Science.gov

Sample records for age-matched wild-type mice

  1. Prion-Specific Antibodies Produced in Wild-Type Mice.

    PubMed

    Heegaard, Peter M H; Bergström, Ann-Louise; Andersen, Heidi Gertz; Cordes, Henriette

    2015-01-01

    Peptide-specific antibodies produced against synthetic peptides are of high value in probing protein structure and function, especially when working with challenging proteins, including not readily available, non-immunogenic, toxic, and/or pathogenic proteins. Here, we present a straightforward method for production of mouse monoclonal antibodies (MAbs) against peptides representing two sites of interest in the bovine prion protein (boPrP), the causative agent of bovine spongiform encephalopathy ("mad cow disease") and new variant Creutzfeldt-Jakob's disease (CJD) in humans, as well as a thorough characterization of their reactivity with a range of normal and pathogenic (misfolded) prion proteins. It is demonstrated that immunization of wild-type mice with ovalbumin-conjugated peptides formulated with Freund's adjuvant induces a good immune response, including high levels of specific anti-peptide antibodies, even against peptides very homologous to murine protein sequences. In general, using the strategies described here for selecting, synthesizing, and conjugating peptides and immunizing 4-5 mice with 2-3 different peptides, high-titered antibodies reacting with the target protein are routinely obtained with at least one of the peptides after three to four immunizations with incomplete Freund's adjuvant. PMID:26424281

  2. Developmental Divergence of Sleep-Wake Patterns in Orexin Knockout and Wild-Type Mice

    PubMed Central

    Coleman, Cassandra M.; Johnson, Eric D.; Shaw, Cynthia

    2008-01-01

    Narcolepsy, a disorder characterized by fragmented bouts of sleep and wakefulness during the day and night as well as cataplexy, has been linked in humans and non-human animals to the functional integrity of the orexinergic system. Adult orexin knockout mice and dogs with a mutation of the orexin receptor exhibit symptoms that mirror those seen in narcoleptic humans. As with narcolepsy, infant sleep-wake cycles in humans and rats are highly fragmented, with consolidated bouts of sleep and wakefulness developing gradually. Based on these common features of narcoleptics and infants, we hypothesized that the development of sleep-wake fragmentation in orexin knockout mice would be expressed as a developmental divergence between knockouts and wild-types, with the knockouts lagging behind the wild-types. We tested this hypothesis by recording the sleep-wake patterns of infant orexin knockout and wild-type mice across the first three postnatal weeks. Both knockouts and wild-types exhibited age-dependent, and therefore orexin-independent, quantitative and qualitative changes in sleep-wake patterning. At 3 weeks of age, however, by which time the sleep and wake bouts of the wild-types had consolidated further, the knockouts lagged behind the wild-types and exhibited significantly more bout fragmentation. These findings suggest the possibility that the fragmentation of behavioral states that characterizes narcolepsy in adults reflects reversion back toward the more fragmented sleep-wake patterns that characterize infancy. PMID:17284193

  3. Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice.

    PubMed

    Staffas, A; Karlsson, C; Persson, M; Palmqvist, L; Bergo, M O

    2015-05-01

    The role of hyperactive RAS signaling is well established in myeloid malignancies but less clear in T-cell malignancies. The Kras2(LSL)Mx1-Cre (KM) mouse model expresses endogenous KRAS(G12D) in hematopoietic cells and is widely used to study mechanisms and treatment of myeloproliferative neoplasms (MPN). The model displays an intriguing shift from MPN to acute T-cell leukemia (T-ALL) after transplantation to wild-type mice, but the mechanisms underlying this lineage shift is unknown. Here, we show that KRAS(G12D) increases proliferation of both myeloid and T-cell progenitors, but whereas myeloid cells differentiate, T-cell differentiation is inhibited at early stages. Secondary mutations in the expanded pool of T-cell progenitors accompany T-ALL development, and our results indicate that the shift from myeloid to T-lymphoid malignancy after transplantation is explained by the increased likelihood for secondary mutations when the tumor lifespan is increased. We demonstrate that tumor lifespan increases after transplantation because primary KM mice die rapidly, not from MPN, but from KRAS(G12D) expression in nonhematopoietic cells, which causes intestinal bleeding and severe anemia. We also identify loss of the wild-type KRAS allele as a secondary mutation in all T-ALL cells and provide evidence that wild-type KRAS acts as a tumor suppressor in the T-cell lineage in mice. PMID:25371176

  4. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice

    PubMed Central

    Willershäuser, Monja; Jastroch, Martin; Rourke, Bryan C.; Fromme, Tobias; Oelkrug, Rebecca; Heldmaier, Gerhard; Klingenspor, Martin

    2010-01-01

    We compared maximal cold-induced heat production (HPmax) and cold limits between warm (WA; 27°C), moderate cold (MCA; 18°C), or cold acclimated (CA; 5°C) wild-type and uncoupling-protein 1 knockout (UCP1-KO) mice. In wild-type mice, HPmax was successively increased after MCA and CA, and the cold limit was lowered to −8.3°C and −18.0°C, respectively. UCP1-KO mice also increased HPmax in response to MCA and CA, although to a lesser extent. Direct comparison revealed a maximal cold-induced recruitment of heat production by +473 mW and +227 mW in wild-type and UCP1-KO mice, respectively. The increase in cold tolerance of UCP1-KO mice from −0.9°C in MCA to −10.1°C in CA could not be directly related to changes in HPmax, indicating that UCP1-KO mice used the dissipated heat more efficiently than wild-type mice. As judged from respiratory quotients, acutely cold-challenged UCP1-KO mice showed a delayed transition toward lipid oxidation, and 5-h cold exposure revealed diminished physical activity and less variability in the control of metabolic rate. We conclude that BAT is required for maximal adaptive thermogenesis but also allows metabolic flexibility and a rapid switch toward sustained lipid-fuelled thermogenesis as an acute response to cold. In both CA groups, expression of contractile proteins (myosin heavy-chain isoforms) showed minor training effects in skeletal muscles, while cardiac muscle of UCP1-KO mice had novel expression of beta cardiac isoform. Neither respiration nor basal proton conductance of skeletal muscle mitochondria were different between genotypes. In subcutaneous white adipose tissue of UCP1-KO mice, cold exposure increased cytochrome-c oxidase activity and expression of the cell death-inducing DFFA-like effector A by 3.6-fold and 15-fold, respectively, indicating the recruitment of mitochondria-rich brown adipocyte-like cells. Absence of functional BAT leads to remodeling of white adipose tissue, which may significantly contribute

  5. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    SciTech Connect

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  6. Structural and Morphometric Comparison of Lower Incisors in PACAP-Deficient and Wild-Type Mice.

    PubMed

    Sandor, B; Fintor, K; Reglodi, D; Fulop, D B; Helyes, Z; Szanto, I; Nagy, P; Hashimoto, H; Tamas, A

    2016-06-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread distribution. PACAP plays an important role in the development of the nervous system, it has a trophic and protective effect, and it is also implicated in the regulation of various physiological functions. Teeth are originated from the mesenchyme of the neural crest and the ectoderm of the first branchial arch, suggesting similarities with the development of the nervous system. Earlier PACAP-immunoreactive fibers have been found in the odontoblastic and subodontoblastic layers of the dental pulp. Our previous examinations have shown that PACAP deficiency causes alterations in the morphology and structure of the developing molars of 7-day-old mice. In our present study, morphometric and structural comparison was performed on the incisors of 1-year-old wild-type and PACAP-deficient mice. Hard tissue density measurements and morphometric comparison were carried out on the mandibles and the lower incisors with micro-CT. For structural examination, Raman microscopy was applied on frontal thin sections of the mandible. With micro-CT morphometrical measurements, the size of the incisors and the relative volume of the pulp to dentin were significantly smaller in the PACAP-deficient group compared to the wild-type animals. The density of calcium hydroxyapatite in the dentin was reduced in the PACAP-deficient mice. No structural differences could be observed in the enamel with Raman microscopy. Significant differences were found in the dentin of PACAP-deficient mice with Raman microscopy, where increased carbonate/phosphate ratio indicates higher intracrystalline disordering. The evaluation of amide III bands in the dentin revealed higher structural diversity in wild-type mice. Based upon our present and previous results, it is obvious that PACAP plays an important role in tooth development with the regulation of morphogenesis, dentin, and enamel mineralization. Further studies are

  7. High Pathogenicity of Wild-Type Measles Virus Infection in CD150 (SLAM) Transgenic Mice

    PubMed Central

    Sellin, Caroline I.; Davoust, Nathalie; Guillaume, Vanessa; Baas, Dominique; Belin, Marie-Françoise; Buckland, Robin; Wild, T. Fabian; Horvat, Branka

    2006-01-01

    Measles virus (MV) infection causes an acute childhood disease, associated in certain cases with infection of the central nervous system and development of a severe neurological disease. We have generated transgenic mice ubiquitously expressing the human protein SLAM (signaling lymphocytic activation molecule), or CD150, recently identified as an MV receptor. In contrast to all other MV receptor transgenic models described so far, in these mice infection with wild-type MV strains is highly pathogenic. Intranasal infection of SLAM transgenic suckling mice leads to MV spread to different organs and the development of an acute neurological syndrome, characterized by lethargy, seizures, ataxia, weight loss, and death within 3 weeks. In addition, in this model, vaccine and wild-type MV strains can be distinguished by virulence. Furthermore, intracranial MV infection of adult transgenic mice generates a subclinical infection associated with a high titer of MV-specific antibodies in the serum. Finally, to analyze new antimeasles therapeutic approaches, we created a recombinant soluble form of SLAM and demonstrated its important antiviral activity both in vitro and in vivo. Taken together, our results show the high susceptibility of SLAM transgenic mice to MV-induced neurological disease and open new perspectives for the analysis of the implication of SLAM in the neuropathogenicity of other morbilliviruses, which also use this molecule as a receptor. Moreover, this transgenic model, in allowing a simple readout of the efficacy of an antiviral treatment, provides unique experimental means to test novel anti-MV preventive and therapeutic strategies. PMID:16775330

  8. Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice.

    PubMed

    Kovtunovych, Gennadiy; Ghosh, Manik C; Ollivierre, Wade; Weitzel, R Patrick; Eckhaus, Michael A; Tisdale, John F; Yachie, Akihiro; Rouault, Tracey A

    2014-08-28

    Loss-of-function mutation in the heme oxygenase 1 (Hmox1) gene causes a rare and lethal disease in children, characterized by severe anemia and intravascular hemolysis, with damage to endothelia and kidneys. Previously, we found that macrophages engaged in recycling of red cells were depleted from the tissues of Hmox1(-/-) mice, which resulted in intravascular hemolysis and severe damage to the endothelial system, kidneys, and other organs. Here, we report that subablative bone marrow transplantation (BMT) has a curative effect for disease in Hmox1(-/-) animals as a result of restoration of heme recycling by repopulation of the tissues with wild-type macrophages. Although engraftment was transient, BMT reversed anemia, normalized blood chemistries and iron metabolism parameters, and prevented renal damage. The largest proportion of donor-derived cells was observed in the livers of transplanted animals. These cells, identified as Kupffer cells with high levels of Hmox1 expression, persisted months after transient engraftment of the donor bone marrow and were responsible for the full restoration of heme-recycling ability in Hmox1(-/-) mice and reversing Hmox1-deficient phenotype. Our findings suggest that BMT or the development of specific cell therapies to repopulate patients' tissues with wild-type or reengineered macrophages represent promising approaches for HMOX1 deficiency treatment in humans. PMID:24963040

  9. Acquired transmissibility of sheep-passaged L-type bovine spongiform encephalopathy prion to wild-type mice.

    PubMed

    Okada, Hiroyuki; Masujin, Kentaro; Miyazawa, Kohtaro; Yokoyama, Takashi

    2015-01-01

    L-type bovine spongiform encephalopathy (L-BSE) is an atypical form of BSE that is transmissible to cattle and several lines of prion protein (PrP) transgenic mice, but not to wild-type mice. In this study, we examined the transmissibility of sheep-passaged L-BSE prions to wild-type mice. Disease-associated prion protein (PrP(Sc)) was detected in the brain and/or lymphoid tissues during the lifespan of mice that were asymptomatic subclinical carriers, indicating that wild-type mice were susceptible to sheep-passaged L-BSE. The morphological characteristics of the PrP(Sc) of sheep-passaged L-BSE included florid plaques that were distributed mainly in the cerebral cortex and hippocampus of subsequent passaged mice. The PrP(Sc) glycoform profiles of wild-type mice infected with sheep-passaged L-BSE were similar to those of the original isolate. The data indicate that sheep-passaged L-BSE has an altered host range and acquired transmissibility to wild-type mice. PMID:26169916

  10. Elucidation of the atherosclerotic disease process in apo E and wild type mice by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Adar, Fran; Jelicks, Linda; Naudin, Coralie; Rousseau, Denis; Yeh, Syun-ru

    2004-07-01

    Raman and FTIR microprobe spectroscopy have been used to characterize the atherosclerotic process in Apo E and wild type mice. The Apo E null mouse is being studied in parallel with a healthy strain as a model of the human atherosclerotic disease. Preliminary Raman microprobe spectra have been recorded from the lumen of the aorta vessels from a normal black mouse (C57BL/6J) and the apo E null mouse fed on a normal chow diet. Spectra were also recorded from another normal mouse fed breeder chow containing a much higher content of fats. In the Raman spectra the fat cells exhibited spectra typical of esterified triglycerides while the wall tissue had spectra dominated by Amide I and III modes and the phenylalanine stretch at 1003 cm-1 of protein. The FTIR spectra showed the typical Amide I and II bands of protein and the strong >C=O stretch of the triglycerides. In addition, there were morphologically distinct regions of the specimens indicating a surprising form of calcification in one very old mouse (wild type), and free fatty acid inclusions in the knock out mouse. The observation of these chemistries provide new information for elucidation of the molecular mechanisms of the development of atherosclerosis.

  11. Taste responses to sweet stimuli in alpha-gustducin knockout and wild-type mice.

    PubMed

    Danilova, Vicktoria; Damak, Sami; Margolskee, Robert F; Hellekant, Göran

    2006-07-01

    The importance of alpha-gustducin in sweet taste transduction is based on data obtained with sucrose and the artificial sweetener SC45647. Here we studied the role of alpha-gustducin in sweet taste. We compared the behavioral and electrophysiological responses of alpha-gustducin knockout (KO) and wild-type (WT) mice to 11 different sweeteners, representing carbohydrates, artificial sweeteners, and sweet amino acids. In behavioral experiments, over 48-h preference ratios were measured in two-bottle preference tests. In electrophysiological experiments, integrated responses of chorda tympani (CT) and glossopharyngeal (NG) nerves were recorded. We found that preference ratios of the KO mice were significantly lower than those of WT for acesulfame-K, dulcin, fructose, NC00174, D-phenylalanine, L-proline, D-tryptophan, saccharin, SC45647, sucrose, but not neotame. The nerve responses to all sweeteners, except neotame, were smaller in the KO mice than in the WT mice. The differences between the responses in WT and KO mice were more pronounced in the CT than in the NG. These data indicate that alpha-gustducin participates in the transduction of the sweet taste in general. PMID:16740645

  12. PHEX Mimetic (SPR4-Peptide) Corrects and Improves HYP and Wild Type Mice Energy-Metabolism

    PubMed Central

    Zelenchuk, Lesya V.; Hedge, Anne-Marie; Rowe, Peter S. N.

    2014-01-01

    Context PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-ASARM-motif to form a complex with α5β3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially other bone-mineral disorders. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice (WT) and HYP-mice (PHEX mutation) for 4 weeks. Results SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23 and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 60× and corrected HYP-mice hyperglycemia and hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice. Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and sclerostin in HYP and WT mice. Conclusions ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-α5β3-integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy metabolism. SPR4 suppression of

  13. Spaceflight influences both mucosal and peripheral cytokine production in PTN-Tg and wild type mice.

    PubMed

    McCarville, Justin L; Clarke, Sandra T; Shastri, Padmaja; Liu, Yi; Kalmokoff, Martin; Brooks, Stephen P J; Green-Johnson, Julia M

    2013-01-01

    Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-β1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice. PMID:23874826

  14. Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice

    PubMed Central

    Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.

    2014-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051

  15. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion.

    PubMed

    Lee, Soh-Hyun; Jouihan, Hani A; Cooksey, Robert C; Jones, Deborah; Kim, Hyung J; Winge, Dennis R; McClain, Donald A

    2013-03-01

    Mitochondrial dysfunction is both a contributing mechanism and complication of diabetes, and oxidative stress contributes to that dysfunction. Mitochondrial manganese-superoxide dismutase (MnSOD) is a metalloenzyme that provides antioxidant protection. We have previously shown in a mouse model of hereditary iron overload that cytosolic iron levels affected mitochondrial manganese availability, MnSOD activity, and insulin secretion. We therefore sought to determine the metallation status of MnSOD in wild-type mice and whether altering that status affected β-cell function. 129/SvEVTac mice given supplemental manganese exhibited a 73% increase in hepatic MnSOD activity and increased metallation of MnSOD. To determine whether manganese supplementation offered glucose homeostasis under a situation of β-cell stress, we challenged C57BL/6J mice, which are more susceptible to diet-induced diabetes, with a high-fat diet for 12 weeks. Manganese was supplemented or not for the final 8 weeks on that diet, after which we examined glucose tolerance and the function of isolated islets. Liver mitochondria from manganese-injected C57BL/6J mice had similar increases in MnSOD activity (81%) and metallation as were seen in 129/SvEVTac mice. The manganese-treated group fed high fat had improved glucose tolerance (24% decrease in fasting glucose and 41% decrease in area under the glucose curve), comparable with mice on normal chow and increased serum insulin levels. Isolated islets from the manganese-treated group exhibited improved insulin secretion, decreased lipid peroxidation, and improved mitochondrial function. In conclusion, MnSOD metallation and activity can be augmented with manganese supplementation in normal mice on normal chow, and manganese treatment can increase insulin secretion to improve glucose tolerance under conditions of dietary stress. PMID:23372018

  16. Dietary supplementation with ipriflavone decreases hepatic iron stores in wild type mice.

    PubMed

    Patchen, Bonnie; Koppe, Tiago; Cheng, Aaron; Seo, Young Ah; Wessling-Resnick, Marianne; Fraenkel, Paula G

    2016-09-01

    Hepcidin, a peptide produced in the liver, decreases intestinal iron absorption and macrophage iron release by causing degradation of the iron exporter, ferroportin. Because its levels are inappropriately low in patients with iron overload syndromes, hepcidin is a potential drug target. We previously conducted a chemical screen that revealed ipriflavone, an orally available small molecule, as a potent inducer of hepcidin expression. To evaluate ipriflavone's effect on iron homeostasis, we placed groups of 5-week old wild type or thalassemia intermedia (Hbb(Th3+/-)) mice on a soy-free, iron-sufficient diet, AIN-93G containing 220mg iron and 0-750mgipriflavone/kg of food for 50days. Ipriflavone 500mg/kg significantly reduced liver iron stores and intestinal ferroportin expression in WT mice, while increasing the ratio of hepcidin transcript levels to liver iron stores. Ipriflavone supplementation in Hbb(Th3+/-) mice failed to alleviate iron overload and was associated with a milder reduction in intestinal ferroportin and a failure to alter the ratio of hepcidin transcript levels to liver iron stores or splenic expression of the hepcidin-regulatory hormone, erythroferrone. These data suggest that dietary supplementation with ipriflavone alone would not be sufficient to treat iron overload in thalassemia intermedia. PMID:27519943

  17. Stimulus control by 5methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice

    PubMed Central

    Winter, J. C.; Amorosi, D. J.; Rice, Kenner C.; Cheng, Kejun; Yu, Ai-Ming

    2011-01-01

    In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. PMID:21624387

  18. Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice.

    PubMed

    Winter, J C; Amorosi, D J; Rice, Kenner C; Cheng, Kejun; Yu, Ai-Ming

    2011-09-01

    In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. PMID:21624387

  19. Fertility comparison between wild type and transgenic mice by in vitro fertilization

    PubMed Central

    Vasudevan, Kuzhalini; Raber, James

    2011-01-01

    . Oocytes from superovulated females were inseminated with sperm of same background. Fertility rate was considered as the percentage of two cell embryos scored 24 h after insemination. The data collected from this study shows that the fertilization rate is affected (reduced to half fold) in some of the transgenic mice compared to the respective Wild Type (WT) mice. For the WT the average fertility rate ranged from 80% (C57BL/6), 90% (FVB/N), 45% (129Sv/J × C57Bl/6)F1 and 43% (CD1). For transgenic mice it was 52% (C57BL/6), 65% (FVB/N), 22% (129Sv/J × C57Bl/6)F1 and 25% (CD1). PMID:19844803

  20. Effects of chronic variable stress on cognition and Bace1 expression among wild-type mice.

    PubMed

    Cordner, Z A; Tamashiro, K L K

    2016-01-01

    Stressful life events, activation of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids are now thought to have a role in the development of several neurodegenerative and psychiatric disorders including Alzheimer's disease (AD) through mechanisms that may include exacerbation of cognitive impairment, neuronal loss, and beta-amyloid (Aβ) and tau neuropathology. In the current study, we use a wild-type mouse model to demonstrate that chronic variable stress impairs cognitive function and that aged mice are particularly susceptible. We also find that stress exposure is associated with a 1.5- to 2-fold increase in the expression of Bace1 in the hippocampus of young adult mice and the hippocampus, prefrontal cortex and amygdala of aged mice. Further, the increased expression of Bace1 was associated with decreased methylation of several CpGs in the Bace1 promoter region. In a second series of experiments, exposure to environmental enrichment (EE) prevented the stress-related changes in cognition, gene expression and DNA methylation. Together, these findings re-affirm the adverse effects of stress on cognition and further suggest that aged individuals are especially susceptible. In addition, demonstrating that chronic stress results in decreased DNA methylation and increased expression of Bace1 in the brain may provide a novel link between stress, Aβ pathology and AD. Finally, understanding the mechanisms by which EE prevented the effects of stress on cognition and Bace1 expression will be an important area of future study that may provide insights into novel approaches to the treatment of AD. PMID:27404286

  1. Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice.

    PubMed

    Appolinário, Camila Michele; Allendorf, Susan Dora; Peres, Marina Gea; Ribeiro, Bruna Devidé; Fonseca, Clóvis R; Vicente, Acácia Ferreira; Antunes, João Marcelo A de Paula; Megid, Jane

    2016-02-01

    Rabies is a lethal infectious disease that causes 55,000 human deaths per year and is transmitted by various mammalian species, such as dogs and bats. The host immune response is essential for avoiding viral progression and promoting viral clearance. Cytokines and chemokines are crucial in the development of an immediate antiviral response; the rabies virus (RABV) attempts to evade this immune response. The virus's capacity for evasion is correlated with its pathogenicity and the host's inflammatory response, with highly pathogenic strains being the most efficient at hijacking the host's defense mechanisms and thereby decreasing inflammation. The purpose of this study was to evaluate the expression of a set of cytokine and chemokine genes that are related to the immune response in the brains of mice inoculated intramuscularly or intracerebrally with two wild-type strains of RABV, one from dog and the other from vampire bat. The results demonstrated that the gene expression profile is intrinsic to the specific rabies variant. The prompt production of cytokines and chemokines seems to be more important than their levels of expression for surviving a rabies infection. PMID:26711511

  2. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion

    PubMed Central

    Wang, Xinhe; McGovern, Gillian; Zhang, Yi; Wang, Fei; Zha, Liang; Jeffrey, Martin; Ma, Jiyan

    2015-01-01

    The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / μg. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. PMID:26136122

  3. Posttranslational Modifications in Type I Collagen from Different Tissues Extracted from Wild Type and Prolyl 3-Hydroxylase 1 Null Mice*

    PubMed Central

    Pokidysheva, Elena; Zientek, Keith D.; Ishikawa, Yoshihiro; Mizuno, Kazunori; Vranka, Janice A.; Montgomery, Nathan T.; Keene, Douglas R.; Kawaguchi, Tatsuya; Okuyama, Kenji; Bächinger, Hans Peter

    2013-01-01

    Type I collagen extracted from tendon, skin, and bone of wild type and prolyl 3-hydroxylase 1 (P3H1) null mice shows distinct patterns of 3-hydroxylation and glycosylation of hydroxylysine residues. The A1 site (Pro-986) in the α1-chain of type I collagen is almost completely 3-hydroxylated in every tissue of the wild type mice. In contrast, no 3-hydroxylation of this proline residue was found in P3H1 null mice. Partial 3-hydroxylation of the A3 site (Pro-707) was present in tendon and bone, but absent in skin in both α-chains of the wild type animals. Type I collagen extracted from bone of P3H1 null mice shows a large reduction in 3-hydroxylation of the A3 site in both α-chains, whereas type I collagen extracted from tendon of P3H1 null mice shows little difference as compared with wild type. These results demonstrate that the A1 site in type I collagen is exclusively 3-hydroxylated by P3H1, and presumably, this enzyme is required for the 3-hydroxylation of the A3 site of both α-chains in bone but not in tendon. The increase in glycosylation of hydroxylysine in P3H1 null mice in bone was found to be due to an increased occupancy of normally glycosylated sites. Despite the severe disorganization of collagen fibrils in adult tissues, the D-period of the fibrils is unchanged. Tendon fibrils of newborn P3H1 null mice are well organized with only a slight increase in diameter. The absence of 3-hydroxyproline and/or the increased glycosylation of hydroxylysine in type I collagen disturbs the lateral growth of the fibrils. PMID:23861401

  4. Podocyte-Specific Overexpression of Wild Type or Mutant Trpc6 in Mice Is Sufficient to Cause Glomerular Disease

    PubMed Central

    Kairath, Pamela; Carmona-Mora, Paulina; Molina, Jessica; Carpio, J. Daniel; Ruiz, Phillip; Mezzano, Sergio A.; Li, Jing; Wei, Changli; Reiser, Jochen; Young, Juan I.; Walz, Katherina

    2010-01-01

    Mutations in the TRPC6 calcium channel (Transient receptor potential channel 6) gene have been associated with familiar forms of Focal and Segmental Glomerulosclerosis (FSGS) affecting children and adults. In addition, acquired glomerular diseases are associated with increased expression levels of TRPC6. However, the exact role of TRPC6 in the pathogenesis of FSGS remains to be elucidated. In this work we describe the generation and phenotypic characterization of three different transgenic mouse lines with podocyte-specific overexpression of the wild type or any of two mutant forms of Trpc6 (P111Q and E896K) previously related to FSGS. Consistent with the human phenotype a non-nephrotic range of albuminuria was detectable in almost all transgenic lines. The histological analysis demonstrated that the transgenic mice developed a kidney disease similar to human FSGS. Differences of 2–3 folds in the presence of glomerular lesions were found between the non transgenic and transgenic mice expressing Trpc6 in its wild type or mutant forms specifically in podocytes. Electron microscopy of glomerulus from transgenic mice showed extensive podocyte foot process effacement. We conclude that overexpression of Trpc6 (wild type or mutated) in podocytes is sufficient to cause a kidney disease consistent with FSGS. Our results contribute to reinforce the central role of podocytes in the etiology of FSGS. These mice constitute an important new model in which to study future therapies and outcomes of this complex disease. PMID:20877463

  5. DNA fragmentation factor 45 knockout mice exhibit longer memory retention in the novel object recognition task compared to wild-type mice.

    PubMed

    Slane McQuade, Jill M; Vorhees, Charles V; Xu, Ming; Zhang, Jianhua

    2002-06-01

    Apoptosis is an important process in the development and function of the central nervous system (CNS). To study the role of DNA fragmentation factor 45 (DFF45/ICAD) in CNS function, we previously generated DFF45 knockout mice. We found that whereas they exhibit apparently normal CNS development, DFF45 knockout mice exhibit an increased number of granule cells in the dentate gyrus and enhanced spatial learning and memory compared to wild-type mice in a Morris water maze test. In this study, we examined the performance of the DFF45 knockout mice in a novel object recognition task to measure short-term nonspatial memory that is believed to depend on the hippocampal formation. Both wild-type and DFF45 knockout mice exhibited novel object recognition 1 h posttraining. However, whereas wild-type mice no longer did so, DFF45 knockout mice were still able to differentiate the novel versus the familiar object 3 h posttraining. The longer memory retention in DFF45 knockout mice did not last up to 24 h as neither wild-type nor DFF45 knockout mice demonstrated novel object recognition 24 h posttraining. These results suggest that a lack of DFF45 facilitates hippocampus-dependent nonspatial memory, as well as hippocampus-dependent spatial memory. PMID:12044605

  6. Ablation of the Locus Coeruleus Increases Oxidative Stress in Tg-2576 Transgenic but Not Wild-Type Mice

    PubMed Central

    Hurko, Orest; Boudonck, Kurt; Gonzales, Cathleen; Hughes, Zoe A.; Jacobsen, J. Steve; Reinhart, Peter H.; Crowther, Daniel

    2010-01-01

    Mice transgenic for production of excessive or mutant forms of beta-amyloid differ from patients with Alzheimer's disease in the degree of inflammation, oxidative damage, and alteration of intermediary metabolism, as well as the paucity or absence of neuronal atrophy and cognitive impairment. Previous observers have suggested that differences in inflammatory response reflect a discrepancy in the state of the locus coeruleus (LC), loss of which is an early change in Alzheimer's disease but which is preserved in the transgenic mice. In this paper, we extend these observations by examining the effects of the LC on markers of oxidative stress and intermediary metabolism. We compare four groups: wild-type or Tg2576 Aβ transgenic mice injected with DSP4 or vehicle. Of greatest interest were metabolites different between ablated and intact transgenics, but not between ablated and intact wild-type animals. The Tg2576_DSP4 mice were distinguished from the other three groups by oxidative stress and altered energy metabolism. These observations provide further support for the hypothesis that Tg2576 Aβ transgenic mice with this ablation may be a more congruent model of Alzheimer's disease than are transgenics with an intact LC. PMID:20981353

  7. Colon carcinogenesis in wild type and immune compromised mice after treatment with azoxymethane, and azoxymethane with dextran sodium sulfate.

    PubMed

    Whetstone, Ryan D; Wittel, Uwe A; Michels, Nicole M; Gulizia, James M; Gold, Barry

    2016-07-01

    The association between inflammation and the risk of colorectal cancer (CRC) is well documented in animal models and in humans, but the mechanistic role of inflammation in CRC is less well understood. To address this question, the induction of colon tumors was evaluated in (i) wild type (WT) and athymic BALB/c mice treated with the colon carcinogen azoxymethane (AOM) as a single agent, and (ii) in an inflammation model of colon cancer employing AOM and dextran sodium sulfate (DSS) in WT, athymic, TCRβ(-/-) , TCRδ(-/-) and TCRβ(-/-) TCRδ(-/-) C57Bl/6 mice. The athymic BALB/c mice treated with only AOM developed 90% fewer tumors than the WT mice. The difference in response was not due to metabolic activation of AOM or repair of DNA adducts. In the inflammation model using a standard sequential exposure to AOM followed by DSS treatment, the tumor incidence in WT mice was 58% with 7 adenomas and 6 adenocarcinomas. In contrast, the TCRβ(-/-) , TCRδ(-/-) and TCRβ(-/-) TCRδ(-/-) C57Bl/6 mice showed adenoma incidences of 10, 33, and 11%, respectively, and none of the immune compromised mice developed adenocarcinomas. When the DSS exposure was increased and the AOM lowered, no difference was observed between WT and TCRβ(-/-) mice due to an increase in the incidence in the TCR null mice without concomitant increase in the WT mice. No tumors were observed in mice treated with AOM or DSS alone. © 2015 Wiley Periodicals, Inc. PMID:26153082

  8. Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates

    SciTech Connect

    Larosche, Isabelle; Choumar, Amal; Fromenty, Bernard; Letteron, Philippe; Abbey-Toby, Adje; Van Remmen, Holly; Epstein, Charles J.; Richardson, Arlan; Feldmann, Gerard; Pessayre, Dominique; Mansouri, Abdellah

    2009-02-01

    Alcohol consumption increases reactive oxygen species formation and lipid peroxidation, whose products can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. A possible role of manganese superoxide dismutase (MnSOD) on these effects has not been investigated. To test whether MnSOD overexpression modulates alcohol-induced mitochondrial alterations, we added ethanol to the drinking water of transgenic MnSOD-overexpressing (TgMnSOD) mice and their wild type (WT) littermates for 7 weeks. In TgMnSOD mice, alcohol administration further increased the activity of MnSOD, but decreased cytosolic glutathione as well as cytosolic glutathione peroxidase activity and peroxisomal catalase activity. Whereas ethanol increased cytochrome P-450 2E1 and mitochondrial ROS generation in both WT and TgMnSOD mice, hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls were only increased in ethanol-treated TgMnSOD mice but not in WT mice. In ethanol-fed TgMnSOD mice, but not ethanol-fed WT mice, mtDNA was depleted, and mtDNA lesions blocked the progress of polymerases. The iron chelator, DFO prevented hepatic iron accumulation, lipid peroxidation, protein carbonyl formation and mtDNA depletion in alcohol-treated TgMnSOD mice. Alcohol markedly decreased the activities of complexes I, IV and V of the respiratory chain in TgMnSOD, with absent or lesser effects in WT mice. There was no inflammation, apoptosis or necrosis, and steatosis was similar in ethanol-treated WT and TgMnSOD mice. In conclusion, prolonged alcohol administration selectively triggers iron accumulation, lipid peroxidation, respiratory complex I protein carbonylation, mtDNA lesions blocking the progress of polymerases, mtDNA depletion and respiratory complex dysfunction in TgMnSOD mice but not in WT mice.

  9. Comparative gene expression and phenotype analyses of skeletal muscle from aged wild-type and PAPP-A-deficient mice.

    PubMed

    Conover, Cheryl A; Bale, Laurie K; Nair, K Sreekumaran

    2016-07-01

    Mice deficient in pregnancy-associated plasma protein-A (PAPP-A) have extended lifespan associated with decreased incidence and severity of degenerative diseases of age, such as cardiomyopathy and nephropathy. In this study, the effect of PAPP-A deficiency on aging skeletal muscle was investigated. Whole-genome expression profiling was performed on soleus muscles from 18-month-old wild-type (WT) and PAPP-A knock-out (KO) mice of the same sex and from the same litter ('womb-mates') to identify potential mechanisms of skeletal muscle aging and its retardation in PAPP-A deficiency. Top genes regulated in PAPP-A KO compared to WT muscle were associated with increased muscle function, increased metabolism, in particular lipid metabolism, and decreased stress. Fiber cross-sectional area was significantly increased in solei from PAPP-A KO mice. In vitro contractility experiments indicated increased specific force and decreased fatigue in solei from PAPP-A KO mice. Intrinsic mitochondrial oxidative capacity was significantly increased in skeletal muscle of aged PAPP-A KO compared to WT mice. Moreover, 18-month-old PAPP-A KO mice exhibited significantly enhanced endurance running on a treadmill. Thus, PAPP-A deficiency in mice is associated with indices of healthy skeletal muscle function with age. PMID:27086066

  10. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    PubMed

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD. PMID:22331873

  11. Tracing the movement of adiponectin in a parabiosis model of wild-type and adiponectin-knockout mice

    PubMed Central

    Nakatsuji, Hideaki; Kishida, Ken; Sekimoto, Ryohei; Funahashi, Tohru; Shimomura, Iichiro

    2014-01-01

    Adiponectin is exclusively synthesized by adipocytes and exhibits anti-diabetic, anti-atherosclerotic and anti-inflammatory properties. Hypoadiponectinemia is associated in obese individuals with insulin resistance and atherosclerosis. However, the mechanisms responsible for hypoadiponectinemia remain unclear. Here, we investigated adiponectin movement using hetero parabiosis model of wild type (WT) and adiponectin-deficient (KO) mice. WT mice were parabiosed with WT mice (WT–WT) or KO mice (WT–KO) and adiponectin levels were measured serially up to 63 days after surgery. In the WT–KO parabiosis model, circulating adiponectin levels of the WT partners decreased rapidly, on the other hand, those of KO partners increased, and then these reached comparable levels each other at day 7. Circulating adiponectin levels decreased further to the detection limit of assay, and remained low up to day 63. However, adiponectin protein was detected in the adipose tissues of not only the WT partner but also WT–KO mice. In the diet-induced obesity model, high adiponectin protein levels were detected in adipose stromal vascular fraction of diet-induced obese KO partner, without changes in its binding proteins. The use of parabiosis experiments shed light on movement of native adiponectin among different tissues such as the state of hypoadiponectinemia in obesity. PMID:24918039

  12. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS).

    PubMed

    Tavella, Sara; Ruggiu, Alessandra; Giuliani, Alessandra; Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice. PMID:22438896

  13. Ontogeny of SERT Expression and Antidepressant-like Response to Escitalopram in Wild-Type and SERT Mutant Mice.

    PubMed

    Mitchell, Nathan C; Gould, Georgianna G; Koek, Wouter; Daws, Lynette C

    2016-08-01

    Depression is a disabling affective disorder for which the majority of patients are not effectively treated. This problem is exacerbated in children and adolescents for whom only two antidepressants are approved, both of which are selective serotonin reuptake inhibitor (SSRIs). Unfortunately SSRIs are often less effective in juveniles than in adults; however, the mechanism(s) underlying age-dependent responses to SSRIs is unknown. To this end, we compared the antidepressant-like response to the SSRI escitalopram using the tail suspension test and saturation binding of [(3)H]citalopram to the serotonin transporter (SERT), the primary target of SSRIs, in juvenile [postnatal day (P)21], adolescent (P28), and adult (P90) wild-type (SERT+/+) mice. In addition, to model individuals carrying low-expressing SERT variants, we studied mice with reduced SERT expression (SERT+/-) or lacking SERT (SERT-/-). Maximal antidepressant-like effects were less in P21 mice relative to P90 mice. This was especially apparent in SERT+/- mice. However, the potency for escitalopram to produce antidepressant-like effects in SERT+/+ and SERT+/- mice was greater in P21 and P28 mice than in adults. SERT expression increased with age in terminal regions and decreased with age in cell body regions. Binding affinity values did not change as a function of age or genotype. As expected, in SERT-/- mice escitalopram produced no behavioral effects, and there was no specific [(3)H]citalopram binding. These data reveal age- and genotype-dependent shifts in the dose-response for escitalopram to produce antidepressant-like effects, which vary with SERT expression, and may contribute to the limited therapeutic response to SSRIs in juveniles and adolescents. PMID:27288483

  14. Unfolded protein response in hypothalamic cultures of wild-type and ATF6α-knockout mice.

    PubMed

    Lu, Wenjun; Hagiwara, Daisuke; Morishita, Yoshiaki; Tochiya, Masayoshi; Azuma, Yoshinori; Suga, Hidetaka; Goto, Motomitsu; Banno, Ryoichi; Sugimura, Yoshihisa; Oyadomari, Seiichi; Mori, Kazutoshi; Arima, Hiroshi

    2016-01-26

    Recent studies suggest that endoplasmic reticulum (ER) stress in the hypothalamus could affect systemic homeostatic regulation in areas such as energy and water balance. Activating transcription factor 6α (ATF6α) is an ER stress transducer which increases the expression of ER chaperones and ER-associated degradation (ERAD) components under ER stress. In the present study, we examined the regulation of the unfolding protein response (UPR) in mouse hypothalamic cultures of wild-type (WT) and ATF6α(-/-) mice. Thapsigargin (TG), an ER stressor, significantly increased the mRNA expression of immunoglobulin heavy chain binding protein (BiP), spliced X-box binding protein 1 (XBP1), activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), and ERAD components, in hypothalamic cultures of WT mice with the same threshold (0.1μM) and similar time courses. On the other hand, TG-induced upregulation of BiP and CHOP as well as most ERAD-related genes, but not spliced XBP1 or ATF4, was attenuated in ATF6α(-/-) mice compared with WT mice. Our data suggest that all the UPR arms are activated similarly in the mouse hypothalamus under ER stress conditions, where ATF6α regulates the expression of ER chaperones, CHOP, and ERAD components. PMID:26708632

  15. Mice deficient for wild-type p53-induced phosphatase 1 display elevated anxiety- and depression-like behaviors.

    PubMed

    Ruan, C S; Zhou, F H; He, Z Y; Wang, S F; Yang, C R; Shen, Y J; Guo, Y; Zhao, H B; Chen, L; Liu, D; Liu, J; Baune, B T; Xiao, Z C; Zhou, X F

    2015-05-01

    Mood disorders are a severe health burden but molecular mechanisms underlying mood dysfunction remain poorly understood. Here, we show that wild-type p53-induced phosphatase 1 (Wip1) negatively responds to the stress-induced negative mood-related behaviors. Specifically, we show that Wip1 protein but not its mRNA level was downregulated in the hippocampus but not in the neocortex after 4 weeks of chronic unpredictable mild stress (CUMS) in mice. Moreover, the CUMS-responsive WIP1 downregulation in the hippocampus was restored by chronic treatment of fluoxetine (i.p. 20 mg/kg) along with the CUMS procedure. In addition, Wip1 knockout mice displayed decreased exploratory behaviors as well as increased anxiety-like and depression-like behaviors in mice without impaired motor activities under the non-CUMS condition. Furthermore, the Wip1 deficiency-responsive anxiety-like but not depression-like behaviors were further elevated in mice under CUMS. Although limitations like male-alone sampling and multiply behavioral testing exist, the present study suggests a potential protective function of Wip1 in mood stabilization. PMID:25732137

  16. Overexpression of ALS-associated p.M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice.

    PubMed

    Janssens, Jonathan; Wils, Hans; Kleinberger, Gernot; Joris, Geert; Cuijt, Ivy; Ceuterick-de Groote, Chantal; Van Broeckhoven, Christine; Kumar-Singh, Samir

    2013-08-01

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis (ALS), while wild-type TDP-43 is a pathological hallmark of patients with sporadic ALS and frontotemporal lobar degeneration (FTLD). Various in vitro and in vivo studies have also demonstrated toxicity of both mutant and wild-type TDP-43 to neuronal cells. To study the potential additional toxicity incurred by mutant TDP-43 in vivo, we generated mutant human TDP-43 (p.M337V) transgenic mouse lines driven by the Thy-1.2 promoter (Mt-TAR) and compared them in the same experimental setting to the disease phenotype observed in wild-type TDP-43 transgenic lines (Wt-TAR) expressing comparable TDP-43 levels. Overexpression of mutant TDP-43 leads to a worsened dose-dependent disease phenotype in terms of motor dysfunction, neurodegeneration, gliosis, and development of ubiquitin and phosphorylated TDP-43 pathology. Furthermore, we show that cellular aggregate formation or accumulation of TDP-43 C-terminal fragments (CTFs) are not primarily responsible for development of the observed disease phenotype in both mutant and wild-type TDP-43 mice. PMID:23475610

  17. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM(+/-)) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM(+/-) cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage.

  18. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice.

    PubMed

    Kennard, John A; Harrison, Fiona E

    2014-05-01

    The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (-/-) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 and SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and 120 min. There was no detectable change in cortical (SVCT2 at choroid plexus, and neurons) ASC within the 2-h interval, although the cortex preferentially retained ASC. APP/PSEN1 and wild type (WT) mice at three ages (3, 9, or 20 months) were treated with ASC (125 mg/kg, i.v.) or saline 45 min before testing on the Modified Y-maze, a two-trial task of spatial memory. Memory declined with age and ASC treatment improved performance in 9-month-old APP/PSEN1 and WT mice. APP/PSEN1 mice displayed no behavioral impairment relative to WT controls. Although dopamine and metabolite DOPAC decreased in the nucleus accumbens with age, and improved spatial memory was correlated with increased dopamine in saline treated mice, acute ASC treatment did not alter monoamine levels in the nucleus accumbens. These data show that the Modified Y-maze is sensitive to age-related deficits, but not additional memory deficits due to amyloid pathology in APP/PSEN1 mice. They also suggest improvements in short-term spatial memory were not due to changes in the neuropathological features of AD or monoamine signaling. PMID:24508240

  19. GENE PROFILING IN WILD TYPE AND PPARÁ NULL MICE EXPOSED TO PFOA

    EPA Science Inventory

    Perflurooctanoic acid (PFOA) is a perfluoroalkyl acid used in a variety of commercial applications. Concerns have been raised because PFOA is ubiquitous in the environment and can be detected in human tissues. PFOA is a rodent carcinogen and a developmental toxicant in mice. W...

  20. The In Vivo Granulopoietic Response to Dexamethasone Injection Is Abolished in Perforin-Deficient Mutant Mice and Corrected by Lymphocyte Transfer from Nonsensitized Wild-Type Donors

    PubMed Central

    Vieira, Bruno Marques; Masid-de-Brito, Daniela; Queto, Túlio; de Luca, Bianca; Vieira, Thiago Soares de Souza

    2015-01-01

    Exogenously administered glucocorticoids enhance eosinophil and neutrophil granulocyte production from murine bone-marrow. A hematological response dependent on endogenous glucocorticoids underlies bone-marrow eosinophilia induced by trauma or allergic sensitization/challenge. We detected a defect in granulopoiesis in nonsensitized, perforin-deficient mice. In steady-state conditions, perforin- (Pfp-) deficient mice showed significantly decreased bone-marrow and blood eosinophil and neutrophil counts, and colony formation in response to GM-CSF, relative to wild-type controls of comparable age and/or weight. By contrast, peripheral blood or spleen total cell and lymphocyte numbers were not affected by perforin deficiency. Dexamethasone enhanced colony formation by GM-CSF-stimulated progenitors from wild-type controls, but not Pfp mice. Dexamethasone injection increased bone-marrow eosinophil and neutrophil counts in wild-type controls, but not Pfp mice. Because perforin is expressed in effector lymphocytes, we examined whether this defect would be corrected by transferring wild-type lymphocytes into perforin-deficient recipients. Short-term reconstitution of the response to dexamethasone was separately achieved for eosinophils and neutrophils by transfer of distinct populations of splenic lymphocytes from nonsensitized wild-type donors. Transfer of the same amount of splenic lymphocytes from perforin-deficient donors was ineffective. This demonstrates that the perforin-dependent, granulopoietic response to dexamethasone can be restored by transfer of innate lymphocyte subpopulations. PMID:26063973

  1. Biomarkers of aging, life span and spontaneous carcinogenesis in the wild type and HER-2 transgenic FVB/N female mice.

    PubMed

    Panchenko, Andrey V; Popovich, Irina G; Trashkov, Alexandr P; Egormin, Peter A; Yurova, Maria N; Tyndyk, Margarita L; Gubareva, Ekaterina A; Artyukin, Ilia N; Vasiliev, Andrey G; Khaitsev, Nikolai V; Zabezhinski, Mark A; Anisimov, Vladimir N

    2016-04-01

    FVB/N wild type and transgenic HER-2/neu FVB/N female mice breed at N.N. Petrov Research Institute of Oncology were under observation until natural death without any special treatment. Age-related dynamics of body weight, food consumption and parameters of carbohydrate and lipid metabolism, level of nitric oxide, malonic dialdehyde, catalase, Cu, Zn-superoxide dismutase, vascular endothelial growth factor were studied in both mice strains. The parameters of life span and tumor pathology were studied as well. Cancer-prone transgenic HER-2/neu mice developed in 100 % multiple mammary adenocarcinomas and died before the age of 1 year. Forty tree percent of long-lived wild type mice survived the age of 2 years and 19 %-800 days. The total tumor incidence in wild type mice was 34 %. The age-associated changes in the level of serum IGF-1, glucose and insulin started much earlier in transgene HER-2/neu mice as compared with wild type FVB/N mice. It was suggested that transgenic HER-2/neu involves in initiation of malignization of mammary epithelial cells but also in acceleration of age-related hormonal and metabolic changes in turn promoting mammary carcinogenesis. PMID:26423570

  2. Long-term continuous allopregnanolone elevation causes memory decline and hippocampus shrinkage, in female wild-type B6 mice.

    PubMed

    Bengtsson, Sara K S; Johansson, Maja; Bäckström, Torbjörn

    2016-02-01

    Chronic stress in various forms increases the risk for cognitive dysfunction, dementia and Alzheimer's disease. While the pathogenesis behind these findings is unknown, growing evidence suggests that chronic increase in neurosteroid levels, such as allopregnanolone, is part of the mechanism. We treated wild-type C57BL/6J mice with allopregnanolone for 5months, using osmotic pumps. This treatment led to moderately increased levels of allopregnanolone, equivalent to that of mild chronic stress. After an interval of no treatment for 1month, female mice showed impaired learning and memory function in the Morris water maze (MWM) in combination with diminished hippocampus weight and increased cerebellum weight, both correlating to MWM performance. Male mice showed a minor reduction in memory function and no differences in brain structure. We conclude that chronic allopregnanolone elevation can lead to cognitive dysfunction and negative brain alterations. We suggest that allopregnanolone could play a key role in the pathogenesis of stress-induced cognitive disturbances and perhaps dementia. PMID:26497250

  3. Effect of the factor Xa inhibitor rivaroxaban on arterial thrombosis in wild-type and apolipoprotein E-deficient mice.

    PubMed

    Wagner, Nana-Maria; Dressel, Tobias; Schäfer, Katrin; Konstantinides, Stavros

    2012-11-01

    Rivaroxaban is a potent and specific direct inhibitor of coagulation factor Xa. Recent studies have highlighted its effectiveness in the prevention of venous thrombosis and embolic stroke due to atrial fibrillation. To evaluate the antithrombotic effects of rivaroxaban in an in vivo model of arterial thrombosis, photochemical vascular injury was induced in wild-type mice by intravenous rose bengal (50 mg/kg body weight [BW]) followed by illumination of the left common carotid artery using a 543 nm helium-neon laser beam. Rivaroxaban, injected concomitantly with rose bengal at doses of 1.0, 1.5, 2.0, or 3.0 mg/kg BW, dose-dependently prolonged the times to first thrombotic occlusion and stable thrombosis. Quantitative analysis of carotid flow curves revealed higher blood volumes passing through the injured artery with increasing rivaroxaban doses (P<0.01 and P<0.001 vs. vehicle for 2.0 and 3.0 mg/kg , respectively), suggesting a dose-dependent effect on vascular patency. Consistently, a significantly higher proportion of mice that received 2.0 and 3.0 mg/kg rivaroxaban exhibited patent carotid arteries at the end of the flow monitoring period compared to vehicle alone (P<0.05 and P<0.001, respectively). Histological analysis showed complete thrombotic arterial occlusion in vehicle-treated mice compared to less thrombotic material in mice injected with 3.0 mg/kg rivaroxaban (P<0.05). Rivaroxaban also prolonged the time to cessation of tail bleeding in a dose-dependent manner, starting at 1.5 mg/kg. Similar findings were obtained in apolipoprotein E-knockout mice. Rivaroxaban may exert beneficial effects by preventing arterial thrombosis and vascular occlusion after endothelial injury. PMID:22281071

  4. Impact of Age on the Cerebrovascular Proteomes of Wild-Type and Tg-SwDI Mice

    PubMed Central

    Searcy, James L.; Le Bihan, Thierry; Salvadores, Natalia; McCulloch, James; Horsburgh, Karen

    2014-01-01

    The structural integrity of cerebral vessels is compromised during ageing. Abnormal amyloid (Aβ) deposition in the vasculature can accelerate age-related pathologies. The cerebrovascular response associated with ageing and microvascular Aβ deposition was defined using quantitative label-free shotgun proteomic analysis. Over 650 proteins were quantified in vessel-enriched fractions from the brains of 3 and 9 month-old wild-type (WT) and Tg-SwDI mice. Sixty-five proteins were significantly increased in older WT animals and included several basement membrane proteins (nidogen-1, basement membrane-specific heparan sulfate proteoglycan core protein, laminin subunit gamma-1 precursor and collagen alpha-2(IV) chain preproprotein). Twenty-four proteins were increased and twenty-one decreased in older Tg-SwDI mice. Of these, increases in Apolipoprotein E (APOE) and high temperature requirement serine protease-1 (HTRA1) and decreases in spliceosome and RNA-binding proteins were the most prominent. Only six shared proteins were altered in both 9-month old WT and Tg-SwDI animals. The age-related proteomic response in the cerebrovasculature was distinctly different in the presence of microvascular Aβ deposition. Proteins found differentially expressed within the WT and Tg-SwDI animals give greater insight to the mechanisms behind age-related cerebrovascular dysfunction and pathologies and may provide novel therapeutic targets. PMID:24587158

  5. Sex and Immunogen-Specific Benefits of Immunotherapy Targeting Islet Amyloid Polypeptide in Transgenic and Wild-Type Mice

    PubMed Central

    Krishnamurthy, Pavan K.; Rajamohamedsait, Hameetha B.; Gonzalez, Veronica; Rajamohamedsait, Wajitha J.; Ahmed, Nawal; Krishnaswamy, Senthilkumar; Sigurdsson, Einar M.

    2016-01-01

    Type 2 diabetes mellitus is characterized by the deposition of islet amyloid polypeptide (IAPP) as amyloid in islets, a process thought to be toxic to β-cells. To determine the feasibility of targeting these aggregates therapeutically, we vaccinated transgenic (Tg) mice that overexpress human IAPP and were fed a high-fat diet to promote their diabetic phenotype. Our findings indicate that prophylactic vaccination with IAPP and its derivative IAPP7-19-TT, protects wild-type female mice, but not males, from obesity-induced early mortality, and the derivative showed a strong trend for prolonging the lifespan of Tg females but not males. Furthermore, IAPP7-19-TT-immunized Tg females cleared a glucose bolus more efficiently than controls, while IAPP-immunized Tg females showed an impaired ability to clear a glucose bolus compared to their adjuvant injected Tg controls. Interestingly, IAPP or IAPP7-19-TT treatments had no effect on glucose clearance in Tg males. Overall, these beneficial effects of IAPP targeted immunization depend on Tg status, sex, and immunogen. Hence, future studies in this field should carefully consider these variables that clearly affect the therapeutic outcome. In conclusion, IAPP targeting immunotherapy may have benefits in patients with type 2 diabetes. PMID:27379014

  6. Advanced Glycation End Products Induce Obesity and Hepatosteatosis in CD-1 Wild-Type Mice

    PubMed Central

    Sayej, Wael N.; Knight III, Paul R.; Guo, Weidun Alan; Mullan, Barbara; Ohtake, Patricia J.; Davidson, Bruce A.; Khan, Abdur; Baker, Robert D.; Baker, Susan S.

    2016-01-01

    AGEs are a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with free amino groups of proteins, lipids, and/or nucleic acids. AGEs have been shown to play a role in various conditions including cardiovascular disease and diabetes. In this study, we hypothesized that AGEs play a role in the “multiple hit hypothesis” of nonalcoholic fatty liver disease (NAFLD) and contribute to the pathogenesis of hepatosteatosis. We measured the effects of various mouse chows containing high or low AGE in the presence of high or low fat content on mouse weight and epididymal fat pads. We also measured the effects of these chows on the inflammatory response by measuring cytokine levels and myeloperoxidase activity levels on liver supernatants. We observed significant differences in weight gain and epididymal fat pad weights in the high AGE-high fat (HAGE-HF) versus the other groups. Leptin, TNF-α, IL-6, and myeloperoxidase (MPO) levels were significantly higher in the HAGE-HF group. We conclude that a diet containing high AGEs in the presence of high fat induces weight gain and hepatosteatosis in CD-1 mice. This may represent a model to study the role of AGEs in the pathogenesis of hepatosteatosis and steatohepatitis. PMID:26942201

  7. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice

    PubMed Central

    Sanchez, Benjamin; Li, Jia; Yim, Sung; Pacheck, Adam; Widrick, Jeffrey J.; Rutkove, Seward B.

    2015-01-01

    Objectives Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx). Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters. Methods Eight wild-type (wt) and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg−1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed. Results As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p < 0.001 respectively) and muscle mass (25% p < 0.05 and 22% p < 0.001, respectively). The Cole impedance parameters in treated wt mice, showed a 24% lower central frequency (p < 0.05) and 19% higher resistance ratio (p < 0.05); no significant differences were observed in the mdx mice. These differences were consistent with those seen in maximum isometric force, which was greater in the wt animals (p < 0.05 at > 70 Hz), but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01). Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively). Conclusions Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials. PMID:26485280

  8. Parallel changes in metabolite and expression profiles in crooked-tail mutant and folate-reduced wild-type mice.

    PubMed

    Ernest, Sheila; Carter, Michelle; Shao, Haifeng; Hosack, Angela; Lerner, Natalia; Colmenares, Clemencia; Rosenblatt, David S; Pao, Yoh-Han; Ross, M Elizabeth; Nadeau, Joseph H

    2006-12-01

    Anomalies in homocysteine (HCY) and folate metabolism are associated with common birth defects and adult diseases, several of which can be suppressed with dietary folate supplementation. Although supplementation reduces the occurrence and severity of neural tube defects (NTDs), many cases are resistant to these beneficial effects. The basis for variable response and biomarkers that predict responsiveness are unknown. Crooked-tail (Cd) mutant mice are an important model of folate-responsive NTDs. To identify features that are diagnostic for responsiveness versus resistance to dietary folate supplementation, we surveyed metabolite and expression levels in liver samples from folate-supplemented, folate-reduced and control diets in Cd mutant and wild-type adult females. Cd homozygotes had normal total homocysteine (tHcy) levels suggesting that folate suppresses NTDs through a mechanism that does not involve modulating serum tHcy levels. Instead, parallel changes in metabolite and expression profiles in folate-supplemented Cd/Cd homozygotes and folate-reduced+/+and Cd/+mice suggest that Crooked-tail homozygotes have a defect in the utilization of intracellular folate. Then, by combining these expression and metabolite profile results with published results for other models and their controls, two clusters were found, one of which included several folate-responsive NTD models and the other previously untested and presumably folate-resistant models. The predictive value of these profiles was verified by demonstrating that NTDs of Ski-/-mutant mice, whose profile suggested resistance to folate supplementation, were not suppressed with dietary folate supplementation. These results raise the possibility of using metabolite and expression profiles to distinguish folate-responsive and resistance adult females who are at risk for bearing fetuses with an NTD. PMID:17050573

  9. Distribution of glycylsarcosine and cefadroxil among cerebrospinal fluid, choroid plexus, and brain parenchyma after intracerebroventricular injection is markedly different between wild-type and Pept2 null mice.

    PubMed

    Smith, David E; Hu, Yongjun; Shen, Hong; Nagaraja, Tavarekere N; Fenstermacher, Joseph D; Keep, Richard F

    2011-01-01

    The purpose of this study was to define the cerebrospinal fluid (CSF) clearance kinetics, choroid plexus uptake, and parenchymal penetration of PEPT2 substrates in different regions of the brain after intracerebroventricular administration. To accomplish these objectives, we performed biodistribution studies using [(14)C]glycylsarcosine (GlySar) and [(3)H]cefadroxil, along with quantitative autoradiography of [(14)C]GlySar, in wild-type and Pept2 null mice. We found that PEPT2 deletion markedly reduced the uptake of GlySar and cefadroxil in choroid plexuses at 60 mins by 94% and 82% (P<0.001), respectively, and lowered their CSF clearances by about fourfold. Autoradiography showed that GlySar concentrations in the lateral, third, and fourth ventricle choroid plexuses were higher in wild-type as compared with Pept2 null mice (P<0.01). Uptake of GlySar by the ependymal-subependymal layer and septal region was higher in wild-type than in null mice, but the half-distance of penetration into parenchyma was significantly less in wild-type mice. The latter is probably because of the clearance of GlySar from interstitial fluid by brain cells expressing PEPT2, which stops further penetration. These studies show that PEPT2 knockout can significantly modify the spatial distribution of GlySar and cefadroxil (and presumably other peptides/mimetics and peptide-like drugs) in brain. PMID:20571525

  10. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages

    PubMed Central

    Gonzalez-Pena, Dianelys; Nixon, Scott E.; Southey, Bruce R.; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; Dantzer, Robert; Kelley, Keith W.; Rodriguez-Zas, Sandra L.

    2016-01-01

    Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome

  11. Mitochondrial defects and neurodegeneration in mice overexpressing wild-type or G399S mutant HtrA2.

    PubMed

    Casadei, Nicolas; Sood, Poonam; Ulrich, Thomas; Fallier-Becker, Petra; Kieper, Nicole; Helling, Stefan; May, Caroline; Glaab, Enrico; Chen, Jing; Nuber, Silke; Marcus, Katrin; Rapaport, Doron; Ott, Thomas; Riess, Olaf; Krüger, Rejko; Fitzgerald, Julia C

    2016-02-01

    The protease HtrA2 has a protective role inside mitochondria, but promotes apoptosis under stress. We previously identified the G399S HtrA2 mutation in Parkinson's disease (PD) patients and reported mitochondrial dysfunction in vitro. Mitochondrial dysfunction is a common feature of PD and related to neurodegeneration. Complete loss of HtrA2 has been shown to cause neurodegeneration in mice. However, the full impact of HtrA2 overexpression or the G399S mutation is still to be determined in vivo. Here, we report the first HtrA2 G399S transgenic mouse model. Our data suggest that the mutation has a dominant-negative effect. We also describe a toxic effect of wild-type (WT) HtrA2 overexpression. Only low overexpression of the G399S mutation allowed viable animals and we suggest that the mutant protein is likely unstable. This is accompanied by reduced mitochondrial respiratory capacity and sensitivity to apoptotic cell death. Mice overexpressing WT HtrA2 were viable, yet these animals have inhibited mitochondrial respiration and significant induction of apoptosis in the brain leading to motor dysfunction, highlighting the opposing roles of HtrA2. Our data further underscore the importance of HtrA2 as a key mediator of mitochondrial function and its fine regulatory role in cell fate. The location and abundance of HtrA2 is tightly controlled and, therefore, human mutations leading to gain- or loss of function could provide significant risk for PD-related neurodegeneration. PMID:26604148

  12. Electrical Impedance Myography to Detect the Effects of Electrical Muscle Stimulation in Wild Type and Mdx Mice

    PubMed Central

    Li, Jia; Yim, Sung; Pacheck, Adam; Sanchez, Benjamin; Rutkove, Seward B.

    2016-01-01

    Objective Tools to better evaluate the impact of therapy on nerve and muscle disease are needed. Electrical impedance myography (EIM) is sensitive to neuromuscular disease progression as well as to therapeutic interventions including myostatin inhibition and antisense oligonucleotide-based treatments. Whether the technique identifies the impact of electrical muscle stimulation (EMS) is unknown. Methods Ten wild-type (wt) C57B6 mice and 10 dystrophin-deficient (mdx) mice underwent 2 weeks of 20 min/day EMS on left gastrocnemius and sham stimulation on the right gastrocnemius. Multifrequency EIM data and limb girth were obtained before and at the conclusion of the protocol. Muscle weight, in situ force measurements, and muscle fiber histology were also assessed at the conclusion of the study. Results At the time of sacrifice, muscle weight was greater on the EMS-treated side than on the sham-stimulated side (p = 0.018 for wt and p = 0.007 for mdx). Similarly, in wt animals, EIM parameters changed significantly compared to baseline (resistance (p = 0.009), reactance (p = 0.0003) and phase (p = 0.002); these changes were due in part to reductions in the EIM values on the EMS-treated side and elevations on the sham-simulated side. Mdx animals showed analogous but non-significant changes (p = 0.083, p = 0.064, and p = 0.57 for resistance, reactance and phase, respectively). Maximal isometric force trended higher on the stimulated side in wt animals only (p = 0.06). Myofiber sizes in wt animals were also larger on the stimulated side than on the sham-stimulated side (p = 0.034); no significant difference was found in the mdx mice (p = 0.79). Conclusion EIM is sensitive to stimulation-induced muscle alterations in wt animals; similar trends are also present in mdx mice. The mechanisms by which these EIM changes develop, however, remains uncertain. Possible explanations include longer-term trophic effects and shorter-term osmotic effects. PMID:26986564

  13. Placenta Passage of the Thyroid Hormone Analog DITPA to Male Wild-Type and Mct8-Deficient Mice

    PubMed Central

    Ferrara, Alfonso Massimiliano; Liao, Xiao-Hui; Gil-Ibáñez, Pilar; Bernal, Juan; Weiss, Roy E.; Dumitrescu, Alexandra M.

    2014-01-01

    Monocarboxylate transporter 8 (MCT8) deficiency causes severe X-linked intellectual and neuropsychological impairment associated with abnormal thyroid function tests (TFTs) producing thyroid hormone (TH) deprivation in brain and excess in peripheral tissues. The TH analog diiodothyropropionic acid (DITPA) corrected the TFTs abnormalities and hypermetabolism of MCT8-deficient children but did not improve the neurological phenotype. The latter result was attributed to the late initiation of treatment. Therefore, we gave DITPA to pregnant mice carrying Mct8-deficient embryos to determine whether DITPA, when given prenatally, crosses the placenta and affects the serum TFTs and cerebral cortex of embryos. After depletion of the endogenous TH, Mct8-heterozygous pregnant dams carrying both wild-type (Wt) and Mct8-deficient (Mct8KO) male embryos were given DITPA. Effects were compared with those treated with levothyroxine (L-T4). With DITPA treatment, serum DITPA concentration was not different in the two genotypes, which produced equal effect on serum TSH levels in both groups of pups. In contrast, with L-T4 treatment, TSH did not normalize in Mct8KO pups whereas it did in the Wt littermates and dams despite higher concentration of serum T4. Finally, both treatments similarly modulated the expression of the TH-dependent genes Shh, Klf9, and Aldh1a3 in brain. Thus, the ability of DITPA to cross the placenta, its thyromimetic action on the expression of TH-dependent genes in brain, and its better accessibility to the pituitary than L-T4, as assessed by serum TSH, make DITPA a candidate for the prenatal treatment of MCT8 deficiency. PMID:25051435

  14. Early Life Inorganic Lead Exposure Induces Testicular Teratoma and Renal and Urinary Bladder Preneoplasia in Adult Metallothionein-Knockout Mice but Not in Wild Type Mice

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2010-01-01

    Inorganic lead compounds are carcinogenic in animals and have carcinogenic potential in humans. In mice, lead (Pb) is a transplacental carcinogen in the kidney. Metallothionein (MT) is a metal-binding protein that can reduce the toxicity of various metals, including Pb, either by direct sequestration or as an antioxidant for metals that generate reactive oxygen species. Although MT appears to reduce Pb carcinogenicity in adult mice it is unknown how MT deficiency may affect Pb carcinogenicity from early life exposure. Thus, groups (n = 10) of pregnant MT-I/II double knockout (MT-null) or 129/SVJ MT wild type (WT) mice were exposed to Pb acetate in the drinking water (0, 2000, 4000 ppm Pb) from gestation day 8 through birth and during lactation. Maternal drinking water Pb exposure continued to weaning at 4 weeks of age and the male offspring were then directly exposed to Pb until 8 weeks of age and observed until 2 years old. High dose (4000 ppm) but not low dose (2000 ppm) Pb reduced survival in the latter part of the study in both MT-null and WT mice. In MT-null mice, but not WT, early life Pb exposure caused a dose-related increase in testicular teratomas, to a maximum incidence of 28% compared to control (4%). Pb-induced renal cystic hyperplasia, considered preneoplastic, were a prominent occurrence in MT-null mice but nearly absent in WT mice. Pb dose-related increases in renal cystic hyperplasia occurred in adult MT-null with early life exposure with maximal incidence of 52%. Pb-treated MT-null mice also showed dose-related increases in urinary bladder hyperplasia with occasional papilloma that were absent in WT mice. Thus, MT deficiency made mice more sensitive to early life Pb exposure with regard to testes tumors, and renal and urinary bladder preneoplastic lesions. PMID:20600549

  15. Impact of sex and ozone exposure on the course of pneumonia in wild type and SP-A (−/−) mice

    PubMed Central

    Mikerov, Anatoly N.; Hu, Sanmei; Durrani, Faryal; Gan, Xiaozhuang; Wang, Guirong; Umstead, Todd M.; Phelps, David S.; Floros, Joanna

    2012-01-01

    Female mice exhibited higher survival rate than males after pneumonia, with a reversal of this pattern following ozone exposure. Surfactant protein A (SP-A) plays an important role in innate immunity and SP-A (−/−) mice were more susceptible to pneumonia than wild type mice. Here, we investigated underlying mechanisms of the differential susceptibility of mice to pneumonia. Wild type and SP-A (−/−) C57BL/6J male and female mice were exposed to ozone or filtered air (FA) and then infected intratracheally with Klebsiella pneumoniae. Blood, spleen, and lung were analyzed for bacterial counts, lung and spleen weights, and sex hormone and cortisol levels were measured in plasma within two days post-infection. We found: 1) in the absence of ozone-induced oxidative stress, males had higher level of bacterial dissemination compared to females; ozone exposure decreased pulmonary clearance in both sexes and ozone-exposed females were more affected than males; 2) ozone exposure increased lung weight, but decreased spleen weight in both sexes, and in both cases ozone-exposed females were affected the most; 3) plasma cortisol levels in infected mice changed: ozone-exposed > FA-exposed, females > males, and infected > non-infected; 4) no major sex hormone differences were observed in the studied conditions; 5) differences between wild type and SP-A (−/−) mice were observed in some of the studied conditions. We concluded that reduced pulmonary clearance, compromised spleen response to infection, and increased cortisol levels in ozone-exposed females, and the higher level of lung bacterial dissemination in FA-exposed males, contribute to the previously observed survival outcomes. PMID:22285567

  16. Differences in strength-duration curves of electrical diagnosis by physiotherapists between DJ-1 homozygous knockout and wild-type mice: a randomized controlled pilot trial.

    PubMed

    Kim, Ju-Hyun; Lee, Won-Deok; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Noh, Ji-Woong; Shin, Yong-Sub; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Bokyung; Kim, Junghwan

    2016-05-01

    [Purpose] Strength-duration (SD) curves are used in electrical diagnosis by physiotherapists to confirm muscle degeneration. However, the usefulness of SD curves in comparing muscle degeneration in DJ-1 homozygous knockout (DJ-1(-/-)) and wild-type mice (DJ-1(+/+)) is not yet fully understood. The electrical properties of the gastrocnemius muscles of DJ-1(-/-) and DJ-1(+/+) mice were compared in the current study. [Subjects and Methods] The electrode of an electrical stimulator was applied to the gastrocnemius muscle to measure the rheobase until the response of contractive muscle to electrical stimulation became visible in mice. [Results] The rheobase of DJ-1(-/-) mice showed a significant increase in a time-dependent manner, compared to that of DJ-1(+/+) mice. [Conclusion] These results demonstrate that the DJ-1 protein may be implicated in the regulation of neuromuscular activity of gastrocnemius muscles of mice. PMID:27313379

  17. Differences in strength-duration curves of electrical diagnosis by physiotherapists between DJ-1 homozygous knockout and wild-type mice: a randomized controlled pilot trial

    PubMed Central

    Kim, Ju-Hyun; Lee, Won-Deok; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Noh, Ji-Woong; Shin, Yong-Sub; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Bokyung; Kim, Junghwan

    2016-01-01

    [Purpose] Strength-duration (SD) curves are used in electrical diagnosis by physiotherapists to confirm muscle degeneration. However, the usefulness of SD curves in comparing muscle degeneration in DJ-1 homozygous knockout (DJ-1−/−) and wild-type mice (DJ-1+/+) is not yet fully understood. The electrical properties of the gastrocnemius muscles of DJ-1−/− and DJ-1+/+ mice were compared in the current study. [Subjects and Methods] The electrode of an electrical stimulator was applied to the gastrocnemius muscle to measure the rheobase until the response of contractive muscle to electrical stimulation became visible in mice. [Results] The rheobase of DJ-1−/− mice showed a significant increase in a time-dependent manner, compared to that of DJ-1+/+ mice. [Conclusion] These results demonstrate that the DJ-1 protein may be implicated in the regulation of neuromuscular activity of gastrocnemius muscles of mice. PMID:27313379

  18. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Kelley, Jonathan B; Petkov, Martin

    2012-05-01

    Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice. PMID:22452925

  19. Wild-type and IL10-null mice have differential colonic epithelial gene expression responses to dietary supplementation with synbiotic Bifidobacterium animalis subspecies lactis and inulin.

    PubMed

    Kuo, Shiu-Ming; Chan, Wan-Chun; Hu, Zihua

    2014-03-01

    Prebiotic plus probiotic (synbiotic) supplementations promote fermentation and have shown anti-inflammatory activity in colonic epithelium. However, in many instances, patients with inflammatory bowel disease (IBD) have demonstrated adverse effects after prebiotic supplementation at a dose well tolerated by normal individuals. To test the hypothesis that the host inflammation affects the colonic epithelial response to increased fermentation, the gene expression of colonic epithelium was analyzed. In a 1-way experimental design to test the effect of supplements in wild-type mice using the standard diet formulated by the American Institute of Nutrition (AIN-93G) as the control diet, fermentable fiber inulin (5%) in the absence or presence of the probiotic Bifidobacterium animalis subspecies lactis (Bb12) (10(8) CFU/kg diet) showed limited effects on gene expression as determined by whole-genome microarray. Bb12 supplementation alone was known not to increase fermentation and here instead significantly upregulated genes in nucleic acid metabolic processes. The effects of the synbiotic diet were then determined in mice exposed to LPS-induced inflammation in a 2-way experimental design testing the effect of diet and LPS. The microarray and quantitative reverse transcription-polymerase chain reaction analyses on the wild-type mice revealed that LPS-induced changes in the colonic epithelium were 4- to 10-fold less in the synbiotic diet group compared with the control diet group. Unlike the wild-type mice, anti-inflammatory cytokine interleukin 10 (IL10)-null mice (susceptible to IBD) given the synbiotic diet, compared with those given the control diet, had 3- to 40-fold increased expression of inflammation-related genes such as Cxcl1 (chemokine C-X-C motif ligand 1) and S100a9 (S100 calcium binding protein A9) in the absence and presence of LPS exposure. These contrasting intestinal epithelial responses to increased fermentation in wild-type and IL10-null mice are similar

  20. Action Potentials are required for nitric oxide dependent LTP in CA1 neurons of adult GluR1 knockout and Wild-type mice

    PubMed Central

    Phillips, Keith G.; Hardingham, Neil R.; Fox, Kevin

    2009-01-01

    Neocortical LTP consists of both pre- and postsynaptic components that rely on nitric oxide (NO) and GluR1 respectively. In this study, we found that hippocampal LTP, induced by theta-burst stimulation in mature (> 8 week old) GluR1 knockout mice was almost entirely NO-dependent and involved both the α splice variant of NO synthase-1 (αNOS-1) and the NO synthase-3 (NOS-3) isoforms of NO synthase. Theta-burst induced LTP was also partly NO-dependent in wild-type mice, and made up approximately 50% of the potentiation 2 hours post-tetanus. Theta-burst stimulation reliably produced postsynaptic spikes including a high probability of complex spikes. Inhibition of postsynaptic somatic spikes with intracellular QX314 or local TTX application prevented LTP in the GluR1 knockout mice and also blocked the NO-component of LTP in wild-types. We conclude that theta-burst stimulation is particularly well suited to producing the somatic postsynaptic spikes required for NO-dependent LTP. PMID:19109486

  1. Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis

    PubMed Central

    Harris, Richard A.; Tindale, Lauren; Lone, Asad; Singh, Olivia; Macauley, Shannon L.; Stanley, Molly; Holtzman, David M.; Bartha, Robert

    2016-01-01

    regions of the brain. Here we detected an age-dependent decline in the expression of aerobic glycolysis enzymes and a concomitant decrease in lactate levels within the frontal cortex of wild-type mice. Improved memory performance in wild-type mice correlated with elevated expression of aerobic glycolysis enzymes. Surprisingly, lactate levels remained elevated with age and increased aerobic glycolysis enzyme expression correlated with poorer memory performance in APP/PS1 mice. These findings suggest that while lactate production is beneficial for memory in the healthy aging brain, it might be detrimental in an Alzheimer's disease context. PMID:26865611

  2. Impact of mTORC1 inhibition on keratinocyte proliferation during skin tumor promotion in wild-type and BK5.AktWT mice.

    PubMed

    Rho, Okkyung; Kiguchi, Kaoru; Jiang, Guiyu; DiGiovanni, John

    2014-11-01

    In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.Akt(WT) mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15-30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2-4 h) was mediated by activation of EGFR and Akt. BK5.Akt(WT) transgenic mice, where Akt1 is overexpressed in basal epidermis, are highly sensitive to TPA-induced epidermal proliferation and two-stage skin carcinogenesis. Targeting mTORC1 with rapamycin effectively inhibited TPA-induced epidermal hyperplasia and hyperproliferation as well as tumor promotion in a dose-dependent manner in both wild-type and BK5.Akt(WT) mice. A significant expansion (∼threefold) of the label retaining cell (LRC) population per hair follicle was observed in BK5.Akt(WT) mice compared to FVB/N mice. There was also a significant increase in K15 expressing cells in the hair follicle of transgenic mice that coincided with expression of phospho-Akt, phospho-S6K, and phospho-PRAS40, suggesting an important role of mTORC1 signaling in bulge-region keratinocyte stem cell (KSC) homeostasis. After 2 weeks of TPA treatment, LRCs had moved upward into the interfollicular epidermis from the bulge region of both wild-type and BK5.Akt(WT) mice. TPA-mediated LRC proliferation and migration was significantly inhibited by rapamycin. Collectively, the current data indicate that signaling through mTORC1 contributes significantly to the process of skin tumor promotion through effects on proliferation of the target cells for tumor development. PMID:24114993

  3. A Comparative Study of Age-Related Hearing Loss in Wild Type and Insulin-Like Growth Factor I Deficient Mice

    PubMed Central

    Riquelme, Raquel; Cediel, Rafael; Contreras, Julio; Lourdes, Rodriguez-de la Rosa; Murillo-Cuesta, Silvia; Hernandez-Sanchez, Catalina; Zubeldia, Jose M.; Cerdan, Sebastian; Varela-Nieto, Isabel

    2010-01-01

    Insulin-like growth factor-I (IGF-I) belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1−/− null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss) is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1+/+ and null Igf1−/− mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR) recordings and in vivo MRI brain imaging. Igf1−/− null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1+/+ wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1−/− null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to prevent or

  4. Effects of Mechanical Overloading on the Properties of Soleus Muscle Fibers, with or without Damage in MDX and Wild Type Mice

    NASA Astrophysics Data System (ADS)

    Terada, Masahiro; Kawano, Fuminori; Ohira, Takashi; Oke, Yoshihiko; Nakai, Naoya; Ohira, Yoshinobu

    2008-06-01

    Effects of mechanical overloading on the characteristics of regenerating or not-regenerating soleus muscle fibers were studied. The muscle fibers of mdx mice were characterized by the localization of myonuclei. Muscle damage was also induced in wild type (WT) mice by injection of cardiotoxin (CTX) into soleus muscle. Overloading was applied for 14 days to the left soleus muscle in mdx and intact and CTX-injected WT mice by removing the distal tendons of plantaris and gastrocnemius muscles. The contralateral muscle served as the normal control. These animals were then allowed ambulation recovery in the cage. Central myonuclei were noted in many fibers of mdx and CTX-injected mice with or without overloading. In general, the fibers with central nuclei were considered as regenerating fibers. The fibers with more central nuclei were increased in mdx mice, but the fibers with more peripheral nuclei were increased in CTX-injected WT mice by overloading. The muscle satellite cells, neuromuscular junctions (NMJ), and myonuclei were stained. Most of the properties, such as number of myonuclei and satellite cells, size of NMJ, and fiber length, were not influenced by mechanical overloading in all mice. Approximately 0.6% branched fibers were seen in the intact soleus of mdx mice, although these fibers were not detected in WT mice. However, the percentage of these fibers was increased by overloading especially in mdx mice (~50% vs. ~2.5% in WT). In CTX-injected WT mice, these fibers were ~15% with or without overloading. The fiber cross sectional area in normal WT, but not in mdx and CTX-injected WT mice, was increased by overloading (p<0.05). These results suggested that the functional overload induced muscle damage in mdx mice, but promoted the regeneration in CTX-injected WT mice.

  5. Alterations in Oral [1-14C] 18:1n-9 Distribution in Lean Wild-Type and Genetically Obese (ob/ob) Mice

    PubMed Central

    Wang, Xinxia; Feng, Jie; Yu, Caihua; Shen, Qingwu W.; Wang, Yizhen

    2015-01-01

    Obesity may result from altered fatty acid (FA) disposal. Altered FA distribution in obese individuals is poorly understood. Lean wild-type C57BL/6J and obese C57BL/6Job/ob mice received an oral dose of [1-14C]18:1n-9 (oleic acid), and the radioactivity in tissues was evaluated at various time points. The 14C concentration decreased rapidly in gastrointestinal tract but gradually increased and peaked at 96 h in adipose tissue, muscle and skin in lean mice. The 14C concentration was constant in adipose tissue and muscle of obese mice from 4h to 168h. 14C-label content in adipose tissue was significantly affected by genotype, whereas muscle 14C-label content was affected by genotype, time and the interaction between genotype and time. There was higher total 14C retention (47.7%) in obese mice than in lean mice (9.0%) at 168 h (P<0.05). The 14C concentrations in the soleus and gastrocnemius muscle were higher in obese mice than in lean mice (P<0.05). Perirenal adipose tissue contained the highest 14C content in lean mice, whereas subcutaneous adipose tissue (SAT) had the highest 14C content and accounted for the largest proportion of total radioactivity among fat depots in obese mice. More lipid radioactivity was recovered as TAG in SAT from obese mice than from lean mice (P<0.05). Gene expression suggested acyl CoA binding protein and fatty acid binding protein are important for FA distribution in adipose tissue and muscle. The FA distribution in major tissues was altered in ob/ob mice, perhaps contributing to obesity. Understanding the disparity in FA disposal between lean and obese mice may reveal novel targets for the treatment and prevention of obesity. PMID:25826747

  6. Oxidative stress mediates impairment of muscle function in transgenic mice with elevated level of wild-type Cu/Zn superoxide dismutase

    PubMed Central

    Peled-Kamar, M.; Lotem, J.; Wirguin, I.; Weiner, L.; Hermalin, A.; Groner, Y.

    1997-01-01

    Cases of familial amyotrophic lateral sclerosis (fALS; a neurodegenerative disorder) have been reported in which the gene for Cu/Zn superoxide dismutase (CuZnSOD) was mutated. Several studies with the fALS mutant CuZnSOD in transgenic mice and cells showed that the fALS mutations act through an as yet undefined dominant gain-of-function mechanism. Wild-type CuZnSOD catalyzes the dismutation of superoxide (O2⨪) but also produces hydroxyl radicals (•OH) with H2O2 as substrate. Two laboratories have recently demonstrated that the •OH production ability was preferentially enhanced by the fALS mutant CuZnSOD, suggesting that this might be the function gained in fALS. In this study, we used transgenic CuZnSOD (Tg-CuZnSOD) mice with elevated levels of CuZnSOD to determine whether overexpression of wild-type CuZnSOD was also associated with increased •OH production and impaired muscle function. Enhanced formation of •OH was detected, by spin trapping, in brain and muscle extracts of the Tg-CuZnSOD mice. Three independently derived Tg-CuZnSOD lines showed muscle abnormalities, reflected by altered electromyography (EMG) and diminished performance in the rope grip test. After treatment with paraquat (PQ), a widely used herbicide and O2⨪-generating compound, muscle disability significantly deteriorated in Tg-CuZnSOD mice but not in control mice. The results indicate that elevated levels of CuZnSOD cause indigenous long-term oxidative stress leading to impairment of muscle function. These findings may provide valuable clues about the concurred role of indigenous oxidative stress and exogenous agents in the etiology of sporadic ALS and several other neurodegenerative diseases in which a specific subset of neurons is affected. PMID:9108073

  7. Transcriptomic Insights into the Response of Placenta and Decidua Basalis to the CpG Oligodeoxynucleotide Stimulation in Non-Obese Diabetic Mice and Wild-Type Controls

    PubMed Central

    Liu, Xiao-Rui; Guo, Yu-Na; Qin, Chuan-Mei; Qin, Xiao-Li; Tao, Fei; Su, Fei; Tian, Fu-Ju; Zhang, Yan; Lin, Yi

    2016-01-01

    Intrauterine infection is one of the most frequent causes of miscarriage. CpG oligodeoxynucleotide (CpG ODN) can mimic intrauterine infection. CpG ODN-induced embryo-resorption was observed consistently in the NK-cell deficient non-obese diabetic (NOD) mice but not in the wild-type (WT) mice. To elucidate the molecular mechanisms of differential pregnancy outcomes, differentially expressed genes (DEGs) in the placenta and decidua basalis was revealed by RNA-Seq with CpG ODN or control ODN treatment. Common DEGs in the WT and NOD mice were enriched in antimicrobial/antibacterial humoral responses that may be activated as a primary response to bacterial infection. The susceptibility to CpG ODN-induced embryo-resorption in the NOD mice might mainly be attributed to M1 macrophage polarization and the immunodeficient status, such as the down-regulation in antigen processing and presentation, allograft rejection, and natural killer cell mediated cytotoxicity. In contrast, the WT mice with normal immune systems could activate multiple immune responses and be resistant to CpG ODN-induced embryo-resorption, such as M2 macrophage differentiation and activation regulated by complement component C1q and peroxisome proliferation-activated receptor (PPAR) signaling pathways. Collectively, this study suggests that the immunodeficient status of NOD mice and the macrophage polarization regulated by C1q and PPAR signaling might be the basis for differential pregnancy outcomes between the NOD and WT mice. PMID:27527166

  8. Transcriptomic Insights into the Response of Placenta and Decidua Basalis to the CpG Oligodeoxynucleotide Stimulation in Non-Obese Diabetic Mice and Wild-Type Controls.

    PubMed

    Liu, Xiao-Rui; Guo, Yu-Na; Qin, Chuan-Mei; Qin, Xiao-Li; Tao, Fei; Su, Fei; Tian, Fu-Ju; Zhang, Yan; Lin, Yi

    2016-01-01

    Intrauterine infection is one of the most frequent causes of miscarriage. CpG oligodeoxynucleotide (CpG ODN) can mimic intrauterine infection. CpG ODN-induced embryo-resorption was observed consistently in the NK-cell deficient non-obese diabetic (NOD) mice but not in the wild-type (WT) mice. To elucidate the molecular mechanisms of differential pregnancy outcomes, differentially expressed genes (DEGs) in the placenta and decidua basalis was revealed by RNA-Seq with CpG ODN or control ODN treatment. Common DEGs in the WT and NOD mice were enriched in antimicrobial/antibacterial humoral responses that may be activated as a primary response to bacterial infection. The susceptibility to CpG ODN-induced embryo-resorption in the NOD mice might mainly be attributed to M1 macrophage polarization and the immunodeficient status, such as the down-regulation in antigen processing and presentation, allograft rejection, and natural killer cell mediated cytotoxicity. In contrast, the WT mice with normal immune systems could activate multiple immune responses and be resistant to CpG ODN-induced embryo-resorption, such as M2 macrophage differentiation and activation regulated by complement component C1q and peroxisome proliferation-activated receptor (PPAR) signaling pathways. Collectively, this study suggests that the immunodeficient status of NOD mice and the macrophage polarization regulated by C1q and PPAR signaling might be the basis for differential pregnancy outcomes between the NOD and WT mice. PMID:27527166

  9. Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice.

    PubMed

    Yang, Bei; Smith, David E

    2013-03-01

    The purpose of this study was to quantitatively determine the contribution of PepT1 [peptide transporter 1 (SLC15A1)] to the intestinal permeability of valacyclovir, an ester prodrug of the antiviral drug acyclovir. In situ single-pass intestinal perfusions were employed (pH 6.5 × 90 minutes) to assess the effective permeability (P(eff)) of 100 μM [(3)H]valacyclovir in wild-type and PepT1 knockout mice. Acyclovir pharmacokinetics was also evaluated after oral administration of 25 nmol/g valacyclovir. In wild-type mice, jejunal uptake of valacyclovir was best described by both saturable (K(m) = 10.2 mM) and nonsaturable components where the saturable pathway accounted for 82% of total transport. Valacyclovir P(eff) was 2.4 × 10(-4) cm/s in duodenum, 1.7 × 10(-4) cm/s in jejunum, 2.1 × 10(-4) cm/s in ileum, and 0.27 × 10(-4) cm/s in colon. In Pept1 knockout mice, P(eff) values were about 10% of that in wild-type animals for these small intestinal segments. Valacyclovir P(eff) was similar in the colon of both genotypes. There were no differences in valacyclovir P(eff) between any of the intestinal segments of PepT1 knockout mice. Valacyclovir P(eff) was significantly reduced by the dipeptide glycylsarcosine and the aminocephalosporin cefadroxil, but not by the amino acids l-valine or l-histidine, the organic acid p-aminohippurate, or the organic base tetraethylammonium (all at 25 mM). PepT1 ablation resulted in 3- to 5-fold reductions in the in vivo rate and extent of valacyclovir absorption. Our findings conclusively demonstrate, using in situ and in vivo validations in genetically modified mice, that PepT1 has a major influence in improving the oral absorption of valacyclovir. PMID:23264448

  10. Villin Promoter-Mediated Transgenic Expression of TRPV6 Increases Intestinal Calcium Absorption in Wild-type and VDR Knockout Mice

    PubMed Central

    Cui, Min; Li, Qiang; Johnson, Robert; Fleet, James C.

    2012-01-01

    Transient receptor potential cation channel, subfamily V, member 6 (TRPV6) is an apical membrane calcium (Ca) channel in the small intestine proposed to be essential for vitamin D regulated intestinal Ca absorption. Recent studies have challenged the proposed role for TRPV6 in Ca absorption. We directly tested intestinal TRPV6 function in Ca and bone metabolism in wild-type (WT) and vitamin D receptor knockout (VDRKO) mice. Transgenic mice (TG) were made with intestinal epithelium-specific expression of a 3X flag-tagged human TRPV6 protein. TG and VDRKO mice were crossed to make TG-VDRKO mice. Ca and bone metabolism was examined in WT, TG, VDRKO, and TG-VDRKO mice. TG mice developed hypercalcemia and soft tissue calcification on a chow diet. In TG mice fed a 0.25% Ca diet, Ca absorption was >3 fold higher and femur bone mineral density (BMD) was 26% higher than WT. Renal CYP27B1 mRNA and intestinal expression of the natural mouse TRPV6 gene were reduced to <10% of WT but small intestine calbindin-D9k expression was elevated >15X in TG mice. TG-VDRKO mice had high Ca absorption that prevented the low serum Ca, high renal CYP27B1 mRNA, and low BMD and abnormal bone microarchitecture seen in VDRKO mice. In addition, small intestinal calbindin D9K mRNA and protein levels were elevated in TG-VDRKO. Transgenic TRPV6 expression in intestine is sufficient to increase Ca absorption and bone density, even in VDRKO mice. VDR independent up-regulation of intestinal calbindin D9k in TG-VDRKO suggests this protein may buffer intracellular Ca during Ca absorption. PMID:22589201

  11. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice.

    PubMed

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A

    2016-01-01

    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes. PMID:26696016

  12. The effect of nitric oxide synthase inhibitors nitro-L-arginine and 7-nitroindazole on spatial learning and motor functions in Lurcher mutant and wild type mice.

    PubMed

    Markvartová, V; Vozeh, F

    2008-01-01

    Nitric oxide (NO) is an intercellular messenger that, among other things, plays an important role in the nervous system as a gaseous neurotransmitter, modulating long-term potentiation (LTP) induction of synaptic transmission. LTP has been suggested to be the basis of memory formation. On the other hand NO also participates in excitotoxic processes which play an important role in many neuropathological states. The aim of this work was to observe the effect of two NO synthase (NOS) inhibitors (N omega-Nitro-L-arginine, NA; 7-nitroindazole, NI) on spontaneous behaviour, spatial learning and motor functions in Lurcher (+/Lc) and wild type (+/+) mice, derived from the B6CBA strain. Heterozygous Lurcher mutant mice represent a natural model of the olivocerebellar degeneration. They suffer from postnatal, practically total, extinction of cerebellar Purkinje cells (due to the excitotoxic apoptosis) and a partial decrease of granule cells and inferior olive neurons (ION) because of the lost target of their axons. +/+ animals are healthy littermates of +/Lc. NA is a nonselective NOS inhibitor which influences, except neuronal (n), also endothelial (e) NOS with an impact on blood pressure, NI is a selective nNOS inhibitor without any circulatory effect. The adult animals of both types (+/Lc; +/+) were influenced by acute administration of both inhibitors (25 mg/kg i.p. 30 min. before experiments) and newborns only by both acute and long-term administration of NI (1 month, starting from postnatal day 2, P2). Control solutions - saline or solvents of both NA and NI inhibitors--diluted 1M HCl and dimethyl sulfoxide (DMSO) respectively, were given at a relevant volume in the same way. The effect of both inhibitors and control solutions on motor functions was tested using four standard procedures (horizontal wire, slanting ladder, rotating cylinder, foot-bridge); in newborns at the age of 14 days. Spatial learning ability was examined in five-day long procedure in the Morris

  13. Hepatic effects of repeated oral administration of diclofenac to hepatic cytochrome P450 reductase null (HRN™) and wild-type mice.

    PubMed

    Akingbasote, James A; Foster, Alison J; Wilson, Ian; Sarda, Sunil; Jones, Huw B; Kenna, J Gerry

    2016-04-01

    Hepatic NADPH-cytochrome P450 oxidoreductase null (HRN™) mice exhibit normal hepatic and extrahepatic biotransformation enzyme activities when compared to wild-type (WT) mice, but express no functional hepatic cytochrome P450 activities. When incubated in vitro with [(14)C]-diclofenac, liver microsomes from WT mice exhibited extensive biotransformation to oxidative and glucuronide metabolites and covalent binding to proteins was also observed. In contrast, whereas glucuronide conjugates and a quinone-imine metabolite were formed when [(14)C]-diclofenac was incubated with HRN™ mouse liver, only small quantities of P450-derived oxidative metabolites were produced in these samples and covalent binding to proteins was not observed. Livers from vehicle-treated HRN™ mice exhibited enhanced lipid accumulation, bile duct proliferation, hepatocellular degeneration and necrosis and inflammatory cell infiltration, which were not present in livers from WT mice. Elevated liver-derived alanine aminotransferase, glutamate dehydrogenase and alkaline phosphatase activities were also observed in plasma from HRN™ mice. When treated orally with diclofenac for 7 days, at 30 mg/kg/day, the severities of the abnormal liver histopathology and plasma liver enzyme findings in HRN™ mice were reduced markedly. Oral diclofenac administration did not alter the liver histopathology or elevate plasma enzyme activities of WT mice. These findings indicate that HRN™ mice are valuable for exploration of the role played by hepatic P450s in drug biotransformation, but poorly suited to investigations of drug-induced liver toxicity. Nevertheless, studies in HRN™ mice could provide novel insights into the role played by inflammation in liver injury and may aid the evaluation of new strategies for its treatment. PMID:25820915

  14. Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase 1α Knockout and Wild-Type Mice.

    PubMed

    Wang, Ximing; Chandrashekar, Kiran; Wang, Lei; Lai, En Yin; Wei, Jin; Zhang, Gensheng; Wang, Shaohui; Zhang, Jie; Juncos, Luis A; Liu, Ruisheng

    2016-04-01

    We recently showed that α, β, and γ splice variants of neuronal nitric oxide synthase (NOS1) expressed in the macula densa and NOS1β accounts for most of the NO generation. We have also demonstrated that the mice with deletion of NOS1 specifically from the macula densa developed salt-sensitive hypertension. However, the global NOS1 knockout (NOS1KO) strain is neither hypertensive nor salt sensitive. This global NOS1KO strain is actually an NOS1αKO model. Consequently, we hypothesized that inhibition of NOS1β in NOS1αKO mice induces salt-sensitive hypertension. NOS1αKO and C57BL/6 wild-type (WT) mice were implanted with telemetry transmitters and divided into 7-nitroindazole (10 mg/kg/d)-treated and nontreated groups. All of the mice were fed a normal salt (0.4% NaCl) diet for 5 days, followed by a high-salt diet (4% NaCl). NO generation by the macula densa was inhibited by >90% in WT and NOS1αKO mice treated with 7-nitroindazole. Glomerular filtration rate in conscious mice was increased by ≈40% after a high-salt diet in both NOS1αKO and WT mice. In response to acute volume expansion, glomerular filtration rate, diuretic and natriuretic response were significantly blunted in the WT and knockout mice treated with 7-nitroindazole. Mean arterial pressure had no significant changes in mice fed a high-salt diet, but increased ≈15 mm Hg similarly in NOS1αKO and WT mice treated with 7-nitroindazole. We conclude that NOS1β, but not NOS1α, plays an important role in control of sodium excretion and hemodynamics in response to either an acute or a chronic salt loading. PMID:26883268

  15. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits and early mortality in transgenic mice

    PubMed Central

    Xu, Ya-Fei; Gendron, Tania F.; Zhang, Yong-Jie; Lin, Wen-Lang; D’Alton, Simon; Sheng, Hong; Casey, Monica Castanedes; Tong, Jimei; Knight, Joshua; Yu, Xin; Rademakers, Rosa; Boylan, Kevin; Hutton, Mike; McGowan, Eileen; Dickson, Dennis W.; Lewis, Jada; Petrucelli, Leonard

    2011-01-01

    Transactivation response DNA-binding protein 43 (TDP-43) is a principal component of ubiquitinated inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene encoding TDP-43, are associated with sporadic and familial ALS, yet multiple neurodegenerative diseases exhibit TDP-43 pathology without known TARDBP mutations. While TDP-43 has been ascribed a number of roles in normal biology, including mRNA splicing and transcription regulation, elucidating disease mechanisms associated with this protein is hindered by the lack of models to dissect such functions. We have generated transgenic (TDP-43PrP) mice expressing full-length human TDP-43 (hTDP-43) driven by the mouse prion promoter to provide a tool to analyze the role of wild-type hTDP-43 in the brain and spinal cord. Expression of hTDP-43 caused a dose dependant down regulation of mouse TDP-43 RNA and protein. Moderate overexpression of hTDP-43 resulted in TDP-43 truncation, increased cytoplasmic and nuclear ubiquitin levels, as well as intranuclear and cytoplasmic aggregates that were immunopositive for phosphorylated TDP-43. Of note, abnormal juxtanuclear aggregates of mitochondria were observed, accompanied by enhanced levels of Fis1 and phosphorylated DLP1, key components of the mitochondrial fission machinery. Conversely, a marked reduction in mitofusin 1 expression, which plays an essential role in mitochondrial fusion, was observed in TDP-43PrP mice. Finally, TDP-43PrP mice showed reactive gliosis, axonal and myelin degeneration, gait abnormalities and early lethality. This TDP-43 transgenic line provides a valuable tool for identifying potential roles of wild-type TDP-43 within the central nervous system and for studying TDP-43-associated neurotoxicity. PMID:20702714

  16. Vitamin D2-enriched button mushroom (Agaricus bisporus) improves memory in both wild type and APPswe/PS1dE9 transgenic mice.

    PubMed

    Bennett, Louise; Kersaitis, Cindy; Macaulay, Stuart Lance; Münch, Gerald; Niedermayer, Garry; Nigro, Julie; Payne, Matthew; Sheean, Paul; Vallotton, Pascal; Zabaras, Dimitrios; Bird, Michael

    2013-01-01

    Vitamin D deficiency is widespread, affecting over 30% of adult Australians, and increasing up to 80% for at-risk groups including the elderly (age>65). The role for Vitamin D in development of the central nervous system is supported by the association between Vitamin D deficiency and incidence of neurological and psychiatric disorders including Alzheimer's disease (AD). A reported positive relationship between Vitamin D status and cognitive performance suggests that restoring Vitamin D status might provide a cognitive benefit to those with Vitamin D deficiency. Mushrooms are a rich source of ergosterol, which can be converted to Vitamin D2 by treatment with UV light, presenting a new and convenient dietary source of Vitamin D2. We hypothesised that Vitamin D2-enriched mushrooms (VDM) could prevent the cognitive and pathological abnormalities associated with dementia. Two month old wild type (B6C3) and AD transgenic (APPSwe/PS1dE9) mice were fed a diet either deficient in Vitamin D2 or a diet which was supplemented with VDM, containing 1±0.2 µg/kg (∼54 IU/kg) vitamin D2, for 7 months. Effects of the dietary intervention on memory were assessed pre- and post-feeding. Brain sections were evaluated for amyloid β (Aβ) plaque loads and inflammation biomarkers using immuno-histochemical methods. Plasma vitamin D metabolites, Aβ40, Aβ42, calcium, protein and cholesterol were measured using biochemical assays. Compared with mice on the control diet, VDM-fed wild type and AD transgenic mice displayed improved learning and memory, had significantly reduced amyloid plaque load and glial fibrillary acidic protein, and elevated interleukin-10 in the brain. The results suggest that VDM might provide a dietary source of Vitamin D2 and other bioactives for preventing memory-impairment in dementia. This study supports the need for a randomised clinical trial to determine whether or not VDM consumption can benefit cognitive performance in the wider population. PMID:24204618

  17. Divergent Systemic and Local Inflammatory Response to Hind Limb Demand Ischemia in Wild Type And ApoE−/− Mice

    PubMed Central

    Crawford, Robert S.; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A.; Abularrage, Christopher J.; Yoo, Hyung-Jin; LaMuraglia, Glenn M.; Watkins, Michael T.

    2013-01-01

    Introduction Studies were designed to determine whether the ApoE−/− phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE−/− phenotype is an experimental model for atherosclerosis in humans. Methods Aged female ApoE −/− and C57BL6 mice underwent femoral artery ligation, then divided into sedentary and demand ischemia (exercise) groups on day 14. Baseline and post exercise limb perfusion and hind limb function were assessed. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, plasma and skeletal muscle from ischemic limbs were harvested from sedentary and exercised mice. Muscle was assayed for angiogenic and pro-inflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Results Hind limb ischemia was similar in ApoE −/− and C57 mice prior to the onset of exercise. Under sedentary conditions, plasma VEGF, IL-6, but not KC or MIP-2 were higher in ApoE (P<0.0001). Following exercise, plasma levels of VEGF, KC and MIP-2, but not IL-6 were lower in ApoE (P<0.004). The cytokines KC and MIP-2 in muscle was greater in exercised ApoE−/− mice as compared to C57BL6 mice (p=0.01). Increased PAR activity, and mature muscle regeneration was associated with demand ischemia in the C57BL6 mice as compared to the ApoE −/− mice (p=0.01). Conclusion Demand limb ischemia in the ApoE−/− phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. PMID:23528286

  18. The effect of mild traumatic brain injury on peripheral nervous system pathology in wild-type mice and the G93A mutant mouse model of motor neuron disease.

    PubMed

    Evans, T M; Jaramillo, C A; Sataranatarajan, K; Watts, L; Sabia, M; Qi, W; Van Remmen, H

    2015-07-01

    Traumatic brain injury (TBI) is associated with a risk of neurodegenerative disease. Some suggest a link between TBI and motor neuron disease (MND), including amyotrophic lateral sclerosis (ALS). To investigate the potential mechanisms linking TBI to MND, we measured motor function and neuropathology following mild-TBI in wild-type and a transgenic model of ALS, G93A mutant mice. Mild-TBI did not alter the lifespan of G93A mice or age of onset; however, rotarod performance was impaired in G93A verses wild-type mice. Grip strength was reduced only in G93A mice after mild-TBI. Increased electromyography (EMG) abnormalities and markers of denervation (AchR, Runx1) indicate that mild-TBI may result in peripheral effects that are exaggerated in G93A mice. Markers of inflammation (cell edema, astrogliosis and microgliosis) were detected at 24 and 72h in the brain and spinal cord in wild-type and G93A mice. Levels of F2-isoprostanes, a marker of oxidative stress, were increased in the spinal cord 24h post mild-TBI in wild-type mice but were not affected by TBI in G93A mice. In summary, our data demonstrate that mild-TBI induces inflammation and oxidative stress and negatively impacts muscle denervation and motor performance, suggesting mild-TBI can potentiate motor neuron pathology and influence the development of MND in mice. PMID:25921732

  19. NKG2D blockade inhibits poly(I:C)-triggered fetal loss in wild type but not in IL-10-/- mice.

    PubMed

    Thaxton, Jessica E; Nevers, Tania; Lippe, Eliana O; Blois, Sandra M; Saito, Shigeru; Sharma, Surendra

    2013-04-01

    Infection and inflammation can disturb immune tolerance at the maternal-fetal interface, resulting in adverse pregnancy outcomes. However, the underlying mechanisms for detrimental immune responses remain ill defined. In this study, we provide evidence for immune programming of fetal loss in response to polyinosinic:polycytidylic acid (polyI:C), a viral mimic and an inducer of inflammatory milieu. IL-10 and uterine NK (uNK) cells expressing the activating receptor NKG2D play a critical role in poly(I:C)-induced fetal demise. In wild type (WT) mice, poly(I:C) treatment induced expansion of NKG2D(+) uNK cells and expression of Rae-1 (an NKG2D ligand) on uterine macrophages and led to fetal resorption. In IL-10(-/-) mice, NKG2D(-) T cells instead became the source of fetal resorption during the same gestation period. Interestingly, both uterine NK and T cells produced TNF-α as the key cytotoxic factor contributing to fetal loss. Treatment of WT mice with poly(I:C) resulted in excessive trophoblast migration into the decidua and increased TUNEL-positive signal. IL-10(-/-) mice supplemented with recombinant IL-10 induced fetal loss through NKG2D(+) uNK cells, similar to the response in WT mice. Blockade of NKG2D in poly(I:C)-treated WT mice led to normal pregnancy outcome. Thus, we demonstrate that pregnancy-disrupting inflammatory events mimicked by poly(I:C) are regulated by IL-10 and depend on the effector function of uterine NKG2D(+) NK cells in WT mice and NKG2D(-) T cells in IL-10 null mice. PMID:23455498

  20. Bone Turnover in Wild Type and Pleiotrophin-Transgenic Mice Housed for Three Months in the International Space Station (ISS)

    PubMed Central

    Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity’s negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice. PMID:22438896

  1. Expression pattern of immediate early genes in the cerebellum of D1R KO, D2R KO, and wild type mice under vestibular-controlled activity.

    PubMed

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Sasaoka, Toshikuni; Yamamori, Tetsuo

    2015-01-01

    We previously reported the different motor abilities of D1R knockout (KO), D2R KO and wild-type (WT) mice. To understand the interaction between the cerebellum and the striatal direct and indirect pathways, we examined the expression patterns of immediate early genes (IEG) in the cerebellum of these three genotypes of mice. In the WT naive mice, there was little IEG expression. However, we observed a robust expression of c-fos mRNA in the vermis and hemisphere after running rota-rod tasks. In the vermis, c-fos was expressed throughout the lobules except lobule 7, and also in crus 1 of the ansiform lobule (Crus1), copula of the pyramis (Cop) and most significantly in the flocculus in the hemisphere. jun-B was much less expressed but more preferentially expressed in Purkinje cells. In addition, we observed significant levels of c-fos and jun-B expressions after handling mice, and after the stationary rota-rod task in naive mice. Surprisingly, we observed significant expression of c-fos and jun-B even 30 min after single weighing. Nonetheless, certain additional c-fos and jun-B expressions were observed in three genotypes of the mice that experienced several sessions of motor tasks 24 h after stationary rota-rod task and on days 1 and 5 after rota-rod tasks, but no significant differences in expressions after the running rota-rod tasks were observed among the three genotypes. In addition, there may be some differences 24 h after the stationary rota-rod task between the naive mice and the mice that experienced several sessions of motor tasks. PMID:26137459

  2. Attenuated Stress Response to Acute Restraint and Forced Swimming Stress in Arginine Vasopressin 1b Receptor Subtype (Avpr1b) Receptor Knockout Mice and Wild-Type Mice Treated with a Novel Avpr1b Receptor Antagonist

    PubMed Central

    Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J

    2010-01-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299

  3. Analysis of striatal transcriptome in mice overexpressing human wild-type alpha-synuclein supports synaptic dysfunction and suggests mechanisms of neuroprotection for striatal neurons

    PubMed Central

    2011-01-01

    Background Alpha synuclein (SNCA) has been linked to neurodegenerative diseases (synucleinopathies) that include Parkinson's disease (PD). Although the primary neurodegeneration in PD involves nigrostriatal dopaminergic neurons, more extensive yet regionally selective neurodegeneration is observed in other synucleinopathies. Furthermore, SNCA is ubiquitously expressed in neurons and numerous neuronal systems are dysfunctional in PD. Therefore it is of interest to understand how overexpression of SNCA affects neuronal function in regions not directly targeted for neurodegeneration in PD. Results The present study investigated the consequences of SNCA overexpression on cellular processes and functions in the striatum of mice overexpressing wild-type, human SNCA under the Thy1 promoter (Thy1-aSyn mice) by transcriptome analysis. The analysis revealed alterations in multiple biological processes in the striatum of Thy1-aSyn mice, including synaptic plasticity, signaling, transcription, apoptosis, and neurogenesis. Conclusion The results support a key role for SNCA in synaptic function and revealed an apoptotic signature in Thy1-aSyn mice, which together with specific alterations of neuroprotective genes suggest the activation of adaptive compensatory mechanisms that may protect striatal neurons in conditions of neuronal overexpression of SNCA. PMID:22165993

  4. A Novel 1,4-Dihydropyridine Derivative Improves Spatial Learning and Memory and Modifies Brain Protein Expression in Wild Type and Transgenic APPSweDI Mice

    PubMed Central

    Jansone, Baiba; Kadish, Inga; van Groen, Thomas; Beitnere, Ulrika; Moore, Doyle Ray; Plotniece, Aiva; Pajuste, Karlis; Klusa, Vija

    2015-01-01

    Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB), have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer’s disease. The present study investigated the effects of a novel 4-(N-dodecyl) pyridinium group-containing 1,4-dihydropyridine derivative (AP-12) on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer’s disease model mice (Tg APPSweDI) using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB) penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1) related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory) of neurodegenerative diseases, particularly Alzheimer’s disease. PMID:26042808

  5. Mouse model of the OPRM1 (A118G) polymorphism: differential heroin self-administration behavior compared with wild-type mice.

    PubMed

    Zhang, Yong; Picetti, Roberto; Butelman, Eduardo R; Ho, Ann; Blendy, Julie A; Kreek, Mary Jeanne

    2015-04-01

    Mu-opioid receptors (MOPRs) are the target of heroin and other prescription opioids, which are currently responsible for massive addiction morbidity in the US. The gene coding for the human MOPR (OPRM1) has an important functional single nucleotide polymorphism (SNP), A118G. The OPRM1 A118G genotype results in substantially increased risk of heroin addiction in humans; however, the neurobiological mechanism for this increased risk is not fully understood. This study examined heroin self-administration (SA) behavior in A112G (G/G) mice, harboring a functionally equivalent SNP in Oprm1 with a similar amino acid substitution, in extended (4 h) SA sessions. Adult male and female G/G mice and 'wild-type' litter mates (A/A) were allowed to self-administer heroin (0.25 mg/kg/unit dose, FR1 with a nose poke response) for 4 h/day, for 10 consecutive days. Half of the mice then continued in a heroin dose-response study, while extinction from heroin SA was studied in the other half. In vivo microdialysis was used to measure acute heroin-induced increases of striatal dopamine in the GG vs AA genotypes. Male and female G/G mice responded for heroin significantly more (and thus had greater intake) than A/A mice, in the initial 10 days of heroin SA, and in the subsequent dose-response study. There were no significant differences in extinction of SA between the A/A and G/G mice. Heroin-induced increases in striatal dopamine levels are higher in the GG mice than in the AA mice. Both male and female G/G mice self-administered more heroin than did A/A mice over a 10-day period, possibly because of the greater increases of heroin-induced striatal dopamine in the GG mice. Furthermore, G/G male mice escalated the amount of heroin self-administration across 10 extended-access sessions more than A/A male mice did. These are the first studies to examine the acquisition of heroin SA in this mouse model. These studies may lead to a better understanding of the neurobiological and behavioral

  6. Mouse Model of the OPRM1 (A118G) Polymorphism: Differential Heroin Self-Administration Behavior Compared with Wild-Type Mice

    PubMed Central

    Zhang, Yong; Picetti, Roberto; Butelman, Eduardo R; Ho, Ann; Blendy, Julie A; Kreek, Mary Jeanne

    2015-01-01

    Mu-opioid receptors (MOPRs) are the target of heroin and other prescription opioids, which are currently responsible for massive addiction morbidity in the US. The gene coding for the human MOPR (OPRM1) has an important functional single nucleotide polymorphism (SNP), A118G. The OPRM1 A118G genotype results in substantially increased risk of heroin addiction in humans; however, the neurobiological mechanism for this increased risk is not fully understood. This study examined heroin self-administration (SA) behavior in A112G (G/G) mice, harboring a functionally equivalent SNP in Oprm1 with a similar amino acid substitution, in extended (4 h) SA sessions. Adult male and female G/G mice and ‘wild-type' litter mates (A/A) were allowed to self-administer heroin (0.25 mg/kg/unit dose, FR1 with a nose poke response) for 4 h/day, for 10 consecutive days. Half of the mice then continued in a heroin dose–response study, while extinction from heroin SA was studied in the other half. In vivo microdialysis was used to measure acute heroin-induced increases of striatal dopamine in the GG vs AA genotypes. Male and female G/G mice responded for heroin significantly more (and thus had greater intake) than A/A mice, in the initial 10 days of heroin SA, and in the subsequent dose–response study. There were no significant differences in extinction of SA between the A/A and G/G mice. Heroin-induced increases in striatal dopamine levels are higher in the GG mice than in the AA mice. Both male and female G/G mice self-administered more heroin than did A/A mice over a 10-day period, possibly because of the greater increases of heroin-induced striatal dopamine in the GG mice. Furthermore, G/G male mice escalated the amount of heroin self-administration across 10 extended-access sessions more than A/A male mice did. These are the first studies to examine the acquisition of heroin SA in this mouse model. These studies may lead to a better understanding of the neurobiological and

  7. Paradoxical attenuation of autoimmune hepatitis by oral isoniazid in wild-type and N-acetyltransferase-deficient mice.

    PubMed

    Metushi, Imir G; Cai, Ping; Vega, Libia; Grant, Denis M; Uetrecht, Jack

    2014-06-01

    Isoniazid (INH) treatment can cause serious liver injury and autoimmunity. There are now several lines of evidence that INH-induced liver injury is immune mediated, but this type of liver injury has not been reproduced in animals, possibly because immune tolerance is the dominant response of the liver. In this study, we immunized mice with isonicotinic acid (INA)-modified proteins and Freund's adjuvant, which led to mild experimental autoimmune hepatitis (EAH) with an increase in cells staining positive for F4/80, CD11b, CD8, CD4, CD45R, and KI67. We expected that subsequent treatment of mice with oral INH would lead to more serious immune-mediated liver injury, but paradoxically it markedly attenuated the EAH caused by immunization with INA-modified hepatic proteins. In addition, patients of the slow acetylator phenotype are at increased risk of INH-induced liver injury. Treatment of arylamine N-acetyltransferase-deficient Nat1/2(-/-) mice with INH for up to 5 weeks produced mild increases in glutamate and sorbitol dehydrogenase activities, but not severe liver injury. Female Nat1/2(-/-) mice treated with INH for 1, 3, or 7 days developed steatosis, an increase in Oil Red O staining, and abnormal mitochondrial morphology in the liver. A decrease in M1 and an increase in M2a and M2b macrophages was observed in female Nat1/2(-/-) mice treated with INH for 1, 3, or 7 days; these changes returned to baseline levels by day 35. These data indicate that INH has immunosuppressive effects, even though it is also known to induce autoantibody production and a lupus-like autoimmune syndrome in humans. PMID:24623063

  8. Reactive oxygen species- and nitric oxide-mediated lung inflammation and mitochondrial dysfunction in wild-type and iNOS-deficient mice exposed to diesel exhaust particles.

    PubMed

    Zhao, Hongwen; Ma, Joseph K; Barger, Mark W; Mercer, Robert R; Millecchia, Lyndell; Schwegler-Berry, Diane; Castranova, Vince; Ma, Jane Y

    2009-01-01

    Pulmonary responses to diesel exhaust particles (DEP) exposure are mediated through enhanced production of reactive oxygen species (ROS) and nitric oxide (NO) by alveolar macrophages (AM). The current study examined the differential roles of ROS and NO in DEP-induced lung injury using C57B/6J wild-type (WT) and inducible NO synthase knockout (iNOS KO) mice. Mice exposed by pharyngeal aspiration to DEP or carbon black particles (CB) (35 mg/kg) showed an inflammatory profile that included neutrophil infiltration, increased lactate dehydrogenase (LDH) activity, and elevated albumin content in bronchoalveolar lavage fluid (BALF) at 1, 3, and 7 d postexposure. The organic extract of DEP (DEPE) did not induce an inflammatory response. Comparing WT to iNOS KO mice, the results show that NO enhanced DEP-induced neutrophils infiltration and plasma albumin content in BALF and upregulated the production of the pro-inflammatory cytokine interleukin 12 (IL-12) by AM. DEP-exposed AM from iNOS KO mice displayed diminished production of IL-12 and, in response to ex vivo lipopolysaccharide (LPS) challenge, decreased production of IL-12 but increased production of IL-10 when compared to cells from WT mice. DEP, CB, but not DEPE, induced DNA damage and mitochondria dysfunction in AM, however, that is independent of cellular production of NO. These results demonstrate that DEP-induced immune/inflammatory responses in mice are regulated by both ROS- and NO-mediated pathways. NO did not affect ROS-mediated mitochondrial dysfunction and DNA damage but upregulated IL-12 and provided a counterbalance to the ROS-mediated adaptive stress response that downregulates IL-12 and upregulates IL-10. PMID:19267316

  9. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance[S

    PubMed Central

    Grimpo, Kirsten; Völker, Maximilian N.; Heppe, Eva N.; Braun, Steve; Heverhagen, Johannes T.; Heldmaier, Gerhard

    2014-01-01

    We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST. PMID:24343897

  10. Characterization of glycolytic enzyme interactions with murine erythrocyte membranes in wild-type and membrane protein knockout mice

    PubMed Central

    Campanella, M. Estela; Chu, Haiyan; Wandersee, Nancy J.; Peters, Luanne L.; Mohandas, Narla; Gilligan, Diana M.

    2008-01-01

    Previous research has shown that glycolytic enzymes (GEs) exist as multienzyme complexes on the inner surface of human erythrocyte membranes. Because GE binding sites have been mapped to sequences on the membrane protein, band 3, that are not conserved in other mammalian homologs, the question arose whether GEs can organize into complexes on other mammalian erythrocyte membranes. To address this, murine erythrocytes were stained with antibodies to glyceraldehyde-3-phosphate dehydrogenase, aldolase, phosphofructokinase, lactate dehydrogenase, and pyruvate kinase and analyzed by confocal microscopy. GEs were found to localize to the membrane in oxygenated erythrocytes but redistributed to the cytoplasm upon deoxygenation, as seen in human erythrocytes. To identify membrane proteins involved in GE assembly, erythrocytes from mice lacking each of the major erythrocyte membrane proteins were examined for GE localization. GEs from band 3 knockout mice were not membrane associated but distributed throughout the cytoplasm, regardless of erythrocyte oxygenation state. In contrast, erythrocytes from mice lacking α-spectrin, ankyrin, protein 4.2, protein 4.1, β-adducin, or dematin headpiece exhibited GEs bound to the membrane. These data suggest that oxygenation-dependent assembly of GEs on the membrane could be a general phenomenon of mammalian erythrocytes and that stability of these interactions depends primarily on band 3. PMID:18698006

  11. Reversibility of dopamine receptor antagonist-induced hyperprolactinemia and associated histological changes in Tg RasH2 wild-type mice.

    PubMed

    Krishna, Gopala; Ganiger, Shivaputhrappa; Kannan, Kamala; Gopalakrishnan, Gopa; Goel, Saryu

    2015-12-01

    The purpose of this study was to better understand the biological effects of increased prolactin levels induced in mice by dopamine D2 receptor antagonist molindone treatment. Toxicokinetics, prolactin levels, and reproductive tissue histology were evaluated in Tg rasH2 wild-type mice treated orally with molindone at 0, 5, 15, and 50mg/kg/day for 6 months, followed by a 2-month posttreatment recovery period. A greater than dose-proportional increase in molindone exposure ([AUC]0‒24) was observed on Day 180 for both sexes. Statistically significant (P<0.01) increases in prolactin levels were observed in most treatment groups compared with controls at 0.5h postdose on Days 1 and 180. Prolactin levels returned to baseline levels during the recovery period. Microscopic changes attributable to hyperprolactinemia, including corpora lutea enlargement and interstitial cell atrophy in the ovaries, and atrophy of the uterus and vagina were observed on Day 180. These changes were reversed during the recovery period in the 5- and 15-mg/kg/day treatment groups. Mice receiving molindone at 50mg/kg/day also showed signs of reversal on histologic examination. PMID:26327279

  12. Cell-autonomous alteration of dopaminergic transmission by wild type and mutant (DeltaE) TorsinA in transgenic mice.

    PubMed

    Page, Michelle E; Bao, Li; Andre, Pierrette; Pelta-Heller, Joshua; Sluzas, Emily; Gonzalez-Alegre, Pedro; Bogush, Alexey; Khan, Loren E; Iacovitti, Lorraine; Rice, Margaret E; Ehrlich, Michelle E

    2010-09-01

    Early onset torsion dystonia is an autosomal dominant movement disorder of variable penetrance caused by a glutamic acid, i.e. DeltaE, deletion in DYT1, encoding the protein TorsinA. Genetic and structural data implicate basal ganglia dysfunction in dystonia. TorsinA, however, is diffusely expressed, and therefore the primary source of dysfunction may be obscured in pan-neuronal transgenic mouse models. We utilized the tyrosine hydroxylase (TH) promoter to direct transgene expression specifically to dopaminergic neurons of the midbrain to identify cell-autonomous abnormalities. Expression of both the human wild type (hTorsinA) and mutant (DeltaE-hTorsinA) protein resulted in alterations of dopamine release as detected by microdialysis and fast cycle voltammetry. Motor abnormalities detected in these mice mimicked those noted in transgenic mice with pan-neuronal transgene expression. The locomotor response to cocaine in both TH-hTorsinA and TH-DeltaE-hTorsinA, in the face of abnormal extracellular DA levels relative to non-transgenic mice, suggests compensatory, post-synaptic alterations in striatal DA transmission. This is the first cell-subtype-specific DYT1 transgenic mouse that can serve to differentiate between primary and secondary changes in dystonia, thereby helping to target disease therapies. PMID:20460154

  13. The role of the equilibrative and concentrative nucleoside transporters in the intestinal absorption of the nucleoside drug, ribavirin, in wild-type and Ent1(−/−) mice

    PubMed Central

    Moss, Aaron M.; Endres, Christopher J.; Ruiz-Garcia, Ana; Choi, Doo-Sup; Unadkat, Jashvant D.

    2012-01-01

    Ribavirin is frontline treatment for hepatitis C virus infection. To determine the role of nucleoside transporters in the intestinal absorption of orally administered ribavirin, we perfused the intestines of Ent1(−/−) and wild-type mice, in situ, with [3H] ribavirin (20, 200 and 5000 μM) in the presence and absence of sodium. The decrease in luminal ribavirin concentration over 30 minutes was measured at 5-minute intervals. Blood samples were collected approximately every 10 minutes. Ribavirin plus phosphorylated metabolite concentrations (hereafter referred to as ribavirin) were determined in tissue, blood and plasma by HPLC fractionation and scintillation counting. There was no significant difference between wild-type and Ent1(−/−) mice in intestinal loss of ribavirin at any ribavirin concentration studied. Perfusions without sodium drastically reduced the intestinal loss of ribavirin in both wild-type and Ent1(−/−) mice. After 20 μM ribavirin perfusions, Ent1(−/−) intestinal tissue contained 8-fold greater ribavirin than wild-type mice (p<0.01). Ribavirin concentrations in the wild-type intestinal tissue were 70-fold higher after 200 vs. 20 μM perfusions (p<0.001), indicating saturation of intestinal ribavirin efflux and possibly other processes as well. Ribavirin plasma concentrations were significantly higher in wild-type mice (2.7-fold) vs. Ent1(−/−) mice at 30 minutes after the 20 μM perfusion (p<0.01). These results suggest that, at lower intestinal concentrations of ribavirin, concentrative and equilibrative nucleoside transporters are important in the intestinal absorption of ribavirin. At higher intestinal concentrations, these transporters are saturated and other processes in the intestine (transport and/or metabolism) play an important role in the absorption of ribavirin. PMID:22812541

  14. Quantitative analysis by next generation sequencing of hematopoietic stem and progenitor cells (LSK) and of splenic B cells transcriptomes from wild-type and Usp3-knockout mice.

    PubMed

    Lancini, Cesare; Gargiulo, Gaetano; van den Berk, Paul C M; Citterio, Elisabetta

    2016-03-01

    The data described here provide genome-wide expression profiles of murine primitive hematopoietic stem and progenitor cells (LSK) and of B cell populations, obtained by high throughput sequencing. Cells are derived from wild-type mice and from mice deficient for the ubiquitin-specific protease 3 (USP3; Usp3Δ/Δ). Modification of histone proteins by ubiquitin plays a crucial role in the cellular response to DNA damage (DDR) (Jackson and Durocher, 2013) [1]. USP3 is a histone H2A deubiquitinating enzyme (DUB) that regulates ubiquitin-dependent DDR in response to DNA double-strand breaks (Nicassio et al., 2007; Doil et al., 2008) [2], [3]. Deletion of USP3 in mice increases the incidence of spontaneous tumors and affects hematopoiesis [4]. In particular, Usp3-knockout mice show progressive loss of B and T cells and decreased functional potential of hematopoietic stem cells (HSCs) during aging. USP3-deficient cells, including HSCs, display enhanced histone ubiquitination, accumulate spontaneous DNA damage and are hypersensitive to ionizing radiation (Lancini et al., 2014) [4]. To address whether USP3 loss leads to deregulation of specific molecular pathways relevant to HSC homeostasis and/or B cell development, we have employed the RNA-sequencing technology and investigated transcriptional differences between wild-type and Usp3Δ/Δ LSK, naïve B cells or in vitro activated B cells. The data relate to the research article "Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells" (Lancini et al., 2014) [4]. The RNA-sequencing and analysis data sets have been deposited in NCBI׳s Gene Expression Omnibus (Edgar et al., 2002) [5] and are accessible through GEO Series accession number GSE58495 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58495). With this article, we present validation of the RNA-seq data set through quantitative real-time PCR and comparative analysis. PMID:26909367

  15. Quantitative analysis by next generation sequencing of hematopoietic stem and progenitor cells (LSK) and of splenic B cells transcriptomes from wild-type and Usp3-knockout mice

    PubMed Central

    Lancini, Cesare; Gargiulo, Gaetano; van den Berk, Paul C.M.; Citterio, Elisabetta

    2016-01-01

    The data described here provide genome-wide expression profiles of murine primitive hematopoietic stem and progenitor cells (LSK) and of B cell populations, obtained by high throughput sequencing. Cells are derived from wild-type mice and from mice deficient for the ubiquitin-specific protease 3 (USP3; Usp3Δ/Δ). Modification of histone proteins by ubiquitin plays a crucial role in the cellular response to DNA damage (DDR) (Jackson and Durocher, 2013) [1]. USP3 is a histone H2A deubiquitinating enzyme (DUB) that regulates ubiquitin-dependent DDR in response to DNA double-strand breaks (Nicassio et al., 2007; Doil et al., 2008) [2], [3]. Deletion of USP3 in mice increases the incidence of spontaneous tumors and affects hematopoiesis [4]. In particular, Usp3-knockout mice show progressive loss of B and T cells and decreased functional potential of hematopoietic stem cells (HSCs) during aging. USP3-deficient cells, including HSCs, display enhanced histone ubiquitination, accumulate spontaneous DNA damage and are hypersensitive to ionizing radiation (Lancini et al., 2014) [4]. To address whether USP3 loss leads to deregulation of specific molecular pathways relevant to HSC homeostasis and/or B cell development, we have employed the RNA-sequencing technology and investigated transcriptional differences between wild-type and Usp3Δ/Δ LSK, naïve B cells or in vitro activated B cells. The data relate to the research article “Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells” (Lancini et al., 2014) [4]. The RNA-sequencing and analysis data sets have been deposited in NCBI׳s Gene Expression Omnibus (Edgar et al., 2002) [5] and are accessible through GEO Series accession number GSE58495 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58495). With this article, we present validation of the RNA-seq data set through quantitative real-time PCR and comparative analysis. PMID:26909367

  16. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE PAGESBeta

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    2014-05-28

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[18F] fluoro-2-deoxy-d-glucose (18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected with a rangemore » of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  17. The impact of agrin on the formation of orthogonal arrays of particles in cultured astrocytes from wild-type and agrin-null mice.

    PubMed

    Fallier-Becker, Petra; Sperveslage, Jan; Wolburg, Hartwig; Noell, Susan

    2011-01-01

    Astrocytic endfeet membranes are studded with aquaporin-4 (AQP4) containing orthogonal arrays of particles (OAP) which can be visualized exclusively by the freeze-fracturing method. They are predominantly expressed where the astroglial membrane is in contact with the superficial and perivascular basal lamina. This polarity seems to be essential for the integrity of the blood-brain barrier (BBB). The basal lamina containing many extracellular matrix (ECM) components such as collagen, laminin and heparansulfate proteoglycans like agrin is thought to influence this OAP-related polarity of astrocytes. Recently, we have shown that agrin, in particular the neuronal isoform A4B8, is capable of influencing the formation of OAPs in astrocytes when cultured in the presence of agrin-conditioned media. In this paper we wanted to investigate whether coating with exogenous agrin compared to coating with other ECM components would induce OAP formation in astrocytes of the agrin-null mouse. For this purpose, we cultured astrocytes from agrin-null and wild-type mice on agrin- or ECM-coated surfaces. Immunofluorescent cytochemical staining of AQP4 indicated a higher AQP4 expression level in cultures with agrin- or ECM-coated than in cultures with uncoated surfaces, whereas western blot analyses and PCR showed no differences. α-Dystroglycan is thought to be a potential receptor of agrin and was immunostained in wild-type as well as in agrin-null astrocytes. In freeze-fracture replicas, we observed an increase in OAP density in astrocytes when growing on agrin- and ECM-coatings. These results concurred with other experiments in which changes in volume were measured following hypotonic stress, which supported the positive influence of exogenous agrin on AQP4 insertion into the membrane, on OAP formation and on water transport. PMID:20920487

  18. Dietary cladode powder from wild type and domesticated Opuntia species reduces atherogenesis in apoE knock-out mice.

    PubMed

    Garoby-Salom, Sandra; Guéraud, Françoise; Camaré, Caroline; de la Rosa, Ana-Paulina Barba; Rossignol, Michel; Santos Díaz, María del Socorro; Salvayre, Robert; Negre-Salvayre, Anne

    2016-03-01

    Dietary intake of Opuntia species may prevent the development of cardiovascular diseases. The present study was designed to characterize the biological antioxidant and anti-inflammatory properties of Opuntia species and to investigate whether Opuntia cladodes prevent the development of atherosclerosis in vivo, in apoE(-)KO mice. The effects of the two Opuntia species, the wild Opuntia streptacantha and the domesticated Opuntia ficus-indica, were tested on the generation of intra- and extracellular reactive oxygen species (ROS) production and kinetics of the LDL oxidation by murine CRL2181 endothelial cells and on the subsequent inflammatory signaling leading to the adhesion of monocytes on the activated endothelium and the formation of foam cells. Opuntia species blocked the extracellular ROS (superoxide anion) generation and LDL oxidation by CRL2181, as well as the intracellular ROS rise and signaling evoked by the oxidized LDL, including the nuclear translocation of the transcription factor NFκB, the expression of ICAM-1 and VCAM-1 adhesion molecules, and the adhesion of monocytes to CRL2181. In vivo, Opuntia significantly reduced the formation of atherosclerotic lesions and the accumulation of 4-hydroxynonenal adducts in the vascular wall of apoE-KO mice, indicating that Opuntia cladodes prevent lipid oxidation in the vascular wall. In conclusion, wild and domesticated Opuntia species exhibit antioxidant, anti-inflammatory, and antiatherogenic properties which emphasize their nutritional benefit for preventing cardiovascular diseases. PMID:26704378

  19. Decreased Npas4 and Arc mRNA Levels in the Hippocampus of Aged Memory-Impaired Wild-Type But Not Memory Preserved 11β-HSD1 Deficient Mice.

    PubMed

    Qiu, J; Dunbar, D R; Noble, J; Cairns, C; Carter, R; Kelly, V; Chapman, K E; Seckl, J R; Yau, J L W

    2016-01-01

    Mice deficient in the glucocorticoid-regenerating enzyme 11β-HSD1 resist age-related spatial memory impairment. To investigate the mechanisms and pathways involved, we used microarrays to identify differentially expressed hippocampal genes that associate with cognitive ageing and 11β-HSD1. Aged wild-type mice were separated into memory-impaired and unimpaired relative to young controls according to their performance in the Y-maze. All individual aged 11β-HSD1-deficient mice showed intact spatial memory. The majority of differentially expressed hippocampal genes were increased with ageing (e.g. immune/inflammatory response genes) with no genotype differences. However, the neuronal-specific transcription factor, Npas4, and immediate early gene, Arc, were reduced (relative to young) in the hippocampus of memory-impaired but not unimpaired aged wild-type or aged 11β-HSD1-deficient mice. A quantitative reverse transcriptase-polymerase chain reaction and in situ hybridisation confirmed reduced Npas4 and Arc mRNA expression in memory-impaired aged wild-type mice. These findings suggest that 11β-HSD1 may contribute to the decline in Npas4 and Arc mRNA levels associated with memory impairment during ageing, and that decreased activity of synaptic plasticity pathways involving Npas4 and Arc may, in part, underlie the memory deficits seen in cognitively-impaired aged wild-type mice. PMID:26563879

  20. Vitamin D2-Enriched Button Mushroom (Agaricus bisporus) Improves Memory in Both Wild Type and APPswe/PS1dE9 Transgenic Mice

    PubMed Central

    Bennett, Louise; Kersaitis, Cindy; Macaulay, Stuart Lance; Münch, Gerald; Niedermayer, Garry; Nigro, Julie; Payne, Matthew; Sheean, Paul; Vallotton, Pascal; Zabaras, Dimitrios; Bird, Michael

    2013-01-01

    Vitamin D deficiency is widespread, affecting over 30% of adult Australians, and increasing up to 80% for at-risk groups including the elderly (age>65). The role for Vitamin D in development of the central nervous system is supported by the association between Vitamin D deficiency and incidence of neurological and psychiatric disorders including Alzheimer’s disease (AD). A reported positive relationship between Vitamin D status and cognitive performance suggests that restoring Vitamin D status might provide a cognitive benefit to those with Vitamin D deficiency. Mushrooms are a rich source of ergosterol, which can be converted to Vitamin D2 by treatment with UV light, presenting a new and convenient dietary source of Vitamin D2. We hypothesised that Vitamin D2-enriched mushrooms (VDM) could prevent the cognitive and pathological abnormalities associated with dementia. Two month old wild type (B6C3) and AD transgenic (APPSwe/PS1dE9) mice were fed a diet either deficient in Vitamin D2 or a diet which was supplemented with VDM, containing 1±0.2 µg/kg (∼54 IU/kg) vitamin D2, for 7 months. Effects of the dietary intervention on memory were assessed pre- and post-feeding. Brain sections were evaluated for amyloid β (Aβ) plaque loads and inflammation biomarkers using immuno-histochemical methods. Plasma vitamin D metabolites, Aβ40, Aβ42, calcium, protein and cholesterol were measured using biochemical assays. Compared with mice on the control diet, VDM-fed wild type and AD transgenic mice displayed improved learning and memory, had significantly reduced amyloid plaque load and glial fibrillary acidic protein, and elevated interleukin-10 in the brain. The results suggest that VDM might provide a dietary source of Vitamin D2 and other bioactives for preventing memory-impairment in dementia. This study supports the need for a randomised clinical trial to determine whether or not VDM consumption can benefit cognitive performance in the wider population. PMID

  1. Formation of DNA adducts in wild-type and transgenic mice expressing human sulfotransferases 1A1 and 1A2 after oral exposure to furfuryl alcohol

    PubMed Central

    Høie, Anja Hortemo; Monien, Bernhard Hans; Sakhi, Amrit Kaur; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2015-01-01

    Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N 2-((furan-2-yl)methyl)-2′-deoxyguanosine (N 2-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC–MS/MS). Surprisingly, low levels of adducts that may represent N 2-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N 2-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine. PMID:25904584

  2. Pre- and postsynaptic modulations of hypoglossal motoneurons by α-adrenoceptor activation in wild-type and Mecp2−/Y mice

    PubMed Central

    Jin, Xiao-Tao; Cui, Ningren; Zhong, Weiwei; Jin, Xin; Wu, Zhongying

    2013-01-01

    Hypoglossal motoneurons (HNs) control tongue movement and play a role in maintenance of upper airway patency. Defects in these neurons may contribute to the development of sleep apnea and other cranial motor disorders including Rett syndrome (RTT). HNs are modulated by norepinephrine (NE) through α-adrenoceptors. Although postsynaptic mechanisms are known to play a role in this effect, how NE modulates the synaptic transmissions of HNs remains poorly understood. More importantly, the NE system is defective in RTT, while how the defect affects HNs is unknown. Believing that information of NE modulation of HNs may help the understanding of RTT and the design of new therapeutical interventions to motor defects in the disease, we performed these studies in which glycinergic inhibitory postsynaptic currents and intrinsic membrane properties were examined in wild-type and Mecp2−/Y mice, a mouse of model of RTT. We found that activation of α1-adrenoceptor facilitated glycinergic synaptic transmission and excited HNs. These effects were mediated by both pre- and postsynaptic mechanisms. The latter effect involved an inhibition of barium-sensitive G protein-dependent K+ currents. The pre- and postsynaptic modulations of the HNs by α1-adrenoceptors were not only retained in Mecp2-null mice but also markedly enhanced, which appears to be a compensatory mechanism for the deficiencies in NE and GABAergic synaptic transmission. The existence of the endogenous compensatory mechanism is an encouraging finding, as it may allow therapeutical modalities to alleviate motoneuronal defects in RTT. PMID:23986203

  3. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    PubMed Central

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-01-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues. PMID:26631592

  4. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  5. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice.

    PubMed

    Martin, Paul T; Xu, Rui; Rodino-Klapac, Louise R; Oglesbay, Elaine; Camboni, Marybeth; Montgomery, Chrystal L; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Sahenk, Zarife; Mendell, Jerry R; Janssen, Paul M L

    2009-03-01

    The cytotoxic T cell (CT) GalNAc transferase, or Galgt2, is a UDP-GalNAc:beta1,4-N-acetylgalactosaminyltransferase that is localized to the neuromuscular synapse in adult skeletal muscle, where it creates the synaptic CT carbohydrate antigen {GalNAcbeta1,4[NeuAc(orGc)alpha2, 3]Galbeta1,4GlcNAcbeta-}. Overexpression of Galgt2 in the skeletal muscles of transgenic mice inhibits the development of muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy. Here, we provide physiological evidence as to how Galgt2 may inhibit the development of muscle pathology in mdx animals. Both Galgt2 transgenic wild-type and mdx skeletal muscles showed a marked improvement in normalized isometric force during repetitive eccentric contractions relative to nontransgenic littermates, even using a paradigm where nontransgenic muscles had force reductions of 95% or more. Muscles from Galgt2 transgenic mice, however, showed a significant decrement in normalized specific force and in hindlimb and forelimb grip strength at some ages. Overexpression of Galgt2 in muscles of young adult mdx mice, where Galgt2 has no effect on muscle size, also caused a significant decrease in force drop during eccentric contractions and increased normalized specific force. A comparison of Galgt2 and microdystrophin overexpression using a therapeutically relevant intravascular gene delivery protocol showed Galgt2 was as effective as microdystrophin at preventing loss of force during eccentric contractions. These experiments provide a mechanism to explain why Galgt2 overexpression inhibits muscular dystrophy in mdx muscles. That overexpression also prevents loss of force in nondystrophic muscles suggests that Galgt2 is a therapeutic target with broad potential applications. PMID:19109526

  6. Impact of peptide transporter 1 on the intestinal absorption and pharmacokinetics of valacyclovir after oral dose escalation in wild-type and PepT1 knockout mice.

    PubMed

    Yang, Bei; Hu, Yongjun; Smith, David E

    2013-10-01

    The primary objective of this study was to determine the in vivo absorption properties of valacyclovir, including the potential for saturable proton-coupled oligopeptide transporter 1 (PepT1)-mediated intestinal uptake, after escalating oral doses of prodrug within the clinical dose range. A secondary aim was to characterize the role of PepT1 on the tissue distribution of its active metabolite, acyclovir. [³H]Valacyclovir was administered to wild-type (WT) and PepT1 knockout (KO) mice by oral gavage at doses of 10, 25, 50, and 100 nmol/g. Serial blood samples were collected over 180 minutes, and tissue distribution studies were performed 20 minutes after a 25-nmol/g oral dose of valacyclovir. We found that the C(max) and area under the curve (AUC)₀₋₁₈₀ of acyclovir were 4- to 6-fold and 2- to 3-fold lower, respectively, in KO mice for all four oral doses of valacyclovir. The time to peak concentration of acyclovir was 3- to 10-fold longer in KO compared with WT mice. There was dose proportionality in the C(max) and AUC₀₋₁₈₀ of acyclovir in WT and KO mice over the valacyclovir oral dose range of 10-100 nmol/g (i.e., linear absorption kinetics). No differences were observed in the peripheral tissue distribution of acyclovir once these tissues were adjusted for differences in perfusing drug concentrations in the systemic circulation. In contrast, some differences were observed between genotypes in the concentrations of acyclovir in the distal intestine. Collectively, the findings demonstrate a critical role of intestinal PepT1 in improving the rate and extent of oral absorption for valacyclovir. Moreover, this study provides definitive evidence for the rational development of a PepT1-targeted prodrug strategy. PMID:23924683

  7. Direct and indirect mechanisms for wild-type SOD1 to enhance the toxicity of mutant SOD1 in bigenic transgenic mice

    PubMed Central

    Xu, Guilian; Ayers, Jacob I.; Roberts, Brittany L.; Brown, Hilda; Fromholt, Susan; Green, Cameron; Borchelt, David R.

    2015-01-01

    Co-expression of wild-type human superoxide dismutase 1 (WT-hSOD1) with ALS mutant hSOD1 accelerates disease onset relative to mice expressing only mutant protein. Here, we analyzed the effect of co-expressed WT-hSOD1 in two established mutant mouse models (L126Z and G37R), and a new model that expresses the first 102 amino acids of SOD1 with mutations at histidines 46, 48 and 63 to eliminate Cu binding (Cu-V103Z). A subset of Cu-V103Z mice developed paralysis between 500 and 730 days. Similar to mice expressing L126Z-SOD1, the spinal cords of this new model showed SOD1 immunoreactive fibrillar inclusions. Co-expression of WT-hSOD1 with Cu-V103Z SOD1 moderately accelerated the age to paralysis, similar in magnitude to WT/L126Z mice. In either combination of these bigenic mice, the severity of fibrillar inclusion pathology was diminished and unreactive to antibodies specific for the C terminus of WT protein. Co-expression of WT-hSOD1 fused to yellow fluorescent protein (WT-hSOD1:YFP) with G37R-hSOD1 produced earlier disease, and spinal cords of paralyzed bigenic mice showed YFP fluorescent inclusion-like structures. In bigenic L126Z/WT-hSOD1:YFP mice, disease was not accelerated and WT-hSOD1:YFP remained diffusely distributed. A combination of split luciferase complementation assays and affinity capture-binding assays demonstrated that soluble G37R-hSOD1 efficiently and tightly bound soluble WT-hSOD1, whereas soluble forms of the Cu-V103Z and L126Z variants demonstrated low affinity. These data indicate that WT-hSOD1 may indirectly augment the toxicity of mutant protein by competing for protective factors, but disease onset seems to be most accelerated when WT-hSOD1 interacts with mutant SOD1 and becomes misfolded. PMID:25305079

  8. Direct and indirect mechanisms for wild-type SOD1 to enhance the toxicity of mutant SOD1 in bigenic transgenic mice.

    PubMed

    Xu, Guilian; Ayers, Jacob I; Roberts, Brittany L; Brown, Hilda; Fromholt, Susan; Green, Cameron; Borchelt, David R

    2015-02-15

    Co-expression of wild-type human superoxide dismutase 1 (WT-hSOD1) with ALS mutant hSOD1 accelerates disease onset relative to mice expressing only mutant protein. Here, we analyzed the effect of co-expressed WT-hSOD1 in two established mutant mouse models (L126Z and G37R), and a new model that expresses the first 102 amino acids of SOD1 with mutations at histidines 46, 48 and 63 to eliminate Cu binding (Cu-V103Z). A subset of Cu-V103Z mice developed paralysis between 500 and 730 days. Similar to mice expressing L126Z-SOD1, the spinal cords of this new model showed SOD1 immunoreactive fibrillar inclusions. Co-expression of WT-hSOD1 with Cu-V103Z SOD1 moderately accelerated the age to paralysis, similar in magnitude to WT/L126Z mice. In either combination of these bigenic mice, the severity of fibrillar inclusion pathology was diminished and unreactive to antibodies specific for the C terminus of WT protein. Co-expression of WT-hSOD1 fused to yellow fluorescent protein (WT-hSOD1:YFP) with G37R-hSOD1 produced earlier disease, and spinal cords of paralyzed bigenic mice showed YFP fluorescent inclusion-like structures. In bigenic L126Z/WT-hSOD1:YFP mice, disease was not accelerated and WT-hSOD1:YFP remained diffusely distributed. A combination of split luciferase complementation assays and affinity capture-binding assays demonstrated that soluble G37R-hSOD1 efficiently and tightly bound soluble WT-hSOD1, whereas soluble forms of the Cu-V103Z and L126Z variants demonstrated low affinity. These data indicate that WT-hSOD1 may indirectly augment the toxicity of mutant protein by competing for protective factors, but disease onset seems to be most accelerated when WT-hSOD1 interacts with mutant SOD1 and becomes misfolded. PMID:25305079

  9. Expression pattern of matrix metalloproteinase and TIMP genes in fibroblasts derived from Ets-1 knock-out mice compared to wild-type mouse fibroblasts.

    PubMed

    Hahne, Jens Claus; Fuchs, Tanja; El Mustapha, Haddouti; Okuducu, Ali Fuat; Bories, Jean Christophe; Wernert, Nicolas

    2006-07-01

    Matrix-degrading proteases play a key role in normal development, wound healing, many diseases such as rheumatoid arthritis and, in particular, tumour invasion. In invasive tumours, these enzymes are expressed by fibroblasts of the tumour stroma. Their expression and activity are tightly regulated at several levels, an important one being transcription. Previous in vitro and in vivo findings pointed to a major role of the Ets-1 transcription factor for this level of regulation. In the present study, we tried to prove this role in fibroblasts. We stimulated wild-type mouse fibroblasts with physiological doses of basic fibroblast growth factor (bFGF, known to induce different proteases and expressed by tumour cells) and compared the results to those obtained in Ets-1 -/- fibroblasts derived from Ets-1 knock-out mice. We found that basal Ets-1 levels are necessary not only for a fast induction of MMPs 2, 3 and 13 by bFGF but also for maintenance of the bFGF-induced expression of tissue inhibitors of metalloproteinases (TIMPs) 1, 2 and 3, which are known not only to inhibit but also participate as activators of certain pro-MMPs. PMID:16786167

  10. MicroRNA-128-3p impaired water maze learning by suppressing Doublecortin expression in both wild type and Aβ-42 infused mice.

    PubMed

    Chen, Jinlong; Li, Wen; Li, Yuan; He, Songwei; Li, Lingyu; Liang, Lining; Song, Yancheng; Qin, Dajiang; Zheng, Hui

    2016-07-28

    MicroRNA-128-3p (miR-128) is a brain-enriched microRNA reported to target Doublecortin (Dcx), a key transcriptional factor during adult neurogenesis. However, the downstream physiological effects of this miR-128-DCX axis remain unclear. Here we demonstrated that miR-128 could suppress Dcx expression by complementally binding to the -849 to -856 region of the 3'UTR of mouse Dcx. During differentiation of neural stem cells, over-expressing miR-128 with a lentivirus system inhibited the up-regulation of Dcx on Day 5, subsequently decreasing the percentage of TuJ+ cells on Day 16. Administration of the lentivirus encoding miR-128 into mouse hippocampi significantly impaired water maze learning after 14days, which could be attenuated when the Dcx-encoding virus was delivered simultaneously. In addition, similar changes including miR-128 up-regulation, Dcx down-regulation and learning defects were observed after a 14-day infusion of Aβ-42, which were also partially reversed by over-expressing Dcx. Collectively, the regulation axis from miR-128 to Dcx is critical for hippocampus-related contextual learning not only in wild type, but also in mice infused with Aβ-42. PMID:27222923

  11. Expression of wild-type and mutant simian virus 40 large tumor antigens in villus-associated enterocytes of transgenic mice.

    PubMed Central

    Kim, S H; Roth, K A; Coopersmith, C M; Pipas, J M; Gordon, J I

    1994-01-01

    The four principal gut epithelial cell lineages undergo continuous and rapid renewal during a geographically well-organized migration along the crypt-to-villus axis. The molecules that regulate their proliferation and differentiation programs are largely unknown. The large tumor antigen (TAg) of wild-type (wt) simian virus 40 (SV40) and its mutant derivatives represent tools for describing the contributions of regulators of the cell cycle to the proliferative state of each lineage. Expression of SV40 TAgwt in postmitotic, villus-associated enterocytes of transgenic mice causes them to reenter the cell cycle without an apparent effect on their state of differentiation. When human KRAS with a Val-12 substitution ([Val12]KRAS) is coexpressed with SV40 TAgwt in villus enterocytes of bitransgenic animals, the two oncoproteins cooperate to produce dedifferentiation (dysplasia). SV40 mutant d11137 expresses a TAg that is unable to complex with p53 but retains N-terminal transforming functions, including the ability to complex pRB, p107, and p300. When SV40 TAgd11137 is expressed in villus enterocytes, they reenter into the cell cycle. However, coexpression of SV40 TAgd11137 and [Val12]KRAS does not produce dysplastic changes. Thus, the N-terminal 121 residues of TAg are sufficient to perturb the proliferative state of the enterocyte but not to produce detectable changes in the state of differentiation when coexpressed with [Val12]KRAS. Images PMID:8041720

  12. High Affinity Dopamine D3 Receptor (D3R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D3R Knockout Mice.

    PubMed

    Boateng, Comfort A; Bakare, Oluyomi M; Zhan, Jia; Banala, Ashwini K; Burzynski, Caitlin; Pommier, Elie; Keck, Thomas M; Donthamsetti, Prashant; Javitch, Jonathan A; Rais, Rana; Slusher, Barbara S; Xi, Zheng-Xiong; Newman, Amy Hauck

    2015-08-13

    The dopamine D3 receptor (D3R) is a promising target for the development of pharmacotherapeutics to treat substance use disorders. Several D3R-selective antagonists are effective in animal models of drug abuse, especially in models of relapse. Nevertheless, poor bioavailability, metabolic instability, and/or predicted toxicity have impeded success in translating these drug candidates to clinical use. Herein, we report a series of D3R-selective 4-phenylpiperazines with improved metabolic stability. A subset of these compounds was evaluated for D3R functional efficacy and off-target binding at selected 5-HT receptor subtypes, where significant overlap in SAR with D3R has been observed. Several high affinity D3R antagonists, including compounds 16 (Ki = 0.12 nM) and 32 (Ki = 0.35 nM), showed improved metabolic stability compared to the parent compound, PG648 (6). Notably, 16 and the classic D3R antagonist SB277011A (2) were effective in reducing self-administration of heroin in wild-type but not D3R knockout mice. PMID:26203768

  13. Perseveration by NK1R-/- ('knockout') mice is blunted by doses of methylphenidate that affect neither other aspects of their cognitive performance nor the behaviour of wild-type mice in the 5-Choice Continuous Performance Test.

    PubMed

    Pillidge, Katharine; Porter, Ashley J; Young, Jared W; Stanford, S Clare

    2016-09-01

    The underlying cause(s) of abnormalities expressed by patients with attention deficit hyperactivity disorder (ADHD) have yet to be delineated. One factor that has been associated with increased vulnerability to ADHD is polymorphism(s) of TACR1, which is the human equivalent of the rodent NK1 (substance P-preferring) receptor gene (Nk1r). We have reported previously that genetically altered mice, lacking functional NK1R (NK1R-/-), express locomotor hyperactivity, which was blunted by the first-line treatment for ADHD, methylphenidate. Here, we compared the effects of this psychostimulant (3, 10 and 30 mg/kg, intraperitoneally) on the behaviour of NK1R-/- mice and their wild types in the 5-Choice Continuous Performance Test, which emulates procedures used to study attention and response control in ADHD patients. Methylphenidate increased total trials (a measure of 'productivity') completed by wild types, but not by NK1R-/- mice. Conversely, this drug reduced perseveration by NK1R-/- mice, but not by wild types. Other drug-induced changes in key behaviours were not genotype dependent, especially at the highest dose: for example, % omissions (an index of inattentiveness) was increased, whereas % false alarms and % premature responses (measures of impulsivity) declined in both genotypes, indicating reduced overall response. These findings are discussed in the context of the efficacy of methylphenidate in the treatment of ADHD. Moreover, they lead to several testable proposals. First, methylphenidate does not improve attention in a subgroup of ADHD patients with a functional deficit of TACR1. Second, these patients do not express excessive false alarms when compared with other groups of subjects, but they do express excessive perseveration, which would be ameliorated by methylphenidate. PMID:27097734

  14. A local insult of okadaic acid in wild-type mice induces tau phosphorylation and protein aggregation in anatomically distinct brain regions.

    PubMed

    Baker, Siân; Götz, Jürgen

    2016-01-01

    In Alzheimer's disease (AD), the distribution and density of neurofibrillary tangles, a histological hallmark comprised predominately of phosphorylated tau protein, follows a distinct pattern through anatomically connected brain regions. Studies in transgenic mice engineered to regionally confine tau expression have suggested spreading of tau within neural networks. Furthermore, injection of protein lysates isolated from brains of transgenic mice or patients with tauopathies, including AD, were shown to behave like seeds, accelerating tau pathology and tangle formation in predisposed mice. However, it remains unclear how the initiation of primary aggregation events occurs and what triggers further dissemination throughout the neural system. To consolidate these findings, we pursued an alternative approach to assess the spreading of endogenous phosphorylated tau. To generate endogenous seeds, 130 nl of 100 μM protein phosphatase 2A inhibitor okadaic acid (OA) was injected unilaterally into the amygdala of 8-month-old C57Bl/6 wild-type mice. OA was detected in brain tissue by ELISA, and found to be restricted to the injected hemispheric quadrant, where it remained detectable a week post-injection. OA injection induced tau phosphorylation that was observed not only at the injection site but also in anatomically distinct areas across both hemispheres, including the cortex and hippocampus 24 h post-injection. An increase in insoluble tau was also observed in both hemispheres of injected brains by 7 days. Furthermore, thioflavin-S detected protein aggregation at the injection site and in the cortex of both injected and contralateral hemispheres. OA injection induced no thioflavin-positivity in tau knock-out mice. The data demonstrates that a local OA insult can rapidly initiate changes in protein phosphorylation, solubility and aggregation at anatomically distant sites. This model suggests that tau phosphorylation can be both a primary response to an insult, and a

  15. Comparing Gene Expression during Cadmium Uptake and Distribution: Untreated versus Oral Cd-Treated Wild-Type and ZIP14 Knockout Mice

    PubMed Central

    Jorge-Nebert, Lucia F.; Gálvez-Peralta, Marina; Landero Figueroa, Julio; Somarathna, Maheshika; Hojyo, Shintaro; Fukada, Toshiyuki; Nebert, Daniel W.

    2015-01-01

    The nonessential metal cadmium (Cd) is toxic only after entering the cell. Proteins possibly relevant to intracellular Cd accumulation include the divalent metal transporter-1 (DMT1) and all 14 zinc-like iron-like protein (ZIP) importers, 10 zinc transporter (ZnT) exporters, and metallothionein chaperones MT1 and MT2. Comparing oral Cd-treated ZIP14 knockout (KO) with wild-type (WT) mice, we predicted Cd uptake and distribution would be diminished in the KO—because ZIP14 is very highly expressed in GI tract and liver; this was indeed observed for Cd content in liver. However, the reverse was found in kidney and lung from 6 or 12 h through 10 days of Cd exposure; at these times, Cd accumulation was unexpectedly greater in KO than WT mice; mRNA levels of the 27 above-mentioned genes were thus examined in proximal small intestine (PSI) versus kidney to see if these paradoxical effects could be explained by substantial alterations in any of the other 26 genes. PSI genes highly expressed in untreated WT animals included seven ZIP and five ZnT transporters, DMT1, MT1, and MT2; kidney genes included 11 ZIP and 7 ZnT transporters, DMT1, MT1, and MT2. Over 10 days of oral Cd, a bimodal response was seen for Cd content in PSI and for various mRNAs; initially, acute effects caused by the toxic metal; subsequently, the up- or down-regulation of important genes presumably to combat the sustained adversity. These data underscore the complex interplay between the gastrointestinal tract and renal proteins that might be relevant to Cd uptake and distribution in animals exposed to oral Cd. PMID:25294218

  16. Generation of Aorta Transcript Atlases of Wild-Type and Apolipoprotein E-null Mice by Laser Capture Microdissection-Based mRNA Expression Microarrays.

    PubMed

    Yin, Changjun; Mohanta, Sarajo; Ma, Zhe; Weber, Christian; Hu, Desheng; Weih, Falk; Habenicht, Andreas

    2015-01-01

    Atherosclerosis is a transmural chronic inflammatory disease of medium and large arteries. Though it is well recognized that immune responses contribute to atherosclerosis, it remains unclear whether these responses are carried out in secondary lymphoid organs such as the spleen and lymph nodes and/or within the arterial wall. Arteries are composed of three major layers, i.e., the laminae intima, media, and adventitia. However, each of these layers may play different roles in arterial wall biology and atherogenesis. We identified well-structured artery tertiary lymphoid organs (ATLOs) in the abdominal aorta adventitia but not in the intima of aged apolipoprotein E-null (ApoE(-/-)) mice. These observations suggested that disease-associated immune responses are highly territorialized within the arterial wall and that the adventitia may play distinct and hitherto unrecognized roles. Here, we set out to apply laser capture microdissection (LCM) to dissect plaque, media, adventitia, and adjacent aorta-draining lymph nodes (LN) in aged ApoE(-/-) mice in attempts to establish the territoriality of atherosclerosis immune responses. Using whole-genome mRNA expression microarrays of arterial wall tissues, we constructed robust transcript atlases of wild-type and ApoE(-/-) mouse aortas. Data were deposited in the National Center for Biotechnology Information's gene expression omnibus (GEO) and are accessible to the public through the Internet. These transcript atlases are anticipated to prove valuable to address a wide scope of issues ranging from atherosclerosis immunity and inflammation to the role of single genes in regulating arterial wall remodeling. This chapter presents protocols for LCM of mouse aorta and microarray expression analysis from LCM-isolated aorta laminae. PMID:26445797

  17. CYP1A1 and CYP1A2 expression: comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines.

    PubMed

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how "human-like" can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  18. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    SciTech Connect

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  19. Decline of microtubule-associated protein tau after experimental stroke in differently aged wild-type and 3xTg mice with Alzheimer-like alterations.

    PubMed

    Michalski, Dominik; Preißler, Hartmut; Hofmann, Sarah; Kacza, Johannes; Härtig, Wolfgang

    2016-08-25

    Stroke therapies are still limited to a minority of patients. Considering time-dependent aspects of stroke, the penumbra concept describes the transition from functional to permanent tissue damage. Thereby, the role of cytoskeletal elements, as for instance microtubules with associated tau remains poorly understood and is therefore not yet considered for therapeutic approaches. This study explored the expression of microtubule-associated protein tau related to neuronal damage in stroke-affected brain regions. Wild-type and triple-transgenic mice of 3, 7 and 12months of age and with an Alzheimer-like background underwent experimental stroke. After 24h, brain sections were used for immunofluorescence labeling of tau and Neuronal Nuclei (NeuN). Potential functional consequences of cellular alterations were explored by statistical relationships to the general health condition, i.e. neurobehavioral deficits and loss of body weight. Immunoreactivity for whole tau decreased significantly in ischemic areas, while the decline at the border zone was more drastic for tau-immunoreactivity compared with the diminished NeuN labeling. Quantitative analyses confirmed pronounced sensitivity for tau-immunoreactivity in the ischemic border zone. Decline of tau- as well as NeuN-immunoreactivity correlated with body weight loss during the 24-h observation period. In conclusion, microtubule-associated protein tau was robustly identified as a highly sensitive cytoskeletal constitute under ischemic conditions, suggesting a pivotal role during the transition process toward long-lasting tissue damage. Consequently, cytoskeletal elements appear as promising targets for novel therapeutic approaches with the objective to impede ischemia-induced irreversible cellular degradation. PMID:27189884

  20. Ethanol and 4-methylpyrazole increase DNA adduct formation of furfuryl alcohol in FVB/N wild-type mice and in mice expressing human sulfotransferases 1A1/1A2.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-03-01

    Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans. PMID:26775039

  1. Effects of Ketoconazole on the Biodistribution and Metabolism of [11C]Loperamide and [11C]N-Desmethyl-loperamide in Wild-type and P-gp Knockout Mice

    PubMed Central

    Seneca, Nicholas; Zoghbi, Sami S.; Shetty, H. Umesha; Tuan, Edward; Kannan, Pavitra; Taku, Andrew; Innis, Robert B.; Pike, Victor W.

    2010-01-01

    Introduction [11C]Loperamide and [11C]N-desmethyl-loperamide ([11C]dLop) have been proposed as radiotracers for imaging brain P-glycoprotein (P-gp) function. A major route of [11C]loperamide metabolism is N-demethylation to [11C]dLop. We aimed to test whether inhibition of CYP3A4 with ketoconazole might reduce the metabolism of [11C]loperamide and [11C]dLop in mice, and thereby improve the quality of these radiotracers. Methods Studies were performed in wild-type and P-gp knockout (mdr–1a/b −/−) mice. During each of seven study sessions, one pair of mice, comprising one wild-type and one knockout mouse, waspretreated with ketoconazole (50 mg/kg, i.p.) while another such pair was left untreated. Mice were sacrificed at 30 min after injection of [11C]loperamide or [11C]dLop. Whole brain and plasma samples were measured for radioactivity and analyzed with radio-HPLC. Results Ketoconazole increased the plasma concentrations of [11C]loperamide and its main radiometabolite, [11C]dLop, by about two-fold in both wild-type and knockout mice, whereas the most polar radiometabolite was decreased three-fold. Furthermore, ketoconazole increased the brain concentrations of [11C]loperamide and the radiometabolite [11C]dLop by about two-fold in knockout mice, and decreased the brain concentrations of the major and most polar radiometabolite in wild-type and knockout mice by 82 and 49%, respectively. In contrast, ketoconazole had no effect on plasma and brain distribution of administered [11C]dLop and its radiometabolites in either wild-type or knockout mice, except to increase the low plasma [11C]dLop concentration. The least polar radiometabolite of [11C]dLop was identified with LC-MSn as the N-hydroxymethyl analog of [11C]dLop and this also behaved as a P-gp substrate. Conclusion In this study, ketoconazole (50 mg/kg, i.p.) proved partiallyeffective for inhibiting the N-demethylation of [11C]loperamide in mouse in vivo but had relatively smaller or no effect on [11C

  2. Ablation of Prion Protein in Wild Type Human Amyloid Precursor Protein (APP) Transgenic Mice Does Not Alter The Proteolysis of APP, Levels of Amyloid-β or Pathologic Phenotype.

    PubMed

    Whitehouse, Isobel J; Brown, Deborah; Baybutt, Herbert; Diack, Abigail B; Kellett, Katherine A B; Piccardo, Pedro; Manson, Jean C; Hooper, Nigel M

    2016-01-01

    The cellular prion protein (PrPC) has been proposed to play an important role in the pathogenesis of Alzheimer's disease. In cellular models PrPC inhibited the action of the β-secretase BACE1 on wild type amyloid precursor protein resulting in a reduction in amyloid-β (Aβ) peptides. Here we have assessed the effect of genetic ablation of PrPC in transgenic mice expressing human wild type amyloid precursor protein (line I5). Deletion of PrPC had no effect on the α- and β-secretase proteolysis of the amyloid precursor protein (APP) nor on the amount of Aβ38, Aβ40 or Aβ42 in the brains of the mice. In addition, ablation of PrPC did not alter Aβ deposition or histopathology phenotype in this transgenic model. Thus using this transgenic model we could not provide evidence to support the hypothesis that PrPC regulates Aβ production. PMID:27447728

  3. Ablation of Prion Protein in Wild Type Human Amyloid Precursor Protein (APP) Transgenic Mice Does Not Alter The Proteolysis of APP, Levels of Amyloid-β or Pathologic Phenotype

    PubMed Central

    Baybutt, Herbert; Diack, Abigail B.; Kellett, Katherine A. B.; Piccardo, Pedro; Manson, Jean C.

    2016-01-01

    The cellular prion protein (PrPC) has been proposed to play an important role in the pathogenesis of Alzheimer’s disease. In cellular models PrPC inhibited the action of the β-secretase BACE1 on wild type amyloid precursor protein resulting in a reduction in amyloid-β (Aβ) peptides. Here we have assessed the effect of genetic ablation of PrPC in transgenic mice expressing human wild type amyloid precursor protein (line I5). Deletion of PrPC had no effect on the α- and β-secretase proteolysis of the amyloid precursor protein (APP) nor on the amount of Aβ38, Aβ40 or Aβ42 in the brains of the mice. In addition, ablation of PrPC did not alter Aβ deposition or histopathology phenotype in this transgenic model. Thus using this transgenic model we could not provide evidence to support the hypothesis that PrPC regulates Aβ production. PMID:27447728

  4. Effects of Lewis lung carcinoma on trabecular microstructural changes in wild-type and plasminogen activator inhibitor-1 deficient mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone is a major target organ of metastasis. The present study investigated the effects of Lewis lung carcinoma (LLC) on trabecular microstructural changes, using tomographic analysis, in distal femur and lumbar 4 vertebra from LLC-bearing wild-type and plasminogen activator inhibitor-1 (PAI-1) defi...

  5. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel subsulfide, and on tumor transplants growth in gulonolactone oxidase knock-out mice and wild-type C57BL mice

    SciTech Connect

    Kasprzak, Kazimierz S.; Diwan, Bhalchandra A.; Kaczmarek, Monika Z.; Logsdon, Daniel L.; Fivash, Mathew J.; Salnikow, Konstantin

    2011-11-15

    The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono- < gamma > -lactone oxidase gene knock-out mice (Gulo-/- mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni{sub 3}S{sub 2}), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo-/- and WT mice and the growth of these tumors was measured for up to 3 months. The two strains of mice differed significantly with regard to (1) Ni{sub 3}S{sub 2} carcinogenesis: Gulo-/- mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo-/- mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni{sub 3}S{sub 2}. Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni{sub 3}S{sub 2} in Gulo-/- mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo-/- mice more susceptible to Ni{sub 3}S{sub 2} carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni{sub 3}S{sub 2} and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies. -- Highlights: Black-Right-Pointing-Pointer Ascorbate depletion enhances carcinogenicity and acute toxicity of nickel. Black-Right-Pointing-Pointer Gulo-/- mice unable to synthesize ascorbate were used in this study. Black

  6. Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2.

    PubMed

    Bauer-Marinovic, Morana; Taugner, Felicitas; Florian, Simone; Glatt, Hansruedi

    2012-05-01

    5-Sulphooxymethylfurfural (SMF), an electrophilic metabolite of the abundant Maillard product 5-hydroxymethylfurfural (HMF), was intraperitoneally administered to FVB/N mice. At a dosage of 250 mg/kg, most animals died after 5-11 days due to massive damage to proximal tubules. At lower dosages, administered repeatedly, tubules also were the major target of toxicity, with regeneration and atypical hyperplasia occurring at later periods. Additionally, hepatotoxic effects and serositis of peritoneal tissues were observed. SMF is a minor metabolite of HMF in conventional mice, but HMF is an excellent substrate for a major sulphotransferase (hSULT1A1) in humans. Parental FVB/N mice and FVB/N-hSULT1A1/2 mice, carrying multiple copies of the hSULT1A1/2 gene cluster, were exposed to HMF in drinking water (0, 134 and 536 mg/kg body mass/day) for 12 weeks. Nephrotoxic effects and enhanced proliferation of hepatocytes were only detected at the high dosage. They were mild and, surprisingly, unaffected by hSULT1A1/2 expression. Thus, SMF was a potent nephrotoxicant when administered as a bolus, but did not reach levels sufficient to produce serious toxicity when generated from HMF administered continuously via drinking water. This was even the case in transgenic mice expressing clearly higher HMF sulphation activity in liver and kidney than humans. PMID:22349055

  7. The ESA Mice in Space (MIS) habitat: effects of cage confinement on neuromusculoskeletal structure and function and stress/behavior using wild-type C57Bl/6JRj mice in a modular science reference model (MSRM) test on ground

    NASA Astrophysics Data System (ADS)

    Blottner, Dieter; Vico, Laurence; Jamon, D. Berckmansp L. Vicop Y. Liup R. Canceddap M.

    Background: Environmental conditions likely affect physiology and behaviour of mice used for Life Sciences Research on Earth and in Space. Thus, mice habitats with sufficient statistical numbers should be developed for adequate life support and care and that should meet all nesces-sary ethical and scientific requirements needed to successfully perform animal experimentation in Space. Aim of study: We here analysed the effects of cage confinement on the weightbear-ing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based MSRM (modular science ref-erence module) in the frame of breadboard activities for a fully automated life support habitat called "Mice in Space" (MIS) at the Leuven University, Belgium. Results: Compared with control housing (individually ventilated cages, IVC-mice) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, ag-gressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). Conclusions: The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure on orbit as planned for future biosatellite programmes. Sponsors: ESA-ESTEC, Noordwijk, NL

  8. Analysis of dibenzo[def,p]chrysene-deoxyadenosine adducts in wild-type and cytochrome P450 1b1 knockout mice using stable-isotope dilution UHPLC-MS/MS.

    PubMed

    Harper, Tod A; Morré, Jeff; Lauer, Fredine T; McQuistan, Tammie J; Hummel, Jessica M; Burchiel, Scott W; Williams, David E

    2015-04-01

    The polycyclic aromatic hydrocarbon (PAH), dibenzo[def,p]chrysene (DBC; also known as dibenzo[a,l]pyrene), is a potent carcinogen in animal models and a class 2A human carcinogen. Recent investigations into DBC-mediated toxicity identified DBC as a potent immunosuppressive agent similar to the well-studied immunotoxicant 7,12-dimethylbenz[a]anthracene (DMBA). DBC, like DMBA, is bioactivated by cytochrome P450 (CYP) 1B1 and forms the reactive metabolite DBC-11,12-diol-13,14-epoxide (DBCDE). DBCDE is largely responsible for the genotoxicity associated with DBC exposure. The immunosuppressive properties of several PAHs are also linked to genotoxic mechanisms. Therefore, this study was designed to identify DBCDE-DNA adduct formation in the spleen and thymus of wild-type and cytochrome P450 1b1 (Cyp1b1) knockout (KO) mice using a highly sensitive stable-isotope dilution UHPLC-MS/MS method. Stable-isotope dilution UHPLC-MS/MS identified the major DBC adducts (±)-anti-cis-DBCDE-dA and (±)-anti-trans-DBCDE-dA in the lung, liver, and spleen of both WT and Cyp1b1 KO mice. However, adduct formation in the thymus was below the level of quantitation for our method. Additionally, adduct formation in Cyp1b1 KO mice was significantly reduced compared to wild-type (WT) mice receiving DBC via oral gavage. In conclusion, the current study identifies for the first time DBCDE-dA adducts in the spleen of mice supporting the link between genotoxicity and immunosuppression, in addition to supporting previous studies identifying Cyp1b1 as the primary CYP involved in DBC bioactivation to DBCDE. The high levels of DBC-DNA adducts identified in the spleen, along with the known high levels of Cyp1b1 expression in this organ, supports further investigation into DBC-mediated immunotoxicity. PMID:25868132

  9. Analysis of Dibenzo[def,p]chrysene-Deoxyadenosine Adducts in Wild-Type and Cytochrome P450 1b1 Knockout Mice using Stable-Isotope Dilution UHPLC-MS/MS

    PubMed Central

    Harper, Tod A.; Morré, Jeff; Lauer, Fredine T.; McQuistan, Tammie J.; Hummel, Jessica M.; Burchiel, Scott W.; Williams, David E.

    2015-01-01

    The polycyclic aromatic hydrocarbon (PAH), dibenzo[def,p]chrysene (DBC; also known as dibenzo[a,l]pyrene), is a potent carcinogen in animal models and a class 2A human carcinogen. Recent investigations into DBC-mediated toxicity identified DBC as a potent immunosuppressive agent similar to the well-studied immunotoxicant 7,12-dimethylbenz[a]anthracene (DMBA). DBC, like DMBA, is bioactivated by cytochrome P450 (CYP) 1B1 and forms the reactive metabolite DBC-11,12-diol-13,14-epoxide (DBCDE). DBCDE is largely responsible for the genotoxicity associated with DBC exposure. The immunosuppressive properties of several PAHs are also linked to genotoxic mechanisms. Therefore, this study was designed to identify DBCDE-DNA adduct formation in the spleen and thymus of wild-type and cytochrome P450 1b1 (Cyp1b1) knockout (KO) mice using a highly sensitive stable-isotope dilution UHPLC-MS/MS method. Stable-isotope dilution UHPLC-MS/MS identified the major DBC adducts (±)-anti-cis-DBCDE-dA and (±)-anti-trans-DBCDE-dA in the lung, liver, and spleen of both WT and Cyp1b1 KO mice. However, adduct formation in the thymus was below the level of quantitation for our method. Additionally, adduct formation in Cyp1b1 KO mice was significantly reduced compared to wild-type (WT) mice receiving DBC via oral gavage. In conclusion, the current study identifies for the first time DBCDE-dA adducts in the spleen of mice supporting the link between genotoxicity and immunosuppression, in addition to supporting previous studies identifying Cyp1b1 as the primary CYP involved in DBC bioactivation to DBCDE. The high levels of DBC-DNA adducts identified in the spleen, along with the known high levels of Cyp1b1 expression in this organ, supports further investigation into DBC-mediated immunotoxicity. PMID:25868132

  10. Variations in polyoma virus genotype in relation to tumor induction in mice. Characterization of wild type strains with widely differing tumor profiles.

    PubMed Central

    Dawe, C. J.; Freund, R.; Mandel, G.; Ballmer-Hofer, K.; Talmage, D. A.; Benjamin, T. L.

    1987-01-01

    The authors have explored the effects of variations in mouse polyoma virus genotype on patterns of tumor formation in the mouse. Four "wild type" virus strains were surveyed. Two were highly oncogenic, inducing multiple tumors of epithelial and mesenchymal origin, at high frequency and with short latency. The other two strains were weakly oncogenic, inducing fewer tumors, solely of mesenchymal origin, and after a long latency. These sharply contrasting tumor profiles were reproduced with virus stocks derived from molecularly cloned viral genomes. Though vastly different in their oncogenic properties, these cloned viruses proved equally effective in transforming established rat fibroblasts in culture and showed the same patterns of tumor antigen expression in cultured mouse cells. Complexes of polyoma middle T antigen and pp60c-src were demonstrated in extracts of epithelial tumors induced by a highly oncogenic virus strain. It is concluded that polyoma viral genetic determinants for tumor induction in the mouse are more complex than those previously defined by the use of cell transformation systems. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:2437801

  11. Detailed O-glycomics of the Muc2 mucin from colon of wild-type, core 1- and core 3-transferase-deficient mice highlights differences compared with human MUC2

    PubMed Central

    Thomsson, Kristina A; Holmén-Larsson, Jessica M; Ångström, Jonas; Johansson, Malin EV; Xia, Lijun; Hansson, Gunnar C

    2012-01-01

    The heavily O-glycosylated mucin MUC2 constitutes the major protein in the mucosal layer that acts as a physical barrier protecting the epithelial layer in the colon. In this study, Muc2 was purified from mucosal scrapings from the colon of wild-type (WT) mice, core 3 transferase knockout (C3Gnt−/−) mice and intestinal epithelial cell-specific core 1 knockout (IEC C1Galt1−/−) mice. The Muc2 O-glycans were released by reductive β-elimination and analyzed with liquid chromatography-mass spectrometry in the negative-ion mode. Muc2 from the distal colon of WT and C3Gnt−/− knockout mice carried a mixture of core 1- or core 2-type glycans, whereas Muc2 from IEC C1Galt1−/− mice carried highly sialylated core 3- and core 4-type glycans. A large portion of NeuAc in all mouse models was positioned on disialylated N-acetyllactosamine units, an epitope not reported on human colonic MUC2. Mass spectra and proton NMR spectroscopy revealed an abundant NeuAc linked to internally positioned N-acetylglucosamine on colonic murine Muc2, which also differs markedly from human MUC2. Our results highlight that murine colonic Muc2 O-glycosylation is substantially different from human MUC2, which could be one explanation for the different commensal microbiota of these two species. PMID:22581805

  12. Comparative hepatic effects of perfluorooctanoic acid and WY 14,643 in PPARa-knocked out and wild-type mice.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is an environmentally persistent chemical commonly found in humans and wildlife. Induction of liver tumors by PFOA in rodents is thought to be mediated by PPARα activation, although hepatic hypertrophy persists in PPARα-null mice. This study evalua...

  13. Effects of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma in plasminogen activator inhibitor-1 deficient and wild-type mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the effects of plasminogen activator inhibitor-1 (PAI-1) deficiency on spontaneous metastasis of Lewis lung carcinoma (LLC) in PAI-1 deficient (PAI-1-/-) and wildtype mice (C57BL/6J background) fed the AIN93G diet or that diet modified with 45% calories from fat. The high-fat diet i...

  14. Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein.

    PubMed

    Wilson, Rona; Plinston, Chris; Hunter, Nora; Casalone, Cristina; Corona, Cristiano; Tagliavini, Fabrizio; Suardi, Silvia; Ruggerone, Margherita; Moda, Fabio; Graziano, Silvia; Sbriccoli, Marco; Cardone, Franco; Pocchiari, Maurizio; Ingrosso, Loredana; Baron, Thierry; Richt, Juergen; Andreoletti, Olivier; Simmons, Marion; Lockey, Richard; Manson, Jean C; Barron, Rona M

    2012-07-01

    The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans. PMID:22495232

  15. Immunization of BALB/c mice with Brucella abortus 2308ΔwbkA confers protection against wild-type infection

    PubMed Central

    Li, Zhi-qiang; Gui, Dan; Sun, Zhi-hua; Zhang, Jun-bo; Zhang, Wen-zhi; Guo, Fei

    2015-01-01

    Brucellosis is a zoonotic disease that causes animal and human diseases. Vaccination is a major measure for prevention of brucellosis, but it is currently not possible to distinguish vaccinated animals from those that have been naturally infected. Therefore, in this study, we constructed the Brucella (B.) abortus 2380 wbkA mutant (2308ΔwbkA) and evaluated its virulence. The survival of 2308ΔwbkA was attenuated in murine macrophage (RAW 264.7) and BALB/c mice, and it induced high protective immunity in mice. The wbkA mutant elicited an anti-Brucella-specific immunoglobulin G response and induced the secretion of gamma interferon. Antibodies to 2308ΔwbkA could be detected in sera from mice, implying the potential for use of this protein as a diagnostic antigen. The WbkA antigen would allow serological differentiation between infected and vaccinated animals. These results suggest that 2308ΔwbkA is a potential attenuated vaccine against 16M. This vaccine will be further evaluated in sheep. PMID:26040616

  16. Nanoparticle Delivered Human Biliverdin Reductase-Based Peptide Increases Glucose Uptake by Activating IRK/Akt/GSK3 Axis: The Peptide Is Effective in the Cell and Wild-Type and Diabetic Ob/Ob Mice

    PubMed Central

    Gibbs, Peter E. M.; Miralem, Tihomir; Lerner-Marmarosh, Nicole; Maines, Mahin D.

    2016-01-01

    Insulin's stimulation of glucose uptake by binding to the IRK extracellular domain is compromised in diabetes. We have recently described an unprecedented approach to stimulating glucose uptake. KYCCSRK (P2) peptide, corresponding to the C-terminal segment of hBVR, was effective in binding to and inducing conformational change in the IRK intracellular kinase domain. Although myristoylated P2, made of L-amino acids, was effective in cell culture, its use for animal studies was unsuitable. We developed a peptidase-resistant formulation of the peptide that was efficient in both mice and cell culture systems. The peptide was constructed of D-amino acids, in reverse order, and blocked at both termini. Delivery of the encapsulated peptide to HepG2 and HSKM cells was confirmed by its prolonged effect on stimulation of glucose uptake (>6 h). The peptide improved glucose clearance in both wild-type and Ob/Ob mice; it lowered blood glucose levels and suppressed glucose-stimulated insulin secretion. IRK activity was stimulated in the liver of treated mice and in cultured cells. The peptide potentiated function of IRK's downstream effector, Akt-GSK3-(α, β) axis. Thus, P2-based approach can be used for improving glucose uptake by cells. Also, it allows for screening peptides in vitro and in animal models for treatment of diabetes. PMID:27294151

  17. Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate

    PubMed Central

    Gardner, Christina L.; Burke, Crystal W.; Higgs, Stephen T.; Klimstra, William B.; Ryman, Kate D.

    2012-01-01

    In humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthalgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent. PMID:22305131

  18. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    SciTech Connect

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    2014-05-28

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[18F] fluoro-2-deoxy-d-glucose (18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected with a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation

  19. Blockade of dorsolateral pontine 5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice.

    PubMed

    Dhingra, R R; Dutschmann, M; Dick, T E

    2016-06-01

    The neurotransmitter serotonin (5HT) acting via 5HT1a receptors (5HT1aR) is a potent determinant of respiratory rhythm variability. Here, we address the 5HT1aR-dependent control of respiratory rhythm variability in C57BL6/J mice. Using the in situ perfused preparation, we compared the effects of systemic versus focal blockade of 5HT1aRs. Blocking 5HT1aRs in the Kölliker-Fuse nucleus (KFn) increased the occurrence of spontaneous apneas and accounted for the systemic effects of 5HT1aR antagonists. Further, 5HT1aRs of the KFn stabilized the respiratory rhythm's response to arterial chemoreflex perturbations; reducing the recovering time, e.g., the latency to return to the baseline pattern. Together, these results suggest that the KFn regulates both intrinsic and sensory determinants of respiratory rhythm variability. PMID:26840837

  20. Prolonged Monoacylglycerol Lipase Blockade Causes Equivalent Cannabinoid Receptor Type 1 Receptor–Mediated Adaptations in Fatty Acid Amide Hydrolase Wild-Type and Knockout Mice

    PubMed Central

    Kinsey, Steven G.; Ignatowska-Jankowska, Bogna; Ramesh, Divya; Abdullah, Rehab A.; Tao, Qing; Booker, Lamont; Long, Jonathan Z.; Selley, Dana E.; Cravatt, Benjamin F.; Lichtman, Aron H.

    2014-01-01

    Complementary genetic and pharmacological approaches to inhibit monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), the primary hydrolytic enzymes of the respective endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine, enable the exploration of potential therapeutic applications and physiologic roles of these enzymes. Complete and simultaneous inhibition of both FAAH and MAGL produces greatly enhanced cannabimimetic responses, including increased antinociception, and other cannabimimetic effects, far beyond those seen with inhibition of either enzyme alone. While cannabinoid receptor type 1 (CB1) function is maintained following chronic FAAH inactivation, prolonged excessive elevation of brain 2-AG levels, via MAGL inhibition, elicits both behavioral and molecular signs of cannabinoid tolerance and dependence. Here, we evaluated the consequences of a high dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate; 40 mg/kg] given acutely or for 6 days in FAAH(−/−) and (+/+) mice. While acute administration of JZL184 to FAAH(−/−) mice enhanced the magnitude of a subset of cannabimimetic responses, repeated JZL184 treatment led to tolerance to its antinociceptive effects, cross-tolerance to the pharmacological effects of Δ9-tetrahydrocannabinol, decreases in CB1 receptor agonist–stimulated guanosine 5′-O-(3-[35S]thio)triphosphate binding, and dependence as indicated by rimonabant-precipitated withdrawal behaviors, regardless of genotype. Together, these data suggest that simultaneous elevation of both endocannabinoids elicits enhanced cannabimimetic activity but MAGL inhibition drives CB1 receptor functional tolerance and cannabinoid dependence. PMID:24849924

  1. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease.

    PubMed

    Bascoul-Colombo, Cécile; Guschina, Irina A; Maskrey, Benjamin H; Good, Mark; O'Donnell, Valerie B; Harwood, John L

    2016-06-01

    Alzheimer's disease (AD) is of major concern in ageing populations and we have used the Tg2576 mouse model to understand connections between brain lipids and amyloid pathology. Because dietary docosahexaenoic acid (DHA) has been identified as beneficial, we compared mice fed with a DHA-supplemented diet to those on a nutritionally-sufficient diet. Major phospholipids from cortex, hippocampus and cerebellum were separated and analysed. Each phosphoglyceride had a characteristic fatty acid composition which was similar in cortex and hippocampus but different in the cerebellum. The biggest changes on DHA-supplementation were within ethanolamine phospholipids which, together with phosphatidylserine, had the highest proportions of DHA. Reciprocal alterations in DHA and arachidonate were found. The main diet-induced alterations were found in ethanolamine phospholipids, (and included their ether derivatives), as were the changes observed due to genotype. Tg mice appeared more sensitive to diet with generally lower DHA percentages when on the standard diet and higher relative proportions of DHA when the diet was supplemented. All four major phosphoglycerides analysed showed age-dependent decreases in polyunsaturated fatty acid contents. These data provide, for the first time, a detailed evaluation of phospholipids in different brain areas previously shown to be relevant to behaviour in the Tg2576 mouse model for AD. The lipid changes observed with genotype are consistent with the subtle alterations found in AD patients, especially for the ethanolamine phospholipid molecular species. They also emphasise the contrasting changes in fatty acid content induced by DHA supplementation within individual phospholipid classes. PMID:26968097

  2. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease

    PubMed Central

    Bascoul-Colombo, Cécile; Guschina, Irina A.; Maskrey, Benjamin H.; Good, Mark; O'Donnell, Valerie B.; Harwood, John L.

    2016-01-01

    Alzheimer's disease (AD) is of major concern in ageing populations and we have used the Tg2576 mouse model to understand connections between brain lipids and amyloid pathology. Because dietary docosahexaenoic acid (DHA) has been identified as beneficial, we compared mice fed with a DHA-supplemented diet to those on a nutritionally-sufficient diet. Major phospholipids from cortex, hippocampus and cerebellum were separated and analysed. Each phosphoglyceride had a characteristic fatty acid composition which was similar in cortex and hippocampus but different in the cerebellum. The biggest changes on DHA-supplementation were within ethanolamine phospholipids which, together with phosphatidylserine, had the highest proportions of DHA. Reciprocal alterations in DHA and arachidonate were found. The main diet-induced alterations were found in ethanolamine phospholipids, (and included their ether derivatives), as were the changes observed due to genotype. Tg mice appeared more sensitive to diet with generally lower DHA percentages when on the standard diet and higher relative proportions of DHA when the diet was supplemented. All four major phosphoglycerides analysed showed age-dependent decreases in polyunsaturated fatty acid contents. These data provide, for the first time, a detailed evaluation of phospholipids in different brain areas previously shown to be relevant to behaviour in the Tg2576 mouse model for AD. The lipid changes observed with genotype are consistent with the subtle alterations found in AD patients, especially for the ethanolamine phospholipid molecular species. They also emphasise the contrasting changes in fatty acid content induced by DHA supplementation within individual phospholipid classes. PMID:26968097

  3. The Brucella melitensis M5-90 phosphoglucomutase (PGM) mutant is attenuated and confers protection against wild-type challenge in BALB/c mice.

    PubMed

    Zhang, Yu; Li, Tiansen; Zhang, Jing; Li, Zhiqiang; Zhang, Yan; Wang, Zhen; Feng, Hanping; Wang, Yuanzhi; Chen, Chuangfu; Zhang, Hui

    2016-04-01

    Brucellae are Gram-negative intracellular bacterial pathogens that infect humans and animals, bringing great economic burdens to developing countries. Live attenuated Brucella vaccines (strain M5-90 or others) are the most efficient means for prevention and control of animal brucellosis. However, these vaccines have several drawbacks, including residual virulence in animals, and difficulties in differentiating natural infection from vaccine immunization, which limit their application. A vaccine that can differentiate infection from immunization will have extensive applications. A Brucella melitensis (B. melitensis) strain M5-90 pgm mutant (M5-90Δpgm) was constructed to overcome these drawbacks. M5-90Δpgm showed significantly reduced survival in embryonic trophoblast cells and in mice, and induced high protective immunity in BALB/c mice. Moreover, M5-90Δpgm elicited an anti-Brucella-specific immunoglobulin G response and induced the secretion of gamma interferon (IFN-γ) and interleukin-2 (IL-2). In addition, M5-90Δpgm induced the secretion of IFN-γ in immunized sheep. Serum samples from sheep inoculated with M5-90Δpgm were negative by the Rose Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). Furthermore, the PGM antigen allowed serological differentiation between infected and vaccinated animals. These results suggest that M5-90Δpgm is an ideal live attenuated vaccine candidate against B. melitensis 16 M and deserves further evaluation for vaccine development. PMID:26925620

  4. Effects of wild-type and α-tocopherol-enriched transgenic Brassica juncea on the components of xenobiotic metabolism, antioxidant status, and oxidative stress in the liver of mice.

    PubMed

    Singh, Manju; Kumar, Deepak; Yusuf, Mohd Aslam; Sardar, Meryam; Sarin, Neera Bhalla

    2013-08-01

    Alpha (α)-tocopherol is the most biologically active and preferentially retained form of vitamin E in the human body and is known for its antioxidant and gene regulatory functions. Its increased intake is implicated in protection against diseases that involve an oxidative stress component. We have evaluated the chemopreventive potential of a diet supplemented with natural α-tocopherol-enriched transgenic (TR) Brassica juncea seeds. The modulation of phase I and phase II xenobiotic metabolism and of antioxidative enzymes was compared in the livers of mice fed on a control diet or on a diet supplemented with 2, 4, and 6 % (w/w) of wild-type (WT) or TR seeds. A dose-dependent increase in the specific activities of these enzymes was observed in those animals fed on diet supplemented with TR seeds. In comparison, an increase in the specific activities of antioxidative enzymes was substantial only at higher doses of WT seeds. Consequently, oxidative stress measured in terms of lipid peroxidation and lactate dehydrogenase activity was found to be lower in the case of mice fed with the supplemented diet. However, the chemopreventive potential of TR seeds was more pronounced than that of WT seeds. This study demonstrates the feasibility of fortifying diets with natural α-tocopherol for chemopreventive benefits by means of transgenic manipulation of a commonly used oilseed crop. PMID:23378163

  5. Deletion of the Small RNA Chaperone Protein Hfq down Regulates Genes Related to Virulence and Confers Protection against Wild-Type Brucella Challenge in Mice

    PubMed Central

    Lei, Shuangshuang; Zhong, Zhijun; Ke, Yuehua; Yang, Mingjuan; Xu, Xiaoyang; Ren, Hang; An, Chang; Yuan, Jiuyun; Yu, Jiuxuan; Xu, Jie; Qiu, Yefeng; Shi, Yanchun; Wang, Yufei; Peng, Guangneng; Chen, Zeliang

    2016-01-01

    Brucellosis is one of the most common zoonotic epidemics worldwide. Brucella, the etiological pathogen of brucellosis, has unique virulence characteristics, including the ability to survive within the host cell. Hfq is a bacterial chaperone protein that is involved in the survival of the pathogen under stress conditions. Moreover, hfq affects the expression of a large number of target genes. In the present study, we characterized the expression and regulatory patterns of the target genes of Hfq during brucellosis. The results revealed that hfq expression is highly induced in macrophages at the early infection stage and at the late stage of mouse infection. Several genes related to virulence, including omp25, omp31, vjbR, htrA, gntR, and dnaK, were found to be regulated by hfq during infection in BALB/c mice. Gene expression and cytokine secretion analysis revealed that an hfq-deletion mutant induced different cytokine profiles compared with that induced by 16M. Infection with the hfq-deletion mutant induced protective immune responses against 16M challenge. Together, these results suggest that hfq is induced during infection and its deletion results in significant attenuation which affects the host immune response caused by Brucella infection. By regulating genes related to virulence, hfq promotes the virulence of Brucella. The unique characteristics of the hfq-deletion mutant, including its decreased virulence and the ability to induce protective immune response upon infection, suggest that it represents an attractive candidate for the design of a live attenuated vaccine against Brucella. PMID:26834720

  6. Glutamatergic synapse protein composition of wild-type mice is sensitive to in utero MTHFR genotype and the timing of neonatal vigabatrin exposure.

    PubMed

    Zuckerman, Chava; Blumkin, Elinor; Melamed, Osnat; Golan, Hava M

    2015-10-01

    The enzyme methylenetetrahydrofolate-reductase (MTHFR) is part of the homocysteine and folate metabolic pathways. In utero, Mthfr-deficient environment has been reported as a risk factor for neurodevelopmental disorders such as autism and neural tube defects. Neonatal disruption of the GABAergic system is also associated with behavioral outcomes. The interaction between Mthfr deficiency and neonatal exposure to the GABA-potentiating drug vigabatrin (GVG) in mice alters anxiety, memory, and social behavior in a gender-dependent manner. In addition, a gender-dependent enhancement of proteins implicated in excitatory synapse plasticity in the cerebral cortex was shown. Here we show that in utero MTHFR deficiency is sufficient to alter the levels of glutamate receptor subunits GluR1, GluR2, and NR2B in the cerebral cortex and hippocampus of adult offspring with a WT genotype. In addition, FMRP1, CAMKII α and γ, and NLG1 levels in WT offspring were vulnerable to the in utero genotype. These effects depend on brain region and the cellular compartment tested. The effect of in utero MTHFR deficiency varies with the age of neonatal GVG exposure to modify GluR1, NR2A, reelin, CAMKII α, and NLG1 levels. These changes in molecular composition of the glutamatergic synapse were associated with increased anxiety-like behavior. Complex, multifactorial disorders of the nervous system show significant association with several genetic and environmental factors. Our data exemplify the contribution of an in utero MTHFR-deficient environment and early exposure to an antiepileptic drug to the basal composition of the glutamatergic synapses. The robust effect is expected to alter synapse function and plasticity and the cortico-hippocampal circuitry. PMID:26235956

  7. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo

    PubMed Central

    Varela-Nallar, Lorena; Rojas-Abalos, Macarena; Abbott, Ana C.; Moya, Esteban A.; Iturriaga, Rodrigo; Inestrosa, Nibaldo C.

    2014-01-01

    Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin, a key component of the canonical Wnt signaling pathway. Here we studied the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice in vivo. The hypoxia-inducible transcription factor-1α (HIF-1α) was analyzed as a molecular control of the physiological hypoxic response. Exposure to chronic hypoxia (10% oxygen for 6–72 h) stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, Bromodeoxyuridine (BrdU) incorporation and double labeling with doublecortin (DCX). Chronic hypoxia also induced neurogenesis in a double transgenic APPswe-PS1ΔE9 mouse model of Alzheimer’s disease (AD), which shows decreased levels of neurogenesis in the SGZ. Our results show for the first time that exposure to hypoxia in vivo can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorders associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired. PMID:24574965

  8. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome.

    PubMed

    Costa, Lara; Sardone, Lara M; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia

    2015-01-01

    Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome

  9. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring.

    PubMed

    Jadavji, N M; Deng, L; Malysheva, O; Caudill, M A; Rozen, R

    2015-08-01

    Genetic or nutritional disturbances in one-carbon metabolism, with associated hyperhomocysteinemia, can result in complex disorders including pregnancy complications and neuropsychiatric diseases. In earlier work, we showed that mice with a complete deficiency of methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate and homocysteine metabolism, had cognitive impairment with disturbances in choline metabolism. Maternal demands for folate and choline are increased during pregnancy and deficiencies of these nutrients result in several negative outcomes including increased resorption and delayed development. The goal of this study was to investigate the behavioral and neurobiological impact of a maternal genetic deficiency in MTHFR or maternal nutritional deficiency of folate or choline during pregnancy on 3-week-old Mthfr(+/+) offspring. Mthfr(+/+) and Mthfr(+/-) females were placed on control diets (CD); and Mthfr(+/+) females were placed on folate-deficient diets (FD) or choline-deficient diets (ChDD) throughout pregnancy and lactation until their offspring were 3weeks of age. Short-term memory was assessed in offspring, and hippocampal tissue was evaluated for morphological changes, apoptosis, proliferation and choline metabolism. Maternal MTHFR deficiency resulted in short-term memory impairment in offspring. These dams had elevated levels of plasma homocysteine when compared with wild-type dams. There were no differences in plasma homocysteine in offspring. Increased apoptosis and proliferation was observed in the hippocampus of offspring from Mthfr(+/-) mothers. In the maternal FD and ChDD study, offspring also showed short-term memory impairment with increased apoptosis in the hippocampus; increased neurogenesis was observed in ChDD offspring. Choline acetyltransferase protein was increased in the offspring hippocampus of both dietary groups and betaine was decreased in the hippocampus of FD offspring. Our results reveal short-term memory

  10. Pregnant phenotype in aquaporin 8-deficient mice

    PubMed Central

    Sha, Xiao-yan; Xiong, Zheng-fang; Liu, Hui-shu; Zheng, Zheng; Ma, Tong-hui

    2011-01-01

    Aim: Aquaporin 8 (AQP8) is expressed within the female reproductive system but its physiological function reminds to be elucidated. This study investigates the role of AQP8 during pregnancy using AQP8-knockout (AQP8-KO) mice. Methods: Homozygous AQP8-KO mice were mated, and the conception rate was recorded. AQP8-KO pregnant mice or their offspring were divided into 5 subgroups according to fetal gestational day (7, 13, 16, 18 GD) and newborn. Wild type C57 pregnant mice served as the control group. The number of pregnant mice, total embryos and atrophic embryos, as well as fetal weight, placental weight and placental area were recorded for each subgroup. The amount of amniotic fluid in each sac at 13, 16, and 18 GD was calculated. Statistical significance was determined by analysis of variance of factorial design and chi-square tests. Results: Conception rates did not differ significantly between AQP8-KO and wild type mice. AQP8-KO pregnant mice had a significantly higher number of embryos compared to wild type controls. Fetal/neonatal weight was also significantly greater in the AQP8-KO group compared to age-matched wild type controls. The amount of amniotic fluid was greater in AQP8-KO pregnant mice than wild type controls, although the FM/AFA (fetal weight/amniotic fluid amount) did not differ. While AQP8-KO placental weight was significantly larger than wild type controls, there was no evidence of placental pathology in either group. Conclusion: The results suggest that AQP8 deficiency plays an important role in pregnancy outcome. PMID:21602842

  11. PROXIMAL GUT MUCOSAL EPITHELIAL HOMEOSTASIS IN AGED IL-1 TYPE I RECEPTOR KNOCKOUT MICE AFTER STARVATION

    PubMed Central

    Song, Juquan; Wolf, Steven E.; Wu, Xiao-Wu; Finnerty, Celeste C.; Herndon, David N.; Jeschke, Marc G.

    2010-01-01

    Background Previous studies have shown that starvation induces small bowel atrophy, and that atrophy diminishes with aging. In this experiment, we assessed whether starvation-induced atrophy of proximal gut mucosa is associated with the Interleukin-1 receptor (IL-1R) signaling pathway in aged mice. Materials and Methods Thirty 26-month-old IL-1R knockout mice and age-matched wild-type C57BL/6 mice were randomly divided into two groups: ad libitum fed and fasted. Mice were euthanized 12 or 48 hours after starvation. The proximal small bowel was harvested for morphologic analysis. Gut epithelial cell proliferation was detected using immunohistochemical staining for proliferating cell nuclear antigen (PCNA), and apoptosis was identified using terminal deoxyuridine nick-end labeling (TUNEL) staining. Results Aged IL-1R knockout mice were larger than aged-matched wild-type mice (p<0.05). Proximal gut mucosal height and mucosal cell number were not different between aged IL-1R knockout and wild-type groups. The apoptosis index in gut epithelial cells was higher in fed IL-1R knockout versus wild-type mice (p<0.05), while no significant difference in cell proliferation between both groups. Mucosal atrophy was induced in both aged IL-1R knockout and wild-type groups by starvation (p<0.05), however, aged IL-1R knockout mice experienced greater losses in proximal gut weight, mucosal length, and corresponding cell number than did wild-type mice at the 12-hour time point (p<0.05). The apoptosis index in gut epithelial cells significantly increased in both groups after starvation (p<0.05). Starvation decreased cell proliferation in IL-1R knockout mice (p<0.05), but not in wild-type mice. Conclusions The response in aged IL-1R knockout mice differs from wild-type mice in that starvation increases atrophy and is associated with decreased cell proliferation rather than increased apoptosis. PMID:20605606

  12. Differential proteomic and behavioral effects of long-term voluntary exercise in wild-type and APP-overexpressing transgenics.

    PubMed

    Rao, Shailaja Kishan; Ross, Jordan M; Harrison, Fiona E; Bernardo, Alexandra; Reiserer, Randall S; Reiserer, Ronald S; Mobley, James A; McDonald, Michael P

    2015-06-01

    Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways. PMID:25818006

  13. Effect of Dietary Treatment with Dimethylarsinous Acid (DMAIII) on the Urinary Bladder Epithelium of Arsenic (+3 Oxidation State) Methyltransferase (As3mt) Knockout and C57BL/6 Wild Type Female Mice

    EPA Science Inventory

    Abstract Chronic exposure to inorganic arsenic (iAs) is carcinogenic to the human urinary bladder. It produces urothelial cytotoxicity and proliferation in rats and mice. DMAv, a major methylated urinary metabolite of iAs, is a rat bladder carcinogen, but without effects on the...

  14. The heparan sulphate deficient Hspg2 exon 3 null mouse displays reduced deposition of TGF-β1 in skin compared to C57BL/6 wild type mice.

    PubMed

    Shu, Cindy; Smith, Susan M; Melrose, James

    2016-06-01

    This was an observational study where we examined the role of perlecan HS on the deposition of TGF-β1 in C57BL/6 and Hspg2(∆3-/∆3-) perlecan exon 3 null mouse skin. Despite its obvious importance in skin repair and tissue homeostasis no definitive studies have immunolocalised TGF-β1 in skin in WT or Hspg2(∆3-/∆3-) perlecan exon 3 null mice. Vertical parasagittal murine dorsal skin from 3, 6 and 12 week old C57BL/6 and Hspg2(∆3-/∆3-) mice were fixed in neutral buffered formalin, paraffin embedded and 4 μm sections stained with Mayers haematoxylin and eosin (H & E). TGF-β1 was immunolocalised using a rabbit polyclonal antibody, heat retrieval and the Envision NovaRED detection system. Immunolocalisation of TGF-β1 differed markedly in C57BL/6 and Hspg2(∆3-/∆3-) mouse skin, ablation of exon 3 of Hspg2 resulted in a very severe reduction in the deposition of TGF-β1 in skin 3-12 weeks postnatally. The reduced deposition of TGF-β1 observed in the present study would be expected to impact detrimentally on the remodelling and healing capacity of skin in mutant mice compounding on the poor wound-healing properties already reported for perlecan exon 3 null mice due to an inability to signal with FGF-2 and promote angiogenic repair processes. TGF-β1 also has cell mediated effects in tissue homeostasis and matrix stabilisation a reduction in TGF-β1 deposition would therefore be expected to detrimentally impact on skin homeostasis in the perlecan mutant mice. PMID:27098652

  15. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  16. Rapid Expansion of CD8+ T Cells in Wild-Type and Type I Interferon Receptor-Deficient Mice Correlates with Protection after Low-Dose Emergency Immunization with Modified Vaccinia Virus Ankara

    PubMed Central

    Volz, Asisa; Langenmayer, Martin; Jany, Sylvia; Kalinke, Ulrich

    2014-01-01

    ABSTRACT Immunization with modified vaccinia virus Ankara (MVA) can rapidly protect mice against lethal ectromelia virus (ECTV) infection, serving as an experimental model for severe systemic infections. Importantly, this early protective capacity of MVA vaccination completely depends on virus-specific cytotoxic CD8+ T cell responses. We used MVA vaccination in the mousepox challenge model using ECTV infection to investigate the previously unknown factors required to elicit rapid protective T cell immunity in normal C57BL/6 mice and in mice lacking the interferon alpha/beta receptor (IFNAR−/−). We found a minimal dose of 105 PFU of MVA vaccine fully sufficient to allow robust protection against lethal mousepox, as assessed by the absence of disease symptoms and failure to detect ECTV in organs from vaccinated animals. Moreover, MVA immunization at low dosage also protected IFNAR−/− mice, indicating efficient activation of cellular immunity even in the absence of type I interferon signaling. When monitoring for virus-specific CD8+ T cell responses in mice vaccinated with the minimal protective dose of MVA, we found significantly enhanced levels of antigen-specific T cells in animals that were MVA vaccinated and ECTV challenged compared to mice that were only vaccinated. The initial priming of naive CD8+ T cells by MVA immunization appears to be highly efficient and, even at low doses, mediates a rapid in vivo burst of pathogen-specific T cells upon challenge. Our findings define striking requirements for protective emergency immunization against severe systemic infections with orthopoxviruses. IMPORTANCE We demonstrate that single-shot low-dose immunizations with vaccinia virus MVA can rapidly induce T cell-mediated protective immunity against lethal orthopoxvirus infections. Our data provide new evidence for an efficient protective capacity of vaccination with replication-deficient MVA. These data are of important practical relevance for public health, as

  17. Differential Cytotoxicity but Augmented IFN-γ Secretion by NK Cells after Interaction with Monocytes from Humans, and Those from Wild Type and Myeloid-Specific COX-2 Knockout Mice

    PubMed Central

    Tseng, Han-Ching; Arasteh, Aida; Kaur, Kawaljit; Kozlowska, Anna; Topchyan, Paytsar; Jewett, Anahid

    2015-01-01

    The list of genes, which augment NK cell function when knocked out in neighboring cells is increasing, and may point to the fundamental function of NK cells targeting cells with diminished capability to differentiate optimally since NK cells are able to target less differentiated cells, and aid in their differentiation. In this paper, we aimed at understanding the effect of monocytes from targeted knockout of COX-2 in myeloid cells (Cox-2flox/flox;LysMCre/+) and from control littermates (Cox-2flox/flox;LysM+/+) on ex vivo function of NK cells. Furthermore, we compared the effect of monocytes treated with and without lipopolysaccharide (LPS) on NK cells from mice and humans. NK cells purified from Cox-2flox/flox;LysMCre/+ mice had heightened cytotoxic activity when compared to those obtained from control littermates. In addition, NK cells cultured with autologous Cox-2flox/flox;LysMCre/+ monocytes and DCs, mouse embryonic fibroblasts from global knockout COX-2, but not with knockout of COX-2 in T cells, had increased cytotoxic function as well as augmented IFN-γ secretion when compared to NK cells from control littermates cultured with monocytes. LPS inhibited NK cell cytotoxicity while increasing IFN-γ secretion when cultured in the presence of monocytes from either Cox-2flox/flox;LysMCre/+ or control littermates. In contrast to mice, NK cells from humans when cultured with monocytes lost cytotoxic function and gained ability to secrete large amounts of IFN-γ, a process, which we had previously coined as “split anergy.” Similar to mice, LPS potentiated the loss of human NK cell cytotoxicity while increasing IFN-γ secretion in the presence of monocytes. Greater loss of cytotoxicity and larger secretion of IFN-γ in NK cells induced by gene knockout cells may be important for the greater need of these cells for differentiation. PMID:26106386

  18. The Brucella abortus S19 DeltavjbR live vaccine candidate is safer than S19 and confers protection against wild-type challenge in BALB/c mice when delivered in a sustained-release vehicle.

    PubMed

    Arenas-Gamboa, A M; Ficht, T A; Kahl-McDonagh, M M; Gomez, G; Rice-Ficht, A C

    2009-02-01

    Brucellosis is an important zoonotic disease of nearly worldwide distribution. Despite the availability of live vaccine strains for bovine (S19, RB51) and small ruminants (Rev-1), these vaccines have several drawbacks, including residual virulence for animals and humans. Safe and efficacious immunization systems are therefore needed to overcome these disadvantages. A vjbR knockout was generated in the S19 vaccine and investigated for its potential use as an improved vaccine candidate. Vaccination with a sustained-release vehicle to enhance vaccination efficacy was evaluated utilizing the live S19 DeltavjbR::Kan in encapsulated alginate microspheres containing a nonimmunogenic eggshell precursor protein of the parasite Fasciola hepatica (vitelline protein B). BALB/c mice were immunized intraperitoneally with either encapsulated or nonencapsulated S19 DeltavjbR::Kan at a dose of 1 x 10(5) CFU per animal to evaluate immunogenicity, safety, and protective efficacy. Humoral responses postvaccination indicate that the vaccine candidate was able to elicit an anti-Brucella-specific immunoglobulin G response even when the vaccine was administered in an encapsulated format. The safety was revealed by the absence of splenomegaly in mice that were inoculated with the mutant. Finally, a single dose with the encapsulated mutant conferred higher levels of protection compared to the nonencapsulated vaccine. These results suggest that S19 DeltavjbR::Kan is safer than S19, induces protection in mice, and should be considered as a vaccine candidate when administered in a sustained-release manner. PMID:19047401

  19. Wild-Type Mouse Models to Screen Antisense Oligonucleotides for Exon-Skipping Efficacy in Duchenne Muscular Dystrophy

    PubMed Central

    Cao, Limin; Han, Gang; Gu, Ben; Yin, HaiFang

    2014-01-01

    A readily available animal model is essential for rapidly identifying effective treatments for Duchenne muscular dystrophy (DMD), a devastating neuromuscular disorder caused by the lack of dystrophin protein, which results from frame-disrupting mutations in the DMD gene. Currently, the mdx mouse is the most commonly used model for antisense oligonucleotide (AO)-mediated exon skipping pre-clinical studies, with a mild phenotype. However, the accessibility of mdx mouse colonies particularly in developing countries can constrain research. Therefore in this study we explore the feasibility of using wild-type mice as models to establish exon-skipping efficiency of various DMD AO chemistries and their conjugates. Four different strains of wild-type mice and six different AO chemistries were investigated intramuscularly and the results indicated that the same exon-skipping efficiency was achieved for all tested AOs as that from mdx mice. Notably, levels of exon-skipping obtained in C57BL6 and C3H and mdx mice were most closely matched, followed by ICR and BALB/C mice. Systemic validation revealed that wild-type mice are less responsive to AO-mediated exon skipping than mdx mice. Our study provides evidence for the first time that wild-type mice can be appropriate models for assessing DMD AO exon-skipping efficiency with similar sensitivity to that of mdx mice and this finding can further accelerate the development of effective DMD AOs. PMID:25365558

  20. Dynamics of Sun5 Localization during Spermatogenesis in Wild Type and Dpy19l2 Knock-Out Mice Indicates That Sun5 Is Not Involved in Acrosome Attachment to the Nuclear Envelope

    PubMed Central

    Yassine, Sandra; Escoffier, Jessica; Nahed, Roland Abi; Pierre, Virginie; Karaouzene, Thomas; Ray, Pierre F.; Arnoult, Christophe

    2015-01-01

    The acrosome is an organelle that is central to sperm physiology and a defective acrosome biogenesis leads to globozoospermia, a severe male infertility. The identification of the actors involved in acrosome biogenesis is therefore particularly important to decipher the molecular pathogeny of globozoospermia. We recently showed that a defect in the DPY19L2 gene is present in more than 70% of globozoospermic men and demonstrated that Dpy19l2, located in the inner nuclear membrane, is the first protein involved in the attachment of the acrosome to the nuclear envelope (NE). SUN proteins serve to link the nuclear envelope to the cytoskeleton and are therefore good candidates to participate in acrosome-nucleus attachment, potentially by interacting with DPY19L2. In order to characterize new actors of acrosomal attachment, we focused on Sun5 (also called Spag4l), which is highly expressed in male germ cells, and investigated its localization during spermatogenesis. Using immunohistochemistry and Western blot experiments in mice, we showed that Sun5 transits through different cellular compartments during meiosis. In pachytene spermatocytes, it is located in a membranous compartment different to the reticulum. In round spermatids, it progresses to the Golgi and the NE before to be located to the tail/head junction in epididymal sperm. Interestingly, we demonstrate that Sun5 is not, as initially reported, facing the acrosome but is in fact excluded from this zone. Moreover, we show that in Dpy19l2 KO spermatids, upon the detachment of the acrosome, Sun5 relocalizes to the totality of the NE suggesting that the acrosome attachment excludes Sun5 from the NE facing the acrosome. Finally, Western-blot experiments demonstrate that Sun5 is glycosylated. Overall, our work, associated with other publications, strongly suggests that the attachment of the acrosome to the nucleus does not likely depend on the formation of SUN complexes. PMID:25775128

  1. Light Damage in Abca4 and Rpe65rd12 Mice

    PubMed Central

    Wu, Li; Ueda, Keiko; Nagasaki, Taka; Sparrow, Janet R.

    2014-01-01

    Purpose. Bisretinoids form in photoreceptor cells and accumulate in retinal pigment epithelium (RPE) as lipofuscin. To examine the role of these fluorophores as mediators of retinal light damage, we studied the propensity for light damage in mutant mice having elevated lipofuscin due to deficiency in the ATP-binding cassette (ABC) transporter Abca4 (Abca4−/− mice) and in mice devoid of lipofuscin owing to absence of Rpe65 (Rpe65rd12). Methods. Abca4−/−, Rpe65rd12, and wild-type mice were exposed to 430-nm light to produce a localized lesion in the superior hemisphere of retina. Bisretinoids of RPE lipofuscin were measured by HPLC. In histologic sections, outer nuclear layer (ONL) thickness was measured as an indicator of photoreceptor cell degeneration, and RPE nuclei were counted. Results. As shown previously, A2E levels were increased in Abca4−/− mice. These mice also sustained light damage–associated ONL thinning that was more pronounced than in age-matched wild-type mice; the ONL thinning was also greater in 5-month versus 2-month-old mice. Numbers of RPE nuclei were reduced in light-stressed mice, with the reduction being greater in the Abca4−/− than wild-type mice. In Rpe65rd12 mice bisretinoid compounds of RPE lipofuscin were not detected chromatographically and light damage–associated ONL thinning was not observed. Conclusions. Abca4−/− mice that accumulate RPE lipofuscin at increased levels were more susceptible to retinal light damage than wild-type mice. This finding, together with results showing that Rpe65rd12 mice did not accumulate lipofuscin and did not sustain retinal light damage, indicates that the bisretinoids of retinal lipofuscin are contributors to retinal light damage. PMID:24576873

  2. Overexpression of Wild-Type Murine Tau Results in Progressive Tauopathy and Neurodegeneration

    PubMed Central

    Adams, Stephanie J.; Crook, Richard J.P.; DeTure, Michael; Randle, Suzanne J.; Innes, Amy E.; Yu, Xin Z.; Lin, Wen-Lang; Dugger, Brittany N.; McBride, Melinda; Hutton, Mike; Dickson, Dennis W.; McGowan, Eileen

    2009-01-01

    Here, we describe the generation and characterization of a novel tau transgenic mouse model (mTau) that overexpresses wild-type murine tau protein by twofold compared with endogenous levels. Transgenic tau expression was driven by a BAC transgene containing the entire wild-type mouse tau locus, including the endogenous promoter and the regulatory elements associated with the tau gene. The mTau model therefore differs from other tau models in that regulation of the genomic mouse transgene mimics that of the endogenous gene, including normal exon splicing regulation. Biochemical data from the mTau mice demonstrated that modest elevation of mouse tau leads to tau hyperphosphorylation at multiple pathologically relevant epitopes and accumulation of sarkosyl-insoluble tau. The mTau mice show a progressive increase in hyperphosphorylated tau pathology with age up to 15 to 18 months, which is accompanied by gliosis and vacuolization. In contrast, older mice show a decrease in tau pathology levels, which may represent hippocampal neuronal loss occurring in this wild-type model. Collectively, these results describe a novel model of tauopathy that develops pathological changes reminiscent of early stage Alzheimer’s disease and other related neurodegenerative diseases, achieved without overexpression of a mutant human tau transgene. This model will provide an important tool for understanding the early events leading to the development of tau pathology and a model for analysis of potential therapeutic targets for sporadic tauopathies. PMID:19717642

  3. Peroxisomes in wild-type and rosy mutant Drosophila melanogaster.

    PubMed Central

    Beard, M E; Holtzman, E

    1987-01-01

    This study shows that peroxisomes are abundant in the Malpighian tubule and gut of wild-type Oregon R Drosophila melanogaster and that the peroxisomal population of the rosy-506 eye-color mutant differs from that of the wild type. Catalase activity in wild-type flies is demonstrable in bodies of appearance and centrifugal behavior comparable to the peroxisomes of vertebrate tissues. Xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.1.3.22) activity of the Malpighian tubule of wild-type flies is demonstrable cytochemically in bodies like those containing catalase. The rosy-506 mutant flies, with a deletion in the structural gene for xanthine dehydrogenase (xanthine:NAD+ oxidoreductase, EC 1.1.1.204), lack cytochemically demonstrable peroxisomal xanthine oxidase activity. In addition, peroxisomes in the rosy-506 mutants show less intense cytochemical staining for catalase than those in wild-type flies, and biochemical assays indicate that catalase in the rosy mutant is much more accessible to substrate in the absence of detergent than in the wild type. Thus, the rosy-506 mutation appears to affect peroxisomes and may mimic aspects of the defects of peroxisomes in some human metabolic disorders. Images PMID:3118368

  4. TRAIL-deficient mice exhibit delayed regression of retinal neovascularization.

    PubMed

    Hubert, Kristin E; Davies, Michael H; Stempel, Andrew J; Griffith, Thomas S; Powers, Michael R

    2009-12-01

    While it is well established that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various cell types, the role of TRAIL in regulation of retinal neovascularization (NV) has not been described. Here we determined the role of TRAIL in retinal NV during oxygen-induced retinopathy using TRAIL deficient ((-/-)) mice. TRAIL and its receptor, DR5, were expressed in wild-type retinas at all time points evaluated (postnatal days 12, 17, 21, 24) during oxygen-induced retinopathy and in age-matched room air control animals. Localization of TRAIL(+) cells within the neovascular tufts of hyperoxia- exposed wild-type mice suggested TRAIL plays a role in oxygen-induced retinopathy. Retinal vascular development appeared normal in the TRAIL(-/-) mice, except for a small but significant difference in the capillary-free zone surrounding major arteries. A minimal difference in avascularity was observed at postnatal day 12 in the retinas of TRAIL(-/-) mice after hyperoxia-exposure compared with wild-type mice, suggesting that TRAIL does not play a major role in the vaso-obliterative phase of oxygen-induced retinopathy. However, at the peak of NV, TRAIL(-/-) mice had a significant increase in retinal neovascularization. In addition, when NV naturally regresses in wild-type mice, TRAIL(-/-) mice continued to display significantly high levels of NV. This was attributed to a significant decrease in neovascular tuft cells undergoing apoptosis in TRAIL(-/-) mice. Together, these data strongly suggest that TRAIL plays a role in the control of retinal NV. PMID:19893042

  5. AGGREGATED, WILD-TYPE PRION PROTEIN CAUSES NEUROLOGICAL DYSFUNCTION AND SYNAPTIC ABNORMALITIES

    PubMed Central

    Chiesa, Roberto; Piccardo, Pedro; Biasini, Emiliano; Ghetti, Bernardino; Harris, David A.

    2008-01-01

    The neurotoxic forms of the prion protein (PrP) that cause neurodegeneration in prion diseases remain to be conclusively identified. Considerable evidence points to the importance of non-infectious oligomers of PrP in the pathogenic process. In this study, we describe lines of Tg(WT) transgenic mice that over-express wild-type PrP by either ∼5-fold or ∼10-fold (depending on whether the transgene array is, respectively, hemizygous or homozygous). Homozygous but not hemizygous Tg(WT) mice develop a spontaneous neurodegenerative illness characterized clinically by tremor and paresis. Both kinds of mice accumulate large numbers of punctate PrP deposits in the molecular layer of the cerebellum as well as in several other brain regions, and they display abnormally enlarged synaptic terminals accompanied by a dramatic proliferation of membranous structures. The over-expressed PrP in Tg(WT) mice assembles into an insoluble form that is mildly protease-resistant and is recognizable by aggregation-specific antibodies, but that is not infectious in transmission experiments. Taken together, our results demonstrate that non-infectious aggregates of wild-type PrP are neurotoxic, particularly to synapses, and they suggest common pathogenic mechanisms shared by prion diseases and non-transmissible neurodegenerative disorders associated with protein misfolding. PMID:19052217

  6. Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumour immune responses

    PubMed Central

    Ishida, T; Chada, S; Stipanov, M; Nadaf, S; Ciernik, F I; Gabrilovich, D I; Carbone, D P

    1999-01-01

    In this study we have tested the concept of using wild-type p53 gene for immunotherapy of cancer. Dendritic cells (DC) were transduced with a human wild-type p53 containing recombinant adenovirus (Ad-p53). About a half of DC transduced with this virus expressed p53 protein by FACS analysis 48 h after infection. Mice immunized twice with Ad-p53 DC developed substantial cytotoxic T lymphocyte (CTL) responses against tumour cells expressing wild-type and different mutant human and murine p53 genes. Very low CTL responses were observed against target cells infected with control adenovirus (Ad-c). Immunization with Ad-p53 provided complete tumour protection in 85% of mice challenged with tumour cells expressing human mutant p53 and in 72.7% of mice challenged with tumour cells with murine mutant p53. Treatment with Ad-p53-transduced DC significantly slowed the growth of established tumours. Thus, DC transduced with wild-type p53 may be a promising new tool for the immunotherapy of cancer. PMID:10444254

  7. Porphyrin Interactions with Wild Type and Mutant Mouse Ferrochelatase

    SciTech Connect

    Ferreira, Gloria C.; Franco, Ricardo; Lu, Yi; Ma, Jian-Guo; Shelnutt, John A.

    1999-05-19

    Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes Fe2+ chelation into protoporphyrin IX. Resonance Raman and W-visible absorbance spectroscopes of wild type and engineered variants of murine ferrochelatase were used to examine the proposed structural mechanism for iron insertion into protoporphyrin by ferrochelatase. The recombinant variants (i.e., H207N and E287Q) are enzymes in which the conserved amino acids histidine-207 and glutamate-287 of murine ferrochelatase were substituted with asparagine and glutamine, respectively. Both of these residues are at the active site of the enzyme as deduced from the Bacillus subtilis ferrochelatase three-dimensional structure. Addition of free base or metalated porphyrins to wild type ferrochelatase and H207N variant yields a quasi 1:1 complex, possibly a monomeric protein-bound species. In contrast, the addition of porphyrin (either free base or metalated) to E287Q is sub-stoichiometric, as this variant retains bound porphyrin in the active site during isolation and purification. The specificity of porphyrin binding is confirmed by the narrowing of the structure-sensitive resonance Raman lines and the vinyl vibrational mode. Resonance Raman spectra of free base and metalated porphyrins bound to the wild type ferrochelatase indicate a nonplanar distortion of the porphyrin macrocycle, although the magnitude of the distortion cannot be determined without first defining the specific type of deformation. Significantly, the extent of the nonplanar distortion varies in the case of H207N- and E287Q-bound porphyrins. In fact, resonance Raman spectral decomposition indicates a homogeneous ruffled distortion for the nickel protoporphyrin bound to the wild type ferrochelatase, whereas both a planar and ruffled conformations are present for the H207N-bound porphyrin. Perhaps more revealing is the unusual resonance , 3 Raman spectrum of the endogenous E287Q-bound porphyrin, which has

  8. "Wild type" GIST: Clinicopathological features and clinical practice.

    PubMed

    Wada, Ryuichi; Arai, Hiroki; Kure, Shoko; Peng, Wei-Xia; Naito, Zenya

    2016-08-01

    Gastrointestinal stromal tumor (GIST) is a mesenchymal tumor of the gastrointestinal tract. Mutation of KIT and PDGFRA genes is implicated in the tumorigenesis. Approximately 10% of GISTs do not harbor mutation of these genes, and they are designated as "wild type" GIST. They are classified into succinate dehydrogenase (SDH)-deficient and non-SDH-deficient groups. SDH-deficient group includes Carney triad and Carney Stratakis syndrome. The patients are young women. Tumors occur in the antrum of the stomach, and tumor cells are epithelioid. Lymph node metastasis is frequent. The non-SDH-deficient group includes neurofibromatosis (NF) type 1 and GISTs with mutations of BRAF, KRAS, and PIK3CA and with the ETV6-NTRK3 fusion gene. GIST in NF occurs in the small intestine, and tumor cells are spindle shaped. GIST with BRAF mutation arises in the small intestine. Attention to the age, gender, family history and other neoplasms may raise the prediction of syndromic disease. Location of the tumor, morphology, and pleomorphism of the tumor cells are further informative. Lymphovascular invasion should be carefully evaluated. The determination of KIT expression is essential for the diagnosis. When wild type GIST is suspected, intensive genetic analysis is required. Further, a careful and long-time observation is recommended. PMID:27427238

  9. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    PubMed

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. PMID:26319139

  10. Wild-type Cu/Zn superoxide dismutase stabilizes mutant variants by heterodimerization.

    PubMed

    Weichert, Anna; Besemer, Anna S; Liebl, Martina; Hellmann, Nadja; Koziollek-Drechsler, Ingrid; Ip, Philbert; Decker, Heinz; Robertson, Janice; Chakrabartty, Avijit; Behl, Christian; Clement, Albrecht M

    2014-02-01

    Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) are responsible for a subset of amyotrophic lateral sclerosis cases presumably by the acquisition of as yet unknown toxic properties. Additional overexpression of wild-type SOD1 in mutant SOD1 transgenic mice did not improve but rather accelerated the disease course. Recently, it was documented that the presence of wild-type SOD1 (SOD(WT)) reduced the aggregation propensity of mutant SOD1 by the formation of heterodimers between mutant and SOD1(WT) and that these heterodimers displayed at least a similar toxicity in cellular and animal models. In this study we investigated the biochemical and biophysical properties of obligate SOD1 dimers that were connected by a peptide linker. Circular dichroism spectra indicate an increased number of unstructured residues in SOD1 mutants. However, SOD1(WT) stabilized the folding of heterodimers compared to mutant homodimers as evidenced by an increase in resistance against proteolytic degradation. Heterodimerization also reduced the affinity of mutant SOD1 to antibodies detecting misfolded SOD1. In addition, the formation of obligate dimers resulted in a detection of substantial dismutase activity even of the relatively labile SOD1(G85R) mutant. These data indicate that soluble, dismutase-active SOD1 dimers might contribute at least partially to mutant SOD1 toxicity. PMID:24200866

  11. Delayed development of specific thyroid hormone-regulated events in transthyretin null mice

    PubMed Central

    Monk, Julie A.; Sims, Natalie A.; Dziegielewska, Katarzyna M.; Weiss, Roy E.; Ramsay, Robert G.

    2013-01-01

    Thyroid hormones (THs) are vital for normal postnatal development. Extracellular TH distributor proteins create an intravascular reservoir of THs. Transthyretin (TTR) is a TH distributor protein in the circulatory system and is the only TH distributor protein synthesized in the central nervous system. We investigated the phenotype of TTR null mice during development. Total and free 3′,5′,3,5-tetraiodo-l-thyronine (T4) and free 3′,3,5-triiodo-l-thyronine (T3) in plasma were significantly reduced in 14-day-old (P14) TTR null mice. TTR null mice also displayed a delayed suckling-to-weaning transition, decreased muscle mass, delayed growth, and retarded longitudinal bone growth. In addition, ileums from postnatal day 0 (P0) TTR null mice displayed disordered architecture and contained fewer goblet cells than wild type. Protein concentrations in cerebrospinal fluid from P0 and P14 TTR null mice were higher than in age-matched wild-type mice. In contrast to the current literature based on analyses of adult TTR null mice, our results demonstrate that TTR has an important and nonredundant role in influencing the development of several organs. PMID:23092911

  12. Wild type p53 reactivation: from lab bench to clinic.

    PubMed

    Selivanova, Galina

    2014-08-19

    The p53 tumor suppressor is the most frequently inactivated gene in cancer. Several mouse models have demonstrated that the reconstitution of the p53 function suppresses the growth of established tumors. These facts, taken together, promote the idea of p53 reactivation as a strategy to combat cancer. This review will focus on recent advances in the development of small molecules which restore the function of wild type p53 by blocking its inhibitors Mdm2 and MdmX or their upstream regulators and discuss the impact of different p53 functions for tumor prevention and tumor eradication. Finally, the recent progress in p53 research will be analyzed concerning the role of p53 cofactors and cellular environment in the biological response upon p53 reactivation and how this can be applied in clinic. PMID:24726725

  13. Impaired olfactory bulb neurogenesis depends on the presence of human wild-type alpha-synuclein.

    PubMed

    May, V E L; Nuber, S; Marxreiter, F; Riess, O; Winner, B; Winkler, J

    2012-10-11

    Synucleinopathies including Parkinson's disease (PD) are characterized by the accumulation of alpha-synuclein (α-syn) within neural cell bodies and their processes. Transgenic mice overexpressing human wild-type or mutant forms of α-syn under the control of different promoters were developed to analyse the underlying neuropathology of PD. One of the earliest clinical symptoms associated with PD is olfactory impairment. The generation of new neurons persists up to adulthood in mammals, in particular the olfactory bulb (OB). In order to assess this process in relation to α-syn accumulation, we used mice overexpressing human wild-type α-syn under the regulatable control (tet-off) of the calcium/calmodulin-dependent protein kinase IIα-promoter (CaMKII). We observed a decrease in OB neurogenesis in transgenic animals compared to controls using 5-bromo-2'-deoxyuridine (BrdU) to label newly generated cells (neuron-specific nuclear protein; NeuN). After cessation of transgene expression we detected an increase in newly generated cells both in granular (GCL) and glomerular (GLOM) layers of the OB. This led to a rescue of newly generated neurons (BrdU(+)/NeuN(+)) within the GLOM with a distinct specificity for the dopaminergic subpopulation. In contrast, we did not detect a cell-specific rescue of neuronal cells in the GCL suggesting diverse effects of alpha-synucleinopathy in both interneuronal layers of the OB. Colabelling of BrdU with glial markers showed that a differentiation into neither astroglia nor microglia attributed to the observed phenotype in the GCL. In particular, BrdU(+) particles located within microglial cells were predominantly associated close to the membrane therefore the resembling phagocytosed nuclear fragments of BrdU(+) cells. Thus, our study further contributes insights into α-syn accumulation as a causative player in the impairment of adult neurogenesis and emphasizes its diverse role in cell renewal of distinct OB cell layers. PMID:22814000

  14. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice

    PubMed Central

    Zhang, Yingpei; Padalecki, Susan S; Chaudhuri, Asish R; Waal, Eric De; Goins, Beth A; Grubbs, Barry; Ikeno, Yuji; Richardson, Arlan; Mundy, Gregory R; Herman, Brian

    2007-01-01

    Alteration of apoptotic activity has been observed in a number of tissues in aging mammals, but it remains unclear whether and/or how apoptosis may affect aging. Caspase-2 is a member of the cysteine protease family that plays a critical role in apoptosis. To understand the impact of compromised apoptosis function on mammalian aging, we conducted a comparative study on caspase-2 deficient mice and their wild-type littermates with a specific focus on the aging-related traits at advanced ages. We found that caspase-2 deficiency enhanced a number of traits commonly seen in premature aging animals. Loss of caspase-2 was associated with shortened maximum lifespan, impaired hair growth, increased bone loss, and reduced body fat content. In addition, we found that the livers of caspase-2 deficient mice had higher levels of oxidized proteins than those of age-matched wild-type mice, suggesting that caspase-2 deficiency compromised the animal's ability to clear oxidatively damaged cells. Collectively, these results suggest that caspase-2 deficiency affects aging in the mice. This study thus demonstrates for the first time that disruption of a key apoptotic gene has a significant impact on aging. PMID:17188333

  15. Effect of epithalon on the incidence of chromosome aberrations in senescence-accelerated mice.

    PubMed

    Rosenfeld, S V; Togo, E F; Mikheev, V S; Popovich, I G; Khavinson, V Kh; Anisimov, V N

    2002-03-01

    The incidence of chromosome aberrations in bone marrow cells of 12-month-old SAMP-1 female mice characterized by accelerated aging was 1.8 times higher than in wild-type SAMR-1 females and 2.2 times higher than in SHR females of the same age. Treatment with Epithalon (Ala-Glu-Asp-Gly) starting from the age of 2 months decreased the incidence of chromosome aberrations in SAMP-1, SAMR-1, and SHR mice by 20%, 30.1%, and 17.9%, respectively, compared to age-matched controls (p<0.05). Treatment with melatonin (given with drinking water in a dose of 20 mg/liter in night hours) had no effect on the incidence of chromosome aberrations in SHR mice. These data indicate antimutagenic effect of Epithalon, which probably underlies the geroprotective effect of this peptide. PMID:12360351

  16. Evaluation of short-interfering RNAs treatment in experimental rabies due to wild-type virus.

    PubMed

    Appolinario, Camila Michele; Allendorf, Susan Dora; Peres, Marina Gea; Fonseca, Clovis Reynaldo; Vicente, Acacia Ferreira; Antunes, João Marcelo Azevedo de Paula; Pantoja, José Carlos Figueiredo; Megid, Jane

    2015-01-01

    We have evaluated the efficacy of short-interfering RNAs targeting the nucleoprotein gene and also the brain immune response in treated and non-treated infected mice. Mice were inoculated with wild-type virus, classified as dog (hv2) or vampire bat (hv3) variants and both groups were treated or left as controls. No difference was observed in the lethality rate between treated and non-treated groups, although clinical evaluation of hv2 infected mice showed differences in the severity of clinical disease (p=0.0006). Evaluation of brain immune response 5 days post-inoculation in treated hv2 group showed no difference among the analyzed genes, whereas after 10 days post-inoculation there was increased expression of 2',5'-oligoadenylate synthetase 1, tumor necrosis factor alpha, interleukin 12, interferon gamma, and C-X-C motif chemokine 10 associated with higher expression of N gene in the same period (p<0.0001). In hv2 non-treated group only higher interferon beta expression was found at day 5. The observed differences in results of the immune response genes between treated and non-treated groups is not promising as they had neither impact on mortality nor even a reduction in the expression of N gene in siRNA treated animals. This finding suggests that the use of pre-designed siRNA alone may not be useful in rabies treatment. PMID:26254692

  17. Wild type microglia do not arrest pathology in mouse models of Rett syndrome

    PubMed Central

    Wang, Jieqi; Wegener, Jan Eike; Huang, Teng-Wei; Sripathy, Smitha; De Jesus-Cortes, Hector; Xu, Pin; Tran, Stephanie; Knobbe, Whitney; Leko, Vid; Britt, Jeremiah; Starwalt, Ruth; McDaniel, Latisha; Ward, Chris; Parra, Diana; Newcomb, Benjamin; Lao, Uyen; Flowers, David A.; Cullen, Sean; Jorstad, Nikolas L; Yang, Yue; Glaskova, Lena; Vigneau, Sebastian; Kozlitina, Julia; Reichardt, Sybille D.; Reichardt, Holger M.; Gärtner, Jutta; Bartolomei, Marisa S.; Fang, Min; Loeb, Keith; Keene, C. Dirk; Bernstein, Irwin; Goodell, Margaret; Brat, Daniel J.

    2015-01-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by mutations in the X chromosomal gene Methyl-CpG-binding Protein 2 (MECP2) (1). RTT treatment so far is symptomatic. Mecp2 disruption in mice phenocopies major features of the syndrome (2) that can be reversed upon re-expression of Mecp2 (3. It has recently been reported that transplantation of wild type (WT) bone marrow (BMT) into lethally irradiated Mecp2tm1.1Jae/y mice prevented neurologic decline and early death by restoring microglial phagocytic activity against apoptotic targets (4). Based on this report, clinical trials of BMT for patients with RTT have been initiated (5). We aimed to replicate and extend the BMT experiments in three different RTT mouse models but found that despite robust microglial engraftment, BMT from WT donors did not rescue early death or ameliorate neurologic deficits. Furthermore, early and specific genetic expression of Mecp2 in microglia did not rescue Mecp2-deficient mice. In conclusion our experiments do not support BMT as therapy for RTT. PMID:25993969

  18. Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer's disease models.

    PubMed

    Pardon, Marie-Christine; Yanez Lopez, Maria; Yuchun, Ding; Marjańska, Małgorzata; Prior, Malcolm; Brignell, Christopher; Parhizkar, Samira; Agostini, Alessandra; Bai, Li; Auer, Dorothee P; Faas, Henryk M

    2016-01-01

    Microglia activation has emerged as a potential key factor in the pathogenesis of Alzheimer's disease. Metabolite levels assessed by magnetic resonance spectroscopy (MRS) are used as markers of neuroinflammation in neurodegenerative diseases, but how they relate to microglial activation in health and chronic disease is incompletely understood. Using MRS, we monitored the brain metabolic response to lipopolysaccharides (LPS)-induced microglia activation in vivo in a transgenic mouse model of Alzheimer's disease (APP/PS1) and healthy controls (wild-type (WT) littermates) over 4 hours. We assessed reactive gliosis by immunohistochemistry and correlated metabolic and histological measures. In WT mice, LPS induced a microglial phenotype consistent with activation, associated with a sustained increase in macromolecule and lipid levels (ML9). This effect was not seen in APP/PS1 mice, where LPS did not lead to a microglial response measured by histology, but induced a late increase in the putative inflammation marker myoinositol (mI) and metabolic changes in total creatine and taurine previously reported to be associated with amyloid load. We argue that ML9 and mI distinguish the response of WT and APP/PS1 mice to immune mediators. Lipid and macromolecule levels may represent a biomarker of activation of healthy microglia, while mI may not be a glial marker. PMID:26813748

  19. Crystal structure of wild-type human procathepsin K.

    PubMed

    Sivaraman, J; Lalumière, M; Ménard, R; Cygler, M

    1999-02-01

    Cathepsin K is a lysosomal cysteine protease belonging to the papain superfamily. It has been implicated as a major mediator of osteoclastic bone resorption. Wild-type human procathepsin K has been crystallized in a glycosylated and a deglycosylated form. The latter crystals diffract better, to 3.2 A resolution, and contain four molecules in the asymmetric unit. The structure was solved by molecular replacement and refined to an R-factor of 0.194. The N-terminal fragment of the proregion forms a globular domain while the C-terminal segment is extended and shows substantial flexibility. The proregion interacts with the enzyme along the substrate binding groove and along the proregion binding loop (residues Ser138-Asn156). It binds to the active site in the opposite direction to that of natural substrates. The overall binding mode of the proregion to cathepsin K is similar to that observed in cathepsin L, caricain, and cathepsin B, but there are local differences that likely contribute to the specificity of these proregions for their cognate enzymes. The main observed difference is in the position of the short helix alpha3p (67p-75p), which occupies the S' subsites. As in the other proenzymes, the proregion utilizes the S2 subsite for anchoring by placing a leucine side chain there, according to the specificity of cathepsin K toward its substrate. PMID:10048321

  20. Crystal structure of wild-type human procathepsin K.

    PubMed Central

    Sivaraman, J.; Lalumière, M.; Ménard, R.; Cygler, M.

    1999-01-01

    Cathepsin K is a lysosomal cysteine protease belonging to the papain superfamily. It has been implicated as a major mediator of osteoclastic bone resorption. Wild-type human procathepsin K has been crystallized in a glycosylated and a deglycosylated form. The latter crystals diffract better, to 3.2 A resolution, and contain four molecules in the asymmetric unit. The structure was solved by molecular replacement and refined to an R-factor of 0.194. The N-terminal fragment of the proregion forms a globular domain while the C-terminal segment is extended and shows substantial flexibility. The proregion interacts with the enzyme along the substrate binding groove and along the proregion binding loop (residues Ser138-Asn156). It binds to the active site in the opposite direction to that of natural substrates. The overall binding mode of the proregion to cathepsin K is similar to that observed in cathepsin L, caricain, and cathepsin B, but there are local differences that likely contribute to the specificity of these proregions for their cognate enzymes. The main observed difference is in the position of the short helix alpha3p (67p-75p), which occupies the S' subsites. As in the other proenzymes, the proregion utilizes the S2 subsite for anchoring by placing a leucine side chain there, according to the specificity of cathepsin K toward its substrate. PMID:10048321

  1. Activation of ganglion cells in wild-type and rd1 mouse retinas with monophasic and biphasic current pulses

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F. III

    2009-06-01

    We and other research groups are designing an electronic retinal prosthesis to provide vision for patients who are blind due to photoreceptor degeneration. In this study, we examined the effect of stimulus waveform on the amount of current needed to activate retinal ganglion cells (RGCs) when the retinal neural network is stimulated. Isolated retinas of wild-type and rd1 mice were stimulated with cathodal and anodal monophasic current pulses of 1 ms duration and symmetric biphasic current pulses (1 ms per phase) delivered through an electrode that was located subretinally. For both wild-type and rd1 mouse retinas, cathodal current pulses were least effective in activating most RGCs. The median threshold current for a cathodal current pulse was 2.0-4.4 fold higher than the median threshold current for either an anodal or a biphasic current pulse. In wild-type mouse retinas, the median threshold current for activating RGCs with anodal current pulses was 23% lower than that with biphasic current pulses. In rd1 mouse retinas, the median threshold currents for anodal and biphasic current pulses were about the same. However, the variance in thresholds of rd1 RGCs for biphasic pulse stimulation was much smaller than for anodal pulse stimulation. Thus, a symmetric biphasic current pulse may be the best stimulus for activating the greatest number of RGCs in retinas devoid of photoreceptors.

  2. Biosafety of recombinant and wild type nucleopolyhedroviruses as bioinsecticides.

    PubMed

    Ashour, Mohamed-Bassem; Ragheb, Didair A; El-Sheikh, El-Sayed A; Gomaa, El-Adarosy A; Kamita, Shizuo G; Hammock, Bruce D

    2007-06-01

    The entomopathogenic Autographa californica (Speyer) nucleopolyhedrovirus (AcMNPV) has been genetically modified to increase its speed of kill. The potential adverse effects of a recombinant AcMNPV (AcAaIT) as well as wild type AcMNPV and wild type Spodoptera littoralis NPV (SlNPV) were studied. Cotton plants were treated with these viruses at concentrations that were adjusted to resemble the recommended field application rate (4 x 10(12) PIBs/feddan, feddan = 4,200 m2) and 3rd instar larvae of S. littoralis were allowed to feed on the contaminated plants. SDS-PAGE, ELISA, and DNA analyses were used to confirm that larvae that fed on these plants were virus-infected. Polyhedra that were purified from the infected larvae were subjected to structural protein analysis. A 32 KDa protein was found in polyhedra that were isolated from all of the viruses. Subtle differences were found in the size and abundance of ODV proteins. Antisera against polyhedral proteins isolated from AcAaIT polyhedra were raised in rabbits. The terminal bleeds from rabbits were screened against four coating antigens (i.e., polyhedral proteins from AcAaIT, AcAaIT from field-infected larvae (AcAaIT-field), AcMNPV, and SlNPV) using a two-dimensional titration method with the coated antigen format. Competitive inhibition experiments were conducted in parallel to optimize antibody and coating antigen concentrations for ELISA. The IC50 values for each combination ranged from 1.42 to 163 microg/ml. AcAaIT-derived polyhedrin gave the lowest IC50 value, followed by those of SlNPV, AcAaIT-field, and AcMNPV. The optimized ELISA system showed low cross reactivity for AcMNPV (0.87%), AcAaIT-field (1.2%), and SlNPV (4.0%). Genomic DNAs isolated from AcAaIT that were passaged in larvae of S. littoralis that were reared in the laboratory or field did not show any detectable differences. Albino rats (male and female) that were treated with AcAaIT, AcMNPV or SlNPV (either orally or by intraperitoneal injection at

  3. Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin

    PubMed Central

    Fiaschi, Luigi; Di Palo, Benedetta; Scarselli, Maria; Pozzi, Clarissa; Tomaszewski, Kelly; Galletti, Bruno; Nardi-Dei, Vincenzo; Arcidiacono, Letizia; Mishra, Ravi P. N.; Mori, Elena; Pallaoro, Michele; Falugi, Fabiana; Torre, Antonina; Fontana, Maria Rita; Soriani, Marco; Bubeck Wardenburg, Juliane; Grandi, Guido; Rappuoli, Rino

    2016-01-01

    Staphylococcus aureus alpha-hemolysin (Hla) assembles into heptameric pores on the host cell membrane, causing lysis, apoptosis, and junction disruption. Herein, we present the design of a newly engineered S. aureus alpha-toxin, HlaPSGS, which lacks the predicted membrane-spanning stem domain. This protein is able to form heptamers in aqueous solution in the absence of lipophilic substrata, and its structure, obtained by transmission electron microscopy and single-particle reconstruction analysis, resembles the cap of the wild-type cytolytic Hla pore. HlaPSGS was found to be impaired in binding to host cells and to its receptor ADAM10 and to lack hemolytic and cytotoxic activity. Immunological studies using human sera as well as sera from mice convalescent from S. aureus infection suggested that the heptameric conformation of HlaPSGS mimics epitopes exposed by the cytolytic Hla pore during infection. Finally, immunization with this newly engineered Hla generated high protective immunity against staphylococcal infection in mice. Overall, this study provides unprecedented data on the natural immune response against Hla and suggests that the heptameric HlaPSGS is a highly valuable vaccine candidate against S. aureus. PMID:27030589

  4. Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin.

    PubMed

    Fiaschi, Luigi; Di Palo, Benedetta; Scarselli, Maria; Pozzi, Clarissa; Tomaszewski, Kelly; Galletti, Bruno; Nardi-Dei, Vincenzo; Arcidiacono, Letizia; Mishra, Ravi P N; Mori, Elena; Pallaoro, Michele; Falugi, Fabiana; Torre, Antonina; Fontana, Maria Rita; Soriani, Marco; Bubeck Wardenburg, Juliane; Grandi, Guido; Rappuoli, Rino; Ferlenghi, Ilaria; Bagnoli, Fabio

    2016-06-01

    Staphylococcus aureus alpha-hemolysin (Hla) assembles into heptameric pores on the host cell membrane, causing lysis, apoptosis, and junction disruption. Herein, we present the design of a newly engineered S. aureus alpha-toxin, HlaPSGS, which lacks the predicted membrane-spanning stem domain. This protein is able to form heptamers in aqueous solution in the absence of lipophilic substrata, and its structure, obtained by transmission electron microscopy and single-particle reconstruction analysis, resembles the cap of the wild-type cytolytic Hla pore. HlaPSGS was found to be impaired in binding to host cells and to its receptor ADAM10 and to lack hemolytic and cytotoxic activity. Immunological studies using human sera as well as sera from mice convalescent from S. aureus infection suggested that the heptameric conformation of HlaPSGS mimics epitopes exposed by the cytolytic Hla pore during infection. Finally, immunization with this newly engineered Hla generated high protective immunity against staphylococcal infection in mice. Overall, this study provides unprecedented data on the natural immune response against Hla and suggests that the heptameric HlaPSGS is a highly valuable vaccine candidate against S. aureus. PMID:27030589

  5. Bone Growth and Turnover in Progesterone Receptor Knockout Mice

    PubMed Central

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jamie C.; Waters, Katrina M.; Lydon, John P.; O’Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-01-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and microcomputed tomography analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 wk of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain, and tibia longitudinal bone growth were normal in PRKO mice. In contrast, total, cancellous, and cortical bone mass were increased in the humerus of 12-wk-old PRKO mice, whereas cortical and cancellous bone mass in the tibia was normal. At 26 wk of age, cancellous bone area in the proximal tibia metaphysis of PRKO mice was 153% greater than age matched wild-type mice. The improved cancellous bone balance in 6-month-old PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice is not essential for bone growth and turnover. However, at some skeletal sites, PR signaling attenuates the accumulation of cortical and cancellous bone mass during adolescence. PMID:18276762

  6. Sirt1 is involved in decreased bone formation in aged apolipoprotein E-deficient mice

    PubMed Central

    Hong, Wei; Xu, Xiao-ya; Qiu, Zhao-hui; Gao, Jian-jun; Wei, Zhan-ying; Zhen, Li; Zhang, Xiao-li; Ye, Zhi-bing

    2015-01-01

    Aim: Apolipoprotein E (ApoE) plays an important role in the transport and metabolism of lipids. Recent studies show that bone mass is increased in young apoE−/− mice. In this study we investigated the bone phenotype and metabolism in aged apoE−/− mice. Methods: Femurs and tibias were collected from 18- and 72-week-old apoE−/− mice and their age-matched wild-type (WT) littermates, and examined using micro-CT and histological analysis. Serum levels of total cholesterol, oxidized low-density lipoprotein (ox-LDL) and bone turnover markers were measured. Cultured bone mesenchymal stem cells (BMSCs) from tibias and femurs of 18-week-old apoE−/− mice were used in experiments in vitro. The expression levels of Sirt1 and Runx2 in bone tissue and BMSCs were measured using RT-PCR and Western blot analysis. Results: Compared with age-matched WT littermates, young apoE−/− mice exhibited high bone mass with increased bone formation, accompanied by higher serum levels of bone turnover markers OCN and TRAP5b, and higher expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. In contrast, aged apoE−/− mice showed reduced bone formation and lower bone mass relative to age-matched WT mice, accompanied by lower serum OCN levels, and markedly reduced expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. After BMSCs were exposed to ox-LDL (20 μg/mL), the expression of Sirt1 and Runx2 proteins was significantly increased at 12 h, and then decreased at 72 h. Treatment with the Sirt1 inhibitor EX527 (10 μmol/L) suppressed the expression of Runx2, ALP and OCN in BMSCs. Conclusion: In contrast to young apoE−/− mice, aged apoE−/− mice showe lower bone mass than age-matched WT mice. Long-lasting exposure to ox-LDL decreases the expression of Sirt1 and Runx2 in BMSCs, which may explain the decreased bone formation in aged apoE−/− mice. PMID:26592520

  7. Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice.

    PubMed

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A; Janssen, Paulus M L; Martin, Paul T

    2015-10-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. PMID:26435413

  8. Gene Expression Analysis Indicates Divergent Mechanisms in DEN-Induced Carcinogenesis in Wild Type and Bid-Deficient Livers.

    PubMed

    Yu, Changshun; Yan, Shengmin; Khambu, Bilon; Chen, Xiaoyun; Dong, Zheng; Luo, Jianhua; Michalopoulos, George K; Wu, Shangwei; Yin, Xiao-Ming

    2016-01-01

    Bid is a Bcl-2 family protein. In addition to its pro-apoptosis function, Bid can also promote cell proliferation, maintain S phase checkpoint, and facilitate inflammasome activation. Bid plays important roles in tissue injury and regeneration, hematopoietic homeostasis, and tumorigenesis. Bid participates in hepatic carcinogenesis but the mechanism is not fully understood. Deletion of Bid resulted in diminished tumor burden and delayed tumor progression in a liver cancer model. In order to better understand the Bid-regulated events during hepatic carcinogenesis we performed gene expression analysis in wild type and bid-deficient mice treated with a hepatic carcinogen, diethylnitrosamine. We found that deletion of Bid caused significantly fewer alterations in gene expression in terms of the number of genes affected and the number of pathways affected. In addition, the expression profiles were remarkably different. In the wild type mice, there was a significant increase in the expression of growth regulation-related and immune/inflammation response-related genes, and a significant decrease in the expression of metabolism-related genes, both of which were diminished in bid-deficient livers. These data suggest that Bid could promote hepatic carcinogenesis via growth control and inflammation-mediated events. PMID:27196317

  9. Gene Expression Analysis Indicates Divergent Mechanisms in DEN-Induced Carcinogenesis in Wild Type and Bid-Deficient Livers

    PubMed Central

    Yu, Changshun; Yan, Shengmin; Khambu, Bilon; Chen, Xiaoyun; Dong, Zheng; Luo, Jianhua; Michalopoulos, George K.; Wu, Shangwei; Yin, Xiao-Ming

    2016-01-01

    Bid is a Bcl-2 family protein. In addition to its pro-apoptosis function, Bid can also promote cell proliferation, maintain S phase checkpoint, and facilitate inflammasome activation. Bid plays important roles in tissue injury and regeneration, hematopoietic homeostasis, and tumorigenesis. Bid participates in hepatic carcinogenesis but the mechanism is not fully understood. Deletion of Bid resulted in diminished tumor burden and delayed tumor progression in a liver cancer model. In order to better understand the Bid-regulated events during hepatic carcinogenesis we performed gene expression analysis in wild type and bid-deficient mice treated with a hepatic carcinogen, diethylnitrosamine. We found that deletion of Bid caused significantly fewer alterations in gene expression in terms of the number of genes affected and the number of pathways affected. In addition, the expression profiles were remarkably different. In the wild type mice, there was a significant increase in the expression of growth regulation-related and immune/inflammation response-related genes, and a significant decrease in the expression of metabolism-related genes, both of which were diminished in bid-deficient livers. These data suggest that Bid could promote hepatic carcinogenesis via growth control and inflammation-mediated events. PMID:27196317

  10. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  11. Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin

    PubMed Central

    Yu, Xia; Wang, Guirong; Chen, Suting; Wei, Guomei; Shang, Yuanyuan; Dong, Lingling; Schön, Thomas; Moradigaravand, Danesh; Peacock, Sharon J.

    2016-01-01

    Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. PMID:27324769

  12. Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin.

    PubMed

    Yu, Xia; Wang, Guirong; Chen, Suting; Wei, Guomei; Shang, Yuanyuan; Dong, Lingling; Schön, Thomas; Moradigaravand, Danesh; Parkhill, Julian; Peacock, Sharon J; Köser, Claudio U; Huang, Hairong

    2016-09-01

    Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. PMID:27324769

  13. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of Type 1 diabetic mice.

    PubMed

    Zhang, Jingjing; Cheng, Yanli; Gu, Junlian; Wang, Shudong; Zhou, Shanshan; Wang, Yuehui; Tan, Yi; Feng, Wenke; Fu, Yaowen; Mellen, Nicholas; Cheng, Rui; Ma, Jianxing; Zhang, Chi; Li, Zhanquan; Cai, Lu

    2016-04-01

    Fenofibrate (FF), as a peroxisome-proliferator-activated receptor α (PPARα) agonist, has been used clinically for decades to lower lipid levels. In the present study, we examined whether FF can be repurposed to prevent the pathogenesi of the heart in Type 1 diabetes and to describe the underlying mechanism of its action. Streptozotocin (STZ)-induced diabetic mice and their age-matched control mice were treated with vehicle or FF by gavage every other day for 3 or 6 months. FF prevented diabetes-induced cardiac dysfunction (e.g. decreased ejection fraction and hypertrophy), inflammation and remodelling. FF also increased cardiac expression of fibroblast growth factor 21 (FGF21) and sirtuin 1 (Sirt1) in non-diabetic and diabetic conditions. Deletion of FGF21 gene (FGF21-KO) worsened diabetes-induced pathogenic effects in the heart. FF treatment prevented heart deterioration in the wild-type diabetic mice, but could not do so in the FGF21-KO diabetic mice although the systemic lipid profile was lowered in both wild-type and FGF21-KO diabetic mice. Mechanistically, FF treatment prevented diabetes-impaired autophagy, reflected by increased microtubule-associated protein 1A/1B-light chain 3, in the wild-type diabetic mice but not in the FGF21-KO diabetic mice. Studies with H9C2 cells in vitro demonstrated that exposure to high glucose (HG) significantly increased inflammatory response, oxidative stress and pro-fibrotic response and also significantly inhibited autophagy. These effects of HG were prevented by FF treatment. Inhibition of either autophagy by 3-methyladenine (3MA) or Sirt1 by sirtinol (SI) abolished FF's prevention of HG-induced effects. These results suggested that FF could prevent Type 1 diabetes-induced pathological and functional abnormalities of the heart by increasing FGF21 that may up-regulate Sirt1-mediated autophagy. PMID:26795437

  14. SURVIVAL AND EFFECTS OF WILD-TYPE, MUTANT, AND RECOMBINANT STREPTOMYCES IN A SOIL ECOSYSTEM

    EPA Science Inventory

    In a laboratory simulation, selected wild-type, mutant, and recombinant Streptomyces were released into a silt loam soil. trains included genetically enhanced lignin decomposers and those expressing recombinant plasmids. heir survival and effects on soil organic carbon mineraliza...

  15. Comparison between NOx Evolution Mechanisms of Wild-Type and nr1 Mutant Soybean Leaves 1

    PubMed Central

    Klepper, Lowell

    1990-01-01

    The nr1 soybean (Glycine max [L.] Merr.) mutant does not contain the two constitutive nitrate reductases, one of which is responsible for enzymic conversion of nitrite to NOx (NO + NO2). It was tested for possible nonenzymic NOx formation and evolution because of known chemical reactions between NO2− and plant metabolites and the instability of nitrous acid. It did not evolve NOx during the in vivo NR assay, but intact leaves did evolve small amounts of NOx under dark, anaerobic conditions. Experiments were conducted to compare NO3− reduction, NO2− accumulation, and the NOx evolution processes of the wild type (cv Williams) and the nr1 mutant. In vivo NR assays showed that wild-type leaves had three times more NO3− reducing capacity than the nr1 mutant. NOx evolution from intact, anerobic nr1 leaves was approximately 10 to 20% that from wild-type leaves. Nitrite content of the nr1 mutant leaves was usually higher than wild type due to low NOx evolution. Lag times and threshold NO2− concentrations for NOx evolution were similar for the two genotypes. While only 1 to 2% of NOx from wild type is NO2, the nr1 mutant evolved 15 to 30% NO2. The kinetic patterns of NOx evolution with time weré completely different for the mutant and wild type. Comparisons of light and heat treatments also gave very different results. It is generally accepted that the NOx evolution by wild type is primarily an enzymic conversion of NO2− to NO. However, this report concludes that NOx evolution by the nr1 mutant was due to nonenzymic, chemical reactions between plant metabolites and accumulated NO2− and/or decomposition of nitrous acid. Nonenzymic NOx evolution probably also occurs in wild type to a degree but could be easily masked by high rates of the enzymic process. PMID:16667445

  16. Co-fibrillogenesis of Wild-type and D76N β2-Microglobulin

    PubMed Central

    Natalello, Antonino; Mangione, P. Patrizia; Giorgetti, Sofia; Porcari, Riccardo; Marchese, Loredana; Zorzoli, Irene; Relini, Annalisa; Ami, Diletta; Faravelli, Giulia; Valli, Maurizia; Stoppini, Monica; Doglia, Silvia M.; Bellotti, Vittorio; Raimondi, Sara

    2016-01-01

    The amyloidogenic variant of β2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type β2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type β2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of β2-microglobulin lacking the first six N-terminal residues. Interestingly, the hybrid wild-type/variant fibrillar material acquired a thermodynamic stability similar to that of homogenous D76N β2-microglobulin fibrils and significantly higher than the wild-type homogeneous fibrils prepared at neutral pH in the presence of 20% trifluoroethanol. These results suggest that the surface of D76N β2-microglobulin fibrils can favor the transition of the wild-type protein into an amyloid conformation leading to a rapid integration into fibrils. The chaperone crystallin, which is a mild modulator of the lag phase of the variant fibrillogenesis, potently inhibits fibril elongation of the wild-type even once it is absorbed on D76N β2-microglobulin fibrils. PMID:26921323

  17. The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves

    PubMed Central

    Beirowski, Bogdan; Adalbert, Robert; Wagner, Diana; Grumme, Daniela S; Addicks, Klaus; Ribchester, Richard R; Coleman, Michael P

    2005-01-01

    Background The progressive nature of Wallerian degeneration has long been controversial. Conflicting reports that distal stumps of injured axons degenerate anterogradely, retrogradely, or simultaneously are based on statistical observations at discontinuous locations within the nerve, without observing any single axon at two distant points. As axon degeneration is asynchronous, there are clear advantages to longitudinal studies of individual degenerating axons. We recently validated the study of Wallerian degeneration using yellow fluorescent protein (YFP) in a small, representative population of axons, which greatly improves longitudinal imaging. Here, we apply this method to study the progressive nature of Wallerian degeneration in both wild-type and slow Wallerian degeneration (WldS) mutant mice. Results In wild-type nerves, we directly observed partially fragmented axons (average 5.3%) among a majority of fully intact or degenerated axons 37–42 h after transection and 40–44 h after crush injury. Axons exist in this state only transiently, probably for less than one hour. Surprisingly, axons degenerated anterogradely after transection but retrogradely after a crush, but in both cases a sharp boundary separated intact and fragmented regions of individual axons, indicating that Wallerian degeneration progresses as a wave sequentially affecting adjacent regions of the axon. In contrast, most or all WldS axons were partially fragmented 15–25 days after nerve lesion, WldS axons degenerated anterogradely independent of lesion type, and signs of degeneration increased gradually along the nerve instead of abruptly. Furthermore, the first signs of degeneration were short constrictions, not complete breaks. Conclusions We conclude that Wallerian degeneration progresses rapidly along individual wild-type axons after a heterogeneous latent phase. The speed of progression and its ability to travel in either direction challenges earlier models in which clearance of

  18. Electrophysiological Neuroimaging using sLORETA Comparing 22 Age Matched Male and Female Schizophrenia Patients

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta; Kapica, Jacek; Masiak, Marek

    2015-01-01

    Introduction The purpose of this electrophysiological neuroimaging study was to provide a deeper mechanistic understanding of both olanzapine and risperidone pharmacodynamics relative to gender. In doing so, we age-matched 22 men and women and evaluated their resting-state EEG recordings and later used standard low resolution brain Electrotomography to visualize the differences in brain activity amongst the two patient groups. Methods In this investigation, electroencephalogram (EEG) data were analyzed from male and female schizophrenia patients treated with either olanzapine or risperidone, both atypical antipsychotics, during their in-patient stay at the Department of Psychiatry. Twenty-two males and females were age-matched and EEG recordings were analyzed from 19 Ag/AgCl electrodes. Thirty-seconds of resting EEG were spectrally transformed in standardized low resolution electromagnetic tomography (sLORETA). 3D statistical non-paramentric maps for the sLORETA Global Field Power within each band were finally computed. Results The results indicated that, relative to males patients, females schizophrenia patients had increased neuronal synchronization in delta frequency, slow-wave, EEG band located in the dorsolateral prefrontal cortex, within the middle frontal gyrus (t= -2.881, p < 0.03580). These findings suggest that females experience greater dopamine (D2) receptor and serotonin (5-HT2) receptor neuronal blockade relative to age-matched males. Further, our finding provided insight to the pharmacodynamics of second-generation antipsychotics olanzapine and risperidone. Conclusion When compared to male patients, female patients, suffering from schizophrenia, have D2 and 5-HT2 receptors that are blocked more readily than age-matched male schizophrenia patients. Clinically, this may translate into a quicker time to treatment-response in females as compared to male patients. PMID:26617679

  19. Susceptibility of Different Mouse Wild Type Strains to Develop Diet-Induced NAFLD/AFLD-Associated Liver Disease

    PubMed Central

    Fengler, Vera H. I.; Macheiner, Tanja; Kessler, Sonja M.; Czepukojc, Beate; Gemperlein, Katja; Müller, Rolf; Kiemer, Alexandra K.; Magnes, Christoph; Haybaeck, Johannes; Lackner, Carolin; Sargsyan, Karine

    2016-01-01

    Although non-alcoholic and alcoholic fatty liver disease have been intensively studied, concerning pathophysiological mechanisms are still incompletely understood. This may be due to the use of different animal models and resulting model-associated variation. Therefore, this study aimed to compare three frequently used wild type mouse strains in their susceptibility to develop diet-induced features of non-alcoholic/alcoholic fatty liver disease. Fatty liver disease associated clinical, biochemical, and histological features in C57BL/6, CD-1, and 129Sv WT mice were induced by (i) high-fat diet feeding, (ii) ethanol feeding only, and (iii) the combination of high-fat diet and ethanol feeding. Hepatic and subcutaneous adipose lipid profiles were compared in CD-1 and 129Sv mice. Additionally hepatic fatty acid composition was determined in 129Sv mice. In C57BL/6 mice dietary regimens resulted in heterogeneous hepatic responses, ranging from pronounced steatosis and inflammation to a lack of any features of fatty liver disease. Liver-related serum biochemistry showed high deviations within the regimen groups. CD-1 mice did not exhibit significant changes in metabolic and liver markers and developed no significant steatosis or inflammation as a response to dietary regimens. Although 129Sv mice showed no weight gain, this strain achieved most consistent features of fatty liver disease, apparent from concentration alterations of liver-related serum biochemistry as well as moderate steatosis and inflammation as a result of all dietary regimens. Furthermore, the hepatic lipid profile as well as the fatty acid composition of 129Sv mice were considerably altered, upon feeding the different dietary regimens. Accordingly, diet-induced non-alcoholic/alcoholic fatty liver disease is most consistently promoted in 129Sv mice compared to C57BL/6 and CD-1 mice. As a conclusion, this study demonstrates the importance of genetic background of used mouse strains for modeling diet

  20. A human papillomavirus type 18 E6/E7 transgene sensitizes mouse lens cells to human wild-type p53-mediated apoptosis.

    PubMed

    Nakamura, T; Williams-Simons, L; Westphal, H

    1997-06-26

    We have studied the concerted action of factors that influence the balance between cell proliferation and cell death in the developing lens of transgenic mice. We show that a human papillomavirus type 18 (HPV18) E6/E7 transgene that predominantly expresses the viral E7 gene product triggers apoptosis in a dose dependent manner, and causes retardation of lens growth or microphakia. E7 is known to inactivate pRB, the product of the retinoblastoma gene, and to enhance the action of p53. Our earlier work had demonstrated that over-expression of p53 itself can cause apoptosis of lens cells, and that a mutant p53 allele can interfere with this process. In the present study, we examined lenses that simultaneously express different constellations of the HPV18 E6/E7, wild-type and mutant human p53, and wild-type human pRB transgenes. We observed that lens cells expressing the HPV18 transgene are more sensitive to wild-type human p53 action than normal lens cells. As a result, there is severe microphakia in lenses that express both the HPV18 and the wild-type p53 transgenes. By contrast, apoptosis was reduced in lenses that co-expressed the HPV18 and either the pRB or the mutant p53 transgene. We conclude that levels of wild-type p53 are critical, and that any excess of p53 or suppression of pRB can cause cell death. Our results encourage attempts to counteract the deleterious action of human papillomaviruses in cervical cancer by a combination of measures that decrease cell proliferation and enhance apoptosis. PMID:9223662

  1. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice

    NASA Technical Reports Server (NTRS)

    Roten, L.; Nemoto, S.; Simsic, J.; Coker, M. L.; Rao, V.; Baicu, S.; Defreyte, G.; Soloway, P. J.; Zile, M. R.; Spinale, F. G.

    2000-01-01

    Alterations in the expression and activity of the matrix metalloproteinases (MMPs) and the tissue inhibitors of the MMPs (TIMPs) have been implicated in tissue remodeling in a number of disease states. One of the better characterized TIMPs, TIMP-1, has been shown to bind to active MMPs and to regulate the MMP activational process. The goal of this study was to determine whether deletion of the TIMP-1 gene in mice, which in turn would remove TIMP-1 expression in LV myocardium, would produce time-dependent effects on LV geometry and function. Age-matched sibling mice (129Sv) deficient in the TIMP-1 gene (TIMP-1 knock-out (TIMP-1 KO), n=10) and wild-type mice (n=10) underwent comparative echocardiographic studies at 1 and 4 months of age. LV catheterization studies were performed at 4 months and the LV harvested for histomorphometric studies. LV end-diastolic volume and mass increased (18+/-4 and 38+/-3%, respectively, P<0.05) at 4 months in the TIMP-1 KO group; a significant increase compared to wild-type controls (P<0.05). At 4 months, LV and end-diastolic wall stress was increased by over two-fold in the TIMP-1 KO compared to wild type (P<0.05). However, LV systolic pressure and ejection performance were unchanged in the two groups of mice. LV myocyte cross-sectional area was unchanged in the TIMP-1 KO mice compared to controls, but myocardial fibrillar collagen content was reduced. Changes in LV geometry occurred in TIMP-1 deficient mice and these results suggest that constitutive TIMP-1 expression participates in the maintenance of normal LV myocardial structure. Copyright 2000 Academic Press.

  2. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2.

    PubMed

    Carmenate, Tania; Pacios, Anabel; Enamorado, Michel; Moreno, Ernesto; Garcia-Martínez, Karina; Fuente, Dasha; León, Kalet

    2013-06-15

    IL-2 has been used for the treatment of melanoma and renal cell carcinoma, but this therapy has limited efficacy and severe toxicity. Currently, it is assumed that part of the limited efficacy is due to the IL-2-driven preferential expansion of regulatory T cells, which dampen the antitumor immunity. In this study, we characterize a human IL-2 mutant with higher antitumor efficacy and lower toxicity than wild type human IL-2 (wtIL-2). The mutant differs from wtIL-2 by four mutations at the interface with the α subunit of IL-2R. The IL-2 mutant induces in vitro proliferation of CD8(+)CD44(hi) and NK1.1 cells as efficiently as does wtIL-2, but it shows a reduced capacity to induce proliferation of CD4(+)Foxp3(+) regulatory T cells. The IL-2 mutant shows a higher antimetastatic effect than does wtIL-2 in several transplantable tumor models: the experimental metastasis model of MB16F0 melanoma and the experimental and spontaneous metastasis models for the mouse pulmonary carcinoma 3LL-D1222. Relevantly, the IL-2 mutant also exhibits lower lung and liver toxicity than does wtIL-2 when used at high doses in mice. In silico simulations, using a calibrated mathematical model, predict that the properties of IL-2 mutein are a consequence of the reduction, of at least two orders of magnitude, in its affinity for the α subunit of IL-2R (CD25). The human IL-2 mutant described in the present work could be a good candidate for improving cancer therapy based on IL-2. PMID:23677467

  3. Wild-type and e antigen-minus hepatitis B viruses and course of chronic hepatitis.

    PubMed Central

    Brunetto, M R; Giarin, M M; Oliveri, F; Chiaberge, E; Baldi, M; Alfarano, A; Serra, A; Saracco, G; Verme, G; Will, H

    1991-01-01

    Using an oligonucleotide hybridization assay, we studied the clinical implication of wild-type hepatitis B virus (HBV) and a HBV mutant that is unable to secrete hepatitis B e antigen (HBeAg) because of a translational defect due to a stop codon in the pre-C region in 106 hepatitis B surface antigen-positive patients with chronic hepatitis B. Wild-type HBV was detected in 31 of 42 (73.8%) HBeAg-positive patients, whereas a mixed viral population was present in 10 (23.8%). Significant differences in the severity and outcome of liver disease were not observed in the two groups of patients. However, the emergence of HBeAg-minus HBV in wild-type HBV carriers was associated with an exacerbation of liver disease and was followed by the presence of antibodies against HBeAg (anti-HBe) in serum in 50% of the cases. In 61 of 64 (95.3%) anti-HBe-positive patients, HBeAg-minus HBV was the predominant virus: HBeAg-minus HBV was detected in 42 patients (65.6%), whereas both wild-type and HBeAg-minus HBV were present in 19 (29.7%). HBeAg-minus HBV was associated with a course of hepatitis characterized by flare-ups of liver cell necrosis interspersed with periods of asymptomatic HBV carriage (P less than 0.01). These data support the hypothesis that genetic heterogeneity of HBV significantly influences the course and outcome of chronic hepatitis B. Wild-type HBV secreting HBeAg induces immunologic tolerance and causes chronic infection. HBeAg-minus HBV might be unable to induce chronic infection without the helper function of wild-type HBV, but it appears to be more pathogenic. Once chronic infection is established, HBeAg-minus HBV variants may prevail and displace wild-type virus. Images PMID:2034663

  4. Expression of gp120 in mice evokes anxiety behavior: Co-occurrence with increased dendritic spines and brain-derived neurotrophic factor in the amygdala.

    PubMed

    Bachis, Alessia; Forcelli, Patrick; Masliah, Eliezer; Campbell, Lee; Mocchetti, Italo

    2016-05-01

    Human immunodeficiency virus type 1 (HIV) infection of the brain produces cognitive and motor disorders. In addition, HIV positive individuals exhibit behavioral alterations, such as apathy, and a decrease in spontaneity or emotional responses, typically seen in anxiety disorders. Anxiety can lead to psychological stress, which has been shown to influence HIV disease progression. These considerations underscore the importance of determining if anxiety in HIV is purely psychosocial, or if by contrast, there are the molecular cascades associated directly with HIV infection that may mediate anxiety. The present study had two goals: (1) to determine if chronic exposure to viral proteins would induce anxiety-like behavior in an animal model and (2) to determine if this exposure results in anatomical abnormalities that could explain increased anxiety. We have used gp120 transgenic mice, which display behavior and molecular deficiencies similar to HIV positive subjects with cognitive and motor impairments. In comparison to wild type mice, 6months old gp120 transgenic mice demonstrated an anxiety like behavior measured by open field, light/dark transition task, and prepulse inhibition tests. Moreover, gp120 transgenic mice have an increased number of spines in the amygdala, as well as higher levels of brain-derived neurotrophic factor and tissue plasminogen activator when compared to age-matched wild type. Our data support the hypothesis that HIV, through gp120, may cause structural changes in the amygdala that lead to maladaptive responses to anxiety. PMID:26845379

  5. Shoaling and mate choice of wild-type Tanichthys albonubes in the presence of the red fluorescent transgenic conspecifics.

    PubMed

    Jiang, P; Bai, J J; Ye, X; Jian, Q; Chen, M; Chen, X Q

    2011-01-01

    Shoaling and sexual behaviour of wild-type male and female white cloud mountain minnow Tanichthys albonubes were measured in the presence of the red fluorescent transgenic conspecifics under laboratory conditions. Wild-type female test fish showed no significant preference, whereas wild-type male test fish preferred to be near a shoal of red transgenic fish rather than wild-type fish. When placed in a potentially reproductive context, wild-type males had a higher competitive ability over transgenic males; wild-type females spent more time with wild-type males in visually mediated experiments, but wild-type males performed more courtship displays towards transgenic females. These results suggest that the red body colouration does not appear to disturb signal communication between wild-type and transgenic T. albonubes in shoaling behaviour; transgenic males have no mating advantage over wild-type males, but the red body colouration of transgenic females may affect mate choice of wild-type males. PMID:21235550

  6. Variable stress-responsiveness in wild type and domesticated fighting fish.

    PubMed

    Verbeek, Peter; Iwamoto, Toshitaka; Murakami, Noboru

    2008-01-28

    We combined behavioral and physiological measures to compare coping style in wild-type Betta splendens and a domesticated strain selectively bred for sports fighting. We showed previously that the fighter strain is more aggressive than the wild type during experimental conditions that most closely resemble an actual fight. We predicted that compared to the wild type, the fighter strain would show a more proactive coping style, characterized by lesser cortisol and greater sympathetic responses to non-social challenges. We introduced males to an unfamiliar environment and spatial confinement as challenges that may resemble some of those that B. splendens may encounter in its natural habitat. We developed a non-invasive stress assay that enables repeated individual measures of water-borne cortisol. We estimated sympathetic activation through opercular beat rate and recorded the duration of behavioral immobility. We found that exposure to an unfamiliar environment raised cortisol levels in the wild type but not in the fighter strain and that confinement raised cortisol levels in both. In both strains opercular beat rates were significantly reduced during the latter stages of confinement compared to during the early stages. The fighter strain, but not the wild type, adopted a behavioral strategy of immobility from the very beginning of confinement. PMID:17884114

  7. A positively gravitropic mutant mirrors the wild-type protonemal response in the moss Ceratodon purpureus.

    PubMed

    Wagner, T A; Cove, D J; Sack, F D

    1997-06-01

    Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented 90 degrees, they temporarily grow down soon after reorientation ("initial reversal") and also prior to cytokinesis ("mitotic reversal"). A positively gravitropic mutant designated wrong- way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-l reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal, and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination of the reversals. Thus, the WWR protein may normally transduce information about cell orientation. PMID:11541791

  8. A positively gravitropic mutant mirrors the wild-type protonemal response in the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Wagner, T. A.; Cove, D. J.; Sack, F. D.

    1997-01-01

    Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented 90 degrees, they temporarily grow down soon after reorientation ("initial reversal") and also prior to cytokinesis ("mitotic reversal"). A positively gravitropic mutant designated wrong- way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-l reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal, and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination of the reversals. Thus, the WWR protein may normally transduce information about cell orientation.

  9. Orthotopic transplantation of LH receptor knockout and wild-type ovaries.

    PubMed

    Chudgar, Daksha; Lei, Zhenmin; Rao, Ch V

    2005-10-01

    Luteinizing hormone (LH) receptor knockout animals have an ovarian failure due to an arrest in folliculogenesis at the antral stage. As a result, the animals have an infertility phenotype. The present study was undertaken to determine whether this phenotype could be reversed by orthotopic transplantation of wild-type ovaries. The results revealed that transplanting wild-type ovaries into null animals did not result in resumption of estrus cycles. Although the number of different types of follicles increased, none progressed to ovulation. The serum hormone profiles improved, reflecting the ovarian changes. The wild-type animals with null ovaries also failed to cycle and their ovaries and serum hormone levels were more like null animals with their own ovaries. Although the lack of rescue of null ovaries placed into wild-type animals was predicted, the failure of wild-type ovaries placed in null animals was not, which could be due to chronic exposure of transplanted tissue to high circulating LH levels and also possibly due to altered internal milieu in null animals. These findings may have implications for potential future considerations of grafting normal donor ovaries into women who have an ovarian failure resulting from inactivating LH receptor mutations. PMID:15964032

  10. Wild-type SOD1 overexpression accelerates disease onset of a G85R SOD1 mouse

    PubMed Central

    Wang, Lijun; Deng, Han-Xiang; Grisotti, Gabriella; Zhai, Hong; Siddique, Teepu; Roos, Raymond P.

    2009-01-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (FALS), and ∼25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase type 1 (SOD1). Mutant (MT) SOD1 is thought to be pathogenic because it misfolds and aggregates. A number of transgenic mice have been generated that express different MTSOD1s as transgenes and exhibit an ALS-like disease. Although one study found that overexpression of human wild-type (WT) SOD1 did not affect disease in G85R transgenic mice, more recent reports claim that overexpression of WTSOD1 in other MTSOD1 transgenic mice hastened disease, raising a possibility that the effect of WTSOD1 overexpression in this FALS mouse model is mutant-specific. In order to clarify this issue, we studied the effect of WTSOD1 overexpression in a G85R transgenic mouse that we recently generated. We found that G85R/WTSOD1 double transgenic mice had an acceleration of disease onset and shortened survival compared with G85R single transgenic mice; in addition, there was an earlier appearance of pathological and immunohistochemical abnormalities. The spinal cord insoluble fraction from G85R/WTSOD1 mice had evidence of G85R–WTSOD1 heterodimers and WTSOD1 homodimers (in addition to G85R homodimers) with intermolecular disulfide bond cross-linking. These studies suggest that WTSOD1 can be recruited into disease-associated aggregates by redox processes, providing an explanation for the accelerated disease seen in G85R mice following WTSOD1 overexpression, and suggesting the importance of incorrect disulfide-linked protein as key to MTSOD1 toxicity. PMID:19233858

  11. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    PubMed Central

    Lasher, Richard A; Pahnke, Aric Q; Johnson, Jeffrey M; Sachse, Frank B

    2012-01-01

    Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06) but less than half of the native postnatal day 12 (0.90 ± 0.06) and adult (0.91 ± 0.04) myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal that the

  12. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore

    NASA Astrophysics Data System (ADS)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.

  13. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore.

    PubMed

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I. PMID:27111839

  14. Transport of Wild-Type and Recombinant Nucleopolyhedroviruses by Scavenging and Predatory Arthropods.

    PubMed

    Lee; Fuxa

    2000-05-01

    Wild-type and recombinant nucleopolyhedroviruses (NPVs) were compared in their capability to be transported over limited distances by the predator Podisus maculiventris (Say) and scavengers Sarcophaga bullata (Parker) and Acheta domesticus (Linnaeus) in Trichoplusia ni (Hübner) larvae infesting collards in a greenhouse microcosm. Viruses tested were variants of Autographa californica (Speyer) NPV (AcNPV): wild-type virus (AcNPV.WT), AcNPV expressing a scorpion toxin (AcNPV.AaIT), and AcNPV expressing juvenile hormone esterase (AcJHE.SG). Podisus maculiventris transported AcNPV.WT and S. bullata transported AcNPV.WT and AcNPV.AaIT. Prevalence and transport of AcNPV.WT were greater than those of AcNPV.AaIT and AcJHE.SG, regardless of whether the nontarget organism carriers were present or absent. Podisus maculiventris and S. bullata transported recombinant and wild-type NPVs at a rate of up to 62.5 cm/day, and A. domesticus transported wild-type NPV at 125 cm/day. The infected host insects, T. ni, undoubtedly contributed to viral transport in the current research. In every experiment, both the wild-type and recombinant virus spread to some degree in the plots without predators or scavengers. The relative amounts of NPVs that accumulated in soil, as indicated by bioassay mortality percentages, generally exhibited spatial patterns similar to those of T. ni mortality due to NPV on the collards plants. Thus, the predator and scavengers in the current research demonstrated some capacity to transport wild-type as well as recombinant viruses at significant rates in a greenhouse microcosm. PMID:10882435

  15. Erythritol Metabolism in Wild-Type and Mutant Strains of Schizophyllum commune

    PubMed Central

    Braun, M. L.; Niederpruem, D. J.

    1969-01-01

    Erythritol uptake and metabolism were compared in wild-type mycelium and a dome morphological mutant of the wood-rotting mushroom Schizophyllum commune. Wild-type mycelium utilized glucose, certain hexitols, and pentitols including ribitol, as well as d-erythrose, erythritol, and glycerol as sole carbon sources for growth. The dome mutant utilized all of these compounds except d-erythrose and erythritol. Erythritol- or glycerol-grown wild-type mycelium incorporated erythritol into various cellular constituents, whereas glucose-grown cells lagged considerably before initiation of erythritol uptake. This acquisition was inhibited by cycloheximide. Dome mycelium showed behavior similar to wild-type in uptake of erythritol after growth on glucose or glycerol, except that erythritol was not further catabolized. Enzymes of carbohydrate metabolism were compared in cell extracts of glucose-cultured wild-type mycelium and dome. Enzymes of hexose monophosphate catabolism, nicotinamide adenine dinucleotide (NAD)-dependent sugar alcohol dehydrogenases, and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-coupled erythrose reductase were demonstrated in both. The occurrence of erythrose reductase was unaffected by the nature of the growth carbon source, showed optimal activity at pH 7, and generated NAD phosphate and erythritol as products of the reaction. Glycerol-, d-erythrose-, or erythritol-grown wild-type mycelium contained an NAD-dependent erythritol dehydrogenase absent in glucose cells. Erythritol dehydrogenase activity was optimal at pH 8.8 and produced erythrulose during NAD reduction. Glycerol-growth of dome mycelium induced the erythritol uptake system, but a functional erythritol dehydrogenase could not be demonstrated. Neither wild-type nor dome mycelium produced erythritol dehydrogenase during growth on ribitol. Erythritol metabolism in wild-type cells of S. commune, therefore, involves an NADPH-dependent reduction of d-erythrose to produce erythritol

  16. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    PubMed Central

    2010-01-01

    Background Glucocorticoids (GCs) control expression of a large number of genes via binding to the GC receptor (GR). Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT) and mice that have lost the ability to form GR dimers (GRdim). Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs. PMID:20525385

  17. Prevalence of temporomandibular disorder pain in Chinese adolescents compared to an age-matched Swedish population.

    PubMed

    Hongxing, L; Astrøm, A N; List, T; Nilsson, I-M; Johansson, A

    2016-04-01

    This study aimed to (i) assess the prevalence and perceived need for treatment of TMD pain, and its association with socio-economic factors and gender, in adolescents in Xi᾽an, Shaanxi Province, China, and (ii) compare the prevalence and association with gender of TMD pain in Xi᾽an to an age-matched Swedish population. We surveyed Chinese adolescents aged 15 to 19 years in Xi'an, China (n = 5524), using a questionnaire with two-stage stratified sampling and the school as the sampling unit. The study included second-year students at selected high schools. It also included an age-matched Swedish population (n = 17 015) surveyed using the same diagnostic criteria for TMD pain as that used in the Chinese sample. The survey found TMD pain in 14·8% (n = 817) of the Chinese sample and 5·1% (n = 871) of the Swedish sample (P < 0·0001). Girls had significantly more TMD pain than boys in both the Chinese (P < 0·05) and Swedish (P < 0·001) samples. TMD pain increased with age in the Chinese population. Of the Chinese adolescents with TMD pain, 47% reported that they felt a need for treatment. Rural schools, low paternal education levels, poverty, living outside the home, poor general and oral health, and dissatisfaction with teeth all showed significant positive correlations with TMD pain. Prevalence of TMD pain in Chinese adolescents was significantly higher than in the Swedish sample. PMID:26538188

  18. Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer’s disease models

    PubMed Central

    Pardon, Marie-Christine; Yanez Lopez, Maria; Yuchun, Ding; Marjańska, Małgorzata; Prior, Malcolm; Brignell, Christopher; Parhizkar, Samira; Agostini, Alessandra; Bai, Li; Auer, Dorothee P.; Faas, Henryk M

    2016-01-01

    Microglia activation has emerged as a potential key factor in the pathogenesis of Alzheimer’s disease. Metabolite levels assessed by magnetic resonance spectroscopy (MRS) are used as markers of neuroinflammation in neurodegenerative diseases, but how they relate to microglial activation in health and chronic disease is incompletely understood. Using MRS, we monitored the brain metabolic response to lipopolysaccharides (LPS)-induced microglia activation in vivo in a transgenic mouse model of Alzheimer’s disease (APP/PS1) and healthy controls (wild-type (WT) littermates) over 4 hours. We assessed reactive gliosis by immunohistochemistry and correlated metabolic and histological measures. In WT mice, LPS induced a microglial phenotype consistent with activation, associated with a sustained increase in macromolecule and lipid levels (ML9). This effect was not seen in APP/PS1 mice, where LPS did not lead to a microglial response measured by histology, but induced a late increase in the putative inflammation marker myoinositol (mI) and metabolic changes in total creatine and taurine previously reported to be associated with amyloid load. We argue that ML9 and mI distinguish the response of WT and APP/PS1 mice to immune mediators. Lipid and macromolecule levels may represent a biomarker of activation of healthy microglia, while mI may not be a glial marker. PMID:26813748

  19. Pumilio1 Haploinsufficiency Leads to SCA1-like Neurodegeneration by Increasing Wild-Type Ataxin1 Levels

    PubMed Central

    Gennarino, Vincenzo A.; Singh, Ravi K.; White, Joshua J.; De Maio, Antonia; Han, Kihoon; Kim, Ji-Yoen; Jafar-Nejad, Paymaan; di Ronza, Alberto; Kang, Hyojin; Sayegh, Layal S.; Cooper, Thomas A.; Orr, Harry T.; Sillitoe, Roy V.; Zoghbi, Huda Y.

    2015-01-01

    SUMMARY Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative proteinopathy, in which a mutant protein (in this case, ATAXIN1) accumulates in neurons and exerts toxicity; in SCA1 this process causes progressive deterioration of motor coordination. Seeking to understand how post-translational modification of ATAXIN1 levels influences disease, we discovered that the RNA-binding protein PUMILIO1 (PUM1) not only directly regulates ATAXIN1 but that it also plays an unexpectedly important role in neuronal function. Loss of Pum1 caused progressive motor dysfunction and SCA1-like neurodegeneration with motor impairment, primarily by increasing Ataxin1 levels. Breeding Pum1+/− mice to SCA1 mice (Atxn1154Q/+) exacerbated disease progression, whereas breeding them to Atxn1+/− mice normalized Ataxin1 levels and largely rescued the Pum1+/− phenotype. Thus, both increased wild-type ATAXIN1 levels and PUM1 haploinsufficiency could contribute to human neurodegeneration. These results demonstrate the importance of studying post-transcriptional regulation of disease-driving proteins to reveal factors underlying neurodegenerative disease. PMID:25768905

  20. Phosphate uptake in Saccharomyces cerevisiae Hansen wild type and phenotypes exposed to space flight irradiation.

    PubMed

    Berry, D; Volz, P A

    1979-10-01

    Rates of phosphate uptake were approximately twice as great for Saccharomyces cerevisiae single-cell phenotypic isolates exposed to space parameters as for the wild-type ground control. Quantitative determination of 32P was performed by liquid scintillation spectrometry utilizing Cerenkov radiation counting techniques. PMID:395899

  1. Physical and physiological components of the graviresponses of wild-type and mutant Paramecium Tetraurelia.

    PubMed

    Nagel, U; Machemer, H

    2000-03-01

    Wild-type and the morphological mutant kin 241 of Paramecium tetraurelia showed improved orientation away from the centre of gravity (negative gravitaxis) when accelerations were increased from 1 to 7 g. Gravitaxis was more pronounced in the mutant. A correlation between the efficiency of orientation and the applied g value suggests a physical basis for gravitaxis. Transiently enhanced rates of reversal of the swimming direction coincided with transiently enhanced gravitaxis because reversals occurred more often in downward swimmers than in upward swimmers. The results provide evidence of a physiological modulation of gravitaxis by means of the randomizing effect of depolarization-dependent swimming reversals. Gravity bimodally altered propulsion rates of wild-type P. tetraurelia so that sedimentation was partly antagonized in upward and downward swimmers (negative gravikinesis). In the mutant, only increases in propulsion were observed, although the orientation-dependent sensitivity of the gravikinetic response was the same as in the wild-type population. Observed swimming speed and sedimentation rates in the wild-type and mutant cells were linearly related to acceleration, allowing the determination of gravikinesis as a linear (and so far non-saturating) function of gravity. PMID:10683165

  2. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    SciTech Connect

    Beckmann, Melissa; Venkataraman, Sankar; Doktycz, Mitchel John; Nataro, James P; Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  3. COMPARISON OF IN VITRO-CULTURED AND WILD-TYPE PERKINSUS MARINUS I: PATHOGEN VIRULENCE

    EPA Science Inventory

    Perkinsus marinus is a highly contagious pathogen of the eastern oyster Crassostrea virginica. Until recently, transmission studies have employed wild-type parasites isolated directly from infected oysters. Newly developed methods to propagate P. marinus in vitro have led to usin...

  4. Germ cell tumors of the testis overexpress wild-type p53.

    PubMed Central

    Guillou, L.; Estreicher, A.; Chaubert, P.; Hurlimann, J.; Kurt, A. M.; Metthez, G.; Iggo, R.; Gray, A. C.; Jichlinski, P.; Leisinger, H. J.; Benhattar, J.

    1996-01-01

    Several recent studies have suggested that testicular germ cell tumors express high levels of wild-type p53 protein. To clarify and confirm this unexpected result, we have investigated seminomatous and nonseminomatous germ cell tumors at the genomic, mRNA, and protein levels. Thirty-five tumors were examined for p53 overexpression using antibodies directed against the p53 (PAb1801, PAb240, and CM1), mdm2 (IF2), and p21Waf1/Clp1 (EA10) proteins. Thirty-two tumors were screened for p53 mutations by single-strand conformation polymorphism analysis. Eighteen tumors were screened with a functional assay that tests the transcriptional competence of human p53 protein expressed in yeast. On frozen sections, 100, 65, 35, 73, and 0% of tumors reacted with the CM1, PAb240, PAb1801, IF2, and EA10 antibodies, respectively. No p53 mutations were detected by single-strand conformation polymorphism or by functional assay. The fact that many tumors overexpress wild-type p53 but not mdm2 rules out mdm2 overexpression as a general explanation for the presence of wild-type p53 in these tumors. The absence of p21 overexpression suggests that p53 may be unable to activate transcription of critical target genes, which may explain why the presence of wild-type p53 is tolerated in this tumor type, although the mechanism for this transcriptional inactivity remains to be established. Images Figure 1 Figure 2 PMID:8863671

  5. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  6. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice.

    PubMed

    Cummins, Nathan W; Weaver, Eric A; May, Shannon M; Croatt, Anthony J; Foreman, Oded; Kennedy, Richard B; Poland, Gregory A; Barry, Michael A; Nath, Karl A; Badley, Andrew D

    2012-07-01

    Underlying mechanisms of individual variation in severity of influenza infection and response to vaccination are poorly understood. We investigated the effect of reduced heme oxygenase-1 (HO-1) expression on vaccine response and outcome of influenza infection. HO-1-deficient and wild-type (WT) mice (kingdom, Animalia; phylum, Chordata; genus/species, Mus musculus) were infected with influenza virus A/PR/8/34 with or without prior vaccination with an adenoviral-based influenza vaccine. A genome-wide association study evaluated the expression of single-nucleotide polymorphisms (SNPs) in the HO-1 gene and the response to influenza vaccination in healthy humans. HO-1-deficient mice had decreased survival after influenza infection compared to WT mice (median survival 5.5 vs. 6.5 d, P=0.016). HO-1-deficient mice had impaired production of antibody following influenza vaccination compared to WT mice (mean antibody titer 869 vs. 1698, P=0.02). One SNP in HO-1 and one SNP in the constitutively expressed isoform HO-2 were independently associated with decreased antibody production after influenza vaccination in healthy human volunteers (P=0.017 and 0.014, respectively). HO-1 deficient mice were paired with sex- and age-matched WT controls. HO-1 affects the immune response to both influenza infection and vaccination, suggesting that therapeutic induction of HO-1 expression may represent a novel adjuvant to enhance influenza vaccine effectiveness. PMID:22490782

  7. The neurotrophin receptor p75 mediates gp120-induced loss of synaptic spines in aging mice.

    PubMed

    Bachis, Alessia; Wenzel, Erin; Boelk, Allyssia; Becker, Jodi; Mocchetti, Italo

    2016-10-01

    Human immunodeficiency virus 1 and its envelope protein gp120 reduce synaptodendritic complexity. However, the mechanisms contributing to this pathological feature are still not understood. The proneurotrophin brain-derived neurotrophic factor promotes synaptic simplification through the activation of the p75 neurotrophin receptor (p75NTR). Here, we have used gp120 transgenic (gp120tg) mice to investigate whether p75NTR has a role in gp120-mediated neurotoxicity. Old (∼10 months) gp120tg mice exhibited an increase in proneurotrophin brain-derived neurotrophic factor levels in the hippocampus as well as a decrease in the number of dendritic spines when compared to age-matched wild type. These effects were not observed in 3- or 6-month-old mice. To test if the reduction in spine density and morphology is caused by the activation of p75NTR, we crossed gp120tg mice with p75NTR null mice. We found that deletion of only 1 copy of the p75NTR gene in gp120tg mice is sufficient to normalize the number of hippocampal spines, strongly suggesting that the neurotoxic effect of gp120 is mediated by p75NTR. These data indicate that p75NTR antagonists could provide an adjunct therapy against synaptic simplification caused by human immunodeficiency virus 1. PMID:27498053

  8. Nutlin-3a: A Potential Therapeutic Opportunity for TP53 Wild-Type Ovarian Carcinomas

    PubMed Central

    Tsang, Yvonne T. M.; Mullany, Lisa K.; Zu, Zhifei; Richards, JoAnne S.; Gershenson, David M.; Wong, Kwong-Kwok

    2015-01-01

    Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a—a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis—as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation. PMID:26248031

  9. Nutlin-3a: A Potential Therapeutic Opportunity for TP53 Wild-Type Ovarian Carcinomas.

    PubMed

    Crane, Erin K; Kwan, Suet-Yan; Izaguirre, Daisy I; Tsang, Yvonne T M; Mullany, Lisa K; Zu, Zhifei; Richards, JoAnne S; Gershenson, David M; Wong, Kwong-Kwok

    2015-01-01

    Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a--a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis--as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation. PMID:26248031

  10. NIAM-Deficient Mice Are Predisposed to the Development of Proliferative Lesions including B-Cell Lymphomas

    PubMed Central

    Reed, Sara M.; Hagen, Jussara; Muniz, Viviane P.; Rosean, Timothy R.; Borcherding, Nick; Sciegienka, Sebastian; Goeken, J. Adam; Naumann, Paul W.; Zhang, Weizhou; Tompkins, Van S.; Janz, Siegfried; Meyerholz, David K.; Quelle, Dawn E.

    2014-01-01

    Nuclear Interactor of ARF and Mdm2 (NIAM, gene designation Tbrg1) is a largely unstudied inhibitor of cell proliferation that helps maintain chromosomal stability. It is a novel activator of the ARF-Mdm2-Tip60-p53 tumor suppressor pathway as well as other undefined pathways important for genome maintenance. To examine its predicted role as a tumor suppressor, we generated NIAM mutant (NIAMm/m) mice homozygous for a β-galactosidase expressing gene-trap cassette in the endogenous gene. The mutant mice expressed significantly lower levels of NIAM protein in tissues compared to wild-type animals. Fifty percent of aged NIAM deficient mice (14 to 21 months) developed proliferative lesions, including a uterine hemangioma, pulmonary papillary adenoma, and a Harderian gland adenoma. No age-matched wild-type or NIAM+/m heterozygous animals developed lesions. In the spleen, NIAMm/m mice had prominent white pulp expansion which correlated with enhanced increased reactive lymphoid hyperplasia and evidence of systemic inflammation. Notably, 17% of NIAM mutant mice had splenic white pulp features indicating early B-cell lymphoma. This correlated with selective expansion of marginal zone B cells in the spleens of younger, tumor-free NIAM-deficient mice. Unexpectedly, basal p53 expression and activity was largely unaffected by NIAM loss in isolated splenic B cells. In sum, NIAM down-regulation in vivo results in a significant predisposition to developing benign tumors or early stage cancers. These mice represent an outstanding platform for dissecting NIAM's role in tumorigenesis and various anti-cancer pathways, including p53 signaling. PMID:25393878

  11. Toxicogenomic profiling of perfluorononanoic acid in wild-type and PPARa-null mice

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a ubiquitous environmental contaminant and a developmental toxicant in laboratory animals. Like other perfluoroalkyl acids (PFAAs) such as perfluorooctane sulfonate (PFOA) and perfluoroalkyl acid (PFOS), PFNA is a known activator ofperoxisome prol...

  12. Basilar Membrane Measurements from Wild Type, Prestin 499, and Prestin KO mice

    NASA Astrophysics Data System (ADS)

    Weddell, Thomas; Mellado-Lagarde, Marcia; Lukashkina, Victoria; Lukashkin, Andrei; Zuo, Jian; Russell, Ian

    2011-11-01

    It has been predicted that a nonfunctional prestin in the mammalian cochlea would produce a basilar membrane response at lower characteristic frequency, as we see in the prestin knock-out mouse, but with a reduced sensitivity that would reflect an enhanced coupling between basilar membrane and reticular lamina and inner hair cell stereocilia. We demonstrate here that this is the case in measurements from the 499 mouse where prestin in the lateral membrane of the outer hair cells is present but effectively silenced.

  13. GENE PROFILING IN WILD-TYPE AND PPARα-NULL MICE EXPOSED TO PERFLUOROOCTANE SULFONATE

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS), a perfluoroalkyl acid (PFAA), is a persistent environmental contaminant found in the tissues of humans and wildlife. Over the last decade, health concerns have been raised, in part, because of the long half-life of PFOS and other PFAAs in humans,...

  14. Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with Alzheimer presenilin 1 mutation.

    PubMed

    Yang, Xifei; Yang, Ying; Li, Geng; Wang, Jianzhi; Yang, Edward S

    2008-02-01

    One of the neuropathological features of Alzheimer's disease (AD) is the deposition of senile plaques containing beta-amyloid (A beta). There is limited evidence for the treatment to arrest A beta pathology of AD. In our present study, we tested the effect of coenzyme Q10 (CoQ10), an endogenous antioxidant and a powerful free radical scavenger, on A beta in the aged transgenic mice overexpressing Alzheimer presenilin 1-L235P (leucine-to-proline mutation at codon 235, 16-17 months old). The treatment by feeding the transgenic mice with CoQ10 for 60 days (1,200 mg kg(-1) day(-1)) partially attenuated A beta overproduction and intracellular A beta deposit in the cortex of the transgenic mice compared with the age-matched untreated transgenic mice. Meanwhile, an increased oxidative stress reaction was detected as evidenced by elevated level of malondialdehyde (MDA) and decreased activity of superoxide dismutase (SOD) in the transgenic mice relative to the wild-type mice, and supplementation of CoQ10 partially decreased MDA level and upregulated the activity of SOD. The results indicate that oxidative stress is enhanced in the brain of the transgenic mice, that this enhancement may further promote A beta 42 overproduction in a vicious formation, and that CoQ10 would be beneficial for the therapy of AD. PMID:18181031

  15. Heroin snorters versus injectors: comparison on drug use and treatment outcome in age-matched samples.

    PubMed

    Carpenter, M J; Chutuape, M A; Stitzer, M L

    1998-12-01

    Drug use histories and treatment outcomes were compared for age, race and gender-matched samples of intravenous (IV; n = 28) versus intranasal (IN; n = 28) opiate abusers entering a 3-day inpatient detoxification unit. Data were derived from the Addiction Severity Index (ASI) interview. Both groups reported daily heroin use prior to detoxification, but IV users reported more days of alcohol and multiple drug use during the past 30 days. Despite age matching, IV users also started using alcohol at an earlier age and accumulated more lifetime months of regular alcohol, cocaine and multidrug use. IV users were more likely to enter treatment following the detox, but no significant outcome differences were noted at 1 and 3 months post-detoxification. The results show that intravenous, as compared to intranasal, opiate users have both a more severe pattern and a more extensive history of the use of non-opiate drugs. PMID:10933336

  16. Over-Expression of CD200 Protects Mice from Dextran Sodium Sulfate Induced Colitis

    PubMed Central

    Chen, Zhiqi; Yu, Kai; Zhu, Fang; Gorczynski, Reginald

    2016-01-01

    Background and aim CD200:CD200 receptor (CD200R) interactions lead to potent immunosuppression and inhibition of autoimmune inflammation. We investigated the effect of "knockout"of CD200 or CD200R, or over-expression of CD200, on susceptibility to dextran sodium sulfate (DSS)—induced colitis, a mouse model of inflammatory bowel disease (IBD). Methods Acute or chronic colitis was induced by administration of dextran sodium sulfate (DSS) in four groups of age-matched C57BL/6 female mice: (1) CD200-transgenic mice (CD200tg); (2) wild-type (WT) mice; (3) CD200 receptor 1-deficient (CD200R1KO) mice; and (4) CD200-deficient (CD200KO) mice. The extent of colitis was determined using a histological scoring system. Colon tissues were collected for quantitative RT-PCR and Immunohistochemical staining. Supernatants from colonic explant cultures and mononuclear cells isolated from colonic tissue were used for ELISA. Results CD200KO and CD200R1KO mice showed greater sensitivity to acute colitis than WT mice, with accelerated loss of body weight, significantly higher histological scores, more severe infiltration of macrophages, neutrophils and CD3+ cells, and greater expression of macrophage-derived inflammatory cytokines, whose production was inhibited in vitro (in WT/CD200KO mouse cells) by CD200. In contrast, CD200tg mice showed less sensitivity to DSS compared with WT mice, with attenuation of all of the features seen in other groups. In a chronic colitis model, greater infiltration of Foxp3+ regulatory T (Treg) cells was seen in the colon of CD200tg mice compared to WT mice, and anti-CD25 mAb given to these mice attenuated protection. Conclusions The CD200:CD200R axis plays an immunoregulatory role in control of DSS induced colitis in mice. PMID:26841120

  17. Neural mechanisms of verb argument structure processing in agrammatic aphasic and healthy age-matched listeners

    PubMed Central

    Thompson, C.K.; Bonakdarpour, B.; Fix, S.F.

    2010-01-01

    Processing of lexical verbs involves automatic access to argument structure entries entailed within the verb's representation. Recent neuroimaging studies with young normal listeners suggest that this involves bilateral posterior perisylvian tissue, with graded activation in these regions based on argument structure complexity. The aim of the present study was to examine the neural mechanisms of verb processing using functional magnetic resonance imaging (fMRI) in older normal volunteers and patients with stroke-induced agrammatic aphasia, a syndrome in which verb, as compared to noun, production often is selectively impaired, but verb comprehension in both on-line and off-line tasks is spared. Fourteen healthy listeners and five age-matched aphasic patients performed a lexical decision task, which examined verb processing by argument structure complexity, i.e., one-argument (i.e., intransitive (v1)); two-argument (i.e., transitive (v2)), and three-argument (v3) verbs. Results for the age-matched listeners largely replicated those for younger participants studied by Thompson et al. (2007): v3-v1 comparisons showed activation of the angular gyrus in both hemispheres and this same heteromodal region was activated in the left hemisphere in the (v2+v3)-v1 contrast. Similar results were derived for the agrammatic aphasic patients, however, activation was unilateral (in the right hemisphere for 3 participants) rather than bilateral likely because these patients' lesions extended to the left temporoparietal region. All performed the task with high accuracy and, despite differences in lesion site and extent, they recruited spared tissue in the same regions as healthy normals. Consistent with psycholinguistic models of sentence processing, these findings indicate that the posterior language network is engaged for processing verb argument structure and is crucial for semantic integration of argument structure information. PMID:19702460

  18. Relative quantification of membrane proteins in wild-type and prion protein (PrP)-knockout cerebellar granule neurons.

    PubMed

    Stella, Roberto; Cifani, Paolo; Peggion, Caterina; Hansson, Karin; Lazzari, Cristian; Bendz, Maria; Levander, Fredrik; Sorgato, Maria Catia; Bertoli, Alessandro; James, Peter

    2012-02-01

    Approximately 25% of eukaryotic proteins possessing homology to at least two transmembrane domains are predicted to be embedded in biological membranes. Nevertheless, this group of proteins is not usually well represented in proteome-wide experiments due to their refractory nature. Here we present a quantitative mass spectrometry-based comparison of membrane protein expression in cerebellar granule neurons grown in primary culture that were isolated from wild-type mice and mice lacking the cellular prion protein. This protein is a cell-surface glycoprotein that is mainly expressed in the central nervous system and is involved in several neurodegenerative disorders, though its physiological role is unclear. We used a low specificity enzyme α-chymotrypsin to digest membrane proteins preparations that had been separated by SDS-PAGE. The resulting peptides were labeled with tandem mass tags and analyzed by MS. The differentially expressed proteins identified using this approach were further analyzed by multiple reaction monitoring to confirm the expression level changes. PMID:22023170

  19. Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice.

    PubMed

    Thomas, Amandine; Belaidi, Elise; Aron-Wisnewsky, Judith; van der Zon, Gerard C; Levy, Patrick; Clement, Karine; Pepin, Jean-Louis; Godin-Ribuot, Diane; Guigas, Bruno

    2016-01-01

    Obesity is associated with local tissue hypoxia and elevated hypoxia-inducible factor 1 alpha (HIF-1α) in metabolic tissues. Prolyl hydroxylases (PHDs) play an important role in regulating HIF-α isoform stability. In the present study, we investigated the consequence of whole-body PHD1 gene (Egln2) inactivation on metabolic homeostasis in mice. At baseline, PHD1-/- mice exhibited higher white adipose tissue (WAT) mass, despite lower body weight, and impaired insulin sensitivity and glucose tolerance when compared to age-matched wild-type (WT) mice. When fed a synthetic low-fat diet, PHD1-/- mice also exhibit a higher body weight gain and WAT mass along with glucose intolerance and systemic insulin resistance compared to WT mice. PHD1 deficiency led to increase in glycolytic gene expression, lipogenic proteins ACC and FAS, hepatic steatosis and liver-specific insulin resistance. Furthermore, gene markers of inflammation were also increased in the liver, but not in WAT or skeletal muscle, of PHD1-/- mice. As expected, high-fat diet (HFD) promoted obesity, hepatic steatosis, tissue-specific inflammation and systemic insulin resistance in WT mice but these diet-induced metabolic alterations were not exacerbated in PHD1-/- mice. In conclusion, PHD1 deficiency promotes hepatic steatosis and liver-specific insulin resistance but does not worsen the deleterious effects of HFD on metabolic homeostasis. PMID:27094951

  20. Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice

    PubMed Central

    Thomas, Amandine; Belaidi, Elise; Aron-Wisnewsky, Judith; van der Zon, Gerard C.; Levy, Patrick; Clement, Karine; Pepin, Jean-Louis; Godin-Ribuot, Diane; Guigas, Bruno

    2016-01-01

    Obesity is associated with local tissue hypoxia and elevated hypoxia-inducible factor 1 alpha (HIF-1α) in metabolic tissues. Prolyl hydroxylases (PHDs) play an important role in regulating HIF-α isoform stability. In the present study, we investigated the consequence of whole-body PHD1 gene (Egln2) inactivation on metabolic homeostasis in mice. At baseline, PHD1−/− mice exhibited higher white adipose tissue (WAT) mass, despite lower body weight, and impaired insulin sensitivity and glucose tolerance when compared to age-matched wild-type (WT) mice. When fed a synthetic low-fat diet, PHD1−/− mice also exhibit a higher body weight gain and WAT mass along with glucose intolerance and systemic insulin resistance compared to WT mice. PHD1 deficiency led to increase in glycolytic gene expression, lipogenic proteins ACC and FAS, hepatic steatosis and liver-specific insulin resistance. Furthermore, gene markers of inflammation were also increased in the liver, but not in WAT or skeletal muscle, of PHD1−/− mice. As expected, high-fat diet (HFD) promoted obesity, hepatic steatosis, tissue-specific inflammation and systemic insulin resistance in WT mice but these diet-induced metabolic alterations were not exacerbated in PHD1−/− mice. In conclusion, PHD1 deficiency promotes hepatic steatosis and liver-specific insulin resistance but does not worsen the deleterious effects of HFD on metabolic homeostasis. PMID:27094951

  1. The Polyphenol Oleuropein Aglycone Protects TgCRND8 Mice against Aß Plaque Pathology

    PubMed Central

    Grossi, Cristina; Rigacci, Stefania; Ambrosini, Stefano; Ed Dami, Teresa; Luccarini, Ilaria; Traini, Chiara; Failli, Paola; Berti, Andrea; Casamenti, Fiorella; Stefani, Massimo

    2013-01-01

    The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and “fluffy”; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet. PMID:23951225

  2. Fusarium spp. Associated with Field-Grown Grain of Near-Isogenic Low Lignin and Wild-Type Sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium spp. associated with field-grown grain of near-isogenic low lignin and wild-type sorghum. Deanna Funnell-Harris and Jeff Pedersen, USDA-ARS, Lincoln, NE Previous studies indicated that low lignin brown midrib (bmr) sorghum may be more resistant to Fusarium spp. than wild-type and that phen...

  3. p47phox-Nox2-dependent ROS Signaling Inhibits Early Bone Development in Mice but Protects against Skeletal Aging*

    PubMed Central

    Chen, Jin-Ran; Lazarenko, Oxana P.; Blackburn, Michael L.; Mercer, Kelly E.; Badger, Thomas M.; Ronis, Martin J. J.

    2015-01-01

    Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS) has been suspected to be the leading cause of many inflammatory and degenerative diseases, as well as an important factor underlying many effects of aging. In contrast, how reduced ROS signaling regulates inflammation and remodeling in bone remains unknown. Here, we utilized a p47phox knock-out mouse model, in which an essential cytosolic co-activator of Nox2 is lost, to characterize bone metabolism at 6 weeks and 2 years of age. Compared with their age-matched wild type controls, loss of Nox2 function in p47phox−/− mice resulted in age-related switch of bone mass and strength. Differences in bone mass were associated with increased bone formation in 6-week-old p47phox−/− mice but decreased in 2-year-old p47phox−/− mice. Despite decreases in ROS generation in bone marrow cells and p47phox-Nox2 signaling in osteoblastic cells, 2-year-old p47phox−/− mice showed increased senescence-associated secretory phenotype in bone compared with their wild type controls. These in vivo findings were mechanistically recapitulated in ex vivo cell culture of primary fetal calvarial cells from p47phox−/− mice. These cells showed accelerated cell senescence pathway accompanied by increased inflammation. These data indicate that the observed age-related switch of bone mass in p47phox-deficient mice occurs through an increased inflammatory milieu in bone and that p47phox-Nox2-dependent physiological ROS signaling suppresses inflammation in aging. PMID:25922068

  4. Age-Dependent Defects of Regulatory B Cells in Wiskott-Aldrich Syndrome Gene Knockout Mice

    PubMed Central

    Yokoyama, Tadafumi; Yoshizaki, Ayumi; Simon, Karen L.; Kirby, Martha R.; Anderson, Stacie M.; Candotti, Fabio

    2015-01-01

    The Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg) obtained from Was gene knockout (WKO) mice and found that their numbers were significantly lower in these mice compared to wild type (WT) controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS. PMID:26448644

  5. Mating success of wild type and sepia mutants Drosophila melanogaster in different choice.

    PubMed

    Stanić, Snezana; Pavković-Lucic, Sofija

    2005-01-01

    Mating behaviour of red-eyed (wt) and brown-eyed (sepia) Drosophila melanogaster was studied under light conditions. Mating success was directly observed in mating vials and techniques usually applied in the studies of sexual selection ("female choice" and "multiple choice"). The comparison of sexual activity of mutant and wild types clearly indicates that they are not equally successful in matings. Sepia eye colour mutation decreases sexual activity of Drosophila melanogaster males, influences the preference ability of females and decreases the number of progeny from homogamic mating of the se x se type, as well as from heterogamic copulations in which sepia females take part. Non-random mating of wild type males and sepia females (in "multiple-choice" situation), with genetically and phenotypically different individuals, could be another mechanism for conservation of genetic polymorphism in natural populations. PMID:16440285

  6. Cytochemical Analysis of Pollen Development in Wild-Type Arabidopsis and a Male-Sterile Mutant.

    PubMed Central

    Regan, SM; Moffatt, BA

    1990-01-01

    Microsporogenesis has been examined in wild-type Arabidopsis thaliana and the nuclear male-sterile mutant BM3 by cytochemical staining. The mutant lacks adenine phosphoribosyltransferase, an enzyme of the purine salvage pathway that converts adenine to AMP. Pollen development in the mutant began to diverge from wild type just after meiosis, as the tetrads of microspores were released from their callose walls. The first indication of abnormal pollen development in the mutant was a darker staining of the microspore wall due to an incomplete synthesis of the intine. Vacuole formation was delayed and irregular in the mutant, and the majority of the mutant microspores failed to undergo mitotic divisions. Enzyme activities of alcohol dehydrogenase and esterases decreased in the mutant soon after meiosis and were undetectable in mature pollen grains of the mutant. RNA accumulation was also diminished. These results are discussed in relation to the possible role(s) of adenine salvage in pollen development. PMID:12354970

  7. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis

    PubMed Central

    Rotunno, Melissa S.; Bosco, Daryl A.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that targets motor neurons, leading to paralysis and death within a few years of disease onset. While several genes have been linked to the inheritable, or familial, form of ALS, much less is known about the cause(s) of sporadic ALS, which accounts for ~90% of ALS cases. Due to the clinical similarities between familial and sporadic ALS, it is plausible that both forms of the disease converge on a common pathway and, therefore, involve common factors. Recent evidence suggests the Cu,Zn-superoxide dismutase (SOD1) protein to be one such factor that is common to both sporadic and familial ALS. In 1993, mutations were uncovered in SOD1 that represent the first known genetic cause of familial ALS. While the exact mechanism of mutant-SOD1 toxicity is still not known today, most evidence points to a gain of toxic function that stems, at least in part, from the propensity of this protein to misfold. In the wild-type SOD1 protein, non-genetic perturbations such as metal depletion, disruption of the quaternary structure, and oxidation, can also induce SOD1 to misfold. In fact, these aforementioned post-translational modifications cause wild-type SOD1 to adopt a “toxic conformation” that is similar to familial ALS-linked SOD1 variants. These observations, together with the detection of misfolded wild-type SOD1 within human post-mortem sporadic ALS samples, have been used to support the controversial hypothesis that misfolded forms of wild-type SOD1 contribute to sporadic ALS pathogenesis. In this review, we present data from the literature that both support and contradict this hypothesis. We also discuss SOD1 as a potential therapeutic target for both familial and sporadic ALS. PMID:24379756

  8. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    SciTech Connect

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-07

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  9. Root graviresponsiveness and cellular differentiation in wild-type and a starchless mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1989-01-01

    Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.

  10. A Snapshot of Histone Modifications within Transposable Elements in Drosophila Wild Type Strains

    PubMed Central

    Rebollo, Rita; Horard, Béatrice; Begeot, Flora; Delattre, Marion; Gilson, Eric; Vieira, Cristina

    2012-01-01

    Transposable elements (TEs) are a major source of genetic variability in genomes, creating genetic novelty and driving genome evolution. Analysis of sequenced genomes has revealed considerable diversity in TE families, copy number, and localization between different, closely related species. For instance, although the twin species Drosophila melanogaster and D. simulans share the same TE families, they display different amounts of TEs. Furthermore, previous analyses of wild type derived strains of D. simulans have revealed high polymorphism regarding TE copy number within this species. Several factors may influence the diversity and abundance of TEs in a genome, including molecular mechanisms such as epigenetic factors, which could be a source of variation in TE success. In this paper, we present the first analysis of the epigenetic status of four TE families (roo, tirant, 412 and F) in seven wild type strains of D. melanogaster and D. simulans. Our data shows intra- and inter-specific variations in the histone marks that adorn TE copies. Our results demonstrate that the chromatin state of common TEs varies among TE families, between closely related species and also between wild type strains. PMID:22962605

  11. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants

    NASA Technical Reports Server (NTRS)

    Vitha, S.; Zhao, L.; Sack, F. D.

    2000-01-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  12. Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis.

    PubMed Central

    Sauer, U; Hatzimanikatis, V; Hohmann, H P; Manneberg, M; van Loon, A P; Bailey, J E

    1996-01-01

    Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wild-type Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle. PMID:8837424

  13. In vitro Intestinal Mucosal Epithelial Responses to Wild-Type Salmonella Typhi and Attenuated Typhoid Vaccines.

    PubMed

    Fiorentino, Maria; Lammers, Karen M; Levine, Myron M; Sztein, Marcelo B; Fasano, Alessio

    2013-01-01

    Typhoid fever, caused by S. Typhi, is responsible for approximately 200,000 deaths per year worldwide. Little information is available regarding epithelium-bacterial interactions in S. Typhi infection. We have evaluated in vitro the effects of wild-type S. Typhi, the licensed Ty21a typhoid vaccine and the leading strains CVD 908-htrA and CVD 909 vaccine candidates on intestinal barrier function and immune response. Caco2 monolayers infected with wild-type S. Typhi exhibited alterations in the organization of tight junctions, increased paracellular permeability, and a rapid decrease in Trans-Epithelial Electrical Resistance as early as 4 h post-exposure. S. Typhi triggered the secretion of interleukin (IL)-8 and IL-6. Caco2 cells infected with the attenuated strains exhibited a milder pro-inflammatory response with minimal disruption of the barrier integrity. We conclude that wild-type S. Typhi causes marked transient alterations of the intestinal mucosa that are more pronounced than those observed with Ty21a or new generation attenuated typhoid vaccine candidates. PMID:23408152

  14. Comparative proteomic analysis of tobacco expressing cyanobacterial flavodoxin and its wild type under drought stress.

    PubMed

    Gharechahi, Javad; Hajirezaei, Mohammad-Reza; Salekdeh, Ghasem Hosseini

    2015-03-01

    Tobacco plants expressing cyanobacterial flavodoxin (Fld) show enhanced tolerance to a wide range of abiotic stresses including drought, temperature and UV. The mechanisms of adaptation to stress conditions under Fld expression are largely unknown. Here, we applied comparative proteomic analysis to uncover the changes in the proteome profile of Fld-expressing plants in response to drought stress. Using high-resolution two-dimensional gel electrophoresis, we were able to detect 930 protein spots and compare their abundance. We found changes up to 1.5 fold for 52 spots under drought in transgenic and/or wild type plants. Using combined MALDI-TOF/TOF and ESI-Q/TOF analysis 39 (24 in wild type, 11 in transgenic, and 4 in both) drought-responsive proteins (DRPs) could be identified. The majority of DRPs are known to be involved in photosynthesis, carbohydrate and energy metabolism, amino acid and protein synthesis and processing, and oxidative stress responses. Among candidate DRPs, the abundance of remurin, ferredoxin-NADP reductase, chloroplast manganese stabilizing protein-II, phosphoglycerate mutase, and glutathione S-transferase decreased in drought stressed Fld-tobacco while S-formylglutathione hydrolase and pyridoxine biosynthesis protein abundance increased. In wild type plants, drought caused a reduction of proteins related to carbohydrate metabolism. These results suggest that the stress tolerance conferred by Fld expression is strongly related to control mechanisms regarding carbohydrate and energy metabolism as well as oxidative stress responses. PMID:25506766

  15. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    PubMed Central

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-01-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492

  16. System-wide identification of wild-type SUMO-2 conjugation sites

    PubMed Central

    Hendriks, Ivo A.; D'Souza, Rochelle C.; Chang, Jer-Gung; Mann, Matthias; Vertegaal, Alfred C. O.

    2015-01-01

    SUMOylation is a reversible post-translational modification (PTM) regulating all nuclear processes. Identification of SUMOylation sites by mass spectrometry (MS) has been hampered by bulky tryptic fragments, which thus far necessitated the use of mutated SUMO. Here we present a SUMO-specific protease-based methodology which circumvents this problem, dubbed Protease-Reliant Identification of SUMO Modification (PRISM). PRISM allows for detection of SUMOylated proteins as well as identification of specific sites of SUMOylation while using wild-type SUMO. The method is generic and could be widely applied to study lysine PTMs. We employ PRISM in combination with high-resolution MS to identify SUMOylation sites from HeLa cells under standard growth conditions and in response to heat shock. We identified 751 wild-type SUMOylation sites on endogenous proteins, including 200 dynamic SUMO sites in response to heat shock. Thus, we have developed a method capable of quantitatively studying wild-type mammalian SUMO at the site-specific and system-wide level. PMID:26073453

  17. The orl rat is more responsive to methacholine challenge than wild type

    PubMed Central

    Rodriguez, Elena; Barthold, Julia S.; Kreiger, Portia A.; Armani, Milena Hirata; Wang, Jordan; Michelini, Katherine A.; Wolfson, Marla R.; Boyce, Roberta; Barone, Carol A.; Zhu, Yan; Waldman, Scott A.; Shaffer, Thomas H.

    2015-01-01

    Background This study presents an animal model of native airway hyperresponsiveness (AHR). AHR is a fundamental aspect of asthma and reflects an abnormal response characterized by airway narrowing following exposure to a wide variety of non-immunological stimuli. Undescended testis (UDT) is one of the most common male congenital anomalies. The orl rat is a Long Evans substrain with inherited UDT. Since boys born with congenital UDT are more likely to manifest asthma symptoms, the main aim in of this study was to investigate the alternative hypothesis that orl rats have greater AHR to a methacholine aerosol challenge than wild type rats. Methods Long Evans wild type (n = 9) and orl (n = 13) rats were anesthetized, tracheostomized, and mechanically ventilated at 4 weeks of age. Escalating concentrations of inhaled methacholine were delivered. The methacholine potency and efficacy in the strains were measured. Respiratory resistance was the primary endpoint. After the final methacholine aerosol challenge, the short-acting β2-adrenoceptor agonist albuterol was administered as an aerosol and lung/diaphragm tissues were assayed for interleukin (IL)-4, IL-6, and tumor necrosis factor (TNF)-α. Histological and histomorphometrical analyses were performed. Results The methacholine concentratione-response curve in the orl group indicated increased sensitivity, hyperreactivity, and exaggerated maximal response in comparison with the wild type group, indicating that orl rats had abnormally greater AHR responses to methacholine. Histological findings in orl rats showed the presence of eosinophils, unlike wild type rats. β2-Adrenoceptor agonist intervention resulted in up-regulation of IL-4 diaphragmatic levels and down-regulation of IL-4 and IL-6 in the lungs of orl rats. Conclusion orl rats had greater AHR than wild type rats during methacholine challenge, with higher IL-4 levels in diaphragmatic tissue homogenates. Positive immunostaining for IL-4 was detected in lung and

  18. Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom)

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Bartha, Richard; Aksoy, M.; Weissman, Joseph C.; Benemann, John

    2008-07-03

    Microalgae are expected to play a significant role in greenhouse gas mitigation because they can utilize CO2 from powerplant flue gases directly while producing a variety of renewable carbon-neutral biofuels. In order for such a microalgal climate change mitigation strategy to become economically feasible, it will be necessary to significantly improve biomass productivities. One approach to achieve this objective is to reduce, via mutagenesis, the number of light harvesting pigments, which, according to theory, should significantly improve the light utilization efficiency, primarily by increasing the light intensity at which photosynthesis saturates (Is). Employing chemical (ethylmethylsulfonate, EMS) and UV mutagenesis of a wild type strain of the diatom Cyclotella, approximately 10,000 pigment mutants were generated, and two of the most promising ones (CM1 and CM1-1) were subjected to further testing in both laboratory cultures and outdoor ponds. Measurements of photosynthetic oxygen production rates as a function of light intensity (i.e., P-I curves) of samples taken from laboratory batch cultures during the exponential and linear growth phase indicated that the light intensity at which photosynthesis saturates (Is) was two to three times greater in the pigment mutant CM1-1 than in the wild type, i.e., 355-443 versus 116-169 μmole/m2∙sec, respectively. While theory, i.e., the Bush equation, predicts that such a significant gain in Is should increase light utilization efficiencies and thus biomass productivities, particularly at high light intensities, no improvements in biomass productivities were observed in either semi-continuous laboratory cultures or outdoor ponds. In fact, the maximum biomass productivity in semi-continuous laboratory culture was always greater in the wild type than in the mutant, namely 883 versus 725 mg/L∙d, respectively at low light intensity (200 μmole/m2∙sec) and 1229 versus 1043 mg/L∙d, respectively at high light intensity

  19. Development of infectious clones of a wild-type Korean rabies virus and evaluation of their pathogenic potential.

    PubMed

    Park, Jun-Sun; Kim, Chi-Kyeong; Um, Ji-Hye; Ju, Young Ran; Lee, Yeong Seon; Choi, Young-Ki; Kim, Su Yeon

    2016-09-01

    Most reverse genetic (RG) systems for rabies viruses (RVs) have been constructed on the genome background of laboratory-adapted strains. In this study, we developed an RG system using a Korean wild type (KGH) strain to investigate the pathogenic potential of different strains. We developed a RG system with the KGH strain for the first time. Following the complete genome sequencing of the KGH strain, pKGH infectious clones were constructed using the CMV/T7 promoter, and HamRz and HdvRz were introduced to allow self-cleavage of the synthesized RNA. We successfully recovered the rescued virus by constructing chimeric RVs in which we replaced a part of the construct with the partial gene from the fixed RC-HL strain. The rescued viruses formed clearer and countable plaques in an immunostaining plaque assay, with a distinct plaque morphology. Furthermore, compared with the chimeric RVs, the pKGH/RCinsΔ4 strain containing the KGH strain G protein exhibited a decreased efficiency of cell-to-cell spreading in BHK-21 cells and significantly reduced (100-1000 fold) replication kinetics. However, pKGH/RCinsΔ4 strain-infected mice revealed 100% morbidity at 11days post-infection, whereas other chimeric RV strains showed no mortality. Our RG system is a useful tool for studying differences in the cell-to-cell spreading efficiency and replication with respect to the different internalization patterns of street and fixed laboratory-adapted viruses. PMID:27397101

  20. Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge.

    PubMed

    Yang, Xinghong; Becker, Todd; Walters, Nancy; Pascual, David W

    2006-07-01

    znuA is known to be an important factor for survival and normal growth under low Zn(2+) concentrations for Escherichia coli, Haemophilus spp., Neisseria gonorrhoeae, and Pasteurella multocida. We hypothesized that the znuA gene present in Brucella melitensis 16 M would be similar to znuA in B. abortus and questioned whether it may also be an important factor for growth and virulence of Brucella abortus. Using the B. melitensis 16 M genome sequence, primers were designed to construct a B. abortus deletion mutant. A znuA knockout mutation in B. abortus 2308 (DeltaznuA) was constructed and found to be lethal in low-Zn(2+) medium. When used to infect macrophages, DeltaznuA B. abortus showed minimal growth. Further study with DeltaznuA B. abortus showed that its virulence in BALB/c mice was attenuated, and most of the bacteria were cleared from the spleen within 8 weeks. Protection studies confirmed the DeltaznuA mutant as a potential live vaccine, since protection against wild-type B. abortus 2308 challenge was as effective as that obtained with the RB51 or S19 vaccine strain. PMID:16790759

  1. Human wild-type full-length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins

    PubMed Central

    Li, Xia-Chun; Hu, Yu; Wang, Zhi-hao; Luo, Yu; Zhang, Yao; Liu, Xiu-Ping; Feng, Qiong; Wang, Qun; Ye, Keqiang; Liu, Gong-Ping; Wang, Jian-Zhi

    2016-01-01

    Intracellular accumulation of tau protein is hallmark of sporadic Alzheimer’s disease (AD), however, the cellular mechanism whereby tau accumulation causes neurodegeneration is poorly understood. Here we report that overexpression of human wild-type full-length tau (termed htau) disrupted mitochondrial dynamics by enhancing fusion and induced their perinuclear accumulation in HEK293 cells and rat primary hippocampal neurons. The htau accumulation at later stage inhibited mitochondrial functions shown by the decreased ATP level, the ratio of ATP/ADP and complex I activity. Simultaneously, the cell viability was decreased with retraction of the cellular/neuronal processes. Further studies demonstrated that htau accumulation increased fusion proteins, including OPA1 and mitofusins (Mfn1, Mfn2) and reduced the ubiquitination of Mfn2. Downregulation of the mitofusins by shRNA to ~45% or ~52% of the control levels attenuated the htau-enhanced mitochondrial fusion and restored the functions, while downregulation of OPA1 to ~50% of the control level did not show rescue effects. Finally, abnormal mitochondrial accumulation and dysfunction were also observed in the brains of htau transgenic mice. Taken together, our data demonstrate that htau accumulation decreases cell viability and causes degeneration via enhancing mitofusin-associated mitochondrial fusion, which provides new insights into the molecular mechanisms underlying tauopathies. PMID:27099072

  2. Neuroendocrine changes in colon of mice with a disrupted IL-2 gene.

    PubMed

    Qian, B F; El-Salhy, M; Melgar, S; Hammarström, M L; Danielsson, A

    2000-06-01

    Neuroendocrine peptides have a variety of physiological functions in the gastrointestinal tract. This study was carried out to investigate the impact of IL-2 deficiency on the neuroendocrine system in normal colon, and the neuroendocrine changes during colonic inflammation. Mice with homozygous disrupted IL-2 gene (IL-2-/-) spontaneously developed a bowel disease with similarities to human ulcerative colitis. Different types of colonic endocrine cells and myenteric nerves were analysed in the IL-2-/- mice using immunomorphometry. The neuropeptide contents in the colonic tissues were determined by radioimmunoassay. Age-matched healthy IL-2+/- and IL-2+/+ mice served as controls and the colonic IL-2 levels were compared between these two groups of mice by ELISA. Our data showed that less than half the amount of IL-2 was synthesized in the colon of IL-2+/- mice compared with the IL-2+/+ wild-type mice. Two major differences in the neuroendocrine colon were found between the mice with an intact and disrupted IL-2 gene. One was age-related. The frequencies of various endocrine cells and myenteric nerves increased with age in the IL-2+/+ mice. However, no such increases were seen in the mice with a disrupted IL-2 gene. Instead, the volume densities of enteroglucagon, serotonin cells and substance P (SP), vasoactive intestinal polypeptide (VIP) and total myenteric nerves were lower in the older IL-2+/- and IL-2-/- mice compared with the wild type. The other was disease-related. Polypeptide YY (PYY) cells and tissue levels of PYY, SP and VIP were significantly decreased in the IL-2-/- mice during the course of bowel inflammation compared with the healthy IL-2+/- and IL-2+/+ controls. These findings indicate that colonic neuroendocrine alterations did occur in the mice with a disrupted IL-2 gene and diminished local IL-2 level, suggesting a role of IL-2 in the regulation of the neuroendocrine system and a prevalent interaction between the immune and neuroendocrine systems

  3. Comparison of Conditioning Impairments in Children with Down Syndrome, Autistic Spectrum Disorders and Mental Age-Matched Controls

    ERIC Educational Resources Information Center

    Reed, P.; Staytom, L.; Stott, S.; Truzoli, R.

    2011-01-01

    Background: This study investigated the relative ease of learning across four tasks suggested by an adaptation of Thomas's hierarchy of learning in children with Down syndrome, autism spectrum disorders and mental age-matched controls. Methods: Learning trials were carried out to investigate observational learning, instrumental learning, reversal…

  4. The Lack of CuZnSOD Leads to Impaired Neurotransmitter Release, Neuromuscular Junction Destabilization and Reduced Muscle Strength in Mice

    PubMed Central

    Walsh, Michael E.; Liu, Yuhong; Zhang, Yiqiang; Jaramillo, Carlos A.; Macleod, Gregory T.; Van Remmen, Holly

    2014-01-01

    Elevated reactive oxygen species (ROS) production and ROS-dependent protein damage is a common observation in the pathogenesis of many muscle wasting disorders, including sarcopenia. However, the contribution of elevated ROS levels to –a breakdown in neuromuscular communication and muscle atrophy remains unknown. In this study, we examined a copper zinc superoxide dismutase [CuZnSOD (Sod1)] knockout mouse (Sod1−/−), a mouse model of elevated oxidative stress that exhibits accelerated loss of muscle mass, which recapitulates many phenotypes of sarcopenia as early as 5 months of age. We found that young adult Sod1−/− mice display a considerable reduction in hind limb skeletal muscle mass and strength when compared to age-matched wild-type mice. These changes are accompanied by gross alterations in neuromuscular junction (NMJ) morphology, including reduced occupancy of the motor endplates by axons, terminal sprouting and axon thinning and irregular swelling. Surprisingly however, the average density of acetylcholine receptors in endplates is preserved. Using in vivo electromyography and ex vivo electrophysiological studies of hind limb muscles in Sod1−/− mice, we found that motor axons innervating the extensor digitorum longus (EDL) and gastrocnemius muscles release fewer synaptic vesicles upon nerve stimulation. Recordings from individually identified EDL NMJs show that reductions in neurotransmitter release are apparent in the Sod1−/− mice even when endplates are close to fully innervated. However, electrophysiological properties, such as input resistance, resting membrane potential and spontaneous neurotransmitter release kinetics (but not frequency) are similar between EDL muscles of Sod1−/− and wild-type mice. Administration of the potassium channel blocker 3,4-diaminopyridine, which broadens the presynaptic action potential, improves both neurotransmitter release and muscle strength. Together, these results suggest that ROS-associated motor

  5. Effects of salvianolate on bone metabolism in glucocorticoid-treated lupus-prone B6.MRL-Faslpr/J mice

    PubMed Central

    Liu, Yanzhi; Cui, Yang; Zhang, Xiao; Gao, Xiang; Su, Yanjie; Xu, Bilian; Wu, Tie; Chen, Wenshuang; Cui, Liao

    2016-01-01

    Aim To investigate the bone-protective effects of salvianolate (Sal), a total polyphenol from Radix Salviae miltiorrhizae, on bone tissue in the spontaneous lupus-prone mouse model, B6.MRL-Faslpr/J, undergoing glucocorticoid (GC) treatment. Methods Fifteen-week-old female B6.MRL-Faslpr/J mice were administered either a daily dose of saline (lupus group), prednisone 6 mg/kg (GC group), Sal 60 mg/kg (Sal group); or GC plus Sal (GC + Sal group) for a duration of 12 weeks. Age-matched female C57BL/6J wild-type (WT) mice were used for control. Micro-computed tomography assessments, bone histomorphometry analysis, bone biomechanical test, immunohistochemistry and immunoblotting analysis for bone markers, and renal histology analysis were performed to support our research endeavor. Results Lupus mice developed a marked bone loss and deterioration of mechanical properties of bone due to an increase in bone resorption rather than suppression of bone formation. GC treatment strongly inhibited bone formation in lupus mice. Sal treatment significantly attenuated osteogenic inhibition, and also suppressed hyperactive bone resorption, which recovered the bone mass and mechanical properties of bone in both the untreated and GC-treated lupus mice. Conclusion The data support further preclinical investigation of Sal as a potential therapeutic strategy for the treatment of systemic lupus erythematosus-related bone loss. PMID:27563234

  6. De novo establishment of wild-type song culture in the zebra finch.

    PubMed

    Fehér, Olga; Wang, Haibin; Saar, Sigal; Mitra, Partha P; Tchernichovski, Ofer

    2009-05-28

    Culture is typically viewed as consisting of traits inherited epigenetically, through social learning. However, cultural diversity has species-typical constraints, presumably of genetic origin. A celebrated, if contentious, example is whether a universal grammar constrains syntactic diversity in human languages. Oscine songbirds exhibit song learning and provide biologically tractable models of culture: members of a species show individual variation in song and geographically separated groups have local song dialects. Different species exhibit distinct song cultures, suggestive of genetic constraints. Without such constraints, innovations and copying errors should cause unbounded variation over multiple generations or geographical distance, contrary to observations. Here we report an experiment designed to determine whether wild-type song culture might emerge over multiple generations in an isolated colony founded by isolates, and, if so, how this might happen and what type of social environment is required. Zebra finch isolates, unexposed to singing males during development, produce song with characteristics that differ from the wild-type song found in laboratory or natural colonies. In tutoring lineages starting from isolate founders, we quantified alterations in song across tutoring generations in two social environments: tutor-pupil pairs in sound-isolated chambers and an isolated semi-natural colony. In both settings, juveniles imitated the isolate tutors but changed certain characteristics of the songs. These alterations accumulated over learning generations. Consequently, songs evolved towards the wild-type in three to four generations. Thus, species-typical song culture can appear de novo. Our study has parallels with language change and evolution. In analogy to models in quantitative genetics, we model song culture as a multigenerational phenotype partly encoded genetically in an isolate founding population, influenced by environmental variables and taking

  7. Efavirenz concentrations in CSF exceed IC50 for wild-type HIV

    PubMed Central

    Best, Brookie M.; Koopmans, Peter P.; Letendre, Scott L.; Capparelli, Edmund V.; Rossi, Steven S.; Clifford, David B.; Collier, Ann C.; Gelman, Benjamin B.; Mbeo, Gilbert; McCutchan, J. Allen; Simpson, David M.; Haubrich, Richard; Ellis, Ronald; Grant, Igor; Grant, Igor; McCutchan, J. Allen; Ellis, Ronald J.; Marcotte, Thomas D.; Franklin, Donald; Ellis, Ronald J.; McCutchan, J. Allen; Alexander, Terry; Letendre, Scott; Capparelli, Edmund; Heaton, Robert K.; Atkinson, J. Hampton; Woods, Steven Paul; Dawson, Matthew; Wong, Joseph K.; Fennema-Notestine, Christine; Taylor, Michael J.; Theilmann, Rebecca; Gamst, Anthony C.; Cushman, Clint; Abramson, Ian; Vaida, Florin; Marcotte, Thomas D.; von Jaeger, Rodney; McArthur, Justin; Smith, Mary; Morgello, Susan; Simpson, David; Mintz, Letty; McCutchan, J. Allen; Toperoff, Will; Collier, Ann; Marra, Christina; Jones, Trudy; Gelman, Benjamin; Head, Eleanor; Clifford, David; Al-Lozi, Muhammad; Teshome, Mengesha

    2011-01-01

    Objectives HIV-associated neurocognitive disorders remain common despite use of potent antiretroviral therapy (ART). Ongoing viral replication due to poor distribution of antivirals into the CNS may increase risk for HIV-associated neurocognitive disorders. This study's objective was to determine penetration of a commonly prescribed antiretroviral drug, efavirenz, into CSF. Methods CHARTER is an ongoing, North American, multicentre, observational study to determine the effects of ART on HIV-associated neurological disease. Single random plasma and CSF samples were drawn within 1 h of each other from subjects taking efavirenz between September 2003 and July 2007. Samples were assayed by HPLC or HPLC/mass spectrometry with detection limits of 39 ng/mL (plasma) and <0.1 ng/mL (CSF). Results Eighty participants (age 44 ± 8 years; 79 ± 15 kg; 20 females) had samples drawn 12.5 ± 5.4 h post-dose. The median efavirenz concentrations after a median of 7 months [interquartile range (IQR) 2–17] of therapy were 2145 ng/mL in plasma (IQR 1384–4423) and 13.9 ng/mL in CSF (IQR 4.1–21.2). The CSF/plasma concentration ratio from paired samples drawn within 1 h of each other was 0.005 (IQR 0.0026–0.0076; n = 69). The CSF/IC50 ratio was 26 (IQR 8–41) using the published IC50 for wild-type HIV (0.51 ng/mL). Two CSF samples had concentrations below the efavirenz IC50 for wild-type HIV. Conclusions Efavirenz concentrations in the CSF are only 0.5% of plasma concentrations but exceed the wild-type IC50 in nearly all individuals. Since CSF drug concentrations reflect those in brain interstitial fluids, efavirenz reaches therapeutic concentrations in brain tissue. PMID:21098541

  8. Genetic variation of the transthyretin gene in wild-type transthyretin amyloidosis (ATTRwt).

    PubMed

    Sikora, Jacquelyn L; Logue, Mark W; Chan, Gloria G; Spencer, Brian H; Prokaeva, Tatiana B; Baldwin, Clinton T; Seldin, David C; Connors, Lawreen H

    2015-01-01

    Wild-type transthyretin amyloidosis (ATTRwt), typically diagnosed as congestive heart failure in elderly Caucasian men, features myocardial amyloid deposits of wild-type plasma protein transthyretin (TTR). ATTRwt is sporadic, its pathogenesis is poorly understood, and currently there are no biomarkers for diagnosis or prognosis. Genetic studies of variant-associated transthyretin amyloidosis have suggested that non-coding TTR gene variants modulate disease. We hypothesized that cis-acting regulatory elements in the TTR gene non-coding regions may modify expression, affecting ATTRwt onset and progression. We studied an ATTRwt cohort consisting of 108 Caucasian males ranging in age from 59 to 87 years with cardiomyopathy due to wild-type TTR deposition; results were compared to 118 anonymous controls matched by age, sex, and race. Four predicted non-coding regulatory regions and all exons in the TTR gene were sequenced using the Sanger method. Eleven common variants were identified; three variants were significantly associated with ATTRwt (p < 0.05), though only one, rs72922940, remained near significance (p corrected = 0.083) after multiple testing correction. Exon analyses demonstrated the occurrence of the p.G26S (G6S) polymorphism in 7 % of ATTRwt subjects and 12 % of controls; this variant was predicted to be a protective factor (p = 0.051). Four variants were significantly associated with age at onset and survival. In this first genetic study of a large, well-characterized cohort of ATTRwt, non-coding and coding variants associated with disease, age at onset, and survival were identified. Further investigation is warranted to determine the prevalence of these variants in ATTRwt, their regulatory function, and potential role in assessing disease risk. PMID:25367359

  9. Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents.

    PubMed

    Ai, Tomohiko; Bompadre, Silvia G; Wang, Xiaohui; Hu, Shenghui; Li, Min; Hwang, Tzyh-Chang

    2004-06-01

    To examine the effects of capsaicin on cystic fibrosis transmembrane conductance regulator (CFTR), we recorded wild-type and mutant CFTR chloride-channel currents using patch-clamp methods. The effects of capsaicin were compared with those of genistein, a well-characterized CFTR activator. In whole-cell experiments, capsaicin potentiates cAMP-stimulated wild-type CFTR currents expressed in NIH 3T3 cells or Chinese hamster ovary cells in a dose-dependent manner with a maximal response approximately 60% of that with genistein and an apparent Kd of 48.4 +/- 6.8 microM. In cell-attached recordings, capsaicin alone fails to activate CFTR in cells that show negligible basal CFTR activity, indicating that capsaicin does not stimulate the cAMP cascade. The magnitude of potentiation with capsaicin depends on the channel activity before drug application; the lower the prestimulated Po, the higher the potentiation. Single-channel kinetic analysis shows that capsaicin potentiates CFTR by increasing the opening rate and decreasing the closing rate of the channel. Capsaicin may act as a partial agonist of genistein because the maximally enhanced wild-type CFTR currents with genistein are partially inhibited by capsaicin. Capsaicin increases DeltaR-CFTR, a protein kinase A (PKA)-independent, constitutively active channel, in cell-attached patches. In excised inside-out patches, capsaicin potentiates the PKA-phosphorylated, ATP-dependent CFTR activity. Both capsaicin and genistein potentiate the cAMP-stimulated G551D-CFTR, DeltaF508-CFTR, and 8SA mutant channel currents. The binding site for capsaicin is probably located at the cytoplasmic domain of CFTR, because pipette application of capsaicin fails to potentiate CFTR activity. In conclusion, capsaicin is a partial agonist of genistein in activation of the CFTR chloride channel. Both compounds affect ATP-dependent gating of CFTR. PMID:15155835

  10. Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

    PubMed Central

    2011-01-01

    Background The def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. Findings Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. Conclusions This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat. PMID:22078070

  11. Wild-type p53 reactivation by small-molecule Minnelide™ in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma

    PubMed Central

    Caicedo-Granados, Emiro; Lin, Rui; Clements-Green, Caitlin; Yueh, Bevan; Sangwan, Veena; Saluja, Ashok

    2015-01-01

    Objectives The incidence of high-risk human papillomavirus (HR-HPV) head and neck squamous cell carcinoma (HNSCC) continues to increase, particularly oropharyngeal squamous cell carcinoma (OPSCC) cases. The inactivation of the p53 tumor suppressor gene promotes a chain of molecular events, including cell cycle progression and apoptosis resistance. Reactivation of wild-type p53 function is an intriguing therapeutic strategy. The aim of this study was to investigate whether a novel compound derived from diterpene triepoxide (Minnelide™) can reactivate wild-type p53 function in HPV-positive HNSCC. Materials and Methods For all of our in vitro experiments, we used 2 HPV-positive HNSCC cell lines, University of Michigan squamous cell carcinoma (UM-SCC) 47 and 93-VU-147, and 2 HPV-positive human cervical cancer cell lines, SiHa and CaSki. Cells were treated with different concentrations of triptolide and analyzed for p53 activation. Mice bearing UM-SCC 47 subcutaneous xenografts and HPV-positive patient-derived tumor xenografts were treated with Minnelide and evaluated for tumor growth and p53 activation. Results In HPV-positive HNSCC, Minnelide reactivated p53 by suppressing E6 oncoprotein. Activation of apoptosis followed, both in vitro and in vivo. In 2 preclinical HNSCC animal models (a subcutaneous xenograft model and a patient-derived tumor xenograft model), Minnelide reactivated p53 function and significantly decreased tumor progression and tumor volume. Conclusion Triptolide and Minnelide caused cell death in vitro and in vivo in HPV-positive HNSCC by reactivating wild-type p53 and thus inducing apoptosis. In addition, in 2 HPV-positive HNSCC animal models, Minnelide decreased tumor progression and induced apoptosis. PMID:25311433

  12. The MDM2 small-molecule inhibitor RG7388 leads to potent tumor inhibition in p53 wild-type neuroblastoma

    PubMed Central

    Lakoma, A; Barbieri, E; Agarwal, S; Jackson, J; Chen, Z; Kim, Y; McVay, M; Shohet, JM; Kim, ES

    2016-01-01

    Neuroblastoma is an aggressive pediatric malignancy which is >98% p53 wild-type at diagnosis. As a primary repressor of p53 activity and part of a p53-activated negative feedback loop, targeting of mouse double minute 2 homolog (MDM2) is an attractive therapeutic approach to reactivation of p53. Since development of the first selective MDM2 inhibitor, Nutlin-3a, newer compounds have been developed for increased potency and improved bioavailability. Herein, we sought to determine the efficacy and specificity of a second-generation MDM2 inhibitor, RG7388, in neuroblastoma cell lines and xenografts and examine its effect on the p53-independent pathway of hypoxia-inducible factor-1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF). Cell viability and apoptosis studies were performed on the neuroblastoma cell lines, NGP, SH-SY5Y, LAN-5, LAN-5 si-p53 (p53 silenced), and SK-N-AS (p53 null). RG7388 potently decreased cell proliferation and activated p53-dependent apoptosis. Tumor-bearing mice treated with RG7388 demonstrated significant tumor inhibition by 59% in NGP (P = 0.003), 67% in SH-SY5Y (P = 0.006), and 75% in LAN-5 (P = 0.0019) p53 wild-type xenograft tumors, but no inhibitory effect on LAN-5 si-p53 or SK-N-AS p53-silenced/null xenograft tumors. Moreover, RG7388 was found to inhibit the p53-independent pathway of HIF-1α/VEGF with decreased gene expression and alteration of angiogenesis. Our study supports the further evaluation of RG7388 as a novel treatment option in p53 wild-type neuroblastoma at diagnosis and relapse. PMID:26998348

  13. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    SciTech Connect

    Nonogaki, Katsunori; Kaji, Takao; Ohba, Yukie; Sumii, Makiko; Wakameda, Mamoru; Tamari, Tomohiro

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  14. Exercise capacity and cardiac hemodynamic response in female ApoE/LDLR(-/-) mice: a paradox of preserved V'O2max and exercise capacity despite coronary atherosclerosis.

    PubMed

    Wojewoda, M; Tyrankiewicz, U; Gwozdz, P; Skorka, T; Jablonska, M; Orzylowska, A; Jasinski, K; Jasztal, A; Przyborowski, K; Kostogrys, R B; Zoladz, J A; Chlopicki, S

    2016-01-01

    We assessed exercise performance, coronary blood flow and cardiac reserve of female ApoE/LDLR(-/-) mice with advanced atherosclerosis compared with age-matched, wild-type C57BL6/J mice. Exercise capacity was assessed as whole body maximal oxygen consumption (V'O2max), maximum running velocity (vmax) and maximum distance (DISTmax) during treadmill exercise. Cardiac systolic and diastolic function in basal conditions and in response to dobutamine (mimicking exercise-induced cardiac stress) were assessed by Magnetic Resonance Imaging (MRI) in vivo. Function of coronary circulation was assessed in isolated perfused hearts. In female ApoE/LDLR(-/-) mice V'O2max, vmax and DISTmax were not impaired as compared with C57BL6/J mice. Cardiac function at rest and systolic and diastolic cardiac reserve were also preserved in female ApoE/LDLR(-/-) mice as evidenced by preserved fractional area change and similar fall in systolic and end diastolic area after dobutamine. Moreover, endothelium-dependent responses of coronary circulation induced by bradykinin (Bk) and acetylcholine (ACh) were preserved, while endothelium-independent responses induced by NO-donors were augmented in female ApoE/LDLR(-/-) mice. Basal COX-2-dependent production of 6-keto-PGF1α was increased. Concluding, we suggest that robust compensatory mechanisms in coronary circulation involving PGI2- and NO-pathways may efficiently counterbalance coronary atherosclerosis-induced impairment in V'O2max and exercise capacity. PMID:27108697

  15. Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens.

    PubMed

    Zboińska, E; Lejczak, B; Kafarski, P

    1992-09-01

    The wild-type strain of Pseudomonas fluorescens was found to utilize a range of structurally diverse organophosphonates as its sole carbon or nitrogen sources. Representative compounds included aminoalkylphosphonates, hydroxyalkylphosphonates, oxoalkylphosphonates, and phosphono dipeptides. Among them, amino(phenyl)methylphosphonate,2-aminoethylphosphonate, aminomethylphosphonate, diisopropyl 9-aminofluoren-9-ylphosphonate, and 2-oxoalkylphosphonates were used by P. fluorescens as its sole sources of phosphorus. Only slight growth was observed on the herbicide glyphosate (N-phosphonomethylglycine), which was metabolized to aminomethylphosphonate. Neither phosphinothricin nor its dialanyl tripeptide, bialaphos, supported growth of P. fluorescens. The possible mechanisms of organophosphonate degradation by this strain are discussed. PMID:1444412

  16. Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens.

    PubMed Central

    Zboińska, E; Lejczak, B; Kafarski, P

    1992-01-01

    The wild-type strain of Pseudomonas fluorescens was found to utilize a range of structurally diverse organophosphonates as its sole carbon or nitrogen sources. Representative compounds included aminoalkylphosphonates, hydroxyalkylphosphonates, oxoalkylphosphonates, and phosphono dipeptides. Among them, amino(phenyl)methylphosphonate,2-aminoethylphosphonate, aminomethylphosphonate, diisopropyl 9-aminofluoren-9-ylphosphonate, and 2-oxoalkylphosphonates were used by P. fluorescens as its sole sources of phosphorus. Only slight growth was observed on the herbicide glyphosate (N-phosphonomethylglycine), which was metabolized to aminomethylphosphonate. Neither phosphinothricin nor its dialanyl tripeptide, bialaphos, supported growth of P. fluorescens. The possible mechanisms of organophosphonate degradation by this strain are discussed. PMID:1444412

  17. Oxygenated cembranoids from the cultured and wild-type soft corals Sinularia flexibilis.

    PubMed

    Su, Jui-Hsin; Lin, Yu-Fang; Lu, Yi; Yeh, Hsiao-Chien; Wang, Wei-Hsien; Fan, Tung-Yung; Sheu, Jyh-Horng

    2009-11-01

    Two new cembranoids, flexibilisolide A (1) and flexibilisin A (2), along with one known combranoid 5 have been isolated from the cultured soft coral Sinularia flexibilis. Furthermore, two new cembranoids, flexibilisolide B (3) and flexibilisin B (4), along with two known combranoids (5, 6), have been isolated from the wild-type soft coral S. flexibilis. The structures of the new metabolites were determined on the basis of extensive spectroscopic analysis and by comparison of NMR data with those of known compounds. The metabolites 5 and 6 have been shown to exhibit weak cytotoxic activity against MCF-7 cancer cell line. PMID:19881265

  18. Intra-axonal calcium changes after axotomy in wild-type and slow Wallerian degeneration axons.

    PubMed

    Adalbert, R; Morreale, G; Paizs, M; Conforti, L; Walker, S A; Roderick, H L; Bootman, M D; Siklós, L; Coleman, M P

    2012-12-01

    Calcium accumulation induces the breakdown of cytoskeleton and axonal fragmentation in the late stages of Wallerian degeneration. In the early stages there is no evidence for any long-lasting, extensive increase in intra-axonal calcium but there does appear to be some redistribution. We hypothesized that changes in calcium distribution could have an early regulatory role in axonal degeneration in addition to the late executionary role of calcium. Schmidt-Lanterman clefts (SLCs), which allow exchange of metabolites and ions between the periaxonal and extracellular space, are likely to have an increased role when axon segments are separated from the cell body, so we used the oxalate-pyroantimonate method to study calcium at SLCs in distal stumps of transected wild-type and slow Wallerian degeneration (Wld(S)) mutant sciatic nerves, in which Wallerian degeneration is greatly delayed. In wild-type nerves most SLCs show a step gradient of calcium distribution, which is lost at around 20% of SLCs within 3mm of the lesion site by 4-24h after nerve transection. To investigate further the association with Wallerian degeneration, we studied nerves from Wld(S) rats. The step gradient of calcium distribution in Wld(S) is absent in around 20% of the intact nerves beneath SLCs but 4-24h following injury, calcium distribution in transected axons remained similar to that in uninjured nerves. We then used calcium indicators to study influx and buffering of calcium in injured neurites in primary culture. Calcium penetration and the early calcium increase in this system were indistinguishable between Wld(S) and wild-type axons. However, a significant difference was observed during the following hours, when calcium increased in wild-type neurites but not in Wld(S) neurites. We conclude that there is little relationship between calcium distribution and the early stages of Wallerian degeneration at the time points studied in vivo or in vitro but that Wld(S) neurites fail to show a later

  19. Adenomatous Polyposis Coli Mutation Leads to Myopia Development in Mice

    PubMed Central

    Li, Jing; Zhu, Zhenzhen; Yang, Wenzhao; Zhou, Xiangtian; An, Jianhong; Huang, Furong; Wang, Qiongsi; Reinach, Peter S.; Li, Wei; Chen, Wensheng; Liu, Zuguo

    2015-01-01

    Myopia incidence in China is rapidly becoming a very serious sight compromising problem in a large segment of the general population. Therefore, delineating the underlying mechanisms leading to myopia will markedly lessen the likelihood of other sight compromising complications. In this regard, there is some evidence that patients afflicted with familial adenomatous polyposis (FAP), havean adenomatous polyposis coli (APC) mutation and a higher incidence of myopia. To clarify this possible association, we determined whether the changes in pertinent biometric and biochemical parameters underlying postnatal refractive error development in APCMin mice are relevant for gaining insight into the pathogenesis of this disease in humans. The refraction and biometrics in APCMin mice and age-matched wild-type (WT) littermates between postnatal days P28 and P84 were examined with eccentric infrared photorefraction (EIR) and customized optical coherence tomography (OCT). Compared with WT littermates, the APCMin mutated mice developed myopia (average -4.64 D) on P84 which was associated with increased vitreous chamber depth (VCD). Furthermore, retinal and scleral changes appear in these mice along with: 1) axial length shortening; 2) increased retinal cell proliferation; 3) and decreased tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of DA synthesis. Scleral collagen fibril diameters became heterogeneous and irregularly organized in the APCMin mice. Western blot analysis showed that scleral alpha-1 type I collagen (col1α1) expression also decreased whereas MMP2 and MMP9 mRNA expression was invariant. These results indicate that defective APC gene function promotes refractive error development. By characterizing in APCMin mice ocular developmental changes, this approach provides novel insight into underlying pathophysiological mechanisms contributing to human myopia development. PMID:26495845

  20. ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules

    PubMed Central

    Vance, Caroline; Scotter, Emma L.; Nishimura, Agnes L.; Troakes, Claire; Mitchell, Jacqueline C.; Kathe, Claudia; Urwin, Hazel; Manser, Catherine; Miller, Christopher C.; Hortobágyi, Tibor; Dragunow, Mike; Rogelj, Boris; Shaw, Christopher E.

    2013-01-01

    Mutations in the gene encoding Fused in Sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. FUS is a predominantly nuclear DNA- and RNA-binding protein that is involved in RNA processing. Large FUS-immunoreactive inclusions fill the perikaryon of surviving motor neurons of ALS patients carrying mutations at post-mortem. This sequestration of FUS is predicted to disrupt RNA processing and initiate neurodegeneration. Here, we demonstrate that C-terminal ALS mutations disrupt the nuclear localizing signal (NLS) of FUS resulting in cytoplasmic accumulation in transfected cells and patient fibroblasts. FUS mislocalization is rescued by the addition of the wild-type FUS NLS to mutant proteins. We also show that oxidative stress recruits mutant FUS to cytoplasmic stress granules where it is able to bind and sequester wild-type FUS. While FUS interacts with itself directly by protein–protein interaction, the recruitment of FUS to stress granules and interaction with PABP are RNA dependent. These findings support a two-hit hypothesis, whereby cytoplasmic mislocalization of FUS protein, followed by cellular stress, contributes to the formation of cytoplasmic aggregates that may sequester FUS, disrupt RNA processing and initiate motor neuron degeneration. PMID:23474818

  1. Physiological effects of fenpropimorph on wild-type Saccharomyces cerevisiae and fenpropimorph-resistant mutants.

    PubMed Central

    Lorenz, R T; Parks, L W

    1991-01-01

    Fenpropimorph-resistant mutants of Saccharomyces cerevisiae were isolated by a gradient selection procedure. The mutants were cross-resistant to other morpholines (fenpropidin, dodemorph, tridemorph) and 15-azasterol, but were susceptible to azoles (miconazole, clotrimazole, ketoconazole) and nystatin. In the absence of fenpropimorph, the major sterol produced by the mutants and the parental strain was ergosterol. In the presence of fenpropimorph, ignosterol (ergosta-8,14-dien-3 beta-ol) was the major sterol produced by the mutants and the parental strain. The resistance to fenpropimorph involves two recessive genes, each of which allows a semiresistance, when they are isolated apart from one another. Strain JR4 (erg3 erg11), which produces 14-methylfecosterol [14 alpha-methyl-ergosta-8,24(28)-dien- 3-beta-ol) as the major sterol in the presence or absence of fenpropimorph, was also found to be resistant to the drug. The growth inhibitory effect of fenpropimorph on wild-type cells appears to be linked to the production of ignosterol. The uptake of exogenous sterol by wild-type cells was greatly enhanced in the presence of fenpropimorph. The growth inhibition caused by fenpropimorph could only be overcome with bulk levels of exogenous C-5,6-unsaturated sterols. PMID:1929324

  2. ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules.

    PubMed

    Vance, Caroline; Scotter, Emma L; Nishimura, Agnes L; Troakes, Claire; Mitchell, Jacqueline C; Kathe, Claudia; Urwin, Hazel; Manser, Catherine; Miller, Christopher C; Hortobágyi, Tibor; Dragunow, Mike; Rogelj, Boris; Shaw, Christopher E

    2013-07-01

    Mutations in the gene encoding Fused in Sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. FUS is a predominantly nuclear DNA- and RNA-binding protein that is involved in RNA processing. Large FUS-immunoreactive inclusions fill the perikaryon of surviving motor neurons of ALS patients carrying mutations at post-mortem. This sequestration of FUS is predicted to disrupt RNA processing and initiate neurodegeneration. Here, we demonstrate that C-terminal ALS mutations disrupt the nuclear localizing signal (NLS) of FUS resulting in cytoplasmic accumulation in transfected cells and patient fibroblasts. FUS mislocalization is rescued by the addition of the wild-type FUS NLS to mutant proteins. We also show that oxidative stress recruits mutant FUS to cytoplasmic stress granules where it is able to bind and sequester wild-type FUS. While FUS interacts with itself directly by protein-protein interaction, the recruitment of FUS to stress granules and interaction with PABP are RNA dependent. These findings support a two-hit hypothesis, whereby cytoplasmic mislocalization of FUS protein, followed by cellular stress, contributes to the formation of cytoplasmic aggregates that may sequester FUS, disrupt RNA processing and initiate motor neuron degeneration. PMID:23474818

  3. Molecular dynamics studies on the structural stability of wild-type dog prion protein.

    PubMed

    Zhang, Jiapu; Liu, David D W

    2011-06-01

    Prion diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches to treat all these prion diseases. In 2008, canine mammals including dogs (canis familials) were the first time academically reported to be resistant to prion diseases (Vaccine 26: 2601-2614 (2008)). Thus, it is very worth studying the molecular structures of dog prion protein to obtain insights into the immunity of dogs to prion diseases. This paper studies the molecular structural dynamics of wild-type dog prion protein. The comparison analyses with rabbit prion protein show that the dog prion protein has stable molecular structures whether under neutral or low pH environments. We also find that the salt bridges such as D177-R163 contribute to the structural stability of wild-type rabbit prion protein under neutral pH environment. PMID:21469747

  4. Protein Folding Simulation of Mutant Go Models of the Wild-Type Trp-cage Protein

    NASA Astrophysics Data System (ADS)

    Linhananta, Apichart; Liu, Junmin

    2008-03-01

    For the past three decades, Go models of protein folding have played important roles in the understanding of how proteins fold from random conformations to their unique native structures. Unfortunately Go models reliance on known NMR or x-ray structures to construct Go interaction potentials severely limit their predictive powers. In this work, we introduce a novel method for constructing Go interaction potentials of mutant proteins based on Go interaction potentials of wild type proteins. As a template we employ the all-atom Go model of the 20-residue Trp-cage protein (A. Linhananta, J. Boer and I. MacKay, J. Chem. Phys., 2005, 122, 114901) as the wild type Go model. Trp-cage mutants are constructed by replacing a Trp-cage residue with a different residue. In particular the Pro-12 residue of the Trp-cage is substituted by Trp-12 to produce the Trp2-cage mutant, whose native structure is not yet known. Monte Carlo simulations, using CHARMM force fields, are performed to determine the ground-state structure mutant. The resulting mutant structures are used to construct the Go interaction potential of the Trp2-cage mutant Go model.

  5. Prolactin inhibits a major tumor-suppressive function of wild type BRCA1.

    PubMed

    Chen, Kuan-Hui Ethan; Walker, Ameae M

    2016-06-01

    Even though mutations in the tumor suppressor, BRCA1, markedly increase the risk of breast and ovarian cancer, most breast and ovarian cancers express wild type BRCA1. An important question is therefore how the tumor-suppressive function of normal BRCA1 is overcome during development of most cancers. Because prolactin promotes these and other cancers, we investigated the hypothesis that prolactin interferes with the ability of BRCA1 to inhibit the cell cycle. Examining six different cancer cell lines with wild type BRCA1, and making use of both prolactin and the growth-inhibiting selective prolactin receptor modulator, S179D PRL, we demonstrate that prolactin activation of Stat5 results in the formation of a complex between phospho-Stat5 and BRCA1. Formation of this complex does not interfere with nuclear translocation or binding of BRCA1 to the p21 promoter, but does interfere with the ability of BRCA1 to transactivate the p21 promoter. Overexpression of a dominant-negative Stat5 in prolactin-stimulated cells resulted in increased p21 expression. We conclude that prolactin inhibits a major tumor-suppressive function of BRCA1 by interfering with BRCA1's upregulation of expression of the cell cycle inhibitor, p21. PMID:26970274

  6. Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina.

    PubMed

    Druzhinina, Irina S; Schmoll, Monika; Seiboth, Bernhard; Kubicek, Christian P

    2006-03-01

    The ascomycete Hypocrea jecorina (Trichoderma reesei), an industrial producer of cellulases and hemicellulases, can efficiently degrade plant polysaccharides. However, the catabolic pathways for the resulting monomers and their relationship to enzyme induction are not well known. Here we used the Biolog Phenotype MicroArrays technique to evaluate the growth of H. jecorina on 95 carbon sources. For this purpose, we compared several wild-type isolates, mutants producing different amounts of cellulases, and strains transformed with a heterologous antibiotic resistance marker gene. The wild-type isolates and transformed strains had the highest variation in growth patterns on individual carbon sources. The cellulase mutants were relatively similar to their parental strains. Both in the mutant and in the transformed strains, the most significant changes occurred in utilization of xylitol, erythritol, D-sorbitol, D-ribose, D-galactose, L-arabinose, N-acetyl-D-glucosamine, maltotriose, and beta-methyl-glucoside. Increased production of cellulases was negatively correlated with the ability to grow on gamma-aminobutyrate, adonitol, and 2-ketogluconate; and positively correlated with that on d-sorbitol and saccharic acid. The reproducibility, relative simplicity, and high resolution (+/-10% of increase in mycelial density) of the phenotypic microarrays make them a useful tool for the characterization of mutant and transformed strains and for a global analysis of gene function. PMID:16517662

  7. Endocytic trafficking routes of wild type and DeltaF508 cystic fibrosis transmembrane conductance regulator.

    PubMed

    Gentzsch, Martina; Chang, Xiu-Bao; Cui, Liying; Wu, Yufeng; Ozols, Victor V; Choudhury, Amit; Pagano, Richard E; Riordan, John R

    2004-06-01

    Intracellular trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) is a focus of attention because it is defective in most patients with cystic fibrosis. DeltaF508 CFTR, which does not mature conformationally, normally does not exit the endoplasmic reticulum, but if induced to do so at reduced temperature is short-lived at the surface. We used external epitope-tagged constructs to elucidate the itinerary and kinetics of wild type and DeltaF508 CFTR in the endocytic pathway and visualized movement of CFTR from the surface to intracellular compartments. Modulation of different endocytic steps with low temperature (16 degrees C) block, protease inhibitors, and overexpression of wild type and mutant Rab GTPases revealed that surface CFTR enters several different routes, including a Rab5-dependent initial step to early endosomes, then either Rab11-dependent recycling back to the surface or Rab7-regulated movement to late endosomes or alternatively Rab9-mediated transit to the trans-Golgi network. Without any of these modulations DeltaF508 CFTR rapidly disappears from and does not return to the cell surface, confirming that its altered structure is detected in the distal as well as proximal secretory pathway. Importantly, however, the mutant protein can be rescued at the plasma membrane by Rab11 overexpression, proteasome inhibitors, or inhibition of Rab5-dependent endocytosis. PMID:15075371

  8. Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Edelmann, R. E.; Wood, P. C.

    1999-01-01

    The major purpose of this spaceflight project was to investigate the starch-statolith hypothesis for gravity perception, and a secondary goal was to study plant growth and development under spaceflight conditions. This research was based on our ground studies of gravity perception in the wild type and three starch-deficient (one starchless and two reduced starch) mutants of Arabidopsis thaliana (L.) Heynh. Dark-grown seedlings that developed in microgravity were given one of several (30 min, 60 min, or 90 min) 1-g stimuli by an on-board centrifuge, and additional controls for seedling development also were performed. These latter control experiments included a morphological study of plants that developed in space in microgravity (F microg), in space on a centrifuge (F 1g), on the ground (G 1g), and on a rotating clinostat on the ground. Since elevated levels of ethylene were reported in the spacecraft atmosphere, additional controls for morphology and gravitropism with added ethylene also were performed. While exogenous ethylene reduced the absolute magnitude of the response in all four strains of Arabidopsis, this gas did not appear to change the relative graviresponsiveness among the strains. The relative response of hypocotyls of microgravity-grown seedlings to the stimuli provided by the in-flight centrifuge was: wild type > starch-deficient mutants. Although the protoplast pressure model for gravity perception cannot be excluded, these results are consistent with a statolith-based model for perception in plants.

  9. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  10. Combined effect of temperature and zinc on Caenorhabditis elegans wild type and daf-21 mutant strains.

    PubMed

    Wang, Yunbiao; Ezemaduka, Anastasia N

    2014-04-01

    Heavy metal pollution in aquatic ecosystems is a far reaching environmental problem. The possible influences of heavy metal exposure and the potential harm to organisms when combined with other environmental stressors such as temperature have been largely unexplored. An aquatic toxicity test of Caenorhabditis elegans was performed to estimate the 24h median lethal concentration (LC50) of different zinc concentrations at different temperatures (15°C, 20°C, 25°C, and 30°C). We also examined the time course thermotolerance on wild type (N2) and daf-21 null (JT6130) adults exposed to 6.1mM zinc at 37°C. Hsp90 protein expression level in response to the combined effect of temperature and zinc toxicity was also investigated by both Western blots and ELISA. Our results show that C. elegans wild type nematodes exhibit severe lethal toxicity after a 24h exposure to zinc at higher temperatures. In addition, the expression level of Hsp90 was highly inhibited in adult worms subjected to zinc stress. This toxicity assay at different temperatures provides insight into organism response to combined effects of temperature and zinc toxicity. PMID:24679967

  11. Mobility and subcellular localization of endogenous, gene-edited Tau differs from that of over-expressed human wild-type and P301L mutant Tau

    PubMed Central

    Di Xia; Gutmann, Julia M.; Götz, Jürgen

    2016-01-01

    Alzheimer’s disease (AD) and a subset of frontotemporal dementia termed FTLD-Tau are characterized by a massive, yet incompletely characterized and understood redistribution of Tau. To establish a framework for understanding this pathology, we used the genome-editing tool TALEN and generated Tau-mEOS2 knock-in mice to determine the mobility and subcellular localization of endogenous Tau in hippocampal cultures. We analysed Tau in axons, dendrites and spines at three stages of maturation using live-cell imaging, photo-conversion and FRAP assays. Tau-mEOS2 cultures were compared with those over-expressing EGFP-tagged forms of human wild-type (hWT-Tau) and P301L mutant Tau (hP301L-Tau), modelling Tau accumulation in AD and FTLD-Tau, respectively. In developing neurons, Tau-mEOS2 followed a proximo-distal gradient in axons and a subcellular distribution similar to that of endogenous Tau in neurons obtained from wild-type mice, which were abolished, when either hWT-Tau or hP301L-Tau was over-expressed. For the three conditions, FRAP analysis revealed a similar mobility in dendrites compared with axons; however, Tau-mEOS2 was less mobile than hWT-Tau and hP301L-Tau and the mobile fraction was smaller, possibly reflecting less efficient microtubule binding of Tau when over-expressed. Together, our study presents Tau-mEOS2 mice as a novel tool for the study of Tau in a physiological and a pathological context. PMID:27378256

  12. Mobility and subcellular localization of endogenous, gene-edited Tau differs from that of over-expressed human wild-type and P301L mutant Tau.

    PubMed

    Di Xia; Gutmann, Julia M; Götz, Jürgen

    2016-01-01

    Alzheimer's disease (AD) and a subset of frontotemporal dementia termed FTLD-Tau are characterized by a massive, yet incompletely characterized and understood redistribution of Tau. To establish a framework for understanding this pathology, we used the genome-editing tool TALEN and generated Tau-mEOS2 knock-in mice to determine the mobility and subcellular localization of endogenous Tau in hippocampal cultures. We analysed Tau in axons, dendrites and spines at three stages of maturation using live-cell imaging, photo-conversion and FRAP assays. Tau-mEOS2 cultures were compared with those over-expressing EGFP-tagged forms of human wild-type (hWT-Tau) and P301L mutant Tau (hP301L-Tau), modelling Tau accumulation in AD and FTLD-Tau, respectively. In developing neurons, Tau-mEOS2 followed a proximo-distal gradient in axons and a subcellular distribution similar to that of endogenous Tau in neurons obtained from wild-type mice, which were abolished, when either hWT-Tau or hP301L-Tau was over-expressed. For the three conditions, FRAP analysis revealed a similar mobility in dendrites compared with axons; however, Tau-mEOS2 was less mobile than hWT-Tau and hP301L-Tau and the mobile fraction was smaller, possibly reflecting less efficient microtubule binding of Tau when over-expressed. Together, our study presents Tau-mEOS2 mice as a novel tool for the study of Tau in a physiological and a pathological context. PMID:27378256

  13. Antigen spreading-induced CD8+T cells confer protection against the lethal challenge of wild-type malignant mesothelioma by eliminating myeloid-derived suppressor cells

    PubMed Central

    Lee, Boon Kiat; Tang, Jiansong; Wu, Xilin; Cheung, Ka-Wai; Lok Lo, Nathan Tin; Man, Kwan; Liu, Li; Chen, Zhiwei

    2015-01-01

    A key focus in cancer immunotherapy is to investigate the mechanism of efficacious vaccine responses. Using HIV-1 GAG-p24 in a model PD1-based DNA vaccine, we recently reported that vaccine-elicited CD8+ T cells conferred complete prevention and therapeutic cure of AB1-GAG malignant mesothelioma in immunocompetent BALB/c mice. Here, we further investigated the efficacy and correlation of protection on the model vaccine-mediated antigen spreading against wild-type AB1 (WT-AB1) mesothelioma. We found that this vaccine was able to protect mice completely from three consecutive lethal challenges of AB1-GAG mesothelioma. Through antigen spreading these animals also developed tumor-specific cytotoxic CD8+ T cells, but neither CD4+ T cells nor antibodies, rejecting WT-AB1 mesothelioma. A majority of these protected mice (90%) were also completely protected against the lethal WT-AB1 challenge. Adoptive cell transfer experiments further demonstrated that antigen spreading-induced CD8+ T cells conferred efficacious therapeutic effects against established WT-AB1 mesothelioma and prevented the increase of exhausted PD-1+ and Tim-3+ CD8+ T cells. A significant inverse correlation was found between the frequency of functional PD1−Tim3− CD8+ T cells and that of MDSCs or tumor mass in vivo. Mechanistically, we found that WT-AB1 mesothelioma induced predominantly polymorphonuclear (PMN) MDSCs in vivo. In co-cultures with efficacious CD8+ T cells, a significant number of PMN-MDSCs underwent apoptosis in a dose-dependent way. Our findings indicate that efficacious CD8+ T cells capable of eliminating both tumor cells and MDSCs are likely necessary for fighting wild-type malignant mesothelioma. PMID:26431275

  14. Age-dependent gait abnormalities in mice lacking the Rnf170 gene linked to human autosomal-dominant sensory ataxia.

    PubMed

    Kim, Youngsoo; Kim, Seong Hun; Kim, Kook Hwan; Chae, Sujin; Kim, Chanki; Kim, Jeongjin; Shin, Hee-Sup; Lee, Myung-Shik; Kim, Daesoo

    2015-12-20

    Really interesting new gene (RING) finger protein 170 (RNF170) is an E3 ubiquitin ligase known to mediate ubiquitination-dependent degradation of type-I inositol 1,4,5-trisphosphate receptors (ITPR1). It has recently been demonstrated that a point mutation of RNF170 gene is linked with autosomal-dominant sensory ataxia (ADSA), which is characterized by an age-dependent increase of walking abnormalities, a rare genetic disorder reported in only two families. Although this mutant allele is known to be dominant, the functional identity thereof has not been clearly established. Here, we generated mice lacking Rnf170 (Rnf170(-/-)) to evaluate the effect of its loss of function in vivo. Remarkably, Rnf170(-/-) mice began to develop gait abnormalities in old age (12 months) in the form of asynchronous stepping between diagonal limb pairs with a fixed step sequence during locomotion, while age-matched wild-type mice showed stable gait patterns using several step sequence repertoires. As reported in ADSA patients, they also showed a reduced sensitivity for proprioception and thermal nociception. Protein blot analysis revealed that the amount of Itpr1 protein was significantly elevated in the cerebellum and spinal cord but intact in the cerebral cortex in Rnf170(-/-) mice. These results suggest that the loss of Rnf170 gene function mediates ADSA-associated phenotypes and this gives insights on the cure of patients with ADSA and other age-dependent walking abnormalities. PMID:26433933

  15. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines

    PubMed Central

    2011-01-01

    Background Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. Results Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Conclusion Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the

  16. Altered cerebral protein synthesis in fragile X syndrome: studies in human subjects and knockout mice

    PubMed Central

    Qin, Mei; Schmidt, Kathleen C; Zametkin, Alan J; Bishu, Shrinivas; Horowitz, Lisa M; Burlin, Thomas V; Xia, Zengyan; Huang, Tianjiang; Quezado, Zenaide M; Smith, Carolyn Beebe

    2013-01-01

    Dysregulated protein synthesis is thought to be a core phenotype of fragile X syndrome (FXS). In a mouse model (Fmr1 knockout (KO)) of FXS, rates of cerebral protein synthesis (rCPS) are increased in selective brain regions. We hypothesized that rCPS are also increased in FXS subjects. We measured rCPS with the ℒ-[1-11C]leucine positron emission tomography (PET) method in whole brain and 10 regions in 15 FXS subjects who, because of their impairments, were studied under deep sedation with propofol. We compared results with those of 12 age-matched controls studied both awake and sedated. In controls, we found no differences in rCPS between awake and propofol sedation. Contrary to our hypothesis, FXS subjects under propofol sedation had reduced rCPS in whole brain, cerebellum, and cortex compared with sedated controls. To investigate whether propofol could have a disparate effect in FXS subjects masking usually elevated rCPS, we measured rCPS in C57Bl/6 wild-type (WT) and KO mice awake or under propofol sedation. Propofol decreased rCPS substantially in most regions examined in KO mice, but in WT mice caused few discrete changes. Propofol acts by decreasing neuronal activity either directly or by increasing inhibitory synaptic activity. Our results suggest that changes in synaptic signaling can correct increased rCPS in FXS. PMID:23299245

  17. Dental and Cranial Pathologies in Mice Lacking the Cl(-) /H(+) -Exchanger ClC-7.

    PubMed

    Wen, Xin; Lacruz, Rodrigo S; Paine, Michael L

    2015-08-01

    ClC-7 is a 2Cl(-) /1H(+) -exchanger expressed at late endosomes and lysosomes, as well as the ruffled border of osteoclasts. ClC-7 deficiencies in mice and humans lead to impaired osteoclast function and therefore osteopetrosis. Failure of tooth eruption is also apparent in ClC-7 mutant animals, and this has been attributed to the osteoclast dysfunction and the subsequent defect in alveolar bone resorptive activity surrounding tooth roots. Ameloblasts also express ClC-7, and this study aims to determine the significance of ClC-7 in enamel formation by examining the dentitions of ClC-7 mutant mice. Micro-CT analysis revealed that the molar teeth of 3-week old ClC-7 mutant mice had no roots, and the incisors were smaller than their age-matched controls. Despite these notable developmental differences, the enamel and dentin densities of the mutant mice were comparable to those of the wild-type littermates. Scanning electron microscopy showed normal enamel crystallite and prismatic organization in the ClC-7 mutant mice, although the enamel was thinner (hypoplastic) than in controls. These results suggested that ClC-7 was not critical to enamel and dentin formation, and the observed tooth defects may be related more to a resulting alveolar bone phenotype. Micro-CT analysis also revealed abnormal features in the calvarial bones of the mutant mice. The cranial sutures in ClC-7 mutant mice remained open compared to the closed sutures seen in the control mice at 3 weeks. These data demonstrate that ClC-7 deficiency impacts the development of the dentition and calvaria, but does not significantly disrupt amelogenesis. PMID:25663454

  18. Exercise capacity and cardiac hemodynamic response in female ApoE/LDLR−/− mice: a paradox of preserved V’O2max and exercise capacity despite coronary atherosclerosis

    PubMed Central

    Wojewoda, M.; Tyrankiewicz, U.; Gwozdz, P.; Skorka, T.; Jablonska, M.; Orzylowska, A.; Jasinski, K.; Jasztal, A.; Przyborowski, K.; Kostogrys, R. B.; Zoladz, J. A.; Chlopicki, S.

    2016-01-01

    We assessed exercise performance, coronary blood flow and cardiac reserve of female ApoE/LDLR−/− mice with advanced atherosclerosis compared with age-matched, wild-type C57BL6/J mice. Exercise capacity was assessed as whole body maximal oxygen consumption (V’O2max), maximum running velocity (vmax) and maximum distance (DISTmax) during treadmill exercise. Cardiac systolic and diastolic function in basal conditions and in response to dobutamine (mimicking exercise-induced cardiac stress) were assessed by Magnetic Resonance Imaging (MRI) in vivo. Function of coronary circulation was assessed in isolated perfused hearts. In female ApoE/LDLR−/− mice V’O2max, vmax and DISTmax were not impaired as compared with C57BL6/J mice. Cardiac function at rest and systolic and diastolic cardiac reserve were also preserved in female ApoE/LDLR−/− mice as evidenced by preserved fractional area change and similar fall in systolic and end diastolic area after dobutamine. Moreover, endothelium-dependent responses of coronary circulation induced by bradykinin (Bk) and acetylcholine (ACh) were preserved, while endothelium-independent responses induced by NO-donors were augmented in female ApoE/LDLR−/− mice. Basal COX-2-dependent production of 6-keto-PGF1α was increased. Concluding, we suggest that robust compensatory mechanisms in coronary circulation involving PGI2- and NO-pathways may efficiently counterbalance coronary atherosclerosis-induced impairment in V’O2max and exercise capacity. PMID:27108697

  19. Comparation of enhanced green fluorescent protein gene transfected and wild-type porcine neural stem cells.

    PubMed

    Zheng, Yue-Mao; An, Zhi-Xing; Zhao, Xiao-E; Quan, Fu-Sheng; Zhao, Hui-Ying; Zhang, Ya-Rong; Liu, Jun; He, Xiao-Ying; He, Xiao-Ning

    2010-02-01

    The aim of this study was to transfect and express the enhanced green fluorescence protein (EGFP) gene into porcine neural stem cells (NSCs) to determine whether EGFP can be used as a marker to monitor NSCs. NSCs were isolated from embryonic day 30 fetal pig brain and transfected with EGFP gene using lipofection. Transfected and wild-type NSCs were induced to differentiate into cells of neuronal and myogenic lineages. Markers of passage three NSCs and their differentiated cells were tested by reverse transcription polymerase chain reaction. The results showed that EGFP could be expressed in NSCs and the differentiated cells. NSCs expressed Nestin, NogoA, DCX, Hes1, Oct4, CD-90 and Sox2. NSCs could differentiated into astrocyte (GFAP(+)), oligodendrocyte (GalC(+)), neuron (NF(+), NSE(+) and MAP2(+)) and myocyte (myf-6(+) and myoD(+)). We concluded that EGFP can be used as a marker in monitoring NSCs. PMID:19580981

  20. Purification of extrachloroplastic. beta. -amylase from leaves of starchless and wild type Arabidopsis

    SciTech Connect

    Somerville, C.; Monroe, J.; Preiss, J. )

    1989-04-01

    Amylase activity in crude leaf extracts from starchless mutants of Arabidopsis thaliana is 5 to 10 fold higher than in the wild type (WT) when plants are grown under a 12 h photoperiod. Visualized on native PAGE, the increased activity is attributed primarily to a previously characterized extrachloroplastic {beta}-(exo)amylase. The {beta}-amylases from phosoglucomutase deficient (starchless) and WT leaves were purified to homogeneity in two steps utilizing polyethylene glycol fractionation, and cyclohexaamylose affinity chromatography. The enzyme from both mutant and WT leaves had negligible activity toward either {beta}-limit dextrin or pullulan. The specific activities of both purified enzymes were similar indicating that the protein is over-expressed in the mutant. Preliminary antibody neutralization experiments suggest that the two {beta}-amylases are not different.

  1. Genome sequence of SG33 strain and recombination between wild-type and vaccine myxoma viruses.

    PubMed

    Camus-Bouclainville, Christelle; Gretillat, Magalie; Py, Robert; Gelfi, Jacqueline; Guérin, Jean Luc; Bertagnoli, Stéphane

    2011-04-01

    Myxomatosis in Europe is the result of the release of a South America strain of myxoma virus in 1952. Several attenuated strains with origins in South America or California have since been used as vaccines in the rabbit industry. We sequenced the genome of the SG33 myxoma virus vaccine strain and compared it with those of other myxoma virus strains. We show that SG33 genome carries a large deletion in its right end. Furthermore, our data strongly suggest that the virus isolate from which SG33 is derived results from an in vivo recombination between a wild-type South America (Lausanne) strain and a California MSD-derived strain. These findings raise questions about the use of insufficiently attenuated virus in vaccination. PMID:21470452

  2. The Phenotypic Effects of Royal Jelly on Wild-Type D. melanogaster Are Strain-Specific

    PubMed Central

    Morgan, Stefanie L.; Seggio, Joseph A.; Hicks, Jasmin A.; Sharp, Katherine A.; Axelrod, Jeffrey D.; Wang, Kevin C.

    2016-01-01

    The role for royal jelly (RJ) in promoting caste differentiation of honeybee larvae into queens rather than workers is well characterized. A recent study demonstrated that this poorly understood complex nutrition drives strikingly similar phenotypic effects in Drosophila melanogaster, such as increased body size and reduced developmental time, making possible the use of D. melanogaster as a model system for the genetic analysis of the cellular mechanisms underlying RJ and caste differentiation. We demonstrate here that RJ increases the body size of some wild-type strains of D. melanogaster but not others, and report significant delays in developmental time in all flies reared on RJ. These findings suggest that cryptic genetic variation may be a factor in the D. melanogaster response to RJ, and should be considered when attempting to elucidate response mechanisms to environmental changes in non-honeybee species. PMID:27486863

  3. Cholesterol Secosterol Aldehydes Induce Amyloidogenesis and Dysfunction of Wild Type Tumor Protein p53

    PubMed Central

    Nieva, Jorge; Song, Byeong-Doo; Rogel, Joseph K.; Kujawara, David; Altobel, Lawrence; Izharrudin, Alicia; Boldt, Grant E.; Grover, Rajesh K.; Wentworth, Anita D.; Wentworth, Paul

    2011-01-01

    SUMMARY Epidemiologic and clinical evidence points to an increased risk of cancer when coupled with chronic inflammation. However, the molecular mechanisms that underpin this interrelationship remain largely unresolved. Herein we show that the inflammation-derived cholesterol 5,6-secosterol aldehydes, atheronal-A (KA) and –B (ALD), but not the PUFA-derived aldehydes 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE), induce misfolding of wild-type p53 into an amyloidogenic form that binds thioflavin T and Congo Red dyes but cannot bind to a consensus DNA sequence. Treatment of lung carcinoma cells with KA and ALD leads to a loss of function of extracted p53, as determined by analysis of extracted nuclear protein and in activation of p21. Our results uncover a plausible chemical link between inflammation and cancer and expands the already pivotal role of p53 dysfunction and cancer risk. PMID:21802012

  4. The Phenotypic Effects of Royal Jelly on Wild-Type D. melanogaster Are Strain-Specific.

    PubMed

    Morgan, Stefanie L; Seggio, Joseph A; Nascimento, Nara F; Huh, Dana D; Hicks, Jasmin A; Sharp, Katherine A; Axelrod, Jeffrey D; Wang, Kevin C

    2016-01-01

    The role for royal jelly (RJ) in promoting caste differentiation of honeybee larvae into queens rather than workers is well characterized. A recent study demonstrated that this poorly understood complex nutrition drives strikingly similar phenotypic effects in Drosophila melanogaster, such as increased body size and reduced developmental time, making possible the use of D. melanogaster as a model system for the genetic analysis of the cellular mechanisms underlying RJ and caste differentiation. We demonstrate here that RJ increases the body size of some wild-type strains of D. melanogaster but not others, and report significant delays in developmental time in all flies reared on RJ. These findings suggest that cryptic genetic variation may be a factor in the D. melanogaster response to RJ, and should be considered when attempting to elucidate response mechanisms to environmental changes in non-honeybee species. PMID:27486863

  5. Modest increased sensitivity to radiation oncogenesis in ATM heterozygous versus wild-type mammalian cells

    NASA Technical Reports Server (NTRS)

    Smilenov, L. B.; Brenner, D. J.; Hall, E. J.

    2001-01-01

    Subpopulations that are genetically predisposed to radiation-induced cancer could have significant public health consequences. Individuals homozygous for null mutations at the ataxia telangiectasia gene are indeed highly radiosensitive, but their numbers are very small. Ataxia Telangiectasia heterozygotes (1-2% of the population) have been associated with somewhat increased radiosensitivity for some end points, but none directly related to carcinogenesis. Here, intralitter comparisons between wild-type mouse embryo fibroblasts and mouse embryo fibroblasts carrying ataxia telangiectasia mutated (ATM) null mutation indicate that the heterozygous cells are more sensitive to radiation oncogenesis than their normal, litter-matched, counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive human subpopulation.

  6. Predicting Gene Function from Uncontrolled Expression Variation among Individual Wild-Type Arabidopsis Plants[W

    PubMed Central

    Bhosale, Rahul; Jewell, Jeremy B.; Hollunder, Jens; Koo, Abraham J.K.; Vuylsteke, Marnik; Michoel, Tom; Hilson, Pierre; Goossens, Alain; Howe, Gregg A.; Browse, John; Maere, Steven

    2013-01-01

    Gene expression profiling studies are usually performed on pooled samples grown under tightly controlled experimental conditions to suppress variability among individuals and increase experimental reproducibility. In addition, to mask unwanted residual effects, the samples are often subjected to relatively harsh treatments that are unrealistic in a natural context. Here, we show that expression variations among individual wild-type Arabidopsis thaliana plants grown under the same macroscopic growth conditions contain as much information on the underlying gene network structure as expression profiles of pooled plant samples under controlled experimental perturbations. We advocate the use of subtle uncontrolled variations in gene expression between individuals to uncover functional links between genes and unravel regulatory influences. As a case study, we use this approach to identify ILL6 as a new regulatory component of the jasmonate response pathway. PMID:23943861

  7. Expression of Escherichia coli virulence usher protein attenuates wild-type Salmonella.

    PubMed

    Yang, Xinghong; Suo, Zhiyong; Thornburg, Theresa; Holderness, Kathryn; Cao, Ling; Lim, Timothy; Walters, Nancy; Kellerman, Laura; Loetterle, Linda; Avci, Recep; Pascual, David W

    2012-01-01

    Generation of a live attenuated vaccine for bacterial pathogens often requires prior knowledge of the pathogen's virulence factors. We hypothesized an alternative approach of heterologous gene expression would make a wild-type (wt) pathogen more susceptible to host cell killing, thus, resulting in immunization. As proof of concept, the heterologous expression of enterotoxigenic E. coli (ETEC) colonization factor antigen I (CFA/I) was tested to attenuate Salmonella. The overexpression of CFA/I resulted in significant attenuation of wt Salmonella. In-depth studies revealed the attenuation depended on the co-expression of chaperone (CfaA) and usher (CfaC) proteins. Remarkably, the CfaAC-attenuated Salmonella conferred protection against wt Salmonella challenge. Mechanistic study indicated CfaAC made Salmonella outer membranes permeable, causing Salmonella to be vulnerable to host destruction. Thus, enhancing bacterial permeability via CfaAC represents an alternative method to attenuate pathogens despite the presence of unknown virulence factors. PMID:22286706

  8. Comparative mutational analysis of wild-type and stretched tRNA3(Leu) gene promoters.

    PubMed Central

    Fabrizio, P; Coppo, A; Fruscoloni, P; Benedetti, P; Di Segni, G; Tocchini-Valentini, G P

    1987-01-01

    We demonstrate that, when the yeast tRNA(3Leu) gene is stretched so that the distance between the two portions of the intragenic promoter is increased to 365 base pairs, the A and B blocks remain functional. Mutations in the A block, which show a weak phenotype when inserted in the wild type, exert a dramatic effect when inserted into the stretched gene. Experiments with extensively purified transcription factor tau indicate that the tau B-B block interaction is not influenced by A-B distance; only the ability of tau A to interact with A block sequences is affected, possibly because of the additional free-energy cost of forming a large loop of the intervening DNA. Images PMID:3321052

  9. Proteomic characterization of a wild-type wine strain of Saccharomyces cerevisiae.

    PubMed

    Trabalzini, Lorenza; Paffetti, Alessandro; Ferro, Elisa; Scaloni, Andrea; Talamo, Fabio; Millucci, Lia; Martelli, Paola; Santucci, Annalisa

    2003-12-01

    Saccharomyces cerevisiae is the optimal eukaryotic model system to study mammalian biological responses. At the same time Saccharomyces cerevisiae is also widely utilized as a biotechnological tool in the food industry. Enological Saccharomyces cerevisiae strains have been so far routinely analyzed for their microbiological aspects. Nevertheless, wine yeasts are gaining an increasing interest in the last years since they strongly affect both the vinification process and the organoleptic properties of the final product wine. The protein repertoire is responsible of such features and, consequently, 2D-PAGE can be an useful tool to evaluate and select optimal wine yeast strains. We present here the first proteomic map of a wild-type wine Saccharomyces cerevisiae strain selected for the guided fermentation of very high quality wines. PMID:15141481

  10. Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types.

    PubMed

    De Witte, B; Devriese, L; Bekaert, K; Hoffman, S; Vandermeersch, G; Cooreman, K; Robbens, J

    2014-08-15

    This study compared species identity, microplastics, chemical and microbial contamination between consumption mussels and wild type mussels, collected at Belgian department stores and Belgian groynes and quaysides, respectively. Species identification based on genetic analysis showed a high number of Mytilus (M.) edulis compared to M. galloprovincialis and M. edulis/galloprovincialis hybrid mussels. The number of total microplastics varied from 2.6 to 5.1 fibres/10 g of mussel. A higher prevalence of orange fibres at quaysides is related to fisheries activities. Chemical contamination of polycyclic aromatic hydrocarbons and polychlorobiphenyls could be related to industrial activities and water turbidity, with maximum concentrations at the quayside of port Zeebrugge. The inverse was noted for Escherichia coli contamination, which was relatively low at Zeebrugge quayside with a total count of 3.9 × 10(2)CFU/100 g tissue, due to limited agricultural effluents. Results of this complementary analysis stress the importance of integrated monitoring and quality assessment. PMID:24969855

  11. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  12. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2003-01-01

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967

  13. Characterization of yakju brewed from glutinous rice and wild-type yeast strains isolated from nuruks.

    PubMed

    Kim, Hye Ryun; Kim, Jae-Ho; Bae, Dong-Hoon; Ahn, Byung-Hak

    2010-12-01

    Korean traditional rice wines yakju and takju are generally brewed with nuruk as the source of the saccharogenic enzymes by natural fermentation. To improve the quality of Korean rice wine, the microorganisms in the nuruk need to be studied. The objective of this research was to improve the quality of Korean wine with the wild-type yeast strains isolated from the fermentation starter, nuruk. Only strain YA-6 showed high activity in 20% ethanol. Precipitation of Y89-5-3 was similar to that of very flocculent yeast (〉80%) at 75.95%. Using 18S rRNA sequencing, all 10 strains were identified as Saccharomyces cerevisiae. Volatile compounds present in yakju were analyzed by gas chromatography-mass selective detector. The principal component analysis (PCA) of the volatile compounds grouped long-chain esters on the right side of the first principal component, PC1; these compounds were found in yakju that was made with strains YA-6, Y89-5-3, Y89-5- 2, Y90-9, and Y89-1-1. On the other side of PC1 were short-chain esters; these compounds were found in wines that were brewed with strains Y183-2, Y268-3, Y54-3, Y98-4, and Y88-4. Overall, the results indicated that using different wild-type yeast strains in the fermentation process significantly affects the chemical characteristics of the glutinous rice wine. PMID:21193827

  14. Real-time quantification of wild-type contaminants in glyphosate tolerant soybean

    PubMed Central

    Battistini, Elena; Noli, Enrico

    2009-01-01

    Background Trait purity is a key factor for the successful utilization of biotech varieties and is currently assessed by analysis of individual seeds or plants. Here we propose a novel PCR-based approach to test trait purity that can be applied to bulk samples. To this aim the insertion site of a transgene is characterized and the corresponding sequence of the wild-type (wt) allele is used as diagnostic target for amplification. As a demonstration, we developed a real-time quantitative PCR method to test purity of glyphosate tolerant (Roundup Ready®, RR) soybean. Results The soybean wt sequence at the RR locus was characterized and found to be highly conserved among conventional genotypes, thus allowing the detection of possibly any soybean non-trait contaminant. On the other hand, no amplification product was obtained from RR soybean varieties, indicating that the wt sequence is single copy and represents a suitable marker of conventional soybean presence. In addition, results obtained from the analysis of wt-spiked RR samples demonstrate that it is possible to use the real-time PCR assay to quantify the non-trait contamination with an acceptable degree of accuracy. Conclusion In principle this approach could be successfully applied to any transgenic event, provided that the wild-type sequence is conserved and single copy. The main advantages of the assay here described derive from its applicability to bulk samples, which would allow to increase the number of single seeds or plants forming the analytical sample, thus improving accuracy and throughput while containing costs. For these reasons this application of quantitative PCR could represent a useful tool in agricultural biotechnology. PMID:19267904

  15. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    SciTech Connect

    Lopez, Carlos A. Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-09-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G{sub 1} arrest, increase in sub-G{sub 1} fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios ({+-} SE) of 1.5 ({+-} 0.2) and 1.3 ({+-} 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53.

  16. LOC283731 promoter hypermethylation prognosticates survival after radiochemotherapy in IDH1 wild-type glioblastoma patients.

    PubMed

    Mock, Andreas; Geisenberger, Christoph; Orlik, Christian; Warta, Rolf; Schwager, Christian; Jungk, Christine; Dutruel, Céline; Geiselhart, Lea; Weichenhan, Dieter; Zucknick, Manuela; Nied, Ann-Katrin; Friauf, Sara; Exner, Janina; Capper, David; Hartmann, Christian; Lahrmann, Bernd; Grabe, Niels; Debus, Jürgen; von Deimling, Andreas; Popanda, Odilia; Plass, Christoph; Unterberg, Andreas; Abdollahi, Amir; Schmezer, Peter; Herold-Mende, Christel

    2016-07-15

    MGMT promoter methylation status is currently the only established molecular prognosticator in IDH wild-type glioblastoma multiforme (GBM). Therefore, we aimed to discover novel therapy-associated epigenetic biomarkers. After enrichment for hypermethylated fractions using methyl-CpG-immunoprecipitation (MCIp), we performed global DNA methylation profiling for 14 long-term (LTS; >36 months) and 15 short-term (STS; 6-10 months) surviving GBM patients. Even after exclusion of the G-CIMP phenotype, we observed marked differences between the LTS and STS methylome. A total of 1,247 probes in 706 genes were hypermethylated in LTS and 463 probes in 305 genes were found to be hypermethylated in STS patients (p values < 0.05, log2 fold change ± 0.5). We identified 13 differentially methylated regions (DMRs) with a minimum of four differentially methylated probes per gene. Indeed, we were able to validate a subset of these DMRs through a second, independent method (MassARRAY) in our LTS/STS training set (ADCY1, GPC3, LOC283731/ISLR2). These DMRs were further assessed for their prognostic capability in an independent validation cohort (n = 62) of non-G-CIMP GBMs from the TCGA. Hypermethylation of multiple CpGs mapping to the promoter region of LOC283731 correlated with improved patient outcome (p = 0.03). The prognostic performance of LOC283731 promoter hypermethylation was confirmed in a third independent study cohort (n = 89), and was independent of gender, performance (KPS) and MGMT status (p = 0.0485, HR = 0.63). Intriguingly, the prediction was most pronounced in younger GBM patients (<60 years). In conclusion, we provide compelling evidence that promoter methylation status of this novel gene is a prognostic biomarker in IDH1 wild-type/non-G-CIMP GBMs. PMID:26934681

  17. Molecular Dynamics Approach in the Comparison of Wild-Type and Mutant Paraoxonase-1 Apoenzyme Form

    PubMed Central

    Amine, Khadija; Miri, Lamia; Naimi, Adil; Saile, Rachid; El Kharrim, Abderrahmane; Mikou, Afaf; Kettani, Anass

    2015-01-01

    There is some evidence linking the mammalian paraoxonase-1 (PON1) loops (L1 and L2) to an increased flexibility and reactivity of its active site with potential substrates. The aim of this work is to study the structural, dynamical, and functional effects of the most flexible regions close to the active site and to determine the impact of mutations on the protein. For both models, wild-type (PON1wild) and PON1 mutant (PON1mut) models, the L1 loop and Q/R and L/M mutations were constructed using MODELLER software. Molecular dynamics simulations of 20 ns at 300 K on fully modeled PON1wild and PON1mut apoenzyme have been done. Detailed analyses of the root-mean-square deviation and fluctuations, H-bonding pattern, and torsion angles have been performed. The PON1wild results were then compared with those obtained for the PON1mut. Our results show that the active site in the wild-type structure is characterized by two distinct movements of opened and closed conformations of the L1 and L2 loops. The alternating and repetitive movement of loops at specific times is consistent with the presence of 11 defined hydrogen bonds. In the PON1mut, these open-closed movements are therefore totally influenced and repressed by the Q/R and L/M mutations. In fact, these mutations seem to impact the PON1mut active site by directly reducing the catalytic core flexibility, while maintaining a significant mobility of the switch regions delineated by the loops surrounding the active site. The impact of the studied mutations on structure and dynamics proprieties of the protein may subsequently contribute to the loss of both flexibility and activity of the PON1 enzyme. PMID:26417201

  18. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    PubMed

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli. PMID:26544153

  19. Molecular Dynamics Approach in the Comparison of Wild-Type and Mutant Paraoxonase-1 Apoenzyme Form.

    PubMed

    Amine, Khadija; Miri, Lamia; Naimi, Adil; Saile, Rachid; El Kharrim, Abderrahmane; Mikou, Afaf; Kettani, Anass

    2015-01-01

    There is some evidence linking the mammalian paraoxonase-1 (PON1) loops (L1 and L2) to an increased flexibility and reactivity of its active site with potential substrates. The aim of this work is to study the structural, dynamical, and functional effects of the most flexible regions close to the active site and to determine the impact of mutations on the protein. For both models, wild-type (PON1wild) and PON1 mutant (PON1mut) models, the L1 loop and Q/R and L/M mutations were constructed using MODELLER software. Molecular dynamics simulations of 20 ns at 300 K on fully modeled PON1wild and PON1mut apoenzyme have been done. Detailed analyses of the root-mean-square deviation and fluctuations, H-bonding pattern, and torsion angles have been performed. The PON1wild results were then compared with those obtained for the PON1mut. Our results show that the active site in the wild-type structure is characterized by two distinct movements of opened and closed conformations of the L1 and L2 loops. The alternating and repetitive movement of loops at specific times is consistent with the presence of 11 defined hydrogen bonds. In the PON1mut, these open-closed movements are therefore totally influenced and repressed by the Q/R and L/M mutations. In fact, these mutations seem to impact the PON1mut active site by directly reducing the catalytic core flexibility, while maintaining a significant mobility of the switch regions delineated by the loops surrounding the active site. The impact of the studied mutations on structure and dynamics proprieties of the protein may subsequently contribute to the loss of both flexibility and activity of the PON1 enzyme. PMID:26417201

  20. Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA.

    PubMed

    Beadling, Carol; Patterson, Janice; Justusson, Emily; Nelson, Dylan; Pantaleo, Maria A; Hornick, Jason L; Chacón, Matias; Corless, Christopher L; Heinrich, Michael C

    2013-02-01

    Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal (ICCs) and are the most common mesenchymal neoplasm of the gastrointestinal tract. While the majority of GISTs harbor activating mutations in either the v-kit Hardy-Zuckerman feline sarcoma viral oncogene homolog (KIT) or platelet-derived growth factor receptor alpha (PDGFRA) tyrosine kinases, approximately 10-15% of adult GISTs and 85% of pediatric GISTs lack such mutations. These "wild-type" GISTs have been reported to express high levels of the insulin-like growth factor 1 receptor (IGF1R), and IGF1R-targeted therapy of wild-type GISTs is being evaluated in clinical trials. However, it is not clear that all wild-type GISTs express IGF1R, because studies to date have predominantly focused on a particular subtype of gastric wild-type GIST that is deficient in the mitochondrial succinate dehydrogenase (SDH) complex. This study of a series of 136 GISTs, including 72 wild-type specimens, was therefore undertaken to further characterize wild-type GIST subtypes based on the relative expression of transcripts encoding IGF1R. Additional transcripts relevant to GIST biology were also evaluated, including members of the IGF-signaling pathway (IGF1, IGF2, and insulin receptor [INSR]), neural markers (CDH2[CDH: Cadherin], neurofilament, light polypeptide, LHX2 [LHX: LIM homeobox], and KIRREL3 [KIRREL: kin of IRRE like]), KIT, PDGFRA, CD34, and HIF1A. Succinate dehydrogenase complex, subunit B protein expression was also assessed as a measure of SDH complex integrity. In addition to the previously described SDH-deficient, IGF1R(high) wild-type GISTs, other SDH-intact wild-type subpopulations were defined by high relative expression of IGF1R, neural markers, IGF1 and INSR, or low IGF1R coupled with high IGF2. These results underscore the complexity and heterogeneity of wild-type GISTs that will need to be factored into molecularly-targeted therapeutic strategies. PMID:24133624

  1. Poor competitive fitness of transgenically mitigated tobacco in competition with the wild type in a replacement series.

    PubMed

    Al-Ahmad, Hani; Galili, Shmuel; Gressel, Jonathan

    2005-10-01

    Transgenic crops can interbreed with other crop cultivars or with related weeds, increasing the potential of the hybrid progeny for competition. To prevent generating competitive hybrids, we previously tested tobacco (Nicotiana tabacum L.) as a model for validating the transgenic mitigation (TM) concept using tandem constructs where a gene of choice is linked to mitigating genes that are positive or neutral to the crop, but deleterious to a recipient under competition. Here, we examine the efficacy of the TM concept at various ratios of transgenically mitigated tobacco in competition with the wild type tobacco in an ecological replacement series. The dwarf/herbicide-resistant TM transgenic plants cultivated alone under self-competition grew well and formed many more flowers than the tall wild type, which is an indication of greater reproductivity. In contrast to the wild type, TM flowering was almost completely suppressed in mixed cultures at most TM/wild type ratios up to 75% transgenic, as the TM plants were extremely unfit to reproduce. In addition, homozygous TM progeny had an even lower competitive fitness against the wild type than hemizygous/homozygous TM segregants. Thus, the TM technology was effective in reducing the risk of transgene establishment of intraspecific transgenic hybrids at different competitive levels, at the close spacing typical of weed populations. PMID:15931502

  2. Mitochondrial Function in Cell Wall Glycoprotein Synthesis in Saccharomyces cerevisiae NCYC 625 (Wild Type) and [rho0] Mutants

    PubMed Central

    Iung, Annie Rakotoarivony; Coulon, Joël; Kiss, Ferenc; Ekome, Jacques Ngondi; Vallner, Judit; Bonaly, Roger

    1999-01-01

    We studied phosphopeptidomannans (PPMs) of two Saccharomyces cerevisiae NCYC 625 strains (S. diastaticus): a wild type strain grown aerobically, anaerobically, and in the presence of antimycin and a [rho0] mutant grown aerobically and anaerobically. The aerobic wild-type cultures were highly flocculent, but all others were weakly flocculent. Ligands implicated in flocculation of mutants or antimycin-treated cells were not aggregated as much by concanavalin A as were those of the wild type. The [rho0] mutants and antimycin-treated cells differ from the wild type in PPM composition and invertase, acid phosphatase, and glucoamylase activities. PPMs extracted from different cells differ in the protein but not in the glycosidic moiety. The PPMs were less stable in mitochondrion-deficient cells than in wild-type cells grown aerobically, and this difference may be attributable to defective mitochondrial function during cell wall synthesis. The reduced flocculation of cells grown in the presence of antimycin, under anaerobiosis, or carrying a [rho0] mutation may be the consequence of alterations of PPM structures which are the ligands of lectins, both involved in this cell-cell recognition phenomenon. These respiratory chain alterations also affect peripheral, biologically active glycoproteins such as extracellular enzymes and peripheral PPMs. PMID:10583995

  3. Viral adaptation to an antiviral protein enhances the fitness level to above that of the uninhibited wild type.

    PubMed

    Cherwa, James E; Sanchez-Soria, Pablo; Wichman, Holly A; Fane, Bentley A

    2009-11-01

    Viruses often evolve resistance to antiviral agents. While resistant strains are able to replicate in the presence of the agent, they generally exhibit lower fitness than the wild-type strain in the absence of the inhibitor. In some cases, resistant strains become dependent on the antiviral agent. However, the agent rarely, if ever, elevates dependent strain fitness above the uninhibited wild-type level. This would require an adaptive mechanism to convert the antiviral agent into a beneficial growth factor. Using an inhibitory scaffolding protein that specifically blocks phiX174 capsid assembly, we demonstrate that such mechanisms are possible. To obtain the quintuple-mutant resistant strain, the wild-type virus was propagated for approximately 150 viral life cycles in the presence of increasing concentrations of the inhibitory protein. The expression of the inhibitory protein elevated the strain's fitness significantly above the uninhibited wild-type level. Thus, selecting for resistance coselected for dependency, which was characterized and found to operate on the level of capsid nucleation. To the best of our knowledge, this is the first report of a virus evolving a mechanism to productively utilize an antiviral agent to stimulate its fitness above the uninhibited wild-type level. The results of this study may be predictive of the types of resistant phenotypes that could be selected by antiviral agents that specifically target capsid assembly. PMID:19726521

  4. Progressive Axonal Degeneration of Nigrostriatal Dopaminergic Neurons in Calcium-Independent Phospholipase A2β Knockout Mice

    PubMed Central

    Beck, Goichi; Shinzawa, Koei; Hayakawa, Hideki; Baba, Kousuke; Sumi-Akamaru, Hisae; Tsujimoto, Yoshihide; Mochizuki, Hideki

    2016-01-01

    Calcium-independent phospholipase A2β (iPLA2β, PLA2G6) is essential for the remodeling of membrane glycerophospholipids. Mutations in this gene are responsible for autosomal recessive, young onset, L-dopa-responsive parkinsonism (PARK14), suggesting a neurodegenerative condition in the nigrostriatal dopaminergic system in patients with PLA2G6 mutations. We previously observed slowly progressive motor deficits in iPLA2β-knockout (KO) mice. To clarify whether a deficiency of iPLA2β leads to the degeneration of nigrostriatal dopaminergic neurons, we analyzed the striatum of iPLA2β-KO mice. At all clinical stages, nerve terminals in the striatum were immunopositive for tyrosine hydroxylase (TH) and dopamine transporter (DAT) in wild-type (WT) control mice. In iPLA2β-KO mice, focal loss of nerve terminals positive for TH and DAT was found from 56 weeks (early clinical stage), although iPLA2β-KO mice at 56 weeks showed no significant decrease in the number of dopaminergic neurons in the substantia nigra compared with age-matched WT mice, as reported previously. At 100 weeks (late clinical stage), greater decreases in DAT immunoreactivity were observed in the striatum of iPLA2β-KO mice. Moreover, strongly TH-positive structures, presumed to be deformed axons, were observed in the neuropils of the striatum of iPLA2β-KO mice starting at 15 weeks (preclinical stage) and increased with age. These results suggest that the degeneration of dopaminergic neurons occurs mainly in the distal region of axons in iPLA2β-KO mice. PMID:27078024

  5. Progressive Axonal Degeneration of Nigrostriatal Dopaminergic Neurons in Calcium-Independent Phospholipase A2β Knockout Mice.

    PubMed

    Beck, Goichi; Shinzawa, Koei; Hayakawa, Hideki; Baba, Kousuke; Sumi-Akamaru, Hisae; Tsujimoto, Yoshihide; Mochizuki, Hideki

    2016-01-01

    Calcium-independent phospholipase A2β (iPLA2β, PLA2G6) is essential for the remodeling of membrane glycerophospholipids. Mutations in this gene are responsible for autosomal recessive, young onset, L-dopa-responsive parkinsonism (PARK14), suggesting a neurodegenerative condition in the nigrostriatal dopaminergic system in patients with PLA2G6 mutations. We previously observed slowly progressive motor deficits in iPLA2β-knockout (KO) mice. To clarify whether a deficiency of iPLA2β leads to the degeneration of nigrostriatal dopaminergic neurons, we analyzed the striatum of iPLA2β-KO mice. At all clinical stages, nerve terminals in the striatum were immunopositive for tyrosine hydroxylase (TH) and dopamine transporter (DAT) in wild-type (WT) control mice. In iPLA2β-KO mice, focal loss of nerve terminals positive for TH and DAT was found from 56 weeks (early clinical stage), although iPLA2β-KO mice at 56 weeks showed no significant decrease in the number of dopaminergic neurons in the substantia nigra compared with age-matched WT mice, as reported previously. At 100 weeks (late clinical stage), greater decreases in DAT immunoreactivity were observed in the striatum of iPLA2β-KO mice. Moreover, strongly TH-positive structures, presumed to be deformed axons, were observed in the neuropils of the striatum of iPLA2β-KO mice starting at 15 weeks (preclinical stage) and increased with age. These results suggest that the degeneration of dopaminergic neurons occurs mainly in the distal region of axons in iPLA2β-KO mice. PMID:27078024

  6. Data for proteomic profiling of Anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Ji; Pang, Chaoyou; Wei, Hengling; Song, Meizhen; Meng, Yanyan; Ma, Jianhui; Fan, Shuli; Yu, Shuxun

    2015-09-01

    Cotton is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To study the male sterile mechanisms of CCRI9106, histological and iTRAQ-facilitated proteomic analyses of anthers were performed. This data article contains data related to the research article titled iTRAQ-Facilitated Proteomic Profiling of Anthers From a Photosensitive Male Sterile Mutant and Wild-type Cotton (Gossypium hirsutum L.)[1]. This research article describes the iTRAQ-facilitated proteomic analysis of the wild-type and a photosensitive male sterile mutant in cotton. The report indicated that exine formation defect is the key reason for male sterility in mutant plant. The information presented here represents the tables and figures that detail the processing of the raw data obtained from iTRAQ analysis. PMID:26958592

  7. Detection and differentiation of wild-type and a vaccine strain of Streptococcus equi ssp. equi using pyrosequencing.

    PubMed

    Livengood, Julia L; Lanka, Saraswathi; Maddox, Carol; Tewari, Deepanker

    2016-07-25

    Streptococcus equi subspecies equi (S. equi), the causative agent of strangles, is an important equine pathogen. Strangles is a highly contagious disease and a commercial modified live vaccine (MLV) is used for protection, which although effective, may also result in clinical signs of the disease. A rapid means to differentiate between the MLV and wild-type infection is crucial for quarantine release and limiting the disease spread. This study describes the use of a pyrosequencing assay targeting a single nucleotide deletion upstream of the SzPSe gene to distinguish between the wild-type and vaccine strains. A set of 96 characterized clinical specimens and isolates were tested using the assay. The assay was successful in differentiating between wild-type S. equi and the vaccine strains and in discriminating S. equi from other Streptococci. The vaccine strain was identified in 61.7% (29/47) of the strangles cases in horses with a history of MLV vaccination. PMID:27317457

  8. Monoaminergic control of spinal locomotor networks in SOD1G93A newborn mice.

    PubMed

    Milan, Léa; Barrière, Grégory; De Deurwaerdère, Philippe; Cazalets, Jean-René; Bertrand, Sandrine S

    2014-01-01

    Mutations in the gene that encodes Cu/Zn-superoxide dismutase (SOD1) are the cause of approximately 20% of familial forms of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While ALS symptoms appear in adulthood, spinal motoneurons exhibit functional alterations as early as the embryonic and postnatal stages in the murine model of ALS, the SOD1 mice. Monoaminergic - i.e., dopaminergic (DA), serotoninergic (5-HT), and noradrenergic (NA) - pathways powerfully control spinal networks and contribute significantly to their embryonic and postnatal maturation. Alterations in monoaminergic neuromodulation during development could therefore lead to impairments in the motoneuronal physiology. In this study, we sought to determine whether the monoaminergic spinal systems are modified in the early stages of development in SOD1 mice. Using a post-mortem analysis by high performance liquid chromatography (HPLC), monoaminergic neuromodulators and their metabolites were quantified in the lumbar spinal cord of SOD1 and wild-type (WT) mice aged one postnatal day (P1) and P10. This analysis underscores an increased content of DA in the SOD1 lumbar spinal cord compared to that of WT mice but failed to reveal any modification of the other monoaminergic contents. In a next step, we compared the efficiency of the monoaminergic compounds in triggering and modulating fictive locomotion in WT and SOD1 mice. This study was performed in P1-P3 SOD1 mice and age-matched control littermates using extracellular recordings from the lumbar ventral roots in the in vitro isolated spinal cord preparation. This analysis revealed that the spinal networks of SOD1(G93A) mice could generate normal locomotor activity in the presence of NMA-5-HT. Interestingly, we also observed that SOD1 spinal networks have an increased sensitivity to NA compared to WT spinal circuits but exhibited similar DA responses. PMID:25071458

  9. Changes in kinesin expression in the CNS of mice with dynein heavy chain 1 mutation.

    PubMed

    Kuźma-Kozakiewicz, Magdalena; Kaźmierczak, Beata; Usarek, Ewa; Barańczyk-Kuźma, Anna

    2013-01-01

    Dysfunction of fast axonal transport, vital for motor neurons, may lead to neurodegeneration. Anterograde transport is mediated by N-kinesins (KIFs), while retrograde transport by dynein 1 and, to a minor extent, by C-kinesins. In our earlier studies we observed changes in expression of N- and C-kinesins (KIF5A, 5C, C2) in G93ASOD1-linked mouse model of motor neuron degeneration. In the present work we analyze the profile of expression of the same kinesins in mice with a dynein 1 heavy chain mutation (Dync1h1, called Cra1), presenting similar clinical symptoms, and in Cra1/SOD1 mice with milder disease progression than SOD1 transgenics. We found significantly higher levels of mRNA for KIF5A and KIF5C but not the KIFC2 in the frontal cortex of symptomatic Cra1/+ mice (aged 365 days) compared to the wild-type controls. No changes in kinesin expression were found in the spinal cord of any age group and only mild changes in the hippocampus. The expression of kinesins in the cerebellum of the presymptomatic and symptomatic mice (aged 140 and 365 days, respectively) was much lower than in age-matched controls. In Cra1/SOD1 mice the changes in KIFs expression were similar or more severe than in the Cra1/+ groups, and they also appeared in the spinal cord. Thus, in mice with the Dync1h1 mutation, which impairs dynein 1-dependent retrograde transport, expression of kinesin mRNA is affected in various structures of the CNS and the changes are similar or milder than in mice with double Dync1h1/hSOD1G93A mutations. PMID:23460941

  10. The mechanism of dehydration in chromophore maturation of wild-type green fluorescent protein: A theoretical study

    NASA Astrophysics Data System (ADS)

    Ma, Yingying; Yu, Jian-Guo; Sun, Qiao; Li, Zhen; Smith, Sean C.

    2015-07-01

    An interesting aspect of the green fluorescent protein (GFP) is its autocatalytic chromophore maturation. Numerous experimental studies have indicated that dehydration is the last step in the chromophore maturation process of wild-type GFP. Based on the crystal structure of wild-type GFP, the mechanism of the reverse reaction of dehydration was investigated by using density functional theory (DFT) in this study. Our results proposed that the dehydration is exothermic. Moreover, the rate-limiting step of the mechanism is the proton on guanidinium of Arg96 transferring to the β-carbon anion of Tyr66, which is consistent with the experimental observation.

  11. Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA

    PubMed Central

    Beadling, Carol; Patterson, Janice; Justusson, Emily; Nelson, Dylan; Pantaleo, Maria A.; Hornick, Jason L.; Chacón, Matias; Corless, Christopher L.; Heinrich, Michael C.

    2013-01-01

    Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal (ICCs) and are the most common mesenchymal neoplasm of the gastrointestinal tract. While the majority of GISTs harbor activating mutations in either the v-kit Hardy-Zuckerman feline sarcoma viral oncogene homolog (KIT) or platelet-derived growth factor receptor alpha (PDGFRA) tyrosine kinases, approximately 10–15% of adult GISTs and 85% of pediatric GISTs lack such mutations. These “wild-type” GISTs have been reported to express high levels of the insulin-like growth factor 1 receptor (IGF1R), and IGF1R-targeted therapy of wild-type GISTs is being evaluated in clinical trials. However, it is not clear that all wild-type GISTs express IGF1R, because studies to date have predominantly focused on a particular subtype of gastric wild-type GIST that is deficient in the mitochondrial succinate dehydrogenase (SDH) complex. This study of a series of 136 GISTs, including 72 wild-type specimens, was therefore undertaken to further characterize wild-type GIST subtypes based on the relative expression of transcripts encoding IGF1R. Additional transcripts relevant to GIST biology were also evaluated, including members of the IGF-signaling pathway (IGF1, IGF2, and insulin receptor [INSR]), neural markers (CDH2[CDH: Cadherin], neurofilament, light polypeptide, LHX2 [LHX: LIM homeobox], and KIRREL3 [KIRREL: kin of IRRE like]), KIT, PDGFRA, CD34, and HIF1A. Succinate dehydrogenase complex, subunit B protein expression was also assessed as a measure of SDH complex integrity. In addition to the previously described SDH-deficient, IGF1Rhigh wild-type GISTs, other SDH-intact wild-type subpopulations were defined by high relative expression of IGF1R, neural markers, IGF1 and INSR, or low IGF1R coupled with high IGF2. These results underscore the complexity and heterogeneity of wild-type GISTs that will need to be factored into molecularly-targeted therapeutic strategies. PMID:24133624

  12. Pitch Characteristics Before Ulnar Collateral Ligament Reconstruction in Major League Pitchers Compared With Age-Matched Controls

    PubMed Central

    Prodromo, John; Patel, Nimit; Kumar, Neil; Denehy, Kevin; Tabb, Loni Philip; Tom, James

    2016-01-01

    Background: Ulnar collateral ligament reconstruction (UCLR) is commonly performed in Major League Baseball (MLB) pitchers, but little is known about the preoperative pitch type and velocity characteristics of pitchers who go on to undergo UCLR. Hypothesis: Pitchers who required UCLR have thrown a greater percentage of fastballs and have greater pitch velocities compared with age-matched controls in the season before injury. Study Design: Case-control study; Level of evidence, 3. Methods: MLB pitchers active during the 2002 to 2015 seasons were included. The UCLR group consisted of MLB pitchers who received UCLR between 2003 and 2015, utilizing the season before surgery (2002-2014) for analysis. The control group comprised age-matched controls of the same season. Players who pitched less than 20 innings in the season before surgery were excluded. Pitch types were recorded as percentage of total pitches thrown. Pitch velocities were recorded for each pitch type. Pitch type and pitch velocities during preoperative seasons for UCLR pitchers were compared with age-matched controls using univariate and multivariate models. Results: A total of 114 cases that went on to UCLR and 3780 controls were included in the study. Pitchers who went on to UCLR appear to have greater fastball, slider, curveball, changeup, and split-fingered fastball velocities; there were no significant differences in pitch selection between the 2 groups. Conclusion: In the season before surgery, MLB pitchers who underwent UCLR demonstrated greater fastball, slider, curveball, changeup, and split-fingered fastball velocities, with no significant difference in pitch type. PMID:27350954

  13. Different effects of progesterone and estradiol on chimeric and wild type aldosterone synthase in vitro

    PubMed Central

    2013-01-01

    Background Familial hyperaldosteronism type I (FH-I) is caused by the unequal recombination between the 11beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) genes, resulting in the generation of a CYP11B1/B2 chimeric gene and abnormal adrenal aldosterone production. Affected patients usually show severe hypertension and an elevated frequency of stroke at a young age. Aldosterone levels rise during pregnancy, yet in pregnant women with FH-1, their hypertensive condition either remains unchanged or may even improve. The purpose of this study was to investigate in vitro whether female sex steroids modulate the activity of chimeric (ASCE) or wild type (ASWT) aldosterone synthase enzymes. Methods We designed an in vitro assay using HEK-293 cell line transiently transfected with vectors containing the full ASCE or ASWT cDNAs. Progesterone or estradiol effects on AS enzyme activities were evaluated in transfected cells incubated with deoxycorticosterone (DOC) alone or DOC plus increasing doses of these steroids. Results In our in vitro model, both enzymes showed similar apparent kinetic parameters (Km = 1.191 microM and Vmax = 27.08 microM/24 h for ASCE and Km = 1.163 microM and Vmax = 36.98 microM/24 h for ASWT; p = ns, Mann–Whitney test). Progesterone inhibited aldosterone production by ASCE- and ASWT-transfected cells, while estradiol demonstrated no effect. Progesterone acted as a competitive inhibitor for both enzymes. Molecular modelling studies and binding affinity estimations indicate that progesterone might bind to the substrate site in both ASCE and ASWT, supporting the idea that this steroid could regulate these enzymatic activities and contribute to the decay of aldosterone synthase activity in chimeric gene-positive patients. Conclusions Our results show an inhibitory action of progesterone in the aldosterone synthesis by chimeric or wild type aldosterone synthase enzymes. This is a novel regulatory mechanism of progesterone

  14. Deletion of miR-150 Exacerbates Retinal Vascular Overgrowth in High-Fat-Diet Induced Diabetic Mice

    PubMed Central

    Shi, Liheng; Kim, Andy Jeesu; Chang, Richard Cheng-An; Chang, Janet Ya-An; Ying, Wei; Ko, Michael L.; Zhou, Beiyan; Ko, Gladys Yi-Ping

    2016-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness among American adults above 40 years old. The vascular complication in DR is a major cause of visual impairment, making finding therapeutic targets to block pathological angiogenesis a primary goal for developing DR treatments. MicroRNAs (miRs) have been proposed as diagnostic biomarkers and potential therapeutic targets for various ocular diseases including DR. In diabetic animals, the expression levels of several miRs, including miR-150, are altered. The expression of miR-150 is significantly suppressed in pathological neovascularization in mice with hyperoxia-induced retinopathy. The purpose of this study was to investigate the functional role of miR-150 in the development of retinal microvasculature complications in high-fat-diet (HFD) induced type 2 diabetic mice. Wild type (WT) and miR-150 null mutant (miR-150-/-) male mice were given a HFD (59% fat calories) or normal chow diet. Chronic HFD caused a decrease of serum miR-150 in WT mice. Mice on HFD for 7 months (both WT and miR-150-/-) had significant decreases in retinal light responses measured by electroretinograms (ERGs). The retinal neovascularization in miR-150-/--HFD mice was significantly higher compared to their age matched WT-HFD mice, which indicates that miR-150 null mutation exacerbates chronic HFD-induced neovascularization in the retina. Overexpression of miR-150 in cultured endothelial cells caused a significant reduction of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels. Hence, deletion of miR-150 significantly increased the retinal pathological angiogenesis in HFD induced type 2 diabetic mice, which was in part through VEGFR2. PMID:27304911

  15. GPR55 Deletion in Mice Leads to Age-Related Ventricular Dysfunction and Impaired Adrenoceptor-Mediated Inotropic Responses

    PubMed Central

    Walsh, Sarah K.; Hector, Emma E.; Andréasson, Anne-Christine; Jönsson-Rylander, Ann-Cathrine; Wainwright, Cherry L.

    2014-01-01

    G protein coupled receptor 55 (GPR55) is expressed throughout the body, and although its exact physiological function is unknown, studies have suggested a role in the cardiovascular system. In particular, GPR55 has been proposed as mediating the haemodynamic effects of a number of atypical cannabinoid ligands; however this data is conflicting. Thus, given the incongruous nature of our understanding of the GPR55 receptor and the relative paucity of literature regarding its role in cardiovascular physiology, this study was carried out to examine the influence of GPR55 on cardiac function. Cardiac function was assessed via pressure volume loop analysis, and cardiac morphology/composition assessed via histological staining, in both wild-type (WT) and GPR55 knockout (GPR55−/−) mice. Pressure volume loop analysis revealed that basal cardiac function was similar in young WT and GPR55−/− mice. In contrast, mature GPR55−/− mice were characterised by both significant ventricular remodelling (reduced left ventricular wall thickness and increased collagen deposition) and systolic dysfunction when compared to age-matched WT mice. In particular, the load-dependent parameter, ejection fraction, and the load-independent indices, end-systolic pressure-volume relationship (ESPVR) and Emax, were all significantly (P<0.05) attenuated in mature GPR55−/− mice. Furthermore, GPR55−/− mice at all ages were characterised by a reduced contractile reserve. Our findings demonstrate that mice deficient in GPR55 exhibit maladaptive adrenergic signalling, as evidenced by the reduced contractile reserve. Furthermore, with age these mice are characterised by both significant adverse ventricular remodelling and systolic dysfunction. Taken together, this may suggest a role for GPR55 in the control of adrenergic signalling in the heart and potentially a role for this receptor in the pathogenesis of heart failure. PMID:25275556

  16. Sphingopeptides: dihydrosphingosine-based fusion inhibitors against wild-type and enfuvirtide-resistant HIV-1.

    PubMed

    Ashkenazi, Avraham; Viard, Mathias; Unger, Linor; Blumenthal, Robert; Shai, Yechiel

    2012-11-01

    Understanding the structural organization of lipids in the cell and viral membranes is essential for elucidating mechanisms of viral fusion that lead to entry of enveloped viruses into their host cells. The HIV lipidome shows a remarkable enrichment in dihydrosphingomyelin, an unusual sphingolipid formed by a dihydrosphingosine backbone. Here we investigated the ability of dihydrosphingosine to incorporate into the site of membrane fusion mediated by the HIV envelope (Env) protein. Dihydrosphingosine as well as cholesterol, fatty acid, and tocopherol was conjugated to highly conserved, short HIV-1 Env-derived peptides with no antiviral activity otherwise. We showed that dihydrosphingosine exclusively endowed nanomolar antiviral activity to the peptides (IC(50) as low as 120 nM) in HIV-1 infection on TZM-bl cells and on Jurkat T cells, as well as in the cell-cell fusion assay. These sphingopeptides were active against enfuvirtide-resistant and wild-type CXCR4 and CCR5 tropic HIV strains. The anti-HIV activity was determined by both the peptides and their dihydrosphingosine conjugate. Moreover, their mode of action involved accumulation in the cells and viruses and binding to membranes enriched in sphingomyelin and cholesterol. The data suggest that sphingopeptides are recruited to the HIV membrane fusion site and provide a general concept in developing inhibitors of sphingolipid-mediated biological systems. PMID:22872679

  17. Comparative transcriptomic analysis of silkwormBmovo-1 and wild type silkworm ovary

    PubMed Central

    Xue, Renyu; Hu, Xiaolong; Zhu, Liyuan; Cao, Guangli; Huang, Moli; Xue, Gaoxu; Song, Zuowei; Lu, Jiayu; Chen, Xueying; Gong, Chengliang

    2015-01-01

    The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm+Bmovo-1) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm+Bmovo-1 ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm+Bmovo-1 and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm+Bmovo-1 ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis. PMID:26643037

  18. Rootcap structure in wild type and in a starchless mutant of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kiss, J. Z.

    1989-01-01

    Rootcaps of the wild type (WT) and of a starchless, gravitropic mutant (TC7) of Arabidopsis thaliana L. were examined by electron microscopy to identify cellular polarities with respect to gravity. In columella cells, nuclei are located proximally, and the nuclear envelope is continuous with endoplasmic reticulum (ER) that is in turn connected to nearby plasmodesmata. Impregnation of ER with osmium ferricyanide revealed numerous contacts between columella plastids and ER in both genotypes. ER is present mostly in the outer regions of the columella protoplast except in older columella cells that are developing into peripheral cells. In vertical roots, only columella cells that are intermediate in development (story 2 cells) have a higher surface density (S) of ER in the distal compared to proximal regions of the cell. The distal but not the proximal S of the ER is constant throughout columella development. Plastids are less sedimented in TC7 columella cells compared to those of the WT. It is hypothesized that plastid contact with the ER plays a role in gravity perception in both genotypes.

  19. Wild-Type Transthyretin Cardiac Amyloidosis: Novel Insights From Advanced Imaging.

    PubMed

    Narotsky, David L; Castano, Adam; Weinsaft, Jonathan W; Bokhari, Sabahat; Maurer, Mathew S

    2016-09-01

    Amyloidosis is caused by extracellular deposition of abnormal protein fibrils, resulting in destruction of tissue architecture and impairment of organ function. The most common forms of systemic amyloidosis are light-chain and transthyretin-related (ATTR). ATTR can result from an autosomal dominant hereditary transmission of mutated genes in the transthyretin or from a wild-type form of disease (ATTRwt), previously known as senile cardiac amyloidosis. With the aging of the worldwide population, ATTRwt will emerge as the most common type of cardiac amyloidosis that clinicians encounter. Diagnosis of systemic amyloidosis is often delayed, either because of the false assumption that it is a rare disease, or because of misdiagnosis as a result of mistaking it with other conditions. Clinicians must integrate clinical clues from history, physical examination, and common diagnostic tests to raise suspicion for ATTRwt. The historical gold standard for diagnosis of cardiac amyloid is endomyocardial biopsy analysis with pathological distinction of precursor protein type, but this method often results in delayed diagnosis because of the limited availability of expertise to perform and interpret the endomyocardial biopsy specimen. Emerging noninvasive imaging modalities provide easier, accurate screening for ATTRwt. These modalities include advanced echocardiography, using strain imaging and the myocardial contraction fraction; nuclear scintigraphy, which can differentiate between ATTR and light-chain cardiac amyloid; and cardiac magnetic resonance imaging, using extracellular volume measurement, late gadolinium enhancement, and distinct T1 mapping. These novel approaches reveal insights into the prevalence, clinical course, morphological effects, and prognosis of ATTRwt. PMID:27568874

  20. Experimental Infection of Adults With Recombinant Wild-Type Human Metapneumovirus

    PubMed Central

    Talaat, Kawsar R.; Karron, Ruth A.; Thumar, Bhagvanji; McMahon, Bridget A.; Schmidt, Alexander C.; Collins, Peter L.; Buchholz, Ursula J.

    2013-01-01

    Background. Human metapneumovirus (HMPV) causes lower respiratory tract infections in young children. rHMPV-SHs is a recombinant HMPV (rHMPV) based on a biologically derived wild-type HMPV strain. We characterized its infectivity and immunogenicity in healthy adults to determine whether it would be suitable for use as the parent virus for the development of live attenuated rHMPV vaccines. Methods. Twenty-one healthy adults were inoculated intranasally with 106 plaque-forming units of rHMPV-SHs. Respiratory symptoms and shedding of challenge virus were assessed. Neutralizing antibody responses, serum immunoglobulin G and A, and nasal wash specimen immunoglobulin A antibody responses to the HMPV F protein were also measured. Induction of nasal cytokines was assessed with electrochemiluminescence assays. Results. Nine subjects (43%) were infected with challenge virus as determined by virus detection and/or ≥4-fold rise in serum antibody titers. Peak viral shedding occurred on days 7–9 after infection. Four weeks after inoculation, 35% of subjects had any antibody response. Six of 9 infected subjects had respiratory symptoms, and 3 had headache after inoculation. Cytokine patterns differed considerably between subjects with similar illness severity and viral shedding. Conclusions. The rHMPV-SHs virus is infectious and is a suitable parent virus for development of live-attenuated HMPV vaccine candidates. Clinical Trials Registration. NCT01109329. PMID:23908489

  1. Extensive degradation of RNA precursors by the exosome in wild-type cells.

    PubMed

    Gudipati, Rajani Kanth; Xu, Zhenyu; Lebreton, Alice; Séraphin, Bertrand; Steinmetz, Lars M; Jacquier, Alain; Libri, Domenico

    2012-11-01

    The exosome is a complex involved in the maturation of rRNA and sn-snoRNA, in the degradation of short-lived noncoding RNAs, and in the quality control of RNAs produced in mutants. It contains two catalytic subunits, Rrp6p and Dis3p, whose specific functions are not fully understood. We analyzed the transcriptome of combinations of Rrp6p and Dis3p catalytic mutants by high-resolution tiling arrays. We show that Dis3p and Rrp6p have both overlapping and specific roles in degrading distinct classes of substrates. We found that transcripts derived from more than half of intron-containing genes are degraded before splicing. Surprisingly, we also show that the exosome degrades large amounts of tRNA precursors despite the absence of processing defects. These results underscore the notion that large amounts of RNAs produced in wild-type cells are discarded before entering functional pathways and suggest that kinetic competition with degradation proofreads the efficiency and accuracy of processing. PMID:23000176

  2. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster

    PubMed Central

    Mendes, César S; Bartos, Imre; Akay, Turgay; Márka, Szabolcs; Mann, Richard S

    2013-01-01

    Coordinated walking in vertebrates and multi-legged invertebrates such as Drosophila melanogaster requires a complex neural network coupled to sensory feedback. An understanding of this network will benefit from systems such as Drosophila that have the ability to genetically manipulate neural activities. However, the fly's small size makes it challenging to analyze walking in this system. In order to overcome this limitation, we developed an optical method coupled with high-speed imaging that allows the tracking and quantification of gait parameters in freely walking flies with high temporal and spatial resolution. Using this method, we present a comprehensive description of many locomotion parameters, such as gait, tarsal positioning, and intersegmental and left-right coordination for wild type fruit flies. Surprisingly, we find that inactivation of sensory neurons in the fly's legs, to block proprioceptive feedback, led to deficient step precision, but interleg coordination and the ability to execute a tripod gait were unaffected. DOI: http://dx.doi.org/10.7554/eLife.00231.001 PMID:23326642

  3. Comparative whole genome sequence analysis of wild-type and cidofovir-resistant monkeypoxvirus

    PubMed Central

    2010-01-01

    We performed whole genome sequencing of a cidofovir {[(S)-1-(3-hydroxy-2-phosphonylmethoxy-propyl) cytosine] [HPMPC]}-resistant (CDV-R) strain of Monkeypoxvirus (MPV). Whole-genome comparison with the wild-type (WT) strain revealed 55 single-nucleotide polymorphisms (SNPs) and one tandem-repeat contraction. Over one-third of all identified SNPs were located within genes comprising the poxvirus replication complex, including the DNA polymerase, RNA polymerase, mRNA capping methyltransferase, DNA processivity factor, and poly-A polymerase. Four polymorphic sites were found within the DNA polymerase gene. DNA polymerase mutations observed at positions 314 and 684 in MPV were consistent with CDV-R loci previously identified in Vaccinia virus (VACV). These data suggest the mechanism of CDV resistance may be highly conserved across Orthopoxvirus (OPV) species. SNPs were also identified within virulence genes such as the A-type inclusion protein, serine protease inhibitor-like protein SPI-3, Schlafen ATPase and thymidylate kinase, among others. Aberrant chain extension induced by CDV may lead to diverse alterations in gene expression and viral replication that may result in both adaptive and attenuating mutations. Defining the potential contribution of substitutions in the replication complex and RNA processing machinery reported here may yield further insight into CDV resistance and may augment current therapeutic development strategies. PMID:20509894

  4. Differential transcription patterns in wild-type and glycoprotein G-deleted infectious laryngotracheitis viruses.

    PubMed

    Mahmoudian, Alireza; Markham, Philip F; Noormohammadi, Amir H; Devlin, Joanne M; Browning, Glenn F

    2013-01-01

    Infectious laryngotracheitis virus (ILTV) causes severe respiratory disease in poultry throughout the world. Recently the role of glycoprotein G (gG) in ILTV pathogenesis has been investigated and it has been shown to have chemokine-binding activity. An ILTV vaccine candidate deficient in gG has been developed and the deletion has been shown to alter the host's immune response to the virus. To understand the effect of the gG gene on transcription of other viral genes, the global expression profile of 72 ILTV genes in gG-deleted and wild-type ILTVs were investigated both in vivo and in vitro using quantitative reverse transcription-polymerase chain reaction. Several genes were differentially expressed in the different viruses in LMH cell cultures or in the tracheas of infected birds, and the expression of a number of genes, including ICP27, gC, gJ, Ul7 and UL40, differed significantly both in vivo and in vitro, suggesting that they had direct or indirect roles in virulence. This study has provided insights into the interactions between gG and other ILTV genes that may have a role in virulence. PMID:23611157

  5. Overexpression of wild-type or mutants forms of CEBPA alter normal human hematopoiesis.

    PubMed

    Quintana-Bustamante, O; Lan-Lan Smith, S; Griessinger, E; Reyal, Y; Vargaftig, J; Lister, T A; Fitzgibbon, J; Bonnet, D

    2012-07-01

    CCAAT/enhancer-binding protein-α (C/EBPα/CEBPA) is mutated in approximately 8% of acute myeloid leukemia (AML) in both familial and sporadic AML and, with FLT3 and NPM1, has received most attention as a predictive marker of outcome in patients with normal karyotype disease. Mutations clustering to either the N- or C-terminal (N- and C-ter) portions of the protein have different consequences on the protein function. In familial cases, the N-ter form is inherited with patients exhibiting long latency period before the onset of overt disease, typically with the acquisition of a C-ter mutation. Despite the essential insights murine models provide the functional consequences of wild-type C/EBPα in human hematopoiesis and how different mutations are involved in AML development have received less attention. Our data underline the critical role of C/EBPα in human hematopoiesis and demonstrate that C/EBPα mutations (alone or in combination) are insufficient to convert normal human hematopoietic stem/progenitor cells into leukemic-initiating cells, although individually each altered normal hematopoiesis. It provides the first insight into the effects of N- and C-ter mutations acting alone and to the combined effects of N/C double mutants. Our results mimicked closely what happens in CEBPA mutated patients. PMID:22371011

  6. Fermentative production of 1-propanol from sugars using wild-type and recombinant Shimwellia blattae.

    PubMed

    Urano, Nobuyuki; Fujii, Misaki; Kaino, Hiroshi; Matsubara, Mitsuru; Kataoka, Michihiko

    2015-02-01

    Shimwellia blattae is an enteric bacterium and produces endogenous enzymes that convert 1,2-propanediol (1,2-PD) to 1-propanol, which is expected to be used as a fuel substitute and a precursor of polypropylene. Therefore, if S. blattae could be induced to generate its own 1,2-PD from sugars, it might be possible to produce 1-propanol from sugars with this microorganism. Here, two 1,2-PD production pathways were constructed in S. blattae, resulting in two methods for 1-propanol production with the bacterium. One method employed the L-rhamnose utilization pathway, in which L-rhamnose is split into dihydroxyacetone phosphate and 1,2-PD. When wild-type S. blattae was cultured with L-rhamnose, an accumulation of 1,2-PD was observed. The other method for producing 1,2-PD was to introduce an engineered 1,2-PD production pathway from glucose into S. blattae. In both cases, the produced 1,2-PD was then converted to 1-propanol by 1,2-PD converting enzymes, whose production was induced by the addition of glycerol. PMID:25547843

  7. Experimentally Derived Structural Constraints for Amyloid Fibrils of Wild-Type Transthyretin

    PubMed Central

    Bateman, David A.; Tycko, Robert; Wickner, Reed B.

    2011-01-01

    Transthyretin (TTR) is a largely β-sheet serum protein responsible for transporting thyroxine and vitamin A. TTR is found in amyloid deposits of patients with senile systemic amyloidosis. TTR mutants lead to familial amyloidotic polyneuropathy and familial amyloid cardiomyopathy, with an earlier age of onset. Studies of amyloid fibrils of familial amyloidotic polyneuropathy mutant TTR suggest a structure similar to the native state with only a simple opening of a β-strand-loop-strand region exposing the two main β-sheets of the protein for fibril elongation. However, we find that the wild-type TTR sequence forms amyloid fibrils that are considerably different from the previously suggested amyloid structure. Using protease digestion with mass spectrometry, we observe the amyloid core to be primarily composed of the C-terminal region, starting around residue 50. Solid-state NMR measurements prove that TTR differs from other pathological amyloids in not having an in-register parallel β-sheet architecture. We also find that the TTR amyloid is incapable of binding thyroxine as monitored by either isothermal calorimetry or 1,8-anilinonaphthalene sulfonate competition. Taken together, our experiments are consistent with a significantly different configuration of the β-sheets compared to the previously suggested structure. PMID:22098747

  8. Experimentally derived structural constraints for amyloid fibrils of wild-type transthyretin.

    PubMed

    Bateman, David A; Tycko, Robert; Wickner, Reed B

    2011-11-16

    Transthyretin (TTR) is a largely β-sheet serum protein responsible for transporting thyroxine and vitamin A. TTR is found in amyloid deposits of patients with senile systemic amyloidosis. TTR mutants lead to familial amyloidotic polyneuropathy and familial amyloid cardiomyopathy, with an earlier age of onset. Studies of amyloid fibrils of familial amyloidotic polyneuropathy mutant TTR suggest a structure similar to the native state with only a simple opening of a β-strand-loop-strand region exposing the two main β-sheets of the protein for fibril elongation. However, we find that the wild-type TTR sequence forms amyloid fibrils that are considerably different from the previously suggested amyloid structure. Using protease digestion with mass spectrometry, we observe the amyloid core to be primarily composed of the C-terminal region, starting around residue 50. Solid-state NMR measurements prove that TTR differs from other pathological amyloids in not having an in-register parallel β-sheet architecture. We also find that the TTR amyloid is incapable of binding thyroxine as monitored by either isothermal calorimetry or 1,8-anilinonaphthalene sulfonate competition. Taken together, our experiments are consistent with a significantly different configuration of the β-sheets compared to the previously suggested structure. PMID:22098747

  9. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Katembe, W. J.; Edelmann, R. E.

    1998-01-01

    The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.

  10. Pharmacologic activation of wild-type p53 by nutlin therapy in childhood cancer.

    PubMed

    Van Maerken, Tom; Rihani, Ali; Van Goethem, Alan; De Paepe, Anne; Speleman, Frank; Vandesompele, Jo

    2014-03-28

    A peculiar feature of several types of childhood cancer is that loss-of-function mutations of the TP53 (p53) tumor suppressor gene are uncommon, in contrast to many adult tumors. As p53 needs to be inactivated in order for tumor cells to survive and thrive, pediatric tumors typically make use of other mechanisms to keep p53 in check. One of the critical negative regulators of p53 is the MDM2 oncoprotein. Many anticancer drug development efforts in the past decade have therefore been devoted to the discovery and optimization of small molecules that selectively disrupt the interaction between MDM2 and p53, which could provide, in principle, a potent means to restore p53 function in tumor cells with wild-type p53. The nutlins are the class of selective inhibitors of the p53-MDM2 interaction that are currently most advanced in their clinical development. We review here the preclinical data that support the potential therapeutic use of nutlin drugs in the treatment of various pediatric tumors, including neuroblastoma, retinoblastoma, osteosarcoma, Ewing's sarcoma, rhabdomyosarcoma, medulloblastoma, and childhood acute lymphoblastic leukemia. PMID:24262662

  11. Induction of breast cancer in wild type p53 cells by BRCA1-IRIS overexpression.

    PubMed

    Elshamy, Wael M

    2010-08-01

    Cells ability to evade cell death and to proliferate post geno-/cell-toxic stresses, likely leads to formation of cancer. Activation of p38MAPK and p53 following these stresses help protect cells against cancer development by initiating apoptosis. The duration of p38MAPK and p53 activation is regulated by the WIP1 phosphatase. BRCA1-IRIS triggers WIP1 expression in p53-dependent and -independent manner. BRCA1-IRIS triggers the expression and cytoplasmic localization of the mRNA stabilization and translation inducer, HuR that binds p53 and PPM1D mRNA. Hence, BRCA1-IRIS overexpression inactivates p38MAPK and/or p53 by upregulating WIP1 expression. BRCA1-IRIS abrogation of the homeostatic balance maintained by p38MAPK-p53-WIP1 pathway suppressed cell death induced by a lethal dose of UVC, high dosages of etoposide or H2O2, and allowed cells to survive and proliferate post geno-/cell-toxic stresses. This mechanism represents a new link between geno-/cell-toxic stress and aggressive breast cancer formation in p53 wild-type cells. PMID:20845286

  12. Biochemical characterization of Arabidopsis wild-type and mutant phytochrome B holoproteins.

    PubMed Central

    Elich, T D; Chory, J

    1997-01-01

    Although phytochrome B (phyB) plays a particularly important role throughout the life cycle of a plant, it has not been studied in detail at the molecular level due to its low abundance. Here, we report on the expression, assembly with chromophore, and purification of epitope-tagged Arabidopsis phyB. In addition, we have reconstructed two missense mutations, phyB-4 and phyB-101, isolated in long hypocotyl screens. We show that mutant proteins phyB-4 and phyB-101 exhibit altered spectrophotometric and biochemical properties relative to the wild-type protein. In particular, we demonstrate that phyB-101 Pfr exhibits rapid nonphotochemical (dark) reversion to Pr that results in a lower photoequilibrium level of the active Pfr form. We conclude that this occurs in vivo as well because phyB-101 mutants are shown to lack an end-of-day-far-red hypocotyl elongation response that requires a stable Pfr species. We propose that this Pfr instability may be the primary molecular mechanism underlying the phyB-101 mutant phenotype. PMID:9437866

  13. The mechanical properties of Drosophila jump muscle expressing wild-type and embryonic Myosin isoforms.

    PubMed

    Eldred, Catherine C; Simeonov, Dimitre R; Koppes, Ryan A; Yang, Chaoxing; Corr, David T; Swank, Douglas M

    2010-04-01

    Transgenic Drosophila are highly useful for structure-function studies of muscle proteins. However, our ability to mechanically analyze transgenically expressed mutant proteins in Drosophila muscles has been limited to the skinned indirect flight muscle preparation. We have developed a new muscle preparation using the Drosophila tergal depressor of the trochanter (TDT or jump) muscle that increases our experimental repertoire to include maximum shortening velocity (V(slack)), force-velocity curves and steady-state power generation; experiments not possible using indirect flight muscle fibers. When transgenically expressing its wild-type myosin isoform (Tr-WT) the TDT is equivalent to a very fast vertebrate muscle. TDT has a V(slack) equal to 6.1 +/- 0.3 ML/s at 15 degrees C, a steep tension-pCa curve, isometric tension of 37 +/- 3 mN/mm(2), and maximum power production at 26% of isometric tension. Transgenically expressing an embryonic myosin isoform in the TDT muscle increased isometric tension 1.4-fold, but decreased V(slack) 50% resulting in no significant difference in maximum power production compared to Tr-WT. Drosophila expressing embryonic myosin jumped <50% as far as Tr-WT that, along with comparisons to frog jump muscle studies, suggests fast muscle shortening velocity is relatively more important than high tension generation for Drosophila jumping. PMID:20371321

  14. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  15. Efficacy of carboplatin alone and in combination with ABT888 in intracranial murine models of BRCA-mutated and BRCA-wild-type triple negative breast cancer

    PubMed Central

    Karginova, Olga; Siegel, Marni B.; Van Swearingen, Amanda E. D.; Deal, Allison M.; Adamo, Barbara; Sambade, Maria J.; Bazyar, Soha; Nikolaishvili-Feinberg, Nana; Bash, Ryan; O’Neal, Sara; Sandison, Katie; Parker, Joel S.; Santos, Charlene; Darr, David; Zamboni, William; Lee, Yueh Z.; Miller, C. Ryan; Anders, Carey K.

    2015-01-01

    Patients with breast cancer brain metastases have extremely limited survival and no approved systemic therapeutics. Triple negative breast cancer (TNBC) commonly metastasizes to the brain and predicts poor prognosis. TNBC frequently harbors BRCA mutations translating to platinum sensitivity potentially augmented by additional suppression of DNA repair mechanisms through poly(ADP-ribose)polymerase (PARP) inhibition. We evaluated brain penetrance and efficacy of Carboplatin +/− the PARP inhibitor ABT888, and investigated gene expression changes in murine intracranial (IC) TNBC models stratified by BRCA and molecular subtype status. Athymic mice were inoculated intra-cerebrally with BRCA-mutant: SUM149 (basal), MDA-MB-436 (claudin-low), or BRCA-wild-type: MDA-MB-468 (basal), MDA-MB-231BR (claudin-low) TNBC cells and treated with PBS control (IP, weekly), Carboplatin (50mg/kg/week, IP), ABT888 (25mg/kg/day, OG), or their combination. DNA-damage (γ-H2AX), apoptosis (cleaved-Caspase-3(cC3)) and gene expression were measured in IC tumors. Carboplatin+/−ABT888 significantly improved survival in BRCA-mutant IC models compared to control, but did not improve survival in BRCA-wild-type IC models. Carboplatin+ABT888 revealed a modest survival advantage versus Carboplatin in BRCA-mutant models. ABT888 yielded a marginal survival benefit in the MDA-MB-436, but not in the SUM149 model. BRCA-mutant SUM149 expression of γ-H2AX and cC3 proteins was elevated in all treatment groups compared to Control, while BRCA-wild-type MDA-MB-468 cC3 expression did not increase with treatment. Carboplatin treatment induced common gene expression changes in BRCA-mutant models. Carboplatin+/−ABT888 penetrates the brain and improves survival in BRCA-mutant IC TNBC models with corresponding DNA damage and gene expression changes. Combination therapy represents a potential promising treatment strategy for patients with TNBC brain metastases warranting further clinical investigation. PMID

  16. The Resistant-Population Cutoff (RCOFF): a New Concept for Improved Characterization of Antimicrobial Susceptibility Patterns of Non-Wild-Type Bacterial Populations

    PubMed Central

    Valsesia, Giorgia; Hombach, Michael; Maurer, Florian P.; Courvalin, Patrice; Roos, Malgorzata

    2015-01-01

    This study aimed to determine resistant-population cutoffs (RCOFFs) to allow for improved characterization of antimicrobial susceptibility patterns in bacterial populations. RCOFFs can complement epidemiological cutoff (ECOFF)-based settings of clinical breakpoints (CBPs) by systematically describing the correlation between non-wild-type and wild-type populations. We illustrate this concept by describing three paradigmatic examples of wild-type and non-wild-type Escherichia coli populations from our clinical strain database of disk diffusion diameters. The statistical determination of RCOFFs and ECOFFs and their standardized applications in antimicrobial susceptibility testing (AST) facilitates the assignment of isolates to wild-type or non-wild-type populations. This should improve the correlation of in vitro AST data and distinct antibiotic resistance mechanisms with clinical outcome facilitating the setting and validation of CBPs. PMID:25762769

  17. Wild-type p53-mediated down-modulation of interleukin 15 and interleukin 15 receptors in human rhabdomyosarcoma cells.

    PubMed Central

    De Giovanni, C.; Nanni, P.; Sacchi, A.; Soddu, S.; Manni, I.; D'Orazi, G.; Bulfone-Paus, S.; Pohl, T.; Landuzzi, L.; Nicoletti, G.; Frabetti, F.; Rossi, I.; Lollini, P. L.

    1998-01-01

    We recently reported that rhabdomyosarcoma cell lines express and secrete interleukin 15 (IL-15), a tightly regulated cytokine with IL-2-like activity. To test whether the p53-impaired function that is frequently found in this tumour type could play a role in the IL-15 production, wild-type p53 gene was transduced in the human rhabdomyosarcoma cell line RD (which harbours a mutated p53 gene), and its effect on proliferation and expression of IL-15 was studied. Arrest of proliferation was induced by wild-type p53; increased proportions of G1-arrested cells and of apoptotic cells were observed. A marked down-modulation of IL-15 expression, at both the mRNA and protein level, was found in p53-transduced cells. Because a direct effect of IL-15 on normal muscle cells has been reported, the presence of IL-15 membrane receptors was studied by cytofluorometric analysis. Rhabdomyosarcoma cells showed IL-15 membrane receptors, which are down-modulated by wild-type p53 transfected gene. In conclusion, wild-type p53 transduction in human rhabdomyosarcoma cells induces the down-modulation of both IL-15 production and IL-15 receptor expression. Images Figure 3 PMID:9862562

  18. Biomarkers predicting resistance to epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer with wild-type KRAS

    PubMed Central

    Liu, Jiang; Hu, Jing; Cheng, Lei; Ren, Wei; Yang, Mi; Liu, Baorui; Xie, Li; Qian, Xiaoping

    2016-01-01

    EGFR pathway is an important therapeutic target in human tumors, including metastatic colorectal cancer (mCRC). The advent of EGFR-targeted monoclonal antibodies panitumumab and cetuximab has generated promise for the treatment of mCRC and has largely improved patients’ progression-free survival (PFS) and overall survival (OS). However, treatment with anti-EGFR monoclonal antibodies is only effective in a subset of mCRC patients with wild-type KRAS. This indicates that there are other factors affecting the efficacy of anti-EGFR monoclonal antibodies. Existing studies have demonstrated that among colorectal cancer patients with wild-type KRAS, harboring mutations of BRAF, PIK3CA, NRAS, or PTEN-null may demonstrate resistance to anti-EGFR-targeted therapy, and biomarkers detection can provide better-personalized treatment for mCRC patients. How to identify and reverse the secondary resistance to anti-EGFR monoclonal antibody therapy is also another great challenge to improve the anti-EGFR efficacy in wild-type KRAS mCRC patients. Finally, both of the molecular mechanisms of response and acquired resistance would be important for the directions of future research. This review focuses on how to further improve the predictive value of anti-EGFR therapies and how to also try and avoid futile treatment for wild-type KRAS colorectal cancer patients. PMID:26869800

  19. Differential proteomic responses of selectively bred and wild-type Sydney rock oyster populations exposed to elevated CO2.

    PubMed

    Thompson, E L; O'Connor, W; Parker, L; Ross, P; Raftos, D A

    2015-03-01

    Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2 ). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild-type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild-type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade-off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2 , whilst being deleterious to adult oysters. PMID:25689603

  20. A comparative study of cytokinins in caryopsis development in the maize miniature 1 seed mutant and its wild type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here a comparative developmental profile of cytokinins, both total quantity and diversity of various forms, in relation to cell size, cell number and endoreduplication in developing caryopses of a cell wall invertase-deficient miniature1 (mn1) seed mutant and its wild type, Mn1, genotype. ...

  1. Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains.

    PubMed

    Schneider-Schaulies, J; Schnorr, J J; Brinckmann, U; Dunster, L M; Baczko, K; Liebert, U G; Schneider-Schaulies, S; ter Meulen, V

    1995-04-25

    Recently, two cell surface molecules, CD46 and moesin, have been found to be functionally associated with measles virus (MV) infectivity of cells. We investigated the receptor usage of MV wild-type, subacute sclerosing panencephalitis, and vaccine strains and their effect on the down-regulation of CD46 after infection. We found that the infection of human cell lines with all 19 MV strains tested was inhibitable with antibodies against CD46. In contrast, not all strains of MV led to the downregulation of CD46 following infection. The group of CD46 non-downregulating strains comprised four lymphotropic wild-type isolates designated AB, DF, DL, and WTF. Since the downregulation of CD46 is caused by interaction with newly synthesized MV hemagglutinin (MV-H), we tested the capability of recombinant MV-H proteins to downregulate CD46. Recombinant MV-H proteins of MV strains Edmonston, Halle, and CM led to the down-regulation of CD46, whereas those of DL and WTF did not. This observed differential downregulation by different MV strains has profound consequences, since lack of CD46 on the cell surface leads to susceptibility of cells to complement lysis. These results suggest that lymphotropic wild-type strains of MV which do not downregulate CD46 may have an advantage for replication in vivo. The relatively weak immune response against attenuated vaccine strains of MV compared with wild-type strains might be related to this phenomenon. PMID:7732009

  2. ASSESSING POTENTIAL OF COLLETOTRICHUM ACUTATUM WILD-TYPE AND AUXOTROPHIC MUTANTS AS BIOLOGICAL FRUIT THINNING AGENTS IN CITRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colletotrichum acutatum, causal agent of postbloom fruit drop of citrus, and two induced C. acutatum mutants (3-3 and 3-2) were tested as potential agents for reducing fruit load on Valencia (Citrus sinensis ) and 'Temple' orange (C.reticulata x C. sinensis). Wild-type C. acutatum (RST) and a C. gl...

  3. Differences in 23S ribosomal RNA mutations between wild-type and mutant macrolide-resistant Chlamydia trachomatis isolates

    PubMed Central

    JIANG, YONG; ZHU, HUI; YANG, LI-NA; LIU, YUAN-JUN; HOU, SHU-PING; QI, MAN-LI; LIU, QUAN-ZHONG

    2015-01-01

    The aim of the present study was to determine the in vitro susceptibility of wild-type and mutant clinical isolates of Chlamydia (C.) trachomatis strains to erythromycin, azithromycin and josamycin, and to identify the resistance-conferring 23S ribosomal (r)RNA mutations in the isolates. The wild-type resistant isolates were defined as those with minimum inhibitory concentration values above the tissue concentration of the antibiotic in the urogenital system. Furthermore, all resistant C. trachomatis isolates were exposed to sub-inhibitory concentrations of macrolides, and 13 resistant mutants were selected following serial passages. Among the 8 wild-type isolates that were resistant to erythromycin, 3 isolates had a mutation at T2611C in the 23S rRNA gene while the others did not show any 23S rRNA mutations. The selected mutant isolates showed a 4- to 16-fold reduction in in vitro sensitivities. With regard to the mutant strains, the T2611C mutation was found in 10 isolates, A2057G mutation in 6 isolates, and A2059G mutation in 1 isolate. Thus, the macrolide-resistant isolates of the wild-type strain had different mutations from those selected by exposure to sub-inhibitory concentrations of macrolides. Also, since 23S rRNA mutations were not identified in certain isolates, it was considered that other molecular mechanisms may also be responsible for the macrolide resistance of C. trachomatis. PMID:26622462

  4. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.

    PubMed

    Xie, Changyan; Cao, Xu; Chen, Xibing; Wang, Dong; Zhang, Wei Kevin; Sun, Ying; Hu, Wenbao; Zhou, Zijing; Wang, Yan; Huang, Pingbo

    2016-04-01

    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand-gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild-type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single-channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell-attached membrane patches and WT-CFTR-mediated short-circuit current (Isc) in Calu-3 cells, and this was independent of Ca(2+)and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity- and stretch-inducedIscin Calu-3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR-specific blockers markedly suppressed RVD in both WT- and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.-Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia. PMID:26683699

  5. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points.

    PubMed

    Sauthoff, Harald; Hu, Jing; Maca, Cielo; Goldman, Michael; Heitner, Sheila; Yee, Herman; Pipiya, Teona; Rom, William N; Hay, John G

    2003-03-20

    Oncolytic replicating adenoviruses are a promising new modality for the treatment of cancer. Despite the assumed biologic advantage of continued viral replication and spread from infected to uninfected cancer cells, early clinical trials demonstrate that the efficacy of current vectors is limited. In xenograft tumor models using immune-incompetent mice, wild-type adenovirus is also rarely able to eradicate established tumors. This suggests that innate immune mechanisms may clear the virus or that barriers within the tumor prevent viral spread. The aim of this study was to evaluate the kinetics of viral distribution and spread after intratumoral injection of virus in a human tumor xenograft model. After intratumoral injection of wild-type virus, high levels of titratable virus persisted within the xenograft tumors for at least 8 weeks. Virus distribution within the tumors as determined by immunohistochemistry was patchy, and virus-infected cells appeared to be flanked by tumor necrosis and connective tissue. The close proximity of virus-infected cells to the tumor-supporting structure, which is of murine origin, was clearly demonstrated using a DNA probe that specifically hybridizes to the B1 murine DNA repeat. Importantly, although virus was cleared from the circulation 6 hr after intratumoral injection, after 4 weeks systemic spread of virus was detected. In addition, vessels of infected tumors were surrounded by necrosis and an advancing rim of virus-infected tumor cells, suggesting reinfection of the xenograft tumor through the vasculature. These data suggest that human adenoviral spread within tumor xenografts is impaired by murine tumor-supporting structures. In addition, there is evidence for continued viral replication within the tumor, with subsequent systemic dissemination and reinfection of tumors via the tumor vasculature. Despite the limitations of immune-incompetent models, an understanding of the interactions between the virus and the tumor

  6. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice

    PubMed Central

    Bedrosian, Tracy A.; Herring, Kamillya L.; Weil, Zachary M.; Nelson, Randy J.

    2011-01-01

    Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is “sundowning syndrome,” which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome. PMID:21709248

  7. Cellular immunity survey against urinary tract infection using pVAX/fimH cassette with mammalian and wild type codon usage as a DNA vaccine

    PubMed Central

    Bagherpour, Ghasem; Khoramabadi, Nima; Fallah Mehrabadi, Jalil; Mahdavi, Mehdi; Halabian, Raheleh; Amin, Mohsen; Izadi Mobarakeh, Jalal; Einollahi, Behzad

    2014-01-01

    Purpose FimH (the adhesion fragment of type 1 fimbriae) is implicated in uropathogenic Escherichia coli (UPEC) attachment to epithelial cells through interaction with mannose. Recently, some studies have found that UPEC can thrive intracellularly causing recurrent urinary tract infection (UTI). Almost all vaccines have been designed to induce antibodies against UPEC. Yet, the humoral immune response is not potent enough to overcome neither the primary UTI nor recurrent infections. However, DNA vaccines offer the possibility of inducing cell mediated immune responses and may be a promising preventive tool. Materials and Methods In this study, we employed two different open reading frames within mammalian (mam) and wild type (wt) codons of fimH gene. Optimized fragments were cloned in pVAX-1. Expression of the protein in COS-7 was confirmed by western blot analysis after assessing pVAX/fimH(mam) and pVAX/fimH(wt). The constructs were injected to BALB/c mice at plantar surface of feet followed by electroporation. Results The mice immunized with both constructs following booster injection with recombinant FimH showed increased interferon-γ and interleukin-12 responses significantly higher than non-immunized ones (p<0.05). The immunized mice were challenged with UPEC and then the number of bacteria recovered from the immunized mice was compared with the non-immunized ones. Decreased colony count in immunized mice along with cytokine responses confirmed the promising immune response by the DNA vaccines developed in this study. Conclusion In conclusion, DNA vaccines of UPEC proteins may confer some levels of protection which can be improved by multiple constructs or boosters. PMID:25003092

  8. Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage.

    PubMed

    Li, Yan; Yu, Shirley; Duncan, Todd; Li, Yichao; Liu, Pinghu; Gene, Erelda; Cortes-Pena, Yoel; Qian, Haohua; Dong, Lijin; Redmond, T Michael

    2015-08-01

    Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans. PMID:25972377

  9. The Anti-proliferative Response of Indole-3-carbinol in human melanoma cells is Triggered by an Interaction with NEDD4-1 and Disruption of Wild-type PTEN Degradation

    PubMed Central

    Quirit, Jeanne G.; Firestone, Gary L.

    2014-01-01

    Human melanoma cells displaying distinct PTEN genotypes were used to assess the cellular role of this important tumor suppressor protein during the anti-proliferative response induced by the chemopreventative agent indole-3-carbinol (I3C), a natural indolecarbinol compound derived from the breakdown of glucobrassicin produced in cruciferous vegetables such as broccoli and Brussels sprouts. I3C induced a G1-phase cell cycle arrest and apoptosis by stabilization of PTEN in human melanoma cells that express wild-type PTEN, but not in cells with mutant or null PTEN genotypes. Importantly, normal human epidermal melanocytes were unaffected by I3C treatment. In wild-type PTEN-expressing melanoma xenografts, formed in athymic mice, I3C inhibited the in vivo tumor growth rate and increased PTEN protein levels in the residual tumors. Mechanistically, I3C disrupted the ubiquitination of PTEN by NEDD4-1 (NEDD4), which prevented the proteasome-mediated degradation of PTEN without altering its transcript levels. RNAi-mediated knockdown of PTEN prevented the I3C induced apoptotic response; whereas, knockdown of NEDD4-1 mimicked the I3C apoptotic response, stabilized PTEN protein levels and down-regulated phosphorylated AKT1 levels. Co-knockdown of PTEN and NEDD4-1 revealed that I3C regulated apoptotic signaling through NEDD4-1 requires the presence of the wild-type PTEN protein. Finally, in silico structural modeling in combination with isothermal titration calorimetry analysis demonstrated that I3C directly interacts with purified NEDD4-1 protein. Implications This study identifies NEDD4-1 as a new I3C target protein, and that the I3C disruption of NEDD4-1 ubiquitination activity triggers the stabilization of the wild-type PTEN tumor suppressor to induce an anti-proliferative response in melanoma. PMID:25009292

  10. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel.

    PubMed

    Holstead, Ryan G; Li, Man-Song; Linsdell, Paul

    2011-10-01

    Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated ("cys-less" CFTR). However, cys-less CFTR has a slightly higher single-channel conductance than wild-type CFTR, raising questions as to the suitability of cys-less as a model of the wild-type CFTR pore. We used site-directed mutagenesis and patch-clamp recording to investigate the origin of this conductance difference and to determine the extent of functional differences between wild-type and cys-less CFTR channel permeation properties. Our results suggest that the conductance difference is the result of a single substitution, of C343: the point mutant C343S has a conductance similar to cys-less, whereas the reverse mutation, S343C in a cys-less background, restores wild-type conductance levels. Other cysteine substitutions (C128S, C225S, C376S, C866S) were without effect. Substitution of other residues for C343 suggested that conductance is dependent on amino acid side chain volume at this position. A range of other functional pore properties, including interactions with channel blockers (Au[CN] (2) (-) , 5-nitro-2-[3-phenylpropylamino]benzoic acid, suramin) and anion permeability, were not significantly different between wild-type and cys-less CFTR. Our results suggest that functional differences between these two CFTR constructs are of limited scale and scope and result from a small change in side chain volume at position 343. These results therefore support the use of cys-less as a model of the CFTR pore region. PMID:21796426

  11. Research on the ultrafast fluorescence property of thylakoid membranes of the wild-type and mutant rice

    NASA Astrophysics Data System (ADS)

    Ren, Zhao-Yu; Xu, Xiao-Ming; Wang, Shui-Cai; Xin, Yue-Yong; He, Jun-Fang; Hou, Xun

    2003-10-01

    A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wild-type rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wild-type. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.

  12. Protein substrates for cGMP-dependent protein phosphorylation in cilia of wild type and atalanta mutants of Paramecium.

    PubMed

    Ann, K S; Nelson, D L

    1995-01-01

    In the ciliated protozoan Paramecium, swimming direction is regulated by voltage-gated Ca2+ channels in the ciliary membrane. In response to depolarizing stimuli, intraciliary Ca2+ rises, triggering reversal of the ciliary power stroke and backward swimming. One class of Ca(2+)-unresponsive behavioral mutants of Paramecium, atalanta mutants, cannot swim backward even though they have functional Ca2+ channels in their ciliary membrane. Several atalanta mutants were characterized with regard to several Ca(2+)-dependent activities, but no significant difference between wild type and the mutants was detected. However, one allelic group, atalanta A (initially characterized by Hinrichsen and Kung [1984: Genet. Res. Camb. 43:11-20]), showed a helical swimming path of opposite handedness from that of wild-type cells when detergent-permeabilized cells ("models") were reactivated with MgATP. When cGMP-dependent protein kinase purified from wild-type cells was added to atalanta A models, the handedness of the swimming path was reversed. Cyclic GMP stimulated in vitro phosphorylation of several proteins in isolated cilia, and the pattern of phosphoproteins was very similar for wild type and atalanta mutants, with one exception: a protein of 59 kDa was phosphorylated much less in the mutant ata A. When ciliary proteins were separated by gel electrophoresis and then phosphorylated "on blot" by purified cGMP-dependent protein kinase, phosphoprotein patterns were similar in wild type and ata mutants except that a 48 kDa protein (p48) from ata A3 was more heavily phosphorylated. This difference in p48 phosphorylation was also observed with cGMP-dependent protein kinase purified from ata A3 mutant cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7796456

  13. Modulation of penetrance by the wild-type allele in dominantly inherited erythropoietic protoporphyria and acute hepatic porphyrias.

    PubMed

    Gouya, Laurent; Puy, Hervé; Robreau, Anne-Marie; Lyoumi, Said; Lamoril, Jérome; Da Silva, Vasco; Grandchamp, Bernard; Deybach, Jean-Charles

    2004-02-01

    We have recently demonstrated that in an autosomal dominant porphyria, erythropoietic protoporphyria (EPP), the coinheritance of a ferrochelatase (FECH) gene defect and of a wild-type low-expressed FECH allele is generally involved in the clinical expression of EPP. This mechanism may provide a model for phenotype modulation by minor variations in the expression of the wild-type allele in the other three autosomal dominant porphyrias that exhibit incomplete penetrance: acute intermittent porphyria (AIP), variegata porphyria (VP) and hereditary coproporphyria (HC), which are caused by partial deficiencies of hydroxy-methyl bilane synthase (HMBS), protoporphyrinogen oxidase (PPOX) and coproporphyrinogen oxidase (CPO), respectively. Given the dominant mode of inheritance of EPP, VP, AIP and HC, we first confirmed that the 200 overtly porphyric subjects (55 EPP, 58 AIP, 56 VP; 31 HC) presented a single mutation restricted to one allele (20 novel mutations and 162 known mutations). We then analysed the available single-nucleotide polymorphisms (SNPs) present at high frequencies in the general population and spreading throughout the FECH, HMBS, PPOX and the CPO genes in four case-control association studies. Finally, we explored the functional consequences of polymorphisms on the abundance of wild-type RNA, and used relative allelic mRNA determinations to find out whether low-expressed HMBS, PPOX and the CPO alleles occur in the general population. We confirm that the wild-type low-expressed allele phenomenon is usually operative in the mechanism of variable penetrance in EPP, but conclude that this is not the case in AIP and VP. For HC, the CPO mRNA determinations strongly suggest that normal CPO alleles with low-expression are present, but whether this low-expression of the wild-type allele could modulate the penetrance of a CPO gene defect in HC families remains to be ascertained. PMID:14669009

  14. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ.

    PubMed

    Peng, Cheng; Arthur, Dionne M; Sichani, Homa Teimouri; Xia, Qing; Ng, Jack C

    2013-11-01

    Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 μM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater. PMID:24034892

  15. Cytidine is a novel substrate for wild-type concentrative nucleoside transporter 2.

    PubMed

    Nagai, Katsuhito; Nagasawa, Kazuki; Koma, Mineto; Hotta, Ayumi; Fujimoto, Sadaki

    2006-08-25

    Nucleoside transporter (NT) plays key roles in the physiology of nucleosides and the pharmacology of its analogues in mammals. We previously cloned Na+/nucleoside cotransporter CNT2 from mouse M5076 ovarian sarcoma cells, the peptide encoded by it differing from that by the previously reported mouse CNT2 in five substitutions, and observed that the transporter can take up cytidine, like CNT1 and CNT3. In the present study, we examined which of the two aforementioned CNT2 is the normal one, and whether or not cytidine is transported via the previously reported CNT2. The peptide encoded by CNT2 derived from mouse intestine, liver, spleen, and ovary was identical to that previously reported. The uptake of [3H]cytidine, but not [3H]thymidine, by Cos-7 cells transfected with CNT2 cDNA obtained from mouse intestine was much greater than that by mock cells, as in the case of [3H]uridine, a typical substrate of NT. [3H]Cytidine and [3H]uridine were taken up via CNT2, in temperature-, extracellular Na+-, and substrate concentration-dependent manners. The uptake of [3H]cytidine and [3H]uridine mediated by CNT2 was significantly inhibited by the variety of nucleosides used in this study, except for thymidine, and inhibition of the [3H]uridine uptake by cytidine was competitive. The [3H]uridine uptake via CNT2 was significantly decreased by the addition of cytarabin or gemcitabine, antimetabolites of cytidine analogue. These results indicated that the previously reported mouse CNT2 is the wild-type one, and cytidine is transported mediated by the same recognition site on the CNT2 with uridine, and furthermore, cytidine analogues may be substrates for the transporter. PMID:16828706

  16. Direct conversion of xylan to butanol by a wild-type Clostridium species strain G117.

    PubMed

    Yan, Yu; Basu, Anindya; Li, Tinggang; He, Jianzhong

    2016-08-01

    Lignocellulosic biomass has great potential for use as a carbon source for the production of second-generation biofuels by solventogenic bacteria. Here we describe the production of butanol by a newly discovered wild-type Clostridium species strain G117 with xylan as the sole carbon source for fermentation. Strain G117 produced 0.86 ± 0.07 g/L butanol and 53.4 ± 0.05 mL hydrogen directly from 60 g/L xylan provided that had undergone no prior enzymatic hydrolysis. After process optimization, the amount of butanol produced from xylan was increased to 1.24 ± 0.37 g/L. In contrast to traditional acetone-butanol-ethanol (ABE) solventogenic fermentation, xylan supported fermentation in strain G117 and negligible amount of acetone was produced. The expression of genes normally associated with acetone production (adc and ctfB2) were down-regulated compared to xylose fed cultures. This lack of acetone production may greatly simplify downstream separation process. Moreover, higher amount of butanol (2.94 g/L) was produced from 16.99 g/L xylo-oligosaccharides, suggesting a major role for strain G117 in butanol production from xylan and its oligosaccharides. The unique ability of strain G117 to produce a considerable amount of butanol directly from xylan without producing undesirable fermentation byproducts opens the door to the possibility of cost-effective biofuels production in a single step. Biotechnol. Bioeng. 2016;113: 1702-1710. © 2016 Wiley Periodicals, Inc. PMID:26803924

  17. Wild-type p53 and p73 negatively regulate expression of proliferation related genes.

    PubMed

    Scian, M J; Carchman, E H; Mohanraj, L; Stagliano, K E R; Anderson, M A E; Deb, D; Crane, B M; Kiyono, T; Windle, B; Deb, S P; Deb, S

    2008-04-17

    When normal cells come under stress, the wild-type (WT) p53 level increases resulting in the regulation of gene expression responsible for growth arrest or apoptosis. Here we show that elevated levels of WT p53 or its homologue, p73, inhibit expression of a number of cell cycle regulatory and growth promoting genes. Our analysis also identified a group of genes whose expression is differentially regulated by WT p53 and p73. We have infected p53-null H1299 human lung carcinoma cells with recombinant adenoviruses expressing WT p53, p73 or beta-galactosidase, and have undertaken microarray hybridization analyses to identify genes whose expression profile is altered by p53 or p73. Quantitative real-time PCR verified the repression of E2F-5, centromere protein A and E, minichromosome maintenance proteins (MCM)-2, -3, -5, -6 and -7 and human CDC25B after p53 expression. 5-Fluorouracil treatment of colon carcinoma HCT116 cells expressing WT p53 results in a reduction of the cyclin B2 protein level suggesting that DNA damage may indeed cause repression of these genes. Transient transcriptional assays verified that WT p53 repressed promoters of a number of these genes. Interestingly, a gain-of-function p53 mutant instead upregulated a number of these promoters in transient transfection. Using promoter deletion mutants of MCM-7 we have found that WT p53-mediated repression needs a minimal promoter that contains a single E2F site and surrounding sequences. However, a single E2F site cannot be significantly repressed by WT p53. Many of the genes identified are also repressed by p21. Thus, our work shows that WT p53 and p73 repress a number of growth-related genes and that in many instances this repression may be through the induction of p21. PMID:17982488

  18. MicroRNA-based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer

    PubMed Central

    Sharma, Sriganesh B.; Ruppert, J. Michael

    2015-01-01

    MicroRNAs (miRs) have been causally implicated in the progression and development of a wide variety of cancers. miRs modulate the activity of key cell signaling networks by regulating the translation of pathway component proteins. Thus, the pharmacological targeting of miRs that regulate cancer cell signaling networks, either by promoting (using miR-supplementation) or by suppressing (using anti-sense oligonucleotide based strategies) miR activity is an area of intense research. The RAS-Extracellular signal regulated kinase (ERK) pathway represents a major miR-regulated signaling network that endows cells with some of the classical hallmarks of cancer, and is often inappropriately activated in malignancies by somatic genetic alteration through point mutation or alteration of gene copy number. In addition, recent progress indicates that many tumors may be deficient in GTPase activating proteins (GAPs) due to the collaborative action of oncogenic microRNAs. Recent studies also suggest that in tumors harboring a mutant RAS allele there is a critical role for wild type RAS proteins in determining overall RAS-ERK pathway activity. Together, these two advances comprise a new opportunity for therapeutic intervention. In this review, we evaluate miR-based therapeutic strategies for modulating RAS-ERK signaling in cancers, in particular for more direct modulation of RAS-GTP levels, with the potential to complement current strategies in order to yield more durable treatment responses. To this end, we discuss the potential for miR-based therapies focused on three prominent miRs including the pan-RAS regulator let-7 and the GAP regulator comprised of miR-206 and miR-21 (miR-206/21). PMID:26284568

  19. Genistein potentiates wild-type and delta F508-CFTR channel activity.

    PubMed

    Hwang, T C; Wang, F; Yang, I C; Reenstra, W W

    1997-09-01

    Effects of genistein on wild-type (wt) and delta F508-cystic fibrosis transmembrane conductance regulator (CFTR) were studied in NIH/3T3 cells stably transfected with wt or mutant CFTR cDNA. As measured by I- efflux, half-maximal concentration of agonist (K1/2) for forskolin-dependent activation was greater for delta F508-CFTR than wt-CFTR. Genistein decreased the K1/2 for both forms of the channel and increased the maximal activity of delta F508-CFTR by 3.7-fold. In cell-attached patches, 10 microM forskolin induced minimal delta F508-CFTR activity with characteristic prolonged closed times (estimated time constant, > 30 s). Genistein increased the forskolin-induced macroscopic currents of wt-CFTR and delta F508-CFTR by 3- and 19-fold, respectively. Variance analysis suggested that in the presence of forskolin and genistein the open probabilities (Po) of wt- and delta F508-CFTR were identical. In single-channel studies, at maximal adenosine 3',5'-cyclic monophosphate (cAMP) stimulation, genistein increased the Po of wt-CFTR by prolonging the open time, but, at submaximal cAMP stimulation, the Po was increased by prolonging the open time and shortening the closed time. In excised patches with CFTR channels preactivated in the cell-attached mode, genistein increased ATP-dependent wt- and delta F508-CFTR current about twofold by prolonging the open time. Our results thus suggest that phosphorylation-dependent activation of delta F508-CFTR is defective and that genistein corrects this defect at least in part by binding to the CFTR protein. PMID:9316420

  20. Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain.

    PubMed

    Khatypov, R A; Khmelnitskiy, A Yu; Khristin, A M; Fufina, T Yu; Vasilieva, L G; Shuvalov, V A

    2012-08-01

    Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22209778

  1. Profiling the RNA editomes of wild-type C. elegans and ADAR mutants.

    PubMed

    Zhao, Han-Qing; Zhang, Pan; Gao, Hua; He, Xiandong; Dou, Yanmei; Huang, August Y; Liu, Xi-Ming; Ye, Adam Y; Dong, Meng-Qiu; Wei, Liping

    2015-01-01

    RNA editing increases transcriptome diversity through post-transcriptional modifications of RNA. Adenosine deaminases that act on RNA (ADARs) catalyze the adenosine-to-inosine (A-to-I) conversion, the most common type of RNA editing in higher eukaryotes. Caenorhabditis elegans has two ADARs, ADR-1 and ADR-2, but their functions remain unclear. Here, we profiled the RNA editomes of C. elegans at different developmental stages of wild-type and ADAR mutants. We developed a new computational pipeline with a "bisulfite-seq-mapping-like" step and achieved a threefold increase in identification sensitivity. A total of 99.5% of the 47,660 A-to-I editing sites were found in clusters. Of the 3080 editing clusters, 65.7% overlapped with DNA transposons in noncoding regions and 73.7% could form hairpin structures. The numbers of editing sites and clusters were highest at the L1 and embryonic stages. The editing frequency of a cluster positively correlated with the number of editing sites within it. Intriguingly, for 80% of the clusters with 10 or more editing sites, almost all expressed transcripts were edited. Deletion of adr-1 reduced the editing frequency but not the number of editing clusters, whereas deletion of adr-2 nearly abolished RNA editing, indicating a modulating role of ADR-1 and an essential role of ADR-2 in A-to-I editing. Quantitative proteomics analysis showed that adr-2 mutant worms altered the abundance of proteins involved in aging and lifespan regulation. Consistent with this finding, we observed that worms lacking RNA editing were short-lived. Taken together, our results reveal a sophisticated landscape of RNA editing and distinct modes of action of different ADARs. PMID:25373143

  2. Targeting Mdmx to treat breast cancers with wild-type p53

    PubMed Central

    Haupt, S; Buckley, D; Pang, J-MB; Panimaya, J; Paul, P J; Gamell, C; Takano, E A; Ying Lee, Y; Hiddingh, S; Rogers, T-M; Teunisse, A F A S; Herold, M J; Marine, J-C; Fox, S B; Jochemsen, A; Haupt, Y

    2015-01-01

    The function of the tumor suppressor p53 is universally compromised in cancers. It is the most frequently mutated gene in human cancers (reviewed). In cases where p53 is not mutated, alternative regulatory pathways inactivate its tumor suppressive functions. This is primarily achieved through elevation in the expression of the key inhibitors of p53: Mdm2 or Mdmx (also called Mdm4) (reviewed). In breast cancer (BrCa), the frequency of p53 mutations varies markedly between the different subtypes, with basal-like BrCas bearing a high frequency of p53 mutations, whereas luminal BrCas generally express wild-type (wt) p53. Here we show that Mdmx is unexpectedly highly expressed in normal breast epithelial cells and its expression is further elevated in most luminal BrCas, whereas p53 expression is generally low, consistent with wt p53 status. Inducible knockdown (KD) of Mdmx in luminal BrCa MCF-7 cells impedes the growth of these cells in culture, in a p53-dependent manner. Importantly, KD of Mdmx in orthotopic xenograft transplants resulted in growth inhibition associated with prolonged survival, both in a preventative model and also in a treatment model. Growth impediment in response to Mdmx KD was associated with cellular senescence. The growth inhibitory capacity of Mdmx KD was recapitulated in an additional luminal BrCa cell line MPE600, which expresses wt p53. Further, the growth inhibitory capacity of Mdmx KD was also demonstrated in the wt p53 basal-like cell line SKBR7 line. These results identify Mdmx growth dependency in wt p53 expressing BrCas, across a range of subtypes. Based on our findings, we propose that Mdmx targeting is an attractive strategy for treating BrCas harboring wt p53. PMID:26181202

  3. Internal binding sites for MSH: Analyses in wild-type and variant Cloudman melanoma cells

    SciTech Connect

    Orlow, S.J.; Hotchkiss, S.; Pawelek, J.M. )

    1990-01-01

    Cloudman S91 mouse melanoma cells express both external (plasma membrane) and internal binding sites for MSH. Using 125I-beta melanotropin (beta-MSH) as a probe, we report here an extensive series of studies on the biological relevance of these internal sites. Cells were swollen in a hypotonic buffer and lysed, and a particulate fraction was prepared by high-speed centrifugation. This fraction was incubated with 125I-beta-MSH with or without excess nonradioactive beta-MSH in the cold for 2 hours. The material was then layered onto a step-wise sucrose gradient and centrifuged; fractions were collected and counted in a gamma counter or assayed for various enzymatic activities. The following points were established: (1) Specific binding sites for MSH were observed sedimenting at an average density of 50% sucrose in amelanotic cells and at higher densities in melanotic cells. (2) These sites were similar in density to those observed when intact cells were labeled externally with 125I-beta-MSH and then warmed to promote internalization of the hormone. (3) Most of the internal binding sites were not as dense as fully melanized melanosomes. (4) In control experiments, the MSH binding sites were not found in cultured hepatoma cells. (5) Variant melanoma cells, which differed from the wild-type in their responses to MSH, had reduced expression of internal binding sites even though their ability to bind MSH to the outer cell surface appeared normal. (MSH-induced responses included changes in tyrosinase, dopa oxidase, and dopachrome conversion factor activities, melanization, proliferation, and morphology.) (6) Isobutylmethylxanthine, which enhanced cellular responsiveness to MSH, also enhanced expression of internal binding sites. The results indicate that expression of internal binding sites for MSH is an important criterion for cellular responsiveness to the hormone.

  4. Selective modulation of wild type receptor functions by mutants of G-protein-coupled receptors.

    PubMed

    Le Gouill, C; Parent, J L; Caron, C A; Gaudreau, R; Volkov, L; Rola-Pleszczynski, M; Stanková, J

    1999-04-30

    Members of the G-protein-coupled receptor (GPCR) family are involved in most aspects of higher eukaryote biology, and mutations in their coding sequence have been linked to several diseases. In the present study, we report that mutant GPCR can affect the functional properties of the co-expressed wild type (WT) receptor. Mutants of the human platelet-activating factor receptor that fail to show any detectable ligand binding (N285I and K298stop) or coupling to a G-protein (D63N, D289A, and Y293A) were co-expressed with the WT receptor in Chinese hamster ovary and COS-7 cells. In this context, N285I and K298stop mutant receptors inhibited 3H-WEB2086 binding and surface expression. Co-transfection with D63N resulted in a constitutively active receptor phenotype. Platelet-activating factor-induced inositol phosphate production in cells transfected with a 1:1 ratio of WT:D63N was higher than with the WT cDNA alone but was abolished with a 1:3 ratio. We confirmed that these findings could be extended to other GPCRs by showing that co-expression of the WT C-C chemokine receptor 2b with a carboxyl-terminal deletion mutant (K311stop), resulted in a decreased affinity and responsiveness to MCP-1. A better understanding of this phenomenon could lead to important tools for the prevention or treatment of certain diseases. PMID:10212233

  5. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue

    PubMed Central

    Fairbridge, Nicholas A.; Southall, Thomas M.; Ayre, D. Craig; Komatsu, Yumiko; Raquet, Paula I.; Brown, Robert J.; Randell, Edward; Kovacs, Christopher S.; Christian, Sherri L.

    2015-01-01

    CD24 is a glycophosphatidylinositol (GPI)-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO). We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT) sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35%) or high fat (45%) diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels. PMID:26536476

  6. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue.

    PubMed

    Fairbridge, Nicholas A; Southall, Thomas M; Ayre, D Craig; Komatsu, Yumiko; Raquet, Paula I; Brown, Robert J; Randell, Edward; Kovacs, Christopher S; Christian, Sherri L

    2015-01-01

    CD24 is a glycophosphatidylinositol (GPI)-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO). We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT) sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35%) or high fat (45%) diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels. PMID:26536476

  7. Mitochondria are more numerous and smaller in pink-eyed dilution melanoblasts and melanocytes than in wild-type melanocytes in the neonatal mouse epidermis.

    PubMed

    Hirobe, Tomohisa; Ishizuka, Kenji; Ogawa, Shigeru; Abe, Hiroyuki

    2008-11-01

    Abstract The mouse pink-eyed dilution (p) locus is known to control the melanin content in melanocytes. However, it was not known whether the p gene is involved in regulating the proliferation and differentation of melanocytes during development, especially the biogenesis of melanosomes and other organelles. Epidermal cell suspensions of neonatal dorsal skin derived from mice wild type for the p locus (black, C57BL/10JHir-P/P) and their congenic mutant phenotype (pink-eyed dilution, C57BL/10JHir-p/p) were cultured in serum-free melanocyte-proliferation medium (MDMD). The supplement of additional L-tyrosine (Tyr) into the MDMD stimulated the differentiation of p/p melanoblasts into melanocytes. Electron microscopy revealed that in p/p melanoblasts and melanocytes treated with L-Tyr, the number of stage II and III melanosomes dramatically increased. Moreover, p/p melanoblasts possessed smaller but more numerous mitochondria than P/P melanocytes. The treatment of p/p melanoblasts and melanocytes with L-Tyr decreased the number of mitochondria. The supplement of 2, 4-dinitrophenol (DNP), an inhibitor of mitochondrial function, into the MDMD stimulated both the proliferation and differentiation of p/p melanoblasts. Simultaneous treatment of DNP and L-Tyr dramatically stimulated the differetiation of p/p melanocytes. These results suggest that L-Tyr and some unknown factors related to mitochondrial function may influence the differentiation of melanoblasts in the epidermis of p/p mice. PMID:19267617

  8. Icariin, a phosphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling.

    PubMed

    Jin, Feng; Gong, Qi-Hai; Xu, Ya-Sha; Wang, Li-Na; Jin, Hai; Li, Fei; Li, Li-Sheng; Ma, Yue-Ming; Shi, Jing-Shan

    2014-06-01

    Phosphodiesterase-5 (PDE5) inhibitors are predominantly used in the treatment of erectile dysfunction, and have been recently shown to have a potential therapeutic effect for the treatment of Alzheimer's disease (AD) through stimulation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling by elevating cGMP, which is a secondary messenger involved in processes of neuroplasticity. In the present study, the effects of a PDE5 inhibitor, icarrin (ICA), on learning and memory as well as the pathological features in APP/PS1 transgenic AD mice were investigated. Ten-month-old APP/PS1 transgenic mice overexpressing human amyloid precursor protein (APP695swe) and presenilin 1 (PS1-dE9) were given ICA (30 and 60 mg/kg) or sildenafil (SIL) (2 mg/kg), age-matched wild-type (WT) mice were given ICA (60 mg/kg), and APP/PS1 and WT control groups were given an isovolumic vehicle orally twice a day for four months. Results demonstrated that ICA treatments significantly improved learning and memory of APP/PS1 transgenic mice in Y-maze tasks. The amyloid precursor protein (APP), amyloid-beta (Aβ1-40/42) and PDE5 mRNA and/or protein levels were increased in the hippocampus and cortex of APP/PS1 mice, and ICA treatments decreased these physiopathological changes. Furthermore, ICA-treated mice showed an increased expression of three nitric oxide synthase (NOS) isoforms at both mRNA and protein levels, together with increased NO and cGMP levels in the hippocampus and cortex of mice. These findings demonstrate that ICA improves learning and memory functions in APP/PS1 transgenic mice possibly through the stimulation of NO/cGMP signalling and co-ordinated induction of NOS isoforms. PMID:24513083

  9. Reduced salivary gland size and increased presence of epithelial progenitor cells in DLK1-deficient mice.

    PubMed

    García-Gallastegui, P; Luzuriaga, J; Aurrekoetxea, M; Baladrón, V; Ruiz-Hidalgo, M J; García-Ramírez, J J; Laborda, J; Unda, F; Ibarretxe, G

    2016-06-01

    DLK1 (PREF1, pG2, or FA1) is a transmembrane and secreted protein containing epidermal growth factor-like repeats. Dlk1 expression is abundant in many tissues during embryonic and fetal development and is believed to play an important role in the regulation of tissue differentiation and fetal growth. After birth, Dlk1 expression is abolished in most tissues but is possibly reactivated to regulate stem cell activation and responses to injury. We have recently reported that DLK1 regulates many aspects of salivary gland organogenesis. Here, we have extended our studies of the salivary gland phenotype of Dlk1 knock-out mice. We have observed that salivary glands are smaller and weigh significantly less in both Dlk1 knock-out males and females compared with gender and age-matched wild-type mice and regardless of the natural sexual dimorphism in rodent salivary glands. This reduced size correlates with a reduced capacity of Dlk1-deficient mice to secrete saliva after stimulation with pilocarpine. However, histological and ultrastructural analyses of both adult and developing salivary gland tissues have revealed no defects in Dlk1 ((-/-)) mice, indicating that genetic compensation accounts for the relatively mild salivary phenotype in these animals. Finally, despite their lack of severe anomalies, we have found that salivary glands from Dlk1-deficient mice present a higher amount of CK14-positive epithelial progenitors at various developmental stages, suggesting a role for DLK1 in the regulation of salivary epithelial stem cell balance. PMID:26711912

  10. Wild-type phosphoribosylpyrophosphate synthase (PRS) from Mycobacterium tuberculosis: a bacterial class II PRS?

    PubMed

    Breda, Ardala; Martinelli, Leonardo K B; Bizarro, Cristiano V; Rosado, Leonardo A; Borges, Caroline B; Santos, Diógenes S; Basso, Luiz A

    2012-01-01

    The 5-phospho-α-D-ribose 1-diphosphate (PRPP) metabolite plays essential roles in several biosynthetic pathways, including histidine, tryptophan, nucleotides, and, in mycobacteria, cell wall precursors. PRPP is synthesized from α-D-ribose 5-phosphate (R5P) and ATP by the Mycobacterium tuberculosis prsA gene product, phosphoribosylpyrophosphate synthase (MtPRS). Here, we report amplification, cloning, expression and purification of wild-type MtPRS. Glutaraldehyde cross-linking results suggest that MtPRS predominates as a hexamer, presenting varied oligomeric states due to distinct ligand binding. MtPRS activity measurements were carried out by a novel coupled continuous spectrophotometric assay. MtPRS enzyme activity could be detected in the absence of P(i). ADP, GDP and UMP inhibit MtPRS activity. Steady-state kinetics results indicate that MtPRS has broad substrate specificity, being able to accept ATP, GTP, CTP, and UTP as diphosphoryl group donors. Fluorescence spectroscopy data suggest that the enzyme mechanism for purine diphosphoryl donors follows a random order of substrate addition, and for pyrimidine diphosphoryl donors follows an ordered mechanism of substrate addition in which R5P binds first to free enzyme. An ordered mechanism for product dissociation is followed by MtPRS, in which PRPP is the first product to be released followed by the nucleoside monophosphate products to yield free enzyme for the next round of catalysis. The broad specificity for diphosphoryl group donors and detection of enzyme activity in the absence of P(i) would suggest that MtPRS belongs to Class II PRS proteins. On the other hand, the hexameric quaternary structure and allosteric ADP inhibition would place MtPRS in Class I PRSs. Further data are needed to classify MtPRS as belonging to a particular family of PRS proteins. The data here presented should help augment our understanding of MtPRS mode of action. Current efforts are toward experimental structure determination of

  11. Subcellular localization of Mayven following expression of wild type and mutant EGFP tagged cDNAs

    PubMed Central

    2010-01-01

    Background Process formation by glial cells is crucial to their function. Mayven, an actin binding, multi-domain polypeptide, and member of the BTB-BACK-Kelch family have been shown to be important in oligodendrocyte process extension. To assess the role of Mayven in neural cell process extension we have tracked the subcellular distribution of exogenous Mayven following expression of a rat Mayven -EGFP cDNA in a variety of neural cell backgrounds and specifically in OEC tranfectants following drug treatment to disrupt the integrity of the cytoskeleton. A comparison was made between the subcellular localization following transient transfection of OECs with full-length Mayven cDNA and a series of mutant domain constructs. Results The subcellular location of Mayven in OEC transfectants showed a characteristic distribution with intense foci of staining towards the process tips corresponding to regions of accumulated Mayven overlapping in part with lammelipodial actin and was absent from the filipodia and the outer membrane. This signature pattern was also observed in Schwann cells, Oli-Neu cells, astrocytes and the neuroblastoma cell line B104 transfectants and resembled the exogenous and endogenous Mayven distribution in oligodendrocytes. This contrasted with the localization pattern in non-neural cells. There was a re-localization of Mayven in OEC transfectants following drug treatment to challenge the integrity of the actin cytoskeleton while breakdown of the microtubular component had no discernible impact on the accumulation of Mayven in the process tips. Deletion of the first three amino acids of the SH3 motif of the putative Fyn Kinase binding domain at the amino terminus significantly compromised this signature pattern as did the removal of the last Kelch repeat unit of six unit Kelch domain comprising the carboxyl terminus. In addition, there was a reduction in process length in mutant transfectants. Co-expression studies with a haemagglutinin (HA) tagged wild

  12. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae).

    PubMed

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanità; Corradi, Maria Grazia

    2004-07-14

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 microM). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one. PMID:15177949

  13. Small N-terminal mutant huntingtin fragments, but not wild type, are mainly present in monomeric form: Implications for pathogenesis.

    PubMed

    Cong, Shu-Yan; Pepers, Barry A; Roos, Raymund A C; van Ommen, Gert-Jan B; Dorsman, Josephine C

    2006-06-01

    N-terminal fragments of huntingtin containing an expanded polyglutamine stretch play an important role in the molecular pathogenesis of Huntington's disease. Their ultimate accumulation in insoluble protein aggregates constitutes an important pathological hallmark of Huntington's disease. We report on systematic biochemical comparison studies of soluble wild type and mutant N-terminal huntingtin fragments. The results show that soluble wild type exon 1 fragments are predominantly present in higher molecular weight complexes with a molecular size of approximately 300 kDa, while their mutant counterparts are mainly present in their monomeric form. In contrast, longer N-terminal fragments corresponding to peptides produced by caspase cleavage do not display these differential properties. These findings suggest that especially an increased amount of monomeric form of small N-terminal mutant huntingtin fragments may facilitate aberrant interactions both with itself via the polyglutamine stretch and with other proteins and thereby contribute to molecular pathogenesis. PMID:16380118

  14. A PCR-based assay for the wild-type dystrophin gene transferred into the mdx mouse.

    PubMed

    Shrager, J B; Naji, A; Kelly, A M; Stedman, H H

    1992-10-01

    Myoblast transfer has emerged as a promising treatment for inherited myopathies such as Duchenne muscular dystrophy (DMD). Further development of the technique's therapeutic potential requires an experimental system in which issues of graft rejection can be clearly discriminated from those related to myoblast biology. Here we report the development and initial application of a quantitative assay for myogenic cells bearing a wild-type dystrophin gene following transfer into the mdx mouse. The technique relies upon the ability of a mutagenizing polymerase chain reaction (PCR) primer to create a new restriction site in the amplification production of the wild-type, but not the mdx dystrophin gene. The ratio of host to donor cells can be determined from muscle biopsies as small as 1 mg, regardless of donor H-2 background. This simple technique should allow a number of basic questions related to myoblast and direct gene transfer to be addressed using the mdx mouse model. PMID:1357549

  15. Structural variability between starch granules in wild type and in ae high-amylose mutant maize kernels.

    PubMed

    Liu, Dongli; Parker, Mary L; Wellner, Nikolaus; Kirby, Andrew R; Cross, Kathryn; Morris, Victor J; Cheng, Fang

    2013-09-12

    Starch granule structure within wild-type and ae high-amylose mutant maize kernels has been mapped in situ using light, electron and atomic force microscopy, and both Raman and infra-red spectroscopy. The population of wild-type starch granules is found to be homogenous. The ae mutant granule population is heterogeneous. Heterogeneity in chemical and physical structure is observed within individual granules, between granules within cells, and spatially within the kernel. The highest level of heterogeneity is observed in the region where starch is first deposited during kernel development. Light microscopy demonstrates structural diversity through use of potassium iodide/iodine staining and polarised microscopy. Electron and atomic force microscopy, and infra-red and Raman spectroscopy defined the nature of the structural changes within granules. The methodology provides novel information on the changes in starch structure resulting from kernel development. PMID:23911471

  16. EXAFS of Klebsiella pneumoniae nitrogenase MoFe protein from wild-type and nif V mutant strains

    SciTech Connect

    Eidsness, M.K.; Flank, A.M.; Smith, B.E.; Flood, A.C.; Garner, C.D.; Cramer. S.P.

    1986-05-14

    The enzyme nitrogenase catalyzes the biological reduction of N/sub 2/ to NH/sub 3/. In Klebsiella pneumoniae a cluster of 17 genes in seven transcriptional units has been associated with nitrogen fixation. The nitrogenase enzyme from the nif V mutants is relatively ineffective at dinitrogen reduction, is more efficient than the wild-type enzyme at HCN reduction, and has its hydrogen evolution activity inhibited up to 80% by CO. This altered substrate specificity has been shown to be associated with the iron-molybdenum cofactor, FeMo-co, of the enzyme. X-ray absorption spectroscopy has been a valuable tool for probing the molybdenum environment of wild-type nitrogenase, and the authors report here similar studies on the Nif V/sup -/ enzyme.

  17. Full Genome Sequence-Based Comparative Study of Wild-Type and Vaccine Strains of Infectious Laryngotracheitis Virus from Italy.

    PubMed

    Piccirillo, Alessandra; Lavezzo, Enrico; Niero, Giulia; Moreno, Ana; Massi, Paola; Franchin, Elisa; Toppo, Stefano; Salata, Cristiano; Palù, Giorgio

    2016-01-01

    Infectious laryngotracheitis (ILT) is an acute and highly contagious respiratory disease of chickens caused by an alphaherpesvirus, infectious laryngotracheitis virus (ILTV). Recently, full genome sequences of wild-type and vaccine strains have been determined worldwide, but none was from Europe. The aim of this study was to determine and analyse the complete genome sequences of five ILTV strains. Sequences were also compared to reveal the similarity of strains across time and to discriminate between wild-type and vaccine strains. Genomes of three ILTV field isolates from outbreaks occurred in Italy in 1980, 2007 and 2011, and two commercial chicken embryo origin (CEO) vaccines were sequenced using the 454 Life Sciences technology. The comparison with the Serva genome showed that 35 open reading frames (ORFs) differed across the five genomes. Overall, 54 single nucleotide polymorphisms (SNPs) and 27 amino acid differences in 19 ORFs and two insertions in the UL52 and ORFC genes were identified. Similarity among the field strains and between the field and the vaccine strains ranged from 99.96% to 99.99%. Phylogenetic analysis revealed a close relationship among them, as well. This study generated data on genomic variation among Italian ILTV strains revealing that, even though the genetic variability of the genome is well conserved across time and between wild-type and vaccine strains, some mutations may help in differentiating among them and may be involved in ILTV virulence/attenuation. The results of this study can contribute to the understanding of the molecular bases of ILTV pathogenicity and provide genetic markers to differentiate between wild-type and vaccine strains. PMID:26890525

  18. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors.

    PubMed Central

    Moll, U M; LaQuaglia, M; Bénard, J; Riou, G

    1995-01-01

    Neuroblastoma (NB), a tumor arising from the sympathetic nervous system, is one of the most common malignancies in childhood. Several recent reports on the p53 genotype found virtually exclusive wild-type status in primary tumors, and it was postulated that p53 plays no role in the development of NB. Here, however, we report that the vast majority of undifferentiated NBs exhibit abnormal cytoplasmic sequestration of wild-type p53. This inability of p53 to translocate to the nucleus presumably prevents the protein from functioning as a suppressor. Thirty of 31 cases (96%) of undifferentiated NB showed elevated levels of wild-type p53 in the cytoplasm of all tumor cells concomittant with a lack of nuclear staining. p53 immunoprecipitation from tumor tissues showed a 4.5- to 8-fold increase over normal protein levels. All of 10 tumors analyzed harbored wild-type p53 by direct sequencing of full-length cDNA and Southern blot. In addition, no MDM-2 gene amplification was seen in all 11 tumors analyzed. In contrast, no p53 abnormality was detected in 14 differentiated ganglioneuroblastomas and 1 benign ganglioneuroma. We conclude that loss of p53 function seems to play a major role in the tumorigenesis of undifferentiated NB. This tumor might abrogate the transactivating function of p53 by inhibiting its access to the nucleus, rather than by gene mutation. Importantly, our results suggest that (i) this could be a general mechanism for p53 inactivation not limited to breast cancer (where we first described it) and that (ii) it is found in a tumor previously not thought to be affected by p53 alteration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7753819

  19. Effect of lectin on nodulation by wild-type Bradyrhizobium japonicum and a nodulation-defective mutant.

    PubMed Central

    Halverson, L J; Stacey, G

    1986-01-01

    The nodulation characteristics of wild-type Bradyrhizobium japonicum USDA 110 and mutant strain HS111 were examined. Mutant strain HS111 exhibits a delayed-nodulation phenotype, a result of its inability to initiate successful nodulation promptly following inoculation of the soybean root. Previously, we showed that the defect in initiation of infection leading to subsequent nodulation which is found in HS111 can be phenotypically reversed by pretreatment with soybean root exudate or soybean seed lectin. This effect is not seen after pretreatment with root exudates and lectins obtained from other plant species. Treatment of strain HS111 with as little as 10 soybean seed lectin molecules per bacterium (3.3 X 10 (-12) M) resulted in enhancement of nodule formation. Pretreatment of wild-type B. japonicum USDA 110 with soybean root exudate or seed lectin increased nodule numbers twofold on 6-week-old plants. Wild-type strain USDA 110 cells inoculated at 10(4) cells per seedling exhibited a delay in initiation of infection leading to subsequent nodulation. Wild-type cells pretreated in soybean root exudates or seed lectin did not exhibit a delay in nodulation at this cell concentration. Mutant strain HS111 pretreated in seed lectin for 0 or 1 h, followed by washing with the hapten D-galactose to remove the lectin, exhibited a delay in initiation of nodulation. Phenotypic reversal of the delayed-nodulation phenotype exhibited by strain HS111 was seen if incubation was continued for an additional 71 h in plant nutrient solution following 1 h of lectin pretreatment. Reversal of the delayed-nodulation phenotype of HS111 through lectin pretreatment was prevented by chloramphenicol or rifampin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3707122

  20. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers.

    PubMed

    Shi, L B; Skach, W R; Verkman, A S

    1994-04-01

    CHIP28 is a major water transporting protein in erythrocytes and kidney which forms tetramers in membranes (Verbavatz, J. M., Brown, D., Sabolic, I., Valenti, G., Ausiello, D. A., Van Hoek, A. N., Ma, T., and Verkman, A. S. (1993) J. Cell Biol. 123, 605-618). To determine whether CHIP28 monomers function independently, chimeric cDNA dimers were constructed which contained wild-type CHIP28 in series with either wild-type CHIP28, a non-water transporting CHIP28 mutant (C189W), or a functional but mercurial-insensitive CHIP28 mutant (C189S). Transcribed cRNAs were injected in Xenopus oocytes and plasma membrane expression was assayed by quantitative immunofluorescence. Water channel function was measured by osmotically induced swelling. CHIP28 homo- and heterodimers were targeted to the oocyte plasma membrane and functioned as water channels. Relative osmotic water permeability (Pf) values (normalized for plasma membrane expression of monomeric subunits) were: 1.0 (CHIP28 monomer), 0.0 (C189W), 1.07 (C189S), 1.10 (CHIP28-CHIP28 dimer) and 0.52 (CHIP28-C189W). The increase in oocyte Pf was linearly related to plasma membrane expression of wild-type CHIP28 and C189S subunits. HgCl2 (0.3 mM) inhibited channel-mediated Pf in oocytes expressing wild-type CHIP28 monomers and dimers by 85-90%, but did not inhibit Pf in oocytes expressing C189S. HgCl2 inhibited Pf in oocytes expressing CHIP28-C189S dimers by 44 +/- 7%, consistent with one mercurial-sensitive and one insensitive subunit in the heterodimer. These results indicate that despite their assembly in tetramers, monomeric CHIP28 subunits function independently as water channels. PMID:7511600

  1. Full Genome Sequence-Based Comparative Study of Wild-Type and Vaccine Strains of Infectious Laryngotracheitis Virus from Italy

    PubMed Central

    Niero, Giulia; Moreno, Ana; Massi, Paola; Franchin, Elisa; Toppo, Stefano; Salata, Cristiano; Palù, Giorgio

    2016-01-01

    Infectious laryngotracheitis (ILT) is an acute and highly contagious respiratory disease of chickens caused by an alphaherpesvirus, infectious laryngotracheitis virus (ILTV). Recently, full genome sequences of wild-type and vaccine strains have been determined worldwide, but none was from Europe. The aim of this study was to determine and analyse the complete genome sequences of five ILTV strains. Sequences were also compared to reveal the similarity of strains across time and to discriminate between wild-type and vaccine strains. Genomes of three ILTV field isolates from outbreaks occurred in Italy in 1980, 2007 and 2011, and two commercial chicken embryo origin (CEO) vaccines were sequenced using the 454 Life Sciences technology. The comparison with the Serva genome showed that 35 open reading frames (ORFs) differed across the five genomes. Overall, 54 single nucleotide polymorphisms (SNPs) and 27 amino acid differences in 19 ORFs and two insertions in the UL52 and ORFC genes were identified. Similarity among the field strains and between the field and the vaccine strains ranged from 99.96% to 99.99%. Phylogenetic analysis revealed a close relationship among them, as well. This study generated data on genomic variation among Italian ILTV strains revealing that, even though the genetic variability of the genome is well conserved across time and between wild-type and vaccine strains, some mutations may help in differentiating among them and may be involved in ILTV virulence/attenuation. The results of this study can contribute to the understanding of the molecular bases of ILTV pathogenicity and provide genetic markers to differentiate between wild-type and vaccine strains. PMID:26890525

  2. Whole chromosome aneuploidy in the brain of Bub1bH/H and Ercc1-/Δ7 mice.

    PubMed

    Andriani, Grasiella A; Faggioli, Francesca; Baker, Darren; Dollé, Martijn E T; Sellers, Rani S; Hébert, Jean M; Van Steeg, Harry; Hoeijmakers, Jan; Vijg, Jan; Montagna, Cristina

    2016-02-15

    High levels of aneuploidy have been observed in disease-free tissues, including post-mitotic tissues such as the brain. Using a quantitative interphase-fluorescence in situ hybridization approach, we previously reported a chromosome-specific, age-related increase in aneuploidy in the mouse cerebral cortex. Increased aneuploidy has been associated with defects in DNA repair and the spindle assembly checkpoint, which in turn can lead to premature aging. Here, we quantified the frequency of aneuploidy of three autosomes in the cerebral cortex and cerebellum of adult and developing brain of Bub1b(H/H) mice, which have a faulty mitotic checkpoint, and Ercc1(-/Δ7) mice, defective in nucleotide excision repair and inter-strand cross-link repair. Surprisingly, the level of aneuploidy in the brain of these murine models of accelerated aging remains as low as in the young adult brains from control animals, i.e. <1% in the cerebral cortex and ∼0.1% in the cerebellum. Therefore, based on aneuploidy, these adult mice with reduced life span and accelerated progeroid features are indistinguishable from age-matched, normal controls. Yet, during embryonic development, we found that Bub1b(H/H), but not Ercc1(-/Δ7) mice, have a significantly higher frequency of aneuploid nuclei relative to wild-type controls in the cerebral cortex, reaching a frequency as high as 40.3% for each chromosome tested. Aneuploid cells in these mutant mice are likely eliminated early in development through apoptosis and/or immune-mediated clearance mechanisms, which would explain the low levels of aneuploidy during adulthood in the cerebral cortex of Bub1b(H/H) mice. These results shed light on the mechanisms of removal of aneuploidy cells in vivo. PMID:26681803

  3. Purification and some properties of wild-type and N-terminal-truncated ethanolamine ammonia-lyase of Escherichia coli.

    PubMed

    Akita, Keita; Hieda, Naoki; Baba, Nobuyuki; Kawaguchi, Satoshi; Sakamoto, Hirohisa; Nakanishi, Yuka; Yamanishi, Mamoru; Mori, Koichi; Toraya, Tetsuo

    2010-01-01

    The methods of homologous high-level expression and simple large-scale purification for coenzyme B(12)-dependent ethanolamine ammonia-lyase of Escherichia coli were developed. The eutB and eutC genes in the eut operon encoded the large and small subunits of the enzyme, respectively. The enzyme existed as the heterododecamer alpha(6)beta(6). Upon active-site titration with adeninylpentylcobalamin, a strong competitive inhibitor for coenzyme B(12), the binding of 1 mol of the inhibitor per mol of the alphabeta unit caused complete inhibition of enzyme, in consistent with its subunit structure. EPR spectra indicated the formation of substrate-derived radicals during catalysis and the binding of cobalamin in the base-on mode, i.e. with 5,6-dimethylbenzimidazole coordinating to the cobalt atom. The purified wild-type enzyme underwent aggregation and inactivation at high concentrations. Limited proteolysis with trypsin indicated that the N-terminal region is not essential for catalysis. His-tagged truncated enzymes were similar to the wild-type enzyme in catalytic properties, but more resistant to p-chloromercuribenzoate than the wild-type enzyme. A truncated enzyme was highly soluble even in the absence of detergent and resistant to aggregation and oxidative inactivation at high concentrations, indicating that a short N-terminal sequence is sufficient to change the solubility and stability of the enzyme. PMID:19762342

  4. Protective efficacy of low-dose amantadine in adults challenged with wild-type influenza A virus.

    PubMed Central

    Sears, S D; Clements, M L

    1987-01-01

    The prophylactic efficacy of a low dose (100 mg) of amantadine hydrochloride against experimental challenge with influenza A/Texas/1/85 (H1N1) wild-type virus was determined in healthy adult volunteers in a placebo-controlled, double-blind, randomized trial. No side effects of the 100-mg dose were observed in the amantadine-treated volunteers. Compared with placebo, 100 mg of amantadine significantly reduced the frequency of illness (9 of 22 versus 2 of 22 volunteers, P less than 0.04) and provided 78% protection against influenza illness. The two ill volunteers in the amantadine group had rhinitis only, whereas most of the ill placebo controls developed both systemic and upper-respiratory-tract illness. Wild-type virus was recovered from 50% of the amantadine-treated volunteers, compared with 82% of the placebo controls. Of note, the infected amantadine recipients shed 100 times less virus and shed virus for half as many days as did the infected placebo recipients. Although amantadine restricted viral replication, it did not interfere with the development of an antibody response to influenza virus. These results indicate that in adults experimentally challenged with influenza wild-type virus, 100 mg of amantadine is effective both in the prevention of influenza illness and in the restriction of virus replication. PMID:3435099

  5. Profile of panitumumab as first-line treatment in patients with wild-type KRAS metastatic colorectal cancer.

    PubMed

    Patel, Shiven B; Gill, David; Garrido-Laguna, Ignacio

    2016-01-01

    Targeted therapies against EGFR, vascular endothelial growth factor, and vascular endothelial growth factor receptor have expanded treatment options for patients with metastatic colorectal cancer (mCRC). Unfortunately, biomarkers to identify patients that are most likely to derive benefit from targeted therapies in this disease are still needed. Indeed, only RAS mutations have been identified as predictive of lack of benefit from monoclonal antibodies against EGFR in patients with mCRC. Panitumumab is a fully humanized monoclonal antibody against EGFR. In this study, we review data to support the use of panitumumab in combination with a chemotherapy backbone, in the first line setting in patients with RAS wild-type mCRC. Ongoing efforts are aimed at identifying smaller subsets of patients within the RAS wild-type group that will derive the largest benefit from anti-EGFR therapy. In the meantime, treatment with anti-EGFR therapy should be reserved for patients with RAS wild-type mCRC. PMID:26770060

  6. Cellular Oxidative Stress and the Control of Apoptosis by Wild-Type p53, Cytotoxic Compounds, and Cytokines

    NASA Astrophysics Data System (ADS)

    Lotem, Joseph; Peled-Kamar, Mira; Groner, Yoram; Sachs, Leo

    1996-08-01

    Apoptosis induced by wild-type p53 or cytotoxic compounds in myeloid leukemic cells can be inhibited by the cytokines interleukin 6, interleukin 3, granulocyte-macrophage colony-stimulating factor, and interferon γ and by antioxidants. The antioxidants and cytokines showed a cooperative protective effect against induction of apoptosis. Cells with a higher sensitivity to induction of apoptosis and required a higher cytokine concentration to inhibit apoptosis. Decreasing the intrinsic oxidative stress in cells by antioxidants thus inhibited apoptosis, whereas increasing this intrinsic stress by adding H2O2 enhanced apoptosis. Induction of apoptosis by wild-type p53 was not preceded by increased peroxide production or lipid peroxidation and the protective effect of cytokines was not associated with a decrease in these properties. The results indicate that the intrinsic degree of oxidative stress can regulate cell susceptibility to wild-type p53-dependent and p53-independent induction of apoptosis and the ability of cytokines to protect cells against apoptosis.

  7. Processing of CFTR bearing the P574H mutation differs from wild-type and deltaF508-CFTR.

    PubMed

    Ostedgaard, L S; Zeiher, B; Welsh, M J

    1999-07-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) containing the deltaF508 mutation is retained in the endoplasmic reticulum (ER). This defect can be partially overcome by a reduction in temperature which allows some of the deltaF508 protein to exit the ER and move to the cell surface. Earlier studies showed that the CF-associated mutants, P574H and A455E, were also misprocessed. In this study, we found that processing of P574H and A455E was also temperature-sensitive; at 26 degrees C, some of the protein matured. In contrast to other CFTR mutants, P574H accumulated in punctate cytoplasmic bodies that colocalized with endoplasmic reticulum (ER) markers. At 26 degrees C, these bodies were no longer present. P574H showed a prolonged association with Hsp70 and also colocalized with Hsp70. We used brefeldin A (BFA) to determine which processing step(s) was altered by reduced temperature. Unlike wild-type CFTR, which was converted into an intermediate that was stable in the presence of BFA at 37 degrees C, deltaF508 and P574H produced the intermediate only when the temperature was reduced to 26 degrees C. Furthermore the wild-type intermediate was not associated with Hsp70. These data suggest that formation of the stable intermediate is a key temperature-sensitive step and appears to be coincident with release of the wild-type protein from Hsp70. PMID:10362539

  8. Profile of panitumumab as first-line treatment in patients with wild-type KRAS metastatic colorectal cancer

    PubMed Central

    Patel, Shiven B; Gill, David; Garrido-Laguna, Ignacio

    2016-01-01

    Targeted therapies against EGFR, vascular endothelial growth factor, and vascular endothelial growth factor receptor have expanded treatment options for patients with metastatic colorectal cancer (mCRC). Unfortunately, biomarkers to identify patients that are most likely to derive benefit from targeted therapies in this disease are still needed. Indeed, only RAS mutations have been identified as predictive of lack of benefit from monoclonal antibodies against EGFR in patients with mCRC. Panitumumab is a fully humanized monoclonal antibody against EGFR. In this study, we review data to support the use of panitumumab in combination with a chemotherapy backbone, in the first line setting in patients with RAS wild-type mCRC. Ongoing efforts are aimed at identifying smaller subsets of patients within the RAS wild-type group that will derive the largest benefit from anti-EGFR therapy. In the meantime, treatment with anti-EGFR therapy should be reserved for patients with RAS wild-type mCRC. PMID:26770060

  9. The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection

    SciTech Connect

    Plattet, Philippe; Rivals, Jean-Paul; Zuber, BenoIt; Brunner, Jean-Marc; Zurbriggen, Andreas; Wittek, Riccardo . E-mail: Riccardo.Wittek@unil.ch

    2005-07-05

    The wild-type A75/17 canine distemper virus (CDV) strain induces a persistent infection in the central nervous system but infects cell lines very inefficiently. In contrast, the genetically more distant Onderstepoort CDV vaccine strain (OP-CDV) induces extensive syncytia formation. Here, we investigated the roles of wild-type fusion (F{sub WT}) and attachment (H{sub WT}) proteins in Vero cells expressing, or not, the canine SLAM receptor by transfection experiments and by studying recombinants viruses expressing different combinations of wild-type and OP-CDV glycoproteins. We show that low fusogenicity is not due to a defect of the envelope proteins to reach the cell surface and that H{sub WT} determines persistent infection in a receptor-dependent manner, emphasizing the role of SLAM as a potent enhancer of fusogenicity. However, importantly, F{sub WT} reduced cell-to-cell fusion independently of the cell surface receptor, thus demonstrating that the fusion protein of the neurovirulent A75/17-CDV strain plays a key role in determining persistent infection.

  10. Transfection of wild-type CFTR into cystic fibrosis lymphocytes restores chloride conductance at G1 of the cell cycle.

    PubMed Central

    Krauss, R D; Bubien, J K; Drumm, M L; Zheng, T; Peiper, S C; Collins, F S; Kirk, K L; Frizzell, R A; Rado, T A

    1992-01-01

    We complemented the Cl- conductance defect in cystic fibrosis lymphocytes by transfection with wild-type cDNA for the cystic fibrosis transmembrane conductance regulator (CFTR). Stable transfectants were selected and subjected to molecular and functional analyses. We detected expression of endogenous CFTR mRNA in several CF and non-CF lymphoid cell lines by PCR. Expression from cDNA in the transfectants was demonstrated by amplifying vector-specific sequences. Both fluorescence and patch-clamp assays showed that transfectants expressing wild-type CFTR acquired properties previously associated with Cl- conductance (GCl) regulation in non-CF lymphocytes: (i) GCl was elevated in the G1 phase of the cell cycle, (ii) cells fixed at G1 increase GCl in response to increased cellular cAMP or Ca2+, (iii) agonist-induced increases in GCl were lost as the cells progressed to the S phase of the cell cycle. The cell cycle and agonist dependent regulation of GCl was not observed in CF lymphocytes transfected with CFTR cDNA containing stop codons in all reading frames at exon 6. Our findings indicate that lymphocytes express functional CFTR since wild-type CFTR corrects the defects in Cl- conductance regulation found in CF lymphocytes. Evaluation of the mechanism of this novel, CFTR-mediated regulation of GCl during cell cycling should provide further insights into the function of CFTR. Images PMID:1372253

  11. HEPATIC GENE EXPRESSION PROFILING IN PERFLUOROHEXANE SULFONATE-EXPOSED WILD-TYPE AND PPARα-NULL MICE.

    EPA Science Inventory

    Perfluorohexane sulfonate (PFHxS) is one member of a group ofperfluoroakyl acids (PFAAs) presently recognized as widespread environmental contaminants. Like other PFAAs, PFHxS is also commonly found in human serum. Although PFHxS is presumed to be an activator of peroxisome proli...

  12. Comparative Distribution and Retention of Arsenic in Arsenic (+3 Oxidation State) Methyltransferase Knockout and Wild Type Mice

    EPA Science Inventory

    The mouse arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a ~ 43 kDa protein that catalyzes conversion of inorganic arsenic into methylated products. Heterologous expression of AS3MT or its silencing by RNA interference controls arsenic methylation phenotypes...

  13. Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice.

    PubMed

    Contreras-Vallejos, Erick; Utreras, Elías; Bórquez, Daniel A; Prochazkova, Michaela; Terse, Anita; Jaffe, Howard; Toledo, Andrea; Arruti, Cristina; Pant, Harish C; Kulkarni, Ashok B; González-Billault, Christian

    2014-01-01

    Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5-/- embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5-/- brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate. PMID:24658276

  14. COMPARATIVE HEPATIC EFFECTS OF PERFLUOROOCTANOIC ACID AND WY 14,643 IN PPARÁ KNOCKED OUT AND WILD-TYPE MICE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a fluorinated organic chemical widely used in consumer and industrial products. Its persistence in the environment and presence in humans and wildlife have raised considerable concerns. PFOA induces liver tumors in rodents, which is thought to be ...

  15. Simultaneous recording of intramembrane charge movement components and calcium release in wild-type and S100A1-/- muscle fibres.

    PubMed

    Prosser, Benjamin L; Hernández-Ochoa, Erick O; Zimmer, Danna B; Schneider, Martin F

    2009-09-15

    In the preceding paper, we reported that flexor digitorum brevis (FDB) muscle fibres from S100A1 knock-out (KO) mice exhibit a selective suppression of the delayed, steeply voltage-dependent component of intra-membrane charge movement current termed Q(gamma). Here, we use 50 microm of the Ca(2+) indicator fluo-4 in the whole cell patch clamp pipette, in addition to 20 mM EGTA and other constituents included for the charge movement studies, and calculate the SR Ca(2+) release flux from the fluo-4 signals during voltage clamp depolarizations. Ca(2+) release flux is decreased in amplitude by the same fraction at all voltages in fibres from S100A1 KO mice compared to fibres from wild-type (WT) littermates, but unchanged in time course at each pulse membrane potential. There is a strong correlation between the time course and magnitude of release flux and the development of Q(gamma). The decreased Ca(2+) release in KO fibres is likely to account for the suppression of Q(gamma) in these fibres. Consistent with this interpretation, 4-chloro-m-cresol (4-CMC; 100 microm) increases the rate of Ca(2+) release and restores Q(gamma) at intermediate depolarizations in fibres from KO mice, but does not increase Ca(2+) release or restore Q(gamma) at large depolarizations. Our findings are consistent with similar activation kinetics for SR Ca(2+) channels in both WT and KO fibres, but decreased Ca(2+) release in the KO fibres possibly due to shorter SR channel open times. The decreased Ca(2+) release at each voltage is insufficient to activate Q(gamma) in fibres lacking S100A1. PMID:19651766

  16. Spatiotemporal features of early neuronogenesis differ in wild-type and albino mouse retina

    NASA Technical Reports Server (NTRS)

    Rachel, Rivka A.; Dolen, Gul; Hayes, Nancy L.; Lu, Alice; Erskine, Lynda; Nowakowski, Richard S.; Mason, Carol A.

    2002-01-01

    In albino mammals, lack of pigment in the retinal pigment epithelium is associated with retinal defects, including poor visual acuity from a photoreceptor deficit in the central retina and poor depth perception from a decrease in ipsilaterally projecting retinal fibers. Possible contributors to these abnormalities are reported delays in neuronogenesis (Ilia and Jeffery, 1996) and retinal maturation (Webster and Rowe, 1991). To further determine possible perturbations in neuronogenesis and/or differentiation, we used cell-specific markers and refined birth dating methods to examine these events during retinal ganglion cell (RGC) genesis in albino and pigmented mice from embryonic day 11 (E11) to E18. Our data indicate that relative to pigmented mice, more ganglion cells are born in the early stages of neuronogenesis in the albino retina, although the initiation of RGC genesis in the albino is unchanged. The cellular organization of the albino retina is perturbed as early as E12. In addition, cell cycle kinetics and output along the nasotemporal axis differ in retinas of albino and pigmented mice, both absolutely, with the temporal aspect of the retina expanded in albino, and relative to the position of the optic nerve head. Finally, blocking melanin synthesis in pigmented eyecups in culture leads to an increase in RGC differentiation, consistent with a role for melanin formation in regulating RGC neuronogenesis. These results point to spatiotemporal defects in neuronal production in the albino retina, which could perturb expression of genes that specify cell fate, number, and/or projection phenotype.

  17. Molecular cloning of two paralytogenic, temperature-sensitive mutants, ts1 and ts7, and the parental wild-type Moloney murine leukemia virus.

    PubMed Central

    Yuen, P H; Malehorn, D; Nau, C; Soong, M M; Wong, P K

    1985-01-01

    ts1 and ts7, the paralytogenic, temperature-sensitive mutants of Moloney murine leukemia virus (MoMuLV), together with their wild-type parent, MoMuLV-TB, were molecularly cloned. ts1-19, ts7-22, and wt-25, the infectious viruses obtained on transfection to NIH/3T3 cells of the lambda Charon 21A recombinants of ts1, ts7, and wt, were found to have retained the characteristics of their non-molecularly cloned parents. In contrast to the wt virus, ts1-19 and ts7-22 are temperature-sensitive, inefficient in the intracellular processing of Pr80env at the restrictive temperature, and able to induce paralysis in CFW/D mice. Like the non-molecularly cloned ts7, the ts7-22 virion was also shown to be heat labile. The heat lability of the ts7 virion distinguishes it from ts1. Endonuclease restriction mapping with 11 endonucleases demonstrated that the base composition of MoMuLV-TB differs from that of the standard MoMuLV, but no difference was detected between the molecularly cloned ts1 and ts7 genomes. However, ts1 and ts7 differ from MoMuLV in the loss or acquisition of four different restriction sites, whereas they differ from MoMuLV-TB in the loss or acquisition of three different restriction sites. Images PMID:2983112

  18. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells

    PubMed Central

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B.; Victor, Aaron; Meisen, Walter H.; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E. Antonio; Glorioso III, Joseph C.; Kaur, Balveen; Caligiuri, Michael A.; Yu, Jianhua

    2015-01-01

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB. PMID:26155832

  19. Assessing protection against OP pesticides and nerve agents provided by wild-type HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection.

    PubMed

    Hodgins, Sean M; Kasten, Shane A; Harrison, Joshua; Otto, Tamara C; Oliver, Zeke P; Rezk, Peter; Reeves, Tony E; Chilukuri, Nageswararao; Cerasoli, Douglas M

    2013-03-25

    Human paraoxonase-1 (HuPON1) has been proposed as a catalytic bioscavenger of organophosphorus (OP) pesticides and nerve agents. We assessed the potential of this enzyme to protect against OP poisoning using two different paradigms. First, recombinant HuPON1 purified from cabbage loopers (iPON1; Trichoplusia ni) was administered to guinea pigs, followed by exposure to at least 2 times the median lethal dose (LD(50)) of the OP nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF), or chlorpyrifos oxon, the toxic metabolite of the OP pesticide chlorpyrifos. In the second model, mice were infected with an adenovirus that induced expression of HuPON1 and then exposed to sequential doses of GD, VX, or (as reported previously) diazoxon, the toxic metabolite of the OP pesticide diazinon. In both animal models, the exogenously added HuPON1 protected animals against otherwise lethal doses of the OP pesticides but not against the nerve agents. Together, the results support prior modeling and in vitro activity data which suggest that wild-type HuPON1 does not have sufficient catalytic activity to provide in vivo protection against nerve agents. PMID:23123254

  20. Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule

    PubMed Central

    Soares, Joana; Raimundo, Liliana; Pereira, Nuno A.L.; Monteiro, Ângelo; Gomes, Sara; Bessa, Cláudia; Pereira, Clara; Queiroz, Glória; Bisio, Alessandra; Fernandes, João; Gomes, Célia; Reis, Flávio; Gonçalves, Jorge; Inga, Alberto; Santos, Maria M.M.; Saraiva, Lucília

    2016-01-01

    Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs. PMID:26735173

  1. Comparative Analyses of Transcriptional Profiles in Mouse Organs Using a Pneumonic Plague Model after Infection with Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant

    PubMed Central

    Galindo, Cristi L.; Moen, Scott T.; Kozlova, Elena V.; Sha, Jian; Garner, Harold R.; Agar, Stacy L.; Chopra, Ashok K.

    2009-01-01

    We employed Murine GeneChips to delineate the global transcriptional profiles of the livers, lungs, and spleens in a mouse pneumonic plague infection model with wild-type (WT) Y. pestis CO92 and its Braun lipoprotein (Δlpp) mutant with reduced virulence. These organs showed differential transcriptional responses to infection with WT Y. pestis, but the overall host functional processes affected were similar across all three tissues. Gene expression alterations were found in inflammation, cytokine signaling, and apoptotic cell death-associated genes. Comparison of WT and Δlpp mutant-infected mice indicated significant overlap in lipopolysaccharide- (LPS-) associated gene expression, but the absence of Lpp perturbed host cell signaling at critical regulatory junctions resulting in altered immune response and possibly host cell apoptosis. We generated a putative signaling pathway including major inflammatory components that could account for the synergistic action of LPS and Lpp and provided the mechanistic basis of attenuation caused by deletion of the lpp gene from Y. pestis in a mouse model of pneumonic plague. PMID:20145715

  2. Comparison of serum sodium and potassium levels in patients with senile cataract and age-matched individuals without cataract

    PubMed Central

    Mathur, Gaurav; Pai, Vijaya

    2016-01-01

    Aim: The study was to analyze mean serum sodium and potassium levels in cataract patients and age-matched individuals without cataract. Methods and Materials: It was a prospective case-control study. Individuals more than 50 years of age who attended our ophthalmic center in the year 2007-2010 were grouped into those having cataract and those without cataract. Mean serum sodium and potassium levels in the cataract groups were calculated and compared with the control group. Statistical software SPSS14 was used for statistical analysis. Results: Mean serum sodium levels in cataract group was 135.1 meqv/l and 133 meqv/l in the control group. Mean potassium was 3.96 meqv/l in the case study group and 3.97 meqv/l in controls. Mean sodium levels among cases were significantly higher than control group. No difference was seen in the PSC group and control. The difference in mean potassium among the two groups was statistically insignificant. Conclusion: Diets with high sodium contents are a risk factor for senile cataract formation and dietary modifications can possibly reduce the rate of progression cataract. PMID:23552357

  3. Prematurely Delivered Rats Show Improved Motor Coordination During Sensory-evoked Motor Responses Compared to Age-matched Controls

    PubMed Central

    Roberto, Megan E.; Brumley, Michele R.

    2014-01-01

    The amount of postnatal experience for perinatal rats was manipulated by delivering pups one day early (postconception day 21; PC21) by cesarean delivery and comparing their motor behavior to age-matched controls on PC22 (the typical day of birth). On PC22, pups were tested on multiple measures of motor coordination: leg extension response (LER), facial wiping, contact righting, and fore- and hindlimb stepping. The LER and facial wiping provided measures of synchronous hind- and forelimb coordination, respectively, and were sensory-evoked. Contact righting also was sensory-evoked and provided a measure of axial coordination. Stepping provided a measure of alternated forelimb and hindlimb coordination and was induced with the serotonin receptor agonist quipazine. Pups that were delivered prematurely and spent an additional day in the postnatal environment showed more bilateral limb coordination during expression of the LER and facial wiping, as well as a more mature righting strategy, compared to controls. These findings suggest that experience around the time of birth shapes motor coordination and the expression of species-typical behavior in the developing rat. PMID:24680729

  4. Analysis of abstract and concrete word processing in persons with aphasia and age-matched neurologically healthy adults using fMRI.

    PubMed

    Sandberg, Chaleece; Kiran, Swathi

    2014-08-01

    The concreteness effect occurs in both normal and language-disordered populations. Research suggests that abstract and concrete concepts elicit differing neural activation patterns in healthy young adults, but this is undocumented in persons with aphasia (PWA). Three PWA and three age-matched controls were scanned using fMRI while processing abstract and concrete words. Consistent with current theories of abstract and concrete word processing, abstract words elicited activation in verbal areas, whereas concrete words additionally activated multimodal association areas. PWA show greater differences in neural activation than age-matched controls between abstract and concrete words, possibly due to an exaggerated concreteness effect. PMID:23548150

  5. Age- and Light-Dependent Development of Localised Retinal Atrophy in CCL2−/−CX3CR1GFP/GFP Mice

    PubMed Central

    Chen, Mei; Hombrebueno, Jose R.; Luo, Chang; Penalva, Rosana; Zhao, Jiawu; Colhoun, Liza; Pandi, Sudha Pirya Soundara; Forrester, John V.; Xu, Heping

    2013-01-01

    Previous studies have shown that CCL2/CX3CR1 deficient mice on C57BL/6N background (with rd8 mutation) have an early onset (6 weeks) of spontaneous retinal degeneration. In this study, we generated CCL2−/−CX3CR1GFP/GFP mice on the C57BL/6J background. Retinal degeneration was not detected in CCL2−/−CX3CR1GFP/GFP mice younger than 6 months. Patches of whitish/yellowish fundus lesions were observed in 17∼60% of 12-month, and 30∼100% of 18-month CCL2−/−CX3CR1GFP/GFP mice. Fluorescein angiography revealed no choroidal neovascularisation in these mice. Patches of retinal pigment epithelium (RPE) and photoreceptor damage were detected in 30% and 50% of 12- and 18-month CCL2−/−CX3CR1GFP/GFP mice respectively, but not in wild-type mice. All CCL2−/−CX3CR1GFP/GFP mice exposed to extra-light (∼800lux, 6 h/day, 6 months) developed patches of retinal atrophy, and only 20–25% of WT mice which underwent the same light treatment developed atrophic lesions. In addition, synaptophysin expression was detected in the outer nucler layer (ONL) of area related to photoreceptor loss in CCL2−/−CX3CR1GFP/GFP mice. Markedly increased rhodopsin but reduced cone arrestin expression was observed in retinal outer layers in aged CCL2−/−CX3CR1GFP/GFP mice. GABA expression was reduced in the inner retina of aged CCL2−/−CX3CR1GFP/GFP mice. Significantly increased Müller glial and microglial activation was observed in CCL2−/−CX3CR1GFP/GFP mice compared to age-matched WT mice. Macrophages from CCL2−/−CX3CR1GFP/GFP mice were less phagocytic, but expressed higher levels of iNOS, IL-1β, IL-12 and TNF-α under hypoxia conditions. Our results suggest that the deletions of CCL2 and CX3CR1 predispose mice to age- and light-mediated retinal damage. The CCL2/CX3CR1 deficient mouse may thus serve as a model for age-related atrophic degeneration of the RPE, including the dry type of macular degeneration, geographic atrophy. PMID:23637822

  6. Mice with conditional deletion of Cx26 exhibit no vestibular phenotype despite secondary loss of Cx30 in the vestibular end organs.

    PubMed

    Lee, Min Young; Takada, Tomoko; Takada, Yohei; Kappy, Michelle D; Beyer, Lisa A; Swiderski, Donald L; Godin, Ashley L; Brewer, Shannon; King, W Michael; Raphael, Yehoash

    2015-10-01

    Connexins are components of gap junctions which facilitate transfer of small molecules between cells. One member of the connexin family, Connexin 26 (Cx26), is prevalent in gap junctions in sensory epithelia of the inner ear. Mutations of GJB2, the gene encoding Cx26, cause significant hearing loss in humans. The vestibular system, however, does not usually show significant functional deficits in humans with this mutation. Mouse models for loss of Cx26 function demonstrate hearing loss and cochlear pathology but the extent of vestibular dysfunction and organ pathology are less well characterized. To understand the vestibular effects of Cx26 mutations, we evaluated vestibular function and histology of the vestibular sensory epithelia in a conditional knockout (CKO) mouse with Cx26 loss of function. Transgenic C57BL/6 mice, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the sensory epithelium of the inner ear (Gjb2-CKO), were compared to age-matched wild types. Animals were sacrificed at ages between 4 and 40 weeks and their cochlear and vestibular sensory organs harvested for histological examination. Cx26 immunoreactivity was prominent in the peripheral vestibular system and the cochlea of wild type mice, but absent in the Gjb2-CKO specimens. The hair cell population in the cochleae of the Gjb2-CKO mice was severely depleted but in the vestibular organs it was intact, despite absence of Cx26 expression. The vestibular organs appeared normal at the latest time point examined, 40 weeks. To determine whether compensation by another connexin explains survival of the normal vestibular sensory epithelium, we evaluated the presence of Cx30 in the Gjb2-CKO mouse. We found that Cx30 labeling was normal in the cochlea, but it was decreased or absent in the vestibular system. The vestibular phenotype of the mutants was not different from wild-types as determined by time on the rotarod, head stability tests and physiological responses to

  7. Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp. : a comparative study of wild-type and genetically manipulated strains

    SciTech Connect

    Ramachandra, M.; Crawford, D.L.; Pometto, A.L. III

    1987-12-01

    The wild-type ligninolytic actinomycete Streptomyces viridosporus T7A and two genetically manipulated strains with enhanced abilities to produce a water-soluble lignin degradation intermediate, an acid-precipitable polymeric lignin (APPL), were grown on lignocellulose in solid-state fermentation cultures. Culture filtrates were periodically collected, analyzed for APPL, and assayed for extracellular lignocellulose-catabolizing enzyme activities. Two APPL-overproducing strains, UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10, had higher and longer persisting peroxidase, esterase, and endoglucanase activities than did the wild-type strain T7A. Results implicated one or more of these enzymes in lignin solubilization. Only mutant T7A-81 had higher xylanase activity than the wild type. The peroxidase was induced by both lignocellulose and APPL. This extracellular enzyme has some similarities to previously described ligninases in fungi. This is the first report of such an enzyme in Streptomyces spp. Four peroxidase isozymes were present, and all catalyzed the oxidation of 3,4-dihydroxyphenylalanine, while one also catalyzed hydrogen peroxide-dependent oxidation of homoprotocatechuic acid and caffeic acid. Three constitutive esterase isozymes were produced which differed in substrate specificity toward ..cap alpha..-naphthyl acetate and ..cap alpha..-naphthyl butyrate. Three endoglucanase bands, which also exhibited a low level of xylanase activity, were identified on polyacrylamide gels as was one xylanase-specific band. There were no major differences in the isoenzymes produced by the different strains. The probable role of each enzyme in lignocellulose degradation is discussed.

  8. Expression of mutant and wild-type TIMP3 in primary gingival fibroblasts from Sorsby's fundus dystrophy patients.

    PubMed

    Arris, Christine E; Bevitt, Debra J; Mohamed, Jeseem; Li, Zheng; Langton, Kevin P; Barker, Michael D; Clarke, Michael P; McKie, Norman

    2003-05-20

    Gingival fibroblast cell lines were derived from Sorsby's fundus dystrophy (SFD) patients carrying the S181C TIMP3 and the E139X TIMP3 mutations. These cell lines were grown in culture to study expression of the wild-type and mutant tissue inhibitor of metalloproteinase 3 (TIMP3) alleles from a normal diploid cell type. Firstly, patient cells were found to co-express the wild-type and mutant TIMP3 alleles, S181C TIMP3 or E139X TIMP3, at the mRNA level using restriction fragment length polymorphism (RFLP) analysis. A SpeI RFLP for E139X TIMP3 is described. Low levels of endogenous TIMP3 protein expression were elevated using the natural polysaccharide calcium pentosan polysulfate (CaPPs) in combination with the cytokine IL-1alpha. Immunoblotting detected protein expression from both wild-type and mutant alleles, S181C TIMP3 or E139X TIMP3. S181C TIMP3 from these cells was found to dimerise and retain MMP2 inhibitory activity. To facilitate studies of the E139X TIMP3 protein, the allele was expressed using HighFive insect cells. In this cell type, the E139X TIMP3 was synthesised as a mixture of monomer and dimer. Both monomeric and dimeric E139X TIMP3 protein retained MMP2 inhibitory activity in gelatin zymography. Expression of mutant E139X or S181C TIMP3 protein from a normal diploid patient-derived fibroblast cell had no effect on either MMP2 or MMP9 expression or activation whilst transcribed from their normal promoter context. PMID:12757930

  9. Accumulation of wild-type p53 protein in astrocytomas is not mediated by MDM2 gene amplification

    SciTech Connect

    Rubio, M.P.; Louis, D.N. Harvard Medical School, Boston, MA )

    1993-05-01

    The authors have previously described ten cases of astrocytoma (three WHO grade II, four grade III and four grade IV) with seemingly contradictory results on immunohistochemical analysis of the p53 protein and molecular genetic analysis of the p53 gene. Fixed, embedded tissues from these cases were immunohistochemically positive with the PAb 1801 antibody, which supposedly implies the presence of mutant protein. These ten cases, however, did not have mutations in exons 5 through 8 of the p53 gene, the conserved regions in which almost all human mutations have been described. The authors suggested that these cases might either represent overexpression of wild-type p53 protein (since the PAb 1801 antibody reacts with both wild-type and mutant p53 protein) or mutations in less conserved regions of the gene. To investigate these possibilities further, they performed single strand conformational polymorphism analysis and DNA sequencing on p53 exons 4, 9 and 10 in the nine cases with available DNA, since rare mutations have been noted at these loci. None of the cases showed alterations, making it highly unlikely that these tumors harbor mutations in exons of the p53 gene. They also performed immunohistochemistry on frozen sections from seven available tumors, using the mutant-specific antibody PAb 240 in addition to PAb 1801. All tumors continued to show positive staining with PAb 1801, but only one tumor reacted with PAb 240. The results support the hypothesis that the accumulated p53 protein in most cases is wild-type. Because the product of the MDM2 oncogene can bind to wild-type p53 protein, and because MDM2 amplification has recently been demonstrated in human tumors, the authors evaluated MDM2 amplification in the nine astrocytomas with available DNA. Using slot blot analysis with a 96-base pair, PCR-generated probe to the first exon of the MDM2 gene, they were unable to show MDM2 gene amplification in these tumors or in other assayed astrocytomas.

  10. Accumulation of a bioactive benzoisochromanequinone compound kalafungin by a wild type antitumor-medermycin-producing streptomycete strain.

    PubMed

    Lü, Jin; He, Qiang; Huang, Luyao; Cai, Xiaofeng; Guo, Wenwen; He, Jing; Zhang, Lili; Li, Aiying

    2015-01-01

    Medermycin and kalafungin, two antibacterial and antitumor antibiotics isolated from different streptomycetes, share an identical polyketide skeleton core. The present study reported the discovery of kalafungin in a medermycin-producing streptomycete strain for the first time. A mutant strain obtained through UV mutagenesis showed a 3-fold increase in the production of this antibiotic, compared to the wild type strain. Heterologous expression experiments suggested that its production was severely controlled by the gene cluster for medermycin biosynthesis. In all, these findings suggested that kalafungin and medermycin could be accumulated by the same streptomycete and share their biosynthetic pathway to some extent in this strain. PMID:25695632

  11. Accumulation of a Bioactive Benzoisochromanequinone Compound Kalafungin by a Wild Type Antitumor-Medermycin-Producing Streptomycete Strain

    PubMed Central

    Lü, Jin; He, Qiang; Huang, Luyao; Cai, Xiaofeng; Guo, Wenwen; He, Jing; Zhang, Lili; Li, Aiying

    2015-01-01

    Medermycin and kalafungin, two antibacterial and antitumor antibiotics isolated from different streptomycetes, share an identical polyketide skeleton core. The present study reported the discovery of kalafungin in a medermycin-producing streptomycete strain for the first time. A mutant strain obtained through UV mutagenesis showed a 3-fold increase in the production of this antibiotic, compared to the wild type strain. Heterologous expression experiments suggested that its production was severely controlled by the gene cluster for medermycin biosynthesis. In all, these findings suggested that kalafungin and medermycin could be accumulated by the same streptomycete and share their biosynthetic pathway to some extent in this strain. PMID:25695632

  12. Visualization of Melanosome Dynamics within Wild-Type and Dilute Melanocytes Suggests a Paradigm for Myosin V Function In Vivo

    PubMed Central

    Wu, Xufeng; Bowers, Blair; Rao, Kang; Wei, Qin; Hammer, John A.

    1998-01-01

    Unlike wild-type mouse melanocytes, where melanosomes are concentrated in dendrites and dendritic tips, melanosomes in dilute (myosin Va−) melanocytes are concentrated in the cell center. Here we sought to define the role that myosin Va plays in melanosome transport and distribution. Actin filaments that comprise a cortical shell running the length of the dendrite were found to exhibit a random orientation, suggesting that myosin Va could drive the outward spreading of melanosomes by catalyzing random walks. In contrast to this mechanism, time lapse video microscopy revealed that melanosomes undergo rapid (∼1.5 μm/s) microtubule-dependent movements to the periphery and back again. This bidirectional traffic occurs in both wild-type and dilute melanocytes, but it is more obvious in dilute melanocytes because the only melanosomes in their periphery are those undergoing this movement. While providing an efficient means to transport melanosomes to the periphery, this component does not by itself result in their net accumulation there. These observations, together with previous studies showing extensive colocalization of myosin Va and melanosomes in the actin-rich periphery, suggest a mechanism in which a myosin Va–dependent interaction of melanosomes with F-actin in the periphery prevents these organelles from returning on microtubules to the cell center, causing their distal accumulation. This “capture” model is supported by the demonstration that (a) expression of the myosin Va tail domain within wild-type cells creates a dilute-like phenotype via a process involving initial colocalization of tail domains with melanosomes in the periphery, followed by an ∼120-min, microtubule-based redistribution of melanosomes to the cell center; (b) microtubule-dependent melanosome movement appears to be damped by myosin Va; (c) intermittent, microtubule-independent, ∼0.14 μm/s melanosome movements are seen only in wild-type melanocytes; and (d) these movements do

  13. Single-port laparoscopic cholecystectomy vs standard laparoscopic cholecystectomy: A non-randomized, age-matched single center trial

    PubMed Central

    van der Linden, Yoen TK; Bosscha, Koop; Prins, Hubert A; Lips, Daniel J

    2015-01-01

    AIM: To compare the safety of single-port laparoscopic cholecystectomies with standard four-port cholecystectomies. METHODS: Between January 2011 and December 2012 datas were gathered from 100 consecutive patients who received a single-port cholecystectomy. Patient baseline characteristics of all 100 single-port cholecystectomies were collected (body mass index, age, etc.) in a database. This group was compared with 100 age-matched patients who underwent a conventional laparoscopic cholecystectomy in the same period. Retrospectively, per- and postoperative data were added. The two groups were compared to each other using independent t-tests and χ2-tests, P values below 0.05 were considered significantly different. RESULTS: No differences were found between both groups regarding baseline characteristics. Operating time was significantly shorter in the total single-port group (42 min vs 62 min, P < 0.05); in procedures performed by surgeons the same trend was seen (45 min vs 59 min, P < 0.05). Peroperative complications between both groups were equal (3 in the single-port group vs 5 in the multiport group; P = 0.42). Although not significant less postoperative complications were seen in the single-port group compared with the multiport group (3 vs 9; P = 0.07). No statistically significant differences were found between both groups with regard to length of hospital stay, readmissions and mortality. CONCLUSION: Single-port laparoscopic cholecystectomy has the potential to be a safe technique with a low complication rate, short in-hospital stay and comparable operating time. Single-port cholecystectomy provides the patient an almost non-visible scar while preserving optimal quality of surgery. Further prospective studies are needed to prove the safety of the single-port technique. PMID:26328034

  14. Performance by Spring-Calving Cows Grazing Tall Fescue Pastures with Either the Wild-Type Toxic Endophyte or a Non-Toxic Novel Endophyte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cows grazing 'Kentucky-31' tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] infected with its wild-type endophyte (Neotyphodium coenophialum; E+) generally display suboptimal performance. Recently, endophyte strains that do not produce compounds toxic to cattle have been incorporated into tall ...

  15. Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology.

    PubMed

    Goldmann, W H; Ezzell, R M

    1996-07-10

    We have been studying mouse F9 embryonic carcinoma cells which contain no detectable vinculin protein (5.51 cells), and compared them with F9 wild-type cells. Employing atomic force microscopy, we probed the elastic properties of individual F9 wild-type and 5.51 cells by measuring the dynamic response of controlled loads of the cantilever tip. An elastic modulus (Young) of approximately 3.8 and approximately 2.5 kPa was calculated for wild-type and 5.51 cells, respectively. Using disc rheometry, we detected a marked change in shear of a 1000g pellet of approximately 55 x 10(6) cells between wild-type and 5.51 mutants. These differences are attributed to the loss of vinculin and altered cytoskeletal organization in these cells. PMID:8660960

  16. Phenotypic expression of wild-type tomato and three wilty mutants in relation to abscisic acid accumulation in roots and leaflets of reciprocal grafts

    SciTech Connect

    Cornish, K.; Zeevaart, J.A.D. )

    1988-05-01

    Lycopersicon esculentum Mill. cv Rheinlands Ruhm (RR) and cv Moneymaker and the three wilty mutants flacca (flc), sitiens (sit), and sitiens{sup w} (sit{sup w}), together with the most reciprocal grafts, were grown in pots and in solution culture. Detached leaflets, and control and stem-girdled intact plants, were left turgid or were wilted in air. Detached leaflets and the leaflets and roots of the intact plants were analyzed for their abscisic acid (ABA) content. Turgid RR leaflets contained about 2.9 ng ABA per miligram dry weight. On average, the flc and sit leaflets contained 33 and 11% of this amount, respectively. The lack of ABA approximately correlated with the severity of the mutant phenotype. Mutant roots also contained less ABA than wild-type roots. Wild-type scions on mutant stocks (wild type/mutant) maintained the normal phenotype of ungrafted plants. Mutant scions grafted onto wild-type stocks reverted to a near wild-type phenotype. After the wild-type leaves were excised from solution culture-grown mutant/wild-type plants, the revertive morphology of the mutant scions was maintained, although endogenous ABA levels in the leaflets fell to typical mutant levels and the leaflets became wilty again. When stressed in air, both leaflets and roots of RR plants produced stress-induced ABA, but the mutant leaflets and roots did not. The roots and leaflets of the grafted plants behaved according to their own genotype, with the notable exception of mutant roots grown with wild-type scions. Roots of flc and sit{sup w} recovered the ability to accumulate stress-induced ABA when grafted with RR scions before the stress was imposed.

  17. Cellular toxicity of yeast prion protein Rnq1 can be modulated by N-terminal wild type huntingtin.

    PubMed

    Sethi, Ratnika; Patel, Vishal; Saleh, Aliabbas A; Roy, Ipsita

    2016-01-15

    Aggregation of the N-terminal human mutant huntingtin and the consequent toxicity in the yeast model of Huntington's disease (HD) requires the presence of Rnq1 protein (Rnq1p) in its prion conformation [RNQ1(+)]. The understanding of interaction of wild-type huntingtin (wt-Htt) with the amyloidogenic prion has some gaps. In this work, we show that N-terminal fragment of wt-Htt (N-wt-Htt) ameliorated the toxic effect of [RNQ1(+)] depending on expression levels of both proteins. When the expression of N-wt-Htt was high, it increased the expression and delayed the aggregation of [RNQ1(+)]. As the expression of N-wt-Htt was reduced, it formed high molecular weight aggregates along with the prion. Even when sequestered by [RNQ1(+)], the beneficial effect of N-wt-Htt on expression of Rnq1p and on cell survival was evident. Huntingtin protein ameliorated toxicity due to the prion protein [RNQ1(+)] in yeast cells in a dose-dependent manner, resulting in increase in cell survival, hinting at its probable role as a component of the proteostasis network of the cell. Taking into account the earlier reports of the beneficial effect of expression of N-wt-Htt on the aggregation of mutant huntingtin, the function of wild-type huntingtin as an inhibitor of protein aggregation in the cell needs to be explored. PMID:26628321

  18. Fructose 6-phosphate phosphoketolase activity in wild-type strains of Lactobacillus, isolated from the intestinal tract of pigs.

    PubMed

    Bolado-Martínez, E; Acedo-Félix, E; Peregrino-Uriarte, A B; Yepiz-Plascencia, G

    2012-01-01

    Phosphoketolases are key enzymes of the phosphoketolase pathway of heterofermentative lactic acid bacteria, which include lactobacilli. In heterofermentative lactobacilli xylulose 5-phosphate phosphoketolase (X5PPK) is the main enzyme of the phosphoketolase pathway. However, activity of fructose 6-phosphate phosphoketolase (F6PPK) has always been considered absent in lactic acid bacteria. In this study, the F6PPK activity was detected in 24 porcine wild-type strains of Lactobacillus reuteri and Lactobacillus mucosae, but not in the Lactobacillus salivarius or in L. reuteri ATCC strains. The activity of F6PPK increased after treatment of the culture at low-pH and diminished after porcine bile-salts stress conditions in wild-type strains of L. reuteri. Colorimetric quantification at 505 nm allowed to differentiate between microbial strains with low activity and without the activity of F6PPK. Additionally, activity of F6PPK and the X5PPK gene expression levels were evaluated by real time PCR, under stress and nonstress conditions, in 3 L. reuteri strains. Although an exact correlation, between enzyme activity and gene expression was not obtained, it remains possible that the xpk gene codes for a phosphoketolase with dual substrate, at least in the analyzed strains of L. reuteri. PMID:23101386

  19. MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome

    PubMed Central

    Wang, Qian-fei; Wu, George; Mi, Shuangli; He, Fuhong; Wu, Jun; Dong, Jingfang; Luo, Roger T.; Mattison, Ryan; Kaberlein, Joseph J.; Prabhakar, Shyam; Ji, Hongkai

    2011-01-01

    MLL encodes a histone methyltransferase that is critical in maintaining gene expression during embryonic development and hematopoiesis. 11q23 translocations result in the formation of chimeric MLL fusion proteins that act as potent drivers of acute leukemia. However, it remains unclear what portion of the leukemic genome is under the direct control of MLL fusions. By comparing patient-derived leukemic cell lines, we find that MLL fusion-bound genes are a small subset of that recognized by wild-type MLL. In an inducible MLL-ENL model, MLL fusion protein binding and changes in H3K79 methylation are limited to a specific portion of the genome, whereas wild-type MLL distributes to a much larger set of gene loci. Surprisingly, among 223 MLL-ENL–bound genes, only 12 demonstrate a significant increase in mRNA expression on induction of the fusion protein. In addition to Hoxa9 and Meis1, this includes Eya1 and Six1, which comprise a heterodimeric transcription factor important in several developmental pathways. We show that Eya1 has the capacity to immortalize hematopoietic progenitor cells in vitro and collaborates with Six1 in hematopoietic transformation assays. Altogether, our data suggest that MLL fusions contribute to the development of acute leukemia through direct activation of a small set of target genes. PMID:21518926

  20. Crystal Structures and Functional Characterization of Wild Type and Active Sites Mutants of CYP101D1