, Isidre

    2017-07-01

    Lafora progressive myoclonus epilepsy (Lafora disease, LD) is a fatal rare autosomal recessive neurodegenerative disorder characterized by the accumulation of insoluble ubiquitinated polyglucosan inclusions in the cytoplasm of neurons, which is most commonly associated with mutations in two genes: EPM2A, encoding the glucan phosphatase laforin, and EPM2B, encoding the E3-ubiquitin ligase malin. The present study analyzes possible inflammatory responses in the mouse lines Epm2a -/- (laforin knock-out) and Epm2b -/- (malin knock-out) with disease progression. Increased numbers of reactive astrocytes (expressing the GFAP marker) and microglia (expressing the Iba1 marker) together with increased expression of genes encoding cytokines and mediators of the inflammatory response occur in both mouse lines although with marked genotype differences. C3ar1 and CxCl10 messenger RNAs (mRNAs) are significantly increased in Epm2a -/- mice aged 12 months when compared with age-matched controls, whereas C3ar1, C4b, Ccl4, CxCl10, Il1b, Il6, Tnfα, and Il10ra mRNAs are significantly upregulated in Epm2b -/- at the same age. This is accompanied by increased protein levels of IL1-β, IL6, TNFα, and Cox2 particularly in Epm2b -/- mice. The severity of inflammatory changes correlates with more severe clinical symptoms previously described in Epm2b -/- mice. These findings show for the first time increased innate inflammatory responses in a neurodegenerative disease with polyglucosan intraneuronal deposits which increase with disease progression, in a way similar to what is seen in neurodegenerative diseases with abnormal protein aggregates. These findings also point to the possibility of using anti-inflammatory agents to mitigate the degenerative process in LD.

  13. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation.

    PubMed

    Verderio, Claudia; Muzio, Luca; Turola, Elena; Bergami, Alessandra; Novellino, Luisa; Ruffini, Francesca; Riganti, Loredana; Corradini, Irene; Francolini, Maura; Garzetti, Livia; Maiorino, Chiara; Servida, Federica; Vercelli, Alessandro; Rocca, Mara; Dalla Libera, Dacia; Martinelli, Vittorio; Comi, Giancarlo; Martino, Gianvito; Matteoli, Michela; Furlan, Roberto

    2012-10-01

    Microvesicles (MVs) have been indicated as important mediators of intercellular communication and are emerging as new biomarkers of tissue damage. Our previous data indicate that reactive microglia/macrophages release MVs in vitro. The aim of the study was to evaluate whether MVs are released by microglia/macrophages in vivo and whether their number varies in brain inflammatory conditions, such as multiple sclerosis (MS). Electron and fluorescence microscopy and flow cytometry were used to detect myeloid MVs in the cerebrospinal fluid (CSF) of healthy controls, MS patients, and rodents affected by experimental autoimmune encephalomyelitis (EAE), the animal model of MS. Myeloid MVs were detected in CSF of healthy controls. In relapsing and remitting EAE mice, the concentration of myeloid MVs in the CSF was significantly increased and closely associated with disease course. Analysis of MVs in the CSF of 28 relapsing patients and 28 patients with clinical isolated syndrome from 2 independent cohorts revealed higher levels of myeloid MVs than in 13 age-matched controls, indicating a clinical value of MVs as a companion tool to capture disease activity. Myeloid MVs were found to spread inflammatory signals both in vitro and in vivo at the site of administration; mice impaired in MV shedding were protected from EAE, suggesting a pathogenic role for MVs in the disease. Finally, FTY720, the first approved oral MS drug, significantly reduced the amount of MVs in the CSF of EAE-treated mice. These findings identify myeloid MVs as a marker and therapeutic target of brain inflammation. Copyright © 2012 American Neurological Association.

  14. Insulin response to a spontaneously ingested standard meal during the development of obesity in GTG-injected mice.

    PubMed

    Blair, S C; Caterson, I D; Cooney, G J

    1996-04-01

    (1) To determine glucose and insulin levels in response to ingestion of a standard meal during the development of gold-thioglucose (GTG)-induced obesity. (2) To examine whether the pancreatic beta-cells of GTG-injected mice possess sufficient insulin secretory capacity to compensate for the increasing tissue insulin resistance that occurs with the development of this obesity. The insulin secretory response to a standard meal of chow was examined in chronically catheterised conscious mice 2, 5 and 10 weeks after induction of obesity by a single injection of GTG. At 2 weeks after administration of GTG both the basal insulinaemia and the incremental area under the curve (iAUC) of insulin release after a chow meal were increased compared with age-matched lean control mice (2 week control: 1004 +/- 316 min/microU/ml; 2 week GTG: 1968 +/- 300 min/microU/ml; P < 0.05). By 5 weeks, the GTG-injected mice were approximately 42% heavier than their lean controls and showed a marked glucose intolerance. This was accompanied by hyperinsulinaemia in both the basal state and also in response to ingestion of the chow meal as indicated by the increase in the iAUC of insulin (5 week control: 1113 +/- 331 min/microU/ml; 5 week GTG: 2682 +/- 295 min/microU/ml; P < 0.05). At 10 weeks after GTG administration body weight was further increased, as was the degree of glucose intolerance. Plasma insulin levels, in both the basal state and in response to the ingestion of chow, were also further elevated by 10 weeks following GTG injection (10 week control: 1234 +/- 311 min/microU/ml; 10 week GTG: 6640 +/- 1198 min/microU/ml; P < 0.05). It is apparent that the secretion of insulin in response to a standard chow meal increases progressively with the development of obesity. This finding, in conjunction with an earlier study showing that the insulin secretory response to intravenously administered glucose becomes impaired in the latter stages of the development of obesity in GTG-injected mice [Blair SC, Caterson ID, Cooney GJ. Diabetes 1993; 42: 1153-1158], suggests that the ability of beta-cells of GTG-obese animals to produce and secrete insulin is not impaired but that the beta-cells may become insensitive to glucose within the circulation.

  15. Sex- and age-related differences in the chronic pressure-natriuresis relationship: role of the angiotensin type 2 receptor.

    PubMed

    Mirabito, Katrina M; Hilliard, Lucinda M; Kett, Michelle M; Brown, Russell D; Booth, Sean C; Widdop, Robert E; Moritz, Karen M; Evans, Roger G; Denton, Kate M

    2014-10-15

    Sex hormones regulate the renin-angiotensin system. For example, estrogen enhances expression of the angiotensin type 2 receptor. We hypothesized that activation of the angiotensin type 2 receptor shifts the chronic pressure-natriuresis relationship leftward in females compared with males and that this effect is lost with age. Mean arterial pressure was measured by radiotelemetry in adult (4 mo old) and aged (14 mo old) wild-type and angiotensin type 2 receptor knockout male and female mice. Chronic pressure-natriuresis curves were constructed while mice were maintained on a normal-salt (0.26%) diet and following 6 days of high salt (5.0%) diet. Mean arterial pressure was lower in adult wild-type females than males (88 ± 1 and 97 ± 1 mmHg, respectively), a difference that was maintained with age, but was absent in adult knockout mice. In wild-type females, the chronic pressure-natriuresis relationship was shifted leftward compared with knockout females, an effect that was lost with age. In males, the chronic pressure-natriuresis relationship was not influenced by angiotensin type 2 receptor deficiency. Compared with age-matched females, the chronic pressure-natriuresis relationships in male mice were shifted rightward. Renal expression of the angiotensin type 2 receptor was fourfold greater in adult wild-type females than males. With age, the angiotensin type 2 receptor-to-angiotensin type 1 receptor balance was reduced in females. Conversely, in males, angiotensin receptor expression did not vary significantly with age. In conclusion, the angiotensin type 2 receptor modulates the chronic pressure-natriuresis relationship in an age- and sex-dependent manner. Copyright © 2014 the American Physiological Society.

  16. Surface developmental dyslexia is as prevalent as phonological dyslexia when appropriate control groups are employed.

    PubMed

    Wybrow, Dean P; Hanley, J Richard

    2015-01-01

    Previous investigations of the incidence of developmental surface and phonological dyslexia using reading-age-matched control groups have identified many more phonological dyslexics (poor nonword reading relative to irregular-word reading) than surface dyslexics (poor irregular-word reading relative to nonword reading). However, because the measures that have been used to estimate reading age include irregular-word reading ability, they appear inappropriate for assessing the incidence of surface dyslexia. The current study used a novel method for generating control groups whose reading ability was matched to that of the dyslexic sample. The incidence of surface dyslexia was assessed by comparing dyslexic performance with that of a control group who were matched with the dyslexics on a test of nonword reading. The incidence of phonological dyslexia was assessed with reference to a control group who were matched with the dyslexics at irregular-word reading. These control groups led to the identification of an approximately equal number of children with surface and phonological dyslexia. It appeared that selecting control participants who were matched with dyslexics for reading age led to the recruitment of individuals with relatively high nonword reading scores relative to their irregular-word reading scores compared with other types of control group. The theoretical implications of these findings are discussed.

  17. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage.

    PubMed

    He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen

    2014-11-15

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that tooth extraction should be avoided in these populations.

  18. Effects of aging on the immunopathologic response to sepsis.

    PubMed

    Turnbull, Isaiah R; Clark, Andrew T; Stromberg, Paul E; Dixon, David J; Woolsey, Cheryl A; Davis, Christopher G; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M

    2009-03-01

    Aging is associated with increased inflammation following sepsis. The purpose of this study was to determine whether this represents a fundamental age-based difference in the host response or is secondary to the increased mortality seen in aged hosts. Prospective, randomized controlled study. Animal laboratory in a university medical center. Young (6-12 weeks) and aged (20-24 months) FVB/N mice. Mice were subjected to 2 x 25 or 1 x 30 cecal ligation and puncture (CLP). Survival was similar in young mice subjected to 2 x 25 CLP and aged mice subjected to 1 x 30 CLP (p = 0.15). Young mice subjected to 1 x 30 CLP had improved survival compared with the other groups (p < 0.05). When injury was held constant but mortality was greater, both systemic and peritoneal levels of tumor necrosis factor-alpha, interleukin (IL)-6, IL-10, and monocyte chemotactic protein-1 were elevated 24 hours after CLP in aged animals compared with young animals (p < 0.05). When mortality was similar but injury severity was different, there were no significant differences in systemic cytokines between aged mice and young mice. In contrast, peritoneal levels of tumor necrosis factor-alpha, IL-6, and IL-10 were higher in aged mice subjected to 1 x 30 CLP than young mice subjected to 2 x 25 CLP despite their similar mortalities (p < 0.05). There were no significant differences in either bacteremia or peritoneal cultures when animals of different ages sustained similar injuries or had different injuries with similar mortalities. Aged mice are more likely to die of sepsis than young mice when subjected to an equivalent insult, and this is associated with increases in both systemic and local inflammation. There is an exaggerated local but not systemic inflammatory response in aged mice compared with young mice when mortality is similar. This suggests that systemic processes that culminate in death may be age independent, but the local inflammatory response may be greater with aging.

  19. Performance of Disease Risk Score Matching in Nested Case-Control Studies: A Simulation Study.

    PubMed

    Desai, Rishi J; Glynn, Robert J; Wang, Shirley; Gagne, Joshua J

    2016-05-15

    In a case-control study, matching on a disease risk score (DRS), which includes many confounders, should theoretically result in greater precision than matching on only a few confounders; however, this has not been investigated. We simulated 1,000 hypothetical cohorts with a binary exposure, a time-to-event outcome, and 13 covariates. Each cohort comprised 2 subcohorts of 10,000 patients each: a historical subcohort and a concurrent subcohort. DRS were estimated in the historical subcohorts and applied to the concurrent subcohorts. Nested case-control studies were conducted in the concurrent subcohorts using incidence density sampling with 2 strategies-matching on age and sex, with adjustment for additional confounders, and matching on DRS-followed by conditional logistic regression for 9 outcome-exposure incidence scenarios. In all scenarios, DRS matching yielded lower average standard errors and mean squared errors than did matching on age and sex. In 6 scenarios, DRS matching also resulted in greater empirical power. DRS matching resulted in less relative bias than did matching on age and sex at lower outcome incidences but more relative bias at higher incidences. Post-hoc analysis revealed that the effect of DRS model misspecification might be more pronounced at higher outcome incidences, resulting in higher relative bias. These results suggest that DRS matching might increase the statistical efficiency of case-control studies, particularly when the outcome is rare. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Heterotrimeric G Stimulatory Protein α Subunit Is Required for Intestinal Smooth Muscle Contraction in Mice.

    PubMed

    Qin, Xiaoteng; Liu, Shangming; Lu, Qiulun; Zhang, Meng; Jiang, Xiuxin; Hu, Sanyuan; Li, Jingxin; Zhang, Cheng; Gao, Jiangang; Zhu, Min-Sheng; Feil, Robert; Li, Huashun; Chen, Min; Weinstein, Lee S; Zhang, Yun; Zhang, Wencheng

    2017-04-01

    The α subunit of the heterotrimeric G stimulatory protein (Gsa), encoded by the guanine nucleotide binding protein, α-stimulating gene (Gnas, in mice), is expressed ubiquitously and mediates receptor-stimulated production of cyclic adenosine monophosphate and activation of the protein kinase A signaling pathway. We investigated the roles of Gsa in vivo in smooth muscle cells of mice. We performed studies of mice with Cre recombinase-mediated disruption of Gnas in smooth muscle cells (Gsa SMKO and SM22-CreER T2 , induced in adult mice by tamoxifen). Intestinal tissues were collected for histologic, biochemical, molecular, cell biology, and physiology analyses. Intestinal function was assessed in mice using the whole-gut transit time test. We compared gene expression patterns of intestinal smooth muscle from mice with vs without disruption of Gnas. Biopsy specimens from ileum of patients with chronic intestinal pseudo-obstruction and age-matched control biopsies were analyzed by immunohistochemistry. Disruption of Gnas in smooth muscle of mice reduced intestinal motility and led to death within 4 weeks. Tamoxifen-induced disruption of Gnas in adult mice impaired contraction of intestinal smooth muscle and peristalsis. More than 80% of these died within 3 months of tamoxifen exposure, with features of intestinal pseudo-obstruction characterized by chronic intestinal dilation and dysmotility. Gsa deficiency reduced intestinal levels of cyclic adenosine monophosphate and transcriptional activity of the cyclic adenosine monophosphate response element binding protein 1 (CREB1); this resulted in decreased expression of the forkhead box F1 gene (Foxf1) and protein, and contractile proteins, such as myosin heavy chain 11; actin, α2, smooth muscle, aorta; calponin 1; and myosin light chain kinase. We found decreased levels of Gsa, FOXF1, CREB1, and phosphorylated CREB1 proteins in intestinal muscle layers of patients with chronic intestinal pseudo-obstruction, compared with tissues from controls. Gsa is required for intestinal smooth muscle contraction in mice, and its levels are reduced in ileum biopsies of patients with chronic intestinal pseudo-obstruction. Mice with disruption of Gnas might be used to study human chronic intestinal pseudo-obstruction. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. [Pathological changes in hepatocytes of mice with obesity-induced type 2 diabetes by monosodium glutamate].

    PubMed

    Nakadate, Kazuhiko; Motojima, Kento; Kamata, Sumito; Yoshida, Testuro; Hikita, Masaaki; Wakamatsu, Hisanori

    2014-01-01

    Type 2 diabetes caused by chronic obesity is a major lifestyle-related disease. The present study aimed to determine the pathological changes in hepatocytes in chronic obesity. To develop our type 2 diabetes mouse model, we induced chronic obesity to mice by monosodium glutamate. By overeating, the mice significantly increased their body weight compared with age-matched healthy animals. To analyze the pathological changes in hepatocytes of chronic obesity before preclinical stage of type 2 diabetes, the mice were analyzed by hematoxylin-eosin staining of tissue sections at 15 w of age. In these mice, we observed eosin-negative accumulations of hepatocytes around central veins in the hepatic lobule. By Oil-Red O staining, the eosin-negative granules were identified in the lipid droplets. We then ascertained whether these lipid droplets of hepatocytes in the obese mice could be modified by diet. After 24 h of diet restriction, the lipid droplets of hepatocytes in the obese mice were swollen. Furthermore, after 48 h of the diet restriction, the lipid droplets continued swelling and the autophagy-like structures that were found in the healthy mice under the same condition in the obese mice were not observed. These results suggest that the obese mice might have delayed energy metabolism, which might have influenced the mechanisms of hepatocytes. These findings provide new insight into the functional changes in chronic obesity-induced type 2 diabetes and it is possible that the pathological feature make a contribution to promise the target of pharmacological therapy.

  2. Rate of atherosclerosis progression in ApoE-/- mice long after discontinuation of cola beverage drinking.

    PubMed

    Otero-Losada, Matilde; Cao, Gabriel; Mc Loughlin, Santiago; Rodríguez-Granillo, Gastón; Ottaviano, Graciela; Milei, José

    2014-01-01

    This study was conducted in order to evaluate the effect of cola beverages drinking on atherosclerosisand test the hypothesis whether cola beverages consumption at early life stages might affect the development and progression of atherosclerosis later in life. ApoE-/- C57BL/6J mice (8 week-old) were randomized in 3 groups (n = 20 each) according to free accessto water (W), sucrose sweetened carbonated cola drink(C) or aspartame-acesulfame K sweetened carbonated 'light' cola drink (L)for the next 8 weeks. Drinking treatment was ended by switching C and L groups to drinking water. Four mice per group and time were sequentially euthanized: before treatment (8 weeks-old), at the end of treatment (16 weeks-old) and after treatment discontinuation (20 weeks-old, 24 weeks-old, 30 week-old mice). Aortic roots and livers were harvested, processed for histology and serial cross-sections were stained. Aortic plaque area was analyzed and plaque/media-ratio was calculated. Early consumption of cola drinks accelerated atherosclerotic plaque progression favoring the interaction between macrophages and myofibroblasts, without the participation of either T lymphocytes or proliferative activity. Plaque/media-ratio varied according to drink treatment (F2,54 = 3.433, p<0.04) and mice age (F4,54 = 5.009, p<0.03) and was higher in C and L groups compared with age-matched W group (p<0.05 at 16 weeks and 20 weeks, p<0.01 at 24 weeks and 30 weeks). Natural evolution of atherosclerosis in ApoE-/- mice (W group) evidenced atherosclerosis acceleration in parallel with a rapid increase in liver inflammation around the 20 weeks of age. Cola drinking within the 8-16 weeks of age accelerated atherosclerosis progression in ApoE-/- mice favoring aortic plaque enlargement (inward remodeling) over media thinning all over the study time. Data suggest that cola drinking at early life stages may predispose to atherosclerosis progression later in life in ApoE-/- mice.

  3. A noradrenergic lesion exacerbates neurodegeneration in a Down syndrome mouse model.

    PubMed

    Lockrow, Jason; Boger, Heather; Gerhardt, Greg; Aston-Jones, Gary; Bachman, David; Granholm, Ann-Charlotte

    2011-01-01

    Individuals with Down syndrome (DS) acquire Alzheimer's-like dementia (AD) and associated neuropathology earlier and at significantly greater rates than age-matched normosomic individuals. However, biological mechanisms have not been discovered and there is currently limited therapy for either DS- or AD-related dementia. Segmental trisomy 16 (Ts65Dn) mice provide a useful model for many of the degenerative changes which occur with age in DS including cognitive deficits, neuroinflammation, and degeneration of basal forebrain cholinergic neurons. Loss of noradrenergic locus coeruleus (LC) neurons is an early event in AD and in DS, and may contribute to the neuropathology. We report that Ts65Dn mice exhibit progressive loss of norepinephrine (NE) phenotype in LC neurons. In order to determine whether LC degeneration contributes to memory loss and neurodegeneration in Ts65Dn mice, we administered the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4; 2 doses of 50 mg/kg, i.p.) to Ts65Dn mice at four months of age, prior to working memory loss. At eight months of age, Ts65Dn mice treated with DSP-4 exhibited an 80% reduction in hippocampal NE, coupled with a marked increase in hippocampal neuroinflammation. Noradrenergic depletion also resulted in accelerated cholinergic neuron degeneration and a further impairment of memory function in Ts65Dn mice. In contrast, DSP-4 had minimal effects on normosomic littermates, suggesting a disease-modulated vulnerability to NE loss in the DS mouse model. These data suggest that noradrenergic degeneration may play a role in the progressive memory loss, neuroinflammation, and cholinergic loss occurring in DS individuals, providing a possible therapeutic avenue for future clinical studies.

  4. A Noradrenergic Lesion Exacerbates Neurodegeneration in a Down Syndrome Mouse Model

    PubMed Central

    Lockrow, Jason; Boger, Heather; Gerhardt, Greg; Aston-Jones, Gary; Bachman, David; Granholm, Ann-Charlotte

    2012-01-01

    Individuals with Down syndrome (DS) acquire Alzheimer’s-like dementia (AD) and associated neuropathology earlier and at significantly greater rates than age-matched normosomic individuals. However, biological mechanisms have not been discovered and there is currently limited therapy for either DS- or AD-related dementia. Segmental trisomy 16 (Ts65Dn) mice provide a useful model for many of the degenerative changes which occur with age in DS including cognitive deficits, neuroinflammation, and degeneration of basal forebrain cholinergic neurons. Loss of noradrenergic locus coeruleus (LC) neurons is an early event in AD and in DS, and may contribute to the neuropathology. We report that Ts65Dn mice exhibit progressive loss of norepinephrine (NE) phenotype in LC neurons. In order to determine whether LC degeneration contributes to memory loss and neurodegeneration in Ts65Dn mice, we administered the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4; 2 doses of 50 mg/kg, i.p.) to Ts65Dn mice at four months of age, prior to working memory loss. At eight months of age, Ts65Dn mice treated with DSP-4 exhibited an 80% reduction in hippocampal NE, coupled with a marked increase in hippocampal neuroinflammation. Noradrenergic depletion also resulted in accelerated cholinergic neuron degeneration and a further impairment of memory function in Ts65Dn mice. In contrast, DSP-4 had minimal effects on normosomic littermates, suggesting a disease-modulated vulnerability to NE loss in the DS mouse model. These data suggest that noradrenergic degeneration may play a role in the progressive memory loss, neuroinflammation, and cholinergic loss occurring in DS individuals, providing a possible therapeutic avenue for future clinical studies. PMID:21098982

  5. Tissue-dependent differences in the asynchronous appearance of mast cells in normal mice and in congenic mast cell-deficient mice after infusion of normal bone marrow cells

    PubMed Central

    DU, T; FRIEND, D S; AUSTEN, K F; KATZ, H R

    1996-01-01

    The time courses of the appearance of tissue mast cells in six sites were compared in normal WBB6F1-+/+ mice (+/+) and in congenic mast cell-deficient WBB6F1-W/Wv mice (W/Wv) that received an intravenous infusion of bone marrow cells from +/+mice (BM→W/Wv). As assessed by morphometric analysis of Carnoy's solution-fixed, methylene blue-stained tissue sections, the density of mast cells in the stomach mucosa, stomach submucosa, and spleen of +/+ mice reached maximal levels by 8 weeks of age, whereas the density of mast cells in the skin, extraparenchymal airway walls, and lung parenchyma did not reach maximal levels until 18 weeks of age. When 8-week-old W/Wv mice were infused with 2×107 bone marrow cells from +/+ mice, mast cells appeared in the stomach mucosa and submucosa after 2.5 weeks, in the spleen and extraparenchymal airway walls after 5 weeks, and in the lung parenchyma after 10 weeks. Twenty weeks after bone marrow infusion, the mast cell densities in the spleen, stomach mucosa, and stomach submucosa were seven-, 13-, and five-fold greater, respectively, than those in age-matched +/+ mice, but were eight-, two-, and five-fold lower in the skin, extraparenchymal airway walls, and lung parenchyma, respectively. Thus, those tissues that in +/+ mice reached maximal mast cell densities earlier exhibited abnormally high mast cell densities in BM→W/Wv mice, and those that reached maximal mast cell densities later in +/+ mice had abnormally low mast cell densities in BM→W/Wv mice. Immunological and inflammatory responses are often compared in W/Wv and BM→W/Wv mice to assess mast cell dependency. Our results indicate that the capacity to restore a mast cell-dependent response in a particular tissue of the latter mice may relate to the local mast cell density and whether the immunological challenge activates mast cells only in that tissue or systematically with attendant widespread release of proinflammatory mediators. PMID:8565318

  6. Spontaneous mutation of Dock7 results in lower trabecular bone mass and impaired periosteal expansion in aged female Misty mice.

    PubMed

    Le, Phuong T; Bishop, Kathleen A; Maridas, David E; Motyl, Katherine J; Brooks, Daniel J; Nagano, Kenichi; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2017-12-01

    Misty mice (m/m) have a loss of function mutation in Dock7 gene, a guanine nucleotide exchange factor, resulting in low bone mineral density, uncoupled bone remodeling and reduced bone formation. Dock7 has been identified as a modulator of osteoblast number and in vitro osteogenic differentiation in calvarial osteoblast culture. In addition, m/m exhibit reduced preformed brown adipose tissue innervation and temperature as well as compensatory increase in beige adipocyte markers. While the low bone mineral density phenotype is in part due to higher sympathetic nervous system (SNS) drive in young mice, it is unclear what effect aging would have in mice homozygous for the mutation in the Dock7 gene. We hypothesized that age-related trabecular bone loss and periosteal envelope expansion would be altered in m/m. To test this hypothesis, we comprehensively characterized the skeletal phenotype of m/m at 16, 32, 52, and 78wks of age. When compared to age-matched wild-type control mice (+/+), m/m had lower areal bone mineral density (aBMD) and areal bone mineral content (aBMC). Similarly, both femoral and vertebral BV/TV, Tb.N, and Conn.D were decreased in m/m while there was also an increase in Tb.Sp. As low bone mineral density and decreased trabecular bone were already present at 16wks of age in m/m and persisted throughout life, changes in age-related trabecular bone loss were not observed highlighting the role of Dock7 in controlling trabecular bone acquisition or bone loss prior to 16wks of age. Cortical thickness was also lower in the m/m across all ages. Periosteal and endosteal circumferences were higher in m/m compared to +/+ at 16wks. However, endosteal and periosteal expansion were attenuated in m/m, resulting in m/m having lower periosteal and endosteal circumferences by 78wks of age compared to +/+, highlighting the critical role of Dock7 in appositional bone expansion. Histomorphometry revealed that osteoblasts were nearly undetectable in m/m and marrow adipocytes were elevated 3.5 fold over +/+ (p=0.014). Consistent with reduced bone formation, osteoblast gene expression of Alp, Col1a1, Runx-2, Sp7, and Bglap was significantly decreased in m/m whole bone. Furthermore, markers of osteoclasts were either unchanged or suppressed. Bone marrow stromal cell migration and motility were inhibited in culture and changes in senescence markers suggest that osteoblast function may also be inhibited with loss of Dock7 expression in m/m. Finally, increased Oil Red O staining in m/m ear mesenchymal stem cells during adipogenesis highlights a potential shift of cells from the osteogenic to adipogenic lineages. In summary, loss of Dock7 in the aging m/m resulted in an impairment of periosteal and endocortical envelope expansion, but did not alter age-related trabecular bone loss. These studies establish Dock7 as a critical regulator of both cortical and trabecular bone mass, and demonstrate for the first time a novel role of Dock7 in modulating compensatory changes in the periosteum with aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Calorie Restriction Attenuates Terminal Differentiation of Immune Cells.

    PubMed

    White, Matthew J; Beaver, Charlotte M; Goodier, Martin R; Bottomley, Christian; Nielsen, Carolyn M; Wolf, Asia-Sophia F M; Boldrin, Luisa; Whitmore, Charlotte; Morgan, Jennifer; Pearce, Daniel J; Riley, Eleanor M

    2016-01-01

    Immune senescence is a natural consequence of aging and may contribute to frailty and loss of homeostasis in later life. Calorie restriction increases healthy life-span in C57BL/6J (but not DBA/2J) mice, but whether this is related to preservation of immune function, and how it interacts with aging, is unclear. We compared phenotypic and functional characteristics of natural killer (NK) cells and T cells, across the lifespan, of calorie-restricted (CR) and control C57BL/6 and DBA/2 mice. Calorie restriction preserves a naïve T cell phenotype and an immature NK cell phenotype as mice age. The splenic T cell populations of CR mice had higher proportions of CD11a - CD44 lo cells, lower expression of TRAIL, KLRG1, and CXCR3, and higher expression of CD127, compared to control mice. Similarly, splenic NK cells from CR mice had higher proportions of less differentiated CD11b - CD27 + cells and correspondingly lower proportions of highly differentiated CD11b + CD27 - NK cells. Within each of these subsets, cells from CR mice had higher expression of CD127, CD25, TRAIL, NKG2A/C/E, and CXCR3 and lower expression of KLRG1 and Ly49 receptors compared to controls. The effects of calorie restriction on lymphoid cell populations in lung, liver, and lymph nodes were identical to those seen in the spleen, indicating that this is a system-wide effect. The impact of calorie restriction on NK cell and T cell maturation is much more profound than the effect of aging and, indeed, calorie restriction attenuates these age-associated changes. Importantly, the effects of calorie restriction on lymphocyte maturation were more marked in C57BL/6 than in DBA/2J mice indicating that delayed lymphocyte maturation correlates with extended lifespan. These findings have implications for understanding the interaction between nutritional status, immunity, and healthy lifespan in aging populations.

  8. Argyrophilic grain disease as a neurodegenerative substrate in late-onset schizophrenia and delusional disorders.

    PubMed

    Nagao, Shigeto; Yokota, Osamu; Ikeda, Chikako; Takeda, Naoya; Ishizu, Hideki; Kuroda, Shigetoshi; Sudo, Koichiro; Terada, Seishi; Murayama, Shigeo; Uchitomi, Yosuke

    2014-06-01

    To study the relationship between neurodegenerative diseases including argyrophilic grain disease (AGD) and late-onset schizophrenia and delusional disorders (LOSD; onset ≥40 years of age), we pathologically examined 23 patients with LOSD, 71 age-matched normal controls, and 22 psychiatric disease controls (11 depression, six personality disorder, two bipolar disorders, and three neurotic disorders cases). In all LOSD cases (compared to age-matched normal controls), the frequencies of Lewy body disease (LBD), AGD, and corticobasal degeneration (CBD) were 26.1 % (11.3 %), 21.7 % (8.5 %), and 4.3 % (0.0 %), respectively. There was no case of pure Alzheimer's disease (AD). The total frequency of LBD, AGD, and CBD was significantly higher in LOSD cases than in normal controls. Argyrophilic grains were significantly more severe in LOSD than in controls, but were almost completely restricted to the limbic system and adjacent temporal cortex. In LOSD patients whose onset occurred at ≥65 years of age (versus age-matched normal controls), the frequencies of LBD and AGD were 36.4 % (19.4 %) and 36.4 % (8.3 %), respectively, and AGD was significantly more frequent in LOSD patients than in normal controls. In LOSD patients whose onset occurred at <65 years of age, the frequencies of LBD, AGD, and CBD were 16.7, 8.3, and 8.3 %, comparable to those of age-matched normal controls (10.2, 5.1, and 0.0 %). In all psychiatric cases, delusion was significantly more frequent in AGD cases than in cases bearing minimal AD pathology alone. Given these findings, LOSD patients may have heterogeneous pathological backgrounds, and AGD may be associated with the occurrence of LOSD especially after 65 years of age.

  9. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice.

    PubMed

    Tong, Jing-Jing; Chen, Gui-Hai; Wang, Fang; Li, Xue-Wei; Cao, Lei; Sui, Xu; Tao, Fei; Yan, Wen-Wen; Wei, Zhao-Jun

    2015-05-01

    The administration of maintaining the homeostasis of insulin/insulin-like growth factor 1 (IGF-1) signaling and/or glucose metabolism may reverse brain aging. In the present study, we investigated the effect of acarbose, an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. The SAMP8 mice were randomly divided into old control group and acarbose-treatment group. The mice in the acarbose group were administered acarbose (20 mg/kg/d, dissolved in drinking water) orally from 3 to 9 months of age when a new group of 3-month-old mice was added as young controls. The results showed that the aged controls exhibited declines in sensorimotor ability, open field anxiety, spatial and non-spatial memory abilities, decreased serum insulin levels, increased IGF-1 receptor and synaptotagmin 1 (Syt1) levels and decreased insulin receptor, brain-derived neurotrophic factor (BDNF) and syntaxin 1 (Stx1) levels in the hippocampal layers. The age-related behavioral deficits correlated with the serological and histochemical data. Chronic acarbose treatment relieved these age-related changes, especially with respect to learning and memory abilities. This protective effect of acarbose on age-related behavioral impairments might be related to changes in the insulin system and the levels of BDNF, IGF-1R, and the pre-synaptic proteins Syt1 and Stx1. In conclusion, long-term treatment with acarbose ameliorated the behavioral deficits and biochemical changes in old SAMP8 mice and promoted successful aging. This study provides insight into the potential of acarbose for the treatment of brain aging. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Growth and development of male "little" mice assessed with Parks' theory of feeding and growth.

    PubMed

    Puche, Rodolfo C; Alloatti, Rosa; Chapo, Gustavo

    2002-01-01

    This work was designed to characterize the appetite kinetics and growth of male C57BL/6J (lit) mice. Those variables were assessed with Parks' function of ad libitum feeding and growth. Heterozygous mice (lit/+) attained their mature weight at 12-15 weeks of age, peak growth rate (3.5 g/week) at 5 weeks and displayed the normal decay of food conversion efficiency as a function of age. The homozygous genotype has a chronic defect in the synthesis and secretion of growth hormone (GH). Homozygous mice could not be assessed with Park's function. From the 4th to the 15th week of age, body weight increased linearly and exhibited constant food conversion efficiency. Food intake of both genotypes was commensurate with their body weights. Lit/lit mice became progressively obese. At 40 weeks of age, body fat of lit/lit mice was fivefold that of lit/+ and their body weight was similar to their heterozygous controls. The chronic deficiency of growth hormone produced a lower bone mass (compared to heterozygous controls). Bone mass of both genotypes attained maturity at 12-15 weeks with a maximum growth rate at 5 weeks. Body weight and bone mass grow harmoniously in lit/+ but not in lit/lit mice.

  11. Theory of Mind in Williams Syndrome Assessed Using a Nonverbal Task

    ERIC Educational Resources Information Center

    Porter, Melanie A.; Coltheart, Max; Langdon, Robyn

    2008-01-01

    This study examined Theory of Mind in Williams syndrome (WS) and in normal chronological age-matched and mental age-matched control groups, using a picture sequencing task. This task assesses understanding of pretence, intention and false belief, while controlling for social-script knowledge and physical cause-and-effect reasoning. The task was…

  12. Lethal Crimean-Congo Hemorrhagic Fever Virus Infection in Interferon α/β Receptor Knockout Mice Is Associated With High Viral Loads, Proinflammatory Responses, and Coagulopathy

    PubMed Central

    Zivcec, Marko; Safronetz, David; Scott, Dana; Robertson, Shelly; Ebihara, Hideki; Feldmann, Heinz

    2013-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a widely distributed viral hemorrhagic fever characterized by rapid onset of flu-like symptoms often followed by hemorrhagic manifestations. CCHF virus (CCHFV), a bunyavirus in the Nairovirus genus, is capable of infecting a wide range of mammalian hosts in nature but so far only causes disease in humans. Recently, immunocompromised mice have been reported as CCHF disease models, but detailed characterization is lacking. Here, we closely followed infection and disease progression in CCHFV-infected interferon α/β receptor knockout (IFNAR−/−) mice and age-matched wild-type (WT) mice. WT mice quickly clear CCHFV without developing any disease signs. In contrast, CCHFV infected IFNAR−/− mice develop an acute fulminant disease with high viral loads leading to organ pathology (liver and lymphoid tissues), marked proinflammatory host responses, severe thrombocytopenia, coagulopathy, and death. Disease progression closely mimics hallmarks of human CCHF disease, making IFNAR−/− mice an excellent choice to assess medical countermeasures. PMID:23417661

  13. Fructo-oligosaccharide systemically diminished D-galactose-induced oxidative molecule damages in BALB/cJ mice.

    PubMed

    Hsia, Chien-Hsun; Wang, Cheng-Hsin; Kuo, Yi-Wen; Ho, Ying-Jui; Chen, Hsiao-Ling

    2012-06-01

    Subcutaneous (s.c.) D-galactose (DG) treatment has been shown to facilitate the development of biomarkers for Alzheimer's disease in C57BL/6J mice. The aim of the present study was to determine whether this treatment in young BALB/cJ mice, another mouse strain, enhanced oxidative stress to similar extents shown in older mice, and to further determine the effects of fructo-oligosaccharide (FO), a prebiotic fibre and vitamin E (antioxidant control) on the DG-induced oxidative damage of lipids, proteins and mitochondrial DNA, and erythrocyte antioxidant enzyme activities. Mice (12 weeks of age, n 40) were divided into four groups: vehicle (s.c. saline)+control (modified rodent chow); DG (s.c. 1·2 g/kg body weight)+control; DG+FO (5 %, w/w); DG+vitamin E (α-tocopherol, 0·2 %). Then, the animals were killed after 52 d of treatment. Another natural ageing (NA) group without any injection was killed at 47 weeks of age, which served as an aged control. The results indicated that the DG treatment enhanced malonaldehyde dimethyl acetal (MDA) levels in the plasma, liver and cerebral cortex, and protein carbonyl levels in the liver and hippocampus to similar levels shown in the NA group. FO, similar to α-tocopherol, systemically normalised DG-induced elevations in the levels of MDA in the plasma, liver and cerebral cortex, protein carbonyls in the liver and hippocampus, hepatic mitochondrial 8-oxo-deoxyguanosine and erythrocyte superoxide dismutase activity. In conclusion, the s.c. DG treatment in younger BALB/cJ mice resembled the oxidative status in older mice. FO supplementation systemically prevented DG-induced oxidative stress, probably through its fermentation products and prebiotic effect.

  14. Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice.

    PubMed

    Sugimura, Tetsu; Jounai, Kenta; Ohshio, Konomi; Suzuki, Hiroaki; Kirisako, Takayoshi; Sugihara, Yoshihiko; Fujiwara, Daisuke

    2018-05-01

    The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Enhanced expression of PD-1 and other activation markers by CD4+ T cells of young but not old patients with metastatic melanoma.

    PubMed

    van den Brom, Rob R H; van der Geest, Kornelis S M; Brouwer, Elisabeth; Hospers, Geke A P; Boots, Annemieke M H

    2018-06-01

    The biological behavior of melanoma is unfavorable in the elderly when compared to young subjects. We hypothesized that differences in T-cell responses might underlie the distinct behavior of melanoma in young and old melanoma patients. Therefore, we investigated the circulating T-cell compartment of 34 patients with metastatic melanoma and 42 controls, which were classified as either young or old. Absolute numbers of CD4+ T cells were decreased in young and old melanoma patients when compared to the age-matched control groups. Percentages of naive and memory CD4+ T cells were not different when comparing old melanoma patients to age-matched controls. Percentages of memory CD4+ T cells tended to be increased in young melanoma patients compared to young controls. Proportions of naive CD4+ T cells were lower in young patients than in age-matched controls, and actually comparable to those in old patients and controls. This was accompanied with increased percentages of memory CD4+ T cells expressing HLA-DR, Ki-67, and PD-1 in young melanoma patients in comparison to the age-matched controls, but not in old patients. Proportions of CD45RA-FOXP3 high memory regulatory T cells were increased in young and old melanoma patients when compared to their age-matched controls, whereas those of CD45RA+FOXP3 low naive regulatory T cells were similar. We observed no clear modulation of the circulating CD8+ T-cell repertoire in melanoma patients. In conclusion, we show that CD4+ T cells of young melanoma patients show signs of activation, whereas these signs are less clear in CD4+ T cells of old patients.

  16. Pleiotropic activity of systemically delivered angiogenin in the SOD1G93A mouse model.

    PubMed

    Crivello, Martin; O'Riordan, Saidhbhe L; Woods, Ina; Cannon, Sarah; Halang, Luise; Coughlan, Karen S; Hogg, Marion C; Lewandowski, Sebastian A; Prehn, Jochen H M

    2018-05-01

    Loss-of-function mutations in the angiogenin (ANG) gene have been identified in familial and sporadic ALS patients. Previous work from our group identified human ANG (huANG) to protect motoneurons in vitro, and provided proof-of-concept that daily intraperitoneal (i.p.) huANG injections post-symptom onset increased lifespan and delayed disease progression in SOD1 G93A mice. huANG's mechanism of action remains less well understood. Here, we implemented a preclinical in vivo design to validate our previous results, provide pharmacokinetic and protein distribution data after systemic administration, and explore potential pleiotropic activities of huANG in vivo. SOD1 G93A mice (n = 45) and non-transgenic controls (n = 31) were sex- age- and litter-matched according to the 2010 European ALS/MND group guidelines, and treated with huANG (1 μg, i.p., 3 times/week) or vehicle from 90 days on. huANG treatment increased survival and delayed motor dysfunction as assessed by rotarod in SOD1 G93A mice. Increased huANG serum levels were detectable 2 and 24 h after i.p. injection equally in transgenic and non-transgenic mice. Exogenous huANG localized to spinal cord astrocytes, supporting a glia-mediated, paracrine mechanism of action; uptake into endothelial cells was also observed. 1 μg huANG or vehicle were administered from 90 to 115 days of age for histological analysis. Vehicle-treated SOD1 G93A mice showed decreased motoneuron numbers and vascular length per ventral horn area, while huANG treatment resulted in improved vascular network maintenance and motoneuron survival. Our data suggest huANG represents a new class of pleiotropic ALS therapeutic that acts on the spinal cord vasculature and glia to delay motoneuron degeneration and disease progression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment.

    PubMed

    Tan, Xing-Lin; Xue, Yue-Qiang; Ma, Tao; Wang, Xiaofang; Li, Jing Jing; Lan, Lubin; Malik, Kafait U; McDonald, Michael P; Dopico, Alejandro M; Liao, Francesca-Fang

    2015-06-24

    Cerebral infarction due to thrombosis leads to the most common type of stroke and a likely cause of age-related cognitive decline and dementia. Endothelial nitric oxide synthase (eNOS) generates NO, which plays a crucial role in maintaining vascular function and exerting an antithrombotic action. Reduced eNOS expression and eNOS polymorphisms have been associated with stroke and Alzheimer's disease (AD), the most common type of dementia associated with neurovascular dysfunction. However, direct proof of such association is lacking. Since there are no reports of complete eNOS deficiency in humans, we used heterozygous eNOS(+/-) mice to mimic partial deficiency of eNOS, and determine its impact on cerebrovascular pathology and perfusion of cerebral vessels. Combining cerebral angiography with immunohistochemistry, we found thrombotic cerebral infarctions in eNOS(+/-) mice as early as 3-6 months of age but not in eNOS(+/+) mice at any age. Remarkably, vascular occlusions in eNOS(+/-) mice were found almost exclusively in three areas: temporoparietal and retrosplenial granular cortexes, and hippocampus this distribution precisely matching the hypoperfused areas identified in preclinical AD patients. Moreover, progressive cerebral amyloid angiopaphy (CAA), blood brain barrier (BBB) breakdown, and cognitive impairment were also detected in aged eNOS(+/-) mice. These data provide for the first time the evidence that partial eNOS deficiency results in spontaneous thrombotic cerebral infarctions that increase with age, leading to progressive CAA and cognitive impairments. We thus conclude that eNOS(+/-) mouse may represent an ideal model of ischemic stroke to address early and progressive damage in spontaneously-evolving chronic cerebral ischemia and thus, study vascular mechanisms contributing to vascular dementia and AD.

  18. Magnetic resonance imaging based morphologic evaluation of the pineal gland for suspected pineoblastoma in retinoblastoma patients and age-matched controls.

    PubMed

    Pham, Thi Thai Hien; Siebert, Eberhard; Asbach, Patrick; Willerding, Gregor; Erb-Eigner, Katharina

    2015-12-15

    The purpose of this study was to evaluate the morphologic magnetic resonance imaging (MRI) characteristics of the pineal gland in retinoblastoma (Rb) patients without and with pineoblastoma in comparison to age-matched controls to improve early identification of pineoblastomas (trilateral retinoblastoma, TRb). 80 patients with retinoblastoma and 80 age-matched controls who had undergone brain MRI were included in this retrospective institutional review board approved cohort study. Two readers analyzed the following MR characteristics of the pineal gland: signal intensity on T1- and T2-weighted images, enhancement pattern, delineation of the gland, presence of cystic component, size of pineal gland and size of pineal cysts, respectively. A third reader assessed all images for the presence or absence of pineoblastoma. 3 patients were positive (TRb cohort) and 77 negative for pineoblastoma (non-TRb cohort). The mean maximum diameter of the pineal gland was 6.4mm in Rb patients and 6.3mm in age-matched controls. The mean volume of the pineal gland in Rb patients was 93.1mm(3) and was 87.6mm(3) in age-matched controls. Considering all available MRI scans the mean maximum diameter of the pineal gland in TRb patients was 11.2mm and the mean volume in TRb patients was 453.3mm(3). The third reader identified pineoblastomas with a sensitivity of 100% (3 of 3) and a specificity of 94% (72 of 77). Our non-TRb patients did not show significant differences in the size of the pineal gland and pineal gland cysts compared to age-matched controls. The presented data can serve as a reference for the volume of normal pineal glands and pineal cysts in the diagnostic work-up of Rb patients with suspected pineoblastoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparison of posture and balance in cancer survivors and age-matched controls.

    PubMed

    Schmitt, Abigail C; Repka, Chris P; Heise, Gary D; Challis, John H; Smith, Jeremy D

    2017-12-01

    The combination of peripheral neuropathy and other treatment-associated side effects is likely related to an increased incidence of falls in cancer survivors. The purpose of this study was to quantify differences in postural stability between healthy age-matched controls and cancer survivors. Quiet standing under four conditions (eyes open/closed, rigid/compliant surface) was assessed in 34 cancer survivors (2 males, 32 females; age: 54(13) yrs., height: 1.62(0.07) m; mass: 78.5(19.5) kg) and 34 age-matched controls (5 males, 29 females; age: 54(15) yrs.; height: 1.62(0.08) m; mass: 72.8(21.1) kg). Center of pressure data were collected for 30s and the trajectories were analyzed (100Hz). Three-factor (group*surface*vision) mixed model MANOVAs with repeated measures were used to determine the effect of vision and surface on postural steadiness between groups. Cancer survivors exhibited larger mediolateral root-mean square distance and velocity of the center of pressure, as well as increased 95% confidence ellipse area (P<0.01) when compared with their age-matched counterparts. For example, when removing visual input, cancer survivors had an average increase in 95% confidence ellipse area of 91.8mm 2 while standing on a rigid surface compared to a 68.6mm 2 increase for the control group. No frequency-based center of pressure measures differed between groups. Cancer survivors exhibit decreased postural steadiness when compared with age-matched controls. For cancer survivors undergoing rehabilitation focused on existing balance deficits, a small subset of the center of pressure measures presented here can be used to track progress throughout the intervention and potentially mitigate fall risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice.

    PubMed

    Cahill, Lindsay S; Gazdzinski, Lisa M; Tsui, Albert Ky; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory Mt; Kassner, Andrea; Sled, John G

    2017-03-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO 2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia.

  1. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice

    PubMed Central

    Gazdzinski, Lisa M; Tsui, Albert KY; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory MT; Kassner, Andrea; Sled, John G

    2016-01-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia. PMID:27165012

  2. Neutralization of RANTES and Eotaxin Prevents the Loss of Dopaminergic Neurons in a Mouse Model of Parkinson Disease*

    PubMed Central

    Chandra, Goutam; Rangasamy, Suresh B.; Roy, Avik; Kordower, Jeffrey H.; Pahan, Kalipada

    2016-01-01

    Parkinson disease (PD) is second only to Alzheimer disease as the most common human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. Recent studies indicate that both innate and adaptive immune processes are active in PD. Accordingly, we found a rapid increase in RANTES (regulated on activation normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra pars compacta and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. RANTES and eotaxin were also up-regulated in the substantia nigra pars compacta of post-mortem PD brains as compared with age-matched controls. Therefore, we investigated whether neutralization of RANTES and eotaxin could protect against nigrostriatal degeneration in MPTP-intoxicated mice. Interestingly, after peripheral administration, functional blocking antibodies against RANTES and eotaxin reduced the infiltration of CD4+ and CD8+ T cells into the nigra, attenuated nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Therefore, we conclude that attenuation of the chemokine-dependent adaptive immune response may be of therapeutic benefit for PD patients. PMID:27226559

  3. Advanced glycation end products affect cholesterol homeostasis by impairing ABCA1 expression on macrophages.

    PubMed

    Kamtchueng Simo, Olivier; Ikhlef, Souade; Berrougui, Hicham; Khalil, Abdelouahed

    2017-08-01

    Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [ 3 H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P < 0.01). The injection of both D-gal and aminoguanidine hydrochloride increased [ 3 H]cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P < 0.0001). Treating J774A.1 macrophages with glycated fetal bovine serum increased carbonyl formation (39.5% increase, P < 0.003) and reduced ABCA1 protein expression and the capacity of macrophages to liberate cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.

  4. Nummular eczema: An addition of senile xerosis and unique cutaneous reactivities to environmental aeroallergens.

    PubMed

    Aoyama, H; Tanaka, M; Hara, M; Tabata, N; Tagami, H

    1999-01-01

    The pathogenesis of nummular eczema (NE) is still unknown. It often develops on the lower legs of elderly individuals with xerotic changes during the winter months. Such winter exacerbation is also observed in atopic dermatitis, in which there is a high incidence of cutaneous immune reactivities against environmental aeroallergens. Because of the total lack of information about skin reactivities in NE patients, we performed immunological as well as functional studies in their uninvolved skin. Prick tests and chamber scarification patch tests for representative aeroallergens were conducted on the flexor surface of the forearm in 26 NE patients, in 21 age-matched elderly persons without NE and in 43 healthy young controls. We found that the elderly subjects, regardless of their background, showed a significantly higher immediate skin reactivity to Candida albicans than the young controls. In contrast, patch testing revealed that, unlike the age-matched elderly subjects who showed a decrease in incidence of positive patch test reactions, the NE patients retained delayed contact sensitivity at a level comparable to that of the young healthy controls. They showed a significantly higher percentage of positive patch test reactions to Dermatophagoides farinae allergen (46%) and house dust allergen (35%) than the age-matched controls. Moreover, they also showed a significantly higher percentage of delayed hypersensitive reactions to C. albicans allergen (85%) than the age-matched controls (48%). Noninvasive functional assessment of the stratum corneum (SC) in unaffected skin areas of the lower legs in 8 NE patients demonstrated that, though the water barrier function of the SC was comparable to that of the age-matched controls, they showed a significantly lower hydration state of the SC than the age-matched controls. The xerotic skin of elderly individuals facilitates the development of cracking and fissuring of the skin surface in dry and cold winter. Such damage in the SC is sometimes aggravated by inadvertent scratching due to pruritus, allowing skin permeation of various environmental allergens. They may induce eczematous changes in those with preserved adequate delayed hypersensitivity despite their advanced age.

  5. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.

    PubMed

    Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu

    2018-02-05

    Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Role of the Mannose Receptor (CD206) in Innate Immunity to Ricin Toxin

    PubMed Central

    Gage, Emily; Hernandez, Maria O.; O’Hara, Joanne M.; McCarthy, Elizabeth A.; Mantis, Nicholas J.

    2011-01-01

    The entry of ricin toxin into macrophages and certain other cell types in the spleen and liver results in toxin-induced inflammation, tissue damage and organ failure. It has been proposed that uptake of ricin into macrophages is facilitated by the mannose receptor (MR; CD206), a C-type lectin known to recognize the oligosaccharide side chains on ricin’s A (RTA) and B (RTB) subunits. In this study, we confirmed that the MR does indeed promote ricin binding, uptake and killing of monocytes in vitro. To assess the role of MR in the pathogenesis of ricin in vivo, MR knockout (MR−/−) mice were challenged with the equivalent of 2.5× or 5× LD50 of ricin by intraperitoneal injection. We found that MR−/− mice were significantly more susceptible to toxin-induced death than their age-matched, wild-type control counterparts. These data are consistent with a role for the MR in scavenging and degradation of ricin, not facilitating its uptake and toxicity in vivo. PMID:22069759

  7. Therapeutic effect of androgen therapy in a mouse model of aplastic anemia produced by short telomeres

    PubMed Central

    Bär, Christian; Huber, Nicolas; Beier, Fabian; Blasco, Maria A.

    2015-01-01

    Aplastic anemia is a rare but life-threatening disorder characterized by cytopenia in at least two of the three blood lineages. A frequent feature of patients with aplastic anemia is that they have shorter telomeres than those of age-matched controls. Testosterone has been used for over half a century in the treatment of aplastic anemia. However, although remissions are frequent following hormone therapy, the molecular mechanism underlying the response to treatment has remained unknown. Here we explored the possibility that the recently described regulation of telomerase activity by sex hormones may be the mechanism responsible. To this end, we used a mouse model of aplastic anemia induced by short telomeres in the bone marrow compartment. We found that testosterone therapy results in telomerase up-regulation, improved blood counts, and a significant extension of life-span of these mice. Importantly, longitudinal follow-up studies revealed longer telomeres in peripheral blood in mice subjected to hormone treatment. Our results demonstrate that testosterone-mediated telomerase activation can attenuate or reverse aplastic anemia disease progression associated with the presence of short telomeres. PMID:26206796

  8. In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy.

    PubMed

    Reznichenko, Lidia; Cheng, Qun; Nizar, Krystal; Gratiy, Sergey L; Saisan, Payam A; Rockenstein, Edward M; González, Tanya; Patrick, Christina; Spencer, Brian; Desplats, Paula; Dale, Anders M; Devor, Anna; Masliah, Eliezer

    2012-07-18

    Abnormal accumulation of α-synuclein is centrally involved in the pathogenesis of many disorders with Parkinsonism and dementia. Previous in vitro studies suggest that α-synuclein dysregulates intracellular calcium. However, it is unclear whether these alterations occur in vivo. For this reason, we investigated calcium dynamics in transgenic mice expressing human WT α-synuclein using two-photon microscopy. We imaged spontaneous and stimulus-induced neuronal activity in the barrel cortex. Transgenic mice exhibited augmented, long-lasting calcium transients characterized by considerable deviation from the exponential decay. The most evident pathology was observed in response to a repetitive stimulation in which subsequent stimuli were presented before relaxation of calcium signal to the baseline. These alterations were detected in the absence of significant increase in neuronal spiking response compared with age-matched controls, supporting the possibility that α-synuclein promoted alterations in calcium dynamics via interference with intracellular buffering mechanisms. The characteristic shape of calcium decay and augmented response during repetitive stimulation can serve as in vivo imaging biomarkers in this model of neurodegeneration, to monitor progression of the disease and screen candidate treatment strategies.

  9. Pancreatic protective and hypoglycemic effects of Vitex agnus-castus L. fruit hydroalcoholic extract in D-galactose-induced aging mouse model

    PubMed Central

    Ahangarpour, Akram; Oroojan, Ali Akbar; Khorsandi, Layasadat; Najimi, Seyedeh Asma

    2017-01-01

    D-galactose induces pancreatic disorder along with aging mouse model. Vitex agnus-castus (VAC) has potential pancreatic protective effect. Hence, this study was designed to evaluate the hypoglycemic and pancreas protective effects of VAC hydroalcoholic extract in D-galactose-induced aging female mice. In the present experimental study, 72 adult female Naval Medical Research Institute (NMRI) mice (weighing 30–35 g) were divided into 6 groups of control, VAC hydroalcoholic extract, D-galactose, D-galactose + VAC hydroalcoholic extract, aged, aged + VAC hydroalcoholic extract. The aged model was prepared by subcutaneous injection of D-galactose for 45 days and, VAC hydroalcoholic extract was gavaged twice a day in the last 7 days. 24 h after the last drug and extract administrations, serum samples and pancreatic tissues were removed to evaluate experimental and histological determinations. Serum glucose level decreased in VAC, D-galactose and, aged-treated groups compared to the control (P < 0.05). Insulin level increased in VAC and decreased in D-galactose and aged VAC-treated mice compared to the control (P < 0.05). Homeostasis model assessment-estimated insulin resistance (HOMA-IR) increased in D-galactose, aging, and VAC hydroalcoholic extract groups (P < 0.05) and, administration of VAC hydroalcoholic extract improved HOMA-IR in D-galactose and aging treated animals. Despite the size of pancreatic islets decreased in aged and D-galactose groups, VAC administration recovered it. Present data showed that VAC hydroalcoholic extract has hypoglycemic and pancreatic protective effects in natural aged and aging model mice. PMID:28515766

  10. Pancreatic protective and hypoglycemic effects of Vitex agnus-castus L. fruit hydroalcoholic extract in D-galactose-induced aging mouse model.

    PubMed

    Ahangarpour, Akram; Oroojan, Ali Akbar; Khorsandi, Layasadat; Najimi, Seyedeh Asma

    2017-04-01

    D-galactose induces pancreatic disorder along with aging mouse model. Vitex agnus-castus (VAC) has potential pancreatic protective effect. Hence, this study was designed to evaluate the hypoglycemic and pancreas protective effects of VAC hydroalcoholic extract in D-galactose-induced aging female mice. In the present experimental study, 72 adult female Naval Medical Research Institute (NMRI) mice (weighing 30-35 g) were divided into 6 groups of control, VAC hydroalcoholic extract, D-galactose, D-galactose + VAC hydroalcoholic extract, aged, aged + VAC hydroalcoholic extract. The aged model was prepared by subcutaneous injection of D-galactose for 45 days and, VAC hydroalcoholic extract was gavaged twice a day in the last 7 days. 24 h after the last drug and extract administrations, serum samples and pancreatic tissues were removed to evaluate experimental and histological determinations. Serum glucose level decreased in VAC, D-galactose and, aged-treated groups compared to the control ( P < 0.05). Insulin level increased in VAC and decreased in D-galactose and aged VAC-treated mice compared to the control ( P < 0.05). Homeostasis model assessment-estimated insulin resistance (HOMA-IR) increased in D-galactose, aging, and VAC hydroalcoholic extract groups ( P < 0.05) and, administration of VAC hydroalcoholic extract improved HOMA-IR in D-galactose and aging treated animals. Despite the size of pancreatic islets decreased in aged and D-galactose groups, VAC administration recovered it. Present data showed that VAC hydroalcoholic extract has hypoglycemic and pancreatic protective effects in natural aged and aging model mice.

  11. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.

    PubMed

    Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping

    2014-12-01

    Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model.

    PubMed

    Zhang, Chi; Lu, Xuemian; Tan, Yi; Li, Bing; Miao, Xiao; Jin, Litai; Shi, Xue; Zhang, Xiang; Miao, Lining; Li, Xiaokun; Cai, Lu

    2012-01-01

    Zinc (Zn) deficiency often occurs in the patients with diabetes. Effects of Zn deficiency on diabetes-induced hepatic injury were investigated. Type 1 diabetes was induced in FVB mice with multiple low-dose streptozotocin. Hyperglycemic and age-matched control mice were treated with and without Zn chelator, N,N,N',N'-tetrakis (2-pyridylemethyl) ethylenediamine (TPEN), at 5 mg/kg body-weight daily for 4 months. Hepatic injury was examined by serum alanine aminotransferase (ALT) level and liver histopathological and biochemical changes. Hepatic Zn deficiency (lower than control level, p<0.05) was seen in the mice with either diabetes or TPEN treatment and more evident in the mice with both diabetes and TPEN. Zn deficiency exacerbated hepatic injuries, shown by further increased serum ALT, hepatic lipid accumulation, inflammation, oxidative damage, and endoplasmic reticulum stress-related cell death in Diabetes/TPEN group compared to Diabetes alone. Diabetes/TPEN group also showed a significant decrease in nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and transcription action along with significant increases in Akt negative regulators, decrease in Akt and GSK-3β phosphorylation, and increase in nuclear accumulation of Fyn (a Nrf2 negative regulator). In vitro study with HepG2 cells showed that apoptotic effect of TPEN at 0.5-1.0 µM could be completely prevented by simultaneous Zn supplementation at the dose range of 30-50 µM. Zn is required for maintaining Akt activation by inhibiting the expression of Akt negative regulators; Akt activation can inhibit Fyn nuclear translocation to export nuclear Nrf2 to cytoplasm for degradation. Zn deficiency significantly enhanced diabetes-induced hepatic injury likely through down-regulation of Nrf2 function.

  13. The Nature of Short-Termed Memory Deficits in Retarded Mongoloid Subjects.

    ERIC Educational Resources Information Center

    McDade, Hiram L.

    A battery of immediate memory tests was given to eight mentally retarded Down's Syndrome Ss, eight controls matched on chronological age (CA), and eight controls matched on mental age (MA). All Ss were required to identify both receptively and expressively 24 items from the Peabody Picture Vocabulary Test. There was no significant difference…

  14. Comparison of Conditioning Impairments in Children with Down Syndrome, Autistic Spectrum Disorders and Mental Age-Matched Controls

    ERIC Educational Resources Information Center

    Reed, P.; Staytom, L.; Stott, S.; Truzoli, R.

    2011-01-01

    Background: This study investigated the relative ease of learning across four tasks suggested by an adaptation of Thomas's hierarchy of learning in children with Down syndrome, autism spectrum disorders and mental age-matched controls. Methods: Learning trials were carried out to investigate observational learning, instrumental learning, reversal…

  15. Decoding Actions and Emotions in Deaf Children: Evidence from a Biological Motion Task

    ERIC Educational Resources Information Center

    Ludlow, Amanda Katherine; Heaton, Pamela; Deruelle, Christine

    2013-01-01

    This study aimed to explore the recognition of emotional and non-emotional biological movements in children with severe and profound deafness. Twenty-four deaf children, together with 24 control children matched on mental age and 24 control children matched on chronological age, were asked to identify a person's actions, subjective states,…

  16. Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients.

    PubMed

    Ciarimboli, Giuliano; Lancaster, Cynthia S; Schlatter, Eberhard; Franke, Ryan M; Sprowl, Jason A; Pavenstädt, Hermann; Massmann, Vivian; Guckel, Denise; Mathijssen, Ron H J; Yang, Wenjian; Pui, Ching-Hon; Relling, Mary V; Herrmann, Edwin; Sparreboom, Alex

    2012-02-15

    Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Creatinine transport was studied in transfected HEK293 cells in vitro and in wild-type mice and age-matched organic cation transporter 1 and 2-deficient [Oct1/2(-/-)] mice ex vivo and in vivo. Clinical pharmacogenetic and transport inhibition studies were done in two separate cohorts of cancer patients. Compared with wild-type mice, creatinine clearance was significantly impaired in Oct1/2(-/-) mice. Furthermore, creatinine inhibited organic cation transport in freshly isolated proximal tubules from wild-type mice and humans, but not in those from Oct1/2(-/-) mice. In a genetic association analysis (n = 590), several polymorphisms around the OCT2/SLC22A2 gene locus, including rs2504954 (P = 0.000873), were significantly associated with age-adjusted creatinine levels. Furthermore, in cancer patients (n = 68), the OCT2 substrate cisplatin caused an acute elevation of serum creatinine (P = 0.0083), consistent with inhibition of an elimination pathway. Collectively, this study shows that OCT2 plays a decisive role in the renal secretion of creatinine. This process can be inhibited by OCT2 substrates, which impair the usefulness of creatinine as a marker of renal function. ©2012 AACR.

  17. Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice

    PubMed Central

    Buchanan, J.B.; Sparkman, N.L.; Chen, J.; Johnson, R.W.

    2008-01-01

    Summary Peripheral immune stimulation as well as certain types of psychological stress increases brain levels of inflammatory cytokines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNFα). We have demonstrated that aged mice show greater increases in central inflammatory cytokines, as well as greater cognitive deficits, compared to adults in response to peripheral lipopolysaccharide (LPS) administration. Because aged mice are typically more sensitive to systemic stressors such as LPS, and certain psychological stressors induce physiological responses similar to those that follow LPS, we hypothesized that aged mice would be more sensitive to the physiological and cognitive effects of mild stress than adult mice. Here, adult (3–5 mo) and aged (22–23 mo) male BALB/c mice were trained in the Morris water maze for 5 days. Mice were then exposed to a mild restraint stress of 30 minutes before being tested in a working memory version of the water maze over a 3 day period. On day 4 mice were stressed and then killed for collection of blood and brain. In a separate group of animals, mice were killed immediately after one, two or three 30 min restraint sessions and blood for peripheral corticosterone and cytokine protein measurement, and brains were dissected for central cytokine mRNA measurement. Stress disrupted spatial working memory in both adult and aged mice but to a much greater extent in the aged mice. In addition, aged mice showed an increase in stress-induced expression of hippocampal IL-1β mRNA and MHC class II protein compared to non-stressed controls while expression in adult mice was unaffected by stress. These data show that aged mice are more sensitive to both the cognitive and inflammatory effects of mild stress than are adult mice and suggest a possible a role for IL-1β. PMID:18407425

  18. Increased Sensitivity to Alcohol Induced Changes in ERK Map Kinase Phosphorylation and Memory Disruption in Adolescent as Compared to Adult C57BL/6J Mice

    PubMed Central

    Spanos, Marina; Besheer, Joyce; Hodge, Clyde W.

    2012-01-01

    Adolescence is a critical period of brain development that is accompanied by increased probability of risky behavior, such as alcohol use. Emerging research indicates that adolescents are differentially sensitive to the behavioral effects of acute ethanol as compared to adults but the neurobiological mechanisms of this effect remain to be fully elucidated. This study was designed to evaluate effects of acute ethanol on extracellular signal-regulated kinase phosphorylation (p-ERK1/2) in mesocorticolimbic brain regions. We also sought to determine if age-specific effects of ethanol on p-ERK1/2 are associated with ethanol-induced behavioral deficits on acquisition of the hippocampal-dependent novel object recognition (NOR) test. Adolescent and adult C57BL/6J mice were administered acute ethanol (0 0.5, 1, or 3 g/kg, i.p.). Brains were removed 30-min post injection and processed for analysis of p-ERK1/2 immunoreactivity (IR). Additional groups of mice were administered ethanol (0 or 1 g/kg) prior to the NOR test. Analysis of p-ERK1/2 IR showed that untreated adolescent mice had significantly higher levels of p-ERK1/2 IR in the nucleus accumbens shell, basolateral amygdala (BLA), central amygdala (CeA), and medial prefrontal cortex (mPFC) as compared to adults. Ethanol (1 g/kg) selectively reduced p-ERK1/2 IR in the dentate gyrus and increased p-ERK1/2 IR in the BLA only in adolescent mice. Ethanol (3 g/kg) produced the same effects on p-ERK1/2 IR in both age groups with increases in CeA and mPFC, but a decrease in the dentate gyrus, as compared to age-matched saline controls. Pretreatment with ethanol (1 g/kg) disrupted performance on the NOR test specifically in adolescents, which corresponds with the ethanol-induced inhibition of p-ERK1/2 IR in the hippocampus. These data show that adolescent mice have differential expression of basal p-ERK1/2 IR in mesocorticolimbic brain regions. Acute ethanol produces a unique set of changes in ERK1/2 phosphorylation in the adolescent brain that are associated with disruption of hippocampal-dependent memory acquisition. PMID:22348893

  19. Superoxide overproduction and kidney fibrosis: a new animal model

    PubMed Central

    Guimarães-Souza, Nadia Karina; Yamaleyeva, Liliya Marsovna; Lu, Baisong; Ramos, Ana Claudia Mallet de Souza; Bishop, Colin Edward; Andersson, Karl Erik

    2015-01-01

    Objective To establish whether the mutation in the Immp2L gene induces renal fibrosis and whether aging exacerbates renal morphology in mice. Methods Female mutant mice with mutation in the inner mitochondrial membrane peptidase 2-like protein at 3 and 18 months of age were used. Renal fibrosis was analyzed using classic fibrosis score, Masson’s trichrome staining, and analysis of profibrotic markers using real time polymerase chain reaction (superoxide dismutase 1, metalloproteinase-9, erythropoietin, transforming growth factor beta), and immunostaining (fibroblasts and Type IV collagen). Oxidative stress markers were determined by immunohistochemistry. The number of renal apoptotic cells was determined. Renal function was estimated by serum creatinine. Results Young mutant mice had significantly more glomerulosclerosis than age-matched mice (p=0.034). Mutant mice had more tubular casts (p=0.025), collagen deposition (p=0.019), and collagen type IV expression (p<0.001). Superoxide dismutase 1 expression was significantly higher in young mutants (p=0.038). Old mutants exhibited significantly higher expression of the fibroblast marker and macrophage marker (p=0.007 and p=0.012, respectively). The real time polymerase chain reaction of metalloproteinase-9 and erythropoietin were enhanced 2.5- and 6-fold, respectively, in old mutants. Serum creatinine was significantly higher in old mutants (p<0.001). Conclusion This mutation altered renal architecture by increasing the deposition of extracellular matrix, oxidative stress, and inflammation, suggesting a protective role of Immp2L against renal fibrosis. PMID:25993073

  20. Abnormal costimulatory phenotype and function of dendritic cells before and after the onset of severe murine lupus

    PubMed Central

    Colonna, Lucrezia; Dinnall, Joudy-Ann; Shivers, Debra K; Frisoni, Lorenza; Caricchio, Roberto; Gallucci, Stefania

    2006-01-01

    We analyzed the activation and function of dendritic cells (DCs) in the spleens of diseased, lupus-prone NZM2410 and NZB-W/F1 mice and age-matched BALB/c and C57BL/6 control mice. Lupus DCs showed an altered ex vivo costimulatory profile, with a significant increase in the expression of CD40, decreased expression of CD80 and CD54, and normal expression of CD86. DCs from young lupus-prone NZM2410 mice, before the development of the disease, expressed normal levels of CD80 and CD86 but already overexpressed CD40. The increase in CD40-positive cells was specific for DCs and involved the subset of myeloid and CD8α+ DCs before disease onset, with a small involvement of plasmacytoid DCs in diseased mice. In vitro data from bone marrow-derived DCs and splenic myeloid DCs suggest that the overexpression of CD40 is not due to a primary alteration of CD40 regulation in DCs but rather to an extrinsic stimulus. Our analyses suggest that the defect of CD80 in NZM2410 and NZB-W/F1 mice, which closely resembles the costimulatory defect found in DCs from humans with systemic lupus erythematosus, is linked to the autoimmune disease. The increase in CD40 may instead participate in disease pathogenesis, being present months before any sign of autoimmunity, and its downregulation should be explored as an alternative to treatment with anti-CD40 ligand in lupus. PMID:16507174

  1. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ

    PubMed Central

    Gardner, Brandon B.; Gao, Quan Q.; Hadhazy, Michele; Vo, Andy H.; Wren, Lisa; Molkentin, Jeffery D.; McNally, Elizabeth M.

    2016-01-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. PMID:27148972

  2. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ.

    PubMed

    Lamar, Kay-Marie; Bogdanovich, Sasha; Gardner, Brandon B; Gao, Quan Q; Miller, Tamari; Earley, Judy U; Hadhazy, Michele; Vo, Andy H; Wren, Lisa; Molkentin, Jeffery D; McNally, Elizabeth M

    2016-05-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.

  3. Low-Dose Radiation Activates Akt and Nrf2 in the Kidney of Diabetic Mice: A Potential Mechanism to Prevent Diabetic Nephropathy

    PubMed Central

    Xing, Xiao; Zhang, Chi; Shao, Minglong; Tong, Qingyue; Zhang, Guirong; Li, Cai; Cheng, Jie; Jin, Shunzi; Ma, Jisheng; Wang, Guanjun; Li, Xiaokun; Cai, Lu

    2012-01-01

    Repetitive exposure of diabetic mice to low-dose radiation (LDR) at 25 mGy could significantly attenuate diabetes-induced renal inflammation, oxidative damage, remodeling, and dysfunction, for which, however, the underlying mechanism remained unknown. The present study explored the effects of LDR on the expression and function of Akt and Nrf2 in the kidney of diabetic mice. C57BL/6J mice were used to induce type 1 diabetes with multiple low-dose streptozotocin. Diabetic and age-matched control mice were irradiated with whole body X-rays at either single 25 mGy and 75 mGy or accumulated 75 mGy (25 mGy daily for 3 days) and then sacrificed at 1–12 h for examining renal Akt phosphorylation and Nrf2 expression and function. We found that 75 mGy of X-rays can stimulate Akt signaling pathway and upregulate Nrf2 expression and function in diabetic kidneys; single exposure of 25 mGy did not, but three exposures to 25 mGy of X-rays could offer a similar effect as single exposure to 75 mGy on the stimulation of Akt phosphorylation and the upregulation of Nrf2 expression and transcription function. These results suggest that single 75 mGy or multiple 25 mGy of X-rays can stimulate Akt phosphorylation and upregulate Nrf2 expression and function, which may explain the prevention of LDR against the diabetic nephropathy mentioned above. PMID:23227273

  4. Age-dependent Changes of Cerebral Copper Metabolism in Atp7b−/− Knockout Mouse Model of Wilson’s Disease by [64Cu]CuCl2-PET/CT

    PubMed Central

    Xie, Fang; Xi, Yin; Pascual, Juan M.; Muzik, Otto; Peng, Fangyu

    2017-01-01

    Copper is a nutritional metal required for brain development and function. Wilson’s disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by mutation of ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study is to explore feasibility and use of copper-64 chloride ([64C]CuCl2) as a tracer for noninvasive assessment of age-dependence changes of cerebral copper metabolism in WD using an Atp7b−/− knockout mouse model of WD and a positron emission tomography/computed tomography (PET/CT) scanner. Continuing from recent study of biodistribution and radiation dosimetry of [64C]CuCl2 in Atp7b−/− knockout mice, PET quantitative analysis revealed low 64Cu radioactivity in the brains of Atp7b−/− knockout mice at 7th week of age, compared with the 64Cu radioactivity in the brains of age and gender-matched wild type C57BL/6 mice, at 24 hour (h) post intravenous injection of [64C]CuCl2 as a tracer. Furthermore, age-dependent increase of 64Cu radioactivity was detected in the brains of Atp7b−/− knockout mice from 13th to 21th week of age, using the data derived from a longitudinal [64C]CuCl2-PET/CT study of Atp7b−/− knockout mice with orally administered [64Cu]CuCl2 as a tracer. The findings of this study support the use of [64Cu]CuCl2-PET/CT as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms. PMID:28130615

  5. Age-dependent changes of cerebral copper metabolism in Atp7b -/- knockout mouse model of Wilson's disease by [64Cu]CuCl2-PET/CT.

    PubMed

    Xie, Fang; Xi, Yin; Pascual, Juan M; Muzik, Otto; Peng, Fangyu

    2017-06-01

    Copper is a nutritional metal required for brain development and function. Wilson's disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by a mutation of the ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study was to explore the feasibility and use of copper-64 chloride ([ 64 C]CuCl 2 ) as a tracer for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD using an Atp7b -/- knockout mouse model of WD and positron emission tomography/computed tomography (PET/CT) imaging. Continuing from our recent study of biodistribution and radiation dosimetry of [ 64 C]CuCl 2 in Atp7b -/- knockout mice, PET quantitative analysis revealed low 64 Cu radioactivity in the brains of Atp7b -/- knockout mice at 7th weeks of age, compared with 64 Cu radioactivity in the brains of age- and gender-matched wild type C57BL/6 mice, at 24 h (h) post intravenous injection of [ 64 C]CuCl 2 as a tracer. Furthermore, age-dependent increase of 64 Cu radioactivity was detected in the brains of Atp7b -/- knockout mice from the 13th to 21th weeks of age, based on the data derived from a longitudinal [ 64 C]CuCl 2 -PET/CT study of Atp7b -/- knockout mice with orally administered [ 64 Cu]CuCl 2 as a tracer. The findings of this study support clinical use of [ 64 Cu]CuCl 2 -PET/CT imaging as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms.

  6. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice

    PubMed Central

    Smith, Lucas R.

    2014-01-01

    Many skeletal muscle diseases are associated with progressive fibrosis leading to impaired muscle function. Collagen within the extracellular matrix is the primary structural protein providing a mechanical scaffold for cells within tissues. During fibrosis collagen not only increases in amount but also undergoes posttranslational changes that alter its organization that is thought to contribute to tissue stiffness. Little, however, is known about collagen organization in fibrotic muscle and its consequences for function. To investigate the relationship between collagen content and organization with muscle mechanical properties, we studied mdx mice, a model for Duchenne muscular dystrophy (DMD) that undergoes skeletal muscle fibrosis, and age-matched control mice. We determined collagen content both histologically, with picosirius red staining, and biochemically, with hydroxyproline quantification. Collagen content increased in the mdx soleus and diaphragm muscles, which was exacerbated by age in the diaphragm. Collagen packing density, a parameter of collagen organization, was determined using circularly polarized light microscopy of picosirius red-stained sections. Extensor digitorum longus (EDL) and soleus muscle had proportionally less dense collagen in mdx muscle, while the diaphragm did not change packing density. The mdx muscles had compromised strength as expected, yet only the EDL had a significantly increased elastic stiffness. The EDL and diaphragm had increased dynamic stiffness and a change in relative viscosity. Unexpectedly, passive stiffness did not correlate with collagen content and only weakly correlated with collagen organization. We conclude that muscle fibrosis does not lead to increased passive stiffness and that collagen content is not predictive of muscle stiffness. PMID:24598364

  7. Progranulin is increased in human and murine lipodystrophy.

    PubMed

    Miehle, Konstanze; Ebert, Thomas; Kralisch, Susan; Hoffmann, Annett; Kratzsch, Jürgen; Schlögl, Haiko; Stumvoll, Michael; Fasshauer, Mathias

    2016-10-01

    Lipodystrophies (LD) are genetic or acquired disorders sharing the symptom of partial or complete adipose tissue deficiency and a dysregulation of adipokines including leptin and adiponectin. Progranulin, an adipokine with proinflammatory and insulin resistance-inducing characteristics, has not been investigated in LD so far. Circulating progranulin was determined in LD patients (N=37) and in age-, gender-, and body mass index-matched healthy control subjects (N=37). Additionally, we investigated progranulin expression in an LD mouse model as compared to wild-type mice. Moreover, we elucidated circulating progranulin before and during metreleptin supplementation in 10 patients with LD. Median [interquartile range] circulating progranulin was increased in patients with LD (82.9 [25.9] μg/l) as compared to controls (73.6 [22.8] μg/l) (p=0.005). C-reactive protein (CRP) remained an independent and positive predictor of progranulin in multivariate analysis. Progranulin mRNA was significantly upregulated in all adipose tissue depots, i.e. visceral, subcutaneous, and brown adipose tissue, and in muscle of LD animals versus wild-type mice. Progranulin levels did not significantly change during metreleptin supplementation. Progranulin serum concentration is increased in patients with LD, and shows an independent and positive correlation with CRP. Different adipose tissue depots and muscle might be potential origins of elevated progranulin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Therapeutic cloning in individual parkinsonian mice

    PubMed Central

    Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz

    2009-01-01

    Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409

  9. Age-related changes in humoral and cell-mediated immunity in Down syndrome children living at home.

    PubMed

    Lockitch, G; Singh, V K; Puterman, M L; Godolphin, W J; Sheps, S; Tingle, A J; Wong, F; Quigley, G

    1987-11-01

    Abnormalities of humoral and cell-mediated immunity have been described in Down syndrome but reported findings have been inconsistent. Confounding factors have included age, institutional versus home life, hepatitis B antigenemia, and zinc deficiency. To clarify this problem, we studied 64 children with Down syndrome (DS) compared with an age-matched control group. All children had always lived at home. All the DS children were negative for hepatitis B surface antigen. Serum zinc concentration in the DS group was on average 12 micrograms/dl lower than age-matched control children. They also had significantly lower levels of immunoglobulin M, total lymphocyte count, T and B lymphocytes, and T helper and suppressor cells. In vitro lymphocyte response to phytohemagglutinin and concanavalin A was significantly reduced at all ages in the DS group. Lymphocyte response to pokeweed mitogen increased with age in control children but decreased in the DS children. By 18 yr, the mean response for DS was 60000 cpm lower than controls. The DS group had significantly higher concentrations of immunoglobulins A and G than controls and the difference increased with age. Complement fractions C3 and C4 were also higher in the DS group at all ages. The number of HNK-1 positive cells was higher in the DS group than controls at all ages. When hepatitis and institutionalization are excluded as confounding factors, DS children still differ in both humoral and cell-mediated immunity from an age-matched control group.

  10. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease

    PubMed Central

    Teos, LY; Zheng, C-Y; Liu, X; Swaim, WD; Goldsmith, CM; Cotrim, AP; Baum, BJ; Ambudkar, IS

    2017-01-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands functionally compromised post IR. PMID:26966862

  11. Deficiency of Retinaldehyde Dehydrogenase 1 Induces BMP2 and Increases Bone Mass In Vivo

    PubMed Central

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W.; Brown, Jonathan D.; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J.; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1−/−) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1−/− mice. In serum assays, Aldh1a1−/− mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1−/− mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1−/− mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1−/− mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling. PMID:23951127

  12. Spatial reversal learning defect coincides with hypersynchronous telencephalic BOLD functional connectivity in APPNL-F/NL-F knock-in mice.

    PubMed

    Shah, Disha; Latif-Hernandez, Amira; De Strooper, Bart; Saito, Takashi; Saido, Takaomi; Verhoye, Marleen; D'Hooge, Rudi; Van der Linden, Annemie

    2018-04-19

    Amyloid pathology occurs early in Alzheimer's disease (AD), and has therefore been the focus of numerous studies. Transgenic mouse models have been instrumental to study amyloidosis, but observations might have been confounded by APP-overexpression artifacts. The current study investigated early functional defects in an APP knock-in mouse model, which allows assessing the effects of pathological amyloid-beta (Aβ) without interference of APP-artifacts. Female APP NL/NL knock-in mice of 3 and 7 months old were compared to age-matched APP NL-F/NL-F mice with increased Aβ42/40 ratio and initial Aβ-plaque deposition around 6 months of age. Spatial learning was examined using a Morris water maze protocol consisting of acquisition and reversal trials interleaved with reference memory tests. Functional connectivity (FC) of brain networks was assessed using resting-state functional MRI (rsfMRI). The Morris water maze data revealed that 3 months old APP NL-F/NL-F mice were unable to reach the same reference memory proficiency as APP NL/NL mice after reversal training. This cognitive defect in 3-month-old APP NL-F/NL-F mice coincided with hypersynchronous FC of the hippocampal, cingulate, caudate-putamen, and default-mode-like networks. The occurrence of these defects in APP NL-F/NL-F mice demonstrates that cognitive flexibility and synchronicity of telencephalic activity are specifically altered by early Aβ pathology without changes in APP neurochemistry.

  13. Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age-related selective uptake with reversal of learning impairment.

    PubMed

    Banks, William A; Farr, Susan A; Morley, John E; Wolf, Kathy M; Geylis, Valeria; Steinitz, Michael

    2007-08-01

    Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.

  14. Telmisartan regresses left ventricular hypertrophy in caveolin-1 deficient mice

    PubMed Central

    Kreiger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C.

    2011-01-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known, however the role of the Ang II in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav- KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan, and cardiac function assessed by echocardiography. Treatment of Cav-1 KO mice with telmisartan significantly improved cardiac function compared to age-matched, vehicle treated Cav-1 KO mice, while telmisartan did not affected cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by telmisartan in Cav-1 KO but not WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides-A and –B, β-myosin heavy chain and TGF-β and telmisartan treatment normalized the expression of these genes. Telmisartan reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, telmisartan treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  15. Effects of aging on the immunopathological response to sepsis

    PubMed Central

    Turnbull, Isaiah R.; Clark, Andrew T.; Stromberg, Paul E.; Dixon, David J.; Woolsey, Cheryl A.; Davis, Christopher G.; Hotchkiss, Richard S.; Buchman, Timothy G.; Coopersmith, Craig M.

    2009-01-01

    Objective Aging is associated with increased inflammation following sepsis. The purpose of this study was to determine if this represents a fundamental age-based difference in the host response or is secondary to the increased mortality seen in aged hosts. Design Prospective, randomized controlled study. Setting Animal laboratory in a university medical center. Subjects Young (6–12 week) and aged (20–24 month) FVB/N mice. Interventions Mice were subjected to 2×25 or 1×30 cecal ligation and puncture (CLP). Measurements and Main Results Survival was similar in young mice subjected to 2×25 CLP and aged mice subjected to 1×30 CLP (p=0.15). Young mice subjected to 1×30 CLP had improved survival compared to both other groups (p<0.05). When injury was held constant but mortality was greater, both systemic and peritoneal levels of TNF-α, IL-6, IL-10 and MCP-1 were elevated 24 hours after CLP in aged animals compared to young animals (p<0.05). When mortality was similar but injury severity was different, there were no significant differences in systemic cytokines between aged mice and young mice. In contrast, peritoneal levels of TNF-α, IL-6, and IL-10 were higher in aged mice subjected to 1×30 CLP than young mice subjected to 2×25 CLP despite their similar mortalities (p<0.05). There were no significant differences in either bacteremia or peritoneal cultures when animals of different ages sustained similar injuries or had different injuries with similar mortalities. Conclusions Aged mice are more likely to die from sepsis than young mice when subjected to an equivalent insult, and this is associated with increases in both systemic and local inflammation. There is an exaggerated local but not systemic inflammatory response in aged mice compared to young mice when mortality is similar. This suggests that systemic processes that culminate in death may be age-independent, but the local inflammatory response may be greater with aging. PMID:19237912

  16. Conservative fluid management prevents age-associated ventilator induced mortality.

    PubMed

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Conservative Fluid Management Prevents Age-Associated Ventilator Induced Mortality

    PubMed Central

    Herbert, Joseph A.; Valentine, Michael S.; Saravanan, Nivi; Schneck, Matthew B.; Pidaparti, Ramana; Fowler, Alpha A.; Reynolds, Angela M.; Heise, Rebecca L.

    2017-01-01

    Background Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hosptial mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. Methods 2 month old and 20 month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4 hours with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. Results At 4hrs, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1hr in advanced age HVT subjects. In 4hr ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Conclusion Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. PMID:27188767

  18. Neurturin-deficient mice develop dry eye and keratoconjunctivitis sicca.

    PubMed

    Song, Xiu Jun; Li, De-Quan; Farley, William; Luo, Li Hui; Heuckeroth, Robert O; Milbrandt, Jeffrey; Pflugfelder, Stephen C

    2003-10-01

    Neurturin has been identified as a neurotrophic factor for parasympathetic neurons. Neurturin-deficient (NRTN(-/-)) mice have defective parasympathetic innervation of their lacrimal glands. This study was conducted to evaluate tear function and ocular surface phenotype in NRTN(-/-) mice. Determined by tail genomic DNA PCR, 25 NRTN(-/-) mice and 17 neurturin-normal (NRTN(+/+)) mice aged 6 weeks to 4 months were evaluated. Aqueous tear production, tear fluorescein clearance and corneal sensation were serially measured. Corneal permeability to AlexaFluor dextran (AFD; Molecular Probes, Eugene, OR) was measured by a fluorometric assay at 485 nm excitation and 530 nm emission. Histology was evaluated in PAS-stained sections. Mucin and HLA class II (IA) antigen were assessed by immunofluorescent staining. Tear IL-1beta was measured by ELISA, and tear matrix metalloproteinase (MMP)-9 by zymography. Gene expression in the corneal epithelia was analyzed by semiquantitative RT-PCR. In comparison to that in age-matched NRTN(+/+) mice, aqueous tear production, tear fluorescein clearance, and corneal sensation were significantly reduced in NRTN(-/-) mice, whereas corneal permeability to AFD was significantly increased. Immunoreactive MUC-4 and -5AC mucin and goblet cell density (P < 0.001) in the conjunctiva of NRTN(-/-) mice were lower than in NRTN(+/+) mice. The expression of MUC-1 and -4 mRNA by the corneal epithelium was reduced in NRTN(-/-) mice. There were a significantly greater number of IA antigen-positive conjunctival epithelial cells in NRTN(-/-) mice than NRTN(+/+) mice. Tear fluid IL-1beta and MMP-9 concentrations and the expression of IL-1beta, TNF-alpha, macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant (KC), and MMP-9 mRNA by the corneal epithelia were significantly increased in NRTN(-/-) mice, compared with NRTN(+/+) mice. Neurturin-deficient mice show phenotypic changes and ocular surface inflammation that mimic human keratoconjunctivitis sicca. This model supports the importance of a functional ocular surface-central nervous system-lacrimal gland sensory-autonomic neural network in maintaining ocular surface health and homeostasis.

  19. Pathology of Serially Sacrificed Female B6C3F1 Mice Continuously Exposed to Very Low-Dose-Rate Gamma Rays.

    PubMed

    Tanaka, I B; Komura, J; Tanaka, S

    2017-03-01

    We have previously reported on life span shortening as well as increased incidence rates in several neoplasms in B6C3F1 mice that were continuously exposed to 21 mGy/day of gamma rays for 400 days. To clarify whether the life shortening was due to early appearance of neoplasms (shortened latency) or increased promotion/progression, 8-week-old female specific-pathogen-free B6C3F1 mice were gamma-ray irradiated at a low dose rate of 20 mGy/day for 400 days. At 100 days postirradiation, 60-90 mice were sacrificed, and thereafter every 100 days alongside the age-matched nonirradiated controls, for 700 days. Additional groups were allowed to live out their natural life span. Pathological examination was performed on all mice to identify lesions, non-neoplastic and neoplastic, as well as to determine the cause of death. Body weights were significantly increased in irradiated mice from sacrifice days 200-500. Incidence rates for spontaneously occurring non-neoplastic lesions, such as adrenal subcapsular cell hyperplasia, fatty degeneration of the liver, atrophy and tubulostromal hyperplasia of the ovaries, were significantly increased in irradiated mice. Significantly increased incidence rates with no shortening of latency periods were observed in irradiated mice for malignant lymphomas, hepatocellular adenomas/carcinomas, bronchioloalveolar adenomas, harderian gland adenoma/adenocarcinoma. Shortened latencies with significantly increased incidence rates were observed for adrenal subcapsular cell adenomas and ovarian neoplasms (tubulostromal adenoma, granulosa cell tumors) in irradiated mice. Life span shortening in mice exposed to 20 mGy/day was mostly due to malignant lymphomas. Multiple primary neoplasms were significantly increased in mice exposed to 20 mGy/day from sacrifice days 400-700 and in the life span group. Our results confirm that continuous low-dose-rate gamma-ray irradiation of female B6C3F1 mice causes both cancer induction (shortened latency) and promotion/progression (early death), depending on the neoplasm's organ/tissue of origin.

  20. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canada, A.T.; Calabrese, E.J.; Leonard, D.

    1986-09-01

    The effect of age on the metabolism of pentobarbital in mice and rats was investigated following exposure to 0.3 ppm of ozone for 3.75 hr. Young animals were 2.5 months of age and the mature were 18 months. The pentobarbital sleeping time was significantly prolonged following the ozone exposure in both the mice and rats when compared with an air control. No ozone effect on sleeping time was found in the young animals. The results indicate that there may be an age-related sensitivity to the occurrence of ozone-related inhibition of pentobarbital metabolism.

  1. KCa 3.1 upregulation preserves endothelium-dependent vasorelaxation during aging and oxidative stress.

    PubMed

    Choi, Shinkyu; Kim, Ji Aee; Li, Hai-Yan; Shin, Kyong-Oh; Oh, Goo Taeg; Lee, Yong-Moon; Oh, Seikwan; Pewzner-Jung, Yael; Futerman, Anthony H; Suh, Suk Hyo

    2016-10-01

    Endothelial oxidative stress develops with aging and reactive oxygen species impair endothelium-dependent relaxation (EDR) by decreasing nitric oxide (NO) availability. Endothelial KCa 3.1, which contributes to EDR, is upregulated by H2 O2 . We investigated whether KCa 3.1 upregulation compensates for diminished EDR to NO during aging-related oxidative stress. Previous studies identified that the levels of ceramide synthase 5 (CerS5), sphingosine, and sphingosine 1-phosphate were increased in aged wild-type and CerS2 mice. In primary mouse aortic endothelial cells (MAECs) from aged wild-type and CerS2 null mice, superoxide dismutase (SOD) was upregulated, and catalase and glutathione peroxidase 1 (GPX1) were downregulated, when compared to MAECs from young and age-matched wild-type mice. Increased H2 O2 levels induced Fyn and extracellular signal-regulated kinases (ERKs) phosphorylation and KCa 3.1 upregulation. Catalase/GPX1 double knockout (catalase(-/-) /GPX1(-/-) ) upregulated KCa 3.1 in MAECs. NO production was decreased in aged wild-type, CerS2 null, and catalase(-/-) /GPX1(-/-) MAECs. However, KCa 3.1 activation-induced, N(G) -nitro-l-arginine-, and indomethacin-resistant EDR was increased without a change in acetylcholine-induced EDR in aortic rings from aged wild-type, CerS2 null, and catalase(-/-) /GPX1(-/-) mice. CerS5 transfection or exogenous application of sphingosine or sphingosine 1-phosphate induced similar changes in levels of the antioxidant enzymes and upregulated KCa 3.1. Our findings suggest that, during aging-related oxidative stress, SOD upregulation and downregulation of catalase and GPX1, which occur upon altering the sphingolipid composition or acyl chain length, generate H2 O2 and thereby upregulate KCa 3.1 expression and function via a H2 O2 /Fyn-mediated pathway. Altogether, enhanced KCa 3.1 activity may compensate for decreased NO signaling during vascular aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Characterization of Regulatory Dendritic Cells That Mitigate Acute Graft-versus-Host Disease in Older Mice Following Allogeneic Bone Marrow Transplantation

    PubMed Central

    Scroggins, Sabrina M.; Olivier, Alicia K.; Meyerholz, David K.; Schlueter, Annette J.

    2013-01-01

    Despite improvements in human leukocyte antigen matching and pharmacologic prophylaxis, acute graft-versus-host disease (GVHD) is often a fatal complication following hematopoietic stem cell transplant (HSCT). Older HSCT recipients experience significantly increased morbidity and mortality compared to young recipients. Prophylaxis with syngeneic regulatory dendritic cells (DCreg) in young bone marrow transplanted (BMT) mice has been shown to decrease GVHD-associated mortality. To evaluate this approach in older BMT recipients, young (3–4 months) and older (14–18 months) DCreg were generated using GM-CSF, IL-10, and TGFβ. Analysis of young versus older DCreg following culture revealed no differences in phenotype. The efficacy of DCreg treatment in older BMT mice was evaluated in a BALB/c→C57Bl/6 model of GVHD; on day 2 post-BMT (d +2), mice received syngeneic, age-matched DCreg. Although older DCreg-treated BMT mice showed decreased morbidity and mortality compared to untreated BMT mice (all of which died), there was a small but significant decrease in the survival of older DCreg-treated BMT mice (75% survival) compared to young DCreg-treated BMT mice (90% survival). To investigate differences between dendritic cells (DC) in young and older DCreg-treated BMT mice that may play a role in DCreg function in vivo, DC phenotypes were assessed following DCreg adoptive transfer. Transferred DCreg identified in older DCreg-treated BMT mice at d +3 showed significantly lower expression of PD-L1 and PIR B compared to DCreg from young DCreg-treated BMT mice. In addition, donor DC identified in d +21 DCreg-treated BMT mice displayed increased inhibitory molecule and decreased co-stimulatory molecule expression compared to d +3, suggesting induction of a regulatory phenotype on the donor DC. In conclusion, these data indicate DCreg treatment is effective in the modulation of GVHD in older BMT recipients and provide evidence for inhibitory pathways that DCreg and donor DC may utilize to induce and maintain tolerance to GVHD. PMID:24040397

  3. Sex differences in β-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure.

    PubMed

    Carroll, Jenna C; Rosario, Emily R; Kreimer, Sara; Villamagna, Angela; Gentzschein, Elisabet; Stanczyk, Frank Z; Pike, Christian J

    2010-12-17

    The risk of Alzheimer's disease (AD) is higher in women than in men, a sex difference that likely results from the effects of sex steroid hormones. To investigate this relationship, we first compared progression of β-amyloid (Aβ) pathology in male and female triple transgenic (3xTg-AD) mice. We found that female 3xTg-AD mice exhibit significantly greater Aβ burden and larger behavioral deficits than age-matched males. Next, we evaluated how the organizational effects of sex steroid hormones during postnatal development may affect adult vulnerability to Aβ pathology. We observed that male 3xTg-AD mice demasculinized during early development exhibit significantly increased Aβ accumulation in adulthood. In contrast, female mice defeminized during early development exhibit a more male-like pattern of Aβ pathology in adulthood. Taken together, these results demonstrate significant sex differences in pathology in 3xTg-AD mice and suggest that these differences may be mediated by organizational actions of sex steroid hormones during development. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Repeated cognitive stimulation alleviates memory impairments in an Alzheimer's disease mouse model.

    PubMed

    Martinez-Coria, Hilda; Yeung, Stephen T; Ager, Rahasson R; Rodriguez-Ortiz, Carlos J; Baglietto-Vargas, David; LaFerla, Frank M

    2015-08-01

    Alzheimer's disease is a neurodegenerative disease associated with progressive memory and cognitive decline. Previous studies have identified the benefits of cognitive enrichment on reducing disease pathology. Additionally, epidemiological and clinical data suggest that repeated exercise, and cognitive and social enrichment, can improve and/or delay the cognitive deficiencies associated with aging and neurodegenerative diseases. In the present study, 3xTg-AD mice were exposed to a rigorous training routine beginning at 3 months of age, which consisted of repeated training in the Morris water maze spatial recognition task every 3 months, ending at 18 months of age. At the conclusion of the final Morris water maze training session, animals subsequently underwent testing in another hippocampus-dependent spatial task, the Barnes maze task, and on the more cortical-dependent novel object recognition memory task. Our data show that periodic cognitive enrichment throughout aging, via multiple learning episodes in the Morris water maze task, can improve the memory performance of aged 3xTg-AD mice in a separate spatial recognition task, and in a preference memory task, when compared to naïve aged matched 3xTg-AD mice. Furthermore, we observed that the cognitive enrichment properties of Morris water maze exposer, was detectable in repeatedly trained animals as early as 6 months of age. These findings suggest early repeated cognitive enrichment can mitigate the diverse cognitive deficits observed in Alzheimer's disease. Published by Elsevier Inc.

  5. Expression of intercellular adhesion molecule-1 by myofibers in mdx mice.

    PubMed

    Torres-Palsa, Maria J; Koziol, Matthew V; Goh, Qingnian; Cicinelli, Peter A; Peterson, Jennifer M; Pizza, Francis X

    2015-11-01

    We investigated the extent to which intercellular adhesion molecule-1 (ICAM-1), a critical protein of the inflammatory response, is expressed in skeletal muscles of mdx mice (a murine model of Duchenne muscular dystrophy). Muscles were collected from control and mdx mice at 2-24 weeks of age and analyzed for ICAM-1 expression by means of Western blot and immunofluorescence. Western blot revealed higher expression of ICAM-1 in mdx compared with control muscles through 24 weeks of age. In contrast to control muscles, ICAM-1 was expressed on the membrane of damaged, regenerating, and normal myofibers of mdx mice. CD11b+ myeloid cells also expressed ICAM-1 in mdx muscles, and CD11b+ cells were closely associated with the membrane of myofibers expressing ICAM-1. These findings support a paradigm in which ICAM-1 and its localization to myofibers in muscles of mdx mice contributes to the dystrophic pathology. © 2015 Wiley Periodicals, Inc.

  6. EXPRESSION OF INTERCELLULAR ADHESION MOLECULE-1 BY MYOFIBERS IN mdx MICE

    PubMed Central

    TORRES-PALSA, MARIA J.; KOZIOL, MATTHEW V.; GOH, QINGNIAN; CICINELLI, PETER A.; PETERSON, JENNIFER M.; PIZZA, FRANCIS X.

    2017-01-01

    Introduction We investigated the extent to which intercellular adhesion molecule-1 (ICAM-1), a critical protein of the inflammatory response, is expressed in skeletal muscles of mdx mice (a murine model of Duchenne muscular dystrophy). Methods Muscles were collected from control and mdx mice at 2–24 weeks of age and analyzed for ICAM-1 expression by means of Western blot and immunofluorescence. Results Western blot revealed higher expression of ICAM-1 in mdx compared with control muscles through 24 weeks of age. In contrast to control muscles, ICAM-1 was expressed on the membrane of damaged, regenerating, and normal myofibers of mdx mice. CD11b+ myeloid cells also expressed ICAM-1 in mdx muscles, and CD11b+ cells were closely associated with the membrane of myofibers expressing ICAM-1. Conclusions These findings support a paradigm in which ICAM-1 and its localization to myofibers in muscles of mdx mice contributes to the dystrophic pathology. PMID:25728314

  7. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling.

    PubMed

    Nikolakopoulou, Angeliki Maria; Zhao, Zhen; Montagne, Axel; Zlokovic, Berislav V

    2017-01-01

    Pericytes regulate key neurovascular functions of the brain. Studies in pericyte-deficient transgenic mice with aberrant signaling between endothelial-derived platelet-derived growth factor BB (PDGF-BB) and platelet-derived growth factor receptor β (PDGFRβ) in pericytes have contributed to better understanding of the role of pericytes in the brain. Here, we studied PdgfrβF7/F7 mice, which carry seven point mutations that disrupt PDGFRβ signaling causing loss of pericytes and vascular smooth muscle cells (VSMCs) in the developing brain. We asked whether these mice have a stable or progressive vascular phenotype after birth, and whether both pericyte and VSMCs populations are affected in the adult brain. We found an early and progressive region-dependent loss of brain pericytes, microvascular reductions and blood-brain barrier (BBB) breakdown, which were more pronounced in the cortex, hippocampus and striatum than in the thalamus, whereas VSMCs population remained unaffected at the time when pericyte loss was already established. For example, compared to age-matched controls, PdgfrβF7/F7 mice between 4-6 and 36-48 weeks of age developed a region-dependent loss in pericyte coverage (22-46, 24-44 and 4-31%) and cell numbers (36-49, 34-64 and 11-36%), reduction in capillary length (20-39, 13-46 and 1-30%), and an increase in extravascular fibrinogen-derived deposits (3.4-5.2, 2.8-4.1 and 0-3.6-fold) demonstrating BBB breakdown in the cortex, hippocampus and thalamus, respectively. Capillary reductions and BBB breakdown correlated with loss of pericyte coverage. Our data suggest that PdgfrβF7/F7 mice develop an aggressive and rapid vascular phenotype without appreciable early involvement of VSMCs, therefore providing a valuable model to study regional effects of pericyte loss on brain vascular and neuronal functions. This model could be a useful tool for future studies directed at understanding the role of pericytes in the pathogenesis of neurological disorders associated with pericyte loss such as vascular dementia, Alzheimer's disease, amyotrophic lateral sclerosis, stroke and human immunodeficiency virus-associated neurocognitive disorder.

  8. Indirect Estimates of Jaw Muscle Tension in Children with Suspected Hypertonia, Children with Suspected Hypotonia, and Matched Controls

    ERIC Educational Resources Information Center

    Connaghan, Kathryn P.; Moore, Christopher A.

    2013-01-01

    Purpose: In this study, the authors compared indirect estimates of jaw-muscle tension in children with suspected muscle-tone abnormalities with age- and gender-matched controls. Method: Jaw movement and muscle activation were measured in children (ages 3 years, 11 months, to 10 years) with suspected muscle-tone abnormalities (Down syndrome or…

  9. Longitudinal Study of a Novel, Performance-based Measure of Daily Function

    DTIC Science & Technology

    2016-06-01

    have functional impairments, and healthy age matched controls on the UPSA, as well as measures of cognition (e.g., episodic memory , semantic memory ...controls on the UPSA, as well as measures of cognition (e.g., episodic memory , semantic memory , executive function, speed). We found that patients with...diagnosis have functional impairments, and healthy age matched controls on the UPSA, as well as measures of cognition (e.g., episodic memory , semantic

  10. DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy.

    PubMed

    Kaida, Yusuke; Fukami, Kei; Matsui, Takanori; Higashimoto, Yuichiro; Nishino, Yuri; Obara, Nana; Nakayama, Yosuke; Ando, Ryotaro; Toyonaga, Maki; Ueda, Seiji; Takeuchi, Masayoshi; Inoue, Hiroyoshi; Okuda, Seiya; Yamagishi, Sho-ichi

    2013-09-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. AGEs-aptamer was detected and its level was increased in the kidney for at least 7 days. The elimination half-lives of AGEs-aptamer in the kidney were about 7 days. Compared with those in C57BL/6J mice, glomerular AGEs levels were significantly increased in KKAy/Ta mice, which were blocked by AGEs-aptamer. Urinary albumin and 8-hydroxy-2'-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy.

  11. The effect of aging on efferent nerve fibers regeneration in mice.

    PubMed

    Verdú, E; Butí, M; Navarro, X

    1995-10-23

    This study evaluates the influence of aging on nerve regeneration and reinnervation of target organs in mice aged 2, 6, 9, 12, 18 and 24 months. In animals of each age group the sciatic nerve was subjected to crush, section or section and suture. Reinnervation of plantar muscles and sweat glands (SG) was evaluated over three months after operation by functional methods. Reappearance of SG secretion and motor responses occurred slightly earlier in young than older mice. The degree of motor and sudomotor reinnervation, with respect to preoperative control values, was also significantly higher in young than old animals. The differences were more pronounced after 12 months of age. The degree of recovery progressively decreased with the severity of the lesion, differences being more marked in older mice. Neurorraphy improved recovery, comparatively more in older than in young mice. These results indicate that, after injuries of peripheral nerves, axonal regeneration and reinnervation are maintained throughout life, but tend to be more delayed and slightly less effective with aging.

  12. Digastric Muscle Phenotypes of the Ts65Dn Mouse Model of Down Syndrome

    PubMed Central

    Connor, Nadine P.

    2016-01-01

    Down syndrome is frequently associated with complex difficulties in oromotor development, feeding, and swallowing. However, the muscle phenotypes underlying these deficits are unclear. We tested the hypotheses that the Ts65Dn mouse model of DS has significantly altered myosin heavy chain (MyHC) isoform profiles of the muscles involved in feeding and swallowing, as well as reductions in the speed of these movements during behavioral assays. SDS-PAGE, immunofluorescence, and qRT-PCR were used to assess MyHC isoform expression in pertinent muscles, and functional feeding and swallowing performance were quantified through videofluoroscopy and mastication assays. We found that both the anterior digastric (ADG) and posterior digastric (PDG) muscles in 11-day old and 5–6 week old Ts65Dn groups showed significantly lower MyHC 2b protein levels than in age-matched euploid control groups. In videofluoroscopic and videotape assays used to quantify swallowing and mastication performance, 5–6 week old Ts65Dn and euploid controls showed similar swallow rates, inter-swallow intervals, and mastication rates. In analysis of adults, 10–11 week old Ts65Dn mice revealed significantly less MyHC 2b mRNA expression in the posterior digastric, but not the anterior digastric muscle as compared with euploid controls. Analysis of MyHC 2b protein levels across an adult age range (10–53 weeks of age) revealed lower levels of MyHC 2b protein in the PDG of Ts65Dn than in euploids, but similar levels of MyHC 2b in the ADG. Cumulatively, these results indicate biochemical differences in some, but not all, muscles involved in swallowing and jaw movement in Ts65Dn mice that manifest early in post-natal development, and persist into adulthood. These findings suggest potential utility of this model for future investigations of the mechanisms of oromotor difficulties associated with Down syndrome. PMID:27336944

  13. Delayed Effects of Acute Radiation Exposure in a Murine Model of the H-ARS: Multiple-Organ Injury Consequent to <10 Gy Total Body Irradiation.

    PubMed

    Unthank, Joseph L; Miller, Steven J; Quickery, Ariel K; Ferguson, Ethan L; Wang, Meijing; Sampson, Carol H; Chua, Hui Lin; DiStasi, Matthew R; Feng, Hailin; Fisher, Alexa; Katz, Barry P; Plett, P Artur; Sandusky, George E; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P; MacVittie, Thomas J; Orschell, Christie M

    2015-11-01

    The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.

  14. Dysregulation of temperature and liver cytokine gene expression in immunodeficient wasted mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libertin, C.R.; Ling-Indeck, L.; Weaver, P.

    1995-04-25

    Wasted mice bear the spontaneous autosomal recessive mutation wst/wst; this genotype is associated with weight loss beginning at 21 days of age, neurologic dysfunction, immunodeficiency at mucosal sites, and increased sensitivity to the killing effects of ionizing radiation. The pathology underlying the disease symptoms is unknown. Experiments reported here were designed to examine thermoregulation and liver expression of specific cytokines in wasted mice and in littermate and parental controls. Our experiments found that wasted mice begin to show a drop in body temperature at 21-23 days following birth, continuing until death at the age of 28 days. Concomitant with that,more » livers from wasted mice expressed increased amounts of mRNAs specific for cytokines IL,6 and IL-1, the acute phase reactant C-reactive protein, c-jun, and apoptosis-associated Rp-8 when compared to littermate and parental control animals. Levels of {beta}-transforming growth factor (TGF), c-fos, proliferating cell nuclear antigen (PCNA), and ornithine amino transferase (OAT) transcripts were the same in livers from wasted mice and controls. These results suggest a relationship between an acute phase reactant response in wasted mice and temperature dysregulation.« less

  15. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway.

    PubMed

    Zhang, Zhiguo; Wang, Shudong; Zhou, Shanshan; Yan, Xiaoqing; Wang, Yonggang; Chen, Jing; Mellen, Nicholas; Kong, Maiying; Gu, Junlian; Tan, Yi; Zheng, Yang; Cai, Lu

    2014-12-01

    Type 2 diabetes mellitus (T2DM)-induced cardiomyopathy is associated with cardiac oxidative stress, inflammation, and remodeling. Sulforaphane (SFN), an isothiocyanate naturally presenting in widely consumed vegetables, particularly broccoli, plays an important role in cardiac protection from diabetes. We investigated the effect of SFN on T2DM-induced cardiac lipid accumulation and subsequent cardiomyopathy. Male C57BL/6J mice were fed a high-fat diet for 3months to induce insulin resistance, followed by a treatment with 100mg/kg body-weight streptozotocin to induce hyperglycemia; we referred to it as the T2DM mouse model. Other age-matched mice were fed a normal diet as control. T2DM and control mice were treated with or without 4-month SFN at 0.5mg/kg daily five days a week. At the study's end, cardiac function was assessed. SFN treatment significantly attenuated cardiac remodeling and dysfunction induced by T2DM. SFN treatment also significantly inhibited cardiac lipid accumulation, measured by Oil Red O staining, and improved cardiac inflammation oxidative stress and fibrosis, shown by down-regulating diabetes-induced PAI-1, TNF-α, CTGF, TGF-β, 3-NT, and 4-HNE expression. Elevated 4-HNE resulted in the increase of 4-HNE-LKB1 adducts that should inhibit LKB1 and subsequent AMPK activity. SFN upregulated the expression of Nrf2 and its downstream genes, NQO1 and HO-1, decreased 4-HNE-LKB1 adducts and then reversed diabetes-induced inhibition of LKB1/AMPK and its downstream targets, including sirtuin 1, PGC-1α, phosphorylated acetyl-CoA carboxylase, carnitine palmitoyl transferase-1, ULK1, and light chain-3 II. These results suggest that SFN treatment to T2DM mice may attenuate the cardiac oxidative stress-induced inhibition of LKB1/AMPK signaling pathway, thereby preventing T2DM-induced lipotoxicity and cardiomyopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Increased pulmonary arteriolar tone associated with lung oxidative stress and nitric oxide in a mouse model of Alzheimer's disease.

    PubMed

    Roberts, Andrew M; Jagadapillai, Rekha; Vaishnav, Radhika A; Friedland, Robert P; Drinovac, Robert; Lin, Xingyu; Gozal, Evelyne

    2016-09-01

    Vascular dysfunction and decreased cerebral blood flow are linked to Alzheimer's disease (AD). Loss of endothelial nitric oxide (NO) and oxidative stress in human cerebrovascular endothelium increase expression of amyloid precursor protein (APP) and enhance production of the Aβ peptide, suggesting that loss of endothelial NO contributes to AD pathology. We hypothesize that decreased systemic NO bioavailability in AD may also impact lung microcirculation and induce pulmonary endothelial dysfunction. The acute effect of NO synthase (NOS) inhibition on pulmonary arteriolar tone was assessed in a transgenic mouse model (TgAD) of AD (C57BL/6-Tg(Thy1-APPSwDutIowa)BWevn/Mmjax) and age-matched wild-type controls (C57BL/6J). Arteriolar diameters were measured before and after the administration of the NOS inhibitor, L-NAME Lung superoxide formation (DHE) and formation of nitrotyrosine (3-NT) were assessed as indicators of oxidative stress, inducible NOS (iNOS) and tumor necrosis factor alpha (TNF-α) expression as indicators of inflammation. Administration of L-NAME caused either significant pulmonary arteriolar constriction or no change from baseline tone in wild-type (WT) mice, and significant arteriolar dilation in TgAD mice. DHE, 3-NT, TNF-α, and iNOS expression were higher in TgAD lung tissue, compared to WT mice. These data suggest L-NAME could induce increased pulmonary arteriolar tone in WT mice from loss of bioavailable NO In contrast, NOS inhibition with L-NAME had a vasodilator effect in TgAD mice, potentially caused by decreased reactive nitrogen species formation, while significant oxidative stress and inflammation were present. We conclude that AD may increase pulmonary microvascular tone as a result of loss of bioavailable NO and increased oxidative stress. Our findings suggest that AD may have systemic microvascular implications beyond central neural control mechanisms. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Prestin Regulation and Function in Residual Outer Hair Cells after Noise-Induced Hearing Loss

    PubMed Central

    Xia, Anping; Song, Yohan; Wang, Rosalie; Gao, Simon S.; Clifton, Will; Raphael, Patrick; Chao, Sung-il; Pereira, Fred A.; Groves, Andrew K.; Oghalai, John S.

    2013-01-01

    The outer hair cell (OHC) motor protein prestin is necessary for electromotility, which drives cochlear amplification and produces exquisitely sharp frequency tuning. TectaC1509G transgenic mice have hearing loss, and surprisingly have increased OHC prestin levels. We hypothesized, therefore, that prestin up-regulation may represent a generalized response to compensate for a state of hearing loss. In the present study, we sought to determine the effects of noise-induced hearing loss on prestin expression. After noise exposure, we performed cytocochleograms and observed OHC loss only in the basal region of the cochlea. Next, we patch clamped OHCs from the apical turn (9–12 kHz region), where no OHCs were lost, in noise-exposed and age-matched control mice. The non-linear capacitance was significantly higher in noise-exposed mice, consistent with higher functional prestin levels. We then measured prestin protein and mRNA levels in whole-cochlea specimens. Both Western blot and qPCR studies demonstrated increased prestin expression after noise exposure. Finally, we examined the effect of the prestin increase in vivo following noise damage. Immediately after noise exposure, ABR and DPOAE thresholds were elevated by 30–40 dB. While most of the temporary threshold shifts recovered within 3 days, there were additional improvements over the next month. However, DPOAE magnitudes, basilar membrane vibration, and CAP tuning curve measurements from the 9–12 kHz cochlear region demonstrated no differences between noise-exposed mice and control mice. Taken together, these data indicate that prestin is up-regulated by 32–58% in residual OHCs after noise exposure and that the prestin is functional. These findings are consistent with the notion that prestin increases in an attempt to partially compensate for reduced force production because of missing OHCs. However, in regions where there is no OHC loss, the cochlea is able to compensate for the excess prestin in order to maintain stable auditory thresholds and frequency discrimination. PMID:24376553

  18. Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: A magnetic resonance microscopy and stereologic analysis

    PubMed Central

    Redwine, Jeffrey M.; Kosofsky, Barry; Jacobs, Russell E.; Games, Dora; Reilly, John F.; Morrison, John H.; Young, Warren G.; Bloom, Floyd E.

    2003-01-01

    High-resolution magnetic resonance microscopy (MRM) was used to determine regional brain volumetric changes in a mouse model of Alzheimer's disease. These transgenic (Tg) mice overexpress human mutant amyloid precursor protein (APP) V717F under control of platelet-derived growth factor promoter (PDAPP mice), and cortical and hippocampal β-amyloid (Aβ) deposits accumulate in heterozygotes after 8–10 mos. We used MRM to obtain 3D volumetric data on mouse brains imaged in their skulls to define genotype- and age-related changes. Hippocampal, cerebellar, and brain volumes and corpus callosum length were quantified in 40-, 100-, 365-, and 630-day-old mice. Measurements taken at age 100 days, before Aβ deposition, revealed a 12.3% reduction of hippocampus volume in Tg mice compared with WT controls. This reduction persisted without progression to age 21 mos. A significant 18% increase in hippocampal volume occurred between 40 and 630 days in WT mice, and no corresponding significant increase occurred in Tg mice. Cavalieri volume estimates of hippocampal subfields from 100-day-old Tg mice further localized a 28% volume deficit in the dentate gyrus. In addition, corpus callosum length was reduced by ≈25% in Tg mice at all ages analyzed. In summary, reduced hippocampal volume and corpus callosum length can be detected by MRM before Aβ deposition. We conclude that overexpression of APP and amyloid may initiate pathologic changes before the appearance of plaques, suggesting novel targets for the treatment of Alzheimer's disease and further reinforcing the need for early diagnosis and treatment. PMID:12552120

  19. [Effect of Huanglian Jiedu Decoction on Monocyte Development in apoE Gene Knockout Mice].

    PubMed

    Chen, Bing; Kong, Ya-xian; Ll, Yu-mei; Xue, Xin; Zhang, Jian-ping; Zeng, Hui; Hu, Jing- qing; Ma, Ya-luan

    2016-01-01

    To observe monocyte (Mo) development in wild type C57BL/6 mice and apoE gene knockout (apoE(-/-)) mice, and to evaluate the immuno-regulatory effect of Huanglian Jiedu Decoction (HJD) on peripheral Mo development in apoE(-/-) mice. Four, 8, 12, and 16 weeks old female C57BL/6 mice were set up as control groups of different ages, while 4, 8, 12, and 16 weeks old female apoE(-/-) mice were set up as hyperlipidemia groups of different ages. Four-week old female C57BL/6 mice were recruited as a blank group. Four-week old female apoE(-/-) mice were randomly divided into the control group, the Western medicine group, and the Chinese medicine group by paired comparison, 5 in each group. Equivalent clinical dose was administered to mice according to body weight. Mice in the Western medicine group were administered with Atrovastatin at the daily dose of 10 mg/kg by gastrogavage, while those in the Chinese medicine group were administered with HJD at the daily dose of 5 g/kg by gastrogavage. Body weight was detected each week. After 4 weeks blood lipids levels (such as TG, TC, LDL-C, and HDL-C), and the proportions of Mo and Ly6c(hi) were detected. Compared with 4-week-old homogenic mice, the proportion of Mo decreased in 16-week-old C57BL/6 mice (P < 0.05). Levels of TC and TG, and the proportion of Ly6c(hi) subtype increased, but the proportion of Mo de- creased in 8-week-old apoE(-/-) mice (P <0. 05). Levels of TC, TG, and LDL-C increased in 12-week-old apoE(-/-) mice (P < 0.05). Levels of TC, TG, LDL-C, and HDL-C increased in 16-week-old apoE(-/-) mice (P < 0.05, P < 0.01). Compared with 8-week-old homogenic mice, the proportion of Mo decreased in 16-week-old C57BL/6 mice (P < 0.05); levels of TC and LDL-C increased in 12-week-old apoE(-/-) mice (P < 0.05); levels of TC and HDL-C increased in 16-week-old apoE(-/-) mice (P < 0.05, P < 0.01). Compared with C57BL/6 mice of the same age, TC and TG increased, HDL-C decreased (P < 0.01) in 4-and 8-week-old apoE(-/-) mice (P < 0.01); levels of TC, TG, LDL-C increased, and HDL-C level decreased in 12- and 16-week-old apoE(-/-) mice (P < 0.05, P < 0.01); the proportion of Mo increased in 4-week-old apoE(-/-) mice (P < 0.05); proportions of Mo and Ly6c(hi) increased in 8-week-old apoE(-/-) mice (P < 0.05). Compared with the blank control group, levels of TC, TG, and LDL-C, proportions of Mo and Ly6c(hi) increased (P < 0.01, P < 0.05), but HDL-C level decreased (P <0. 01) in the control group after intervention. Compared with the control group, body weight gained less in the Western medicine group and the Chinese medicine group (P < 0.05); the proportion of Ly6c(hi) subtype decreased in the Chinese medicine group (P < 0.05). In development process blood lipids levels in apoE(-/-) mice are not only associated with age. Blood lipids levels induced growth changes in natural immune system are also correlated with age. In early stage of lipids development HJD intervention could correct this special immune disorder in apoE(-/-) mice.

  20. The deleterious effects of methamphetamine use on initial presentation and clinical outcomes in aneurysmal subarachnoid hemorrhage.

    PubMed

    Beadell, Noah C; Thompson, Eric M; Delashaw, Johnny B; Cetas, Justin S

    2012-10-01

    The objective of this study was to retrospectively look at methamphetamine (MA) use in patients with aneurysmal subarachnoid hemorrhage (SAH) to determine if MA use affects clinical presentation and outcomes after aneurysmal SAH. A retrospective review of patients admitted to the Oregon Health & Science University neurosurgical service with aneurysmal SAH during the past 6 years was undertaken. Variables analyzed included MA use, age, sex, cigarette use, Hunt and Hess grade, Fisher grade, admission blood pressure, aneurysm characteristics, occurrence of vasospasm, hospital length of stay (LOS), cerebral infarction, aneurysm treatment, and Glasgow Outcome Scale (GOS) score. Data differences between MA users and nonusers were statistically analyzed using multivariate logistic regression analysis. A separate comparison with randomly selected age-matched nonuser controls was also performed. Twenty-eight (7%) of 374 patients with aneurysmal SAH were identified as MA users. Methamphetamine users were younger than nonusers (45.2 vs 55.9 years, respectively; p <0.001). Despite a younger age, MA users had significantly higher Hunt and Hess grades than nonusers (3.0 vs 2.5, respectively; p <0.020) and age-matched controls (3.0 vs 2.0, respectively; p <0.001). Earliest available mean arterial pressure was significantly higher in MA users (122.1 vs 109.7, respectively; p = 0.005) than all nonusers but not age-matched controls. Methamphetamine users had significantly higher vasospasm rates than nonusers (92.9% vs 71.1%, respectively; p = 0.008) but similar rates as age-matched controls (92.9% vs 89.3%, respectively; p = 0.500). Glasgow Outcome Scale score did not differ significantly between users and nonusers (3 vs 4, respectively; p = 0.170), but users had significantly lower GOS scores than age-matched controls (3 vs 5, respectively; p <0.001). There was no statistically significant difference in the LOS between users and nonusers (18 days vs 16 days, respectively; p = 0.431) or users and age-matched controls (18 days vs 14 days, respectively; p = 0.250). In the multivariate analysis, MA use (OR 3.777, p = 0.018), age (p <0.001), Fisher grade (p = 0.011), Hunt and Hess grade (p <0.001), and cerebral infarction (p <0.001) were predictors of poor GOS score. The only predictor of vasospasm was age (p <0.001), although a strong predictive trend in MA use (p = 0.149) was found. Predictors of a hospital LOS >15 days included age (p = 0.002), Fisher grade (p = 0.002), Hunt and Hess grade (p <0.001), and cerebral infarction (p <0.001). Predictors of cerebral infarction include male sex (p = 0.022) and Hunt and Hess grade (p = 0.006), with vasospasm demonstrating a strong trend (p = 0.056). A history of MA use may predict poorer outcomes in patients who present with aneurysmal SAH. Methamphetamine users have significantly worse presentations and outcomes when compared with age-matched controls.

  1. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice.

    PubMed

    Kim, Han-Byul; Kim, Minchul; Park, Young-Soo; Park, Intae; Kim, Tackhoon; Yang, Sung-Yeun; Cho, Charles J; Hwang, DaeHee; Jung, Jin-Hak; Markowitz, Sanford D; Hwang, Sung Wook; Yang, Suk-Kyun; Lim, Dae-Sik; Myung, Seung-Jae

    2017-02-01

    Prostaglandin E 2 (PGE 2 ) is mediator of inflammation that regulates tissue regeneration, but its continual activation has been associated with carcinogenesis. Little is known about factors in the PGE 2 signaling pathway that contribute to tumor formation. We investigated whether yes-associated protein 1 (YAP1), a transcriptional co-activator in the Hippo signaling pathway, mediates PGE 2 function. DLD-1 and SW480 colon cancer cell lines were transfected with vectors expressing transgenes or small hairpin RNAs and incubated with recombinant PGE 2 , with or without pharmacologic inhibitors of signaling proteins, and analyzed by immunoblot, immunofluorescence, quantitative reverse-transcription polymerase chain reaction, transcriptional reporter, and proliferation assays. Dextran sodium sulfate (DSS) was given to induce colitis in C57/BL6 (control) mice, as well as in mice with disruption of the hydroxyprostaglandin dehydrogenase 15 gene (15-PGDH-knockout mice), Yap1 gene (YAP-knockout mice), and double-knockout mice. Some mice also were given indomethacin to block PGE 2 synthesis. 15-PGDH knockout mice were crossed with mice with intestine-specific disruption of the salvador family WW domain containing 1 gene (Sav1), which encodes an activator of Hippo signaling. We performed immunohistochemical analyses of colon biopsy samples from 26 patients with colitis-associated cancer and 51 age-and sex-matched patients with colorectal cancer (without colitis). Incubation of colon cancer cell lines with PGE 2 led to phosphorylation of cyclic adenosine monophosphate-responsive element binding protein 1 and increased levels of YAP1 messenger RNA, protein, and YAP1 transcriptional activity. This led to increased transcription of the prostaglandin-endoperoxide synthase 2 gene (PTGS2 or cyclooxygenase 2) and prostaglandin E-receptor 4 gene (PTGER4 or EP4). Incubation with PGE 2 promoted proliferation of colon cancer cell lines, but not cells with knockdown of YAP1. Control mice developed colitis after administration of DSS, but injection of PGE 2 led to colon regeneration in these mice. However, YAP-knockout mice did not regenerate colon tissues and died soon after administration of DSS. 15-PGDH-knockout mice regenerated colon tissues more rapidly than control mice after withdrawal of DSS, and had faster recovery of body weight, colon length, and colitis histology scores. These effects were reversed by injection of indomethacin. SAV1-knockout or 15-PGDH-knockout mice did not develop spontaneous tumors after colitis induction, but SAV1/15-PGDH double-knockout mice developed polyps that eventually progressed to carcinoma in situ. Administration of indomethacin to these mice prevented spontaneous tumor formation. Levels of PGE 2 correlated with those of YAP levels in human sporadic colorectal tumors and colitis-associated tumors. PGE 2 signaling increases the expression and transcriptional activities of YAP1, leading to increased expression of cyclooxygenase 2 and EP4 to activate a positive signaling loop. This pathway promotes proliferation of colon cancer cell lines and colon tissue regeneration in mice with colitis. Constitutive activation of this pathway led to formation of polyps and colon tumors in mice. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice

    PubMed Central

    Aqul, Amal; Lopez, Adam M.; Posey, Kenneth S.; Taylor, Anna M.; Repa, Joyce J.; Burns, Dennis K.

    2014-01-01

    Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal−/− and matching lal+/+ mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal−/− mice sequestered cholesterol at an average rate of 3.2 mg·day−1·animal−1. The proportion of the body sterol pool contained in the liver of the lal−/− mice was 64 vs. 6.3% in their lal+/+ controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal−/− mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal−/− mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal+/+ controls. The rate of cholesterol synthesis in the lal−/− mice exceeded that in the lal+/+ controls by 3.7 mg·day−1·animal−1. Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal−/− mice, but their rate of neutral sterol excretion was 59% higher than in their lal+/+ controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal−/− mice was 355 days. PMID:25147230

  3. 2C.07: INVOLVEMENT OF THE RENIN-ANGIOTENSIN SYSTEM IN A PREMATURE AGING MOUSE MODEL.

    PubMed

    Van Thiel, B S; Ridwan, Y; Garrelds, I M; Vermeij, M; Groningen, M C Clahsen-Van; Danser, A H J; Essers, J; Van Der Pluijm, I

    2015-06-01

    Changes in the renin-angiotensin system (RAS), known for its critical role in the regulation of blood pressure and sodium homeostasis, may contribute to aging and age-related diseases. Here we characterized the RAS and kidney pathology in mice with genomic instability due to a defective nucleotide excision repair gene (Ercc1d/- mice). These mice display premature features of aging, including vascular dysfunction. Studies were performed in male and female Ercc1d/- mice and their wild type controls (Ercc1+/+) at the age of 12 or 18 weeks before and after treatment with losartan. The renin-activatable near-infrared fluorescent probe ReninSense 680™ was applied in vivo to allow non-invasive imaging of renin activity. Plasma renin concentrations (PRC) were additionally measured ex vivo by quantifying Ang I generation in the presence of excess angiotensinogen. Kidneys were harvested and examined for markers of aging, and albumin was determined in urine. Kidneys of 12-week old Ercc1d/- mice showed signs of aging, including tubular anisokaryosis, cell-senescence and increased apoptosis. This was even more pronounced at the age of 18 weeks. Yet, urinary albumin was normal at 12 weeks. The ReninSense 680™ probe showed increased intrarenal renin activity in Ercc1d/- mice versus Ercc1+/+ mice, both at 12 and 18 weeks of age, while PRC in these mice tended to be lower compared to Ercc1+/+ mice. Renin was higher in male than female mice, both in the kidney and in plasma, and losartan increased kidney and plasma renin in both Ercc1d/- and Ercc1+/+ mice. Rapidly aging Ercc1d/- mice display an activated intrarenal RAS, as evidenced by the increased fluorescence detected with the ReninSense 680™ probe. This increased RAS activity may contribute to the disturbed kidney pathology in these mice. The increased intrarenal activity detected with the ReninSense 680™ probe in male vs. female mice, as well as after losartan treatment, are in full agreement with the literature, and thus not only validate the specificity of the probe, but also support its use for longitudinal imaging of altered RAS signaling in aging.

  4. Alcohol Habits in Patients with Long-Term Musculoskeletal Pain: Comparison with a Matched Control Group from the General Population

    ERIC Educational Resources Information Center

    Thelin Bronner, Kerstin Birgitta; Wennberg, Peter; Kallmen, Hakan; Schult, Marie-Louise Birgitta

    2012-01-01

    This prospective study aimed to describe alcohol habits in patients with chronic pain compared with those in a matched control group from the general Swedish population. In total, 100 consecutive patients enrolled were matched against 100 individuals in a control group on the basis of age and sex. Alcohol habits were measured using the Alcohol Use…

  5. RYGB produces more sustained body weight loss and improvement of glycemic control compared with VSG in the diet-induced obese mouse model

    PubMed Central

    Hao, Zheng; Townsend, R. Leigh; Mumphrey, Michael B; Morrison, Christopher D; Münzberg, Heike; Berthoud, Hans-Rudolf

    2018-01-01

    Objective To compare the effects of murine models of vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) surgery on body weight, body composition, food intake, energy expenditure, and glycemic control. Background Weight regain and type-2 diabetes relapse has been reported in a significant proportion of VSG patients in some studies, but definitive conclusions regarding the long-term comparative effectiveness of VSG and RYGB are lacking both in humans and rodent models. Methods VSG, RYGB, and sham surgery was performed in high-fat diet-induced obese mice and the effects on body weight and glycemic control were observed for a period of 12 weeks. Results After the initial weight loss, VSG mice regained significant amounts of body weight and fat mass that were only marginally lower than in sham-operated mice. In contrast, RYGB produced sustained loss of body weight and fat mass up to 12 weeks, and drastically improved fasting insulin and HOMA-IR compared with sham-operated mice. Using weight-matched control groups we also found that the adaptive hypometabolic response to weight loss was blunted by both VSG and RYGB, and that despite large weight/fat regain, fasting insulin and HOMA-IR were markedly improved, but not reversed, in VSG mice. Conclusions VSG is less effective to lastingly suppress body weight and improve glycemic control compared with RYGB in mice. Given similar observations in many human studies, the run towards replacing RYGB with VSG is premature and should await carefully controlled randomized long term trials with VSG and RYGB. PMID:28386755

  6. RYGB Produces more Sustained Body Weight Loss and Improvement of Glycemic Control Compared with VSG in the Diet-Induced Obese Mouse Model.

    PubMed

    Hao, Zheng; Townsend, R Leigh; Mumphrey, Michael B; Morrison, Christopher D; Münzberg, Heike; Berthoud, Hans-Rudolf

    2017-09-01

    Weight regain and type-2 diabetes relapse has been reported in a significant proportion of vertical sleeve gastrectomy (VSG) patients in some studies, but definitive conclusions regarding the long-term comparative effectiveness of VSG and Roux-en-Y gastric bypass (RYGB) surgery are lacking both in humans and rodent models. This study's objective was to compare the effects of murine models of VSG and RYGB surgery on body weight, body composition, food intake, energy expenditure, and glycemic control. VSG, RYGB, and sham surgery was performed in high-fat diet-induced obese mice, and the effects on body weight and glycemic control were observed for a period of 12 weeks. After the initial weight loss, VSG mice regained significant amounts of body weight and fat mass that were only marginally lower than in sham-operated mice. In contrast, RYGB produced sustained loss of body weight and fat mass up to 12 weeks and drastically improved fasting insulin and HOMA-IR compared with sham-operated mice. Using weight-matched control groups, we also found that the adaptive hypometabolic response to weight loss was blunted by both VSG and RYGB, and that despite large weight/fat regain, fasting insulin and HOMA-IR were markedly improved, but not reversed, in VSG mice. VSG is less effective to lastingly suppress body weight and improve glycemic control compared with RYGB in mice. Given similar observations in many human studies, the run towards replacing RYGB with VSG is premature and should await carefully controlled randomized long-term trials with VSG and RYGB.

  7. Age-dependent molecular alterations in the autophagy pathway in HIVE patients and in a gp120 tg mouse model: reversal with beclin-1 gene transfer.

    PubMed

    Fields, Jerel; Dumaop, Wilmar; Rockenstein, Edward; Mante, Michael; Spencer, Brian; Grant, Igor; Ellis, Ron; Letendre, Scott; Patrick, Christina; Adame, Anthony; Masliah, Eliezer

    2013-02-01

    Aged (>50 years old) human immunodeficiency virus (HIV) patients are the fastest-growing segment of the HIV-infected population in the USA and despite antiretroviral therapy, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group. Autophagy is an intracellular clearance pathway for aggregated proteins and aged organelles; dysregulation of autophagy is implicated in the pathogenesis of Parkinson's disease, Alzheimer's disease, and HAND. Here, we hypothesized that dysregulated autophagy may contribute to aging-related neuropathology in HIV-infected individuals. To explore this possibility, we surveyed autophagy marker levels in postmortem brain samples from a cohort of well-characterized <50 years old (young) and >50 years old (aged) HIV+ and HIV encephalitis (HIVE) patients. Detailed clinical and neuropathological data showed the young and aged HIVE patients had higher viral load, increased neuroinflammation and elevated neurodegeneration; however, aged HIVE postmortem brain tissues showed the most severe neurodegenerative pathology. Interestingly, young HIVE patients displayed an increase in beclin-1, cathepsin-D and light chain (LC)3, but these autophagy markers were reduced in aged HIVE cases compared to age-matched HIV+ donors. Similar alterations in autophagy markers were observed in aged gp120 transgenic (tg) mice; beclin-1 and LC3 were decreased in aged gp120 tg mice while mTor levels were increased. Lentivirus-mediated beclin-1 gene transfer, that is known to activate autophagy pathways, increased beclin-1, LC3, and microtubule-associated protein 2 expression while reducing glial fibrillary acidic protein and Iba1 expression in aged gp120 tg mice. These data indicate differential alterations in the autophagy pathway in young versus aged HIVE patients and that autophagy reactivation may ameliorate the neurodegenerative phenotype in these patients.

  8. Kinematic Movement Strategies in Primary School Children with 22q11.2 Deletion Syndrome Compared to Age- and IQ-Matched Controls during Visuo-Manual Tracking

    ERIC Educational Resources Information Center

    Van Aken, Katrijn; Swillen, Ann; Beirinckx, Marc; Janssens, Luc; Caeyenberghs, Karen; Smits-Engelsman, Bouwien

    2010-01-01

    The present study focused on the mechanism subserving the production of kinematic patterns in 21 children with 22q11.2DS (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.05 [plus or minus] 10.2) and 21 age- and IQ-matched control children (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.38 [plus or minus] 12.0) when performing a visuo-manual…

  9. The effects of in utero bisphenol A exposure on reproductive capacity in several generations of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziv-Gal, Ayelet, E-mail: zivgal1@illinois.edu; Wang, Wei, E-mail: weiwang2@illinois.edu; Zhou, Changqing, E-mail: czhou27@illinois.edu

    In utero bisphenol A (BPA) exposure affects reproductive function in the first generation (F1) of mice; however, not many studies have examined the reproductive effects of BPA exposure on subsequent generations. In this study, pregnant mice (F0) were orally dosed with vehicle, BPA (0.5, 20, and 50 μg/kg/day) or diethylstilbestrol (DES; 0.05 μg/kg/day) daily from gestation day 11 until birth. F1 females were used to generate the F2 generation, and F2 females were used to generate the F3 generation. Breeding studies at the ages of 3, 6, and 9 months were conducted to evaluate reproductive capacity over time. Further, studiesmore » were conducted to evaluate pubertal onset, litter size, and percentage of dead pups; and to calculate pregnancy rate, and mating, fertility, and gestational indices. The results indicate that BPA exposure (0.5 and 50 μg/kg/day) significantly delayed the age at vaginal opening in the F3 generation compared to vehicle control. Both DES (0.05 μg/kg/day) and BPA (50 μg/kg/day) significantly delayed the age at first estrus in the F3 generation compared to vehicle control. BPA exposure reduced gestational index in the F1 and F2 generations compared to control. Further, BPA exposure (0.5 μg/kg/day) compromised the fertility index in the F3 generation compared to control. Finally, in utero BPA exposure reduced the ability of female mice to maintain pregnancies as they aged. Collectively, these data suggest that BPA exposure affects reproductive function in female mice and that some effects may be transgenerational in nature. - Highlights: • In utero BPA delayed vaginal opening in the F3 generation compared to control. • In utero BPA delayed estrus in the F3 generation compared to control. • In utero BPA reduced the ability of F1 and F2 female mice to maintain pregnancies. • In utero BPA compromised the ability of F3 female mice to become pregnant. • Some effects of in utero BPA may be transgenerational in nature.« less

  10. Haplodeficiency of Klotho Gene Causes Arterial Stiffening via Upregulation of Scleraxis Expression and Induction of Autophagy.

    PubMed

    Chen, Kai; Zhou, Xiaoli; Sun, Zhongjie

    2015-11-01

    The prevalence of arterial stiffness increases with age, whereas the level of the aging-suppressor protein klotho decreases with age. The objective of this study is to assess whether haplodeficiency of klotho gene causes arterial stiffness and to investigate the underlying mechanism. Pulse wave velocity, a direct measure of arterial stiffness, was increased significantly in klotho heterozygous (klotho(+/-)) mice versus their age-matched wild-type (WT) littermates, suggesting that haplodeficiency of klotho causes arterial stiffening. Notably, plasma aldosterone levels were elevated significantly in klotho(+/-) mice. Treatment with eplerenone (6 mg/kg per day IP), an aldosterone receptor blocker, abolished klotho deficiency-induced arterial stiffening in klotho(+/-) mice. Klotho deficiency was associated with increased collagen and decreased elastin contents in the media of aortas. In addition, arterial matrix metalloproteinase-2, matrix metalloproteinase-9, and transforming growth factor-β1 expression and myofibroblast differentiation were increased in klotho(+/-) mice. These klotho deficiency-related changes can be blocked by eplerenone. Protein expression of scleraxis, a transcription factor for collagen synthesis, and LC3-II/LC3-I, an index of autophagy, were upregulated in aortas of klotho(+/-) mice, which can be abolished by eplerenone. In cultured mouse aortic smooth muscle cells, aldosterone increased collagen-1 expression that can be completely eliminated by small interfering RNA knockdown of scleraxis. Interestingly, aldosterone decreased elastin levels in smooth muscle cells, which can be abolished by small interfering RNA knockdown of Beclin-1, an autophagy-related gene. In conclusion, this study demonstrated for the first time that klotho deficiency-induced arterial stiffening may involve aldosterone-mediated upregulation of scleraxis and induction of autophagy, which led to increased collagen-1 expression and decreased elastin levels, respectively. © 2015 American Heart Association, Inc.

  11. Smooth Pursuit Eye Movements in Children with Strabismus and in Children with Vergence Deficits

    PubMed Central

    Lions, Cynthia; Bui-Quoc, Emmanuel; Wiener-Vacher, Sylvette; Seassau, Magali; Bucci, Maria Pia

    2013-01-01

    Purpose The objective of our study was to examine horizontal smooth pursuit performance in strabismic children and in children with vergence deficits, and to compare these data with those recorded in a group of control age-matched children. Methods Binocular eye movements were recorded by video-oculography in ten strabismic children (mean age: 9.8±0.8) and seven children with vergence deficits (mean age: 10.8±0.6). Data were compared to that of age-matched control children (mean age: 9.8±0.8 years). Results Catch-up saccades amplitude in strabismic children and in children with vergence deficits were significantly higher than in control age-matched children. Moreover, in strabismic children the amplitude of catch-up saccades was significantly higher in rightward than in leftward direction. The number of catch-up saccades was also significantly higher in rightward than in leftward direction. The gain value of pursuits in rightward direction was significantly higher in the right eye than in the left one; for the right eye, the gain value was significantly higher in rightward than in leftward direction. Binocular coordination of pursuit was better in control age-matched children than in children with vergence deficits and than in strabismic children. Conclusions Binocular coordination of pursuit is abnormal in children with vergence deficits and worse in strabismic children. Binocular vision plays an important role in improving binocular coordination of pursuit. PMID:24376777

  12. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    PubMed Central

    2010-01-01

    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089

  13. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice.

    PubMed

    Wu, Yibo; Lv, Zhuo; Yang, Yang; Dong, Guoying; Yu, Yang; Cui, Yiqiang; Tong, Man; Wang, Liu; Zhou, Zuomin; Zhu, Hui; Zhou, Qi; Sha, Jiahao

    2014-05-01

    Blastomere biopsy is used in preimplantation genetic diagnosis; however, the long-term implications on the offspring are poorly characterized. We previously reported a high risk of memory defects in adult biopsied mice. Here, we assessed nervous function of aged biopsied mice and further investigated the mechanism of neural impairment after biopsy. We found that aged biopsied mice had poorer spatial learning ability, increased neuron degeneration, and altered expression of proteins involved in neural degeneration or dysfunction in the brain compared to aged control mice. Furthermore, the MeDIP assay indicated a genome-wide low methylation in the brains of adult biopsied mice when compared to the controls, and most of the genes containing differentially methylated loci in promoter regions were associated with neural disorders. When we further compared the genomic DNA methylation profiles of 7.5-days postconception (dpc) embryos between the biopsy and control group, we found the whole genome low methylation in the biopsied group, suggesting that blastomere biopsy was an obstacle to de novo methylation during early embryo development. Further analysis on mRNA profiles of 4.5-dpc embryos indicated that reduced expression of de novo methylation genes in biopsied embryos may impact de novo methylation. In conclusion, we demonstrate an abnormal neural development and function in mice generated after blastomere biopsy. The impaired epigenetic reprogramming during early embryo development may be the latent mechanism contributing to the impairment of the nervous system in the biopsied mice, which results in a hypomethylation status in their brains.

  14. Targeted Disruption of NF1 in Osteocytes Increases FGF23 and Osteoid With Osteomalacia-like Bone Phenotype.

    PubMed

    Kamiya, Nobuhiro; Yamaguchi, Ryosuke; Aruwajoye, Olumide; Kim, Audrey J; Kuroyanagi, Gen; Phipps, Matthew; Adapala, Naga Suresh; Feng, Jian Q; Kim, Harry Kw

    2017-08-01

    Neurofibromatosis type 1 (NF1, OMIM 162200), caused by NF1 gene mutations, exhibits multi-system abnormalities, including skeletal deformities in humans. Osteocytes play critical roles in controlling bone modeling and remodeling. However, the role of neurofibromin, the protein product of the NF1 gene, in osteocytes is largely unknown. This study investigated the role of neurofibromin in osteocytes by disrupting Nf1 under the Dmp1-promoter. The conditional knockout (Nf1 cKO) mice displayed serum profile of a metabolic bone disorder with an osteomalacia-like bone phenotype. Serum FGF23 levels were 4 times increased in cKO mice compared with age-matched controls. In addition, calcium-phosphorus metabolism was significantly altered (calcium reduced; phosphorus reduced; parathyroid hormone [PTH] increased; 1,25(OH) 2 D decreased). Bone histomorphometry showed dramatically increased osteoid parameters, including osteoid volume, surface, and thickness. Dynamic bone histomorphometry revealed reduced bone formation rate and mineral apposition rate in the cKO mice. TRAP staining showed a reduced osteoclast number. Micro-CT demonstrated thinner and porous cortical bones in the cKO mice, in which osteocyte dendrites were disorganized as assessed by electron microscopy. Interestingly, the cKO mice exhibited spontaneous fractures in long bones, as found in NF1 patients. Mechanical testing of femora revealed significantly reduced maximum force and stiffness. Immunohistochemistry showed significantly increased FGF23 protein in the cKO bones. Moreover, primary osteocytes from cKO femora showed about eightfold increase in FGF23 mRNA levels compared with control cells. The upregulation of FGF23 was specifically and significantly inhibited by PI3K inhibitor Ly294002, indicating upregulation of FGF23 through PI3K in Nf1-deficient osteocytes. Taken together, these results indicate that Nf1 deficiency in osteocytes dramatically increases FGF23 production and causes a mineralization defect (ie, hyperosteoidosis) via the alteration of calcium-phosphorus metabolism. This study demonstrates critical roles of neurofibromin in osteocytes for osteoid mineralization. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  15. Effect of Lactobacillus johnsonii La1 on immune function and serum albumin in aged and malnourished aged mice.

    PubMed

    Kaburagi, Tomoko; Yamano, Toshihiko; Fukushima, Yoichi; Yoshino, Haruka; Mito, Natsuko; Sato, Kazuto

    2007-04-01

    Protein-energy malnutrition (PEM) is a serious nutritional problem that causes immune dysfunction in elderly people. Probiotic lactic acid bacteria may potentially modify immunity; however, there is little evidence to elucidate the influence of these bacteria on PEM in the elderly. The immune modulation effects of lactic acid bacterium Lactobacillus johnsonii La1 (La1) were examined in aged mice and aged mice with PEM. Twenty-month-old male 57BL6/n mice (n = 28) were divided into four groups and received the following diet for 14 d: a complete diet (20% protein) without Lal (control) or with Lal or a low-protein diet (5% protein) to induce PEM, with or without La1. All mice were immunized with diphtheria toxin (DT) with alfacalciferol at 7 d and sacrificed 14 d after starting the experimental diets. Serum albumin concentrations and body weight, both of which were reduced by the low-protein diet, were ameliorated by La1 intake and were the same as in mice receiving the control diet. Anti-DT immunoglobulin (Ig) A in fecal extract was increased by La1 intake in mice receiving the complete and low-protein diets. Serum anti-DT IgA, IgG, splenocyte proliferation, and CD8(+) T cells were reduced by the low-protein diet and restored by La1 intake. La1 enhances intestinal IgA production and helps recover nutritional status and systemic immune responses in aged mice with PEM. It is possible that La1 may contribute to immune system recovery in immunocompromised hosts such as elderly humans with PEM.

  16. Impairment of Vision in a Mouse Model of Usher Syndrome Type III.

    PubMed

    Tian, Guilian; Lee, Richard; Ropelewski, Philip; Imanishi, Yoshikazu

    2016-03-01

    The purpose of this study was to obtain an Usher syndrome type III mouse model with retinal phenotype. Speed congenic method was used to obtain Clrn1 exon 1 knockout (Clrn1-/-) and Clrn1N48K knockin (Clrn1N48K/N48K) mice under A/J background. To study the retinal functions of these mice, we measured scotopic and photopic ERG responses. To observe if there are any structural abnormalities, we conducted light and transmission electron microscopy of fixed retinal specimens. In 3-month-old Clrn1-/- mice, scotopic b-wave amplitude was reduced by more than 25% at the light intensities from -2.2 to 0.38 log cd·s/m2, but scotopic a-wave amplitudes were comparable to those of age-matched wild type mice at all the light intensities tested. In 9-month-old Clrn1-/- mice, scotopic b-wave amplitudes were further reduced by more than 35%, and scotopic a-wave amplitude also showed a small decline as compared with wild type mice. Photopic ERG responses were comparable between Clrn1-/- and wild type mice. Those electrophysiological defects were not associated with a loss of rods. In Clrn1N48K/N48K mice, both a- and b-wave amplitudes were not discernable from those of wild type mice aged up to 10 months. Mutations that are Clrn1-/- biallelic cause visual defects when placed under A/J background. The absence of apparent rod degeneration suggests that the observed phenotype is due to functional defects, and not due to loss of rods. Biallelic Clrn1N48K/N48K mutations did not cause discernible visual defects, suggesting that Clrn1- allele is more severely dysfunctional than ClrnN48K allele.

  17. Nonobese Diabetic (NOD) Mice Congenic for a Targeted Deletion of 12/15-Lipoxygenase Are Protected From Autoimmune Diabetes

    PubMed Central

    McDuffie, Marcia; Maybee, Nelly A.; Keller, Susanna R.; Stevens, Brian K.; Garmey, James C.; Morris, Margaret A.; Kropf, Elizabeth; Rival, Claudia; Ma, Kaiwen; Carter, Jeffrey D.; Tersey, Sarah A.; Nunemaker, Craig S.; Nadler, Jerry L.

    2010-01-01

    OBJECTIVE 12/15-lipoxygenase (12/15-LO), one of a family of fatty acid oxidoreductase enzymes, reacts with polyenoic fatty acids to produce proinflammatory lipids. 12/15-LO is expressed in macrophages and pancreatic β-cells. It enhances interleukin 12 production by macrophages, and several of its products induce apoptosis of β-cells at nanomolar concentrations in vitro. We had previously demonstrated a role for 12/15-LO in β-cell damage in the streptozotocin model of diabetes. Since the gene encoding 12/15-LO (gene designation Alox15) lies within the Idd4 diabetes susceptibility interval in NOD mice, we hypothesized that 12/15-LO is also a key regulator of diabetes susceptibility in the NOD mouse. RESEARCH DESIGN AND METHODS We developed NOD mice carrying an inactivated 12/15-LO locus (NOD-Alox15null) using a “speed congenic” protocol, and the mice were monitored for development of insulitis and diabetes. RESULTS NOD mice deficient in 12/15-LO develop diabetes at a markedly reduced rate compared with NOD mice (2.5 vs. >60% in females by 30 weeks). Nondiabetic female NOD-Alox15null mice demonstrate improved glucose tolerance, as well as significantly reduced severity of insulitis and improved β-cell mass, when compared with age-matched nondiabetic NOD females. Disease resistance is associated with decreased numbers of islet-infiltrating activated macrophages at 4 weeks of age in NOD-Alox15null mice, preceding the development of insulitis. Subsequently, islet-associated infiltrates are characterized by decreased numbers of CD4+ T cells and increased Foxp3+ cells. CONCLUSIONS These results suggest an important role for 12/15-LO in conferring susceptibility to autoimmune diabetes in NOD mice through its effects on macrophage recruitment or activation. PMID:17940120

  18. Occurrence of spontaneous periodontal disease in the SAMP1/YitFc murine model of Crohn disease.

    PubMed

    Pietropaoli, Davide; Del Pinto, Rita; Corridoni, Daniele; Rodriguez-Palacios, Alexander; Di Stefano, Gabriella; Monaco, Annalisa; Weinberg, Aaron; Cominelli, Fabio

    2014-12-01

    Oral involvement is often associated with inflammatory bowel disease (IBD). Recent evidence suggests a high incidence of periodontal disease in patients with Crohn disease (CD). To the best of the authors' knowledge, no animal model of IBD that displays associated periodontal disease was reported previously. The aim of this study is to investigate the occurrence and progression of periodontal disease in SAMP1/YitFc (SAMP) mice that spontaneously develop a CD-like ileitis. In addition, the temporal correlation between the onset and progression of periodontal disease and the onset of ileitis in SAMP mice was studied. At different time points, SAMP and parental AKR/J (AKR) control mice were sacrificed, and mandibles were prepared for stereomicroscopy and histology. Terminal ilea were collected for histologic assessment of inflammation score. Periodontal status, i.e., alveolar bone loss (ABL) and alveolar bone crest, was examined by stereomicroscopy and histomorphometry, respectively. ABL increased in both strains with age. SAMP mice showed greater ABL compared with AKR mice by 12 weeks of age, with maximal differences observed at 27 weeks of age. AKR control mice did not show the same severity of periodontal disease. Interestingly, a strong positive correlation was found between ileitis severity and ABL in SAMP mice, independent of age. The present results demonstrate the occurrence of periodontal disease in a mouse model of progressive CD-like ileitis. In addition, the severity of periodontitis strongly correlated with the severity of ileitis, independent of age, suggesting that common pathogenic mechanisms, such as abnormal immune response and dysbiosis, may be shared between these two phenotypes.

  19. Unconditional or Conditional Logistic Regression Model for Age-Matched Case-Control Data?

    PubMed

    Kuo, Chia-Ling; Duan, Yinghui; Grady, James

    2018-01-01

    Matching on demographic variables is commonly used in case-control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case-control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case-control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls.

  20. Unconditional or Conditional Logistic Regression Model for Age-Matched Case–Control Data?

    PubMed Central

    Kuo, Chia-Ling; Duan, Yinghui; Grady, James

    2018-01-01

    Matching on demographic variables is commonly used in case–control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case–control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case–control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls. PMID:29552553

  1. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp; Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University; Kaji, Takao

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice.more » Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.« less

  2. Patterns of Somatic Diagnoses in Older People with Intellectual Disability: A Swedish Eleven Year Case-Control Study of Inpatient Data

    ERIC Educational Resources Information Center

    Sandberg, Magnus; Ahlström, Gerd; Kristensson, Jimmie

    2017-01-01

    Background: Knowledge about diagnoses patterns in older people with intellectual disabilities is limited. Methods: The case group (n = 7936) comprised people with intellectual disabilities aged 55 years and older. The control group (n = 7936) was age matched and sex matched. Somatic inpatient diagnoses (2002-2012) were collected retrospectively.…

  3. Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13.

    PubMed

    Makwana, Kuldeep; Patel, Sonal Arvind; Velingkaar, Nikkhil; Ebron, Jey Sabith; Shukla, Girish C; Kondratov, Roman V Kondratov V

    2017-07-31

    Calorie restriction (CR) is a dietary intervention known to delay aging. In order, to understand molecular mechanisms of CR, we analyzed the expression of 983 MicroRNAs (miRNAs) in the liver of female mice after 2 years of 30% CR using micro-array. 16 miRNAs demonstrated significant changes in their expression upon CR in comparison with age-matched control. mmu-miR-125a-5p (miR-125a-5p) was significantly upregulated upon CR, and in agreement with this, the expression of mRNAs for its three predicted target genes: Stat3, Casp2, and Stard13 was significantly downregulated in the liver of CR animals. The expression of precursor miRNA for miR-125a-5p was also upregulated upon CR, which suggests its regulation at the level of transcription. Upon aging miR-125a-5p expression was downregulated while the expression of its target genes was upregulated. Thus, CR prevented age-associated changes in the expression of miR-125a-5p and its targets. We propose that miR-125a-5p dependent downregulation of Stat3, Casp2, and Stard13 contributes to the calorie restriction-mediated delay of aging.

  4. Effects of hydro-alcoholic extract of Vitex agnus-castus fruit on kidney of D-galactose-induced aging model in female mice

    PubMed Central

    Oroojan, A. A.; Ahangarpour, A.; Khorsandi, L.; Najimi, S. A.

    2016-01-01

    The aim of the present study was to evaluate the effect of a hydro-alcoholic extract of Vitex agnus-castus (VAC) fruit on blood urea nitrogen (BUN), creatinine (Cr) and, kidney histology of a female mouse model of D-galactose induced aging. In this experimental study, 72 NMRI mice were divided into 6 groups: control, VAC, D-galactose, D-galactose+VAC, aging, and aging+VAC. D-galactose was injected for 45 days and, VAC extract administered in the last 7 days, twice a day. Serum BUN and Cr levels were not significantly changed in the D-galactose and natural aged animals in comparison to control group. Histological changes such as nuclear pyknosis, proximal cell swelling, infiltration of inflammatory cells, tubular dilatation and, vasodilatation were observed in both D-galactose and natural aged mice. Further, glomerules diameter was decreased in them. Administration of VAC could attenuate the histological alterations. These results indicate that VAC may have beneficial effects on aging and aging related kidney disease. PMID:27822252

  5. Effects of hydro-alcoholic extract of Vitex agnus-castus fruit on kidney of D-galactose-induced aging model in female mice.

    PubMed

    Oroojan, A A; Ahangarpour, A; Khorsandi, L; Najimi, S A

    2016-01-01

    The aim of the present study was to evaluate the effect of a hydro-alcoholic extract of Vitex agnus-castus (VAC) fruit on blood urea nitrogen (BUN), creatinine (Cr) and, kidney histology of a female mouse model of D-galactose induced aging. In this experimental study, 72 NMRI mice were divided into 6 groups: control, VAC, D-galactose, D-galactose+VAC, aging, and aging+VAC. D-galactose was injected for 45 days and, VAC extract administered in the last 7 days, twice a day. Serum BUN and Cr levels were not significantly changed in the D-galactose and natural aged animals in comparison to control group. Histological changes such as nuclear pyknosis, proximal cell swelling, infiltration of inflammatory cells, tubular dilatation and, vasodilatation were observed in both D-galactose and natural aged mice. Further, glomerules diameter was decreased in them. Administration of VAC could attenuate the histological alterations. These results indicate that VAC may have beneficial effects on aging and aging related kidney disease.

  6. Tumour xenograft detection through quantitative analysis of the metabolic profile of urine in mice

    NASA Astrophysics Data System (ADS)

    Moroz, Jennifer; Turner, Joan; Slupsky, Carolyn; Fallone, Gino; Syme, Alasdair

    2011-02-01

    The metabolic content of urine from NIH III nude mice (n = 22) was analysed before and after inoculation with human glioblastoma multiforme (GBM) cancer cells. An age- and gender-matched control population (n = 14) was also studied to identify non-tumour-related changes. Urine samples were collected daily for 6 weeks, beginning 1 week before cell injection. Metabolite concentrations were obtained via targeted profiling with Chenomx Suite 5.1, based on nuclear magnetic resonance (NMR) spectra acquired on an Oxford 800 MHz cold probe NMR spectrometer. The Wilcoxon rank sum test was used to evaluate the significance of the change in metabolite concentration between the two time points. Both the metabolite concentrations and the ratios of pairs of metabolites were studied. The complicated inter-relationships between metabolites were assessed through partial least-squares discriminant analysis (PLS-DA). Receiver operating characteristic (ROC) curves were generated for all variables and the area under the curve (AUC) calculated. The data indicate that the number of statistically significant changes in metabolite concentrations was more pronounced in the tumour-bearing population than in the control animals. This was also true of the ratios of pairs of metabolites. ROC analysis suggests that the ratios were better able to differentiate between the pre- and post-injection samples compared to the metabolite concentrations. PLS-DA models produced good separation between the populations and had the best AUC results (all models exceeded 0.937). These results demonstrate that metabolomics may be used as a screening tool for GBM cells grown in xenograft models in mice.

  7. Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome.

    PubMed

    Kelley, Christy M; Ash, Jessica A; Powers, Brian E; Velazquez, Ramon; Alldred, Melissa J; Ikonomovic, Milos D; Ginsberg, Stephen D; Strupp, Barbara J; Mufson, Elliott J

    2016-01-01

    Down syndrome (DS), caused by trisomy of chromosome 21, is marked by intellectual disability (ID) and early onset of Alzheimer's disease (AD) neuropathology including hippocampal cholinergic projection system degeneration. Here we determined the effects of age and maternal choline supplementation (MCS) on hippocampal cholinergic deficits in Ts65Dn mice compared to 2N mice sacrificed at 6-8 and 14-18 months of age. Ts65Dn mice and disomic (2N) littermates sacrificed at ages 6-8 and 14-18 mos were used for an aging study and Ts65Dn and 2N mice derived from Ts65Dn dams were maintained on either a choline-supplemented or a choline-controlled diet (conception to weaning) and examined at 14-18 mos for MCS studies. In the latter, mice were behaviorally tested on the radial arm Morris water maze (RAWM) and hippocampal tissue was examined for intensity of choline acetyltransferase (ChAT) immunoreactivity. Hippocampal ChAT activity was evaluated in a separate cohort. ChAT-positive fiber innervation was significantly higher in the hippocampus and dentate gyrus in Ts65Dn mice compared with 2N mice, independent of age or maternal diet. Similarly, hippocampal ChAT activity was significantly elevated in Ts65Dn mice compared to 2N mice, independent of maternal diet. A significant increase with age was seen in hippocampal cholinergic innervation of 2N mice, but not Ts65Dn mice. Degree of ChAT intensity correlated negatively with spatial memory ability in unsupplemented 2N and Ts65Dn mice, but positively in MCS 2N mice. The increased innervation produced by MCS appears to improve hippocampal function, making this a therapy that may be exploited for future translational approaches in human DS.

  8. Safety and Efficacy of Topical Lime Sulfur in Mice Infested with Myocoptes musculinus

    PubMed Central

    Wood, Jennifer S; Courtney, Cynthia L; Lieber, Karen A; Lee, Vanessa K

    2013-01-01

    Current treatment options for murine fur mites have limitations in safety and efficacy. This study evaluated whether topical lime sulfur (LS) is an adjunct or alternative to traditional treatment options for Myocoptes musculinus. To evaluate the safety of topical LS, mice were dipped in a 3% LS solution at 34 and 41 d of age. Mice were observed daily for side effects and mortality, with blood work and necropsy at 42 d of age to evaluate for pathologic changes. To determine the efficacy of topical LS, postweanling mice infested with M. musculinus were treated with LS once weekly for 2 wk and then housed with uninfested sentinel mice for 4 wk. Weekly tape tests and postmortem tape tests and skin scrapings were performed on all mice. Treated postweanling mice had significantly lower Hgb levels and higher BUN levels than did control animals. In mite-infested mice, the number of positive cages at euthanasia was the same between treated and control animals. Although topical LS did not cause gross or microscopic changes to organ systems, it may cause clinicopathologic changes, and topical LS is not effective as a sole treatment for M. musculinus infestation of postweanling mice. PMID:23849408

  9. Rate of Atherosclerosis Progression in ApoE−/− Mice Long After Discontinuation of Cola Beverage Drinking

    PubMed Central

    Otero-Losada, Matilde; Cao, Gabriel; Mc Loughlin, Santiago; Rodríguez-Granillo, Gastón; Ottaviano, Graciela; Milei, José

    2014-01-01

    This study was conducted in order to evaluate the effect of cola beverages drinking on atherosclerosisand test the hypothesis whether cola beverages consumption at early life stages might affect the development and progression of atherosclerosis later in life. ApoE−/− C57BL/6J mice (8 week-old) were randomized in 3 groups (n = 20 each) according to free accessto water (W), sucrose sweetened carbonated cola drink(C) or aspartame-acesulfame K sweetened carbonated ‘light’ cola drink (L)for the next 8 weeks. Drinking treatment was ended by switching C and L groups to drinking water. Four mice per group and time were sequentially euthanized: before treatment (8weeks-old), at the end of treatment (16 weeks-old) and after treatment discontinuation (20 weeks-old, 24 weeks-old, 30 week-old mice). Aortic roots and livers were harvested, processed for histology and serial cross-sections were stained. Aortic plaque area was analyzed and plaque/media-ratio was calculated. Early consumption of cola drinks accelerated atherosclerotic plaque progression favoring the interaction between macrophages and myofibroblasts, without the participation of either T lymphocytes or proliferative activity. Plaque/media-ratio varied according to drink treatment (F2,54 = 3.433, p<0.04) and mice age (F4,54 = 5.009, p<0.03) and was higher in C and L groups compared with age-matched W group (p<0.05 at 16 weeks and 20 weeks, p<0.01 at 24 weeks and 30 weeks). Natural evolution of atherosclerosis in ApoE−/− mice (W group) evidenced atherosclerosis acceleration in parallel with a rapid increase in liver inflammation around the 20 weeks of age. Cola drinking within the 8–16 weeks of age accelerated atherosclerosis progression in ApoE−/− mice favoring aortic plaque enlargement (inward remodeling) over media thinning all over the study time. Data suggest that cola drinking at early life stages may predispose to atherosclerosis progression later in life in ApoE−/− mice. PMID:24670925

  10. The increase of anterior pituitary dopamine in aging C57BL/6J female mice is caused by ovarian steroids, not intrinsic pituitary aging.

    PubMed

    Telford, N; Mobbs, C V; Sinha, Y N; Finch, C E

    1986-01-01

    We describe how the increase of anterior pituitary dopamine (DA) during aging in female mice is related to altered secretion of ovarian steroids during reproductive senescence. A number of age-correlated neuroendocrine changes in female rodents result from cumulative exposure to ovarian steroids over a lifetime of estrous cycles, or from the altered pattern of ovarian steroid secretion concomitant with reproductive senescence. Pituitary DA has been shown to increase with age in female rats. To examine how the age-correlated increase of pituitary DA may depend on estradiol (E2), we measured pituitary DA and serum prolactin (PRL) in the following groups of female mice: young (7 months) cycling, middle-aged (14 months) cycling and non-cycling, old (17 months) non-cycling, old (17 months) ovariectomized (OVX) at 4 months, and young mice given 0.2 mg E2 valerate or E2 implants. Mice from some of these groups were OVX 1, 4 or 8 weeks before sacrifice. Compared with young controls, 14-month-old cycling or non-cycling mice had 3-fold higher pituitary DA, and 17-month-old non-cycling mice had 5-fold higher pituitary DA. OVX for 2 or 13 months before sacrifice abolished the effect of age; OVX of young mice had no effect on pituitary DA. Three weeks after implantation of E2 into OVX young mice or 7 weeks after injection of E2 valerate in intact young mice, pituitary DA was elevated. The E2-sensitive fraction of pituitary DA does not appear to decrease PRL secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress. © 2013 the Anatomical Society and John Wiley & Sons Ltd.

  12. Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium

    PubMed Central

    2013-01-01

    Introduction Early pregnancy has a strong protective effect against breast cancer in humans and rodents, but the underlying mechanism is unknown. Because breast cancers are thought to arise from specific cell subpopulations of mammary epithelia, we studied the effect of parity on the transcriptome and the differentiation/proliferation potential of specific luminal and basal mammary cells in mice. Methods Mammary epithelial cell subpopulations (luminal Sca1-, luminal Sca1+, basal stem/progenitor, and basal myoepithelial cells) were isolated by flow cytometry from parous and age-matched virgin mice and examined by using a combination of unbiased genomics, bioinformatics, in vitro colony formation, and in vivo limiting dilution transplantation assays. Specific findings were further investigated with immunohistochemistry in entire glands of parous and age-matched virgin mice. Results Transcriptome analysis revealed an upregulation of differentiation genes and a marked decrease in the Wnt/Notch signaling ratio in basal stem/progenitor cells of parous mice. Separate bioinformatics analyses showed reduced activity for the canonical Wnt transcription factor LEF1/TCF7 and increased activity for the Wnt repressor TCF3. This finding was specific for basal stem/progenitor cells and was associated with downregulation of potentially carcinogenic pathways and a reduction in the proliferation potential of this cell subpopulation in vitro and in vivo. As a possible mechanism for decreased Wnt signaling in basal stem/progenitor cells, we found a more than threefold reduction in the expression of the secreted Wnt ligand Wnt4 in total mammary cells from parous mice, which corresponded to a similar decrease in the proportion of Wnt4-secreting and estrogen/progesterone receptor-positive cells. Because recombinant Wnt4 rescued the proliferation defect of basal stem/progenitor cells in vitro, reduced Wnt4 secretion appears to be causally related to parity-induced alterations of basal stem/progenitor cell properties in mice. Conclusions By revealing that parity induces differentiation and downregulates the Wnt/Notch signaling ratio and the in vitro and in vivo proliferation potential of basal stem/progenitor cells in mice, our study sheds light on the long-term consequences of an early pregnancy. Furthermore, it opens the door to future studies assessing whether inhibitors of the Wnt pathway may be used to mimic the parity-induced protective effect against breast cancer. PMID:23621987

  13. Proximal Tubular Secretion of Creatinine by Organic Cation Transporter OCT2 in Cancer Patients

    PubMed Central

    Ciarimboli, Giuliano; Lancaster, Cynthia S.; Schlatter, Eberhard; Franke, Ryan M.; Sprowl, Jason A.; Pavenstädt, Hermann; Massmann, Vivian; Guckel, Denise; Mathijssen, Ron H. J.; Yang, Wenjian; Pui, Ching-Hon; Relling, Mary V.; Herrmann, Edwin; Sparreboom, Alex

    2012-01-01

    Purpose Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Experimental Design Creatinine transport was studied in transfected HEK293 cells in vitro and in wildtype mice and age-matched organic cation transporter 1 and 2-deficient [Oct1/2(−/−)] mice ex vivo and in vivo. Clinical pharmacogenetic and transport inhibition studies were done in two separate cohorts of cancer patients. Results Compared to wildtype mice, creatinine clearance was significantly impaired in Oct1/2(−/−) mice. Furthermore, creatinine inhibited organic cation transport in freshly-isolated proximal tubules from wild-type mice and humans, but not in those from Oct1/2(−/−) mice. In a genetic-association analysis (n=590), several polymorphisms around the OCT2/SLC22A2 gene locus, including rs2504954 (P=0.000873), were significantly associated with age-adjusted creatinine levels. Furthermore, in cancer patients (n=68), the OCT2 substrate cisplatin caused an acute elevation of serum creatinine (P=0.0083), consistent with inhibition of an elimination pathway. Conclusions Collectively, this study shows that OCT2 plays a decisive role in the renal secretion of creatinine. This process can be inhibited by OCT2 substrates, which impair the usefulness of creatinine as a marker of renal function. PMID:22223530

  14. DNA Aptamer Raised Against AGEs Blocks the Progression of Experimental Diabetic Nephropathy

    PubMed Central

    Kaida, Yusuke; Fukami, Kei; Matsui, Takanori; Higashimoto, Yuichiro; Nishino, Yuri; Obara, Nana; Nakayama, Yosuke; Ando, Ryotaro; Toyonaga, Maki; Ueda, Seiji; Takeuchi, Masayoshi; Inoue, Hiroyoshi; Okuda, Seiya

    2013-01-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. AGEs-aptamer was detected and its level was increased in the kidney for at least 7 days. The elimination half-lives of AGEs-aptamer in the kidney were about 7 days. Compared with those in C57BL/6J mice, glomerular AGEs levels were significantly increased in KKAy/Ta mice, which were blocked by AGEs-aptamer. Urinary albumin and 8-hydroxy-2′-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy. PMID:23630304

  15. Sequence-specific procedural learning deficits in children with specific language impairment.

    PubMed

    Hsu, Hsinjen Julie; Bishop, Dorothy V M

    2014-05-01

    This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  16. Inflectional spelling deficits in developmental dyslexia.

    PubMed

    Egan, Joanne; Tainturier, Marie-Josèphe

    2011-01-01

    The goal of this study was to examine past-tense spelling deficits in developmental dyslexia and their relationship to phonological abilities, spoken morphological awareness and word specific orthographic memory. Three groups of children (28 9-year-old dyslexic, 28 chronological age-matched and 28 reading/spelling age-matched children) completed a battery of tests including spelling regularly inflected words (e.g., kissed) and matched one-morpheme words (e.g., wrist). They were also assessed on a range of tests of reading and spelling abilities and associated linguistic measures. Dyslexic children were impaired in relation to chronological age-matched controls on all measures. Furthermore, they were significantly poorer than younger reading and spelling age-matched controls at spelling inflected verbs, supporting the existence of a specific deficit in past-tense spelling in dyslexia. In addition to under-using the -ed spelling on inflected verbs, the dyslexic children were less likely to erroneously apply this spelling to one-morpheme words than younger controls. Dyslexics were also poorer than younger controls at using a consistent spelling for stems presented in isolation versus as part of an inflected word, indicating that they make less use of the morphological relations between words to support their spelling. In line with this interpretation, regression analyses revealed another qualitative difference between the spelling and reading age-matched group and the dyslexic group: while both spoken morphological awareness and orthographic word specific memory were significant predictors of the accuracy of past-tense spelling in the former group, only orthographic memory (irregular word reading and spelling) was a significant factor in the dyslexic group. Finally, we identified a subgroup of seven dyslexic children who were severely deficient in past-tense spelling. This subgroup was also significantly worse than other dyslexics and than younger controls on scores of orthographic memory. The implications of our findings for teaching and remediation strategies are discussed. Copyright © 2011 Elsevier Srl. All rights reserved.

  17. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways.

    PubMed

    Lesniewski, Lisa A; Seals, Douglas R; Walker, Ashley E; Henson, Grant D; Blimline, Mark W; Trott, Daniel W; Bosshardt, Gary C; LaRocca, Thomas J; Lawson, Brooke R; Zigler, Melanie C; Donato, Anthony J

    2017-02-01

    Inhibition of mammalian target of rapamycin, mTOR, extends lifespan and reduces age-related disease. It is not known what role mTOR plays in the arterial aging phenotype or if mTOR inhibition by dietary rapamycin ameliorates age-related arterial dysfunction. To explore this, young (3.8 ± 0.6 months) and old (30.3 ± 0.2 months) male B6D2F1 mice were fed a rapamycin supplemented or control diet for 6-8 weeks. Although there were few other notable changes in animal characteristics after rapamycin treatment, we found that glucose tolerance improved in old mice, but was impaired in young mice, after rapamycin supplementation (both P < 0.05). Aging increased mTOR activation in arteries evidenced by elevated S6K phosphorylation (P < 0.01), and this was reversed after rapamycin treatment in old mice (P < 0.05). Aging was also associated with impaired endothelium-dependent dilation (EDD) in the carotid artery (P < 0.05). Rapamycin improved EDD in old mice (P < 0.05). Superoxide production and NADPH oxidase expression were higher in arteries from old compared to young mice (P < 0.05), and rapamycin normalized these (P < 0.05) to levels not different from young mice. Scavenging superoxide improved carotid artery EDD in untreated (P < 0.05), but not rapamycin-treated, old mice. While aging increased large artery stiffness evidenced by increased aortic pulse-wave velocity (PWV) (P < 0.01), rapamycin treatment reduced aortic PWV (P < 0.05) and collagen content (P < 0.05) in old mice. Aortic adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and expression of the cell cycle-related proteins PTEN and p27kip were increased with rapamycin treatment in old mice (all P < 0.05). Lastly, aging resulted in augmentation of the arterial senescence marker, p19 (P < 0.05), and this was ameliorated by rapamycin treatment (P < 0.05). These results demonstrate beneficial effects of rapamycin treatment on arterial function in old mice and suggest these improvements are associated with reduced oxidative stress, AMPK activation and increased expression of proteins involved in the control of the cell cycle. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Powers, Brian E.; Velazquez, Ramon; Kelley, Christy M.; Ash, Jessica A.; Strawderman, Myla S.; Alldred, Melissa J.; Ginsberg, Stephen D.; Mufson, Elliott J.

    2016-01-01

    Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs. PMID:26719290

  19. Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Powers, Brian E; Velazquez, Ramon; Kelley, Christy M; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2016-12-01

    Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs.

  20. Three-dimensional morphometric analysis of microglial changes in a mouse model of virus encephalitis: age and environmental influences.

    PubMed

    de Sousa, Aline A; Dos Reis, Renata R; de Lima, Camila M; de Oliveira, Marcus A; Fernandes, Taiany N; Gomes, Giovanni F; Diniz, Daniel G; Magalhães, Nara M; Diniz, Cristovam G; Sosthenes, Marcia C K; Bento-Torres, João; Diniz, José Antonio P; Vasconcelos, Pedro F da C; Diniz, Cristovam Wanderley P

    2015-08-01

    Many RNA virus CNS infections cause neurological disease. Because Piry virus has a limited human pathogenicity and exercise reduces activation of microglia in aged mice, possible influences of environment and aging on microglial morphology and behavior in mice sublethal encephalitis were investigated. Female albino Swiss mice were raised either in standard (S) or in enriched (EE) cages from age 2 to 6 months (young - Y), or from 2 to 16 months (aged - A). After behavioral tests, mice nostrils were instilled with Piry-virus-infected or with normal brain homogenates. Brain sections were immunolabeled for virus antigens or microglia at 8 days post-infection (dpi), when behavioral changes became apparent, and at 20 and 40 dpi, after additional behavioral testing. Young infected mice from standard (SYPy) and enriched (EYPy) groups showed similar transient impairment in burrowing activity and olfactory discrimination, whereas aged infected mice from both environments (EAPy, SAPy) showed permanent reduction in both tasks. The beneficial effects of an enriched environment were smaller in aged than in young mice. Six-hundred and forty microglial cells, 80 from each group were reconstructed. An unbiased, stereological sampling approach and multivariate statistical analysis were used to search for microglial morphological families. This procedure allowed distinguishing between microglial morphology of infected and control subjects. More severe virus-associated microglial changes were observed in young than in aged mice, and EYPy seem to recover microglial homeostatic morphology earlier than SYPy . Because Piry-virus encephalitis outcomes were more severe in aged mice, it is suggested that the reduced inflammatory response in those individuals may aggravate encephalitis outcomes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation.

    PubMed

    d'Avila, Joana Costa; Siqueira, Luciana Domett; Mazeraud, Aurélien; Azevedo, Estefania Pereira; Foguel, Debora; Castro-Faria-Neto, Hugo Caire; Sharshar, Tarek; Chrétien, Fabrice; Bozza, Fernando Augusto

    2018-01-30

    Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1β and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.

  2. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs.

    PubMed

    Zhang, Yalin; Kim, Min Soo; Jia, Baosen; Yan, Jingqi; Zuniga-Hertz, Juan Pablo; Han, Cheng; Cai, Dongsheng

    2017-08-03

    It has been proposed that the hypothalamus helps to control ageing, but the mechanisms responsible remain unclear. Here we develop several mouse models in which hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1 are ablated, as we observed that ageing in mice started with a substantial loss of these hypothalamic cells. Each mouse model consistently displayed acceleration of ageing-like physiological changes or a shortened lifespan. Conversely, ageing retardation and lifespan extension were achieved in mid-aged mice that were locally implanted with healthy hypothalamic stem/progenitor cells that had been genetically engineered to survive in the ageing-related hypothalamic inflammatory microenvironment. Mechanistically, hypothalamic stem/progenitor cells contributed greatly to exosomal microRNAs (miRNAs) in the cerebrospinal fluid, and these exosomal miRNAs declined during ageing, whereas central treatment with healthy hypothalamic stem/progenitor cell-secreted exosomes led to the slowing of ageing. In conclusion, ageing speed is substantially controlled by hypothalamic stem cells, partially through the release of exosomal miRNAs.

  3. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity.

    PubMed

    Pelantová, Helena; Bártová, Simona; Anýž, Jiří; Holubová, Martina; Železná, Blanka; Maletínská, Lenka; Novák, Daniel; Lacinová, Zdena; Šulc, Miroslav; Haluzík, Martin; Kuzma, Marek

    2016-01-01

    Obesity with related complications represents a widespread health problem. The etiopathogenesis of obesity is often studied using numerous rodent models. The mouse model of monosodium glutamate (MSG)-induced obesity was exploited as a model of obesity combined with insulin resistance. The aim of this work was to characterize the metabolic status of MSG mice by NMR-based metabolomics in combination with relevant biochemical and hormonal parameters. NMR analysis of urine at 2, 6, and 9 months revealed altered metabolism of nicotinamide and polyamines, attenuated excretion of major urinary proteins, increased levels of phenylacetylglycine and allantoin, and decreased concentrations of methylamine in urine of MSG-treated mice. Altered levels of creatine, citrate, succinate, and acetate were observed at 2 months of age and approached the values of control mice with aging. The development of obesity and insulin resistance in 6-month-old MSG mice was also accompanied by decreased mRNA expressions of adiponectin, lipogenetic and lipolytic enzymes and peroxisome proliferator-activated receptor-gamma in fat while mRNA expressions of lipogenetic enzymes in the liver were enhanced. At the age of 9 months, biochemical parameters of MSG mice were normalized to the values of the controls. This fact pointed to a limited predictive value of biochemical data up to age of 6 months as NMR metabolomics confirmed altered urine metabolic composition even at 9 months.

  4. Degenerative changes in adolescent spines: a comparison of motocross racers and age-matched controls.

    PubMed

    Daniels, David J; Luo, T David; Puffer, Ross; McIntosh, Amy L; Larson, A Noelle; Wetjen, Nicholas M; Clarke, Michelle J

    2015-03-01

    Motocross racing is a popular sport; however, its impact on the growing/developing pediatric spine is unknown. Using a retrospective cohort model, the authors compared the degree of advanced degenerative findings in young motocross racers with findings in age-matched controls. Patients who had been treated for motocross-related injury at the authors' institution between 2000 and 2007 and had been under 18 years of age at the time of injury and had undergone plain radiographic or CT examination of any spinal region were eligible for inclusion. Imaging was reviewed in a blinded fashion by 3 physicians for degenerative findings, including endplate abnormalities, loss of vertebral body height, wedging, and malalignment. Acute pathological segments were excluded. Spine radiographs from age-matched controls were similarly reviewed and the findings were compared. The motocross cohort consisted of 29 riders (mean age 14.7 years; 82% male); the control cohort consisted of 45 adolescents (mean age 14.3 years; 71% male). In the cervical spine, the motocross cohort had 55 abnormalities in 203 segments (average 1.90 abnormalities/patient) compared with 20 abnormalities in 213 segments in the controls (average 0.65/patient) (p = 0.006, Student t-test). In the thoracic spine, the motocross riders had 51 abnormalities in 292 segments (average 2.04 abnormalities/patient) compared with 25 abnormalities in 299 segments in the controls (average 1.00/patient) (p = 0.045). In the lumbar spine, the motocross cohort had 11 abnormalities in 123 segments (average 0.44 abnormalities/patient) compared with 15 abnormalities in 150 segments in the controls (average 0.50/patient) (p = 0.197). Increased degenerative changes in the cervical and thoracic spine were identified in adolescent motocross racers compared with age-matched controls. The long-term consequences of these changes are unknown; however, athletes and parents should be counseled accordingly about participation in motocross activities.

  5. Skeletal Micro-RNA Responses to Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Thomas, Nicholas J.; Choi, Catherine Y.; Alwood, Joshua S.

    2016-01-01

    Astronauts lose bone structure during long-duration spaceflight. These changes are due, in part, to insufficient bone formation by the osteoblast cells. Little is known about the role that small (approximately 22 nucleotides), non-coding micro-RNAs (miRNAs) play in the osteoblast response to microgravity. We hypothesize that osteoblast-lineage cells alter their miRNA status during microgravity exposure, contributing to impaired bone formation during weightlessness. To simulate weightlessness, female mice (C57BL/6, Charles River, 10 weeks of age, n = 7) were hindlimb unloaded up to 12 days. Age-matched and normally ambulating mice served as controls (n=7). To assess the expression of miRNAs in skeletal tissue, the tibia was collected ex vivo and cleaned of soft-tissue and marrow. Total RNA was collected from tibial bone and relative abundance was measured for miRNAs of interest using quantitative real time PCR array looking at 372 unique and well-characterized mature miRNAs using the delta-delta Ct method. Transcripts of interest were normalized to an average of 6 reference RNAs. Preliminary results show that hindlimb unloading decreased the expression of 14 miRNAs to less than 0.5 times that of the control levels and increased the expression of 5 miRNAs relative to the control mice between 1.2-1.5-fold (p less than 0.05, respectively). Using the miRSystem we assessed overlapping target genes predicted to be regulated by multiple members of the 19 differentially expressed miRNAs as well as in silico predicted targets of our individual miRNAs. Our miRsystem results indicated that a number of our differentially expressed miRNAs were regulators of genes related to the Wnt-Beta Catenin pathway-a known regulator of bone health-and, interestingly, the estrogen-mediated cell-cycle regulation pathway, which may indicate that simulated weightlessness modulated systemic hormonal levels or hormonal transduction that additionally contributed to bone loss. We plan to follow up these findings by measuring gene expression of miRNA-regulated genes within these two pathways with the aim of furthering our understanding of the function of miRNAs in the skeletal response to spaceflight.

  6. Neutralization of RANTES and Eotaxin Prevents the Loss of Dopaminergic Neurons in a Mouse Model of Parkinson Disease.

    PubMed

    Chandra, Goutam; Rangasamy, Suresh B; Roy, Avik; Kordower, Jeffrey H; Pahan, Kalipada

    2016-07-15

    Parkinson disease (PD) is second only to Alzheimer disease as the most common human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. Recent studies indicate that both innate and adaptive immune processes are active in PD. Accordingly, we found a rapid increase in RANTES (regulated on activation normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra pars compacta and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. RANTES and eotaxin were also up-regulated in the substantia nigra pars compacta of post-mortem PD brains as compared with age-matched controls. Therefore, we investigated whether neutralization of RANTES and eotaxin could protect against nigrostriatal degeneration in MPTP-intoxicated mice. Interestingly, after peripheral administration, functional blocking antibodies against RANTES and eotaxin reduced the infiltration of CD4(+) and CD8(+) T cells into the nigra, attenuated nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Therefore, we conclude that attenuation of the chemokine-dependent adaptive immune response may be of therapeutic benefit for PD patients. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    PubMed Central

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  8. Locally applied leptin induces regional aortic wall degeneration preceding aneurysm formation in apolipoprotein E-deficient mice.

    PubMed

    Tao, Ming; Yu, Peng; Nguyen, Binh T; Mizrahi, Boaz; Savion, Naphtali; Kolodgie, Frank D; Virmani, Renu; Hao, Shuai; Ozaki, C Keith; Schneiderman, Jacob

    2013-02-01

    Leptin promotes atherosclerosis and vessel wall remodeling. As abdominal aortic aneurysm (AAA) formation involves tissue remodeling, we hypothesized that local leptin synthesis initiates and promotes this process. Human surgical AAA walls were analyzed for antigen and mRNA levels of leptin and leptin receptor, as well as mRNA for matrix metalloproteinases (MMP)-9 and MMP-12. Leptin and leptin receptor antigen were evident in all AAAs, and leptin, MMP-9, and MMP-12 mRNA was increased relative to age-matched nondilated controls. To simulate in vivo local leptin synthesis, ApoE(-/-) mice were subjected to a paravisceral periaortic application of low-dose leptin. Leptin-treated aortas exhibited decreased transforming growth factor-β and increased MMP-9 mRNA levels 5 days after surgery, and leptin receptor mRNA was upregulated by day 28. Serial ultrasonography demonstrated accelerated regional aortic diameter growth after 28 days, correlating with local medial degeneration, increased MMP-9, MMP-12, and periadventitial macrophage clustering. Furthermore, the combination of local periaortic leptin and systemic angiotensin II administration augmented medial MMP-9 synthesis and aortic aneurysm size. Leptin is locally synthesized in human AAA wall. Paravisceral aortic leptin in ApoE(-/-) mice induces local medial degeneration and augments angiotensin II-induced AAA, thus suggesting novel mechanistic links between leptin and AAA formation.

  9. Locally Applied Leptin Induces Regional Aortic Wall Degeneration Preceding Aneurysm Formation in ApoE Deficient Mice

    PubMed Central

    Tao, Ming; Yu, Peng; Nguyen, Binh T.; Mizrahi, Boaz; Savion, Naphtali; Kolodgie, Frank D.; Virmani, Renu; Hao, Shuai; Ozaki, C. Keith; Schneiderman, Jacob

    2013-01-01

    Objective Leptin promotes atherosclerosis and vessel wall remodeling. As abdominal aorta aneurysm (AAA) formation involves tissue remodeling, we hypothesized that local leptin synthesis initiates and promotes this process. Methods and Results Human surgical AAA walls were analyzed for antigen and mRNA levels of leptin and leptin receptor (ObR), as well as mRNA for matrix metalloproteinases (MMP)-9, and MMP-12. Leptin and ObR antigen were evident in all AAAs, and, leptin, MMP-9, and MMP-12 mRNA was increased relative to age-matched non-dilated controls. To simulate in vivo local leptin synthesis, ApoE-/- mice were subjected to a para-visceral peri-aortic application of low-dose leptin. Leptin-treated aortas exhibited decreased TGFβ and increased MMP-9 mRNA levels 5 days after surgery, and ObR mRNA was up-regulated by day 28. Serial ultrasonography demonstrated accelerated regional aortic diameter growth after 28 days, correlating with local medial degeneration, increased MMP-9, MMP-12 and peri-adventitial macrophage clustering. Furthermore, the combination of local peri-aortic leptin and systemic angiotensin II administration augmented medial MMP-9 synthesis and aortic aneurysm size. Conclusions Leptin is locally synthesized in human AAA wall. Para-visceral aortic leptin in ApoE-/- mice induces local medial degeneration, and augments angiotensin II-induced AAA, thus suggesting novel mechanistic links between leptin and AAA formation. PMID:23220275

  10. Characteristics of the personal and environmental components of person-environment fit in very old age: a comparison between people with self-reported Parkinson's disease and matched controls.

    PubMed

    Slaug, Björn; Nilsson, Maria H; Iwarsson, Susanne

    2013-12-01

    To investigate differences and similarities in person-environment (P-E) fit problems between very old people with self-reported Parkinson's disease (PD) and matched controls. Data collected for the cross-national ENABLE-AGE Survey Study were used to identify people with self-reported PD (n = 20), and to select three matched controls per individual (n = 60). The matching criteria were age (mean = 82 years), sex, country, and type of housing. The data analysis targeted P-E fit (i.e. accessibility) problems, including studying the personal and environmental components separately. The personal component was analyzed in terms of functional limitations, and the environmental component in terms of physical environmental barriers. In comparison to the matched controls, the participants with PD had more functional limitations, used more mobility devices and were subjected to more P-E fit problems, though the number of environmental barriers did not differ from the controls. In the PD sample, P-E fit problems were significantly stronger associated with poor balance and incoordination, and the environmental barriers that generated the most severe P-E fit problems were more often located to the exterior surroundings of the housing compared to the controls. The novel contribution of this explorative study is the demonstration of the type of knowledge that can be generated by unfolding and comparing the composition of P-E fit (accessibility) problems among people with self-reported PD as compared with matched controls. The knowledge thereby generated can be used to develop more targeted rehabilitation approaches, efficient housing adaptation services and societal planning for people with neurodegenerative disorders.

  11. Endoscopic detection rate of sessile serrated lesions in Lynch syndrome patients is comparable with an age- and gender-matched control population: case-control study with expert pathology review.

    PubMed

    Vleugels, Jasper L A; Sahin, Husna; Hazewinkel, Yark; Koens, Lianne; van den Berg, Jose G; van Leerdam, Monique E; Dekker, Evelien

    2018-05-01

    Carcinogenesis in Lynch syndrome involves fast progression of adenomas to colorectal cancer (CRC) because of microsatellite instability. The role of sessile serrated lesions (SSLs) and the serrated neoplasia pathway in these patients is unknown. The aim of this matched case-control study was to compare endoscopic detection rates and distribution of SSLs in Lynch syndrome patients with a matched control population. We collected data of Lynch syndrome patients with a proven germline mutation who underwent colonoscopy between January 2011 and April 2016 in 2 tertiary referral hospitals. Control subjects undergoing elective colonoscopy from 2011 and onward for symptoms or surveillance were selected from a prospectively collected database. Patients were matched 1:1 for age, gender, and index versus surveillance colonoscopy. An expert pathology review of serrated polyps was performed. The primary outcomes included the detection rates and distribution of SSLs. We identified 321 patients with Lynch syndrome who underwent at least 1 colonoscopy. Of these, 223 Lynch syndrome patients (mean age, 49.3; 59% women; index colonoscopy, 56%) were matched to 223 control subjects. SSLs were detected in 7.6% (95% confidence interval, 4.8-11.9) of colonoscopies performed in Lynch syndrome patients and in 6.7% (95% confidence interval, 4.1-10.8) of control subjects (P = .86). None of the detected SSLs in Lynch syndrome patients contained dysplasia. The detection rate of SSLs in Lynch syndrome patients undergoing colonoscopy is comparable with a matched population. These findings suggest that the role of the serrated neoplasia pathway in CRC development in Lynch syndrome seems to be comparable with that in the general population. Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  12. Associations Between Physical Fitness Indices and Working Memory in Breast Cancer Survivors and Age-Matched Controls

    PubMed Central

    Mackenzie, Michael J.; Zuniga, Krystle E.; Raine, Lauren B.; Awick, Elizabeth A.; Hillman, Charles H.; Kramer, Arthur F.

    2016-01-01

    Abstract Background: This study examined the effects of cardiorespiratory fitness, heart rate recovery, and physical activity on working memory in breast cancer survivors and age-matched controls. Method: Using a case-control design, 32 women who had received a breast cancer diagnosis and completed primary treatment within the past 36-months (11 radiation only; 21 chemotherapy) and 30 age-matched women with no previous cancer diagnosis completed a n-back continuous performance task commonly used as an assessment of working memory. In addition, cardiorespiratory fitness and heart rate recovery were measured during a submaximal graded exercise test and physical activity was measured using 7-days of accelerometer monitoring. Results: Breast cancer survivors who had received chemotherapy had poorer heart rate recovery (p = .010) and engaged in less physical activity than women who had received radiation only (p = .004) or non-cancer controls (p = .029). Cancer treatment (radiation; chemotherapy) predicted differences in reaction times on the 1-back working memory task (p = .029). However, more rapid heart rate recovery predicted shorter reaction times on the 1-back task in the age-matched control group (p = .002). All participants with greater cardiorespiratory fitness displayed greater accuracy independent of disease status on the 1-back task (p = .017). No significant group differences in reaction times were observed for 2-back target trials between breast cancer survivors and controls. However, greater total physical activity predicted shorter reaction times in breast cancer survivors (radiation, chemotherapy) on the 2-back task (p = .014). In addition, all participants who exhibited more rapid heart rate recovery demonstrated better greater accuracy regardless of disease status (p = .013). Conclusion: These findings support differences in physical activty participation, heart rate recovery, and 1- and 2-back working memory reaction times between breast cancer survivors and age-matched controls. Greater cardiorespiratory fitness, heart rate recovery, and physical activity were positively associated with better working memory performance across conditions. PMID:26418463

  13. Sensorimotor Control of Tracking Movements at Various Speeds for Stroke Patients as Well as Age-Matched and Young Healthy Subjects

    PubMed Central

    Ao, Di; Song, Rong; Tong, Kai-yu

    2015-01-01

    There are aging- and stroke-induced changes on sensorimotor control in daily activities, but their mechanisms have not been well investigated. This study explored speed-, aging-, and stroke-induced changes on sensorimotor control. Eleven stroke patients (affected sides and unaffected sides) and 20 control subjects (10 young and 10 age-matched individuals) were enrolled to perform elbow tracking tasks using sinusoidal trajectories, which included 6 target speeds (15.7, 31.4, 47.1, 62.8, 78.5, and 94.2 deg/s). The actual elbow angle was recorded and displayed on a screen as visual feedback, and three indicators, the root mean square error (RMSE), normalized integrated jerk (NIJ) and integral of the power spectrum density of normalized speed (IPNS), were used to investigate the strategy of sensorimotor control. Both NIJ and IPNS had significant differences among the four groups (P<0.01), and the values were ranked in the following order: young controls < age-matched controls

  14. Blood-Based Biomarkers of Early-Onset Breast Cancer

    DTIC Science & Technology

    2015-10-01

    n=51). The women with early-onset breast cancer were disease and treatment free for at least 6 months at time of blood donation . Cases and controls...were age matched to age at blood donation . 2. KEYWORDS: biomarkers, early-onset breast cancer, expression profiling, risk-assessment, breast cancer...matched controls. This prospectively collected cohort consists of blood donated to blood banks ~15 years ago and subsequently linked to the California

  15. Affective and cognitive behavior in the alpha-galactosidase A deficient mouse model of Fabry disease

    PubMed Central

    Karl, Franziska; Sommer, Claudia; Üçeyler, Nurcan

    2017-01-01

    Fabry disease is an X-linked inherited lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3) due to α-galactosidase A (α-Gal A) deficiency. Fabry patients frequently report of anxiety, depression, and impaired cognitive function. We characterized affective and cognitive phenotype of male mice with α-Gal A deficiency (Fabry KO) and compared results with those of age-matched male wildtype (WT) littermates. Young (3 months) and old (≥ 18 months) mice were tested in the naïve state and after i.pl. injection of complete Freund`s adjuvant (CFA) as an inflammatory pain model. We used the elevated plus maze (EPM), the light-dark box (LDB) and the open field test (OF) to investigate anxiety-like behavior. The forced swim test (FST) and Morris water maze (MWM) were applied to assess depressive-like and learning behavior. The EPM test revealed no intergroup difference for anxiety-like behavior in naïve young and old Fabry KO mice compared to WT littermates, except for longer time spent in open arms of the EPM for young WT mice compared to young Fabry KO mice (p<0.05). After CFA injection, young Fabry KO mice showed increased anxiety-like behavior compared to young WT littermates (p<0.05) and naïve young Fabry KO mice (p<0.05) in the EPM as reflected by shorter time spent in EPM open arms. There were no relevant differences in the LDB and the OF test, except for longer time spent in the center zone of the OF by young WT mice compared to young Fabry KO mice (p<0.05). Complementary to this, depression-like and learning behavior were not different between genotypes and age-groups, except for the expectedly lower memory performance in older age-groups compared to young mice. Our results indicate that genetic influences on affective and cognitive symptoms in FD may be of subordinate relevance, drawing attention to potential influences of environmental and epigenetic factors. PMID:28662189

  16. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer's Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET.

    PubMed

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-10-18

    Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18 F-labed fluorodeoxyglucose ( 18 F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.

  17. Tauroursodeoxycholic acid preserves photoreceptor structure and function in the rd10 mouse through post-natal day 30

    PubMed Central

    Phillips, M. Joe; Walker, Tiffany A.; Choi, Hee-young; Faulkner, Amanda E.; Kim, Moon K.; Sidney, Sheree; Boyd, Amber; Nickerson, John M.; Boatright, Jeffrey H.; Pardue, Machelle T.

    2008-01-01

    Purpose Retinitis Pigmentosa (RP) is a progressive neurodegenerative disease resulting in blindness for which there is no current treatment. While the members of the family of RP diseases differ in etiology, their outcomes are the same: apoptosis of rods followed by cones. Recently, the bile acid, tauroursodeoxycholic acid (TUDCA), has been shown to have anti-apoptotic properties in neurodegenerative diseases, including those of the retina. In this study we examine the efficacy of TUDCA on preserving rod and cone function and morphology at post-natal day 30 (P30) in the rd10 mouse, a model of RP. Methods Wild-type C57BL/6J and rd10 mice were systemically injected with TUDCA (500 mg/kg) every three days from P6-P30 and compared to vehicle (0.15M NaHCO3). At P30, retinal function was measured with electroretinography (ERG) and morphological preservation of the rods and cones assessed with immunohistochemistry. Results Dark-adapted ERG responses were two-fold greater in rd10 mice treated with TUDCA compared to vehicle, while light-adapted responses were two-fold larger in TUDCA-treated mice compared to controls, at the brightest ERG flash intensities. TUDCA-treated rd10 retinas had five-fold more photoreceptors than vehicle-treated. TUDCA treatments did not alter retinal function or morphology of wild-type mice when administered to age-matched mice. Conclusions TUDCA is efficacious and safe in preserving vision in the rd10 mouse model of RP when treated between P6 and P30. At P30, a developmental stage at which nearly all rods are absent in the rd10 mouse model of RP, TUDCA treatment preserved both rod and cone function and greatly preserved overall photoreceptor numbers. PMID:18436848

  18. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy

    PubMed Central

    Bassil, Fares; Fernagut, Pierre-Olivier; Bezard, Erwan; Pruvost, Alain; Leste-Lasserre, Thierry; Hoang, Quyen Q.; Ringe, Dagmar; Petsko, Gregory A.; Meissner, Wassilios G.

    2016-01-01

    Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (α-syn) aggregates in affected oligodendrocytes. Several studies point to α-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of α-syn in vitro and in neuronal cell models of α-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pathology and to mediate neuroprotection in proteolipid protein α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of α-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated α-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting α-syn accumulation. PMID:27482103

  19. Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet.

    PubMed

    Zhang, Xinsheng; Zhang, Yong; Liu, Yinghua; Wang, Jin; Xu, Qing; Yu, Xiaoming; Yang, Xueyan; Liu, Zhao; Xue, Changyong

    2016-09-01

    We previously observed that medium-chain triglycerides (MCTs) could reduce body fat mass and improve the metabolism of cholesterol. We hypothesized that MCTs can improve atherosclerosis by promoting the reverse cholesterol transport (RCT) process. Therefore, the objective of this study was to investigate the roles of MCTs in macrophage RCT and the progression of atherosclerosis. To test this hypothesis, 30 4-week-old ApoE-deficient (ApoE(-/-)) mice were randomly divided into 2 groups and fed a diet of 2% MCTs or long-chain triglycerides (LCTs) for 16 weeks. Ten age- and sex-matched C57BL/6J mice were fed a diet of 2% LCTs as the control. Macrophage-to-feces RCT was assessed in vivo by intraperitoneal injection of RAW 264.7 macrophages containing (3)H-labeled cholesterol, and atherosclerotic plaques were measured. The mRNA and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. There was a greater decrease in body fat mass, atherosclerotic plaques, and an improvement in serum lipid profiles. In addition, the MCT mice group showed an increase in (3)H-tracer in the feces and a decrease in the liver. Significantly higher levels of mRNA and protein expression of hepatic ATP-binding cassette transporter A1, ATP-binding cassette transporter G5, cholesterol 7α-hydroxylase, and intestinal ATP-binding cassette transporter G8, as well as lower levels of expression of intestinal Niemann-Pick C1-like 1, were found in the MCT group. These results suggest that MCTs could obviously promote macrophage RCT and improve atherosclerosis in ApoE(-/-) mice, indicating that MCTs have the potential to prevent cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Global gene expression analysis in a mouse model for Norrie disease: late involvement of photoreceptor cells.

    PubMed

    Lenzner, Steffen; Prietz, Sandra; Feil, Silke; Nuber, Ulrike A; Ropers, H-Hilger; Berger, Wolfgang

    2002-09-01

    Mutations in the NDP gene give rise to a variety of eye diseases, including classic Norrie disease (ND), X-linked exudative vitreoretinopathy (EVRX), retinal telangiectasis (Coats disease), and advanced retinopathy of prematurity (ROP). The gene product is a cystine-knot-containing extracellular signaling molecule of unknown function. In the current study, gene expression was determined in a mouse model of ND, to unravel disease-associated mechanisms at the molecular level. Gene transcription in the eyes of 2-year-old Ndp knockout mice was compared with that in the eyes of age-matched wild-type control animals, by means of cDNA subtraction and microarrays. Clones (n = 3072) from the cDNA subtraction libraries were spotted onto glass slides and hybridized with fluorescently labeled RNA-derived targets. More than 230 differentially expressed clones were sequenced, and their expression patterns were verified by virtual Northern blot analysis. Numerous gene transcripts that are absent or downregulated in the eye of Ndp knockout mice are photoreceptor cell specific. In younger Ndp knockout mice (up to 1 year old), however, all these transcripts were found to be expressed at normal levels. The identification of numerous photoreceptor cell-specific transcripts with a reduced expression in 2-year-old, but not in young, Ndp knockout mice indicates that normal gene expression in these light-sensitive cells of mutant mice is established and maintained over a long period and that rods and cones are affected relatively late in the mouse model of ND. Obviously, the absence of the Ndp gene product is not compatible with long-term survival of photoreceptor cells in the mouse.

  1. Deletion of angiotensin II type 1 receptor gene or scavenge of superoxide prevents chronic alcohol-induced aortic damage and remodelling.

    PubMed

    Bai, Yang; Tan, Yi; Wang, Bo; Miao, Xiao; Chen, Qiang; Zheng, Yang; Cai, Lu

    2012-10-01

    To investigate whether chronic alcohol consumption induces vascular injury via angiotensin II (Ang II) type 1 (AT1) receptor-dependent superoxide generation, male transgenic mice with knockout of AT1 gene (AT1-KO) and age-matched wild-type (WT) C57BL/6 mice were pair-fed a modified Lieber-DeCarli alcohol or isocaloric maltose dextrin control liquid diet for 2 months. Ethanol content (%, W/V) in the diet was 4.8 (34% of total calories) at initiation, and gradually increased up to 5.4 (38% of total calories). For some WT mice with and without alcohol treatment, superoxide dismutase mimetic (MnTMPyP) was given simultaneously by intraperitoneal injection at 5 mg/kg body weight daily for 2 months. At the end of studies, aortas were harvested for histopathological and immunohistochemical examination. Significant increases in the wall thickness and structural disarrangement of aorta were found in alcohol group, along with significant increases in aortic oxidative and/or nitrosative damage, expressions of NADPH oxidases (NOXs), inflammatory response, cell death and proliferation, and remodelling (fibrosis). However, these pathological changes were completely attenuated in alcohol-treated AT1-KO mice or in alcohol-treated WT mice that were also simultaneously treated with MnTMPyP for 2 months. These results suggest that chronic alcohol consumption may activate NOX via Ang II/AT1 receptor, to generate superoxide and associated peroxynitrite that in turn causes aortic nitrosative damage, inflammation, cell death and proliferation, and remodelling. Therefore, blocking Ang II/AT1 system or scavenging superoxide may become a potential preventive and/therapeutic approach to alcoholic vascular damage. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  2. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress.

    PubMed

    Wang, Hao; Sun, Xuming; Lin, Marina S; Ferrario, Carlos M; Van Remmen, Holly; Groban, Leanne

    2018-04-25

    Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice.

    PubMed

    Xie, Kan; Neff, Frauke; Markert, Astrid; Rozman, Jan; Aguilar-Pimentel, Juan Antonio; Amarie, Oana Veronica; Becker, Lore; Brommage, Robert; Garrett, Lillian; Henzel, Kristin S; Hölter, Sabine M; Janik, Dirk; Lehmann, Isabelle; Moreth, Kristin; Pearson, Brandon L; Racz, Ildiko; Rathkolb, Birgit; Ryan, Devon P; Schröder, Susanne; Treise, Irina; Bekeredjian, Raffi; Busch, Dirk H; Graw, Jochen; Ehninger, Gerhard; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Sandholzer, Michael; Schmidt-Weber, Carsten; Weiergräber, Marco; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Ehninger, Dan

    2017-07-24

    Dietary restriction regimes extend lifespan in various animal models. Here we show that longevity in male C57BL/6J mice subjected to every-other-day feeding is associated with a delayed onset of neoplastic disease that naturally limits lifespan in these animals. We compare more than 200 phenotypes in over 20 tissues in aged animals fed with a lifelong every-other-day feeding or ad libitum access to food diet to determine whether molecular, cellular, physiological and histopathological aging features develop more slowly in every-other-day feeding mice than in controls. We also analyze the effects of every-other-day feeding on young mice on shorter-term every-other-day feeding or ad libitum to account for possible aging-independent restriction effects. Our large-scale analysis reveals overall only limited evidence for a retardation of the aging rate in every-other-day feeding mice. The data indicate that every-other-day feeding-induced longevity is sufficiently explained by delays in life-limiting neoplastic disorders and is not associated with a more general slowing of the aging process in mice.Dietary restriction can extend the life of various model organisms. Here, Xie et al. show that intermittent periods of fasting achieved through every-other-day feeding protect mice against neoplastic disease but do not broadly delay organismal aging in animals.

  4. The Role of Retinal Vascular Density as a Screening Tool for Ageing and Stroke.

    PubMed

    Sprödhuber, Andrea; Wolz, Johannes; Budai, Attila; Laumeier, Inga; Audebert, Heinrich J; Michelson, Georg

    2018-06-06

    To measure the density of retinal vessels from digitized fundus photographs in patients with recent stroke and age-matched controls. To investigate whether the parameter retinal vascular density (RVD) served as a quantitative marker for cerebrovascular events. Digitized fundus photographs of n = 158 subjects with stroke or transient ischemic attack within 1 year at the time of examination and n = 1,250 age-matched controls without any remarkable medical history were examined. Sex, hypertension, and diabetes were considered to be cofactors. Measurement of RVD was performed with a computer-aided image-analyzing program by segmenting automatically all visible retinal vessels and measuring areas of vessels in distinct circles around the optic disk. In controls RVD dwindles with increasing distance from the optic disk. RVD decreased significantly with age (p = 0.000). Stroke patients showed significantly lower values of RVD of -15% in comparison to age-matched controls. In old subjects, stroke in combination with hypertension is associated with a significant decreased RVD, and in middle-aged subjects diabetes and stroke are associated with a significant decreased RVD (p = 0.01). Age and stroke are significant risk factors for decreased RVD. Diabetes and arterial hypertension are additional significant risk factors in patients with stroke with respect to RVD. © 2018 S. Karger AG, Basel.

  5. Mathematics skills in good readers with hydrocephalus.

    PubMed

    Barnes, Marcia A; Pengelly, Sarah; Dennis, Maureen; Wilkinson, Margaret; Rogers, Tracey; Faulkner, Heather

    2002-01-01

    Children with hydrocephalus have poor math skills. We investigated the nature of their arithmetic computation errors by comparing written subtraction errors in good readers with hydrocephalus, typically developing good readers of the same age, and younger children matched for math level to the children with hydrocephalus. Children with hydrocephalus made more procedural errors (although not more fact retrieval or visual-spatial errors) than age-matched controls; they made the same number of procedural errors as younger, math-level matched children. We also investigated a broad range of math abilities, and found that children with hydrocephalus performed more poorly than age-matched controls on tests of geometry and applied math skills such as estimation and problem solving. Computation deficits in children with hydrocephalus reflect delayed development of procedural knowledge. Problems in specific math domains such as geometry and applied math, were associated with deficits in constituent cognitive skills such as visual spatial competence, memory, and general knowledge.

  6. A lifelong exposure to a Western-style diet, but not aging, alters global DNA methylation in mouse colon

    PubMed Central

    Tammen, Stephanie A; Liu, Zhenhua; Friso, Simonetta

    2015-01-01

    BACKGROUND/OBJECTIVES Previous studies have indicated that when compared to young mice, old mice have lower global DNA methylation and higher p16 promoter methylation in colonic mucosa, which is a common finding in colon cancer. It is also known that a Western-style diet (WSD) high in fat and calories, and low in calcium, vitamin D, fiber, methionine and choline (based on the AIN 76A diet) is tumorigenic in colons of mice. Because DNA methylation is modifiable by diet, we investigate whether a WSD disrupts DNA methylation patterns, creating a tumorigenic environment. SUBJECTVIES/METHODS We investigated the effects of a WSD and aging on global and p16 promoter DNA methylation in the colon. Two month old male C57BL/6 mice were fed either a WSD or a control diet (AIN76A) for 6, 12 or 17 months. Global DNA methylation, p16 promoter methylation and p16 expression were determined by LC/MS, methyl-specific PCR and real time RT-PCR, respectively. RESULTS The WSD group demonstrated significantly decreased global DNA methylation compared with the control at 17 months (4.05 vs 4.31%, P = 0.019). While both diets did not change global DNA methylation over time, mice fed the WSD had lower global methylation relative to controls when comparing all animals (4.13 vs 4.30%, P = 0.0005). There was an increase in p16 promoter methylation from 6 to 17 months in both diet groups (P < 0.05) but no differences were observed between diet groups. Expression of p16 increased with age in both control and WSD groups. CONCLUSIONS In this model a WSD reduces global DNA methylation, whereas aging itself has no affect. Although the epigenetic effect of aging was not strong enough to alter global DNA methylation, changes in promoter-specific methylation and gene expression occurred with aging regardless of diet, demonstrating the complexity of epigenetic patterns. PMID:26244073

  7. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice.

    PubMed

    Seibenhener, Michael L; Wooten, Michael C

    2015-02-06

    Animal models have proven to be invaluable to researchers trying to answer questions regarding the mechanisms of behavior. The Open Field Maze is one of the most commonly used platforms to measure behaviors in animal models. It is a fast and relatively easy test that provides a variety of behavioral information ranging from general ambulatory ability to data regarding the emotionality of the subject animal. As it relates to rodent models, the procedure allows the study of different strains of mice or rats both laboratory bred and wild-captured. The technique also readily lends itself to the investigation of different pharmacological compounds for anxiolytic or anxiogenic effects. Here, a protocol for use of the open field maze to describe mouse behaviors is detailed and a simple analysis of general locomotor ability and anxiety-related emotional behaviors between two strains of C57BL/6 mice is performed. Briefly, using the described protocol we show Wild Type mice exhibited significantly less anxiety related behaviors than did age-matched Knock Out mice while both strains exhibited similar ambulatory ability.

  8. Mangiferin induces islet regeneration in aged mice through regulating p16INK4a

    PubMed Central

    Liu, Yilong; Huai, Guoli; Sun, Minghan; Deng, Shaoping; Yang, Hongji; Tong, Rongsheng; Wang, Yi

    2018-01-01

    Previous studies by our group on mangiferin demonstrated that it exerts an antihyperglycemic effect through the regulation of cell cycle proteins in 3-month-old, partially pancreatectomized (PPx) mice. However, β-cell proliferation is known to become severely restricted with advanced age. Therefore, it is unknown whether mangiferin is able to reverse the diabetic condition and retain β-cell regeneration capability in aged mice. In the present study, 12-month-old C57BL/6J mice that had undergone PPx were subjected to mangiferin treatment (90 mg/kg) for 28 days. Mangiferin-treated aged mice exhibited decreased blood glucose levels and increased glucose tolerance, which was accompanied with higher serum insulin levels when compared with those in untreated PPx control mice. In addition, islet hyperplasia, elevated β-cell proliferation and reduced β-cell apoptosis were also identified in the mice that received mangiferin treatment. Further studies on the mRNA transcript and protein expression levels indicated comparatively increased levels of cyclins D1 and D2 and cyclin-dependent kinase 4 in mangiferin-treated mice, while the levels of p27Kip1 and p16INK4a were decreased relative to those in the untreated PPx controls. Of note, mangiferin treatment improved the proliferation rate of islet β-cells in adult mice overexpressing p16INK4a, suggesting that mangiferin induced β-cell proliferation via the regulation of p16INK4a. In addition, the mRNA transcription levels of critical genes associated with insulin secretion, including pancreatic and duodenal homeobox 1, glucose transporter 2 and glucokinase, were observed to be upregulated after mangiferin treatment. Taken together, it was indicated that mangiferin treatment significantly induced β-cell proliferation and inhibited β-cell apoptosis by regulating cell cycle checkpoint proteins. Furthermore, mangiferin was also demonstrated to regulate genes associated with insulin secretion. Collectively these, results suggest the therapeutic potential of mangiferin in the treatment of diabetes in aged individuals. PMID:29512742

  9. The beneficial effects of zinc on diabetes-induced kidney damage in murine rodent model of type 1 diabetes mellitus.

    PubMed

    Yang, Fan; Li, Bing; Dong, Xiaoming; Cui, Wenpeng; Luo, Ping

    2017-07-01

    Diabetes mellitus is a chronic multi-factorial metabolic disorder resulting from impaired glucose homeostasis. Zinc is a key co-factor for the correct functioning of anti-oxidant enzymes. Zinc deficiency therefore, impairs their synthesis, leading to increased oxidative stress within cells. Zinc deficiency occurs commonly in diabetic patients. The aim of this study is to investigate the effects of varying concentrations of zinc on diabetic nephropathy (DN) and the underlying mechanisms involved. FVB male mice aged 8 weeks were injected intraperitoneally with multiple low-dose streptozotocin at a concentration of 50mg/kg body weight daily for 5 days. Diabetic and age-matched control mice were treated with special diets supplemented with zinc at varying concentrations (0.85mg/kg, 30mg/kg, 150mg/kg) for 3 months. The mice were fed with zinc diets to mimic the process of oral administration of zinc in human. Zinc deficiency to some extent aggravated the damage of diabetic kidney. Feeding with normal (30mg/kg zinc/kg diet) and especially high (150mg/kg zinc/kg diet) concentration zinc could protect the kidney against diabetes-induced damage. The beneficial effects of zinc on DN are achieved most likely due to the upregulation of Nrf2 and its downstream factors NQO1, SOD1, SOD2. Zinc upregulated the expression of Akt phosphorylation and GSK-3β phosphorylation, resulting in a reduction in Fyn nuclear translocation and export of Nrf2 to the cytosol. Thus, regular monitoring and maintaining of adequate levels of zinc are recommended in diabetic individuals in order to delay the development of DN. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Long term healthcare costs of infants who survived neonatal necrotizing enterocolitis: a retrospective longitudinal study among infants enrolled in Texas Medicaid

    PubMed Central

    2013-01-01

    Background Infants who survive advanced necrotizing enterocolitis (NEC) at the time of birth are at increased risk of having poor long term physiological and neurodevelopmental growth. The economic implications of the long term morbidity in these children have not been studied to date. This paper compares the long term healthcare costs beyond the initial hospitalization period incurred by medical and surgical NEC survivors with that of matched controls without a diagnosis of NEC during birth hospitalization. Methods The longitudinal healthcare utilization claim files of infants born between January 2002 and December 2003 and enrolled in the Texas Medicaid fee-for-service program were used for this research. Propensity scoring was used to match infants diagnosed with NEC during birth hospitalization to infants without a diagnosis of NEC on the basis of gender, race, prematurity, extremely low birth weight status and presence of any major birth defects. The Medicaid paid all-inclusive healthcare costs for the period from 6 months to 3 years of age among children in the medical NEC, surgical NEC and matched control groups were evaluated descriptively, and in a generalized linear regression framework in order to model the impact of NEC over time and by birth weight. Results Two hundred fifty NEC survivors (73 with surgical NEC) and 2,909 matched controls were available for follow-up. Medical NEC infants incurred significantly higher healthcare costs than matched controls between 6–12 months of age (mean incremental cost = US$ 5,112 per infant). No significant difference in healthcare costs between medical NEC infants and matched controls was seen after 12 months. Surgical NEC survivors incurred healthcare costs that were consistently higher than that of matched controls through 36 months of age. The mean incremental healthcare costs of surgical NEC infants compared to matched controls between 6–12, 12–24 and 24–36 months of age were US$ 18,274, 14,067 (p < 0.01) and 8,501 (p = 0.06) per infant per six month period, respectively. These incremental costs were found to vary between sub-groups of infants born with birth weight < 1,000g versus ≥ 1,000g (p < 0.05). Conclusions The all-inclusive healthcare costs of surgical NEC survivors continued to be substantially higher than that of matched controls through the early childhood development period. These results can have important treatment and policy implications. Further research in this topic is needed. PMID:23962093

  11. Is a Cerebellar Deficit the Underlying Cause of Reading Disabilities?

    ERIC Educational Resources Information Center

    Irannejad, Shahrzad; Savage, Robert

    2012-01-01

    This study investigated whether children with dyslexia differed in their performance on reading, phonological, rapid naming, motor, and cerebellar-related tasks and automaticity measures compared to reading age (RA)-matched and chronological age (CA)-matched control groups. Participants were 51 children attending mainstream English elementary…

  12. Role of p53, Mitochondrial DNA Deletions, and Paternal Age in Autism: A Case-Control Study

    PubMed Central

    Wong, Sarah; Napoli, Eleonora; Krakowiak, Paula; Tassone, Flora; Hertz-Picciotto, Irva

    2016-01-01

    BACKGROUND: The tumor suppressor p53 responds to a variety of environmental stressors by regulating cell cycle arrest, apoptosis, senescence, DNA repair, bioenergetics and mitochondrial DNA (mtDNA) copy number maintenance. Developmental abnormalities have been reported in p53-deficient mice, and altered p53 and p53-associated pathways in autism (AU). Furthermore, via the Pten-p53 crosstalk, Pten haploinsufficient-mice have autisticlike behavior accompanied by brain mitochondrial dysfunction with accumulation of mtDNA deletions. METHODS: mtDNA copy number and deletions, and p53 gene copy ratios were evaluated in peripheral blood monocytic cells from children aged 2–5 years with AU (n = 66), race-, gender-, and age-matched typically neurodeveloping children (n = 46), and both parents from each diagnostic group, recruited by the Childhood Autism Risk from Genes and Environment study at the University of California, Davis. RESULTS: mtDNA deletions and higher p53 gene copy ratios were more common in children with AU and their fathers. The incidence of mtDNA deletions in fathers of children with AU was increased 1.9-fold over fathers of typically neurodeveloping children, suggesting a role for deficient DNA repair capacity not driven by paternal age. Deletions in mtDNA and altered p53 gene copy ratios seem to result from genetics (children with severity scores ≥8) and/or act in concert with environmental factors (children with 6–7 severity scores). CONCLUSIONS: Given pro- and antioxidant activities of p53, and associations of genomic instability with disorders other than AU, our study suggests a link between DNA repair capacity, genomic instability in the 17p13.1 region influenced by environmental triggers, and AU diagnosis. PMID:27033107

  13. Overexpression of Human S100B Exacerbates Brain Damage and Periinfarct Gliosis After Permanent Focal Ischemia

    PubMed Central

    Mori, Takashi; Tan, Jun; Arendash, Gary W.; Koyama, Naoki; Nojima, Yoshiko; Town, Terrence

    2009-01-01

    Background and Purpose We have previously demonstrated that augmented and prolonged activation of astrocytes detrimentally influences both the subacute and chronic phases of cerebral ischemia. Furthermore, we have suggested that the astrocyte-derived protein S100B may be important in these pathogenic events. However, the causal relationship between S100B and exacerbation of brain damage in vivo remains to be elucidated. Methods Using transgenic mice overexpressing human S100B (Tg huS100B mice), we examined whether S100B plays a cardinal role in aggravation of brain damage after permanent middle cerebral artery occlusion (pMCAO). Results Tg huS100B mice had significantly larger infarct volumes and worse neurological deficits at any time point examined after pMCAO as compared with CD-1 background strain-matched control mice. Infarct volumes in Tg huS100B mice were significantly increased from 1 to 3 and 5 days after pMCAO (delayed infarct expansion), whereas those in control mice were not significantly altered. S100, glial fibrillary acidic protein, and Iba1 burdens in the periinfarct area were significantly increased through to 7 days after pMCAO in Tg huS100B mice, whereas those in control mice reached a plateau at 3 days after pMCAO. Conclusions These results provide genetic evidence that overexpression of human S100B acts to exacerbate brain damage and periinfarct reactive gliosis (astrocytosis and microgliosis) during the subacute phase of pMCAO. PMID:18451356

  14. Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kim, Jeong Hwan; Kim, Jong Sang; Kim, Hyo Jung

    2012-02-01

    Our previous in vitro study demonstrated that glyceollins help normalize glucose homeostasis by potentiating β-cell function and survival in insulinoma cells as well as improving glucose utilization in adipocytes. Here, we investigated whether fermented soybeans containing glyceollins had an antidiabetic action in type 2 diabetic animals. The diabetic mice, their diabetes induced by intraperitoneal injections of streptozotocin (20 mg/kg bw), were administered a high fat diet with no soybeans (control), 10% unfermented soybeans and 10% fermented soybeans containing glyceollins, respectively, (FSG) for 8 weeks. As positive controls, rosiglitazone (20 mg/kg/bw) was given to diabetic mice fed a no soybean diet and non-diabetic mice were also placed on the same diet. Among the diabetic mice, FSG-treated mice exhibited the lowest peak for blood glucose levels with an elevation of serum insulin levels during the first part of oral glucose tolerance testing. FSG also made blood glucose levels drop quickly after the peak and it decreased blood glucose levels more than the control during insulin tolerance testing. This improvement was associated with increased hepatic glycogen accumulation and decreased triglyceride storage. The phosphorylation of Akt, AMP-kinase, and acetyl-CoA carboxylase in the liver was potentiated by FSG, whereas phosphoenolpyruvate carboxykinase expression decreased. The enhancement of glucose homeostasis was comparable to the effect induced by rosiglitazone, a commercial peroxisome proliferator-activated receptor-γ agonist, but it did not match the level of glucose homeostasis in the non-diabetic mice. Glyceollin-containing FSG improves glucose homeostasis, partly by enhancing hepatic insulin sensitivity in type 2 diabetic mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation.

    PubMed

    Li, Chang-Jun; Cheng, Peng; Liang, Meng-Ke; Chen, Yu-Si; Lu, Qiong; Wang, Jin-Yu; Xia, Zhu-Ying; Zhou, Hou-De; Cao, Xu; Xie, Hui; Liao, Er-Yuan; Luo, Xiang-Hang

    2015-04-01

    Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.

  16. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    PubMed

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  17. MMP-10 (Stromelysin-2) and MMP-21 in human and murine squamous cell cancer.

    PubMed

    Boyd, Sonja; Virolainen, Susanna; Pärssinen, Jenita; Skoog, Tiina; van Hogerlinden, Max; Latonen, Leena; Kyllönen, Lauri; Toftgard, Rune; Saarialho-Kere, Ulpu

    2009-12-01

    The squamous cell cancers (SCC) of renal transplant recipients are more aggressive and metastasize earlier than those of the non-immunocompromised population. Matrix metalloproteinases (MMPs) have a central role in tumor initiation, invasion and metastasis. Our aim was to compare the expression of MMPs-10, -12 and -21 in SCCs from immunosuppressed (IS) and control patients and the contribution of MMPs-10 and -21 to SCC development in the FVB/N-Tg(KRT5-Nfkbia)3Rto mouse line. Immunohistochemical analysis of 25 matched pairs of SCCs, nine of Bowen's disease and timed back skin biopsies of mice with selective inhibition of Rel/NF-kappaB signalling were performed. Semiquantitatively assessed stromal MMP-10 expression was higher (P = 0.009) in the control group when compared with IS patients. Tumor cell-derived MMP-10, -12 and -21 expression did not differ between the groups but stromal fibroblasts of the control SCCs tended to express MMP-21 more abundantly. MMP-10 expression was observed already in Bowen's disease while MMP-21 was absent. MMP-10 and -21 were present in inflammatory or stromal cells in ageing mice while dysplastic keratinocytes and invasive cancer were negative. Our results suggest that MMP-10 may be important in the initial stages of SCC progression and induced in the stroma relating to the general host-response reaction to skin cancer. MMP-21 does not associate with invasion of SCC but may be involved in keratinocyte differentiation.

  18. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    PubMed

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  19. Chronic Intermittent Fasting Improves Cognitive Functions and Brain Structures in Mice

    PubMed Central

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals. PMID:23755298

  20. Consuming a Diet Supplemented with Resveratrol Reduced Infection-Related Neuroinflammation and Deficits in Working Memory in Aged Mice

    PubMed Central

    Abraham, Jayne

    2009-01-01

    Abstract Aged mice treated peripherally with lipopolysaccharide (LPS) show an exaggerated neuroinflammatory response and cognitive deficits compared to adults. Considerable evidence suggests resveratrol, a polyphenol found in red grapes, has potent antiinflammatory effects in the periphery, but its effects on the central inflammatory response and cognitive behavior are unknown. Therefore, the current study investigated if resveratrol dietary supplementation would inhibit neuroinflammation as well as behavioral and cognitive deficits in aged mice given LPS to mimic a peripheral infection. In initial studies, adult (3–6 months) and aged (22–24 months) mice were provided control or resveratrol-supplemented diet for 4 weeks and then injected intraperitoneally (i.p.) with saline or LPS, and locomotor activity and spatial working memory were assessed. As anticipated, deficits in locomotor activity and spatial working memory indicated aged mice are more sensitive to LPS compared to adults. More importantly, the LPS-induced deficits in aged animals were mitigated by dietary supplementation of resveratrol. In addition, resveratrol consumption reduced LPS-induced interleukin-1β (IL-1β) in plasma and the IL-1β mRNA in the hippocampus of aged mice. Finally, pretreatment of BV-2 microglial cells with resveratrol potently inhibited LPS-induced IL-1β production. These data show that aged mice are more sensitive than adult mice to both the inflammatory and cognitive effects of peripheral immune stimulation and suggest that resveratrol may be useful for attenuating acute cognitive disorders in elderly individuals with an infection. PMID:20041738

  1. Taste detection and recognition thresholds in Japanese patients with Alzheimer-type dementia.

    PubMed

    Ogawa, Takao; Irikawa, Naoya; Yanagisawa, Daijiro; Shiino, Akihiko; Tooyama, Ikuo; Shimizu, Takeshi

    2017-04-01

    Alzheimer-type dementia (AD) is pathologically characterized by massive neuronal loss in the brain, and the taste cortex is thought to be affected. However, there are only a few reports regarding the gustatory function of AD patients, and the conclusions of this research are inconsistent. This prospective study enrolled 22 consecutive patients with mild to moderately severe Alzheimer-type dementia (AD) with mean age of 84.0 years, and 49 elderly volunteers without dementia with mean age of 71.0 years as control subjects. The control subjects were divided into two groups according to age: a younger group (N=28, mean age: 68.5) and an older group (N=21, mean age: 83.0). The gustatory function was investigated using the filter paper disc method (FPD) and electrogustometry (EGM). The gustatory function as measured by the FPD was significantly impaired in patients with AD as compared with age-matched control subjects; no such difference was found between the younger and the older control groups. On the other hand, as for the EGM thresholds, there were no differences between the AD patient group and the age-matched controls. The FPD method demonstrated decreased gustatory function in AD patients beyond that of aging. On the other hand, EGM thresholds did not differ between the AD patient group and the age-matched controls. These results suggest that failure of taste processing in the brain, but not taste transmission in the peripheral taste system, occurs in patients with AD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Infrared imaging microscopy of bone: Illustrations from a mouse model of Fabry disease

    PubMed Central

    Boskey, Adele L.; Goldberg, Michel; Kulkarni, Ashok; Gomez, Santiago

    2006-01-01

    Bone is a complex tissue whose composition and properties vary with age, sex, diet, tissue type, health and disease. In this review, we demonstrate how infrared spectroscopy and infrared spectroscopic imaging can be applied to the study of these variations. A specific example of mice with Fabry disease (a lipid storage disease) is presented in which it is demonstrated that the bones of these young animals, while showing typical spatial variation in mineral content, mineral crystal size, and collagen maturity, do not differ from the bones of age- and sex-matched wild type animals. PMID:16697974

  3. Infrared imaging microscopy of bone: illustrations from a mouse model of Fabry disease.

    PubMed

    Boskey, Adele L; Goldberg, Michel; Kulkarni, Ashok; Gomez, Santiago

    2006-07-01

    Bone is a complex tissue whose composition and properties vary with age, sex, diet, tissue type, health and disease. In this review, we demonstrate how infrared spectroscopy and infrared spectroscopic imaging can be applied to the study of these variations. A specific example of mice with Fabry disease (a lipid storage disease) is presented in which it is demonstrated that the bones of these young animals, while showing typical spatial variation in mineral content, mineral crystal size, and collagen maturity, do not differ from the bones of age- and sex-matched wild type animals.

  4. Restaurant-associated outbreak of Salmonella typhi in Nauru: an epidemiological and cost analysis.

    PubMed Central

    Olsen, S. J.; Kafoa, B.; Win, N. S.; Jose, M.; Bibb, W.; Luby, S.; Waidubu, G.; O'Leary, M.; Mintz, E.

    2001-01-01

    Typhoid fever is endemic in the South Pacific. We investigated an outbreak in Nauru. Through interviews and medical records, we identified 50 persons with onset between 1 October 1998 and 10 May 1999, of fever lasting > or = 3 days and one other symptom. Salmonella Typhi was isolated from 19 (38%) cases. Thirty-two (64%) patients were school-aged children, and 17 (34%) were in four households. Case-control studies of (a) culture-confirmed cases and age- and neighbourhood-matched controls; and (b) household index cases and randomly selected age-matched controls implicated two restaurants: Restaurant M (matched OR [MOR] = 11, 95% confidence interval [CI] = 1.3-96) and Restaurant I (MOR = 5.8, 95% CI = 1.2-29). Food-handlers at both restaurants had elevated anti-Vi antibody titres indicative of carrier state. The annual incidence was 5.0/1000 persons. Outbreak-associated costs were $46,000. Routine or emergency immunization campaigns targeting school-aged children may help prevent or control outbreaks of typhoid fever in endemic disease areas. PMID:11811872

  5. Assessment of maternal serum sialic acid levels in preterm versus term labor: a prospective-controlled clinical study.

    PubMed

    Ugur, Mete Gurol; Kurtul, Naciye; Balat, Ozcan; Ekici, Melek; Kul, Seval

    2012-11-01

    To compare total serum sialic acid (SA) levels between singleton pregnant women diagnosed with preterm labor between 24th and 36th weeks of pregnancy, singleton pregnant women at term, and their gestational age-matched controls. Thirty pregnants diagnosed with preterm labor (group I), 30 gestational age-matched control pregnants (group II), 30 pregnants with labor at term (group III), and 30 gestational age-matched control pregnants (group IV) were enrolled. Detailed history, demographic data (age, gravidity, parity, abortion), ultrasound parameters, cervical dilatation and effacement, fetal tococardiography, routine laboratory tests, and total SA levels were assessed. There was no statistically significant difference between the parameters other than SA. SA levels of the preterm labor group (group I) were significantly higher than the other three groups. We may suggest that pathways including SA or molecules containing SA in subclinical infection without the clinical manifestations of apparent infection may be involved in the pathogenesis of preterm birth. Future longitudinal studies are needed to investigate prediction performance and to better understand the role of SA in molecular mechanisms leading to preterm labor.

  6. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise.

    PubMed

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang; Liao, Xiao-Mei

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.

  7. Therapeutic effect of androgen therapy in a mouse model of aplastic anemia produced by short telomeres.

    PubMed

    Bär, Christian; Huber, Nicolas; Beier, Fabian; Blasco, Maria A

    2015-10-01

    Aplastic anemia is a rare but life-threatening disorder characterized by cytopenia in at least two of the three blood lineages. A frequent feature of patients with aplastic anemia is that they have shorter telomeres than those of age-matched controls. Testosterone has been used for over half a century in the treatment of aplastic anemia. However, although remissions are frequent following hormone therapy, the molecular mechanism underlying the response to treatment has remained unknown. Here we explored the possibility that the recently described regulation of telomerase activity by sex hormones may be the mechanism responsible. To this end, we used a mouse model of aplastic anemia induced by short telomeres in the bone marrow compartment. We found that testosterone therapy results in telomerase up-regulation, improved blood counts, and a significant extension of life-span of these mice. Importantly, longitudinal follow-up studies revealed longer telomeres in peripheral blood in mice subjected to hormone treatment. Our results demonstrate that testosterone-mediated telomerase activation can attenuate or reverse aplastic anemia disease progression associated with the presence of short telomeres. Copyright© Ferrata Storti Foundation.

  8. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise

    PubMed Central

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons. PMID:28589040

  9. Recovery from impaired muscle growth arises from prolonged postnatal accretion of myonuclei in Atrx mutant mice

    PubMed Central

    Yan, Keqin; Price-O’Dea, Tina

    2017-01-01

    Reduced muscle mass due to pathological development can occur through several mechanisms, including the loss or reduced proliferation of muscle stem cells. Muscle-specific ablation of the α-thalassemia mental retardation syndrome mutant protein, Atrx, in transgenic mice results in animals with a severely reduced muscle mass at three weeks of age; yet this muscle mass reduction resolves by adult age. Here, we explore the cellular mechanism underlying this effect. Analysis of Atrx mutant mice included testing for grip strength and rotorod performance. Muscle fiber length, fiber volume and numbers of myofiber-associated nuclei were determined from individual EDL or soleus myofibers isolated at three, five, or eight weeks. Myofibers from three week old Atrx mutant mice are smaller with fewer myofiber-associated nuclei and reduced volume compared to control animals, despite similar fiber numbers. Nonetheless, the grip strength of Atrx mutant mice was comparable to control mice when adjusted for body weight. Myofiber volume remained smaller at five weeks, becoming comparable to controls by 8 weeks of age. Concomitantly, increased numbers of myofiber-associated nuclei and Ki67+ myoblasts indicated that the recovery of muscle mass likely arises from the prolonged accretion of new myonuclei. This suggests that under disease conditions the muscle satellite stem cell niche can remain in a prolonged active state, allowing for the addition of a minimum number of myonuclei required to achieve a normal muscle size. PMID:29095838

  10. Canonical Nlrp3 inflammasome links systemic low grade inflammation to functional decline in aging

    PubMed Central

    Youm, Yun-Hee; Grant, Ryan W.; McCabe, Laura R.; Albarado, Diana C.; Nguyen, Kim Yen; Ravussin, Anthony; Pistell, Paul; Newman, Susan; Carter, Renee; Laque, Amanda; Münzberg, Heike; Rosen, Clifford J.; Ingram, Donald K.; Salbaum, J. Michael; Dixit, Vishwa Deep

    2014-01-01

    SUMMARY Despite a wealth of clinical data showing an association between inflammation and degenerative disorders in elderly, the immune sensors that causally link systemic inflammation to aging remain unclear. Here we detail a mechanism that the Nlrp3 inflammasome controls systemic low grade age-related ‘sterile’ inflammation in both periphery and brain independently of the non-canonical caspase-11 inflammasome. Ablation of Nlrp3 inflammasome protected mice from age-related increases in the innate immune activation, alterations in CNS transcriptome and astrogliosis. Consistent with the hypothesis that systemic low grade inflammation promotes age-related degenerative changes, the deficient Nlrp3 inflammasome mediated caspase-1 activity improved glycemic control and attenuated bone loss and thymic demise. Notably, IL-1 mediated only Nlrp3 inflammasome dependent improvement in cognitive function and motor performance in aged mice. These studies reveal Nlrp3 inflammasome as an upstream target that controls age-related inflammation and offer innovative therapeutic strategy to lower Nlrp3 activity to delay multiple age-related chronic diseases. PMID:24093676

  11. Serial Recall and Nonword Repetition in Reading Disabled Children.

    ERIC Educational Resources Information Center

    Roodenrys, Steven; Stokes, Julie

    2001-01-01

    Examines the performance on verbal short-term memory tasks of specifically reading disabled children relative to reading-age matched and chronological-age matched control groups. Examines memory span for words, highly wordlike nonwords and less wordlike nonwords, speech rates for these items, and nonword repetition. Suggests that there is a…

  12. Degenerative and regenerative features of myofibers differ among skeletal muscles in a murine model of muscular dystrophy.

    PubMed

    Ikeda, Teppei; Ichii, Osamu; Otsuka-Kanazawa, Saori; Nakamura, Teppei; Elewa, Yaser Hosny Ali; Kon, Yasuhiro

    2016-10-01

    Skeletal muscle myofibers constantly undergo degeneration and regeneration. Histopathological features of 6 skeletal muscles (cranial tibial [CT], gastrocnemius, quadriceps femoris, triceps brachii [TB], lumbar longissimus muscles, and costal part of the diaphragm [CPD]) were compared using C57BL/10ScSn-Dmd mdx (mdx) mice, a model for muscular dystrophy versus control, C57BL/10 mice. Body weight and skeletal muscle mass were lower in mdx mice than the control at 4 weeks of age; these results were similar at 6-30 weeks. Additionally, muscular lesions were observed in all examined skeletal muscles in mdx mice after 4 weeks, but none were noted in the controls. Immunohistochemical staining revealed numerous paired box 7-positive satellite cells surrounding the embryonic myosin heavy chain-positive regenerating myofibers, while the number of the former and staining intensity of the latter decreased as myofiber regeneration progressed. Persistent muscular lesions were observed in skeletal muscles of mdx mice between 4 and 14 weeks of age, and normal myofibers decreased with age. Number of muscular lesions was lowest in CPD at all ages examined, while the ratio of normal myofibers was lowest in TB at 6 weeks. In CT, TB, and CPD, Iba1-positive macrophages, the main inflammatory cells in skeletal muscle lesions, showed a significant positive correlation with the appearance of regenerating myofibers. Additionally, B220-positive B-cells showed positive and negative correlation with regenerating and regenerated myofibers, respectively. Our data suggest that degenerative and regenerative features of myofibers differ among skeletal muscles and that inflammatory cells are strongly associated with regenerative features of myofibers in mdx mice.

  13. Zonula Occludens-1, Occludin and E-cadherin Expression and Organization in Salivary Glands with Sjögren’s Syndrome

    PubMed Central

    Mellas, Rachel E.; Leigh, Noel J.; Nelson, Joel W.; McCall, Andrew D.

    2015-01-01

    Sjögren’s syndrome (SS) is a chronic inflammatory autoimmune disorder that causes secretory dysfunction of the salivary glands leading to dry mouth. Previous studies reported that tight junction (TJ) proteins are down-regulated and lose polarity in human minor salivary glands with SS, suggesting that TJ structure is compromised in SS patients. In this paper, we utilized the NOD/ShiLtJ mouse with the main goal of evaluating this model for future TJ research. We found that the organization of apical proteins in areas proximal and distal to lymphocytic infiltration remained intact in mouse and human salivary glands with SS. These areas looked comparable to control glands (i.e., with no lymphocytic infiltration). TJ staining was absent in areas of lymphocytic infiltration coinciding with the loss of salivary epithelium. Gene expression studies show that most TJs are not significantly altered in 20-week-old NOD/ShiLtJ mice as compared with age-matched C57BL/6 controls. Protein expression studies revealed that the TJ proteins, zonula occludens-1 (ZO-1), occludin, claudin-12, as well as E-cadherin, do not significantly change in NOD/ShiLtJ mice. Our results suggest that ZO-1, occludin and E-cadherin are not altered in areas without lymphocytic infiltration. However, future studies will be necessary to test the functional aspect of these results. PMID:25248927

  14. Zonula occludens-1, occludin and E-cadherin expression and organization in salivary glands with Sjögren's syndrome.

    PubMed

    Mellas, Rachel E; Leigh, Noel J; Nelson, Joel W; McCall, Andrew D; Baker, Olga J

    2015-01-01

    Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disorder that causes secretory dysfunction of the salivary glands leading to dry mouth. Previous studies reported that tight junction (TJ) proteins are down-regulated and lose polarity in human minor salivary glands with SS, suggesting that TJ structure is compromised in SS patients. In this paper, we utilized the NOD/ShiLtJ mouse with the main goal of evaluating this model for future TJ research. We found that the organization of apical proteins in areas proximal and distal to lymphocytic infiltration remained intact in mouse and human salivary glands with SS. These areas looked comparable to control glands (i.e., with no lymphocytic infiltration). TJ staining was absent in areas of lymphocytic infiltration coinciding with the loss of salivary epithelium. Gene expression studies show that most TJs are not significantly altered in 20-week-old NOD/ShiLtJ mice as compared with age-matched C57BL/6 controls. Protein expression studies revealed that the TJ proteins, zonula occludens-1 (ZO-1), occludin, claudin-12, as well as E-cadherin, do not significantly change in NOD/ShiLtJ mice. Our results suggest that ZO-1, occludin and E-cadherin are not altered in areas without lymphocytic infiltration. However, future studies will be necessary to test the functional aspect of these results. © The Author(s) 2014.

  15. Relative fundamental frequency during vocal onset and offset in older speakers with and without Parkinson's disease.

    PubMed

    Stepp, Cara E

    2013-03-01

    The relative fundamental frequency (RFF) surrounding production of a voiceless consonant has previously been shown to be lower in speakers with hypokinetic dysarthria and Parkinson's disease (PD) relative to age/sex matched controls. Here RFF was calculated in 32 speakers with PD without overt hypokinetic dysarthria and 32 age and sex matched controls to better understand the relationships between RFF and PD progression, medication status, and sex. Results showed that RFF was statistically significantly lower in individuals with PD compared with healthy age-matched controls and was statistically significantly lower in individuals diagnosed at least 5 yrs prior to experimentation relative to individuals recorded less than 5 yrs past diagnosis. Contrary to previous trends, no effect of medication was found. However, a statistically significant effect of sex on offset RFF was shown, with lower values in males relative to females. Future work examining the physiological bases of RFF is warranted.

  16. Emergence of delayed behavioral effects in offspring mice exposed to low levels of mercury vapor during the lactation period.

    PubMed

    Yoshida, Minoru; Watanabe, Chiho; Honda, Akiko; Satoh, Masahiko; Yasutake, Akira

    2013-02-01

    This study examined the emergence of delayed behavioral effects in offspring mice exposed to low levels of mercury vapor (Hg(0)) during the lactation period. Female offspring of mice were repeatedly exposed to Hg(0) at 0.057 mg/m(3), similar to the current threshold value (TLV), for 24 hr until the 20(th) day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning activity in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at the ages of 3 and 15 months. Hg(0)-exposed mice did not differ from controls in the three behavioral measurements at 3 months of age, and no neurobehavioral effects were observed. On the other hand, the mice exhibited significantly more central locomotion in the OPF task when tested at 15 months of age, but no abnormality in other behavioral performance. Immediately after postnatal exposure, the brain mercury concentration of offspring was about 150 times that of the control, in which the concentrations were approximately 0.4 µg/g. The results indicate that mice exposed to Hg(0) at concentrations around TLV during the developing period resulted in the emergence of delayed behavioral effects at a later stage in life.

  17. Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans.

    PubMed

    Chavali, Vishalakshi; Nandi, Shyam Sundar; Singh, Shree Ram; Mishra, Paras Kumar

    2014-01-01

    Diabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans. However, the genetic intervention to ameliorate diabetic cardiomyopathy in these mice often requires creating double knockout (DKO). In order to assess the therapeutic potential of a gene, that specific gene is either overexpressed (transgenic expression) or abrogated (knockout) in the diabetic mice. If the genetic mice model for diabetes is used, it is necessary to create DKO with transgenic/knockout of the target gene to investigate the specific role of that gene in pathological cardiac remodeling in diabetics. One of the important genes involved in extracellular matrix (ECM) remodeling in diabetes is matrix metalloproteinase-9 (Mmp9). Mmp9 is a collagenase that remains latent in healthy hearts but induced in diabetic hearts. Activated Mmp9 degrades extracellular matrix (ECM) and increases matrix turnover causing cardiac fibrosis that leads to heart failure. Insulin2 mutant (Ins2+/-) Akita is a genetic model for T1D that becomes diabetic spontaneously at the age of 3-4 weeks and show robust hyperglycemia at the age of 10-12 weeks. It is a chronic model of T1D. In Ins2+/- Akita, Mmp9 is induced. To investigate the specific role of Mmp9 in diabetic hearts, it is necessary to create diabetic mice where Mmp9 gene is deleted. Here, we describe the method to generate Ins2+/-/Mmp9-/- (DKO) mice to determine whether the abrogation of Mmp9 ameliorates diabetic cardiomyopathy.

  18. Cognitive deficits in the Snord116 deletion mouse model for Prader-Willi syndrome.

    PubMed

    Adhikari, Anna; Copping, Nycole A; Onaga, Beth; Pride, Michael C; Coulson, Rochelle L; Yang, Mu; Yasui, Dag H; LaSalle, Janine M; Silverman, Jill L

    2018-05-23

    Prader-Willi syndrome (PWS) is an imprinted neurodevelopmental disease caused by a loss of paternal genes on chromosome 15q11-q13. It is characterized by cognitive impairments, developmental delay, sleep abnormalities, and hyperphagia often leading to obesity. Clinical research has shown that a lack of expression of SNORD116, a paternally expressed imprinted gene cluster that encodes multiple copies of a small nucleolar RNA (snoRNA) in both humans and mice, is most likely responsible for many PWS symptoms seen in humans. The majority of previous research using PWS preclinical models focused on characterization of the hyperphagic and metabolic phenotypes. However, a crucial understudied clinical phenotype is cognitive impairments and thus we investigated the learning and memory abilities using a model of PWS, with a heterozygous deletion in Snord116. We utilized the novel object recognition task, which doesn't require external motivation, or exhaustive swim training. Automated findings were further confirmed with manual scoring by a highly trained blinded investigator. We discovered deficits in Snord116+/- mutant mice in the novel object recognition, location memory and tone cue fear conditioning assays when compared to age-, sex- matched, littermate control Snord116+/+ mice. Further, we confirmed that despite physical neo-natal developmental delays, Snord116+/- mice had normal exploratory and motor abilities. These results show that the Snord116+/- deletion murine model is a valuable preclinical model for investigating learning and memory impairments in individuals with PWS without common confounding phenotypes. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A cognitive neuropsychological approach to the study of delusions in late-onset schizophrenia.

    PubMed

    Phillips, M L; Howard, R; David, A S

    1997-09-01

    Hypotheses to explain delusion formation include distorted perceptual processing of meaningful stimuli (e.g. faces), abnormal reasoning, or a combination of both. The study investigated these hypotheses using standardized neuropsychological tests. A three-patient case-study, compared with a small group (n = 8) of age-matched normal control subjects. Hospital in- and outpatients. Age-matched normal controls were from local residential homes. Three subjects with late-onset schizophrenia, two currently deluded and one in remission. Both deluded subjects had persecutory beliefs. One had a delusion of misidentification. All subjects were administered standardized neuropsychological tests of facial processing and tests of verbal reasoning. The test scores of the three patients were compared with published normal values and the age-matched control data. The tests demonstrated impaired matching of unfamiliar faces in deluded subjects, particularly in the subject with delusional misidentification. Increasing the emotional content of logical reasoning problems had a significant effect on the deluded subjects' reasoning but not that of the normal controls. The findings suggest impaired visual processing plus abnormal reasoning in deluded subjects. However, these impairments are relatively subtle given the severity of psychiatric disorder in the patients studied.

  20. Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone

    PubMed Central

    Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P

    2009-01-01

    Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908

  1. Effects of Vitex agnus-castus fruit on sex hormones and antioxidant indices in a d-galactose-induced aging female mouse model.

    PubMed

    Ahangarpour, Akram; Najimi, Seyedeh Asma; Farbood, Yaghoob

    2016-11-01

    Aging is associated with the loss of endocrine function. In this study, Vitex agnus-castus (Vitex), which has antioxidant effects and high levels of phytoestrogen, was investigated with regard to the hypothalamic-pituitary-gonadal axis and antioxidant indices in natural aging and in a d-galactose induced aging model in female mice. The mice were subcutaneously injected with d-galactose (500 mg/kg/d for 45 days). Extract of Vitex (600 mg/kg/bid for 7 days by gavage) was used to treat d-galactose-induced aging and natural aging in mice. Seventy-two female NMRI mice (48 3-month-old normal mice and 24 18-24-month-old mice), weighing 30-35 g were randomly divided into six groups: control, Vitex, d-galactose, Vitex + d-galactose, Aging, and Vitex + Aging. The antioxidant indices and sex hormone levels were subsequently measured by enzyme-linked immunosorbent assay kits. Body weight and the levels of malondialdehyde (MDA), follicle-stimulating hormone, and luteinizing hormone levels were significantly increased in the d-galactose aging and natural aging groups, whereas catalase and superoxide dismutase (SOD) activity and estrogen level were significantly decreased in these same groups. d-Galactose can also disrupt the estrous cycle and damage the uterus and ovarian tissues. Vitex could effectively attenuate these alterations. Vitex improved some aging events in the reproductive system of female mice. Therefore, because of its apparent antiaging effects, Vitex can be suitable for some aging problems such as oxidative stress, female sex hormone deficiency, and an atrophic endometrium. Copyright © 2016. Published by Elsevier Taiwan LLC.

  2. The effects of JWB1-84-1 on memory-related task performance by amyloid Abeta transgenic mice and by young and aged monkeys.

    PubMed

    Sood, Ajay; Warren Beach, J; Webster, Scott J; Terry, Alvin V; Buccafusco, Jerry J

    2007-10-01

    JWB1-84-1 is one of 50 tertiary amine analogs of choline synthesized with expectation that they would be high potency compounds for cytoprotection. As one of the more potent analogs in this regard, JWB1-84-1, a piperazine derivative, was selected for testing as a cognition-enhancing agent. The compound was evaluated for efficacy in Alzheimer's disease transgenic mice (B6C3-Tg(APPswe, PSEN1dE9)85Dbo/J). A separate cohort of mice (AD Tg) were first subjected to a behavioral test battery in which the transgenic strain was compared with the wild-type strain. AD Tg mice were shown to exhibit specific deficits in the acquisition of a working memory (5-trial/session radial arm water maze, RAWM) task at a time when the animals exhibited maximal cerebral amyloid burden. JWB1-84-1 produced a dose-dependent decrease in the number of errors made by well trained AD-Tg mice the RAWM task that was maximal after the 20 microg/kg dose. Aged macaques (20-32 y) were trained to proficiency in their performance of a computer-assisted delayed matching-to-sample task. Vehicle (normal saline) or JWB1-84-1 (5-150 microg/kg, i.m.) was administered 10 min before the initiating of testing. On average, JWB1-84-1 treatment significantly improved task accuracy after all but the lowest dose. The maximal degree of improvement was attained after animals received the 100 microg/kg dose. The drug's effects were restricted primarily to Medium and Long delay trials - the most difficult portions of the task, which were improved by up to 18% above control. In young macaques JWB1-84-1 treatment also significantly reversed the decrements in task accuracy associated with the random presentation of a task distractor. Thus JWB1-84-1exhibits the potential for treating the cognitive symptoms associated with neurodegenerative diseases and attention deficit disorders. Its cytoprotective action might also work to slow the progression of Alzheimer's disease.

  3. Deletion of Ku80 causes early aging independent of chronic inflammation and Rag-1-induced DSBs.

    PubMed

    Holcomb, Valerie B; Vogel, Hannes; Hasty, Paul

    2007-01-01

    Animal models of premature aging are often defective for DNA repair. Ku80-mutant mice are disabled for nonhomologous end joining; a pathway that repairs both spontaneous DNA double-strand breaks (DSBs) and induced DNA DSBs generated by the action of a complex composed of Rag-1 and Rag-2 (Rag). Rag is essential for inducing DSBs important for assembling V(D)J segments of antigen receptor genes that are required for lymphocyte development. Thus, deletion of either Rag-1 or Ku80 causes severe combined immunodeficiency (scid) leading to chronic inflammation. In addition, Rag-1 induces breaks at non-B DNA structures. Previously we reported Ku80-mutant mice undergo premature aging, yet we do not know the root cause of this phenotype. Early aging may be caused by either defective repair of spontaneous DNA damage, defective repair of Rag-1-induced breaks or chronic inflammation caused by scid. To address this issue, we analyzed aging in control and Ku80-mutant mice deleted for Rag-1 such that both cohorts are scid and suffer from chronic inflammation. We make two observations: (1) chronic inflammation does not cause premature aging in these mice and (2) Ku80-mutant mice exhibit early aging independent of Rag-1. Therefore, this study supports defective repair of spontaneous DNA damage as the root cause of early aging in Ku80-mutant mice.

  4. SELF ADMINISTRATION OF OXYCODONE BY ADOLESCENT AND ADULT MICE AFFECTS STRIATAL NEUROTRANSMITTER RECEPTOR GENE EXPRESSION

    PubMed Central

    Mayer-Blackwell, B.; Schlussman, S. D.; Butelman, E. R.; Ho, A.; Ott, J.; Kreek, M. J.; Zhang, Y.

    2014-01-01

    Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n= 12) and of adult mice (11 weeks old, n= 11) underwent surgery during which a catheter was implanted into their jugular veins. After recovering from surgery, mice self administered oxycodone (0.25 mg/kg/infusion) 2 h/day for 14 consecutive days or served as yoked saline controls. Mice were sacrificed within 1 h after the last self-administration session and the dorsal striatum was isolated for mRNA analysis. Gene expression was analyzed with real time PCR using a commercially available neurotransmitter receptor PCR array containing 84 genes. We found that adolescent mice self administered less oxycodone than adult mice over the 14 days. Monoamine oxidase A (Maoa) and neuropeptide Y receptor 5 mRNA levels were lower in adolescent mice than in adult mice without oxycodone exposure. Oxycodone self administration increased Maoa mRNA levels compared to controls in both age groups. There was a positive correlation of the amount of oxycodone self administered in the last session or across 14 sessions with Maoa mRNA levels. Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice. PMID:24220688

  5. The Interpretation of Studies Using the Reading Level Design.

    ERIC Educational Resources Information Center

    Goswami, Usha; Bryant, Peter

    1989-01-01

    Argues that only positive results in a reading-level (RL) match and negative results in a chronological-age (CA) match are interpretable; negative results in a CA match and positive results in a RL match are not. Argues that using the RL control is only a first step in research into reading disability. (RS)

  6. Endothelial Arginine Resynthesis Contributes to the Maintenance of Vasomotor Function in Male Diabetic Mice

    PubMed Central

    Chennupati, Ramesh; Meens, Merlijn J. P. M. T.; Marion, Vincent; Janssen, Ben J.; Lamers, Wouter H.; De Mey, Jo G. R.; Köhler, S. Eleonore

    2014-01-01

    Aim Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. Methods and Results Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice. Conclusions Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes. PMID:25033204

  7. Social Isolation-Induced Territorial Aggression in Male Offspring Is Enhanced by Exposure to Diesel Exhaust during Pregnancy

    PubMed Central

    Yokota, Satoshi; Oshio, Shigeru; Moriya, Nozomu; Takeda, Ken

    2016-01-01

    Diesel exhaust particles are a major component of ambient particulate matter, and concern about the health effects of exposure to ambient particulate matter is growing. Previously, we found that in utero exposure to diesel exhaust affected locomotor activity and motor coordination, but there are also indications that such exposure may contribute to increased aggression in offspring. Therefore, the aim of the present study was to test the effects of prenatal diesel exhaust exposure on social isolation-induced territorial aggression. Pregnant mice were exposed to low concentrations of diesel exhaust (DE; mass concentration of 90 μg/m3: DE group: n = 15) or clean air (control group: n = 15) for 8 h/day during gestation. Basal locomotion of male offspring was measured at 10 weeks of age. Thereafter, male offspring were individually housed for 2 weeks and subsequently assessed for aggression using the resident−intruder test at 12 weeks of age, and blood and brain tissue were collected from the male offspring on the following day for measuring serum testosterone levels and neurochemical analysis. There were no significant differences in locomotion between control and DE-exposed mice. However, DE-exposed mice showed significantly greater social isolation-induced territorial aggressive behavior than control mice. Additionally, socially-isolated DE-exposed mice expressed significantly higher concentrations of serum testosterone levels than control mice. Neurochemical analysis revealed that dopamine levels in the prefrontal cortex and nucleus accumbens were higher in socially isolated DE-exposed mice. Serotonin levels in the nucleus accumbens, amygdala, and hypothalamus were also lower in the socially isolated DE-exposed mice than in control mice. Thus, even at low doses, prenatal exposure to DE increased aggression and serum testosterone levels, and caused neurochemical changes in male socially isolated mice. These results may have serious implications for pregnant women living in regions with high levels of traffic-related air pollution. PMID:26919122

  8. Cognitive behavior and sensory function were significantly influenced by restoration of active ovarian function in postreproductive mice.

    PubMed

    Parkinson, Kate C; Peterson, Rhett L; Mason, Jeffrey B

    2017-06-01

    In mammals, the relationship between reproductive function and health has been particularly difficult to define. Previously, in old, postreproductive-aged mice, replacement of senescent ovaries with new ovaries from young, actively cycling mice increased life span. We hypothesized that the same factors that increased life span would also influence health span. In the current experiments, we tested two of the seven domains of function/health, sensory function and cognition to determine if exposure of postreproductive female mice to young transplanted ovaries influenced health span. We evaluated control female CBA/J mice at six, 13 and 16months of age. Additional mice received new (60d) ovaries at 12 or 17months of age and were subsequently evaluated at 16 or 25months of age, respectively. Evaluation of sensory function included two measures of olfactory perception; olfactory identification (buried pellet test) and olfactory discrimination (novel recognition block test). We found a significant age-related decline in olfactory identification in 16-month old mice. This decline was avoided by ovarian transplantation at 12months of age. The olfactory discrimination block test revealed an age-associated increase in time spent on both the novel and familiar blocks. This trend was reversed in 16-month old new-ovary recipients. We evaluated cognitive behavior with a burrowing behavior test. We detected a significant age-related decrease in burrowing behavior at 16months of age. This age-related decrease in burrowing behavior was prevented by ovarian transplantation at 12months of age. In summary, we have shown that cognitive behavior and sensory function, which are negatively influenced by aging, can be positively influenced or restored by re-establishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    PubMed Central

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  10. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    PubMed

    Ma, Lijie; Liu, Yan; Landry, Nichole K; El-Achkar, Tarek M; Lieske, John C; Wu, Xue-Ru

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  11. Neonatal monosodium glutamate treatment causes obesity, diabetes, and macrovesicular steatohepatitis with liver nodules in DIAR mice.

    PubMed

    Tsuneyama, Koichi; Nishida, Takeshi; Baba, Hayato; Taira, Shu; Fujimoto, Makoto; Nomoto, Kazuhiro; Hayashi, Shinichi; Miwa, Shigeharu; Nakajima, Takahiko; Sutoh, Mitsuko; Oda, Emu; Hokao, Ryoji; Imura, Johji

    2014-09-01

    Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome (MS). Monosodium glutamate (MSG)-treated ICR mice is a useful model of MS and NASH, but it shows the different patterns of steatosis from human NASH. Because inbred aged DIAR (ddY, Institute for Animal Reproduction) mice spontaneously show the similar pattern of steatosis as NASH, we analyzed their liver pathology after administering MSG. MSG-treated DIAR mice (DIAR-MSG) and untreated DIAR mice (DIAR-controls) were sacrificed and assessed histopathologically at 29, 32, 40, 48, and 54 weeks of age. The NASH activity score, body mass index, blood glucose level, and oral glucose tolerance test were also assessed. The body mass index and blood glucose levels of DIAR-MSG were significantly higher than controls. The oral glucose tolerance test revealed a type 2 diabetes pattern in DIAR-MSG. The livers of DIAR-MSG mice showed macrovesicular steatosis, lobular inflammation with neutrophils, and ballooning degeneration after 29 weeks. At 54 weeks, mild fibrosis was observed in 5/6 DIAR-MSG and 2/5 DIAR-control mice. In imaging mass spectrometry analysis, cholesterol as well as triglyceride accumulated in the liver of DIAR-MSG mice. Atypical liver nodules were also observed after 32 weeks in DIAR-MSG, some with cellular and structural atypia mimicking human hepatocellular carcinoma. The NASH activity score of DIAR-MSG after 29 weeks was higher than that of control mice, suggesting the development of NASH. DIAR-MSG had NASH-like liver pathology and liver nodules typically associated with MS symptoms. DIAR-MSG provides a valuable animal model to analyze NASH pathogenesis and carcinogenesis. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  12. Alpha-ketoglutarate stabilizes redox homeostasis and improves arterial elasticity in aged mice.

    PubMed

    Niemiec, T; Sikorska, J; Harrison, A; Szmidt, M; Sawosz, E; Wirth-Dzieciolowska, E; Wilczak, J; Pierzynowski, S

    2011-02-01

    The objective of this study was to evaluate the effect of α-ketoglutarate on redox state parameters and arterial elasticity in elderly mice. Mice in the control group were fed with standard diet, while the experimental animals received the diet supplemented either with calcium (Ca-AKG) or sodium salt of α-ketoglutarate (Na-AKG). The experimental animals were divided into 4 groups with 10 individuals in each: control I (12 months old), control II (2 months old), experimental group I fed with Ca-AKG (12 months old) and experimental group II fed with Na-AKG (12 months old). Mice treated with Ca-AKG as well as the control II animals demonstrated significantly higher level of total antioxidant status (TAS), comparing to the control I animals and those treated with Ca-AKG. Thiobarbituric acid reactive substances (TBARS) level in blood plasma was found significantly lower in young and Ca-AKG treated mice. TBARS liver concentration was significantly different in each examined group. The study also demonstrates the decrease in TBARS level in Ca-AKG treated animals. Treatment with Na-AKG significantly increased glutathione peroxidase activity and decreased the activity of superoxide dismutase. The presented results suggest that Ca-AKG protects the organism against the free radicals related elderly processes. The study presents also the effect of Ca-AKG treatment on arterial elastic characteristics in elderly mice. The beneficial effect of Ca-AKG on ageing organisms was confirmed via redox state stabilization and blood vessel elasticity improvement.

  13. Suppression of Autophagy in Osteocytes Mimics Skeletal Aging*

    PubMed Central

    Onal, Melda; Piemontese, Marilina; Xiong, Jinhu; Wang, Yiying; Han, Li; Ye, Shiqiao; Komatsu, Masaaki; Selig, Martin; Weinstein, Robert S.; Zhao, Haibo; Jilka, Robert L.; Almeida, Maria; Manolagas, Stavros C.; O'Brien, Charles A.

    2013-01-01

    Bone mass declines with age but the mechanisms responsible remain unclear. Here we demonstrate that deletion of a conditional allele for Atg7, a gene essential for autophagy, from osteocytes caused low bone mass in 6-month-old male and female mice. Cancellous bone volume and cortical thickness were decreased, and cortical porosity increased, in conditional knock-out mice compared with control littermates. These changes were associated with low osteoclast number, osteoblast number, bone formation rate, and wall width in the cancellous bone of conditional knock-out mice. In addition, oxidative stress was higher in the bones of conditional knock-out mice as measured by reactive oxygen species levels in the bone marrow and by p66shc phosphorylation in L6 vertebra. Each of these changes has been previously demonstrated in the bones of old versus young adult mice. Thus, these results demonstrate that suppression of autophagy in osteocytes mimics, in many aspects, the impact of aging on the skeleton and suggest that a decline in autophagy with age may contribute to the low bone mass associated with aging. PMID:23645674

  14. Slowed atrial and atrioventricular conduction and depressed HRV in a murine model of hypertrophic cardiomyopathy.

    PubMed

    Lim, Wei-Wen; Baumert, Mathias; Neo, Melissa; Kuklik, Pawel; Ganesan, Anand N; Lau, Dennis H; Tsoutsman, Tatiana; Semsarian, Christopher; Sanders, Prashanthan; Saint, David A

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a common heritable cardiac disorder with diverse clinical outcomes including sudden death, heart failure, and stroke. Depressed heart rate variability (HRV), a measure of cardiac autonomic regulation, has been shown to predict mortality in patients with cardiovascular disease. Cardiac autonomic remodelling in animal models of HCM are not well characterised. This study analysed Gly203Ser cardiac troponin-I transgenic (TG) male mice previously demonstrated to develop hallmarks of HCM by age 21 weeks. 33 mice aged 30 and 50 weeks underwent continuous electrocardiogram (ECG) recording for 30 min under anaesthesia. TG mice demonstrated prolonged P-wave duration (P < 0.001) and PR intervals (P < 0.001) compared to controls. Additionally, TG mice demonstrated depressed standard deviation of RR intervals (SDRR; P < 0.01), coefficient of variation of RR intervals (CVRR; P < 0.001) and standard deviation of heart rate (SDHR; P < 0.001) compared to controls. Additionally, total power was significantly reduced in TG mice (P < 0.05). No significant age-related difference in either strain was observed in ECG or HRV parameters. Mice with HCM developed slowed atrial and atrioventricular conduction and depressed HRV. These changes were conserved with increasing age. This finding may be indicative of atrial and ventricular hypertrophy or dysfunction, and perhaps an indication of worse clinical outcome in heart failure progression in HCM patients. © 2015 Wiley Publishing Asia Pty Ltd.

  15. Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice.

    PubMed

    Li, Yuesheng; Knapp, Joanne R; Kopchick, John J

    2003-02-01

    Growth hormone (GH) acts on adipose tissue by accelerating fat expenditure, preventing triglyceride accumulation, and facilitating lipid mobilization. To investigate whether GH is involved in the development and metabolism of interscapular brown adipose tissue (BAT), a site of nonshivering thermogenesis, we employed three lines of transgenic mice. Two of the lines are dwarf due to expression of a GH antagonist (GHA) or disruption of the GH receptor/binding-protein gene. A third mouse line is giant due to overexpression of a bovine GH (bGH) transgene. We have found that the body weights of those animals are proportional to their body lengths at 10 weeks of age. However, GHA dwarf mice tend to catch up with the nontransgenic (NT) littermates in body weight but not in body length at 52 weeks of age. The increase of body mass index (BMI) for GHA mice accelerates rapidly relative to controls as a function of age. We have also observed that BAT in both dwarf mouse lines but not in giant mice is enlarged in contrast to nontransgenic littermates. This enlargement occurs as a function of age. Northern analysis suggests that BAT can be a GH-responsive tissue because GHR/BP mRNAs were found there. Finally, the level of uncoupling protein-1 (UCP1) RNA was found to be higher in dwarf mice and lower in giant animals relative to controls, suggesting that GH-mediated signaling may negatively regulate UCP1 gene expression in BAT.

  16. Risk factors for idiopathic intracranial hypertension in men: a case-control study

    PubMed Central

    Fraser, J. Alexander; Bruce, Beau B.; Rucker, Janet; Fraser, Lisa-Ann; Atkins, Edward J.; Newman, Nancy J.; Biousse, Valérie

    2009-01-01

    Objective To identify risk factors for idiopathic intracranial hypertension (IIH) in men Design Case-control study. A 96-item telephone questionnaire, answered retrospectively, with cases recalling at the age of their diagnosis and controls recalling at the age of their corresponding case's diagnosis. Setting Outpatient clinics in two US tertiary care centers Participants The characteristics of 24 men with IIH were compared to those of 48 controls matched for sex, age, race, and World Health Organization body mass index (BMI) category. Main Outcome Measures Two previously validated questionnaires: the ADAM (Androgen Deficiency in Aging Males) questionnaire for testosterone deficiency and the Berlin questionnaire for obstructive sleep apnea (OSA), embedded within the telephone questionnaire. Analysis with Mantel-Haenszel odds ratios and mixed-effects logistic regression models accounted for matching. Results Cases and controls had similar enrollment matching characteristics. Although matching was successful by BMI category, there was a small difference between BMI values of cases and controls (cases: median 31.7, controls: median 29.9; p=0.03). After adjustment by BMI value, men with IIH were significantly more likely than controls to have a positive ADAM questionnaire for testosterone deficiency (OR: 17.4, 95% CI: 5.6-54.5; p<0.001) and significantly more likely to have either a positive Berlin questionnaire for OSA or history of diagnosed OSA (OR: 4.4, 95% CI: 1.5-12.9; p=0.03). Conclusions Men with IIH are more likely than controls to have symptoms associated with testosterone deficiency and OSA. These associations suggest a possible role for sex hormones and OSA in the pathogenesis of IIH in men. PMID:19945715

  17. A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice.

    PubMed

    Roberts, Megan N; Wallace, Marita A; Tomilov, Alexey A; Zhou, Zeyu; Marcotte, George R; Tran, Dianna; Perez, Gabriella; Gutierrez-Casado, Elena; Koike, Shinichiro; Knotts, Trina A; Imai, Denise M; Griffey, Stephen M; Kim, Kyoungmi; Hagopian, Kevork; McMackin, Marissa Z; Haj, Fawaz G; Baar, Keith; Cortopassi, Gino A; Ramsey, Jon J; Lopez-Dominguez, Jose Alberto

    2017-09-05

    Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Renal and Glycemic Effects of High-Dose Chromium Picolinate in db/db Mice: Assessment of DNA Damage

    PubMed Central

    Mozaffari, Mahmood S.; Baban, Babak; Abdelsayed, Rafik; Liu, Jun Yao; Wimborne, Hereward; Rodriguez, Nancy; Abebe, Worku

    2011-01-01

    This study examined renal and glycemic effects of chromium picolinate (Cr(pic)3) supplementation in the context of its purported potential for DNA damage. In preventional protocol, male obese diabetic db/db mice were fed diets either lacking or containing 5, 10 or 100 mg/kg chromium as Cr(pic)3 from 6 to 24 weeks of age; male lean nondiabetic db/m mice served as controls. Untreated db/db mice displayed increased plasma glucose and insulin, hemoglobin A1c, renal tissue advanced glycation end (AGE) products, albuminuria, glomerular mesangial expansion, urinary 8-hydroxydeoxyguanosine (8-OHdG, an index of oxidative DNA damage) and renal tissue immunostaining for γH2AX (a marker of double-strand DNA breaks) compared to db/m controls. Creatinine clearance was lower while blood pressure was similar between untreated db/db mice and their db/m controls. High Cr(pic)3 intake (i.e., 100 mg/kg diet) mildly improved glycemic status and albuminuria without affecting blood pressure or creatinine clearance. Treatment with Cr(pic)3 did not increase DNA damage despite marked renal accumulation of chromium. In interventional protocol, effects of diets containing 0, 100 and 250 mg/kg supplemental chromium, from 12 to 24 weeks of age, were examined in db/db mice. The results generally revealed similar effects to those of the 100 mg/kg diet of the preventional protocol. In conclusion, the severely hyperglycemic db/db mouse displays renal structural and functional abnormalities in association with DNA damage. High-dose Cr(pic)3 treatment mildly improves glycemic control and it causes moderate reduction in albuminuria, without affecting histopathological appearance of the kidney and increasing the risk for DNA damage. PMID:21959055

  19. Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome

    PubMed Central

    Kelley, Christy M.; Ash, Jessica A.; Powers, Brian E.; Velazquez, Ramon; Alldred, Melissa J.; Ikonomovic, Milos D.; Ginsberg, Stephen D.; Strupp, Barbara J.; Mufson, Elliott J.

    2016-01-01

    Down syndrome (DS), caused by trisomy of chromosome 21, is marked by intellectual disability (ID) and early onset of Alzheimer’s disease (AD) neuropathology including hippocampal cholinergic projection system degeneration. Here we determined the effects of age and maternal choline supplementation (MCS) on hippocampal cholinergic deficits in Ts65Dn mice. Ts65Dn mice and disomic (2N) littermates sacrificed at ages 6–8 and 14–18 mos were used for an aging study, and Ts65Dn and 2N mice derived from Ts65Dn dams were maintained on either a choline-supplemented or a choline-controlled diet (conception to weaning) and examined at 14–18 mos for MCS studies. In the latter, mice were behaviorally tested on the radial arm Morris water maze (RAWM) and hippocampal tissue was examined for intensity of choline acetyltransferase (ChAT) immunoreactivity. Hippocampal ChAT activity was evaluated in a separate cohort. ChAT-positive fiber innervation was significantly higher in the hippocampus and dentate gyrus in Ts65Dn mice compared with 2N mice, independent of age or maternal diet. Similarly, hippocampal ChAT activity was significantly elevated in TS65Dn mice compared to 2N mice, independent of maternal diet. A significant increase with age was seen in hippocampal cholinergic innervation of 2N mice, but not Ts65Dn mice. Degree of ChAT intensity correlated negatively with spatial memory ability in unsupplemented 2N and Ts65Dn mice, but positively in MCS 2N mice. The increased innervation produced by MCS appears to improve hippocampal function, making this a therapy that may be exploited for future translational approaches in human DS. PMID:26391045

  20. Trivalent inactivated influenza vaccine and spontaneous abortion.

    PubMed

    Irving, Stephanie A; Kieke, Burney A; Donahue, James G; Mascola, Maria A; Baggs, James; DeStefano, Frank; Cheetham, T Craig; Jackson, Lisa A; Naleway, Allison L; Glanz, Jason M; Nordin, James D; Belongia, Edward A

    2013-01-01

    To estimate the association between spontaneous abortion and influenza vaccine receipt with a case-control study utilizing data from six health care organizations in the Vaccine Safety Datalink. Women aged 18-44 years with spontaneous abortion during the autumn of 2005 or 2006 were identified using International Classification of Diseases, 9th Revision, Clinical Modification codes. Cases of spontaneous abortion at 5-16 weeks of gestation were confirmed by medical record review; date of fetal demise was based on ultrasound information when available. Control group individuals with a live birth were individually matched to case group individuals by health care organization and date of last menstrual period (LMP). The primary exposure of interest was influenza vaccination during the 28 days preceding the date of spontaneous abortion of the matched pair. Conditional logistic regression models adjusted for maternal age, health care utilization, maternal diabetes, and parity. Our final analysis included 243 women with spontaneous abortion and 243 matched control group women; 82% of women with spontaneous abortion had ultrasound confirmation of fetal demise. Using clinical diagnosis and ultrasound data, the mean gestational age at fetal demise was 7.8 weeks. Mean ages at LMP of case group women and control group women were 31.7 and 29.3 years, respectively (P<.001). Sixteen women with spontaneous abortion (7%) and 15 (6%) matched control group women received influenza vaccine within the 28-day exposure window. There was no association between spontaneous abortion and influenza vaccination in the 28-day exposure window (adjusted matched odds ratio 1.23, 95% confidence interval 0.53-2.89; P=.63). There was no statistically significant increase in the risk of pregnancy loss in the 4 weeks after seasonal inactivated influenza vaccination. II.

Top