Science.gov

Sample records for age-related brain dysfunction

  1. Mitochondrial aging and age-related dysfunction of mitochondria.

    PubMed

    Chistiakov, Dimitry A; Sobenin, Igor A; Revin, Victor V; Orekhov, Alexander N; Bobryshev, Yuri V

    2014-01-01

    Age-related changes in mitochondria are associated with decline in mitochondrial function. With advanced age, mitochondrial DNA volume, integrity and functionality decrease due to accumulation of mutations and oxidative damage induced by reactive oxygen species (ROS). In aged subjects, mitochondria are characterized by impaired function such as lowered oxidative capacity, reduced oxidative phosphorylation, decreased ATP production, significant increase in ROS generation, and diminished antioxidant defense. Mitochondrial biogenesis declines with age due to alterations in mitochondrial dynamics and inhibition of mitophagy, an autophagy process that removes dysfunctional mitochondria. Age-dependent abnormalities in mitochondrial quality control further weaken and impair mitochondrial function. In aged tissues, enhanced mitochondria-mediated apoptosis contributes to an increase in the percentage of apoptotic cells. However, implementation of strategies such as caloric restriction and regular physical training may delay mitochondrial aging and attenuate the age-related phenotype in humans.

  2. Glial dysfunction causes age-related memory impairment in Drosophila.

    PubMed

    Yamazaki, Daisuke; Horiuchi, Junjiro; Ueno, Kohei; Ueno, Taro; Saeki, Shinjiro; Matsuno, Motomi; Naganos, Shintaro; Miyashita, Tomoyuki; Hirano, Yukinori; Nishikawa, Hiroyuki; Taoka, Masato; Yamauchi, Yoshio; Isobe, Toshiaki; Honda, Yoshiko; Kodama, Tohru; Masuda, Tomoko; Saitoe, Minoru

    2014-11-19

    Several aging phenotypes, including age-related memory impairment (AMI), are thought to be caused by cumulative oxidative damage. In Drosophila, age-related impairments in 1 hr memory can be suppressed by reducing activity of protein kinase A (PKA). However, the mechanism for this effect has been unclear. Here we show that decreasing PKA suppresses AMI by reducing activity of pyruvate carboxylase (PC), a glial metabolic enzyme whose amounts increase upon aging. Increased PC activity causes AMI through a mechanism independent of oxidative damage. Instead, increased PC activity is associated with decreases in D-serine, a glia-derived neuromodulator that regulates NMDA receptor activity. D-serine feeding suppresses both AMI and memory impairment caused by glial overexpression of dPC, indicating that an oxidative stress-independent dysregulation of glial modulation of neuronal activity contributes to AMI in Drosophila.

  3. Exploring age-related brain degeneration in meditation practitioners.

    PubMed

    Luders, Eileen

    2014-01-01

    A growing body of research suggests that meditation practices are associated with substantial psychological as well as physiological benefits. In searching for the biological mechanisms underlying the beneficial impact of meditation, studies have revealed practice-induced alterations of neurotransmitters, brain activity, and cognitive abilities, just to name a few. These findings not only imply a close link between meditation and brain structure, but also suggest possible modulating effects of meditation on age-related brain atrophy. Given that normal aging is associated with significant loss of brain tissue, meditation-induced growth and/or preservation might manifest as a seemingly reduced brain age in meditators (i.e., cerebral measures characteristic of younger brains). Surprisingly, there are only three published studies that have addressed the question of whether meditation diminishes age-related brain degeneration. This paper reviews these three studies with respect to the brain attributes studied, the analytical strategies applied, and the findings revealed. The review concludes with an elaborate discussion on the significance of existing studies, implications and directions for future studies, as well as the overall relevance of this field of research.

  4. Influence of Age-Related Versus Non-Age-Related Renal Dysfunctionon Survival in Patients with Left Ventricular Dysfunction

    PubMed Central

    Testani, Jeffrey M.; Brisco, Meredith A.; Han, Gang; Laur, Olga; Kula, Alexander J.; Cheng, Susan J.; Tang, W. H. Wilson; Parikh, Chirag R.

    2013-01-01

    Normal aging results in a predictable decline in glomerular filtration rate (GFR) and low GFR is associated with worsened survival. If this survival disadvantage is directly caused by the low GFR, as opposed to the disease causing the low GFR, the risk should be similar regardless of the underlying mechanism. Our objective was to determine if age related declines in estimated GFR (eGFR) carry the same prognostic importance as disease attributable losses in patients with ventricular dysfunction. We analyzed the Studies Of Left Ventricular Dysfunction (SOLVD) limited data set (n=6337). The primary analysis focused on determining if the eGFR mortality relationship differed by the extent the eGFR was consistent with normal ageing. Mean eGFR was 65.7 ± 19.0ml/min/1.73m2. Across the range of age in the population (27 to 80 years), baseline eGFR decreased by 0.67 ml/min/1.73m2 per year (95% CI 0.63 to 0.71). The risk of death associated with eGFR was strongly modified by the degree to which the low eGFR could be explained by aging (p interaction <0.0001). For example, in a model incorporating the interaction, uncorrected eGFR was no longer significantly related to mortality (adjusted HR=1.0 per 10 ml/min/1.73m2, 95% CI 0.97–1.1, p=0.53) whereas a disease attributable decrease in eGFR above the median carried significant risk (adjusted HR=2.8, 95% CI 1.6–4.7, p<0.001). In conclusion, in the setting of LV dysfunction, renal dysfunction attributable to normal aging had a limited risk for mortality, suggesting that the mechanism underlying renal dysfunction is critical in determining prognosis. PMID:24216124

  5. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease

    PubMed Central

    Crosson, Bruce; McGregor, Keith M.; Nocera, Joe R.; Drucker, Jonathan H.; Tran, Stella M.; Butler, Andrew J.

    2015-01-01

    The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered. PMID:26074807

  6. Energy metabolism, proteotoxic stress and age-related dysfunction - protection by carnosine.

    PubMed

    Hipkiss, Alan R

    2011-08-01

    This review will discuss the relationship between energy metabolism, protein dysfunction and the causation and modulation of age-related proteotoxicity and disease. It is proposed that excessive glycolysis, rather than aerobic (mitochondrial) activity, could be causal to proteotoxic stress and age-related pathology, due to the generation of endogenous glycating metabolites: the deleterious role of methylglyoxal (MG) is emphasized. It is suggested that TOR inhibition, exercise, fasting and increased mitochondrial activity suppress formation of MG (and other deleterious low molecular weight carbonyl compounds) which could control onset and progression of proteostatic dysfunction. Possible mechanisms by which the endogenous dipeptide, carnosine, which, by way of its putative aldehyde-scavenging activity, may control age-related proteotoxicity, cellular dysfunction and pathology, including cancer, are also considered. Whether carnosine could be regarded as a rapamycin mimic is briefly discussed.

  7. Age-related differences in experimental stroke: possible involvement of mitochondrial dysfunction and oxidative damage.

    PubMed

    Li, Nanlin; Kong, Xiangwei; Ye, Ruidong; Yang, Qianzi; Han, Junliang; Xiong, Lize

    2011-06-01

    Age is the single most important risk factor for cerebral stroke. Unfortunately, the effect of age on ischemic brain damage is less clear. In this study, we sought to examine the potential influence of aging on the histologic and functional outcomes after ischemia. Juvenile (4 weeks of age), young adult (4 months of age), mid-aged (11-12 months of age), and aged (18-19 months of age) mice were subjected to transient middle cerebral artery occlusion. There was no remarkable difference of infarct volume on postoperative days 1 and 3. However, on postoperative day 7, aged mice exhibited significantly worsened infarct volume compared with juvenile and young mice. Intriguingly, the increase of infarct volume was most prominent in the striatal area rather than in cortex. Accordingly, aged mice displayed a slower and incomplete functional recovery after stroke. We further evaluated the effects of aging on the oxidative damage and mitochondrial dysfunction following ischemia. Brain tissues were assayed for lipid, DNA, and protein peroxidation products, mitochondrial enzyme activities, mitochondrial membrane potential, production of reactive oxygen species, and antioxidant activities. Aging was associated with declined mitochondrial function and antioxidant detoxification following ischemia, thereby inducing a deteriorated oxidative damage. Regional subanalyses demonstrated that, in accordance with infarct area, the pro-oxidant/antioxidant imbalance occurred more prominently in subcortical areas. Collectively, these findings suggest mitochondria-mediated oxidative damage may be involved in the age-related aggravated injury in subcortical areas. Mitochondrial protection could be a promising target for neuroprotective therapy, especially in the aged population.

  8. Red ginseng delays age-related hearing and vestibular dysfunction in C57BL/6 mice.

    PubMed

    Tian, Chunjie; Kim, Yeon Ju; Lim, Hye Jin; Kim, Young Sun; Park, Hun Yi; Choung, Yun-Hoon

    2014-09-01

    Since Korean red ginseng (KRG) has been proven to protect against gentamicin-induced vestibular and hearing dysfunction, the effects of KRG on age-related inner ear disorder in C57BL/6 mice were investigated. While age-related hearing loss was detected at the age of 6months (32kHz) and 9months (16kHz) in the control group, it was significantly delayed (p<0.05) in the 150mg/kg KRG-treated group. Vestibular dysfunction was observed in the tail-hanging and swimming tests, with significantly different severity scores and swimming times detected between the control and 150mg/kg KRG-treated group at the age of 12months (p<0.05). Mice treated with 500mg/kg KRG exhibited irritability and aggravated inner ear dysfunction. Histological observation supported the findings of hearing and vestibular function defects. In conclusion, C57BL/6 mice showed early-onset hearing loss and progressive vestibular dysfunction with aging, which were delayed by treatment with 150mg/kg KRG. However, 500mg/kg KRG treatment may induce aggressive behavior.

  9. Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders.

    PubMed

    Bhatti, J S; Kumar, S; Vijayan, M; Bhatti, G K; Reddy, P H

    2017-01-01

    Mitochondria are complex, intercellular organelles present in the cells and are involved in multiple roles including ATP formation, free radicals generation and scavenging, calcium homeostasis, cellular differentiation, and cell death. Many studies depicted the involvement of mitochondrial dysfunction and oxidative damage in aging and pathogenesis of age-related metabolic disorders and neurodegenerative diseases. Remarkable advancements have been made in understanding the structure, function, and physiology of mitochondria in metabolic disorders such as diabetes, obesity, cardiovascular diseases, and stroke. Further, much progress has been done in the improvement of therapeutic strategies, including lifestyle interventions, pharmacological, and mitochondria-targeted therapeutic approaches. These strategies were mainly focused to reduce the mitochondrial dysfunction caused by oxidative stress and to retain the mitochondrial health in various diseases. In this chapter, we have highlighted the involvement of mitochondrial dysfunction in the pathophysiology of various disorders and recent progress in the development of mitochondria-targeted molecules as therapeutic measures for metabolic disorders.

  10. Understanding brain dysfunction in sepsis

    PubMed Central

    2013-01-01

    Sepsis often is characterized by an acute brain dysfunction, which is associated with increased morbidity and mortality. Its pathophysiology is highly complex, resulting from both inflammatory and noninflammatory processes, which may induce significant alterations in vulnerable areas of the brain. Important mechanisms include excessive microglial activation, impaired cerebral perfusion, blood–brain-barrier dysfunction, and altered neurotransmission. Systemic insults, such as prolonged inflammation, severe hypoxemia, and persistent hyperglycemia also may contribute to aggravate sepsis-induced brain dysfunction or injury. The diagnosis of brain dysfunction in sepsis relies essentially on neurological examination and neurological tests, such as EEG and neuroimaging. A brain MRI should be considered in case of persistent brain dysfunction after control of sepsis and exclusion of major confounding factors. Recent MRI studies suggest that septic shock can be associated with acute cerebrovascular lesions and white matter abnormalities. Currently, the management of brain dysfunction mainly consists of control of sepsis and prevention of all aggravating factors, including metabolic disturbances, drug overdoses, anticholinergic medications, withdrawal syndromes, and Wernicke’s encephalopathy. Modulation of microglial activation, prevention of blood–brain-barrier alterations, and use of antioxidants represent relevant therapeutic targets that may impact significantly on neurologic outcomes. In the future, investigations in patients with sepsis should be undertaken to reduce the duration of brain dysfunction and to study the impact of this reduction on important health outcomes, including functional and cognitive status in survivors. PMID:23718252

  11. Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress.

    PubMed

    Gavilán, Elena; Pintado, Cristina; Gavilan, Maria P; Daza, Paula; Sánchez-Aguayo, Inmaculada; Castaño, Angélica; Ruano, Diego

    2015-05-01

    Autophagy plays a key role in the maintenance of cellular homeostasis, and autophagy deregulation gives rise to severe disorders. Many of the signaling pathways regulating autophagy under stress conditions are still poorly understood. Using a model of proteasome stress in rat hippocampus, we have characterized the functional crosstalk between the ubiquitin proteasome system and the autophagy-lysosome pathway, identifying also age-related modifications in the crosstalk between both proteolytic systems. Under proteasome inhibition, both autophagy activation and resolution were efficiently induced in young but not in aged rats, leading to restoration of protein homeostasis only in young pyramidal neurons. Importantly, proteasome stress inhibited glycogen synthase kinase-3β in young but activated in aged rats. This age-related difference could be because of a dysfunction in the signaling pathway of the insulin growth factor-1 under stress situations. Present data highlight the potential role of glycogen synthase kinase-3β in the coordination of both proteolytic systems under stress situation, representing a key molecular target to sort out this deleterious effect.

  12. Multiple Brain Markers are Linked to Age-Related Variation in Cognition.

    PubMed

    Hedden, Trey; Schultz, Aaron P; Rieckmann, Anna; Mormino, Elizabeth C; Johnson, Keith A; Sperling, Reisa A; Buckner, Randy L

    2016-04-01

    Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65-90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70-80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health.

  13. Absence of ductal hyper-keratinization in Mouse age-related meibomian gland dysfunction (ARMGD)

    PubMed Central

    Parfitt, Geraint J.; Xie, Yilu; Geyfman, Mikhail; Brown, Donald J.; Jester, James V.

    2013-01-01

    Meibomian gland dysfunction (MGD) is frequent with aging and is the primary cause of dry eye disease, the most prevalent ocular complaint. We used a novel 3-D reconstruction technique, immunofluorescent computed tomography (ICT), to characterize meibomian gland keratinization and cell proliferation in a mouse model of age-related meibomian gland dysfunction (ARMGD). To visualize the changes associated with ARMGD, 5-month and 2-year old mouse eyelids were 3-D reconstructed by ICT using antibodies to cytokeratin (CK) 1, 5 and 6 and the proliferation marker Ki67. We quantified total gland, ductal and lipid volume from the reconstructions, observing a dramatic decrease in old glands. In young glands, proliferative ductules suggest a potential site of acinar progenitors that were found to be largely absent in aged, atrophic glands. In the aged mouse, we observed an anterior migration of the mucocutaneous junction (MCJ) and an absence of hyper-keratinization with meibomian gland atrophy. Thus, we propose that changes in the MCJ and glandular atrophy through a loss of meibocyte progenitors are most likely responsible for ARMGD and not ductal hyper-keratinization and gland obstruction. PMID:24259272

  14. Age-Related Impairments in Object-Place Associations Are Not Due to Hippocampal Dysfunction

    PubMed Central

    Hernandez, Abigail R.; Maurer, Andrew P.; Reasor, Jordan E.; Turner, Sean M.; Barthle, Sarah E.; Johnson, Sarah A.; Burke, Sara N.

    2016-01-01

    Age-associated cognitive decline can reduce an individual’s quality of life. As no single neurobiological deficit can account for the wide spectrum of behavioral impairments observed in old age, it is critical to develop an understanding of how interactions between different brain regions change over the life span. The performance of young and aged animals on behaviors that require the hippocampus and cortical regions to interact, however, has not been well characterized. Specifically, the ability to link a spatial location with specific features of a stimulus, such as object identity, relies on the hippocampus, perirhinal and prefrontal cortices. Although aging is associated with dysfunction in each of these brain regions, behavioral measures of functional change within the hippocampus, perirhinal and prefrontal cortices in individual animals are often not correlated. Thus, how dysfunction of a single brain region within this circuit, such as the hippocampus, impacts behaviors that require communication with the perirhinal and prefrontal cortices remains unknown. To address this question, young and aged rats were tested on the interregion dependent object-place paired association task, as well as a hippocampal-dependent test of spatial reference memory. This particular cohort of aged rats did not show deficits on the hippocampal-dependent task, but were significantly impaired at acquiring object-place associations relative to young. These data suggest that behaviors requiring functional connectivity across different regions of the memory network may be particularly sensitive to aging, and can be used to develop models that will clarify the impact of systems-level dysfunction in the elderly. PMID:26413723

  15. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice.

    PubMed

    Stout, Michael B; Tchkonia, Tamara; Pirtskhalava, Tamar; Palmer, Allyson K; List, Edward O; Berryman, Darlene E; Lubbers, Ellen R; Escande, Carlos; Spong, Adam; Masternak, Michal M; Oberg, Ann L; LeBrasseur, Nathan K; Miller, Richard A; Kopchick, John J; Bartke, Andrzej; Kirkland, James L

    2014-07-01

    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible.

  16. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice

    PubMed Central

    Pirtskhalava, Tamar; Palmer, Allyson K.; List, Edward O.; Berryman, Darlene E.; Lubbers, Ellen R.; Escande, Carlos; Spong, Adam; Masternak, Michal M.; Oberg, Ann L.; LeBrasseur, Nathan K.; Miller, Richard A.; Kopchick, John J.; Bartke, Andrzej; Kirkland, James L.

    2014-01-01

    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible. PMID:25063774

  17. Amla (Emblica officinalis Gaertn.) attenuates age-related renal dysfunction by oxidative stress.

    PubMed

    Yokozawa, Takako; Kim, Hyun Young; Kim, Hyun Ju; Tanaka, Takashi; Sugino, Hidetoshi; Okubo, Tsutomu; Chu, Djong-Chi; Juneja, Lekh Raj

    2007-09-19

    To investigate the effects of amla on renal dysfunction involved in oxidative stress during the aging process, we employed young (2 months old) and aged (13 months old) male rats and administered SunAmla (Taiyo Kagaku Co., Ltd., Japan) or an ethyl acetate (EtOAc) extract of amla, a polyphenol-rich fraction, at a dose of 40 or 10 mg/kg body weight/day for 100 days. The administration of SunAmla or EtOAc extract of amla reduced the elevated levels of serum creatinine and urea nitrogen in the aged rats. In addition, the tail arterial blood pressure was markedly elevated in aged control rats as compared with young rats, while the systolic blood pressure was significantly decreased by the administration of SunAmla or EtOAc extract of amla. Furthermore, the oral administration of SunAmla or EtOAc extract of amla significantly reduced thiobarbituric acid-reactive substance levels of serum, renal homogenate, and mitochondria in aged rats, suggesting that amla would ameliorate oxidative stress under aging. The increases of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression in the aorta of aging rats were also significantly suppressed by SunAmla extract or EtOAc extract of amla, respectively. Moreover, the elevated expression level of bax, a proapoptotic protein, was significantly decreased after oral administration of SunAmla or EtOAc extract of amla. However, the level of bcl-2, an antiapoptotic protein, did not show any difference among the groups. The expressions of renal nuclear factor-kappaB (NF-kappaB), inhibitory kappaB in cytoplasm, iNOS, and COX-2 protein levels were also increased with aging. However, SunAmla or EtOAc extract of amla reduced the iNOS and COX-2 expression levels by inhibiting NF-kappaB activation in the aged rats. These results indicate that amla would be a very useful antioxidant for the prevention of age-related renal disease.

  18. Raspberry supplementation alleviates age-related motor dysfunction in select populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related declines in balance, muscle strength and coordination often lead to a higher incidence of falling. Among older adults, falls are the leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demons...

  19. Calcium dysregulation and neuroinflammation: Discrete and integrated mechanisms for age-related synaptic dysfunction

    PubMed Central

    Sama, Diana M.; Norris, Christopher M.

    2013-01-01

    Some of the best biomarkers of age-related cognitive decline are closely linked to synaptic function and plasticity. This review highlights several age-related synaptic alterations as they relate to Ca2+ dyshomeostasis, through elevation of intracellular Ca2+, and neuroinflammation, through production of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Though distinct in many ways, Ca2+ and neuroinflammatory signaling mechanisms exhibit extensive cross-talk and bidirectional interactions. For instance, cytokine production in glial cells is strongly dependent on the Ca2+ dependent protein phosphatase calcineurin, which shows elevated activity in animal models of aging and disease. In turn, pro-inflammatory cytokines, such as TNF, can augment the expression/activity of L-type voltage sensitive Ca2+ channels in neurons, leading to Ca2+ dysregulation, hyperactive calcineurin activity, and synaptic depression. Thus, in addition to discussing unique contributions of Ca2+ dyshomeostasis and neuroinflammation, this review emphasizes how these processes interact to hasten age-related synaptic changes. PMID:23751484

  20. Hormone replacement therapy and age-related brain shrinkage: regional effects.

    PubMed

    Raz, Naftali; Rodrigue, Karen M; Kennedy, Kristen M; Acker, James D

    2004-11-15

    Neuroprotective properties of estrogen have been established in animal models, but clinical trials of hormone replacement therapy (HRT) produced contradictory results. We examined the impact of HRT on age-related regional changes in human brain volume. Six brain regions were measured twice, five years apart, in 12 healthy women who took HRT and in matched controls who did not. The controls showed a typical pattern of differential brain shrinkage in the association cortices and the hippocampus with no change in the primary visual cortex. In contrast, women who took HRT showed comparable shrinkage of the hippocampus but no significant shrinkage of the neocortex. Future large scale studies may benefit from applying regional rather than global measures in assessment of brain integrity.

  1. Age-related epigenetic regulation in the brain and its role in neuronal diseases

    PubMed Central

    Kim-Ha, Jeongsil; Kim, Young-Joon

    2016-01-01

    Accumulating evidence indicates many brain functions are mediated by epigenetic regulation of neural genes, and their dysregulations result in neuronal disorders. Experiences such as learning and recall, as well as physical exercise, induce neuronal activation through epigenetic modifications and by changing the noncoding RNA profiles. Animal models, brain samples from patients, and the development of diverse analytical methods have broadened our understanding of epigenetic regulation in the brain. Diverse and specific epigenetic changes are suggested to correlate with neuronal development, learning and memory, aging and age-related neuronal diseases. Although the results show some discrepancies, a careful comparison of the data (including methods, regions and conditions examined) would clarify the problems confronted in understanding epigenetic regulation in the brain. PMID:27866512

  2. Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease.

    PubMed

    Nicholls, David G

    2002-11-01

    Mitochondria plays a complex multi-factorial role in the cell. In addition to their primary role in ATP generation, the organelles sequester calcium and both generate and detoxify reactive oxygen species. All these functions are intimately inter-linked through the central bioenergetic parameter of the proton electrochemical gradient across the inner mitochondrial membrane. Subtle changes in respiratory chain capacity, substrate supply, glutathione levels, cytoplasmic calcium and membrane potential occur in aging and in conditions predisposing towards neurodegenerative disease. These interactions are incompletely understood and in this review I present an overview of some of the current research in this area, and its possible relevance to aging and aging-related disease.

  3. Prefrontal cortical GABAergic dysfunction contributes to age-related working memory impairment.

    PubMed

    Bañuelos, Cristina; Beas, B Sofia; McQuail, Joseph A; Gilbert, Ryan J; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L

    2014-03-05

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions.

  4. Prefrontal Cortical GABAergic Dysfunction Contributes to Age-Related Working Memory Impairment

    PubMed Central

    Bañuelos, Cristina; Beas, B. Sofia; McQuail, Joseph A.; Gilbert, Ryan J.; Frazier, Charles J.; Setlow, Barry

    2014-01-01

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions. PMID:24599447

  5. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells

    PubMed Central

    Coursey, Terry G.; Bian, Fang; Zaheer, Mahira; Pflugfelder, Stephen C.; Volpe, Eugene A.; de Paiva, Cintia S.

    2016-01-01

    In both humans and animal models the development of Sjögren syndrome (SS) and non-SS keratoconjunctivitis sicca (KCS) increases with age. Here, we investigated the ocular surface and lacrimal gland phenotype of NOD.B10.H2b mice at 7–14, 45–50, and 96–100 weeks. Aged mice develop increased corneal permeability, CD4+ T cell infiltration and conjunctival goblet cell loss. Aged mice have lacrimal gland (LG) atrophy with increased lymphocyte infiltration and inflammatory cytokine levels. An increase in the frequency of CD4+Foxp3+ Tregs cells was observed with age in the cervical lymph node (CLN), spleen and LG. These CD4+CD25+ lose suppressive ability, while maintaining expression of Foxp3 and producing IL-17 and IFN-γ. An increase Foxp3+IL-17+ or Foxp3+IFN-γ+ was observed in the LG and LG-draining CLN. In adoptive transfer experiments, recipients of either purified Tregs or purified T effector cells from aged donors developed lacrimal keratoconjunctivitis, while recipients of young Tregs or young T effector cells failed to develop disease. Overall, these results suggest inflammatory cytokine-producing CD4+Foxp3+ cells participate in the pathogenesis of age-related ocular surface disease. PMID:27706128

  6. 17α-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization

    PubMed Central

    Stout, Michael B.; Steyn, Frederik J.; Jurczak, Michael J.; Camporez, Joao-Paulo G.; Zhu, Yi; Hawse, John R.; Jurk, Diana; Palmer, Allyson K.; Xu, Ming; Pirtskhalava, Tamar; Evans, Glenda L.; de Souza Santos, Roberta; Frank, Aaron P.; White, Thomas A.; Monroe, David G.; Singh, Ravinder J.; Casaclang-Verzosa, Grace; Miller, Jordan D.; Clegg, Deborah J.; LeBrasseur, Nathan K.; von Zglinicki, Thomas; Shulman, Gerald I.; Tchkonia, Tamara

    2017-01-01

    Aging is associated with visceral adiposity, metabolic disorders, and chronic low-grade inflammation. 17α-estradiol (17α-E2), a naturally occurring enantiomer of 17β-estradiol (17β-E2), extends life span in male mice through unresolved mechanisms. We tested whether 17α-E2 could alleviate age-related metabolic dysfunction and inflammation. 17α-E2 reduced body mass, visceral adiposity, and ectopic lipid deposition without decreasing lean mass. These declines were associated with reductions in energy intake due to the activation of hypothalamic anorexigenic pathways and direct effects of 17α-E2 on nutrient-sensing pathways in visceral adipose tissue. 17α-E2 did not alter energy expenditure or excretion. Fasting glucose, insulin, and glycosylated hemoglobin were also reduced by 17α-E2, and hyperinsulinemic-euglycemic clamps revealed improvements in peripheral glucose disposal and hepatic glucose production. Inflammatory mediators in visceral adipose tissue and the circulation were reduced by 17α-E2. 17α-E2 increased AMPKα and reduced mTOR complex 1 activity in visceral adipose tissue but not in liver or quadriceps muscle, which is in contrast to the generalized systemic effects of caloric restriction. These beneficial phenotypic changes occurred in the absence of feminization or cardiac dysfunction, two commonly observed deleterious effects of exogenous estrogen administration. Thus, 17α-E2 holds potential as a novel therapeutic for alleviating age-related metabolic dysfunction through tissue-specific effects. PMID:26809497

  7. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction

    PubMed Central

    Mikhed, Yuliya; Daiber, Andreas; Steven, Sebastian

    2015-01-01

    The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan. PMID:26184181

  8. Assessment of ganglioside age-related and topographic specificity in human brain by Orbitrap mass spectrometry.

    PubMed

    Sarbu, Mirela; Dehelean, Liana; Munteanu, Cristian V A; Vukelić, Željka; Zamfir, Alina D

    2017-03-15

    The gangliosides (GGs) of the central nervous system (CNS) exhibit age and topographic specificity and these patterns may correlate with the functions and pathologies of the brain regions. Here, chloroform extraction, nanoelectrospray (nanoESI) negative ionization, together with Orbitrap high resolution mass spectrometry (MS) determined the topographic and age-related GG specificity in normal adult human brain. Mapping of GG mixtures extracted from 20 to 82 year old frontal and occipital lobes revealed besides a decrease in the GG number with age, a variability of sialylation degree within the brain regions. From the 111 species identified, 105 were distinguished in the FL20, 74 in OL20, 46 in FL82 and 56 in OL82. The results emphasize that within the juvenile brain, GG species exhibit a higher expression in the FL than in OL, while in the aged brain the number of GG species is higher in the OL. By applying MS/MS analysis, the generated fragment ions confirmed the incidence of GT1c (d18:1/18:0) and GT1c (d18:1/20:0) in the investigated samples. The present findings are of major value for further clinical studies carried out using Orbitrap MS in order to correlate gangliosides with CNS disorders.

  9. Genetics of ageing-related changes in brain white matter integrity - a review.

    PubMed

    Kanchibhotla, Sri C; Mather, Karen A; Wen, Wei; Schofield, Peter R; Kwok, John B J; Sachdev, Perminder S

    2013-01-01

    White matter (WM) plays a vital role in the efficient transfer of information between grey matter regions. Modern imaging techniques such as diffusion tensor imaging (DTI) have enabled the examination of WM microstructural changes across the lifespan, but there is limited knowledge about the role genetics plays in the pattern and aetiology of age-related WM microstructural changes. Family and twin studies suggest that the heritability of WM integrity measures changes over the lifespan, with the common DTI measure, fractional anisotropy (FA), showing moderate to high heritability in adults. However, few heritability studies have been undertaken in older adults. Linkage studies in middle-aged adults suggest that specific regions on chromosomes 3 and 15 may harbour genetic variants for WM integrity. A number of studies have investigated candidate genes, with the APOE ɛ4 polymorphism being the most frequently studied. Although these candidate gene studies suggest associations of particular genes with WM integrity measures in some specific brain regions, the findings remain inconsistent due to differences in their methodologies, samples and the outcome measures used. The APOE ɛ4 allele has been associated with decreased WM integrity (FA) in the cingulum, corpus callosum and parahippocampal gyrus. Only one genome-wide association study of global WM integrity measures in older adults has been published, and reported suggestive single nucleotide polymorphisms await replication. Overall, genetic age-related WM integrity studies are lacking and a concerted effort to examine the genetic determinants of age-related decline in WM integrity is clearly needed to improve our understanding of the ageing brain.

  10. Relationship between Brain Age-Related Reduction in Gray Matter and Educational Attainment.

    PubMed

    Rzezak, Patricia; Squarzoni, Paula; Duran, Fabio L; de Toledo Ferraz Alves, Tania; Tamashiro-Duran, Jaqueline; Bottino, Cassio M; Ribeiz, Salma; Lotufo, Paulo A; Menezes, Paulo R; Scazufca, Marcia; Busatto, Geraldo F

    2015-01-01

    Inter-subject variability in age-related brain changes may relate to educational attainment, as suggested by cognitive reserve theories. This voxel-based morphometry study investigated the impact of very low educational level on the relationship between regional gray matter (rGM) volumes and age in healthy elders. Magnetic resonance imaging data were acquired in elders with low educational attainment (less than 4 years) (n = 122) and high educational level (n = 66), pulling together individuals examined using either of three MRI scanners/acquisition protocols. Voxelwise group comparisons showed no rGM differences (p<0.05, family-wise error corrected for multiple comparisons). When within-group voxelwise patterns of linear correlation were compared between high and low education groups, there was one cluster of greater rGM loss with aging in low versus high education elders in the left anterior cingulate cortex (p<0.05, FWE-corrected), as well as a trend in the left dorsomedial prefrontal cortex (p<0.10). These results provide preliminary indication that education might exert subtle protective effects against age-related brain changes in healthy subjects. The anterior cingulate cortex, critical to inhibitory control processes, may be particularly sensitive to such effects, possibly given its involvement in cognitive stimulating activities at school or later throughout life.

  11. Relationship between Brain Age-Related Reduction in Gray Matter and Educational Attainment

    PubMed Central

    Rzezak, Patricia; Squarzoni, Paula; Duran, Fabio L.; de Toledo Ferraz Alves, Tania; Tamashiro-Duran, Jaqueline; Bottino, Cassio M.; Ribeiz, Salma; Lotufo, Paulo A.; Menezes, Paulo R.; Scazufca, Marcia; Busatto, Geraldo F.

    2015-01-01

    Inter-subject variability in age-related brain changes may relate to educational attainment, as suggested by cognitive reserve theories. This voxel-based morphometry study investigated the impact of very low educational level on the relationship between regional gray matter (rGM) volumes and age in healthy elders. Magnetic resonance imaging data were acquired in elders with low educational attainment (less than 4 years) (n = 122) and high educational level (n = 66), pulling together individuals examined using either of three MRI scanners/acquisition protocols. Voxelwise group comparisons showed no rGM differences (p<0.05, family-wise error corrected for multiple comparisons). When within-group voxelwise patterns of linear correlation were compared between high and low education groups, there was one cluster of greater rGM loss with aging in low versus high education elders in the left anterior cingulate cortex (p<0.05, FWE-corrected), as well as a trend in the left dorsomedial prefrontal cortex (p<0.10). These results provide preliminary indication that education might exert subtle protective effects against age-related brain changes in healthy subjects. The anterior cingulate cortex, critical to inhibitory control processes, may be particularly sensitive to such effects, possibly given its involvement in cognitive stimulating activities at school or later throughout life. PMID:26474472

  12. Age-related characteristics of brain development in children living in the north.

    PubMed

    Soroko, S I; Burykh, E A; Sidorenko, G V

    2006-09-01

    The morphofunctional age-related development of the brain was studied in schoolchildren living in the difficult climatological-geographic and socioeconomic conditions of the north (Arkhangel'sk region). Of the 62 students in country middle schools, EEG amplitude-frequency, time, and spatial measures corresponded to age norms (European norms) in only 10 cases (16%). A further 26 children (53%) showed minor abnormalities in the form of an inadequate degree of organization of the temporospatial EEG pattern, mainly in the frontal and temporal lobes of the brain, with increases in the levels of the theta and delta rhythms, and the absence of any marked "functional nucleus" in the alpha rhythm. In the remaining 14 children (29%), EEG measures showed more marked delays in mental development (DMD), which were combined with learning difficulties and abnormal behavior. The retardation in the morphofunctional development of the brain in northern children averaged 1.5-2 years, which coincides with delays in hormonal and physical development described by other authors.

  13. Regional age-related effects in the monkey brain measured with 1H magnetic resonance spectroscopy.

    PubMed

    Ronen, Itamar; Fan, Xiaoying; Schettler, Steve; Jain, Sahil; Murray, Donna; Kim, Dae-Shik; Killiany, Ronald; Rosene, Douglas

    2011-06-01

    The rhesus monkey is a useful model for examining age-related effects on the brain, because of the extensive neuroanatomical homology between the monkey and the human brain, the tight control for neurological diseases as well as the possibility of obtaining relevant behavioral data and post-mortem tissue for histological analyses. Here, proton magnetic resonance spectroscopy ((1)H-MRS) was used together with high-resolution anatomical MRI images to carefully assess regional concentrations of brain metabolites in a group of 20 rhesus monkeys. In an anterior volume of interest (VOI) that covered frontal and prefrontal areas, significant positive correlations of myo-inositol and of total creatine concentrations with age were detected, whereas N-acetyl aspartate (NAA) and choline compounds (Cho) were not significantly correlated with age. In an occipito-parietal VOI, all metabolites showed no statistically significant age-dependent trend. Strong correlations were found between NAA concentration and gray matter fraction in the VOIs as well as between choline compounds and white matter fraction.

  14. Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain.

    PubMed

    Scudiero, Rosaria; Cigliano, Luisa; Verderame, Mariailaria

    2017-01-01

    Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed.

  15. Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; Lu, Guang-Ming; Zuo, Xi-Nian

    2015-10-01

    Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging.

  16. Age-related changes in susceptibility of rat brain slice cultures including hippocampus to encephalomyocarditis virus

    PubMed Central

    Su, Weiping; Ueno-Yamanouchi, Aito; Uetsuka, Koji; Nakayama, Hiroyuki; Doi, Kunio

    1999-01-01

    Replication of the D variant of encephalomyocarditis virus (EMC-D) and its cytopathic effects were studied in the brain slice cultures including hippocampus (hippocampal slice) obtained from postnatal 1-, 4-, 7-, 14-, 28-and 56-day-old Fischer 344 rats. At 0, 12, 24, 36 and 48 h after infection, virus titres of the slices and culture media were assayed. Viral replication was observed in cultures from 1-to 28-day-old rats, and the highest titre was recorded in the slice and culture medium from the youngest rat. The peak of virus titre decreased with age and no distinct viral replication was observed in the cultures from 56-day-old rats. Light microscopy revealed that degenerative and necrotic changes appeared in the infected hippocampal slices from 1- to 28-day-old rats, and the changes became less prominent with age. In situ hybridization and indirect immunofluorescence staining showed that positive signals of viral RNA and antigen were prominent in younger rats and decreased with age. These results suggest that an age-related decrease in the susceptibility of rat brain to EMC-D is less related to the maturation of the immune system but possibly to that of the neurone. PMID:10632784

  17. Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability

    PubMed Central

    McIntosh, A. R.; Vakorin, V.; Kovacevic, N.; Wang, H.; Diaconescu, A.; Protzner, A. B.

    2014-01-01

    Recent theoretical and empirical work has focused on the variability of network dynamics in maturation. Such variability seems to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into healthy aging. Two different data sets, one EEG (total n = 48, ages 18–72) and one magnetoencephalography (n = 31, ages 20–75) were analyzed for such spatiotemporal dependency using multiscale entropy (MSE) from regional brain sources. In both data sets, the changes in MSE were timescale dependent, with higher entropy at fine scales and lower at more coarse scales with greater age. The signals were parsed further into local entropy, related to information processed within a regional source, and distributed entropy (information shared between two sources, i.e., functional connectivity). Local entropy increased for most regions, whereas the dominant change in distributed entropy was age-related reductions across hemispheres. These data further the understanding of changes in brain signal variability across the lifespan, suggesting an inverted U-shaped curve, but with an important qualifier. Unlike earlier in maturation, where the changes are more widespread, changes in adulthood show strong spatiotemporal dependence. PMID:23395850

  18. Age-Related Differences in the Brain Areas outside the Classical Language Areas among Adults Using Category Decision Task

    ERIC Educational Resources Information Center

    Cho, Yong Won; Song, Hui-Jin; Lee, Jae Jun; Lee, Joo Hwa; Lee, Hui Joong; Yi, Sang Doe; Chang, Hyuk Won; Berl, Madison M.; Gaillard, William D.; Chang, Yongmin

    2012-01-01

    Older adults perform much like younger adults on language. This similar level of performance, however, may come about through different underlying brain processes. In the present study, we evaluated age-related differences in the brain areas outside the typical language areas among adults using a category decision task. Our results showed that…

  19. Phonemic Fluency and Brain Connectivity in Age-Related Macular Degeneration: A Pilot Study

    PubMed Central

    Chou, Ying-hui; Potter, Guy G.; Diaz, Michele T.; Chen, Nan-kuei; Lad, Eleonora M.; Johnson, Micah A.; Cousins, Scott W.; Zhuang, Jie; Madden, David J.

    2015-01-01

    Abstract Age-related macular degeneration (AMD), the leading cause of blindness in developed nations, has been associated with poor performance on tests of phonemic fluency. This pilot study sought to (1) characterize the relationship between phonemic fluency and resting-state functional brain connectivity in AMD patients and (2) determine whether regional connections associated with phonemic fluency in AMD patients were similarly linked to phonemic fluency in healthy participants. Behavior-based connectivity analysis was applied to resting-state, functional magnetic resonance imaging data from seven patients (mean age=79.9±7.5 years) with bilateral AMD who completed fluency tasks prior to imaging. Phonemic fluency was inversely related to the strength of functional connectivity (FC) among six pairs of brain regions, representing eight nodes: left opercular portion of inferior frontal gyrus (which includes Broca's area), left superior temporal gyrus (which includes part of Wernicke's area), inferior parietal lobe (bilaterally), right superior parietal lobe, right supramarginal gyrus, right supplementary motor area, and right precentral gyrus. The FC of these reference links was not related to phonemic fluency among 32 healthy individuals (16 younger adults, mean age=23.5±4.6 years and 16 older adults, mean age=68.3±3.4 years). Compared with healthy individuals, AMD patients exhibited higher mean connectivity within the reference links and within the default mode network, possibly reflecting compensatory changes to support performance in the setting of reduced vision. These findings are consistent with the hypothesis that phonemic fluency deficits in AMD reflect underlying brain changes that develop in the context of AMD. PMID:25313954

  20. Academic Achievement and Minimal Brain Dysfunction

    ERIC Educational Resources Information Center

    Edwards, R. Philip; And Others

    1971-01-01

    The investigation provided no evidence that a diagnosis of minimal brain dysfunction based on a pediatric neurological evaluation and/or visual-motor impairment as measured by the Bender-Gestalt, is a useful predictor of academic achievement. (Author)

  1. Age-Related Effects of the Apolipoprotein E Gene on Brain Function.

    PubMed

    Matura, Silke; Prvulovic, David; Hartmann, Daniel; Scheibe, Monika; Sepanski, Beate; Butz, Marius; Oertel-Knöchel, Viola; Knöchel, Christian; Karakaya, Tarik; Fußer, Fabian; Hattingen, Elke; Pantel, Johannes

    2016-03-16

    The apolipoprotein E (ApoE) ɛ4 allele is a well-established genetic risk factor for sporadic Alzheimer's disease. Some evidence suggests a negative role of the ApoE ɛ4 allele for cognitive performance in late life, while beneficial effects on cognition have been shown in young age. We investigated age-related effects of the ApoE gene on brain function by assessing cognitive performance, as well as functional activation patterns during retrieval of Face-Name pairs in a group of young (n = 50; age 26.4±4.6 years, 25 ɛ4 carriers) and old (n = 40; age 66.1±7.0 years, 20 ɛ4 carriers) participants. A cross-sectional factorial design was used to examine the effects of age, ApoE genotype, and their interaction on both cognitive performance and the blood oxygenation level dependent (BOLD) brain response during retrieval of Face-Name pairs. While there were no genotype-related differences in cognitive performance, we found a significant interaction of age and ApoE genotype on task-related activation bilaterally in anterior cingulate gyrus and superior frontal gyrus, as well as left and right insula. Old age was associated with increased activity in ɛ4 carriers. The increased BOLD response in old ɛ4 carriers during retrieval could indicate a neurocognitive disadvantage associated with the ɛ4 allele with increasing age. Furthermore, recruitment of neuronal resources resulted in enhanced memory performance in young ɛ4 carriers, pointing to a better neurofunctional capacity associated with the ApoE4 genotype in young age.

  2. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    PubMed

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  3. Functional brain and age-related changes associated with congruency in task switching.

    PubMed

    Eich, Teal S; Parker, David; Liu, Dan; Oh, Hwamee; Razlighi, Qolamreza; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-10-01

    Alternating between completing two simple tasks, as opposed to completing only one task, has been shown to produce costs to performance and changes to neural patterns of activity, effects which are augmented in old age. Cognitive conflict may arise from factors other than switching tasks, however. Sensorimotor congruency (whether stimulus-response mappings are the same or different for the two tasks) has been shown to behaviorally moderate switch costs in older, but not younger adults. In the current study, we used fMRI to investigate the neurobiological mechanisms of response-conflict congruency effects within a task switching paradigm in older (N=75) and younger (N=62) adults. Behaviorally, incongruency moderated age-related differences in switch costs. Neurally, switch costs were associated with greater activation in the dorsal attention network for older relative to younger adults. We also found that older adults recruited an additional set of brain areas in the ventral attention network to a greater extent than did younger adults to resolve congruency-related response-conflict. These results suggest both a network and an age-based dissociation between congruency and switch costs in task switching.

  4. Brain Dysfunction in Sex Offenders.

    ERIC Educational Resources Information Center

    Galski, Thomas; And Others

    1990-01-01

    Attempted to establish the connection between disordered sexuality and brain impairment by using newly developed techniques of neuropsychological investigation with sex offenders (n=35). Results indicated a major portion of the sex offenders showed impaired brain functioning on Luria-Nebraska Neuropsychological Battery. (Author/ABL)

  5. News of cognitive cure for age-related brain shrinkage is premature: a comment on Burgmans et al. (2009).

    PubMed

    Raz, Naftali; Lindenberger, Ulman

    2010-03-01

    The extant longitudinal literature consistently supports the notion of age-related declines in human brain volume. In a report on a longitudinal cognitive follow-up with cross-sectional brain measurements, Burgmans and colleagues (2009) claim that the extant studies overestimate brain volume declines, presumably due to inclusion of participants with preclinical cognitive pathology. Moreover, the authors of the article assert that such declines are absent among optimally healthy adults who maintain cognitive stability for several years. In this comment accompanied by reanalysis of previously published data, we argue that these claims are incorrect on logical, methodological, and empirical grounds.

  6. Chronic Porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE– / – mice brains

    PubMed Central

    Singhrao, Sim K.; Chukkapalli, Sasanka; Poole, Sophie; Velsko, Irina; Crean, St John; Kesavalu, Lakshmyya

    2017-01-01

    ABSTRACT This study explored the origin of age-related granules in the apolipoprotein E gene knockout (ApoE−/−) B6 background mice brains following chronic gingival infection with Porphyromonas gingivalis for 24 weeks. Intracerebral localization of P. gingivalis was detected by fluorescence in situ hybridization (FISH) and its protease by immunohistochemistry. The age-related granules were observed by periodic acid–Schiff (PAS), silver impregnation, and immunostaining. FISH showed intracerebral dissemination of P. gingivalis cells (p = 0.001). PAS and silver impregnation demonstrated the presence of larger inclusions restricted to the CA1, CA2, and dentate gyrus sectors of the hippocampus. A specific monoclonal antibody to bacterial peptidoglycan detected clusters of granules with variable sizes in mice brains infected with P. gingivalis (p = 0.004), and also highlighted areas of diffuse punctate staining equating to physical tissue damage. Mouse immunoglobulin G was observed in the capillaries of the cerebral parenchyma of all P. gingivalis–infected brains (p = 0.001), and on pyramidal neurons in some severely affected mice, compared with the sham-infected mice. Gingipains was also observed in microvessels of the hippocampus in the infected mice. This study supports the possibility of early appearance of age-related granules in ApoE−/− mice following inflammation-mediated tissue injury, accompanied by loss of cerebral blood-brain barrier integrity. PMID:28326151

  7. Public Education for Children with Brain Dysfunction.

    ERIC Educational Resources Information Center

    Rappaport, Sheldon R.

    A foreword by William M. Cruickshank introduces a book designed to provide information on the problems of children with brain dysfunction and to furnish guidelines to habilitation. Subjects discussed are the status of education for these children, preparing the community for a school program, selection of school and preparation of the principal,…

  8. The Biochemical Basis of Minimal Brain Dysfunction

    ERIC Educational Resources Information Center

    Shaywitz, Sally E.; And Others

    1978-01-01

    Available from: C. V. Mosby Company 11830 Westline Industrial Drive St. Louis, Missouri 63141 The research review examines evidence suggesting a biochemical basis for minimal brain dysfunction (MBD), which includes both a relationship between MBD and metabolic abnormalities and a significant genetic influence on the disorder in children. (IM)

  9. New Diagnostic Terminology for Minimal Brain Dysfunction.

    ERIC Educational Resources Information Center

    Shaywitz, Bennett A.; And Others

    1979-01-01

    Minimal brain dysfunction has been redefined by the American Psychological Association as attention deficit disorder (ADD) and subdivided into categories with and without hyperactivity. The revised 'Diagnostic and Statistical Manual' (DSM III) is now undergoing field trials. Journal Availability: C. V. Mosby Company, 11830 Westline Industrial…

  10. AGE-RELATED BRAIN CHOLINESTERASE INHIBITION KINETICS FOLLOWING IN VITRO INCUBATION WITH CHLORPYRIFOS-OXON AND DIAZINON-OXON

    SciTech Connect

    Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck

    2007-01-01

    Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki values obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.

  11. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics

    SciTech Connect

    Cavelier, L.; Jazin, E.E.; Eriksson, I.

    1995-09-01

    Defects in mitochondrial energy production have been implicated in several neurodegenerative disorders, such as Parkinson disease and amyotrophic lateral sclerosis. To study the contribution of mitochondrial defects to Alzheimer disease and schizophrenia, cytochrome-c oxidase (COX) activity and levels of the mtDNA{sup 4977} deletion in postmortem brain tissue specimens of patients were compared with those of asymptomatic age-matched controls. No difference in COX activity was observed between Alzheimer patients and controls in any of five brain regions investigated. In contrast, schizophrenic patients had a 63% reduction of the COX activity in the nucleus caudatus (P<0.0001) and a 43% reduction in the cortex gyrus frontalis (P<0.05) as compared to controls. The average levels of the mtDNA{sup 4977} deletion did not differ significantly between Alzheimer patients and controls, and the deletion followed similar modes of accumulation with age in the two groups. In contrast, no age-related accumulation of mtDNA deletions was found in schizophrenic patients. The reduction in COX activity in schizophrenic patients did not correlate with changes in the total amount of mtDNA or levels of the mtDNA{sup 4977} deletion. The lack of age-related accumulation of the mtDNA{sup 4977} deletion and reduction in COX activity suggest that a mitochondrial dysfunction may be involved in the pathogenesis of schizophrenia. 41 refs., 3 figs., 1 tab.

  12. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation.

    PubMed

    Kodali, Maheedhar; Parihar, Vipan K; Hattiangady, Bharathi; Mishra, Vikas; Shuai, Bing; Shetty, Ashok K

    2015-01-28

    Greatly waned neurogenesis, diminished microvasculature, astrocyte hypertrophy and activated microglia are among the most conspicuous structural changes in the aged hippocampus. Because these alterations can contribute to age-related memory and mood impairments, strategies efficacious for mitigating these changes may preserve cognitive and mood function in old age. Resveratrol, a phytoalexin found in the skin of red grapes having angiogenic and antiinflammatory properties, appears ideal for easing these age-related changes. Hence, we examined the efficacy of resveratrol for counteracting age-related memory and mood impairments and the associated detrimental changes in the hippocampus. Two groups of male F344 rats in late middle-age having similar learning and memory abilities were chosen and treated with resveratrol or vehicle for four weeks. Analyses at ~25 months of age uncovered improved learning, memory and mood function in resveratrol-treated animals but impairments in vehicle-treated animals. Resveratrol-treated animals also displayed increased net neurogenesis and microvasculature, and diminished astrocyte hypertrophy and microglial activation in the hippocampus. These results provide novel evidence that resveratrol treatment in late middle age is efficacious for improving memory and mood function in old age. Modulation of the hippocampus plasticity and suppression of chronic low-level inflammation appear to underlie the functional benefits mediated by resveratrol.

  13. Investigation of age-related changes in brain activity during the divalent task-switching paradigm using functional MRI.

    PubMed

    Kunimi, Mitsunobu; Kiyama, Sachiko; Nakai, Toshiharu

    2016-02-01

    This study compared the brain activation of young and older subjects during the use of the task-switching paradigm (TSP) at various task speeds to examine the relationship between task load and brain activation. Specifically, it attempted to examine whether the task load-dependent BOLD response gradient is a useful tool for functional magnetic resonance imaging-based assessments of age-related changes in cognitive function. We predicted that the extent of the activation of the brain regions responsible for task-set reconfiguration and the inhibition of task switching functions induced during the performance of a TSP-based task would vary according to age. Task difficulty was controlled by altering the inter-stimulus interval. Although similar brain regions were activated in both age groups, significant differences in the extent of the activation were detected between the young and older groups. In particular, some regions were activated in the older group, but not the young group. This study indicated that TSP-based task performance-induced activation of the brain regions linked to executive function increases with age and that the degree and pattern of such activation depend on the content and difficulty of the task being performed. This indicates that the age- and task difficulty-dependent augmentation of brain activation varies between brain regions.

  14. Age-related changes in the brain antioxidant status: modulation by dietary supplementation of Decalepis hamiltonii and physical exercise.

    PubMed

    Ravikiran, Tekupalli; Sowbhagya, Ramachandregowda; Anupama, Sindhghatta Kariyappa; Anand, Santosh; Bhagyalakshmi, Dundaiah

    2016-08-01

    The synergistic effects of physical exercise and diet have profound benefits on brain function. The present study was aimed to determine the effects of exercise and Decalepis hamiltonii (Dh) on age-related responses on the antioxidant status in discrete regions of rat brain. Male Wistar albino rats of 4 and 18 months old were orally supplemented with Dh extract and swim trained at 3 % intensity for 30 min/day, 5 days/week, for a period of 30 days. Supplementation of 100 mg Dh aqueous extract/kg body weight and its combination with exercise significantly elevated the antioxidant enzyme activities irrespective of age. Age-related and region-specific changes were observed in superoxide levels, and protein carbonyl and malondialdehyde contents, and were found to be decreased in both trained and supplemented groups. Levels of total thiols, protein, and nonprotein thiols decreased with age and significantly increased in the SW-T(+100 mg) groups. Our results demonstrated that the interactive effects of two treatments enhanced the antioxidant status and decreased the risk of protein and lipid oxidation in the rat brain.

  15. Age-related cognitive gains are mediated by the effects of white matter development on brain network integration.

    PubMed

    Stevens, Michael C; Skudlarski, Pawel; Pearlson, Godfrey D; Calhoun, Vince D

    2009-12-01

    A fundamental, yet rarely tested premise of developmental cognitive neuroscience is that changes in brain activity and improvements in behavioral control across adolescent development are related to brain maturational factors that shape a more efficient, highly-interconnected brain in adulthood. We present the first multimodal neuroimaging study to empirically demonstrate that maturation of executive cognitive ability is directly associated with the relationship of white matter development and age-related changes in neural network functional integration. In this study, we identified specific white matter regions whose maturation across adolescence appears to reduce reliance on local processing in brain regions recruited for conscious, deliberate cognitive control in favor of a more widely distributed profile of functionally-integrated brain activity. Greater white matter coherence with age was associated with both increases and decreases in functional connectivity within task-engaged functional circuits. Importantly, these associations between white matter development and brain system functional integration were related to behavioral performance on tests of response inhibition, demonstrating their importance in the maturation of optimal cognitive control.

  16. Developing Connections for Affective Regulation: Age-Related Changes in Emotional Brain Connectivity

    ERIC Educational Resources Information Center

    Perlman, Susan B.; Pelphrey, Kevin A.

    2011-01-01

    The regulation of affective arousal is a critical aspect of children's social and cognitive development. However, few studies have examined the brain mechanisms involved in the development of this aspect of "hot" executive functioning. This process has been conceptualized as involving prefrontal control of the amygdala. Here, using functional…

  17. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging

    PubMed Central

    Maimaiti, Shaniya; Anderson, Katie L.; DeMoll, Chris; Brewer, Lawrence D.; Rauh, Benjamin A.; Gant, John C.; Blalock, Eric M.; Porter, Nada M.

    2016-01-01

    Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer’s disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca2+-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP. PMID:25659889

  18. Age-Related Changes in Transient and Oscillatory Brain Responses to Auditory Stimulation during Early Adolescence

    ERIC Educational Resources Information Center

    Poulsen, Catherine; Picton, Terence W.; Paus, Tomas

    2009-01-01

    Maturational changes in the capacity to process quickly the temporal envelope of sound have been linked to language abilities in typically developing individuals. As part of a longitudinal study of brain maturation and cognitive development during adolescence, we employed dense-array EEG and spatiotemporal source analysis to characterize…

  19. Age-related differences in the response of the brain to dietary melatonin.

    PubMed

    Campbell, Arezoo; Sharman, Edward; Bondy, Stephen C

    2014-02-01

    The aged brain is prone to excessive levels of immune activity, not initiated by an acute response to an extrinsic agent. While dietary melatonin is reported to attenuate the extent of expression of proinflammatory genes, little is known about the extent to which these changes can be translated into altered levels of corresponding proteins. The baseline levels of the proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-1 alpha, were greater in older (~29 months old) compared to younger (~7 months old) mouse brains. Acute (3 h) exposure to lipopolysaccharide (LPS) induced activation of nuclear factor kappa B (NF-κB), but not inflammatory cytokines in the brain. The serum level of TNF-α was increased after LPS injection, indicating a systemic immune response to the bacterial cell wall component. Dietary melatonin (40 ppm for 9.3 weeks) did not prevent LPS-induced changes in younger animals but caused an increased systemic TNF-α response in older mice. Melatonin did reduce markers of carbonyl formation in brain proteins of young animals and nitrosylative damage to peptide-bound amino acid residues, in the brains of older animals. Acute LPS challenge did not significantly affect these oxidative markers. Thus, despite lack of clear evidence of attenuation of the NF-κB-cytokine inflammatory trajectory within the CNS by melatonin, this agent did show a protective effect against free radical-initiated injury to amino acid residues within proteins. The results illustrate that previously reported changes in gene expression following melatonin treatment need not be closely paralleled by corresponding changes in protein content.

  20. Dysfunction of brain pericytes in chronic neuroinflammation.

    PubMed

    Persidsky, Yuri; Hill, Jeremy; Zhang, Ming; Dykstra, Holly; Winfield, Malika; Reichenbach, Nancy L; Potula, Raghava; Mukherjee, Abir; Ramirez, Servio H; Rom, Slava

    2016-04-01

    Brain pericytes are uniquely positioned within the neurovascular unit to provide support to blood brain barrier (BBB) maintenance. Neurologic conditions, such as HIV-1-associated neurocognitive disorder, are associated with BBB compromise due to chronic inflammation. Little is known about pericyte dysfunction during HIV-1 infection. We found decreased expression of pericyte markers in human brains from HIV-1-infected patients (even those on antiretroviral therapy). Using primary human brain pericytes, we assessed expression of pericyte markers (α1-integrin, α-smooth muscle actin, platelet-derived growth factor-B receptor β, CX-43) and found their downregulation after treatment with tumor necrosis factor-α (TNFα) or interleukin-1 β (IL-1β). Pericyte exposure to virus or cytokines resulted in decreased secretion of factors promoting BBB formation (angiopoietin-1, transforming growth factor-β1) and mRNA for basement membrane components. TNFα and IL-1β enhanced expression of adhesion molecules in pericytes paralleling increased monocyte adhesion to pericytes. Monocyte migration across BBB models composed of human brain endothelial cells and pericytes demonstrated a diminished rate in baseline migration compared to constructs composed only of brain endothelial cells. However, exposure to the relevant chemokine, CCL2, enhanced the magnitude of monocyte migration when compared to BBB models composed of brain endothelial cells only. These data suggest an important role of pericytes in BBB regulation in neuroinflammation.

  1. Age-related Differences in Brain Activity during True and False Memory Retrieval

    PubMed Central

    Dennis, Nancy A.; Kim, Hongkeun; Cabeza, Roberto

    2010-01-01

    Compared to young adults, older adults show not only a reduction in true memories but also an increase in false memories. We investigated the neural bases of these age effects using functional magnetic resonance imaging and a false memory task that resembles the Deese–Roediger–McDermott (DRM) paradigm. Young and older participants were scanned during a word recognition task that included studied words and new words that were strongly associated with studied words (critical lures). During correct recognition of studied words (true memory), older adults showed weaker activity than young adults in the hippocampus but stronger activity than young adults in the retrosplenial cortex. The hippocampal reduction is consistent with age-related deficits in recollection, whereas the retrosplenial increase suggests compensatory recruitment of alternative recollection-related regions. During incorrect recognition of critical lures (false memory), older adults displayed stronger activity than young adults in the left lateral temporal cortex, a region involved in semantic processing and semantic gist. Taken together, the results suggest that older adults’ deficits in true memories reflect a decline in recollection processes mediated by the hippocampus, whereas their increased tendency to have false memories reflects their reliance on semantic gist mediated by the lateral temporal cortex. PMID:18303982

  2. Age-related brain trajectories in schizophrenia: a systematic review of structural MRI studies.

    PubMed

    Chiapponi, Chiara; Piras, Fabrizio; Fagioli, Sabrina; Piras, Federica; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-11-30

    Using the Pubmed database, we performed a detailed literature search for structural magnetic resonance imaging studies on patients with schizophrenia, investigating the relationship between macroscopic and microscopic structural parameters and age, to delineate an age-related trajectory. Twenty-six studies were considered for the review, from January 2000 to June 2012. Research results are heterogeneous because of the multifactorial features of schizophrenia and the multiplicity of the methodological approaches adopted. Some areas, within the amygdala-hippocampus complex, which are affected early in life by schizophrenia, age in a physiological way. Other regions, such as the superior temporal gyrus, appear already impaired at the onset of symptoms, undergo a worsening in the acute phase but later stabilize, progressing physiologically over years. Finally, there are regions, such as the uncinate fasciculus, which are not altered early in life, but are affected around the onset of schizophrenia, with their impairment continuously worsening over time. Further extensive longitudinal studies are needed to understand the timing and the possible degenerative characteristics of structural impairment associated with schizophrenia.

  3. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    PubMed

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function.

  4. Lack of spontaneous age-related brain pathology in Octodon degus: a reappraisal of the model

    PubMed Central

    Bourdenx, Mathieu; Dovero, Sandra; Thiolat, Marie-Laure; Bezard, Erwan; Dehay, Benjamin

    2017-01-01

    Neurodegenerative diseases are characterized by the degeneration of specific brain areas associated with accumulation of disease-related protein in extra- or intra-cellular deposits. Their preclinical investigations are mostly based on genetically-engineered animals. Despite their interest, these models are often based on high level of disease-related protein expression, thus questioning their relevance to human pathology and calling for the alternate use of ecological models. In the past few years, Octodon degus has emerged as a promising animal model displaying age-dependent Alzheimer’s disease-related pathology. As neurodegenerative-related proteins often co-deposit in the brain of patients, we assessed the occurrence of α-synuclein-related pathology in this model using state-of-the-art immunohistochemistry and biochemistry. Despite our efforts and in contrast with previously published results, our study argues against the use of Octodon degus as a suitable natural model of neurodegenerative disorder as we failed to identify either Parkinson’s disease- or Alzheimer’s disease-related brain pathologies. PMID:28374864

  5. Edited Magnetic Resonance Spectroscopy Detects an Age-Related Decline in Nonhuman Primate Brain GABA Levels

    PubMed Central

    Killiany, Ronald J.

    2016-01-01

    Recent research had shown a correlation between aging and decreasing Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain. However, how GABA level varies with age in the medial portion of the brain has not yet been studied. The purpose of this study was to investigate the GABA level variation with age focusing on the posterior cingulate cortex, which is the “core hub” of the default mode network. In this study, 14 monkeys between 4 and 21 years were recruited, and MEGA-PRESS MRS was performed to measure GABA levels, in order to explore a potential link between aging and GABA. Our results showed that a correlation between age and GABA+/Creatine ratio was at the edge of significance (r = −0.523, p = 0.081). There was also a near-significant trend between gray matter/white matter ratio and the GABA+/Creatine ratio (r = −0.518, p = 0.0848). Meanwhile, the correlation between age and grey matter showed no significance (r = −0.028, p = 0.93). Therefore, age and gray matter/white matter ratio account for different part of R-squared (adjusted R-squared = 0.5187) as independent variables for predicting GABA levels. Adjusted R-squared is about 0.5 for two independent variables. These findings suggest that there is internal neurochemical variation of GABA levels in the nonhuman primates associated with normal aging and structural brain decline. PMID:27660760

  6. Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels.

    PubMed

    Gao, Fei; Edden, Richard A E; Li, Muwei; Puts, Nicolaas A J; Wang, Guangbin; Liu, Cheng; Zhao, Bin; Wang, Huiquan; Bai, Xue; Zhao, Chen; Wang, Xin; Barker, Peter B

    2013-09-01

    Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. Although measurements of GABA levels in vivo in the human brain using edited proton magnetic resonance spectroscopy ((1)H-MRS) have been established for some time, it is has not been established how regional GABA levels vary with age in the normal human brain. In this study, 49 healthy men and 51 healthy women aged between 20 and 76 years were recruited and J-difference edited spectra were recorded at 3T to determine the effect of age on GABA levels, and to investigate whether there are regional and gender differences in GABA in mesial frontal and parietal regions. Because the signal detected at 3.02 ppm using these experimental parameters is also expected to contain contributions from both macromolecules (MM) and homocarnosine, in this study the signal is labeled GABA+ rather than GABA. Significant negative correlations were observed between age and GABA+ in both regions studied (GABA+/Cr: frontal region, r=-0.68, p<0.001, parietal region, r=-0.54, p<0.001; GABA+/NAA: frontal region, r=-0.58, p<0.001, parietal region, r=-0.49, p<0.001). The decrease in GABA+ with age in the frontal region was more rapid in women than men. Evidence of a measureable decline in GABA is important in considering the neurochemical basis of the cognitive decline that is associated with normal aging.

  7. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    PubMed

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy.

  8. Age-related deficits in voluntary control over saccadic eye movements: consideration of electrical brain stimulation as a therapeutic strategy.

    PubMed

    Chen, Po Ling; Machado, Liana

    2016-05-01

    Sudden changes in our visual environment trigger reflexive eye movements, so automatically they often go unnoticed. Consequently, voluntary control over reflexive eye movements entails considerable effort. In relation to frontal-lobe deterioration, adult aging adversely impacts voluntary saccadic eye movement control in particular, which compromises effective performance of daily activities. Here, we review the nature of age-related changes in saccadic control, focusing primarily on the antisaccade task because of its assessment of 2 key age-sensitive control functions: reflexive saccade inhibition and voluntary saccade generation. With an ultimate view toward facilitating development of therapeutic strategies, we systematically review the neuroanatomy underpinning voluntary control over saccadic eye movements and natural mechanisms that kick in to compensate for age-related declines. We then explore the potential of noninvasive electrical brain stimulation to counteract aging deficits. Based on evidence that anodal transcranial direct current stimulation can confer a range of benefits specifically relevant to aging brains, we put forward this neuromodulation technique as a therapeutic strategy for improving voluntary saccadic eye movement control in older adults.

  9. Age-related decreased inhibitory vs. excitatory gene expression in the adult autistic brain.

    PubMed

    van de Lagemaat, Louie N; Nijhof, Bonnie; Bosch, Daniëlle G M; Kohansal-Nodehi, Mahdokht; Keerthikumar, Shivakumar; Heimel, J Alexander

    2014-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted behavior and interests. A disruption in the balance of excitatory and inhibitory neurotransmission has been hypothesized to underlie these disorders. Here we demonstrate that genes of both pathways are affected by ASD, and that gene expression of inhibitory and excitatory genes is altered in the cerebral cortex of adult but not younger autistic individuals. We have developed a measure for the difference in the level of excitation and inhibition based on gene expression and observe that in this measure inhibition is decreased relative to excitation in adult ASD compared to control. This difference was undetectable in young autistic brains. Given that many psychiatric features of autism are already present at an early age, this suggests that the observed imbalance in gene expression is an aging phenomenon in ASD rather than its underlying cause.

  10. Localizing Age-Related Changes in Brain Structure Using Voxel-Based Morphometry

    PubMed Central

    Mu, Shu Hua; Duan, Jun Xiu

    2017-01-01

    Aim. We report the dynamic anatomical sequence of human cortical gray matter development from late childhood to young adults using VBM and ROI-based methods. Method. The structural MRI of 91 normal individuals ranging in age from 6 to 26 years was obtained and the GMV for each region was measured. Results. Our results showed that the earliest loss of GMV occurred in left olfactory, right precuneus, caudate, left putamen, pallidum, and left middle temporal gyrus. In addition, the trajectory of maturational and aging showed a linear decline in GMV on both cortical lobes and subcortical regions. The most loss of gray matter was observed in the parietal lobe and basal ganglia, whereas the less loss occurred in the temporal lobe and hippocampus, especially in the left middle temporal pole, which showed no decline until 26 years old. Moreover, the volumes of GM, WM, and CSF were also assessed for linear age effects, showing a significant linear decline in GM with age and a significant linear increase in both WM and CSF with age. Interpretation. Overall, our findings lend support to previous findings of the normal brain development of regional cortex, and they may help in understanding of neurodevelopmental disorders. PMID:28194282

  11. Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse.

    PubMed

    Scott, Karen A; Ida, Masayuki; Peterson, Veronica L; Prenderville, Jack A; Moloney, Gerard M; Izumo, Takayuki; Murphy, Kiera; Murphy, Amy; Ross, R Paul; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-02-04

    Over the last decade, there has been increased interest in the role of the gut microbiome in health including brain health. This is by no means a new theory; Elie Metchnikoff proposed over a century ago that targeting the gut by consuming lactic acid bacteria such as those in yogurt, could improve or delay the onset of cognitive decline associated with ageing. However, there is limited information characterising the relationship between the behavioural and physiological sequelae of ageing and alterations in the gut microbiome. To this end, we assessed the behavioural, physiological and caecal microbiota profile of aged male mice. Older mice (20-21months old) exhibited deficits in spatial memory and increases in anxiety-like behaviours compared to younger mice (2-3months old). They also exhibited increased gut permeability, which was directly correlated with elevations in peripheral pro-inflammatory cytokines. Furthermore, stress exacerbated the gut permeability of aged mice. Examination of the caecal microbiota revealed significant increases in phylum TM7, family Porphyromonadaceae and genus Odoribacter of aged mice. This represents a shift of aged microbiota towards a profile previously associated with inflammatory disease, particularly gastrointestinal and liver disorders. Furthermore, Porphyromonadaceae, which has also been associated with cognitive decline and affective disorders, was directly correlated with anxiety-like behaviour in aged mice. These changes suggest that changes in the gut microbiota and associated increases in gut permeability and peripheral inflammation may be important mediators of the impairments in behavioural, affective and cognitive functions seen in ageing.

  12. Age-related alterations in the expression of glial cell line-derived neurotrophic factor in the senescence-accelerated mouse brain.

    PubMed

    Miyazaki, Hiroyuki; Okuma, Yasunobu; Nomura, Jun; Nagashima, Kazuo; Nomura, Yasuyuki

    2003-05-01

    Senescence-accelerated mouse prone 8 (SAMP8) and prone 10 (SAMP10) are useful murine model of accelerated aging. SAMP8 shows marked impairment of learning and memory, whereas SAMP10 shows brain atrophy and aging-associated depressive behavior. This study examined the expression of glial cell line-derived neurotrophic factor (GDNF) in SAMP8 and SAMP10 brains, relative to that in SAM resistant 1 (SAMR1) controls, which age normally. Hippocampal GDNF mRNA expression decreased in an age-dependent manner (10- vs 2-month-old animals) in the SAMR1, but not in the SAMP8 or SAMP10 strains. Furthermore, GDNF mRNA expression in 2-month-old SAMP8 and SAMP10 strains was less than in SAMR1 specimens of the same age. The number of surviving neurons in the CA1 region decreased with age in SAMP8 and SAMP10, and also decreased relative to the number of neurons in 10-month-old SAMR1 controls. Immunohistochemistry revealed that cells that were positive for GDNF-like activity in 10-month-old SAMP8 and SAMP10 were diffusely distributed, in part, around the pyramidal cell layer in the hippocampus. These findings suggest that low GDNF expression in young SAMP8 and SAMP10 may be involved in hippocampal dysfunctions, such as age-related learning impairment and neuronal death.

  13. Age-related carbon dioxide reactivity in children after moderate and severe traumatic brain injury.

    PubMed

    Maa, Tensing; Yeates, Keith Owen; Moore-Clingenpeel, Melissa; O'Brien, Nicole F

    2016-07-01

    OBJECTIVE The objective of this study is to assess carbon dioxide reactivity (CO2R) in children following traumatic brain injury (TBI). METHODS This prospective observational study enrolled children younger than 18 years old following moderate and severe TBI. Thirty-eight mechanically ventilated children had daily CO2R testing performed by measuring changes in their bilateral middle cerebral artery flow velocities using transcranial Doppler ultrasonography (TCD) after a transient increase in minute ventilation. The cohort was divided into 3 age groups: younger than 2 years (n = 12); 2 to 5 years old (n = 9); and older than 5 years (n = 17). RESULTS Children younger than 2 years old had a lower mean CO2R over time. The 2-5-year-old age group had higher mean CO2R than younger patients (p = 0.01), and the highest CO2R values compared with either of the other age groups (vs > 5 years old, p = 0.046; vs < 2 years old, p = 0.002). Having a lower minimum CO2R had a statistically significant negative effect on outcome at discharge (p = 0.0413). Impaired CO2R beyond Postinjury Day 4 trended toward having an effect on outcome at discharge (p = 0.0855). CONCLUSIONS Abnormal CO2R is prevalent in children following TBI, and the degree of impairment varies by age. No clinical or laboratory parameters were identified as risk factors for impaired CO2R. Lower minimum CO2R values are associated with worse outcome at discharge.

  14. Hypothalamic dysfunction following whole-brain irradiation

    SciTech Connect

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-10-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage.

  15. S-allyl cysteine ameliorates the quality of sperm and provides protection from age-related sperm dysfunction and oxidative stress in rats

    PubMed Central

    Takemura, Shigekazu; Ichikawa, Hiroshi; Naito, Yuji; Takagi, Tomohisa; Yoshikawa, Toshikazu; Minamiyama, Yukiko

    2014-01-01

    Reactive oxygen species play a central role in the pathophysiology of the age-related decrease in male fertility. It has been reported that the total protein of DJ-1 was decreased in a proteomic analysis of seminal plasma from asthenozoospermia patients and a DJ-1 protein acts as a sensor of cellular redox homeostasis. Therefore, we evaluated the age-related changes in the ratio of the oxidized/reduced forms of the DJ-1 protein in the epididymis. In addition, the protective effects of S-allyl cysteine (SAC), a potent antioxidant, were evaluated against sperm dysfunction. Male rats aged 15–75 weeks were used to assess age-associated sperm function and oxidative stress. Sperm count increased until 25 weeks, but then decreased at 50 and 75 weeks. The rate of sperm movement at 75 weeks was decreased to approximately 60% of the rate observed at 25 weeks. Expression of DJ-1 decreased, but oxidized-DJ-1 increased with age. In addition, 4-hydroxy-2-nonenal modified proteins in the epididymis increased until 50 weeks of age. The total number and DNA synthetic potential of the sperm increased until 25 weeks, and then decreased. In rats 75 weeks of age, SAC (0.45% diet) attenuated the decrease in the number, motility, and DNA synthesis of sperm and inhibited the oxidized proteins. These results suggest that SAC ameliorates the quality of sperm subjected to age-associated oxidative stress. PMID:25411519

  16. Age-Related Differences in Functional Nodes of the Brain Cortex – A High Model Order Group ICA Study

    PubMed Central

    Littow, Harri; Elseoud, Ahmed Abou; Haapea, Marianne; Isohanni, Matti; Moilanen, Irma; Mankinen, Katariina; Nikkinen, Juha; Rahko, Jukka; Rantala, Heikki; Remes, Jukka; Starck, Tuomo; Tervonen, Osmo; Veijola, Juha; Beckmann, Christian; Kiviniemi, Vesa J.

    2010-01-01

    Functional MRI measured with blood oxygen dependent (BOLD) contrast in the absence of intermittent tasks reflects spontaneous activity of so-called resting state networks (RSN) of the brain. Group level independent component analysis (ICA) of BOLD data can separate the human brain cortex into 42 independent RSNs. In this study we evaluated age-related effects from primary motor and sensory, and, higher level control RSNs. One hundred sixty-eight healthy subjects were scanned and divided into three groups: 55 adolescents (ADO, 13.2 ± 2.4 years), 59 young adults (YA, 22.2 ± 0.6 years), and 54 older adults (OA, 42.7 ± 0.5 years), all with normal IQ. High model order group probabilistic ICA components (70) were calculated and dual-regression analysis was used to compare 21 RSN's spatial differences between groups. The power spectra were derived from individual ICA mixing matrix time series of the group analyses for frequency domain analysis. We show that primary sensory and motor networks tend to alter more in younger age groups, whereas associative and higher level cognitive networks consolidate and re-arrange until older adulthood. The change has a common trend: both spatial extent and the low frequency power of the RSN's reduce with increasing age. We interpret these result as a sign of normal pruning via focusing of activity to less distributed local hubs. PMID:20953235

  17. Reproductive age-related changes in the blood brain barrier: Expression of IgG and tight junction proteins

    PubMed Central

    Bake, Shameena; Friedman, Jonathan A; Sohrabji, Farida

    2009-01-01

    We previously demonstrated that there is significantly greater transfer of intravenously-injected Evan’s blue dye into the forebrain of acyclic (reproductive senescent) females compared to young adult females, indicating that blood brain barrier permeability is compromised in the reproductive senescent forebrain. The present study examined brain IgG expression and microvessel tight junction proteins to assess ovarian age-related changes in microvascular permeability, and further compared young and senescent females with age-matched males to distinguish changes attributable to age and reproductive senescence. Blood brain barrier breakdown are often associated with increased extravasation of plasma proteins and high levels of immunoglobulin G (IgG) in brain. In the present study, IgG expression was dramatically increased in the hippocampus and thalamus, but not the hypothalamus of reproductive senescent females compared to young adult females. In males, IgG expression was increased in all these regions in middle aged animals (aged-matched to senescent females) as compared to young males (age-matched to the young adult females). Furthermore, the proportion of hippocampal microvessels with perivascular IgG immunoreactivity was significantly greater in reproductive senescent females as compared to young adult females, while middle aged males and young adult males did not differ. The tight junctions between adjacent microvascular endothelial cells regulated by transmembrane proteins such as claudin-5 and occludin play a critical role in maintaining the blood brain barrier integrity. Increased hippocampal IgG expression in senescent females was paralleled by poor junctional localization of the tight junction protein claudin-5 in hippocampal microvessels. However, there was no difference in hippocampal claudin-5 localization between young adult and middle aged males, indicating that dysregulation of this junctional protein was associated with ovarian aging. Parallel

  18. Age-related differences on event-related potentials and brain rhythm oscillations during working memory activation.

    PubMed

    Missonnier, Pascal; Herrmann, François R; Rodriguez, Christelle; Deiber, Marie-Pierre; Millet, Phiippe; Fazio-costa, Lara; Gold, Gabriel; Giannakopoulos, Panteleimon

    2011-06-01

    Previous functional imaging studies have pointed to the compensatory recruitment of cortical circuits in old age in order to counterbalance the loss of neural efficiency and preserve cognitive performance. Recent electroencephalographic (EEG) analyses reported age-related deficits in the amplitude of an early positive-negative working memory (PN(wm)) component as well as changes in working memory (WM)-load related brain oscillations during the successful performance of the n-back task. To explore the age-related differences of EEG activation in the face of increasing WM demands, we assessed the PN(wm) component area, parietal alpha event-related synchronization (ERS) as well as frontal theta ERS in 32 young and 32 elderly healthy individuals who successfully performed a highly WM demanding 3-back task. PN(wm) area increased with higher memory loads (3- and 2-back > 0-back tasks) in younger subjects. Older subjects reached the maximal values for this EEG parameter during the less WM demanding 0-back task. They showed a rapid development of an alpha ERS that reached its maximal amplitude at around 800 ms after stimulus onset. In younger subjects, the late alpha ERS occurred between 1,200 and 2,000 ms and its amplitude was significantly higher compared with elders. Frontal theta ERS culmination peak decreased in a task-independent manner in older compared with younger cases. Only in younger individuals, there was a significant decrease in the phasic frontal theta ERS amplitude in the 2- and 3-back tasks compared with the detection and 0-back tasks. These observations suggest that older adults display a rapid mobilization of their neural generators within the parietal cortex to manage very low demanding WM tasks. Moreover, they are less able to activate frontal theta generators during attentional tasks compared with younger persons.

  19. Functional and structural brain modifications induced by oculomotor training in patients with age-related macular degeneration.

    PubMed

    Rosengarth, Katharina; Keck, Ingo; Brandl-Rühle, Sabine; Frolo, Jozef; Hufendiek, Karsten; Greenlee, Mark W; Plank, Tina

    2013-01-01

    Patients with age-related macular degeneration (AMD) are reliant on their peripheral visual field. Oculomotor training can help them to find the best area on intact peripheral retina and to efficiently stabilize eccentric fixation. In this study, nine patients with AMD were trained over a period of 6 months using oculomotor training protocols to improve fixation stability. They were followed over an additional period of 6 months, where they completed an auditory memory training as a sham training. In this cross-over design five patients started with the sham training and four with the oculomotor training. Seven healthy age-matched subjects, who did not take part in any training procedure, served as controls. During the 6 months of training the AMD subjects and the control group took part in three functional and structural magnetic resonance imaging (MRI) sessions to assess training-related changes in the brain function and structure. The sham-training phase was accompanied by two more fMRI measurements, resulting in five MRI sessions at intervals of 3 months for all participants. Despite substantial variability in the training effects, on average, AMD patients benefited from the training measurements as indexed by significant improvements in their fixation stability, visual acuity, and reading speed. The patients showed a significant positive correlation between brain activation changes and improvements in fixation stability in the visual cortex during training. These correlations were less pronounced on the long-term after training had ceased. We also found a significant increase in gray and white matter in the posterior cerebellum after training in the patient group. Our results show that functional and structural brain changes can be associated, at least on the short-term, with benefits of oculomotor and/or reading training in patients with central scotomata resulting from AMD.

  20. Functional and structural brain modifications induced by oculomotor training in patients with age-related macular degeneration

    PubMed Central

    Rosengarth, Katharina; Keck, Ingo; Brandl-Rühle, Sabine; Frolo, Jozef; Hufendiek, Karsten; Greenlee, Mark W.; Plank, Tina

    2013-01-01

    Patients with age-related macular degeneration (AMD) are reliant on their peripheral visual field. Oculomotor training can help them to find the best area on intact peripheral retina and to efficiently stabilize eccentric fixation. In this study, nine patients with AMD were trained over a period of 6 months using oculomotor training protocols to improve fixation stability. They were followed over an additional period of 6 months, where they completed an auditory memory training as a sham training. In this cross-over design five patients started with the sham training and four with the oculomotor training. Seven healthy age-matched subjects, who did not take part in any training procedure, served as controls. During the 6 months of training the AMD subjects and the control group took part in three functional and structural magnetic resonance imaging (MRI) sessions to assess training-related changes in the brain function and structure. The sham-training phase was accompanied by two more fMRI measurements, resulting in five MRI sessions at intervals of 3 months for all participants. Despite substantial variability in the training effects, on average, AMD patients benefited from the training measurements as indexed by significant improvements in their fixation stability, visual acuity, and reading speed. The patients showed a significant positive correlation between brain activation changes and improvements in fixation stability in the visual cortex during training. These correlations were less pronounced on the long-term after training had ceased. We also found a significant increase in gray and white matter in the posterior cerebellum after training in the patient group. Our results show that functional and structural brain changes can be associated, at least on the short-term, with benefits of oculomotor and/or reading training in patients with central scotomata resulting from AMD. PMID:23882237

  1. Rice bran extract protects from mitochondrial dysfunction in guinea pig brains.

    PubMed

    Hagl, Stephanie; Kocher, Alexa; Schiborr, Christina; Eckert, Schamim H; Ciobanu, Ion; Birringer, Marc; El-Askary, Hesham; Helal, Amr; Khayyal, Mohamed T; Frank, Jan; Muller, Walter E; Eckert, Gunter P

    2013-10-01

    Mitochondrial dysfunction plays a major role in the development of age-related neurodegenerative diseases and recent evidence suggests that food ingredients can improve mitochondrial function. In the current study we investigated the effects of feeding a stabilized rice bran extract (RBE) on mitochondrial function in the brain of guinea pigs. Key components of the rice bran are oryzanols, tocopherols and tocotrienols, which are supposed to have beneficial effects on mitochondrial function. Concentrations of α-tocotrienol and γ-carboxyethyl hydroxychroman (CEHC) but not γ-tocotrienol were significantly elevated in brains of RBE fed animals and thus may have provided protective properties. Overall respiration and mitochondrial coupling were significantly enhanced in isolated mitochondria, which suggests improved mitochondrial function in brains of RBE fed animals. Cells isolated from brains of RBE fed animals showed significantly higher mitochondrial membrane potential and ATP levels after sodium nitroprusside (SNP) challenge indicating resistance against mitochondrial dysfunction. Experimental evidence indicated increased mitochondrial mass in guinea pig brains, e.g. enhanced citrate synthase activity, increased cardiolipin as well as respiratory chain complex I and II and TIMM levels. In addition levels of Drp1 and fis1 were also increased in brains of guinea pigs fed RBE, indicating enhanced fission events. Thus, RBE represents a potential nutraceutical for the prevention of mitochondrial dysfunction and oxidative stress in brain aging and neurodegenerative diseases.

  2. Impact of image acquisition on voxel-based-morphometry investigations of age-related structural brain changes.

    PubMed

    Streitbürger, Daniel-Paolo; Pampel, André; Krueger, Gunnar; Lepsien, Jöran; Schroeter, Matthias L; Mueller, Karsten; Möller, Harald E

    2014-02-15

    A growing number of magnetic resonance imaging studies employ voxel-based morphometry (VBM) to assess structural brain changes. Recent reports have shown that image acquisition parameters may influence VBM results. For systematic evaluation, gray-matter-density (GMD) changes associated with aging were investigated by VBM employing acquisitions with different radiofrequency head coils (12-channel matrix coil vs. 32-channel array), different pulse sequences (MP-RAGE vs. MP2RAGE), and different voxel dimensions (1mm vs. 0.8mm). Thirty-six healthy subjects, classified as young, middle-aged, or elderly, participated in the study. Two-sample and paired t-tests revealed significant effects of acquisition parameters (coil, pulse sequence, and resolution) on the estimated age-related GMD changes in cortical and subcortical regions. Potential advantages in tissue classification and segmentation were obtained for MP2RAGE. The 32-channel coil generally outperformed the 12-channel coil, with more benefit for MP2RAGE. Further improvement can be expected from higher resolution if the loss in SNR is accounted for. Use of inconsistent acquisition parameters in VBM analyses is likely to introduce systematic bias. Overall, acquisition and protocol changes require careful adaptations of the VBM analysis strategy before generalized conclusion can be drawn.

  3. Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most event-related potentials (ERP) research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM.

  4. Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory

    PubMed Central

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most event-related potentials (ERP) research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM. PMID

  5. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report.

    PubMed

    Correa-de-Araujo, Rosaly; Harris-Love, Michael O; Miljkovic, Iva; Fragala, Maren S; Anthony, Brian W; Manini, Todd M

    2017-01-01

    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and

  6. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report

    PubMed Central

    Correa-de-Araujo, Rosaly; Harris-Love, Michael O.; Miljkovic, Iva; Fragala, Maren S.; Anthony, Brian W.; Manini, Todd M.

    2017-01-01

    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and

  7. Prison brain? Executive dysfunction in prisoners

    PubMed Central

    Meijers, Jesse; Harte, Joke M.; Jonker, Frank A.; Meynen, Gerben

    2015-01-01

    A better understanding of the functioning of the brain, particularly executive functions, of the prison population could aid in reducing crime rates through the reduction of recidivism rates. Indeed, reoffending appears to be related to executive dysfunction and it is known that executive functions are crucial for self-regulation. In the current paper, studies to executive functions in regular adult prisoners compared to non-offender controls were reviewed. Seven studies were found. Specific executive functions were found to be impaired in the general prison population, i.e., attention and set-shifting, as well as in separate subgroups of violent (i.e., set-shifting and working memory) and non-violent offenders (i.e., inhibition, working memory and problem solving). We conclude that the limited number of studies is remarkable, considering the high impact of this population on society and elaborate on the implications of these specific impairments that were found. Further empirical research is suggested, measuring executive functioning within subjects over time for a group of detainees as well as a control group. PMID:25688221

  8. Motherhood mitigates aging-related decrements in learning and memory and positively affects brain aging in the rat.

    PubMed

    Gatewood, Jessica D; Morgan, Melissa D; Eaton, Mollie; McNamara, Ilan M; Stevens, Lillian F; Macbeth, Abbe H; Meyer, Elizabeth A A; Lomas, Lisa M; Kozub, Frederick J; Lambert, Kelly G; Kinsley, Craig Howard

    2005-07-30

    The current work examined spatial learning and memory (i.e., latencies to find a baited food well) in age-matched nulliparous, primiparous and multiparous (NULL, PRIM and MULT, zero, one or two pregnancies and lactations, respectively). We tested at 6, 12, 18 and 24 months of age in a dry land version of the Morris water maze (Main task), and at 12, 18 and 24 months in the same task in which the original location of the baited well was changed (Reversal task). We show that PRIM/MULT rats, compared to the age-matched NULL females, learned the spatial tasks significantly better and exhibited attenuated memory decline, up to 24 months of age. Furthermore, at the conclusion of behavioral testing, we investigated levels of these animals' hippocampal (CA1 and dentate gyrus) immunoreactive amyloid precursor protein (APP), a marker of neurodegeneration and age-related cognitive loss. MULTs had significantly reduced APP in both CA1 and DG, relative to PRIMs and NULLs, and PRIMs had a trend (p<0.06) toward a reduction in APP compared to NULLs in DG. Further, level of APP was negatively correlated with performance in the two tasks (viz., more APP, worse maze performance). Reproduction, therefore, with its attendant natural endocrine and postpartum sensory experiences, may facilitate lifelong learning and memory, and may mitigate markers of neural aging, in the rat. Combining natural hormonal exposure with subsequent substantial experience with stimuli from the offspring may preserve the aged parous female brain relative to that of NULL females.

  9. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains

    PubMed Central

    Stamova, Boryana; Ander, Bradley P.; Barger, Nicole; Sharp, Frank R.

    2015-01-01

    Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex. PMID:26350727

  10. Neuro-immune Dysfunction During Brain Aging: New Insights in Microglial Cell Regulation

    PubMed Central

    Matt, Stephanie M.; Johnson, Rodney W.

    2015-01-01

    Microglia, the resident immune cells of the brain, are at the center of communication between the central nervous system and immune system. While these brain-immune interactions are balanced in healthy adulthood, the ability to maintain homeostasis during aging is impaired. Microglia develop a loss of integrated regulatory networks including aberrant signaling from other brain cells, immune sensors, and epigenetic modifiers. The low-grade chronic neuroinflammation associated with this dysfunctional activity likely contributes to cognitive deficits and susceptibility to age-related pathologies. A better understanding of the underlying mechanisms responsible for neuro-immune dysregulation with age is crucial for providing targeted therapeutic strategies to support brain repair and healthy aging. PMID:26595306

  11. Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin.

    PubMed

    Petrosillo, G; Matera, M; Casanova, G; Ruggiero, F M; Paradies, G

    2008-11-01

    Reactive oxygen species (ROS) are considered a key factor in brain aging process. Mitochondrial respiration is an important site of ROS production and hence a potential contributor to brain functional changes with aging. In this study we examined the effect of aging on complex I activity, oxygen consumption, ROS production and phospholipid composition in rat brain mitochondria. The activity of complex I was reduced by 30% in brain mitochondria from 24 months aged rats relative to young animals. These changes in complex I activity were associated with parallel changes in state 3 respiration. H(2)O(2) generation was significantly increased in mitochondria isolated from aged rats. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, decreased by 31% as function of aging, while there was a significant increase in the level of peroxidized cardiolipin. The age-related decrease in complex I activity in brain mitochondria could be reversed by exogenously added cardiolipin. This effect of cardiolipin could not be replaced by other phospholipids. It is proposed that aging causes brain mitochondrial complex I dysfunction which can be attributed to ROS-induced cardiolipin oxidation. These findings may prove useful in elucidating the mechanism underlying mitochondrial dysfunction associated with brain aging.

  12. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence.

    PubMed

    Traniello, Ian M; Sîrbulescu, Ruxandra F; Ilieş, Iulian; Zupanc, Günther K H

    2014-05-01

    Adult neurogenesis, the generation of new neurons in the adult central nervous system, is a reported feature of all examined vertebrate species. However, a dramatic decline in the rates of cell proliferation and neuronal differentiation occurs in mammals, typically starting near the onset of sexual maturation. In the present study, we examined possible age-related changes associated with adult neurogenesis in the brain of brown ghost knifefish (Apteronotus leptorhynchus), a teleost fish distinguished by its enormous neurogenic potential. Contrary to the well-established alterations in the mammalian brain during aging, in the brain of this teleostean species we could not find evidence for any significant age-related decline in the absolute levels of stem/progenitor cell proliferation, neuronal and glial differentiation, or long-term survival of newly generated cells. Moreover, there was no indication that the amount of glial fibrillary acidic protein or the number of apoptotic cells in the brain was altered significantly over the course of adult life. We hypothesize that this first demonstration of negligible cellular senescence in the vertebrate brain is related to the continued growth of this species and to the lack of reproductive senescence during adulthood. The establishment of the adult brain of this species as a novel model of negligible senescence provides new opportunities for the advancement of our understanding of the biology of aging and the fundamental mechanisms that underlie senescence in the brain.

  13. Age-related increase in brain activity during task-related and -negative networks and numerical inductive reasoning

    PubMed Central

    Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng

    2014-01-01

    Objective: Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. Methods: To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Results: Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Conclusions: Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning. PMID:25337240

  14. Age-related differences in effective connectivity of brain regions involved in Japanese kanji processing with homophone judgment task.

    PubMed

    Wu, Chiao-Yi; Koh, Jia Ying Serene; Ho, Moon-Ho Ringo; Miyakoshi, Makoto; Nakai, Toshiharu; Chen, Shen-Hsing Annabel

    2014-08-01

    Reading is a complex process involving neural networks in which connections may be influenced by task demands and other factors. We employed functional magnetic resonance imaging and dynamic causal modeling to examine age-related influences on left-hemispheric kanji reading networks. During a homophone judgment task, activation in the middle frontal gyrus, and dorsal and ventral inferior frontal gyri were identified, representing areas involved in orthographic, phonological, and semantic processing, respectively. The young adults showed a preference for a semantically-mediated pathway from orthographic inputs to the retrieval of phonological representations, whereas the elderly preferred a direct connection from orthographic inputs to phonological lexicons prior to the activation of semantic representations. These sequential pathways are in line with the lexical semantic and non-semantic routes in the dual-route cascaded model. The shift in reading pathways accompanied by slowed reaction time for the elderly might suggest age-related declines in the efficiency of network connectivity.

  15. Neuroanatomy and Physiology of Brain Dysfunction in Sepsis.

    PubMed

    Mazeraud, Aurelien; Pascal, Quentin; Verdonk, Franck; Heming, Nicholas; Chrétien, Fabrice; Sharshar, Tarek

    2016-06-01

    Sepsis-associated encephalopathy (SAE), a complication of sepsis, is often complicated by acute and long-term brain dysfunction. SAE is associated with electroencephalogram pattern changes and abnormal neuroimaging findings. The major processes involved are neuroinflammation, circulatory dysfunction, and excitotoxicity. Neuroinflammation and microcirculatory alterations are diffuse, whereas excitotoxicity might occur in more specific structures involved in the response to stress and the control of vital functions. A dysfunction of the brainstem, amygdala, and hippocampus might account for the increased mortality, psychological disorders, and cognitive impairment. This review summarizes clinical and paraclinical features of SAE and describes its mechanisms at cellular and structural levels.

  16. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state.

    PubMed

    Dørum, Erlend S; Kaufmann, Tobias; Alnæs, Dag; Andreassen, Ole A; Richard, Geneviève; Kolskår, Knut K; Nordvik, Jan Egil; Westlye, Lars T

    2017-03-01

    Age-related differences in cognitive agility vary greatly between individuals and cognitive functions. This heterogeneity is partly mirrored in individual differences in brain network connectivity as revealed using resting-state functional magnetic resonance imaging (fMRI), suggesting potential imaging biomarkers for age-related cognitive decline. However, although convenient in its simplicity, the resting state is essentially an unconstrained paradigm with minimal experimental control. Here, based on the conception that the magnitude and characteristics of age-related differences in brain connectivity is dependent on cognitive context and effort, we tested the hypothesis that experimentally increasing cognitive load boosts the sensitivity to age and changes the discriminative network configurations. To this end, we obtained fMRI data from younger (n=25, mean age 24.16±5.11) and older (n=22, mean age 65.09±7.53) healthy adults during rest and two load levels of continuous multiple object tracking (MOT). Brain network nodes and their time-series were estimated using independent component analysis (ICA) and dual regression, and the edges in the brain networks were defined as the regularized partial temporal correlations between each of the node pairs at the individual level. Using machine learning based on a cross-validated regularized linear discriminant analysis (rLDA) we attempted to classify groups and cognitive load from the full set of edge-wise functional connectivity indices. While group classification using resting-state data was highly above chance (approx. 70% accuracy), functional connectivity (FC) obtained during MOT strongly increased classification performance, with 82% accuracy for the young and 95% accuracy for the old group at the highest load level. Further, machine learning revealed stronger differentiation between rest and task in young compared to older individuals, supporting the notion of network dedifferentiation in cognitive aging. Task

  17. Age-related brain atrophy may be mitigated by internal jugular vein enlargement in male individuals without neurologic disease.

    PubMed

    Belov, Pavel; Magnano, Christopher; Krawiecki, Jacqueline; Hagemeier, Jesper; Bergsland, Niels; Beggs, Clive; Zivadinov, Robert

    2017-03-01

    Objectives To assess the relationship between cross-sectional area of internal jugular veins and brain volumes in healthy individuals without neurologic disease. Methods A total of 193 healthy individuals without neurologic disease (63 male and 130 female; age > 20 to < 70 years) received magnetic resonance venography and structural brain magnetic resonance imaging at 3T. The internal jugular vein cross-sectional area was assessed at C2-C3, C4, C5-C6, and C7-T1. Normalized whole brain volume was assessed. Partial correlation analyses were used to determine associations. Results There was an inverse relationship between normalized whole brain volume and total internal jugular vein cross-sectional area (C7-T1: males r = -0.346, p = 0.029; females r = -0.301, p = 0.002). After age adjustment, association of normalized whole brain volume and normalized gray matter volume with internal jugular vein cross-sectional area became positive in males (normalized whole brain volume and right internal jugular vein cross-sectional area (C2-C3) changed from r = -0.163 to r = 0.384, p = 0.002), but not in the females. Conclusion Sex differences exist in the relationship between brain volume and internal jugular vein cross-sectional area in healthy individuals without neurologic disease.

  18. Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method

    PubMed Central

    Dickie, David Alexander; Job, Dominic E.; Gonzalez, David Rodriguez; Shenkin, Susan D.; Wardlaw, Joanna M.

    2015-01-01

    Introduction Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Methods Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. Results The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. Discussion To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we

  19. Age-Related Differences in the Modulation of Small-World Brain Networks during a Go/NoGo Task

    PubMed Central

    Hong, Xiangfei; Liu, Yuelu; Sun, Junfeng; Tong, Shanbao

    2016-01-01

    Although inter-regional phase synchrony of neural oscillations has been proposed as a plausible mechanism for response control, little is known about the possible effects due to normal aging. We recorded multi-channel electroencephalography (EEG) from healthy younger and older adults in a Go/NoGo task, and examined the aging effects on synchronous brain networks with graph theoretical analysis. We found that in both age groups, brain networks in theta, alpha or beta band for either response execution (Go) or response inhibition (NoGo) condition showed prominent small-world property. Furthermore, small-world property of brain networks showed significant differences between different task conditions. Further analyses of node degree suggested that frontal-central theta band phase synchrony was enhanced during response inhibition, whereas during response execution, increased phase synchrony was observed in beta band over central-parietal regions. More interestingly, these task-related modulations on brain networks were well preserved and even more robust in older adults compared with younger adults. Taken together, our findings not only suggest that response control involves synchronous brain networks in functionally-distinct frequency bands, but also indicate an increase in the recruitment of brain network resources due to normal aging. PMID:27242512

  20. Alpha- and gamma- tocopherol prevent age-related transcriptional alterations in the heart and brain of mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the global effects of vitamin E supplementation on aging, we used high density oligonucleotide arrays to measure transcriptional alterations in the heart and brain (neocortex) of 30-month-old B6C3F1 mice supplemented with alpha- and gamma-tocopherol since middle age (15 months). Gene ...

  1. Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease.

    PubMed

    Xian-hui, Dong; Wei-juan, Gao; Tie-mei, Shao; Hong-lin, Xie; Jiang-tao, Bai; Jing-yi, Zhao; Xi-qing, Chai

    2015-04-01

    Alzheimer's disease (AD) as a neurodegenerative brain disorder is a devastating pathology leading to disastrous cognitive impairments and dementia, associated with major social and economic costs to society. Iron can catalyze damaging free radical reactions. With age, iron accumulates in brain frontal cortex regions and may contribute to the risk of AD. In this communication, we investigated the age-related brain iron load changes in the frontal cortex of 6- and 12-month-old C57BL/6J (C57) and APPswe/PS1ΔE9 (APP/PS1) double transgenic mouse by using graphite furnace atomic absorption spectrometry (GFAAS) and Perls' reaction. In the present study, we also evaluated the age-related changes of DMT1 and FPN1 by using Western blot and qPCR. We found that compared with 6-month-old APP/PS1 mice and the 12-month-old C57 mice, the 12-month-old APP/PS1 mice had increased iron load in the frontal cortex. The levels of DMT1 were significantly increased and the FPN1 were significantly reduced in the frontal cortex of the 12-month-old APP/PS1 mice than that in the 6-month-old APP/PS1 mice and 12-month-old C57 mice. We conclude that in AD damage occurs in conjunction with iron accumulation, and the brain iron load associated with loss control of the brain iron metabolism related protein DMT1 and FPN1 expressions.

  2. Folate nutrition and blood-brain barrier dysfunction.

    PubMed

    Stover, Patrick J; Durga, Jane; Field, Martha S

    2017-04-01

    Mammals require essential nutrients from dietary sources to support normal metabolic, physiological and neuronal functions, to prevent diseases of nutritional deficiency as well as to prevent chronic disease. Disease and/or its treatment can modify fundamental biological processes including cellular nutrient accretion, stability and function in cells. These effects can be isolated to a specific diseased organ in the absence of whole-body alterations in nutrient status or biochemistry. Loss of blood-brain barrier function, which occurs in in-born errors of metabolism and in chronic disease, can cause brain-specific folate deficiency and contribute to disease co-morbidity. The role of brain folate deficiency in neuropsychiatric disorders is reviewed, as well as emerging diagnostic and nutritional strategies to identify and address brain folate deficiency in blood-brain barrier dysfunction.

  3. Brain imaging of neurovascular dysfunction in Alzheimer's disease.

    PubMed

    Montagne, Axel; Nation, Daniel A; Pa, Judy; Sweeney, Melanie D; Toga, Arthur W; Zlokovic, Berislav V

    2016-05-01

    Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.

  4. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    PubMed Central

    Olesen, R H; Hyde, T M; Kleinman, J E; Smidt, K; Rungby, J; Larsen, A

    2016-01-01

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn2+ affect modulation of intracellular signaling. The ZNT and ZIP proteins participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African-American sample of 145 neurologically and psychiatrically normal individuals. Expression of ZNT3 and ZNT4 were significantly reduced with increasing age, whereas expression of ZIP1, ZIP9 and ZIP13 were significantly increased. Increasing body mass index (BMI) correlated with a significant reduction in ZNT1 expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing BMI. With the increasing rates of obesity throughout the world, these findings warrant continuous scrutiny of the long-term consequences of obesity on brain function and the development of neurodegenerative diseases. PMID:27300264

  5. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain.

    PubMed

    Olesen, R H; Hyde, T M; Kleinman, J E; Smidt, K; Rungby, J; Larsen, A

    2016-06-14

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn(2+) affect modulation of intracellular signaling. The ZNT and ZIP proteins participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African-American sample of 145 neurologically and psychiatrically normal individuals. Expression of ZNT3 and ZNT4 were significantly reduced with increasing age, whereas expression of ZIP1, ZIP9 and ZIP13 were significantly increased. Increasing body mass index (BMI) correlated with a significant reduction in ZNT1 expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing BMI. With the increasing rates of obesity throughout the world, these findings warrant continuous scrutiny of the long-term consequences of obesity on brain function and the development of neurodegenerative diseases.

  6. [Neuroendocrine dysfunction and brain damage. A consensus statement].

    PubMed

    Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig

    2009-01-01

    This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.

  7. Age-Related Decline in Brain and Hepatic Clearance of Amyloid-Beta is Rectified by the Cholinesterase Inhibitors Donepezil and Rivastigmine in Rats.

    PubMed

    Mohamed, Loqman A; Qosa, Hisham; Kaddoumi, Amal

    2015-05-20

    In Alzheimer's disease (AD), accumulation of brain amyloid-β (Aβ) depends on imbalance between production and clearance of Aβ. Several pathways for Aβ clearance have been reported including transport across the blood-brain barrier (BBB) and hepatic clearance. The incidence of AD increases with age and failure of Aβ clearance correlates with AD. The cholinesterase inhibitors (ChEIs) donepezil and rivastigmine are used to ease the symptoms of dementia associated with AD. Besides, both drugs have been reported to provide neuroprotective and disease-modifying effects. Here, we investigated the effect of ChEIs on age-related reduced Aβ clearance. Findings from in vitro and in vivo studies demonstrated donepezil and rivastigmine to enhance (125)I-Aβ40 clearance. Also, the increase in brain and hepatic clearance of (125)I-Aβ40 was more pronounced in aged compared to young rats, and was associated with significant reduction in brain Aβ endogenous levels determined by ELISA. Furthermore, the enhanced clearance was concomitant with up-regulation in the expression of Aβ major transport proteins P-glycoprotein and LRP1. Collectively, our findings that donepezil and rivastigmine enhance Aβ clearance across the BBB and liver are novel and introduce an additional mechanism by which both drugs could affect AD pathology. Thus, optimizing their clinical use could help future drug development by providing new drug targets and possible mechanisms involved in AD pathology.

  8. Aging-Related Hormone Changes in Men

    MedlinePlus

    Healthy Lifestyle Men's health Aging-related hormone changes in men — sometimes called male menopause — are different from those ... to erectile dysfunction and other sexual issues. Make healthy lifestyle choices. Eat a healthy diet and include physical ...

  9. Age-related effects on event-related brain potentials in a congruence/incongruence judgment color-word Stroop task

    PubMed Central

    Zurrón, Montserrat; Lindín, Mónica; Galdo-Alvarez, Santiago; Díaz, Fernando

    2014-01-01

    We examined the event-related brain potentials elicited by color-word stimuli in a Stroop task in which healthy participants (young and old) had to judge whether the meaning and the color of the stimulus were congruent or incongruent. The Stroop effect occurred in both age groups, with longer reaction times in the older group than in the young group for both types of stimuli, but no difference in the number of errors made by either group. Although the N2 and P3b latencies were longer in the older than in the younger group, there were no differences between groups in the latencies of earlier event-related potential components, and therefore the age-related processing slowing is not generalized. The frontal P150 amplitude was larger, and the parietal P3b amplitude was smaller, in the older than in the younger group. Furthermore, the P3b amplitude was maximal at frontal locations in older participants and at parietal locations in young participants. The age-related increase in perceptual resources and the posterior-to-anterior shift in older adults support adaptive reorganization of the neural networks involved in the processing of this Stroop-type task. PMID:24987369

  10. Social cognition and brain morphology: implications for developmental brain dysfunction.

    PubMed

    Evans, David W; Lazar, Steven M; Boomer, K B; Mitchel, Aaron D; Michael, Andrew M; Moore, Gregory J

    2015-06-01

    The social-cognitive deficits associated with several neurodevelopmental and neuropsychiatric disorders have been linked to structural and functional brain anomalies. Given the recent appreciation for quantitative approaches to behavior, in this study we examined the brain-behavior links in social cognition in healthy young adults from a quantitative approach. Twenty-two participants were administered quantitative measures of social cognition, including the social responsiveness scale (SRS), the empathizing questionnaire (EQ) and the systemizing questionnaire (SQ). Participants underwent a structural, 3-T magnetic resonance imaging (MRI) procedure that yielded both volumetric (voxel count) and asymmetry indices. Model fitting with backward elimination revealed that a combination of cortical, limbic and striatal regions accounted for significant variance in social behavior and cognitive styles that are typically associated with neurodevelopmental and neuropsychiatric disorders. Specifically, as caudate and amygdala volumes deviate from the typical R > L asymmetry, and cortical gray matter becomes more R > L asymmetrical, overall SRS and Emotion Recognition scores increase. Social Avoidance was explained by a combination of cortical gray matter, pallidum (rightward asymmetry) and caudate (deviation from rightward asymmetry). Rightward asymmetry of the pallidum was the sole predictor of Interpersonal Relationships and Repetitive Mannerisms. Increased D-scores on the EQ-SQ, an indication of greater systemizing relative to empathizing, was also explained by deviation from the typical R > L asymmetry of the caudate.These findings extend the brain-behavior links observed in neurodevelopmental disorders to the normal distribution of traits in a healthy sample.

  11. Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP

    PubMed Central

    Distrutti, Eleonora; O’Reilly, Julie-Ann; McDonald, Claire; Cipriani, Sabrina; Renga, Barbara; Lynch, Marina A.; Fiorucci, Stefano

    2014-01-01

    The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut–brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function. PMID:25202975

  12. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP.

    PubMed

    Distrutti, Eleonora; O'Reilly, Julie-Ann; McDonald, Claire; Cipriani, Sabrina; Renga, Barbara; Lynch, Marina A; Fiorucci, Stefano

    2014-01-01

    The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut-brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function.

  13. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB.

    PubMed

    Walker, Ashley E; Kaplon, Rachelle E; Pierce, Gary L; Nowlan, Molly J; Seals, Douglas R

    2014-12-01

    Habitual aerobic exercise prevents age-related impairments in endothelium-dependent dilation (EDD). We have hypothesized that the pro-inflammatory transcription factor nuclear factor κB (NF-κB) impairs EDD with sedentary aging, and habitual aerobic exercise prevents this age-related suppression of EDD by NF-κB. To test this hypothesis, we have inhibited NF-κB signalling via oral salsalate administration in healthy older aerobic exercise-trained adults (OT, n=14, 58 ± 2 years), older non-exercising adults (ON, n=16, 61 ± 1 years) and young non-exercising controls (YN, n=8, 23 ± 1 years). Salsalate reduced endothelial cell expression of NF-κB p65 by ~25% in ON (P<0.05) but did not significantly change expression in OT or YN (P>0.05). EDD, assessed by brachial artery flow-mediated dilation (FMD), was improved by salsalate in ON (4.0 ± 0.7% compared with 6.8 ± 0.7%, placebo compared with salsalate, P<0.001) but did not change with salsalate in OT or YN (OT: 7.2 ± 0.7% compared with 7.7 ± 0.6%; YN: 7.6 ± 0.9% compared with 8.1 ± 0.8%; placebo compared with salsalate, P>0.05). Endothelium-independent dilation was not affected by salsalate in any group (P>0.05). In ON, vitamin C infusion improved FMD by ~30% during placebo (P<0.001) but had no affect during salsalate (P>0.05). In OT and YN, vitamin C infusion did not affect FMD during either placebo or salsalate (P>0.05). Salsalate reduced endothelial cell nitrotyrosine content by ~25% and NADPH oxidase p47phox expression by ~30% in ON (P<0.05) but had no effect in OT or YN (P>0.05). Our results suggest that endothelial NF-κB signalling is associated with oxidative stress-related impairment of EDD in healthy non-exercising but not aerobically exercising older adults. This may be a key mechanism by which regular aerobic exercise preserves endothelial function and reduces cardiovascular risk with aging.

  14. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis.

    PubMed

    Kim, Soo Young; Buckwalter, Marion; Soreq, Hermona; Vezzani, Annamaria; Kaufer, Daniela

    2012-11-01

    The protection of the brain from blood-borne toxins, proteins, and cells is critical to the brain's normal function. Accordingly, a compromise in the blood-brain barrier (BBB) function accompanies many neurologic disorders, and is tightly associated with brain inflammatory processes initiated by both infiltrating leukocytes from the blood, and activation of glial cells. Those inflammatory processes contribute to determining the severity and prognosis of numerous neurologic disorders, and can both cause, and result from BBB dysfunction. In this review we examine the role of BBB and inflammatory responses, in particular activation of transforming grown factor β (TGFβ) signaling, in epilepsy, stroke, and Parkinson's disease.

  15. Pituitary dysfunction following traumatic brain injury: clinical perspectives

    PubMed Central

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600

  16. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain.

    PubMed

    Souza, Leandro Cattelan; Antunes, Michelle Silva; Filho, Carlos Borges; Del Fabbro, Lucian; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Donato, Franciele; Prigol, Marina; Boeira, Silvana Peterini; Jesse, Cristiano R

    2015-07-01

    In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent.

  17. Age-related variability in performance of a motor action selection task is related to differences in brain function and structure among older adults.

    PubMed

    Stewart, Jill Campbell; Tran, Xuan; Cramer, Steven C

    2014-02-01

    Task performance for behaviors that engage motor cognitive processes may be particularly sensitive to age-related changes. One well-studied model of cognitive motor function involves engagement of action selection (AS) processes. In young adults, task conditions that add AS demands result in increased preparation times and greater engagement of bilateral dorsal premotor (PMd) and parietal cortices. The current study investigated the behavioral and neural response to a change in motor cognitive demands in older adults through the addition of AS to a movement task. Sixteen older adults made a joystick movement under two conditions during functional magnetic resonance imaging. In the AS condition, participants moved right or left based on an abstract rule; in the execution only (EO) condition, participants moved in the same direction on every trial. Across participants, the AS condition, as compared to the EO condition, was associated with longer reaction time and increased activation of left inferior parietal lobule. Variability in behavioral response to the AS task between participants related to differences in brain function and structure. Overall, individuals with poorer AS task performance showed greater activation in left PMd and dorsolateral prefrontal cortex and decreased structural integrity of white matter tracts that connect sensorimotor, frontal, and parietal regions-key regions for AS task performance. Additionally, two distinct patterns of functional connectivity were found. Participants with a pattern of decreased primary motor-PMd connectivity in response to the AS condition, compared to those with a pattern of increased connectivity, were older and had poorer behavioral performance. These neural changes in response to increased motor cognitive demands may be a marker for age-related changes in the motor system and have an impact on the learning of novel, complex motor skills in older adults.

  18. Age-related difference in size of brain regions for song learning in adult male dark-eyed Juncos (Junco hyemalis).

    PubMed

    Corbitt, Cynthia; Deviche, Pierre

    2005-01-01

    In seasonally breeding adult male songbirds, the volumes of several song control regions (SCRs) change seasonally in parallel with plasma testosterone (T) levels and decrease following gonadectomy. Testosterone treatment to castrates prevents this decrease, indicating T dependency. During the breeding season, second-year (SY: birds entering their first breeding season) free-ranging male Dark-eyed Juncos (Junco hyemalis) have smaller testes than older (after second-year, ASY: birds entering at least their second breeding season) birds. SY males also have lower plasma T concentrations than ASY males at the beginning of the breeding season. We investigated differences in song structure of the two age groups and the relationship between age differences in gonadal function and SCR sizes. The average number of syllables per song, syllable duration, trill rate, song duration, and variability in song duration were age-independent. Two brain regions that are thought to be involved primarily in song learning and perception were 13 and 18% larger, respectively, in SY than in ASY males, the opposite of what would be expected based solely on reproductive measures (testis mass and cloacal protuberance width). In contrast, the volumes of two regions that directly control song expression did not differ with age. The lack of age-related size differences in regions that are required for song production may indicate that male juncos of all ages have similar brain space requirements for motor production. Where there were size differences, they were restricted to regions primarily controlling vocal behavior acquisition/perception, suggesting that first time breeders need more brain space than experienced breeders to acquire crystallized song and/or acoustically perceive aspects of their environment.

  19. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity.

    PubMed

    Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica

    2014-12-15

    Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging.

  20. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21–45 years old

    PubMed Central

    El-Beltagi, Ahmed; Cherian, Jigi; Gejo, Grace; Al-Jazzaf, Abrar; Ismail, Mohammad

    2015-01-01

    Previous and more recent work of analyzing structural changes in the brain suggest that certain brain regions such as the frontal lobe are among the brain regions profoundly affected by the aging process across males and females. Also, a unified model of structural changes in a normally aging brain is still lacking. The present study investigated age-related structural brain changes in gray matter from young to early middle-age adulthood for males and females. Magnetic resonance images of 215 normal and healthy participants between the ages of 21–45 years were acquired. Changes in gray matter were assessed using voxel-based morphometry and gray matter volumetric analysis. The results showed significant decrease in gray matter volume between the youngest and oldest groups in the following brain regions: frontal, temporal, and parietal lobes. Grey matter loss in the frontal lobe was among the most widespread of all brain regions across the comparison groups that showed significant age-related changes in grey matter for both males and females. This work provides a unique pattern of age-related decline of normal and healthy adult males and females that can aid in the future development of a unified model of normal brain aging. PMID:26306927

  1. Regional age-related changes in neuronal nitric oxide synthase (nNOS), messenger RNA levels and activity in SAMP8 brain

    PubMed Central

    Colas, Damien; Gharib, Abdallah; Bezin, Laurent; Morales, Anne; Guidon, Gérard; Cespuglio, Raymond; Sarda, Nicole

    2006-01-01

    Background Nitric oxide (NO) is a multifunctional molecule synthesized by three isozymes of the NO synthase (NOSs) acting as a messenger/modulator and/or a potential neurotoxin. In rodents, the role of NOSs in sleep processes and throughout aging is now well established. For example, sleep parameters are highly deteriorated in senescence accelerated-prone 8 (SAMP8) mice, a useful animal model to study aging or age-associated disorders, while the inducible form of NOS (iNOS) is down-regulated within the cortex and the sleep-structures of the brainstem. Evidence is now increasing for a role of iNOS and resulting oxidative stress but not for the constitutive expressed isozyme (nNOS). To better understand the role of nNOS in the behavioural impairments observed in SAMP8 versus SAMR1 (control) animals, we evaluated age-related variations occurring in the nNOS expression and activity and nitrites/nitrates (NOx-) levels, in three brain areas (n = 7 animals in each group). Calibrated reverse transcriptase (RT) and real-time polymerase chain reaction (PCR) and biochemical procedures were used. Results We found that the levels of nNOS mRNA decreased in the cortex and the hippocampus of 8- vs 2-month-old animals followed by an increase in 12-vs 8-month-old animals in both strains. In the brainstem, levels of nNOS mRNA decreased in an age-dependent manner in SAMP8, but not in SAMR1. Regional age-related changes were also observed in nNOS activity. Moreover, nNOS activity in hippocampus was found lower in 8-month-old SAMP8 than in SAMR1, while in the cortex and the brainstem, nNOS activities increased at 8 months and afterward decreased with age in SAMP8 and SAMR1. NOx- levels showed profiles similar to nNOS activities in the cortex and the brainstem but were undetectable in the hippocampus of SAMP8 and SAMR1. Finally, NOx- levels were higher in the cortex of 8 month-old SAMP8 than in age-matched SAMR1. Conclusion Concomitant variations occurring in NO levels derived from n

  2. Blood-brain barrier dysfunction in disorders of the developing brain

    PubMed Central

    Moretti, Raffaella; Pansiot, Julien; Bettati, Donatella; Strazielle, Nathalie; Ghersi-Egea, Jean-François; Damante, Giuseppe; Fleiss, Bobbi; Titomanlio, Luigi; Gressens, Pierre

    2015-01-01

    Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data. PMID:25741233

  3. Mobile Phone Application for Supporting Persons with Higher Brain Dysfunctions

    NASA Astrophysics Data System (ADS)

    Nakayama, Tsuyoshi; Miyaji, Yuka; Kato, Seishi; Sakurada, Nobuhisa; Ueda, Noriyuki; Nomura, Takayuki; Okaya, Kazunori; Uematsu, Hiroshi; Kimura, Eiji

    This paper shows a mobile phone application for supporting persons with higher brain dysfunction (HBD) such as a cognitive disorder, a memory disorder, and an attention-deficit disorder. This application serves them as a schedule manager, an alarm and an instructor of work sequences. The development concept of this application is easy handling and simple display, because persons with HBD are easily bewildered by complex procedures in the work. Five persons with HBD participated in the experiments for assessing the application at the vocational training place. The use of the application resulted in the drastic decrease of the number of errors and the increase of the System Usability Score, indicating that the developed application is useful for persons with HBD especially in performing vocational training tasks such as the use of database software on PC.

  4. Blood-Brain Barrier Dysfunction and Cerebral Small Vessel Disease (Arteriolosclerosis) in Brains of Older People

    PubMed Central

    Khoong, Cheryl H.L.; Poon, Wayne; Esiri, Margaret M.; Markus, Hugh S.; Hainsworth, Atticus H.

    2014-01-01

    The blood-brain barrier (BBB) protects brain tissue from potentially harmful plasma components. Small vessel disease ([SVD], arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and IgG, which are assumed to reflect BBB dysfunction, in deep grey matter (anterior caudate-putamen, [DGM]) and deep subcortical white matter (DWM) in the brains of a well-characterized patient cohort with minimal Alzheimer disease pathology (Braak stage 0-II) (n = 84; age ≥65 years). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and IgG was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that in aged brains plasma extravasation and hence local BBB dysfunction is common but do not support an association with SVD. PMID:25289893

  5. Is TNF a link between aging-related reproductive endocrine dyscrasia and Alzheimer's disease?

    PubMed

    Clark, Ian A; Atwood, Craig S

    2011-01-01

    This commentary addresses a novel mechanism by which aging-related changes in reproductive hormones could mediate their action in the brain. It presents the evidence that dyotic endocrine signals modulate the expression of tumor necrosis factor (TNF) and related cytokines, and that these cytokines are a functionally important downstream link mediating neurodegeneration and dysfunction. This convergence of dyotic signaling on TNF-mediated degeneration and dysfunction has important implications for understanding the pathophysiology of AD, stroke, and traumatic brain disease, and also for the treatment of these diseases.

  6. Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury

    PubMed Central

    Yin, Xiang-Jie; Chen, Zhen-Yan; Zhu, Xiao-Na; Hu, Jin-Jia

    2017-01-01

    Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase. PMID:28094295

  7. Compound mechanism hypothesis on +Gz induced brain injury and dysfunction of learning and memory

    NASA Astrophysics Data System (ADS)

    Sun, Xi-Qing; Li, Jin-Sheng; Cao, Xin-Sheng; Wu, Xing-Yu

    2005-08-01

    We systematically studied the effect of high- sustained +Gz on the brain and its mechanism in past ten years by animal centrifuge experiments. On the basis of the facts we observed and the more recent advances in acceleration physiology, we put forward a compound mechanism hypothesis to offer a possible explanation for +Gz-induced brain injury and dysfunction of learning and memory. It states that, ischemia during high G exposure might be the main factor accounting for +Gz-induced brain injury and dysfunction of learning and memory, including transient depression of brain energy metabolism, disturbance of ion homeostasis, increased blood-brain barrier permeability, increased brain nitric oxide synthase expression, and the protective effect of heat shock protein 70. In addition, the large rapid change of intracranial pressure and increased stress during +Gz exposure, and the hemorrheologic change after +Gz exposure might be one of the important factors accounting for +Gz-induced brain injury and dysfunction of learning and memory.

  8. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    PubMed Central

    Reifschneider, Kent; Auble, Bethany A.; Rose, Susan R.

    2015-01-01

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life. PMID:26287247

  9. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    PubMed Central

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  10. Increased risk for age-related impairment in visual attention associated with mild traumatic brain injury: Evidence from saccadic response times

    PubMed Central

    Barry, David M.; Ettenhofer, Mark L.

    2017-01-01

    It was hypothesized that risk for age-related impairment in attention would be greater among those with remote history of mild TBI than individuals without history of head injury. Twenty-seven adults with remote history of mild TBI and a well-matched comparison group of 54 uninjured controls completed a computerized test of visual attention while saccadic and manual response times were recorded. Within the mild TBI group only, older age was associated with slower saccadic responses and poorer saccadic inhibition. Saccadic slowing was mitigated in situations where the timing and location of attention targets was fully predictable. Mild TBI was not associated with age-related increases in risk for neuropsychological impairment or neurobehavioral symptoms. These results provide preliminary evidence that risk for age-related impairment in visual attention may be higher among those with a history of mild TBI. Saccadic measures may provide enhanced sensitivity to this subtle form of cognitive impairment. PMID:28166259

  11. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice

    SciTech Connect

    Choi, Hong-Seok; Choi, Yeong-Gon; Shin, Hae-Young; Oh, Jae-Min; Park, Jeong-Ho; Kim, Jae-Il; Carp, Richard I.; Choi, Eun-Kyoung; Kim, Yong-Sun

    2014-05-30

    Highlights: • Mfn1 and Fis1 are significantly increased in the hippocampal region of the ME7 prion-infected brain, whereas Dlp1 is significantly decreased in the infected brain. • Dlp1 is significantly decreased in the cytosolic fraction of the hippocampus in the infected brain. • Neuronal mitochondria in the prion-infected brains are enlarged and swollen compared to those of control brains. • There are significantly fewer mitochondria in the ME7-infected brain compared to the number in control brain. - Abstract: Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress in scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the

  12. [Age related macular degeneration].

    PubMed

    Sayen, Alexandra; Hubert, Isabelle; Berrod, Jean-Paul

    2011-02-01

    Age-related macular degeneration (ARMD) is a multifactorial disease caused by a combination of genetic and environmental factors. It is the first cause of blindness in patients over 50 in the western world. The disease has been traditionally classified into early and late stages with dry (atrophic) and wet (neovascular) forms: neovascular form is characterized by new blood vessels development under the macula (choroidal neovascularisation) which lead to a rapid decline of vision associated with metamorphopsia and requiring an urgent ophtalmological examination. Optical coherence tomography is now one of the most important part of the examination for diagnosis and treatment. Patient with age related maculopathy should consider taking a dietary supplement such that used in AREDS. The treatment of the wet ARMD has largely beneficied since year 2006 of anti-VEGF (vascular endothelial growth factor) molecules such as ranibizumab or bevacizumab given as repeated intravitreal injections. A systematic follow up each 4 to 8 week in required for several years. There is no effective treatment at the moment for dry AMD. For patients with binocular visual acuity under 60/200 rehabilitation includes low vision specialist, vision aids and psychological support.

  13. Differential Effect of Amphetamine Optical Isomers on Bender Gestalt Performance of the Minimally Brain Dysfunctioned

    ERIC Educational Resources Information Center

    Arnold, L. Eugene; And Others

    1978-01-01

    The differential effect of amphetamine optical isomers on Bender Gestalt performance was examined in 31 hyperkinetic minimally brain dysfunctioned children between the ages of 4 and 12 years, using a double-blind Latin-square crossover comparison. (Author)

  14. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice.

    PubMed

    Choi, Hong-Seok; Choi, Yeong-Gon; Shin, Hae-Young; Oh, Jae-Min; Park, Jeong-Ho; Kim, Jae-Il; Carp, Richard I; Choi, Eun-Kyoung; Kim, Yong-Sun

    2014-05-30

    Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress in scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the neuropathological changes associated with prion disease.

  15. Rehabilitation of Visual and Perceptual Dysfunction after Severe Traumatic Brain Injury

    DTIC Science & Technology

    2014-05-01

    AD_________________ Award Number: W81XWH-11-2-0082 TITLE: Rehabilitation of Visual and Perceptual Dysfunction after Severe...From - To) 01 March 2011-28 February 2014 4. TITLE AND SUBTITLE Rehabilitation of Visual and Perceptual Dysfunction after Severe Traumatic Brain...neglect (SN), disabling visual and cognitive perception conditions that commonly occur as a result of severe traumatic brain injury (TBI) and stroke. Both

  16. Piecing Together Phenotypes of Brain Injury and Dysfunction in Obstructive Sleep Apnea

    PubMed Central

    Veasey, Sigrid C.

    2012-01-01

    Obstructive sleep apnea (OSA) is a highly prevalent condition that is associated with significant neurobehavioral impairments. Cognitive abnormalities identified in individuals with OSA include impaired verbal memory, planning, reasoning, vigilance, and mood. Therapy for OSA improves some but not all neurobehavioral outcomes, supporting a direct role for OSA in brain dysfunction and raising the question of irreversible injury from OSA. Recent clinical studies have refined the neurobehavioral, brain imaging, and electrophysiological characteristics of OSA, highlighting findings shared with aging and some unique to OSA. This review summarizes the cognitive, brain metabolic and structural, and peripheral nerve conduction changes observed in OSA that collectively provide a distinct phenotype of OSA brain injury and dysfunction. Findings in animal models of OSA provide insight into molecular mechanisms underlying OSA neuronal injury that can be related back to human neural injury and dysfunction. A comprehensive phenotype of brain function and injury in OSA is essential for advancing diagnosis, prevention, and treatment of this common disorder. PMID:23087666

  17. Dietary melatonin attenuates age-related changes in morphology and in levels of key proteins in globus pallidus of mouse brain.

    PubMed

    Zhou, Jun; Yang, Fengzhen; Zhou, Li; Wang, Jiang-gang; Wen, Puyuan; Luo, Hao; Li, Wenwen; Song, Zhi; Sharman, E H; Bondy, S C

    2014-02-10

    The ability of melatonin treatment of aged animals to partially restore the pattern of gene expression characterizing the younger animal has been frequently reported. The current study examines the effect of melatonin upon age-related changes of some key proteins relevant to the aging process. Male B6C3F1 mice, aged 5.5 months and 23.4 months were used as a model for aging and half of each group received a diet supplemented with 40-ppm (w/w) melatonin for 9.3 weeks. Protein components of the globus pallidus were studied including glial fibrillary acidic protein (GFAP), NF-κB, protein disulfide isomerase (PDI), and Nissl staining. Some age-related changes were in an upward direction (GFAP and NF-κB), while others were depressed with age (PDI and intensity of Nissl staining). However, in either case, melatonin treatment of aged mice generally altered these parameters so that they came to more closely resemble the levels found in younger animals. The extent of this reversal to a more youthful profile, ranged from complete (for NF-κB) to very minor (for Nissl staining and PDI). Overall, these findings are in accord with prior data on the effect of melatonin on cortical gene expression and confirm the value of melatonin as a means of retarding events associated with senescence.

  18. Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system.

    PubMed

    Haider, Saida; Saleem, Sadia; Perveen, Tahira; Tabassum, Saiqa; Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Madiha, Syeda

    2014-06-01

    Oxidative stress from generation of increased reactive oxygen species or free radicals of oxygen has been reported to play an important role in the aging. To investigate the relationship between the oxidative stress and memory decline during aging, we have determined the level of lipid peroxidation, activities of antioxidant enzymes, and activity of acetylcholine esterase (AChE) in brain and plasma as well as biogenic amine levels in brain from Albino-Wistar rats at age of 4 and 24 months. The results showed that the level of lipid peroxidation in the brain and plasma was significantly higher in older than that in the young rats. The activities of antioxidant enzymes displayed an age-dependent decline in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly decreased in brain and plasma of aged rats. Superoxide dismutase (SOD) was also significantly decreased in plasma of aged rats; however, a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in aged rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM) and Elevated plus Maze (EPM) test. Short-term memory and long-term memory was impaired significantly in older rats, which was evident by a significant increase in the latency time in MWM and increase in transfer latency in EPM. Moreover, a marked decrease in biogenic amines (NA, DA, and 5-HT) was also found in the brain of aged rats. In conclusion, our data suggest that increased oxidative stress, decline of antioxidant enzyme activities, altered AChE activity, and decreased biogenic amines level in the brain of aged rats may potentially be involved in diminished memory function.

  19. CCR2 Antagonism Alters Brain Macrophage Polarization and Ameliorates Cognitive Dysfunction Induced by Traumatic Brain Injury

    PubMed Central

    Jopson, Timothy D.; Liu, Sharon; Riparip, Lara-Kirstie; Guandique, Cristian K.; Gupta, Nalin; Ferguson, Adam R.

    2015-01-01

    Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases. With respect to the increasing prevalence of TBI, new therapeutic strategies are urgently needed that will prevent secondary damage to primarily unaffected tissue. Consistently, neuroinflammation has been implicated as a key mediator of secondary damage following the initial mechanical insult. Following injury, there is uncertainty regarding the role that accumulating CCR2+ macrophages play in the injury-induced neuroinflammatory sequelae and cognitive dysfunction. Using CX3CR1GFP/+CCR2RFP/+ reporter mice, we show that TBI initiated a temporally restricted accumulation of peripherally derived CCR2+ macrophages, which were concentrated in the hippocampal formation, a region necessary for learning and memory. Multivariate analysis delineated CCR2+ macrophages' neuroinflammatory response while identifying a novel therapeutic treatment window. As a proof of concept, targeting CCR2+ macrophages with CCX872, a novel Phase I CCR2 selective antagonist, significantly reduced TBI-induced inflammatory macrophage accumulation. Concomitantly, there was a significant reduction in multiple proinflammatory and neurotoxic mediators with this treatment paradigm. Importantly, CCR2 antagonism resulted in a sparing of TBI-induced hippocampal-dependent cognitive dysfunction and reduced proinflammatory activation profile 1 month after injury. Thus, therapeutically targeting the CCR2+ subset of monocytes/macrophages may provide a new avenue of clinical intervention following TBI. PMID:25589768

  20. Age-related increase of reactive oxygen generation in the brains of mammals and birds: is reactive oxygen a signaling molecule to determine the aging process and life span?

    PubMed

    Sasaki, Toru; Unno, Keiko; Tahara, Shoichi; Kaneko, Takao

    2010-07-01

    Since Harman proposed the "free-radical theory of aging", oxidative stress has been postulated to be a major causal factor of senescence. The accumulation of oxidative stress-induced oxidatively modified macromolecules, including protein, DNA and lipid, were found in tissues during the aging process; however, it is not necessarily clear which factor is more critical, an increase in endogenous reactive oxygen and/or a decrease in anti-oxidative defense, to the age-related increase in oxidative damage. To clarify the increasing production of reactive oxygen with age, we examined reactive oxygen-dependent chemiluminescent (CL) signals in ex vivo brain slices prepared from different-aged animal brains during hypoxia-reoxygenation treatment using a novel photonic imaging method. The CL signal was intensified during reoxygenation. The signals in SAMP10 (short-life strain) and SAMR1 (control) brain slices increased with aging. The slope of the increase of CL intensity with age in P10 was steeper than in R1. Age-dependent increase of CL intensity was also observed in C57BL/6 mice, Wistar rats and pigeons; however, superoxide dismutase (SOD) activity in the brain did not change with age. These results suggest that reactive oxygen production itself increased with aging. The rate of age-related increases of CL intensity was inversely related to the maximum lifespan of animals. We speculate that reactive oxygen might be a signaling molecule and its levels in tissue might determine the aging process and lifespan. Decelerating age-related increases of reactive oxygen production are expected to be a potent strategy for anti-aging interventions.

  1. Xenon contrast CT-CBF scanning of the brain differentiates normal age-related changes from multi-infarct dementia and senile dementia of Alzheimer type

    SciTech Connect

    Tachibana, H.; Meyer, J.S.; Okayasu, H.; Shaw, T.G.; Kandula, P.; Rogers, R.L.

    1984-07-01

    Local cerebral blood flow (LCBF) and partition coefficients (L lambda) were measured during inhalation of stable xenon gas with serial CT scanning among normal volunteers (N . 15), individuals with multi-infarct dementia (MID, N . 10), and persons with senile dementia of Alzheimer type (SDAT, N . 8). Mean gray matter flow values were reduced in both MID and SDAT. Age-related declines in LCBF values in normals were marked in frontal cortex and basal ganglia. LCBF values were decreased beyond normals in frontal and temporal cortices and thalamus in MID and SDAT, in basal ganglia only in MID. Unlike SDAT and age-matched normals, L lambda values were reduced in fronto-temporal cortex and thalamus in MID. Multifocal nature of lesions in MID was apparent. Coefficients of variation for LCBFs were greater in MID compared with SDAT and/or age-matched normals.

  2. Age-related memory impairments due to reduced blood glucose responses to epinephrine.

    PubMed

    Morris, Ken A; Chang, Qing; Mohler, Eric G; Gold, Paul E

    2010-12-01

    Increases in blood glucose levels are an important component of the mechanisms by which epinephrine enhances memory formation. The present experiments addressed the hypothesis that a dysfunction in the blood glucose response to circulating epinephrine contributes to age-related memory impairments. Doses of epinephrine and glucagon that significantly increased blood glucose levels in young adult rats were far less effective at doing so in 2-year-old rats. In young rats, epinephrine and glucose were about equally effective in enhancing memory and in prolonging post-training release of acetylcholine in the hippocampus. However, glucose was more effective than epinephrine in enhancing both memory and acetylcholine release in aged rats. These results suggest that an uncoupling between circulating epinephrine and glucose levels in old rats may lead to an age-related reduction in the provision of glucose to the brain during training. This in turn may contribute to age-related changes in memory and neural plasticity.

  3. Age-related changes in the competency of the pheromone gland and the pheromonotropic activity of the brain of both virgin and mated females of two Choristoneura species.

    PubMed

    Delisle, J; Simard, J

    2003-01-01

    Nine-day-old decapitated females injected with different doses of Hez-PBAN produced significantly less pheromone than 1-day-old individuals, suggesting that the age-related decline in the pheromone titre of Choristoneura fumiferana and C. rosaceana virgin females was primarily the result of a reduced ability of the glands to produce pheromone. In C. fumiferana, lower pheromonotropic activity of the Br-SEG may also contribute to the pheromone decline with age but not in C. rosaceana, as the pheromonotropic activity of the Br-SEG remained constant throughout the females' life. In both Choristoneura species, mating also suppressed pheromone production (pheromonostasis) after 24 h. The Br-SEG of mated females contained PBAN but there was no indication that its concentration changed with time post-mating since Br-SEG homogenates obtained from different-aged mated females showed the same level of pheromonotropic activity in both Choristoneura species. However, as observed in virgins, pheromone glands of older mated females were less sensitive to PBAN than those of younger ones. This suggests that the probability of Choristoneura females to attract a second mate may decrease with an increase in the refractory period following the first mating.

  4. Age-related changes in the central auditory system.

    PubMed

    Ouda, Ladislav; Profant, Oliver; Syka, Josef

    2015-07-01

    Aging is accompanied by the deterioration of hearing that complicates our understanding of speech, especially in noisy environments. This deficit is partially caused by the loss of hair cells as well as by the dysfunction of the stria vascularis. However, the central part of the auditory system is also affected by processes accompanying aging that may run independently of those affecting peripheral receptors. Here, we review major changes occurring in the central part of the auditory system during aging. Most of the information that is focused on age-related changes in the central auditory system of experimental animals arises from experiments using immunocytochemical targeting on changes in the glutamic-acid-decarboxylase, parvalbumin, calbindin and calretinin. These data are accompanied by information about age-related changes in the number of neurons as well as about changes in the behavior of experimental animals. Aging is in principle accompanied by atrophy of the gray as well as white matter, resulting in the enlargement of the cerebrospinal fluid space. The human auditory cortex suffers not only from atrophy but also from changes in the content of some metabolites in the aged brain, as shown by magnetic resonance spectroscopy. In addition to this, functional magnetic resonance imaging reveals differences between activation of the central auditory system in the young and old brain. Altogether, the information reviewed in this article speaks in favor of specific age-related changes in the central auditory system that occur mostly independently of the changes in the inner ear and that form the basis of the central presbycusis.

  5. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria.

    PubMed

    Cunha-Oliveira, Teresa; Silva, Lisbeth; Silva, Ana Maria; Moreno, António J; Oliveira, Catarina R; Santos, Maria S

    2013-06-07

    Mitochondrial function and energy metabolism are affected in brains of human cocaine abusers. Cocaine is known to induce mitochondrial dysfunction in cardiac and hepatic tissues, but its effects on brain bioenergetics are less documented. Furthermore, the combination of cocaine and opioids (speedball) was also shown to induce mitochondrial dysfunction. In this work, we compared the effects of cocaine and/or morphine on the bioenergetics of isolated brain and liver mitochondria, to understand their specific effects in each tissue. Upon energization with complex I substrates, cocaine decreased state-3 respiration in brain (but not in liver) mitochondria and decreased uncoupled respiration and mitochondrial potential in both tissues, through a direct effect on complex I. Morphine presented only slight effects on brain and liver mitochondria, and the combination cocaine+morphine had similar effects to cocaine alone, except for a greater decrease in state-3 respiration. Brain and liver mitochondrial respirations were differentially affected, and liver mitochondria were more prone to proton leak caused by the drugs or their combination. This was possibly related with a different dependence on complex I in mitochondrial populations from these tissues. In summary, cocaine and cocaine+morphine induce mitochondrial complex I dysfunction in isolated brain and liver mitochondria, with specific effects in each tissue.

  6. Endocrine dysfunction following traumatic brain injury: a 5-year follow-up nationwide-based study

    PubMed Central

    Yang, Wei-Hsun; Chen, Pau-Chung; Wang, Ting-Chung; Kuo, Ting-Yu; Cheng, Chun-Yu; Yang, Yao-Hsu

    2016-01-01

    Post-traumatic endocrine dysfunction is a complication of traumatic brain injury (TBI). However, there is lack of long-term follow-up and large sample size studies. This study included patients suffering from TBI registered in the Health Insurance Database. Endocrine disorders were identified using the ICD codes: 244 (acquired hypothyroidism), 253 (pituitary dysfunction), 255 (disorders of the adrenal glands), 258 (polyglandular dysfunction), and 259 (other endocrine disorders) with at least three outpatient visits within 1 year or one admission diagnosis. Overall, 156,945 insured subjects were included in the final analysis. The 1- and 5-year incidence rates of post-traumatic endocrinopathies were 0.4% and 2%, respectively. The risks of developing a common endocrinopathy (p < 0.001) or pituitary dysfunction (P < 0.001) were significantly higher in patients with a TBI history. Patients with a skull bone fracture had a higher risk of developing pituitary dysfunction at the 1-year follow up (p value < 0.001). At the 5-year follow up, the association between intracranial hemorrhage and pituitary dysfunction (p value: 0.002) was significant. The risk of developing endocrine dysfunction after TBI increased during the entire 5-year follow-up period. Skull bone fracture and intracranial hemorrhage may be associated with short and long-term post-traumatic pituitary dysfunction, respectively. PMID:27608606

  7. Establishment and Dysfunction of the Blood-Brain Barrier

    PubMed Central

    Zhao, Zhen; Nelson, Amy R.; Betsholtz, Christer; Zlokovic, Berislav V.

    2015-01-01

    Structural and functional brain connectivity, synaptic activity and information processing require highly coordinated signal transduction between different cell types within the neurovascular unit and intact blood-brain barrier (BBB) functions. Here, we examine the mechanisms regulating the formation and maintenance of the BBB and functions of BBB-associated cell types. Furthermore, we discuss the growing evidence associating BBB breakdown with the pathogenesis of inherited monogenic neurological disorders and complex multifactorial diseases including Alzheimer’s disease. PMID:26590417

  8. Age-related changes in the bimanual advantage and in brain oscillatory activity during tapping movements suggest a decline in processing sensory reafference.

    PubMed

    Sallard, Etienne; Spierer, Lucas; Ludwig, Catherine; Deiber, Marie-Pierre; Barral, Jérôme

    2014-02-01

    Deficits in the processing of sensory reafferences have been suggested as accounting for age-related decline in motor coordination. Whether sensory reafferences are accurately processed can be assessed based on the bimanual advantage in tapping: because of tapping with an additional hand increases kinesthetic reafferences, bimanual tapping is characterized by a reduced inter-tap interval variability than unimanual tapping. A suppression of the bimanual advantage would thus indicate a deficit in sensory reafference. We tested whether elderly indeed show a reduced bimanual advantage by measuring unimanual (UM) and bimanual (BM) self-paced tapping performance in groups of young (n = 29) and old (n = 27) healthy adults. Electroencephalogram was recorded to assess the underlying patterns of oscillatory activity, a neurophysiological mechanism advanced to support the integration of sensory reafferences. Behaviorally, there was a significant interaction between the factors tapping condition and age group at the level of the inter-tap interval variability, driven by a lower variability in BM than UM tapping in the young, but not in the elderly group. This result indicates that in self-paced tapping, the bimanual advantage is absent in elderly. Electrophysiological results revealed an interaction between tapping condition and age group on low beta band (14-20 Hz) activity. Beta activity varied depending on the tapping condition in the elderly but not in the young group. Source estimations localized this effect within left superior parietal and left occipital areas. We interpret our results in terms of engagement of different mechanisms in the elderly depending on the tapping mode: a 'kinesthetic' mechanism for UM and a 'visual imagery' mechanism for BM tapping movement.

  9. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  10. Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity.

    PubMed

    Triplett, Judy C; Tramutola, Antonella; Swomley, Aaron; Kirk, Jessime; Grimes, Kelly; Lewis, Kaitilyn; Orr, Miranda; Rodriguez, Karl; Cai, Jian; Klein, Jon B; Perluigi, Marzia; Buffenstein, Rochelle; Butterfield, D Allan

    2015-10-01

    The naked mole-rat (NMR) is the longest-lived rodent and possesses several exceptional traits: marked cancer resistance, negligible senescence, prolonged genomic integrity, pronounced proteostasis, and a sustained health span. The underlying molecular mechanisms that contribute to these extraordinary attributes are currently under investigation to gain insights that may conceivably promote and extend human health span and lifespan. The ubiquitin-proteasome and autophagy-lysosomal systems play a vital role in eliminating cellular detritus to maintain proteostasis and have been previously shown to be more robust in NMRs when compared with shorter-lived rodents. Using a 2-D PAGE proteomics approach, differential expression and phosphorylation levels of proteins involved in proteostasis networks were evaluated in the brains of NMRs in an age-dependent manner. We identified 9 proteins with significantly altered levels and/or phosphorylation states that have key roles involved in proteostasis networks. To further investigate the possible role that autophagy may play in maintaining cellular proteostasis, we examined aspects of the PI3K/Akt/mammalian target of rapamycin (mTOR) axis as well as levels of Beclin-1, LC3-I, and LC3-II in the brain of the NMR as a function of age. Together, these results show that NMRs maintain high levels of autophagy throughout the majority of their lifespan and may contribute to the extraordinary health span of these rodents. The potential of augmenting human health span via activating the proteostasis network will require further studies.

  11. Age-related Changes in the Proteostasis Network in the Brain of the Naked Mole-Rat: Implications Promoting Healthy Longevity

    PubMed Central

    Triplett, Judy C.; Tramutola, Antonella; Swomley, Aaron; Kirk, Jessime; Grimes, Kelly; Lewis, Kaitilyn; Orr, Miranda; Rodriguez, Karl; Cai, Jian; Klein, Jon B.; Perluigi, Marzia; Buffenstein, Rochelle; Butterfield, D. Allan

    2016-01-01

    The naked mole-rat (NMR) is the longest-lived rodent and possesses several exceptional traits: marked cancer resistance, negligible senescence, prolonged genomic integrity, pronounced proteostasis, and a sustained healthspan. The underlying molecular mechanisms that contribute to these extraordinary attributes are currently under investigation to gain insights that may conceivably promote and extended human healthspan and lifespan. The ubiquitin-proteasome and autophagy-lysosomal systems play a vital role in eliminating cellular detritus to maintain proteostasis and have been previously shown to be more robust in NMRs when compared to shorter-lived rodents. Using a 2-D PAGE proteomics approach, differential expression and phosphorylation levels of proteins involved in proteostasis networks were evaluated in the brains of NMRs in an age-dependent manner. We identified 9 proteins with significantly altered levels and/or phosphorylation states that have key roles involved in proteostasis networks. To further investigate the possible role that autophagy may play in maintaining cellular proteostasis, we examined aspects of the PI3K/Akt/mammalian target of rapamycin (mTOR) axis as well as levels of Beclin-1, LC3-I, and LC3-II in the brain of the NMR as a function of age. Together, these results show that NMRs maintain high levels of autophagy throughout the majority of their lifespan. PMID:26248058

  12. Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury

    PubMed Central

    Wolf, John A.; Koch, Paul F.

    2016-01-01

    Traumatic brain injury (TBI) is a heterogeneous disorder with many factors contributing to a spectrum of severity, leading to cognitive dysfunction that may last for many years after injury. Injury to axons in the white matter, which are preferentially vulnerable to biomechanical forces, is prevalent in many TBIs. Unlike focal injury to a discrete brain region, axonal injury is fundamentally an injury to the substrate by which networks of the brain communicate with one another. The brain is envisioned as a series of dynamic, interconnected networks that communicate via long axonal conduits termed the “connectome”. Ensembles of neurons communicate via these pathways and encode information within and between brain regions in ways that are timing dependent. Our central hypothesis is that traumatic injury to axons may disrupt the exquisite timing of neuronal communication within and between brain networks, and that this may underlie aspects of post-TBI cognitive dysfunction. With a better understanding of how highly interconnected networks of neurons communicate with one another in important cognitive regions such as the limbic system, and how disruption of this communication occurs during injury, we can identify new therapeutic targets to restore lost function. This requires the tools of systems neuroscience, including electrophysiological analysis of ensemble neuronal activity and circuitry changes in awake animals after TBI, as well as computational modeling of the effects of TBI on these networks. As more is revealed about how inter-regional neuronal interactions are disrupted, treatments directly targeting these dysfunctional pathways using neuromodulation can be developed. PMID:27242454

  13. California Verbal Learning Test Indicators of Malingered Neurocognitive Dysfunction: Sensitivity and Specificity in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Curtis, Kelly L.; Greve, Kevin W.; Bianchini, Kevin J.; Brennan, Adrianne

    2006-01-01

    The present study used well-defined traumatic brain injury (TBI) and mixed neurological (other than TBI) and psychiatric samples to examine the specificity and sensitivity to Malingered Neurocognitive Dysfunction (MND) of four individual California Verbal Learning Test (CVLT) variables and eight composite CVLT malingering indicators. Participants…

  14. WAIS Digit Span-Based Indicators of Malingered Neurocognitive Dysfunction: Classification Accuracy in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heinly, Matthew T.; Greve, Kevin W.; Bianchini, Kevin J.; Love, Jeffrey M.; Brennan, Adrianne

    2005-01-01

    The present study determined specificity and sensitivity to malingered neurocognitive dysfunction (MND) in traumatic brain injury (TBI) for several Wechsler Adult Intelligence Scale (WAIS) Digit Span scores. TBI patients (n = 344) were categorized into one of five groups: no incentive, incentive only, suspect, probable MND, and definite MND.…

  15. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    PubMed Central

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  16. [Neuroendocrine dysfunctions and their consequences following traumatic brain injury].

    PubMed

    Czirják, Sándor; Rácz, Károly; Góth, Miklós

    2012-06-17

    Posttraumatic hypopituitarism is of major public health importance because it is more prevalent than previously thought. The prevalence of hypopituitarism in children with traumatic brain injury is unknown. Most cases of posttraumatic hypopituitarism remain undiagnosed and untreated in the clinical practice, and it may contribute to the severe morbidity seen in patients with traumatic brain injury. In the acute phase of brain injury, the diagnosis of adrenal insufficiency should not be missed. Determination of morning serum cortisol concentration is mandatory, because adrenal insufficiency can be life threatening. Morning serum cortisol lower than 200 nmol/L strongly suggests adrenal insufficiency. A complete hormonal investigation should be performed after one year of the trauma. Isolated growth hormone deficiency is the most common deficiency after traumatic brain injury. Sports-related chronic repetitive head trauma (because of boxing, kickboxing, football and ice hockey) may also result in hypopituitarism. Close co-operation between neurosurgeons, endocrinologists, rehabilitation physicians and representatives of other disciplines is important to provide better care for these patients.

  17. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    PubMed Central

    Guthrie, O'neil W.; Wong, Brian A.; McInturf, Shawn M.; Reboulet, James E.; Ortiz, Pedro A.; Mattie, David R.

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  18. Review: Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases.

    PubMed

    Stolp, H B; Dziegielewska, K M

    2009-04-01

    The causes of most neurological disorders are not fully understood. Inflammation and blood-brain barrier dysfunction appear to play major roles in the pathology of these diseases. Inflammatory insults that occur during brain development may have widespread effects later in life for a spectrum of neurological disorders. In this review, a new hypothesis suggesting a mechanistic link between inflammation and blood-brain barrier function (integrity), which is universally important in both neurodevelopmental and neurodegenerative diseases, is proposed. The role of inflammation and the blood-brain barrier will be discussed in cerebral palsy, schizophrenia, Parkinson's disease, Alzheimer's disease and multiple sclerosis, conditions where both inflammation and blood-brain barrier dysfunction occur either during initiation and/or progression of the disease. We suggest that breakdown of normal blood-brain barrier function resulting in a short-lasting influx of blood-born molecules, in particular plasma proteins, may cause local damage, such as reduction of brain white matter observed in some newborn babies, but may also be the mechanism behind some neurodegenerative diseases related to underlying brain damage and long-term changes in barrier properties.

  19. Role of brain serotonin dysfunction in the pathophysiology of congestive heart failure.

    PubMed

    Li, Lei; Morimoto, Sachio; Take, Sachiko; Zhan, Dong-Yun; Du, Cheng-Kun; Wang, Yuan-Yuan; Fan, Xue-Li; Yoshihara, Tatsuya; Takahashi-Yanaga, Fumi; Katafuchi, Toshihiko; Sasaguri, Toshiyuki

    2012-12-01

    Inherited or non-inherited dilated cardiomyopathy (DCM) patients develop varied disease phenotypes leading to death after developing congestive heart failure (HF) or sudden death with mild or no overt HF symptoms, suggesting that environmental and/or genetic factors may modify the disease phenotype of DCM. In this study, we sought to explore unknown genetic factors affecting the disease phenotype of monogenic inherited human DCM. Knock-in mice bearing a sarcomeric protein mutation that causes DCM were created on different genetic backgrounds; BALB/c and C57Bl/6. DCM mice on the BALB/c background showed cardiac enlargement and systolic dysfunction and developed congestive HF before died. In contrast, DCM mice on the C57Bl/6 background developed no overt HF symptoms and died suddenly, although they showed considerable cardiac enlargement and systolic dysfunction. BALB/c mice have brain serotonin dysfunction due to a single nucleotide polymorphism (SNP) in tryptophan hydroxylase 2 (TPH2). Brain serotonin dysfunction plays a critical role in depression and anxiety and BALB/c mice exhibit depression- and anxiety-related behaviors. Since depression is common and associated with poor prognosis in HF patients, we examined therapeutic effects of anti-depression drug paroxetine and anti-anxiety drug buspirone that could improve the brain serotonin function in mice. Both drugs reduced cardiac enlargement and improved systolic dysfunction and symptoms of severe congestive HF in DCM mice on the BALB/c background. These results strongly suggest that genetic backgrounds involving brain serotonin dysfunction, such as TPH2 gene SNP, may play an important role in the development of congestive HF in DCM.

  20. Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview.

    PubMed

    Prasad, Shikha; Sajja, Ravi K; Naik, Pooja; Cucullo, Luca

    2014-06-01

    A host of diabetes-related insults to the central nervous system (CNS) have been clearly documented in type-1 and -2 diabetic patients as well as experimental animal models. These host of neurological disorders encompass hemodynamic impairments (e.g., stroke), vascular dementia, cognitive deficits (mild to moderate), as well as a number of neurochemical, electrophysiological and behavioral alterations. The underlying causes of diabetes-induced CNS complications are multifactorial and are relatively little understood although it is now evident that blood-brain barrier (BBB) damage plays a significant role in diabetes-dependent CNS disorders. Changes in plasma glucose levels (hyper- or hypoglycemia) have been associated with altered BBB transport functions (e.g., glucose, insulin, choline, amino acids, etc.), integrity (tight junction disruption), and oxidative stress in the CNS microcapillaries. Last two implicating a potential causal role for upregulation and activation of the receptor for advanced glycation end products (RAGE). This type I membrane-protein also transports amyloid-beta (Aβ) from the blood into the brain across the BBB thus, establishing a link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD, also referred to as "type 3 diabetes"). Hyperglycemia has been associated with progression of cerebral ischemia and the consequent enhancement of secondary brain injury. Difficulty in detecting vascular impairments in the large, heterogeneous brain microvascular bed and dissecting out the impact of hyper- and hypoglycemia in vivo has led to controversial results especially with regard to the effects of diabetes on BBB. In this article, we review the major findings and current knowledge with regard to the impact of diabetes on BBB integrity and function as well as specific brain microvascular effects of hyper- and hypoglycemia.

  1. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves

    PubMed Central

    Shetty, Ashok K.; Mishra, Vikas; Kodali, Maheedhar; Hattiangady, Bharathi

    2014-01-01

    Mild traumatic brain injury (mTBI) resulting from exposure to blast shock waves (BSWs) is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting from exposure to BSWs appears to be the dysfunction or disruption of the blood-brain barrier (BBB). Studies in animal models suggest that exposure to relatively milder BSWs (123 kPa) initially induces free radical generating enzymes in and around brain capillaries, which enhances oxidative stress resulting in loss of tight junction (TJ) proteins, edema formation, and leakiness of BBB with disruption or loss of its components pericytes and astrocyte end-feet. On the other hand, exposure to more intense BSWs (145–323 kPa) causes acute disruption of the BBB with vascular lesions in the brain. Both of these scenarios lead to apoptosis of endothelial and neural cells and neuroinflammation in and around capillaries, which may progress into chronic traumatic encephalopathy (CTE) and/or a variety of neurological impairments, depending on brain regions that are afflicted with such lesions. This review discusses studies that examined alterations in the brain milieu causing dysfunction or disruption of the BBB and neuroinflammation following exposure to different intensities of BSWs. Furthermore, potential of early intervention strategies capable of easing oxidative stress, repairing the BBB or blocking inflammation for minimizing delayed neurological deficits resulting from exposure to BSWs is conferred. PMID:25165433

  2. Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice.

    PubMed

    Hu, Yang; Ding, Wenting; Zhu, Xiaonan; Chen, Ruzhu; Wang, Xuelan

    2016-04-01

    Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.

  3. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma

    PubMed Central

    Lötsch, Jörn; Ultsch, Alfred; Eckhardt, Maren; Huart, Caroline; Rombaux, Philippe; Hummel, Thomas

    2016-01-01

    The presence of cerebral lesions in patients with neurosensory alterations provides a unique window into brain function. Using a fuzzy logic based combination of morphological information about 27 olfactory-eloquent brain regions acquired with four different brain imaging techniques, patterns of brain damage were analyzed in 127 patients who displayed anosmia, i.e., complete loss of the sense of smell (n = 81), or other and mechanistically still incompletely understood olfactory dysfunctions including parosmia, i.e., distorted perceptions of olfactory stimuli (n = 50), or phantosmia, i.e., olfactory hallucinations (n = 22). A higher prevalence of parosmia, and as a tendency also phantosmia, was observed in subjects with medium overall brain damage. Further analysis showed a lower frequency of lesions in the right temporal lobe in patients with parosmia than in patients without parosmia. This negative direction of the differences was unique for parosmia. In anosmia, and also in phantosmia, lesions were more frequent in patients displaying the respective symptoms than in those without these dysfunctions. In anosmic patients, lesions in the right olfactory bulb region were much more frequent than in patients with preserved sense of smell, whereas a higher frequency of carriers of lesions in the left frontal lobe was observed for phantosmia. We conclude that anosmia, and phantosmia, are the result of lost function in relevant brain areas whereas parosmia is more complex, requiring damaged and intact brain regions at the same time. PMID:26937377

  4. Age-Related Macular Degeneration

    MedlinePlus

    ... version of this page please turn Javascript on. Age-related Macular Degeneration About AMD Click for more ... a leading cause of vision loss among people age 60 and older. It causes damage to the ...

  5. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction

    PubMed Central

    Stamatovic, Svetlana M; Johnson, Allison M; Keep, Richard F; Andjelkovic, Anuska V

    2016-01-01

    abstract The blood-brain barrier (BBB) is a highly complex and dynamic barrier. It is formed by an interdependent network of brain capillary endothelial cells, endowed with barrier properties, and perivascular cells (astrocytes and pericytes) responsible for inducing and maintaining those properties. One of the primary properties of the BBB is a strict regulation of paracellular permeability due to the presence of junctional complexes (tight, adherens and gap junctions) between the endothelial cells. Alterations in junction assembly and function significantly affect BBB properties, particularly barrier permeability. However, such alterations are also involved in remodeling the brain endothelial cell surface and regulating brain endothelial cell phenotype. This review summarizes the characteristics of brain endothelial tight, adherens and gap junctions and highlights structural and functional alterations in junctional proteins that may contribute to BBB dysfunction. PMID:27141427

  6. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems

    PubMed Central

    Kohyama, Jun

    2016-01-01

    There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life. PMID:26840337

  7. Identifying dysfunctional crosstalk of pathways in various regions of Alzheimer's disease brains

    PubMed Central

    2010-01-01

    Background Alzheimer's disease (AD) is a major neurodegenerative disorder leading to amnesia, cognitive impairment and dementia in the elderly. Usually this type of lesions results from dysfunctional protein cooperations in the biological pathways. In addition, AD progression is known to occur in different brain regions with particular features. Thus identification and analysis of crosstalk among dysregulated pathways as well as identification of their clusters in various diseased brain regions are expected to provide deep insights into the pathogenetic mechanism. Results Here we propose a network-based systems biology approach to detect the crosstalks among AD related pathways, as well as their dysfunctions in the six brain regions of AD patients. Through constructing a network of pathways, the relationships among AD pathway and its neighbor pathways are systematically investigated and visually presented by their intersections. We found that the significance degree of pathways related to the fatal disorders and the pathway overlapping strength can indicate the impacts of these neighbored pathways to AD development. Furthermore, the crosstalks among pathways reveal some evidence that the neighbor pathways of AD pathway closely cooperate and play important tasks in the AD progression. Conclusions Our study identifies the common and distinct features of the dysfunctional crosstalk of pathways in various AD brain regions. The global pathway crosstalk network and the clusters of relevant pathways of AD provide evidence of cooperativity among pathways for potential pathogenesis of the neuron complex disease. PMID:20840725

  8. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    PubMed

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system.

  9. Age-related macular degeneration.

    PubMed

    Lim, Laurence S; Mitchell, Paul; Seddon, Johanna M; Holz, Frank G; Wong, Tien Y

    2012-05-05

    Age-related macular degeneration is a major cause of blindness worldwide. With ageing populations in many countries, more than 20% might have the disorder. Advanced age-related macular degeneration, including neovascular age-related macular degeneration (wet) and geographic atrophy (late dry), is associated with substantial, progressive visual impairment. Major risk factors include cigarette smoking, nutritional factors, cardiovascular diseases, and genetic markers, including genes regulating complement, lipid, angiogenic, and extracellular matrix pathways. Some studies have suggested a declining prevalence of age-related macular degeneration, perhaps due to reduced exposure to modifiable risk factors. Accurate diagnosis combines clinical examination and investigations, including retinal photography, angiography, and optical coherence tomography. Dietary anti-oxidant supplementation slows progression of the disease. Treatment for neovascular age-related macular degeneration incorporates intraocular injections of anti-VEGF agents, occasionally combined with other modalities. Evidence suggests that two commonly used anti-VEGF therapies, ranibizumab and bevacizumab, have similar efficacy, but possible differences in systemic safety are difficult to assess. Future treatments include inhibition of other angiogenic factors, and regenerative and topical therapies.

  10. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  11. Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption.

    PubMed

    Zhang, Susu; Dong, Hongquan; Zhang, Xiang; Li, Nana; Sun, Jie; Qian, Yanning

    2016-02-01

    Trauma induced neuroinflammation plays a key role in the development of postoperative cognitive dysfunction (POCD). The blood-brain barrier (BBB), a highly specialized endothelial layer, is exquisitely sensitive to inflammatory insults, which can result in numerous neurocognitive syndromes. While brain mast cells are the "first responder" in the injury, the functional interactions between mast cells and the BBB remain poorly understood. Our results demonstrate that tibial fracture surgery can induce cognitive impairment relating to an inflammatory response and destabilization of the BBB. Disodium cromoglycate (cromolyn)--which acts as a mast cell stabilizer--inhibited this effect. Specifically, cromolyn resulted in ameliorated cognitive ability, decrease of inflammatory cytokines and increase of BBB stability. Taken together, these results suggest that activated mast cells contributed to central nervous system inflammation and cognitive dysfunction by promoting BBB disruption, and interactions between mast cells and the BBB could constitute a new and unique therapeutic target for POCD.

  12. [Epidemiologic study of symptoms of minimal brain dysfunction: problems in quantitative evaluation].

    PubMed

    Albrecht, V; Beránková, A; Vopĕnka, P

    1990-02-01

    The paper deals with problems arising during processing of data from an epidemiological screening focused on the Minimum Brain Dysfunction complex in children of the first and second form of elementary school. A new rating scale for the screening has been proposed. Its formal properties were analyzed in detail. Nontraditional coding of partial items forming the scale is discussed. Finally, statistical methods used for analysis of associations between the MBD scale and various combinations of aetiopathological variables are reviewed.

  13. Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause?

    PubMed

    van Spronsen, F J; Hoeksma, Marieke; Reijngoud, Dirk-Jan

    2009-02-01

    In phenylketonuria, mental retardation is prevented by a diet that severely restricts natural protein and is supplemented with a phenylalanine-free amino acid mixture. The result is an almost normal outcome, although some neuropsychological disturbances remain. The pathology underlying cognitive dysfunction in phenylketonuria is unknown, although it is clear that the high plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into brain and restrict the entry of other large neutral amino acids. In the literature, emphasis has been on high brain phenylalanine as the pathological substrate that causes mental retardation. Phenylalanine was found to interfere with different cerebral enzyme systems. However, apart from the neurotoxicity of phenylalanine, a deficiency of the other large neutral amino acids in brain may also be an important factor affecting cognitive function in phenylketonuria. Cerebral protein synthesis was found to be disturbed in a mouse model of phenylketonuria and could be caused by shortage of large neutral amino acids instead of high levels of phenylalanine. Therefore, in this review we emphasize the possibility of a different idea about the pathogenesis of mental dysfunction in phenylketonuria patients and the aim of treatment strategies. The aim of treatment in phenylketonuria might be to normalize cerebral concentrations of all large neutral amino acids rather than prevent high cerebral phenylalanine concentrations alone. In-depth studies are necessary to investigate the role of large neutral amino acid deficiencies in brain.

  14. Molecular contributions to neurovascular unit dysfunctions after brain injuries: lessons for target-specific drug development

    PubMed Central

    Jullienne, Amandine; Badaut, Jérôme

    2014-01-01

    The revised ‘expanded’ neurovascular unit (eNVU) is a physiological and functional unit encompassing endothelial cells, pericytes, smooth muscle cells, astrocytes and neurons. Ischemic stroke and traumatic brain injury are acute brain injuries directly affecting the eNVU with secondary damage, such as blood–brain barrier (BBB) disruption, edema formation and hypoperfusion. BBB dysfunctions are observed at an early postinjury time point, and are associated with eNVU activation of proteases, such as tissue plasminogen activator and matrix metalloproteinases. BBB opening is accompanied by edema formation using astrocytic AQP4 as a key protein regulating water movement. Finally, nitric oxide dysfunction plays a dual role in association with BBB injury and dysregulation of cerebral blood flow. These mechanisms are discussed including all targets of eNVU encompassing endothelium, glial cells and neurons, as well as larger blood vessels with smooth muscle. In fact, the feeding blood vessels should also be considered to treat stroke and traumatic brain injury. This review underlines the importance of the eNVU in drug development aimed at improving clinical outcome after stroke and traumatic brain injury. PMID:24489483

  15. Behavioral changes and brain energy metabolism dysfunction in rats treated with methamphetamine or dextroamphetamine.

    PubMed

    Feier, Gustavo; Valvassori, Samira S; Lopes-Borges, Jéssica; Varela, Roger B; Bavaresco, Daniela V; Scaini, Giselli; Morais, Meline O; Andersen, Monica L; Streck, Emilio L; Quevedo, João

    2012-11-14

    Studies have demonstrated that AMPHs produce long-term damage to the brain dopaminergic, serotoninergic and glutamatergic regions. Prefrontal cortex, amygdala, hippocampus and striatum appear to be involved in the toxicity and behavioral changes induced by AMPHs. A single dose of AMPH causes mitochondrial dysfunction and oxidative stress in rat brain. The goal of the present study was thus to investigate the potency of two amphetamines, dextroamphetamine (d-AMPH) and methamphetamine (m-AMPH), on the behavior and energetic dysfunction in the brain of rats. d-AMPH and m-AMPH increased the crossing and rearing behaviors. The numbers of visits to the center were increased by d-AMPH and m-AMPH only at 2mg/kg. Likewise, at a high dose (2 mg/kg), the injection of m-AMPH increased the amount of sniffing. The AMPHs significantly decreased the activities of Krebs cycle enzymes (citrate synthase and succinate dehydrogenase) and mitochondrial respiratory chain complexes (I-IV); nevertheless, this effect varied depending on the brain region evaluated. In summary, this study demonstrated that at high doses, m-AMPH, increased stereotyped (sniffing) behavior in rats, but d-AMPH did not. However, this study shows that d-AMPH and m-AMPH seem to have similar effects on the brains energetic metabolism.

  16. Mood, Memory and Movement: An Age-Related Neurodegenerative Complex?

    PubMed Central

    Granholm, Ann-Charlotte; Boger, Heather; Emborg, Marina E.

    2009-01-01

    The following review was constructed as a concept paper based on a recent workshop on neurodegenerative disease sponsored by the National Institute on Aging (NIA), the American Geriatric Society (AGS), and the John A. Hartford Foundation. The meeting was entitled “Thinking, moving and feeling: Common underlying mechanisms? 4th Annual Bedside-to-Bench Conference” and had the purpose to connect current basic and clinical findings on common brain-related alterations occurring with aging such as depression, movement disorders, and cognitive decline. Many prominent researchers expressed their opinion on aging and it was revealed that age-related brain dysfunction of any kind seems to share several risk factors and/or pathways. But can something be done to actively achieve “successful aging”? In this review, based largely on the workshop and current literature, we have summarized some of the current theories for depression, movement and cognitive impairment with aging, as well as potential preventive measures. We have also summarized the emerging need for relevant animal models and how these could be developed and utilized. PMID:20021382

  17. The Hormone Ghrelin Prevents Traumatic Brain Injury Induced Intestinal Dysfunction

    PubMed Central

    Bansal, Vishal; Ryu, Seok Yong; Blow, Chelsea; Costantini, Todd; Loomis, William; Eliceiri, Brian; Baird, Andrew; Wolf, Paul

    2010-01-01

    Abstract Intestinal barrier breakdown following traumatic brain injury (TBI) is characterized by increased intestinal permeability, leading to bacterial translocation, and inflammation. The hormone ghrelin may prevent intestinal injury and have anti-inflammatory properties. We hypothesized that exogenous ghrelin prevents intestinal injury following TBI. A weight-drop model created severe TBI in three groups of anesthetized Balb/c mice. Group TBI: animals underwent TBI only; Group TBI/ghrelin: animals were given 10 μg of ghrelin intraperitoneally prior and 1 h following TBI; Group sham: no TBI or ghrelin injection. Intestinal permeability was measured 6 h following TBI by detecting serum levels of FITC-Dextran after injection into the intact ileum. The terminal ileum was harvested for histology, expression of the tight junction protein MLCK and inflammatory cytokine TNF-α. Permeability increased in the TBI group compared to the sham group (109.7 ± 21.8 μg/mL vs. 32.2 ± 10.1 μg/mL; p < 0.002). Ghrelin prevented TBI-induced permeability (28.3 ± 4.2 μg/mL vs. 109.7 ± 21.8 μg/mL; p < 0.001). The intestines of the TBI group showed blunting and necrosis of villi compared to the sham group, while ghrelin injection preserved intestinal architecture. Intestinal MLCK increased 73% compared to the sham group (p < 0.03). Ghrelin prevented TBI-induced MLCK expression to sham levels. Intestinal TNF-α increased following TBI compared to the sham group (46.2 ± 7.1 pg/mL vs. 24.4 ± 2.2 pg/mL p < 0.001). Ghrelin reduced TNF-α to sham levels (29.2 ± 5.0 pg/mL; p = NS). We therefore conclude that ghrelin prevents TBI-induced injury, as determined by intestinal permeability, histology, and intestinal levels of TNF-α. The mechanism for ghrelin mediating intestinal protection is likely multifactorial, and further studies are needed to delineate these possibilities. PMID:20858122

  18. Pituitary and/or hypothalamic dysfunction following moderate to severe traumatic brain injury: Current perspectives

    PubMed Central

    Javed, Zeeshan; Qamar, Unaiza; Sathyapalan, Thozhukat

    2015-01-01

    There is an increasing deliberation regarding hypopituitarism following traumatic brain injury (TBI) and recent data have suggested that pituitary dysfunction is very common among survivors of patients having moderate-severe TBI which may evolve or resolve over time. Due to high prevalence of pituitary dysfunction after moderate-severe TBI and its association with increased morbidity and poor recovery and the fact that it can be easily treated with hormone replacement, it has been suggested that early detection and treatment is necessary to prevent long-term neurological consequences. The cause of pituitary dysfunction after TBI is still not well understood, but evidence suggests few possible primary and secondary causes. Results of recent studies focusing on the incidence of hypopituitarism in the acute and chronic phases after TBI are varied in terms of severity and time of occurrence. Although the literature available does not show consistent values and there is difference in study parameters and diagnostic tests used, it is clear that pituitary dysfunction is very common after moderate to severe TBI and patients should be carefully monitored. The exact timing of development cannot be predicted but has suggested regular assessment of pituitary function up to 1 year after TBI. In this narrative review, we aim to explore the current evidence available regarding the incidence of pituitary dysfunction in acute and chronic phase post-TBI and recommendations for screening and follow-up in these patients. We will also focus light over areas in this field worthy of further investigation. PMID:26693424

  19. Pituitary dysfunction after traumatic brain injury: are there definitive data in children?

    PubMed

    Casano-Sancho, Paula

    2016-11-21

    In the past decade, several studies in adults and children have described the risk of pituitary dysfunction after traumatic brain injury (TBI). As a result, an international consensus statement recommended follow-up on the survivors. This paper reviews published studies regarding hypopituitarism after TBI in children and compares their results. The prevalence of hypopituitarism ranges from 5% to 57%. Growth hormone (GH) and ACTH deficiency are the most common, followed by gonadotropins and thyroid-stimulating hormone. Paediatric studies have failed to identify risk factors for developing hypopituitarism, and therefore we have no tools to restrict screening in severe TBI. In addition, the present review highlights the lack of a unified follow-up and the fact that unrecognised pituitary dysfunction is frequent in paediatric population. The effect of hormonal replacement in patient recovery is important enough to consider baseline screening and reassessment between 6 and 12 months after TBI. Medical community should be aware of the risk of pituitary dysfunction in these patients, given the high prevalence of endocrine dysfunction already reported in the studies. Longer prospective studies are needed to uncover the natural course of pituitary dysfunction, and new studies should be designed to test the benefit of hormonal replacement in metabolic, cognitive and functional outcome in these patients.

  20. Temporal dysfunction in traumatic brain injury patients: primary or secondary impairment?

    PubMed Central

    Mioni, Giovanna; Grondin, Simon; Stablum, Franca

    2014-01-01

    Adequate temporal abilities are required for most daily activities. Traumatic brain injury (TBI) patients often present with cognitive dysfunctions, but few studies have investigated temporal impairments associated with TBI. The aim of the present work is to review the existing literature on temporal abilities in TBI patients. Particular attention is given to the involvement of higher cognitive processes in temporal processing in order to determine if any temporal dysfunction observed in TBI patients is due to the disruption of an internal clock or to the dysfunction of general cognitive processes. The results showed that temporal dysfunctions in TBI patients are related to the deficits in cognitive functions involved in temporal processing rather than to a specific impairment of the internal clock. In fact, temporal dysfunctions are observed when the length of temporal intervals exceeds the working memory span or when the temporal tasks require high cognitive functions to be performed. The consistent higher temporal variability observed in TBI patients is a sign of impaired frontally mediated cognitive functions involved in time perception. PMID:24817847

  1. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy.

  2. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1.

    PubMed

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1 matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tractbased spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1.

  3. Blood-Brain Barrier Dysfunction as a Hallmark Pathology in Chronic Traumatic Encephalopathy.

    PubMed

    Doherty, Colin P; O'Keefe, Eoin; Wallace, Eugene; Loftus, Teresa; Keaney, James; Kealy, John; Humphries, Marian M; Molloy, Michael G; Meaney, James F; Farrell, Michael; Campbell, Matthew

    2016-07-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative condition associated with repetitive mild traumatic brain injury. In recent years, attention has focused on emerging evidence linking the development of CTE to concussive injuries in athletes and military personnel; however, the underlying molecular pathobiology of CTE remains unclear. Here, we provide evidence that the blood-brain barrier (BBB) is disrupted in regions of dense perivascular p-Tau accumulation in a case of CTE. Immunoreactivity patterns of the BBB-associated tight junction components claudin-5 and zonula occludens-1 were markedly discontinuous or absent in regions of perivascular p-Tau deposition; there was also immunohistochemical evidence of a BBB in these foci. Because the patient was diagnosed premortem clinically as having progressive supranuclear palsy (PSP), we also compromised that the CTE alterations appear to be distinct from those in the brain of a patient with PSP. This report represents the first description of BBB dysfunction in a pathologically proven CTE case and suggests a vascular component in the postconcussion cascade of events that may ultimately lead to development of a progressive degenerative disorder. BBB dysfunction may represent a correlate of neural dysfunction in live subjects suspected of being at risk for development of CTE.

  4. The neural control of bimanual movements in the elderly: Brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment.

    PubMed

    Goble, Daniel J; Coxon, James P; Van Impe, Annouchka; De Vos, Jeroen; Wenderoth, Nicole; Swinnen, Stephan P

    2010-08-01

    Coordinated hand use is an essential component of many activities of daily living. Although previous studies have demonstrated age-related behavioral deficits in bimanual tasks, studies that assessed the neural basis underlying such declines in function do not exist. In this fMRI study, 16 old and 16 young healthy adults performed bimanual movements varying in coordination complexity (i.e., in-phase, antiphase) and movement frequency (i.e., 45, 60, 75, 90% of critical antiphase speed) demands. Difficulty was normalized on an individual subject basis leading to group performances (measured by phase accuracy/stability) that were matched for young and old subjects. Despite lower overall movement frequency, the old group "overactivated" brain areas compared with the young adults. These regions included the supplementary motor area, higher order feedback processing areas, and regions typically ascribed to cognitive functions (e.g., inferior parietal cortex/dorsolateral prefrontal cortex). Further, age-related increases in activity in the supplementary motor area and left secondary somatosensory cortex showed positive correlations with coordinative ability in the more complex antiphase task, suggesting a compensation mechanism. Lastly, for both old and young subjects, similar modulation of neural activity was seen with increased movement frequency. Overall, these findings demonstrate for the first time that bimanual movements require greater neural resources for old adults in order to match the level of performance seen in younger subjects. Nevertheless, this increase in neural activity does not preclude frequency-induced neural modulations as a function of increased task demand in the elderly.

  5. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision.

  6. Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro

    PubMed Central

    Üllen, Andreas; Fauler, Günter; Bernhart, Eva; Nusshold, Christoph; Reicher, Helga; Leis, Hans-Jörg; Malle, Ernst; Sattler, Wolfgang

    2012-01-01

    2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase–hydrogen peroxide–chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood–brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting. PMID:22982051

  7. Age-related eye disease.

    PubMed

    Voleti, Vinod B; Hubschman, Jean-Pierre

    2013-05-01

    As with many organs, compromised function of the eye is accompanied with age and has become increasingly prevalent with the aging population. When decreased visual loss becomes significant, patients' ability to perform activities of daily living becomes compromised. This decrease in function is met with morbidity and mortality, as well as a large socioeconomic burden throughout the world. This review summarizes the most common age-related eye diseases, including cataract, glaucoma, diabetic retinopathy, retinal vein occlusion, and age-related macular degeneration. Although our understanding of the genetic and biochemical pathways of these diseases is sill at its primitive stages, we have become able to help our patients improve the quality of life as they age.

  8. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease.

    PubMed

    Erickson, Michelle A; Banks, William A

    2013-10-01

    The blood-brain barrier (BBB) plays critical roles in the maintenance of central nervous system (CNS) homeostasis. Dysfunction of the BBB occurs in a number of CNS diseases, including Alzheimer's disease (AD). A prevailing hypothesis in the AD field is the amyloid cascade hypothesis that states that amyloid-β (Aβ) deposition in the CNS initiates a cascade of molecular events that cause neurodegeneration, leading to AD onset and progression. In this review, the participation of the BBB in the amyloid cascade and in other mechanisms of AD neurodegeneration will be discussed. We will specifically focus on three aspects of BBB dysfunction: disruption, perturbation of transporters, and secretion of neurotoxic substances by the BBB. We will also discuss the interaction of the BBB with components of the neurovascular unit in relation to AD and the potential contribution of AD risk factors to aspects of BBB dysfunction. From the results discussed herein, we conclude that BBB dysfunction contributes to AD through a number of mechanisms that could be initiated in the presence or absence of Aβ pathology.

  9. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    PubMed

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  10. [Tuberculous cranial pachymeningitis presenting with long-standing diffuse brain dysfunction].

    PubMed

    Sugita, Toshihisa; Katoh, Hirotaka; Hayashi, Daigo; Ohnaka, Yohei; Nakajima, Masashi; Kawamura, Mitsuru

    2011-04-01

    We report a 59-year-old immunocompetent man presenting with slowly progressive gait unsteadiness, dysarthria, and clumsiness in writing over 6 months. There were bilateral pyramidal signs, pseudobulbar palsy, and attention deficits. Cerebrospinal fluid examination showed mild mononuclear pleocytosis, and magnetic resonance imaging revealed pachymeningeal pattern of contrast enhancement beneath the calvarium and the posterior cranial fossa. Interferon-gamma release assay in whole blood after stimulation by specific tuberculosis antigens was positive and repeat polymerase chain reaction assay detected Mycobacterium tuberculosis genome in the cerebrospinal fluid. After combination therapy with anti-tuberculous agents and corticosteroids, the patient's pachymeningitis regressed. Tuberculous cranial pachymeningitis may present with chronic diffuse brain dysfunction without headache, fever, or cranial nerve dysfunction.

  11. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model.

    PubMed

    McClanahan, Fabienne; Riches, John C; Miller, Shaun; Day, William P; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M; Capasso, Melania; Gribben, John G

    2015-07-09

    T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3(+)CD8(+) T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1(+) T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8(+) T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity.

  12. The protective effect of HET0016 on brain edema and blood-brain barrier dysfunction after cerebral ischemia/reperfusion.

    PubMed

    Liu, Yu; Wang, Di; Wang, Huan; Qu, Youyang; Xiao, Xingjun; Zhu, Yulan

    2014-01-28

    N-hydroxy-N-(4-butyl-2-methylphenyl) formamidine (HET0016) is a specific 20-hydroxyeicosatetraenoic acid (20-HETE) inhibitor which was first synthesized in 2001. It has been demonstrated that HET0016 reduces cerebral infarction volume in rat middle cerebral artery occlusion (MCAO) models. However, little is known about the role of HET0016 in the blood-brain barrier (BBB) dysfunction after cerebral ischemia/reperfusion (I/R) injury. The present study was designed to examine the effect of HET0016 in a MCAO and reperfusion rat model to determine whether it protects against brain edema and BBB disruption. Rats were subjected to 90 min MCAO, followed by 4, 24, 48, and 72 h reperfusion. Brain edema was measured according to the wet and dry weight method. BBB permeability based on the extravasation of Evans blue and sodium fluorescein was detected. BBB ultrastructure alterations were presented through transmission electron microscope. Superoxide production in ischemic tissue was also measured by dihydroethidium fluorescent probe. Western blot was used to analyze the expression of Claudin-5, ZO-1, MMP-9, and JNK pathway. At 24h after reperfusion, HET0016 reduced brain edema and BBB leakage. Ultrastructural damage of BBB and the increase of superoxide production were attenuated by HET0016 treatment. Western blot showed that HET0016 suppressed the activation of MMP-9 and JNK pathway but restored the expression of Claudin-5 and ZO-1. In conclusion, these results suggest that HET0016 protects BBB dysfunction after I/R by regulating the expression of MMP-9 and tight junction proteins. Furthermore, inhibition of oxidative stress and JNK pathway may be involved in this protecting effect.

  13. SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY.

    PubMed

    Novgorodov, Sergei A; Riley, Christopher L; Keffler, Jarryd A; Yu, Jin; Kindy, Mark S; Macklin, Wendy B; Lombard, David B; Gudz, Tatyana I

    2016-01-22

    Experimental evidence supports the role of mitochondrial ceramide accumulation as a cause of mitochondrial dysfunction and brain injury after stroke. Herein, we report that SIRT3 regulates mitochondrial ceramide biosynthesis via deacetylation of ceramide synthase (CerS) 1, 2, and 6. Reciprocal immunoprecipitation experiments revealed that CerS1, CerS2, and CerS6, but not CerS4, are associated with SIRT3 in cerebral mitochondria. Furthermore, CerS1, -2, and -6 are hyperacetylated in the mitochondria of SIRT3-null mice, and SIRT3 directly deacetylates the ceramide synthases in a NAD(+)-dependent manner that increases enzyme activity. Investigation of the SIRT3 role in mitochondrial response to brain ischemia/reperfusion (IR) showed that SIRT3-mediated deacetylation of ceramide synthases increased enzyme activity and ceramide accumulation after IR. Functional studies demonstrated that absence of SIRT3 rescued the IR-induced blockade of the electron transport chain at the level of complex III, attenuated mitochondrial outer membrane permeabilization, and decreased reactive oxygen species generation and protein carbonyls in mitochondria. Importantly, Sirt3 gene ablation reduced the brain injury after IR. These data support the hypothesis that IR triggers SIRT3-dependent deacetylation of ceramide synthases and the elevation of ceramide, which could inhibit complex III, leading to increased reactive oxygen species generation and brain injury. The results of these studies highlight a novel mechanism of SIRT3 involvement in modulating mitochondrial ceramide biosynthesis and suggest an important role of SIRT3 in mitochondrial dysfunction and brain injury after experimental stroke.

  14. Age-related macular degeneration

    PubMed Central

    Querques, Giuseppe; Avellis, Fernando Onofrio; Querques, Lea; Bandello, Francesco; Souied, Eric H

    2011-01-01

    Clinical question: Is there any new knowledge about the pathogenesis and treatment of age-related macular degeneration (AMD)? Results: We now understand better the biochemical and pathological pathways involved in the genesis of AMD. Treatment of exudative AMD is based on intravitreal injection of new antivascular endothelial growth factor drugs for which there does not yet exist a unique recognized strategy of administration. No therapies are actually available for atrophic AMD, despite some experimental new pharmacological approaches. Implementation: strategy of administration, safety of intravitreal injection PMID:21654887

  15. Repeated Administration of Mercury Intensifies Brain Damage in Multiple Sclerosis through Mitochondrial Dysfunction

    PubMed Central

    Kahrizi, Farzad; Salimi, Ahmad; Noorbakhsh, Farshid; Faizi, Mehrdad; Mehri, Freshteh; Naserzadeh, Parvaneh; Naderi, Nima; Pourahmad, Jalal

    2016-01-01

    In this study we investigated the additive effect of mercury on the brain mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE) model. Experimental animals (female C57BL/6 mice) are divided into four groups (n = 8); control, Hg, EAE, EAE with Hg. EAE model of MS induced by injecting myelin oligodendrocyte glycoprotein (MOG). Neurobehavioral alterations are recorded and then mice were sacrificed at day 28 and brain mitochondria were isolated and mitochondrial toxicity parameters including mitochondrial swelling, reactive oxygen species (ROS) formation, collapse of mitochondrial membrane potential (MMP) and cytochrome c release were measured. Our results showed that repeated treatment of mercury following induction of EAE in mice significantly increased the neurobehavioral scores, as well as mitochondrial toxicity through ROS formation, mitochondrial swelling, collapse of MMP and cytochrome c release. Our findings proved that repeated exposure with mercury accelerates progression of MS through mitochondrial damage related to oxidative stress and finally apoptosis. PMID:28243280

  16. NEUROLOGICAL SOFT SIGNS, COGNITIVE DYSFUNCTION AND VENTRICULAR BRAIN RATION IN SCHIZOPHRENICS

    PubMed Central

    Lal, Narottam; Tiwari, S.C.; Srivastava, Shrikant; Khalid, Abdul; Siddhartha; Kohli, Neera

    1998-01-01

    An association between cognitive dysfunction, neurological soft signs, enlarged brain ventricles and widened cortical sulci has been reported in schizophrenia. The present work aimed to study the relevance of positive and negative dichotomy with relation to neuropsychological performance of the schizophrenic patients, and the presence of neurological soft signs. In 23 schizophrenics patients diagnosed according to DSM-III-R of which 14 were of positive subtype and 9 were of negative subtype. At least one neurological soft sign was present in all the patients. The positive group had higher WMS and IQ scores and lower BGT scores than the negative group. Negative, correlation was seen for WMS and BGT scores with Ventricular Brain Ratio (VBR), and the soft signs showed positive correlation in the positive subtype only. PMID:21494466

  17. Progesterone reduces brain mitochondrial dysfunction after transient focal ischemia in male and female mice.

    PubMed

    Gaignard, Pauline; Fréchou, Magalie; Schumacher, Michael; Thérond, Patrice; Mattern, Claudia; Slama, Abdelhamid; Guennoun, Rachida

    2016-03-01

    This study investigated the effect of intranasal administration of progesterone on the early brain mitochondrial respiratory chain dysfunction and oxidative damage after transient middle cerebral occlusion in male and female mice. We showed that progesterone (8 mg/kg at 1 h post-middle cerebral occlusion) restored the mitochondrial reduced glutathione pool and the nicotinamide adenine dinucleotide-linked respiration in both sexes. Progesterone also reversed the decrease of the flavin adenine dinucleotide-linked respiration, which was only observed in females. Our findings point to a sex difference in stroke effects on the brain respiratory chain and suggest that the actions of progesterone on mitochondrial function may participate in its neuroprotective properties.

  18. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    PubMed

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes suggested a

  19. Brain Networks during Free Viewing of Complex Erotic Movie: New Insights on Psychogenic Erectile Dysfunction

    PubMed Central

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other’s actions. Moreover, the between group differences in the SN nodes suggested a

  20. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    PubMed

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  1. Prevalence of hypothalamo pituitary dysfunction in patients of traumatic brain injury

    PubMed Central

    Hari Kumar, K. V. S.; Swamy, M. N.; Khan, M. A.

    2016-01-01

    Background: Traumatic brain injury (TBI) is common in young soldiers of armed forces leading to significant morbidity and mortality. We studied the prevalence of hypopituitarism following TBI and its association with trauma severity. Materials and Methods: We conducted a 12-month prospective study of 56 TBI patients for the presence of hormonal dysfunction. Hormonal parameters were estimated during the early phase (0–10 days posttraumatically) and after 6 and 12 months. Dynamic testing was done when required, and the results were analyzed by appropriate statistical methods. Results: Hormonal dysfunction was seen in 39 of the 56 (70%) patients at initial assessment. Persisting pituitary deficiencies are seen in 7 and 8 patients at the end of 6 months and 12 months, respectively. Hypogonadotropic hypogonadism, hypothyroidism, and growth hormone deficiency are the most common diagnoses. Initial severe TBI and plurihormonal involvement predicted the long-term hypopituitarism. Conclusion: Early hypopituitarism was common in severe TBI, but recovers in majority. Evaluation for the occult pituitary dysfunction is required during the rehabilitation of TBI patients. PMID:27867878

  2. [Higher Brain Dysfunction in Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-Like Episodes (MELAS)].

    PubMed

    Ichikawa, Hiroo

    2016-02-01

    Stroke-like episodes are one of the cardinal features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), and occur in 84-99% of the patients. The affected areas detected on neuroimaging do not have classical vascular distribution, and involve predominantly the temporal, parietal and occipital lobes. Thus, the neurological symptoms including higher brain dysfunction correlate with this topographical distribution. In association with the occipital lobe involvement, the most frequent symptom is cortical blindness. Other symptoms have been occasionally reported in case reports: visual agnosia, prosopagnosia, cortical deafness, auditory agnosia, topographical disorientation, various types of aphasia, hemispatial neglect, and so on. On the other hand, cognitive decline associated with more diffuse brain impairment rather than with focal stroke-like lesions has been postulated. This condition is also known as mitochondrial dementia. Domains of cognitive dysfunction include abstract reasoning, verbal memory, visual memory, language (naming and fluency), executive or constructive functions, attention, and visuospatial function. Cognitive functions and intellectual abilities may decline from initially minimal cognitive impairment to dementia. To date, the neuropsychological and neurologic impairment has been reported to be associated with cerebral lactic acidosis as estimated by ventricular spectroscopic lactate levels.

  3. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1

    PubMed Central

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Summary Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tract-based spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1 mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1. PMID:26214024

  4. Common cell biologic and biochemical changes in aging and age-related diseases of the eye: Toward new therapeutic approaches to age-related ocular diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reviews of information about age related macular degeneration (AMD), cataract, and glaucoma make it apparent that while each eye tissue has its own characteristic metabolism, structure and function, there are common perturbations to homeostasis that are associated with age-related dysfunction. The c...

  5. Neurophysiological assessment of brain dysfunction in critically ill patients: an update.

    PubMed

    Azabou, Eric; Fischer, Catherine; Guerit, Jean Michel; Annane, Djillali; Mauguiere, François; Lofaso, Fréderic; Sharshar, Tarek

    2017-01-21

    The aim of this review was to provide up-to-date information about the usefulness of clinical neurophysiology testing in the management of critically ill patients. Evoked potentials (EPs) and electroencephalogram (EEG) are non-invasive clinical neurophysiology tools that allow an objective assessment of the central nervous system's function at the bedside in intensive care unit (ICU). These tests are quite useful in diagnosing cerebral complications, and establishing the vital and functional prognosis in ICU. EEG keeps a particularly privileged importance in detecting seizures phenomena such as subclinical seizures and non-convulsive status epilepticus. Quantitative EEG (QEEG) analysis techniques commonly called EEG Brain mapping can provide obvious topographic displays of digital EEG signals characteristics, showing the potential distribution over the entire scalp including filtering, frequency, and amplitude analysis and color mapping. Evidences of usefulness of QEEG for seizures detection in ICU are provided by several recent studies. Furthermore, beyond detection of epileptic phenomena, changes of some QEEG panels are early warning indicators of sedation level as well as brain damage or dysfunction in ICU. EPs offer the opportunity for assessing brainstem's functional integrity, as well as subcortical and cortical brain areas. A multimodal use, combining EEG and various modalities of EPs is recommended since this allows a more accurate functional exploration of the brain and helps caregivers to tailor therapeutic measures according to neurological worsening trends and to anticipate the prognosis in ICU.

  6. Age-related macular degeneration.

    PubMed

    Cheung, Lily K; Eaton, Angie

    2013-08-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and the prevalence of the disease increases exponentially with every decade after age 50 years. It is a multifactorial disease involving a complex interplay of genetic, environmental, metabolic, and functional factors. Besides smoking, hypertension, obesity, and certain dietary habits, a growing body of evidence indicates that inflammation and the immune system may play a key role in the development of the disease. AMD may progress from the early form to the intermediate form and then to the advanced form, where two subtypes exist: the nonneovascular (dry) type and the neovascular (wet) type. The results from the Age-Related Eye Disease Study have shown that for the nonneovascular type of AMD, supplementation with high-dose antioxidants (vitamin C, vitamin E, and β-carotene) and zinc is recommended for those with the intermediate form of AMD in one or both eyes or with advanced AMD or vision loss due to AMD in one eye. As for the neovascular type of the advanced AMD, the current standard of therapy is intravitreal injections of vascular endothelial growth factor inhibitors. In addition, lifestyle and dietary modifications including improved physical activity, reduced daily sodium intake, and reduced intake of solid fats, added sugars, cholesterol, and refined grain foods are recommended. To date, no study has demonstrated that AMD can be cured or effectively prevented. Clearly, more research is needed to fully understand the pathophysiology as well as to develop prevention and treatment strategies for this devastating disease.

  7. Systematically characterizing dysfunctional long intergenic non-coding RNAs in multiple brain regions of major psychosis

    PubMed Central

    Zhao, Hongying; Li, Feng; Deng, Yulan; Liu, Ling; Lan, Yujia; Zhang, Xinxin; Zhao, Tingting; Xu, Chaohan; Xu, Chun; Xiao, Yun; Li, Xia

    2016-01-01

    Schizophrenia (SZ) and bipolar disorder (BD) are severe neuropsychiatric disorders with serious impact on patients, together termed “major psychosis”. Recently, long intergenic non-coding RNAs (lincRNAs) were reported to play important roles in mental diseases. However, little was known about their molecular mechanism in pathogenesis of SZ and BD. Here, we performed RNA sequencing on 82 post-mortem brain tissues from three brain regions (orbitofrontal cortex (BA11), anterior cingulate cortex (BA24) and dorsolateral prefrontal cortex (BA9)) of patients with SZ and BD and control subjects, generating over one billion reads. We characterized lincRNA transcriptome in the three brain regions and identified 20 differentially expressed lincRNAs (DELincRNAs) in BA11 for BD, 34 and 1 in BA24 and BA9 for SZ, respectively. Our results showed that these DELincRNAs exhibited brain region-specific patterns. Applying weighted gene co-expression network analysis, we revealed that DELincRNAs together with other genes can function as modules to perform different functions in different brain regions, such as immune system development in BA24 and oligodendrocyte differentiation in BA9. Additionally, we found that DNA methylation alteration could partly explain the dysregulation of lincRNAs, some of which could function as enhancers in the pathogenesis of major psychosis. Together, we performed systematical characterization of dysfunctional lincRNAs in multiple brain regions of major psychosis, which provided a valuable resource to understand their roles in SZ and BD pathology and helped to discover novel biomarkers. PMID:27661005

  8. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    PubMed

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  9. Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase.

    PubMed

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H; Jaenisch, Rudolf; Endres, Matthias

    2008-07-09

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.

  10. Role of thrombin-PAR1-PKCθ/δ axis in brain pericytes in thrombin-induced MMP-9 production and blood-brain barrier dysfunction in vitro.

    PubMed

    Machida, Takashi; Dohgu, Shinya; Takata, Fuyuko; Matsumoto, Junichi; Kimura, Ikuya; Koga, Mariko; Nakamoto, Keiko; Yamauchi, Atsushi; Kataoka, Yasufumi

    2017-03-24

    Thrombin, an essential component in the coagulation cascade, participates in the pathogenesis of brain diseases, such as ischemic stroke, intracerebral hemorrhage, Alzheimer's disease and Parkinson's disease through blood-brain barrier (BBB) dysfunction. It is thought that the thrombin-matrix metalloproteinase (MMP)-9 axis is an important process in the pathogenesis of neurovascular disease, such as BBB dysfunction. We recently reported that brain pericytes are the most MMP-9-releasing cells in response to thrombin stimulation among the BBB-constituting cells. This thrombin-induced MMP-9 release is partially due to protease-activated receptor (PAR1), one of the specific thrombin receptors. Then, we evaluated the intracellular signaling pathways involved in MMP-9 release and the contribution of thrombin-reactive brain pericytes to BBB dysfunction. PKC activator evoked MMP-9 release from brain pericytes. The thrombin-induced MMP-9 release was inhibited by U0126, LY294002, Go6976, and Go6983. However, Go6976 decreased phosphorylation levels of PKCθ and Akt, and Go6983 decreased phosphorylation levels of PKCδ and extracellular signal-regulated kinase (ERK). Additionally, treatment of pericytes with thrombin or PAR1-activating peptide stimulated PKCδ/θ signaling. These substances impaired brain endothelial barrier function in the presence of brain pericytes. Brain pericytes function through two independent downstream signaling pathways via PAR1 activation to release MMP-9 in response to thrombin - the PKCθ-Akt pathway and the PKCδ-ERK1/2 pathway. These pathways participate in PAR1-mediated MMP-9 release from pericytes, which leads to BBB dysfunction. Brain pericytes and their specific signaling pathways could provide novel therapeutic targets for thrombin-induced neurovascular diseases.

  11. Amantadine to Treat Cognitive Dysfunction in Moderate to Severe Traumatic Brain Injury.

    PubMed

    Stelmaschuk, Stephanie; Will, Mary Colleen; Meyers, Tamara

    2015-01-01

    Traumatic brain injury (TBI) is a leading cause of injury, disability, and death in the United States. Amantadine is an established dopamine agonist that supports neurological function. The purpose of this literature review was to determine whether amantadine improves cognitive function post-TBI. PubMed and CINAHL were used to search the literature for articles using amantadine to treat TBI from 1994 to 2004. Outcomes were summarized and the evidence was appraised. Although earlier studies from 1994 to 2003 were lower-level studies and recommended further research on treatment of cognitive dysfunction in TBI, the literature from 2004 to present generally concluded that amantadine improved cognitive function related to arousal, memory, and aggression. It can be started days to months postinjury and still produces benefits.

  12. Differentiation of alcoholics. Childhood history of minimal brain dysfunction, family history, and drinking pattern.

    PubMed

    Tarter, R E; McBride, H; Buonpane, N; Schneider, D U

    1977-07-01

    Alcoholics were differentiated into two subgroups on the basis of drinking patterns and subjective response to alcohol. Severe drinkers (primary alcoholics) retrospectively reported more symptoms of childhood minimal brain dysfunction than less severe drinkers (secondary alcoholics), psychiatric patients, and normals. The alcoholics as a group reported a greater incidence of familial alcohol abuse than the psychiatric subjects, but a difference on this factor was not observed between the primary and secondary subgroups. In terms of clinical status, the primary alcoholics presented Minnesota Multiphasic Personality Inventory profile more indicative of normality than the other groups, but scored significantly higher on the MacAndrew Alcoholism Scale. These findings are discussed in light of further delineating a specific subtype of alcoholism that may have a genetic-constitutional relationship with other pathological disorders.

  13. Incidence of pituitary dysfunction following traumatic brain injury: A prospective study from a regional neurosurgical centre.

    PubMed

    Alavi, Seyed Alireza; Tan, Chin Lik; Menon, David K; Simpson, Helen L; Hutchinson, Peter J

    2016-06-01

    Patients with traumatic brain injury (TBI) may develop pituitary dysfunction. Although, there is now increasing awareness of and investigations into such post-traumatic hypopituitarism (PTHP), the exact prevalence and incidence remain uncertain. Here, we aim to identify the incidence of PTHP in a selected population of TBI patients deemed at risk of PTHP at a regional neurosurgical centre in the UK. A total of 105 patients have been assessed in two cohorts: (i) 58 patients in serial cohort and (ii) 47 patients in cross-sectional late cohort. We found that in serial cohort, 10.3% (6/58) of TBI patients had abnormalities of the pituitary-adrenal axis in the acute phase (Day 0-7 post injury). In comparison, in cross-sectional late cohort, 21.3% (10/47) of the patients developed dysfunction in at least one of their pituitary axes at 6 months or more post-TBI, with hypogonadotrophic hypogonadism being the most common. Twenty-two patients from these two cohorts had their growth hormone assessment at 12 months or more post-TBI and 9.1% (2/22) were found to have growth hormone deficiency. Our results suggest that PTHP is a common condition amongst sufferers of TBI, and appropriate measures should be taken to detect and manage it.

  14. Chronic visual dysfunction after blast-induced mild traumatic brain injury.

    PubMed

    Magone, M Teresa; Kwon, Ellen; Shin, Soo Y

    2014-01-01

    The purpose of this study was to investigate the long-term visual dysfunction in patients after blast-induced mild traumatic brain injury (mbTBI) using a retrospective case series of 31 patients with mbTBI (>12 mo prior) without eye injuries. Time since mbTBI was 50.5 +/- 19.8 mo. Age at the time of injury was 30.0 +/- 8.3 yr. Mean corrected visual acuity was 20/20. Of the patients, 71% (n = 22) experienced loss of consciousness; 68% (n = 15) of patients in this subgroup were dismounted during the blast injury. Overall, 68% (n = 21) of patients had visual complaints. The most common complaints were photophobia (55%) and difficulty with reading (32%). Of all patients, 25% were diagnosed with convergence insufficiency and 23% had accommodative insufficiency. Patients with more than one mbTBI had a higher rate of visual complaints (87.5%). Asymptomatic patients had a significantly longer time (62.5 +/- 6.2 mo) since the mbTBI than symptomatic patients (42.0 +/- 16.4 mo, p < 0.004). Long-term visual dysfunction after mbTBI is common even years after injury despite excellent distance visual acuity and is more frequent if more than one incidence of mbTBI occurred. We recommend obtaining a careful medical history, evaluation of symptoms, and binocular vision assessment during routine eye examinations in this prepresbyopic patient population.

  15. NMR-based metabolomics reveals brain region-specific metabolic alterations in streptozotocin-induced diabetic rats with cognitive dysfunction.

    PubMed

    Zheng, Hong; Lin, Qiuting; Wang, Dan; Xu, Pengtao; Zhao, Liangcai; Hu, Wenyi; Bai, Guanghui; Yan, Zhihan; Gao, Hongchang

    2017-04-01

    Diabetes mellitus (DM) can result in cognitive dysfunction, but its potential metabolic mechanisms remain unclear. In the present study, we analyzed the metabolite profiling in eight different brain regions of the normal rats and the streptozotocin (STZ)-induced diabetic rats accompanied by cognitive dysfunction using a (1)H NMR-based metabolomic approach. A mixed linear model analysis was performed to assess the effects of DM, brain region and their interaction on metabolic changes. We found that different brain regions in rats displayed significant metabolic differences. In addition, the hippocampus was more susceptible to DM compared with other brain regions in rats. More interestingly, significant interaction effects of DM and brain region were observed on alanine, creatine/creatine-phosphate, lactate, succinate, aspartate, glutamate, glutamine, γ-aminobutyric acid, glycine, choline, N-acetylaspartate, myo-inositol and taurine. Based on metabolic pathway analysis, we speculate that cognitive dysfunction in the STZ-induced diabetic rats may be associated with brain region-specific metabolic alterations involving energy metabolism, neurotransmitters, membrane metabolism and osmoregulation.

  16. Dysfunctional involvement of emotion and reward brain regions on social decision making in excess weight adolescents.

    PubMed

    Verdejo-García, Antonio; Verdejo-Román, Juan; Rio-Valle, Jacqueline S; Lacomba, Juan A; Lagos, Francisco M; Soriano-Mas, Carles

    2015-01-01

    Obese adolescents suffer negative social experiences, but no studies have examined whether obesity is associated with dysfunction of the social brain or whether social brain abnormalities relate to disadvantageous traits and social decisions. We aimed at mapping functional activation differences in the brain circuitry of social decision making in adolescents with excess versus normal weight, and at examining whether these separate patterns correlate with reward/punishment sensitivity, disordered eating features, and behavioral decisions. In this fMRI study, 80 adolescents aged 12 to 18 years old were classified in two groups based on age adjusted body mass index (BMI) percentiles: normal weight (n = 44, BMI percentiles 5th-84th) and excess weight (n = 36, BMI percentile ≥ 85th). Participants were scanned while performing a social decision-making task (ultimatum game) in which they chose to "accept" or "reject" offers to split monetary stakes made by another peer. Offers varied in fairness (Fair vs. Unfair) but in all cases "accepting" meant both players win the money, whereas "rejecting" meant both lose it. We showed that adolescents with excess weight compared to controls display significantly decreased activation of anterior insula, anterior cingulate, and midbrain during decisions about Unfair versus Fair offers. Moreover, excess weight subjects show lower sensitivity to reward and more maturity fears, which correlate with insula activation. Indeed, blunted insula activation accounted for the relationship between maturity fears and acceptance of unfair offers. Excess weight adolescents have diminished activation of brain regions essential for affective tracking of social decision making, which accounts for the association between maturity fears and social decisions.

  17. [The Influence of the Functional State of Brain Regulatory Structures on the Programming, Selective Regulation and Control of Cognitive Activity in Children. Report I: Neuropsychological and EEG Analysis of Age-Related Changes in Brain Regulatory Functions in Children Aged 9-12 Years].

    PubMed

    Semenova, A; Machinskaya, R I; Lomakin, D I

    2015-01-01

    Age-related changes in brain regulatory functions in children aged from 9 to 12 years with typical development were studied by means of neuropsychological and EEG analysis. The participants of the study were 107 children without learning difficulties and behavior deviations; they were devided into three groups (9-10, 10-11 and 11-12 years). The neuropsychological tests revealed nonlinear age-related changes in different executive brain functions. The group of 10-11-year-old children showed better results in programming, in- hibition of impulsive reactions and in the perception of socially relevant information than the group of 9-10- year-old children. At the same time, these children had more difficulties with selective activity regulation as compared with the younger group. The difficulties were mainly caused by switching from one element of the program to another and by retention of learned sequence of actions. These children also showed a lower level of motivation for task performance. The children aged 11-12 years had less difficulties with selective activity regulation; however, impulsive behavior was more frequent; these children also had a higher level of task performance motivation than in children aged 10-11 years. The analysis of resting state EEG revealed age-related differences in deviated EEG patterns associated with non-optimal functioning of fronto-thalamic system and hypothalamic structures. The incidence of these two types of EEG patterns was significantly higher in children aged 10-11 years as compared with children aged 9-10 years. The EEG of the groups of 10-11 and 11-12-years-old children did not show any significant differences.

  18. Nerve growth factor metabolic dysfunction in Down’s syndrome brains

    PubMed Central

    Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge

    2014-01-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic

  19. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    PubMed

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction.

  20. Cortical neuron loss in post-traumatic higher brain dysfunction using (123)I-iomazenil SPECT.

    PubMed

    Nakagawara, Jyoji; Kamiyama, Kenji; Takahashi, Masaaki; Nakamura, Hirohiko

    2013-01-01

    In patients with higher brain dysfunction (HBD) after mild traumatic brain injury (MTBI), diagnostic imaging of cortical neuron loss in the frontal lobes was studied using SPECT with (123)I-iomazenil (IMZ), as a radioligand for central benzodiazepine receptor (BZR). Statistical imaging analysis using three-dimensional stereotactic surface projections (3D-SSP) for (123)I-IMZ SPECT was performed in 17 patients. In all patients with HBD defined by neuropsychological tests, cortical neuron loss was indicated in the bilateral medial frontal lobes in 14 patients (83 %). A comparison between the group of 17 patients and the normal database demonstrated common areas of cortical neuron loss in the bilateral medial frontal lobes involving the medial frontal gyrus (MFG) and the anterior cingulate gyrus (ACG). In an assessment of cortical neuron loss in the frontal medial cortex using the stereotactic extraction estimation (SEE) method (level 3), significant cortical neuron loss was observed within bilateral MFG in 9 patients and unilateral MFG in 4, and bilateral ACG in 12 and unilateral ACG in 3. Fourteen patients showed significant cortical neuron loss in bilateral MFG or ACG. In patients with MTBI, HBD seemed to correlate with selective cortical neuron loss within the bilateral MFG or ACG where the responsible lesion could be. 3D-SSP and SEE level 3 analysis for (123)I-IMZ SPECT could be valuable for diagnostic imaging of HBD after MTBI.

  1. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction

    PubMed Central

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2016-01-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983

  2. The brain-gut axis dysfunctions and hypersensitivity to food antigens in the etiopathogenesis of schizophrenia.

    PubMed

    Karakuła-Juchnowicz, Hanna; Dzikowski, Michał; Pelczarska, Agnieszka; Dzikowska, Izabela; Juchnowicz, Dariusz

    2016-01-01

    Despite over 100-year history of research on schizophrenia, its etiology is still not fully understood, which might be due to the significant heterogeneity in terms of both its course, as well as the etiopathogenesis. One of the best-proven mediating mechanisms in the development of schizophrenia is the immuno-inflammatory response, the sources of which are believed to be the dysfunctions of brain-gut axis and pathological processes occurring in the intestines. This paper is a review of the literature on this subject which presents factors both involved in the functioning of brain-gut axis and important for the development of schizophrenia, i.e. 1. intestinal microbiome (intestinal microbiota), 2. permeable intestine (leaky gut syndrome), 3. hypersensitivity to food antigens, including gluten and casein of cow's milk. Research results seem to be very promising and indicate the possibility of improved clinical outcomes in some patients with schizophrenia by modifying diet, use of probiotics, and the implementation of antibiotic therapy of specific treatment groups. However, further research is needed on links between the intestinal microbiome and intestinal function as factors mediating the activation of the immune system and the development and further course of schizophrenia.

  3. Brain metabolic dysfunction at the core of Alzheimer’s disease

    PubMed Central

    de la Monte, Suzanne M.; Tong, Ming

    2015-01-01

    Growing evidence supports the concept that Alzheimer’s disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics. PMID:24380887

  4. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain.

    PubMed

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I

    2012-12-21

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.

  5. Alcohol-induced One-carbon Metabolism Impairment Promotes Dysfunction of DNA Base Excision Repair in Adult Brain*

    PubMed Central

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G.; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J.; Bergeson, Susan E.; Henderson, George I.; Kruman, Inna I.

    2012-01-01

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr+/− mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain. PMID:23118224

  6. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation

    PubMed Central

    Kinghorn, Kerri J.; Castillo-Quan, Jorge Iván

    2016-01-01

    ABSTRACT The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H. PMID:27141409

  7. Neuroanatomical substrates of age-related cognitive decline

    PubMed Central

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure, and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the age-related cognitive changes. Although this conclusion may well be true, it is widely recognized that simple correlations are not sufficient to warrant causal conclusions, and other types of correlational information, such as mediation and correlations between longitudinal brain changes and longitudinal cognitive changes, also have limitations with respect to causal inferences. These issues are discussed, and the existing results on relations of regional volume, white matter hyperintensities, and DTI measures of white matter integrity to age and to measures of cognitive functioning are reviewed. It is concluded that at the current time the evidence that these aspects of brain structure are neuroanatomical substrates of age-related cognitive decline is weak. The final section contains several suggestions concerned with measurement and methodology that may lead to stronger conclusions in the future. PMID:21463028

  8. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia-ischemia.

    PubMed

    Diaz, Ramiro; Miguel, Patrícia Maidana; Deniz, Bruna Ferrary; Confortim, Heloísa Deola; Barbosa, Sílvia; Mendonça, Monique Culturato Padilha; da Cruz-Höfling, Maria Alice; Pereira, Lenir Orlandi

    2016-10-01

    Environmental enrichment (EE) is considered an efficient neuroprotector against neonatal hypoxia-ischemia (HI). Nevertheless, the mechanisms involved are not yet clear. In this context, the aim of this study was to investigate the effects of neonatal HI and environmental stimulation in the hippocampus of rats at 3 different time points (PND 8, 22 and 60), evaluating some aspects of BBB structure and function. Seven-day-old Wistar rats were divided into four groups: a control group maintained in a standard environment (CTSE), a control group maintained in an enrichment environment (CTEE), an HI group maintained in a standard environment (HISE) and an HI group maintained in an enrichment environment (HIEE). At the 7th postnatal day (PND), rats were submitted to the Levine-Rice model of neonatal HI. This method consists of permanent occlusion of the right common carotid artery with subsequent exposure to hypoxia. Rats from CTEE and HIEE were stimulated with environmental enrichment. The EE protocol started 24h after HI, in which pup rats with their dams were stimulated in a maintained EE (PND 8-22). Subsequently, animals were submitted to daily EE (1h/day, PND 23-60). The expression of some proteins involved in BBB structure (β-catenin, occludin, connexin-43, aquaporin-4, glut-1 and GFAP) were quantified by western blotting in the hippocampi of rats in three periods, at PND 8, 22 and 60. The BBB permeability and integrity was assessed by Evans blue staining and the immunohistochemistry for GFAP in the CA1 region of the hippocampus were also performed. The results showed an HI-induced decreased occludin expression at PND 22 and low levels of occludin, β-catenin and GFAP at PND 60 in the hippocampus of the hypoxic-ischemic rats. Interestingly, in young and adult rats, EE reversed these effects. Evans blue extravasation into the brain parenchyma confirmed the BBB dysfunction brought on by HI. No differences were observed at PND 8, probably due to the immaturity of the

  9. Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor

    PubMed Central

    Titus, David J.; Wilson, Nicole M.; Freund, Julie E.; Carballosa, Melissa M.; Sikah, Kevin E.; Furones, Concepcion; Dietrich, W. Dalton; Gurney, Mark E.

    2016-01-01

    Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. SIGNIFICANCE STATEMENT Currently, there are an estimated 3.2–5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of

  10. Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: two case reports

    NASA Astrophysics Data System (ADS)

    Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2010-02-01

    Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1" diameter with 61 diodes each - 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms.

  11. A brain MRI study of chronic fatigue syndrome: evidence of brainstem dysfunction and altered homeostasis

    PubMed Central

    Barnden, Leighton R; Crouch, Benjamin; Kwiatek, Richard; Burnet, Richard; Mernone, Anacleto; Chryssidis, Steve; Scroop, Garry; Del Fante, Peter

    2011-01-01

    To explore brain involvement in chronic fatigue syndrome (CFS), the statistical parametric mapping of brain MR images has been extended to voxel-based regressions against clinical scores. Using SPM5 we performed voxel-based morphometry (VBM) and analysed T1- and T2-weighted spin-echo MR signal levels in 25 CFS subjects and 25 normal controls (NC). Clinical scores included CFS fatigue duration, a score based on the 10 most common CFS symptoms, the Bell score, the hospital anxiety and depression scale (HADS) anxiety and depression, and hemodynamic parameters from 24-h blood pressure monitoring. We also performed group × hemodynamic score interaction regressions to detect locations where MR regressions were opposite for CFS and NC, thereby indicating abnormality in the CFS group. In the midbrain, white matter volume was observed to decrease with increasing fatigue duration. For T1-weighted MR and white matter volume, group × hemodynamic score interactions were detected in the brainstem [strongest in midbrain grey matter (GM)], deep prefrontal white matter (WM), the caudal basal pons and hypothalamus. A strong correlation in CFS between brainstem GM volume and pulse pressure suggested impaired cerebrovascular autoregulation. It can be argued that at least some of these changes could arise from astrocyte dysfunction. These results are consistent with an insult to the midbrain at fatigue onset that affects multiple feedback control loops to suppress cerebral motor and cognitive activity and disrupt local CNS homeostasis, including resetting of some elements of the autonomic nervous system (ANS). © 2011 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:21560176

  12. Neurological Dysfunction Associated with Antiphospholipid Syndrome: Histopathological Brain Findings of Thrombotic Changes in a Mouse Model

    PubMed Central

    Ziporen, Lea; Polak-Charcon, Sylvia; Korczyn, D. Amos; Goldberg, Iris; Afek, Arnon; Kopolovic, Juri; Chapman, Joab

    2004-01-01

    The aim of this work was to study the pathological processes underlying neurological dysfunctions displayed by BALB/C mice induced with experimental antiphospholipid syndrome (APS), as we have previously reported. Experimental APS was induced in female BALB/C mice by immunization with a pathogenic monoclonal anticardiolipin (aCL) antibody, H-3 (n=10), or an irrelevant immunoglobulin in controls (n=10). Mice immunized with H-3 developed clinical and neurological manifestations of APS, including: embryo resorption, thrombocytopenia neurological defects and behavioral disturbances. In mouse sera, the titer of various autoantibodies were elevated, including: anti-phospholipids (aPLs), anti-2 glycoprotein-I (β2GPI), anti-endothelial cell antibodies (AECA) and low titer of anti-dsDNA antibodies. Five months after APS induction, mice were sacrificed and brain tissue specimens were processed for hematoxylin and eosin (H&E), immunofluorescence staining and transmission electron microscopy (TEM). H&E staining of cortical tissue derived from all APS mice revealed mild inflammation, localized mainly in the meninges. Prominent IgG deposits in the large vessel walls and perivascular IgG leakage were observed by immunofluorescence. No large thrombi were observed in large vessels. However, EM evaluation of cerebral tissue revealed pathological changes in the microvessels. Thrombotic occlusion of capillaries in combination with mild inflammation was the main finding and may underlie the neurological defects displayed by mice with APS. PMID:15154615

  13. Electroencephalographic Data Analysis With Visibility Graph Technique for Quantitative Assessment of Brain Dysfunction.

    PubMed

    Bhaduri, Susmita; Ghosh, Dipak

    2015-07-01

    Usual techniques for electroencephalographic (EEG) data analysis lack some of the important properties essential for quantitative assessment of the progress of the dysfunction of the human brain. EEG data are essentially nonlinear and this nonlinear time series has been identified as multi-fractal in nature. We need rigorous techniques for such analysis. In this article, we present the visibility graph as the latest, rigorous technique that can assess the degree of multifractality accurately and reliably. Moreover, it has also been found that this technique can give reliable results with test data of comparatively short length. In this work, the visibility graph algorithm has been used for mapping a time series-EEG signals-to a graph to study complexity and fractality of the time series through investigation of its complexity. The power of scale-freeness of visibility graph has been used as an effective method for measuring fractality in the EEG signal. The scale-freeness of the visibility graph has also been observed after averaging the statistically independent samples of the signal. Scale-freeness of the visibility graph has been calculated for 5 sets of EEG data patterns varying from normal eye closed to epileptic. The change in the values is analyzed further, and it has been observed that it reduces uniformly from normal eye closed to epileptic.

  14. Minimal brain dysfunction/specific learning disability: a clinical approach for the primary physician.

    PubMed

    Levy, H B

    1976-05-01

    Minimal brain dysfunction is a neurodevelopmental disorder which can be found in nearly 20% of school children. It is characterized by evidences of immaturity involving control of activity, emotions, and behavior, and by specific learning disabilities involving the communicating skills needed in reading, writing, and mathematics. The prime deficits in the classroom are an inability to maintain attention and concentration and an inability to skillfully blend the auditory and visual functions essential in language performance. Medical evaluation will reveal many of the "soft signs" of neurologic involvement, and educational appraisal will indicate a wide scatter in testing scores with a marked discrepancy between evaluated potential and actual classroom achievement. Remedial efforts directed at early detection, relief from pressure and unjust punishment or ridicule from parents and teachers, and adjustment of the educational environment with consideration of the child's individual talents, combined with the judicious use of medications to prolong attention span and improve neurodevelopmental maturity, hold promise of improving the lot of most involved children. There are valid indications that expansion of such programs can do much to prevent these youngsters from developing severe personality maladjustment and delinquent behavior, as well as emotional illness in later life.

  15. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia.

    PubMed

    Daulatzai, Mak Adam

    2015-01-01

    The non-celiac gluten sensitivity (NCGS) is a chronic functional gastrointestinal disorder which is very common world wide. The human gut harbors microbiota which has a wide variety of microbial organisms; they are mainly symbiotic and important for well being. However, "dysbiosis" - i.e. an alteration in normal commensal gut microbiome with an increase in pathogenic microbes, impacts homeostasis/health. Dysbiosis in NCGS causes gut inflammation, diarrhea, constipation, visceral hypersensitivity, abdominal pain, dysfunctional metabolic state, and peripheral immune and neuro-immune communication. Thus, immune-mediated gut and extra-gut dysfunctions, due to gluten sensitivity with comorbid diarrhea, may last for decades. A significant proportion of NCGS patients may chronically consume alcohol, non-steroidal anti-inflammatory drugs, and fatty diet, as well as suffer from various comorbid disorders. The above pathophysiological substrate and dysbiosis are underpinned by dysfunctional bidirectional "Gut-Brain Axis" pathway. Pathogenic gut microbiota is known to upregulate gut- and systemic inflammation (due to lipopolysaccharide from pathogenic bacteria and synthesis of pro-inflammatory cytokines); they enhance energy harvest, cause obesity, insulin resistance, and dysfunctional vago-vagal gut-brain axis. Conceivably, the above cascade of pathology may promote various pathophysiological mechanisms, neuroinflammation, and cognitive dysfunction. Hence, dysbiosis, gut inflammation, and chronic dyshomeostasis are of great clinical relevance. It is argued here that we need to be aware of NCGS and its chronic pathophysiological impact. Therapeutic measures including probiotics, vagus nerve stimulation, antioxidants, alpha 7 nicotinic receptor agonists, and corticotropin-releasing factor receptor 1 antagonist may ameliorate neuroinflammation and oxidative stress in NCGS; they may therefore, prevent cognitive dysfunction and vulnerability to Alzheimer's disease.

  16. Age-Related Changes in Creative Thinking

    ERIC Educational Resources Information Center

    Roskos-Ewoldsen, Beverly; Black, Sheila R.; Mccown, Steven M.

    2008-01-01

    Age-related differences in cognitive processes were used to understand age-related declines in creativity. According to the Geneplore model (Finke, Ward, & Smith, 1992), there are two phases of creativity--generating an idea and exploring the implications of the idea--each with different underlying cognitive processes. These two phases are…

  17. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  18. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction

    PubMed Central

    Hurtado-Alvarado, Gabriela; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier

    2016-01-01

    Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We administrated a selective A2A adenosine receptor antagonist (SCH58261) in sleep-restricted rats at the 10th day of sleep restriction and evaluated the blood-brain barrier permeability to dextrans coupled to fluorescein (FITC-dextrans) and Evans blue. In addition, we evaluated by western blot the expression of tight junction proteins (claudin-5, occludin, ZO-1), adherens junction protein (E-cadherin), A2A adenosine receptor, adenosine-synthesizing enzyme (CD73), and neuroinflammatory markers (Iba-1 and GFAP) in the cerebral cortex, hippocampus, basal nuclei and cerebellar vermis. Sleep restriction increased blood-brain barrier permeability to FITC-dextrans and Evans blue, and the effect was reverted by the administration of SCH58261 in almost all brain regions, excluding the cerebellum. Sleep restriction increased the expression of A2A adenosine receptor only in the hippocampus and basal nuclei without changing the expression of CD73 in all brain regions. Sleep restriction reduced the expression of tight junction proteins in all brain regions, except in the cerebellum; and SCH58261 restored the levels of tight junction proteins in the cortex, hippocampus and basal nuclei. Finally, sleep restriction induced GFAP and Iba-1 overexpression that was attenuated with the administration of SCH58261. These data suggest that the action of adenosine on its A2A receptor may have a crucial role in blood-brain barrier dysfunction during sleep loss probably by direct modulation of brain endothelial cell permeability or through a mechanism that involves gliosis with subsequent inflammation and

  19. Variable Neuroendocrine-Immune Dysfunction in Individuals with Unfavorable Outcome after Severe Traumatic Brain Injury

    PubMed Central

    Santarsieri, Martina; Kumar, Raj G.; Kochanek, Patrick M.; Berga, Sarah L.; Wagner, Amy K.

    2014-01-01

    Bidirectional communication between the immune and neuroendocrine systems is not well understood in the context of traumatic brain injury (TBI). The purpose of this study was to characterize relationships between cerebrospinal fluid (CSF) cortisol and inflammation after TBI, and to determine how these relationships differ by outcome. CSF samples were collected from 91 subjects with severe TBI during days 0–6 post-injury, analyzed for cortisol and inflammatory markers, and compared to healthy controls (n=13 cortisol, n=11 inflammatory markers). Group-based trajectory analysis (TRAJ) delineated subpopulations with similar longitudinal CSF cortisol profiles (high vs. low cortisol). Glasgow Outcome Scale (GOS) scores at 6 months served as the primary outcome measure reflecting global outcome. Inflammatory markers that displayed significant bivariate associations with both GOS and cortisol TRAJ (interleukin [IL]-6, IL-10, soluble Fas [sFas], soluble intracellular adhesion molecule [sICAM]-1, and tumor necrosis factor alpha [TNF]-α) were used to generate a cumulative inflammatory load score (ILS). Subsequent analysis revealed that cortisol TRAJ group membership mediated ILS effects on outcome (indirect effect estimate= −0.253, 95% CI (−0.481, −0.025), p=0.03). Correlational analysis between mean cortisol levels and ILS were examined separately within each cortisol TRAJ group and by outcome. Within the low cortisol TRAJ group, subjects with unfavorable 6-month outcome displayed a negative correlation between ILS and mean cortisol (r=−0.562, p=0.045). Conversely, subjects with unfavorable outcome in the high cortisol TRAJ group displayed a positive correlation between ILS and mean cortisol (r=0.391, p=0.006). Our results suggest that unfavorable outcome after TBI may result from dysfunctional neuroendocrine-immune communication wherein an adequate immune response is not mounted or, alternatively, neuroinflammation is prolonged. Importantly, the nature of

  20. Pituitary dysfunction in traumatic brain injury: Is evaluation in the acute phase worthwhile?

    PubMed Central

    Dalwadi, Pradip P.; Bhagwat, Nikhil M.; Tayde, Parimal S.; Joshi, Ameya S.; Varthakavi, Premlata K.

    2017-01-01

    Introduction: Traumatic brain injury (TBI) is an under-recognized cause of hypopituitarism. According to recent data, it could be more frequent than previously known. However, there is a scarcity of data in Indian population. Aims: The main aim of the study was to determine the prevalence of pituitary hormone deficiencies in the acute phase of TBI. The secondary objectives were to correlate the severity of trauma with basal hormone levels and to determine whether initial hormone deficiencies predict mortality. Subjects and Methods: Forty-nine TBI patients (41 men and 8 women) were included in this study. Pituitary functions were evaluated within 24 h of admission. Results: Gonadotropin deficiency was found in 65.3% patient while 46.9% had low insulin-like growth factor-1, 12.24% had cortisol level <7 mcg/dl. Cortisol and prolactin level were positively correlated with the severity of TBI suggestive of stress response. Free triiodothyronine (fT3) and free thyroxine were significantly lower in patients with increasing severity of tuberculosis. Logistic regression analysis revealed that mortality after TBI was unrelated to the basal pituitary hormone levels except low T3 level, which was found to be positively related to mortality. Conclusions: Pituitary dysfunction is common after TBI and the most commonly affected axes are growth hormone and gonadotropin axis. Low fT3 correlates best with mortality. During the acute phase of TBI, at least an assessment of cortisol is vital as undetected cortisol deficiency can be life-threatening PMID:28217503

  1. Acute Alcohol Intoxication Prolongs Neuroinflammation without Exacerbating Neurobehavioral Dysfunction following Mild Traumatic Brain Injury

    PubMed Central

    Teng, Sophie X.

    2014-01-01

    Abstract Traumatic brain injury (TBI) represents a leading cause of death and disability among young persons with ∼1.7 million reported cases in the United States annually. Although acute alcohol intoxication (AAI) is frequently present at the time of TBI, conflicting animal and clinical reports have failed to establish whether AAI significantly impacts short-term outcomes after TBI. The objective of this study was to determine whether AAI at the time of TBI aggravates neurobehavioral outcomes and neuroinflammatory sequelae post-TBI. Adult male Sprague-Dawley rats were surgically instrumented with gastric and vascular catheters before a left lateral craniotomy. After recovery, rats received either a primed constant intragastric alcohol infusion (2.5 g/kg+0.3 g/kg/h for 15 h) or isocaloric/isovolumic dextrose infusion followed by a lateral fluid percussion TBI (∼1.4 J, ∼30 ms). TBI induced apnea and a delay in righting reflex. AAI at the time of injury increased the TBI induced delay in righting reflex without altering apnea duration. Neurological and behavioral dysfunction was observed at 6 h and 24 h post-TBI, and this was not exacerbated by AAI. TBI induced a transient upregulation of cortical interleukin (IL)-6 and monocyte chemotactic protein (MCP)-1 mRNA expression at 6 h, which was resolved at 24 h. AAI did not modulate the inflammatory response at 6 h but prevented resolution of inflammation (IL-1, IL-6, tumor necrosis factor-α, and MCP-1 expression) at 24 h post-TBI. AAI at the time of TBI did not delay the recovery of neurological and neurobehavioral function but prevented the resolution of neuroinflammation post-TBI. PMID:24050411

  2. N-Acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury.

    PubMed

    Demougeot, C; Garnier, P; Mossiat, C; Bertrand, N; Giroud, M; Beley, A; Marie, C

    2001-04-01

    To evaluate the contribution of cellular dysfunction and neuronal loss to brain N-acetylaspartate (NAA) depletion, NAA was measured in brain tissue by HPLC and UV detection in rats subjected to cerebral injury, associated or not with cell death. When lesion was induced by intracarotid injection of microspheres, the fall in NAA was related to the degree of embolization and to the severity of brain oedema. When striatal lesion was induced by local injection of malonate, the larger the lesion volume, the higher the NAA depletion. However, reduction of brain oedema and striatal lesion by treatment with the lipophilic iron chelator dipyridyl (20 mg/kg, 1 h before and every 8 h after embolization) and the inducible nitric oxide synthase inhibitor aminoguanidine (100 mg/kg given 1 h before malonate and then every 9 h), respectively, failed to ameliorate the fall in NAA. Moreover, after systemic administration of 3-nitropropionic acid, a marked reversible fall in NAA striatal content was observed despite the lack of tissue necrosis. Overall results show that cellular dysfunction can cause higher reductions in NAA level than neuronal loss, thus making of NAA quantification a potential tool for visualizing the penumbra area in stroke patients.

  3. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study

    PubMed Central

    Lelic, Dina; Niazi, Imran Khan; Holt, Kelly; Jochumsen, Mads; Dremstrup, Kim; Yielder, Paul; Murphy, Bernadette; Drewes, Asbjørn Mohr; Haavik, Heidi

    2016-01-01

    Objectives. Studies have shown decreases in N30 somatosensory evoked potential (SEP) peak amplitudes following spinal manipulation (SM) of dysfunctional segments in subclinical pain (SCP) populations. This study sought to verify these findings and to investigate underlying brain sources that may be responsible for such changes. Methods. Nineteen SCP volunteers attended two experimental sessions, SM and control in random order. SEPs from 62-channel EEG cap were recorded following median nerve stimulation (1000 stimuli at 2.3 Hz) before and after either intervention. Peak-to-peak amplitude and latency analysis was completed for different SEPs peak. Dipolar models of underlying brain sources were built by using the brain electrical source analysis. Two-way repeated measures ANOVA was used to assessed differences in N30 amplitudes, dipole locations, and dipole strengths. Results. SM decreased the N30 amplitude by 16.9 ± 31.3% (P = 0.02), while no differences were seen following the control intervention (P = 0.4). Brain source modeling revealed a 4-source model but only the prefrontal source showed reduced activity by 20.2 ± 12.2% (P = 0.03) following SM. Conclusion. A single session of spinal manipulation of dysfunctional segments in subclinical pain patients alters somatosensory processing at the cortical level, particularly within the prefrontal cortex. PMID:27047694

  4. What Is Age-Related Macular Degeneration?

    MedlinePlus

    ... of Low Vision Age-Related Macular Degeneration Vision Simulator AMD Pictures and Videos: What Does Macular Degeneration ... degeneration as part of the body's natural aging process. There are different kinds of macular problems, but ...

  5. YiQiFuMai powder injection ameliorates blood-brain barrier dysfunction and brain edema after focal cerebral ischemia-reperfusion injury in mice.

    PubMed

    Cao, Guosheng; Ye, Xinyi; Xu, Yingqiong; Yin, Mingzhu; Chen, Honglin; Kou, Junping; Yu, Boyang

    2016-01-01

    YiQiFuMai powder injection (YQFM) is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People's Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood-brain barrier (BBB) dysfunction induced by cerebral ischemia-reperfusion (I/R) injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperitoneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins.

  6. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone

    SciTech Connect

    Carney, J.M.; Starke-Reed, P.E.; Oliver, C.N.; Landum, R.W.; Cheng, M.S.; Wu, J.F.; Floyd, R.A. )

    1991-05-01

    Oxygen free radicals and oxidative events have been implicated as playing a role in bringing about the changes in cellular function that occur during aging. Brain readily undergoes oxidative damage, so it is important to determine if aging-induced changes in brain may be associated with oxidative events. Previously we demonstrated that brain damage caused by an ischemia/reperfusion insult involved oxidative events. In addition, pretreatment with the spin-trapping compound N-tert-butyl-alpha-phenylnitrone (PBN) diminished the increase in oxidized protein and the loss of glutamine synthetase (GS) activity that accompanied ischemia/reperfusion injury in brain. We report here that aged gerbils had a significantly higher level of oxidized protein as assessed by carbonyl residues and decreased GS and neutral protease activities as compared to young adult gerbils. We also found that chronic treatment with the spin-trapping compound PBN caused a decrease in the level of oxidized protein and an increase in both GS and neutral protease activity in aged Mongolian gerbil brain. In contrast to aged gerbils, PBN treatment of young adult gerbils had no significant effect on brain oxidized protein content or GS activity. Male gerbils, young adults (3 months of age) and retired breeders (15-18 months of age), were treated with PBN for 14 days with twice daily dosages of 32 mg/kg. If PBN administration was ceased after 2 weeks, the significantly decreased level of oxidized protein and increased GS and neutral protease activities in old gerbils changed in a monotonic fashion back to the levels observed in aged gerbils prior to PBN administration. We also report that old gerbils make more errors than young animals and that older gerbils treated with PBN made fewer errors in a radial arm maze test for temporal and spatial memory than the untreated aged controls.

  7. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2017-01-12

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  8. Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome.

    PubMed

    De Filippis, Bianca; Valenti, Daniela; Chiodi, Valentina; Ferrante, Antonella; de Bari, Lidia; Fiorentini, Carla; Domenici, Maria Rosaria; Ricceri, Laura; Vacca, Rosa Anna; Fabbri, Alessia; Laviola, Giovanni

    2015-06-01

    Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases.

  9. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer’s Disease

    PubMed Central

    Dulla, Chris G.; Coulter, Douglas A.; Ziburkus, Jokubas

    2015-01-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer’s disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. PMID:25948650

  10. Systemic platelet dysfunction is the result of local dysregulated coagulation and platelet activation in the brain in a rat model of isolated traumatic brain injury.

    PubMed

    Ploplis, Victoria A; Donahue, Deborah L; Sandoval-Cooper, Mayra J; MorenoCaffaro, Maria; Sheets, Patrick; Thomas, Scott G; Walsh, Mark; Castellino, Francis J

    2014-10-01

    Coagulopathy after severe traumatic brain injury (TBI) has been extensively reported. Clinical studies have identified a strong relationship between diminished platelet-rich thrombus formation, responsiveness to adenosine diphosphate agonism, and severity of TBI. The mechanisms that lead to platelet dysfunction in the acute response to TBI are poorly understood. The development of a rodent model of TBI that mimics the coagulopathy observed clinically has recently been reported. Using immunohistochemical techniques and thromboelastography platelet mapping, the current study demonstrated that the expression of coagulation (tissue factor and fibrin) and platelet activation (P-selectin) markers in the injured brain paralleled the alteration in systemic platelet responsiveness to the agonists, adenosine diphosphate and arachodonic acid. Results of this study demonstrate that local procoagulant changes in the injured brain have profound effects on systemic platelet function.

  11. Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution.

    PubMed

    Marchand, William R; Lee, James N; Suchy, Yana; Garn, Cheryl; Johnson, Susanna; Wood, Nicole; Chelune, Gordon

    2011-03-01

    Normal human aging is associated with declining motor control and function. It is thought that dysfunction of the cortico-basal ganglia circuitry may contribute to age-related sensorimotor impairment, however the underlying mechanisms are poorly characterized. The aim of this study was to enhance our understanding of age-related changes in the functional architecture of these circuits. Fifty-nine subjects, consisting of a young, middle and old group, were studied using functional MRI and a motor activation paradigm. Functional connectivity analyses and examination of correlations of connectivity strength with performance on the activation task as well as neurocognitive tasks completed outside of magnet were conducted. Results indicated that increasing age is associated with changes in the functional architecture of the cortico-basal ganglia circuitry. Connectivity strength increased between subcortical nuclei and cortical motor and sensory regions but no changes were found between subcortical components of the circuitry. Further, increased connectivity was correlated with poorer performance on a neurocognitive task independently of age. This result suggests that increased connectivity reflects a decline in brain function rather than a compensatory process. These findings advance our understanding of the normal aging process. Further, the methods employed will likely be useful for future studies aimed at disambiguating age-related versus illness progression changes associated with neuropsychiatric disorders that involve the cortico-basal ganglia circuitry.

  12. Age-related changes in triathlon performances.

    PubMed

    Lepers, R; Sultana, F; Bernard, T; Hausswirth, C; Brisswalter, J

    2010-04-01

    The aim of this study was two-fold: i) to analyse age-related declines in swimming, cycling, and running performances for Olympic and Ironman triathlons, and ii) to compare age-related changes in these three disciplines between the Olympic and Ironman triathlons. Swimming, cycling, running and total time performances of the top 10 males between 20 and 70 years of age (in 5 years intervals) were analysed for two consecutive world championships (2006 and 2007) for Olympic and Ironman distances. There was a lesser age-related decline in cycling performance (p<0.01) compared with running and swimming after 55 years of age for Olympic distance and after 50 years of age for Ironman distance. With advancing age, the performance decline was less pronounced (p<0.01) for Olympic than for Ironman triathlon in cycling (>55 years) and running (>50 years), respectively. In contrast, an age-related decline in swimming performance seemed independent of triathlon distance. The age-related decline in triathlon performance is specific to the discipline, with cycling showing less declines in performance with age than swimming and running. The magnitude of the declines in cycling and running performance at Ironman distance is greater than at Olympic distance, suggesting that task duration exerts an important influence on the magnitude of the age-associated changes in triathlon performance.

  13. Overview of age-related ocular conditions.

    PubMed

    Akpek, Esen K; Smith, Roderick A

    2013-05-01

    The United States is an aging society. The number of Americans 65 years or older is expected to more than double over the next 40 years, from 40.2 million in 2010 to 88.5 million in 2050, with aging baby boomers accounting for most of the increase. As the society ages, the prevalence of age-related diseases, including diseases of the eye, will continue to increase. By 2020, age-related macular degeneration, one of the leading causes of vision loss, is expected to affect 2.95 million individuals in the United States. Likewise, the prevalence of open-angle glaucoma, estimated at 2.2 million in 2000, is projected to increase by 50%, to 3.36 million by 2020. As the eye ages, it undergoes a number of physiologic changes that may increase susceptibility to disease. Environmental and genetic factors are also major contributors to the development of age-related ocular diseases. This article reviews the physiology of the aging eye and the epidemiology and pathophysiology of 4 major age-related ocular diseases: age-related macular degeneration, glaucoma, diabetic retinopathy, and dry eye.

  14. Erectile dysfunction.

    PubMed

    Wylie, Kevan

    2008-01-01

    Erectile dysfunction is a common problem affecting sexual function in men. Approximately one in 10 men over the age of 40 is affected by this condition and the incidence is age related. Erectile dysfunction is a sentinel marker for several reversible conditions including peripheral and coronary vascular disease, hypertension and diabetes mellitus. Endothelial dysfunction is a common factor between the disease states. Concurrent conditions such as depression, late-onset hypogonadism, Peyronie's disease and lower urinary tract symptoms may significantly worsen erectile function, other sexual and relationship issues and penis dysmorphophobia. A focused physical examination and baseline laboratory investigations are mandatory. Management consists of initiating modifiable lifestyle changes, psychological and psychosexual/couples interventions and pharmacological and other interventions. In combination and with treatment of concurrent comorbid states, these interventions will often bring about successful resolution of symptoms and avoid the need for surgical interventions.

  15. [Pathogenesis of age-related macular degeneration].

    PubMed

    Kaarniranta, Kai; Seitsonen, Sanna; Paimela, Tuomas; Meri, Seppo; Immonen, Ilkka

    2009-01-01

    Age-related macular degeneration is a multiform disease of the macula, the region responsible for detailed central vision. In recent years, plenty of new knowledge of the pathogenesis of this disease has been obtained, and the treatment of exudative macular degeneration has greatly progressed. The number of patients with age-related macular degeneration will multiply in the following decades, because knowledge of mechanisms of development of macular degeneration that could be subject to therapeutic measures is insufficient. Central underlying factors are genetic inheritance, exposure of the retina to chronic oxidative stress and accumulation of inflammation-inducing harmful proteins into or outside of retinal cells.

  16. [New aspects in age related macular degeneration].

    PubMed

    Turlea, C

    2012-01-01

    Being the leading cause of blindness in modern world Age Related Macular Degeneration has beneficiated in the last decade of important progress in diagnosis, classification and the discovery of diverse factors who contribute to the etiology of this disease. Treatments have arised who can postpone the irreversible evolution of the disease and thus preserve vision. Recent findings have identified predisposing genetic factors and also inflamatory and imunological parameters that can be modified trough a good and adequate prevention and therapy This articole reviews new aspects of patology of Age Related Macular Degeneration like the role of complement in maintaining inflamation and the role of oxidative stress on different structures of the retina.

  17. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy

    PubMed Central

    Drosatos, Konstantinos

    2016-01-01

    Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic equilibrium of the heart along with mitochondrial dysfunction and impaired β-adrenergic receptor signaling contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-activated receptor-α, β-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential therapeutic targets for cardiac aging. PMID:27558317

  18. The Developing, Aging Neocortex: How Genetics and Epigenetics Influence Early Developmental Patterning and Age-Related Change

    PubMed Central

    Huffman, Kelly

    2012-01-01

    A hallmark of mammalian development is the generation of functional subdivisions within the nervous system. In humans, this regionalization creates a complex system that regulates behavior, cognition, memory, and emotion. During development, specification of neocortical tissue that leads to functional sensory and motor regions results from an interplay between cortically intrinsic, molecular processes, such as gene expression, and extrinsic processes regulated by sensory input. Cortical specification in mice occurs pre- and perinatally, when gene expression is robust and various anatomical distinctions are observed alongside an emergence of physiological function. After patterning, gene expression continues to shift and axonal connections mature into an adult form. The function of adult cortical gene expression may be to maintain neocortical subdivisions that were established during early patterning. As some changes in neocortical gene expression have been observed past early development into late adulthood, gene expression may also play a role in the altered neocortical function observed in age-related cognitive decline and brain dysfunction. This review provides a discussion of how neocortical gene expression and specific patterns of neocortical sensori-motor axonal connections develop and change throughout the lifespan of the animal. We posit that a role of neocortical gene expression in neocortex is to regulate plasticity mechanisms that impact critical periods for sensory and motor plasticity in aging. We describe results from several studies in aging brain that detail changes in gene expression that may relate to microstructural changes observed in brain anatomy. We discuss the role of altered glucocorticoid signaling in age-related cognitive and functional decline, as well as how aging in the brain may result from immune system activation. We describe how caloric restriction or reduction of oxidative stress may ameliorate effects of aging on the brain. PMID

  19. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  20. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  1. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  2. YiQiFuMai powder injection ameliorates blood–brain barrier dysfunction and brain edema after focal cerebral ischemia–reperfusion injury in mice

    PubMed Central

    Cao, Guosheng; Ye, Xinyi; Xu, Yingqiong; Yin, Mingzhu; Chen, Honglin; Kou, Junping; Yu, Boyang

    2016-01-01

    YiQiFuMai powder injection (YQFM) is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People’s Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood–brain barrier (BBB) dysfunction induced by cerebral ischemia–reperfusion (I/R) injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperitoneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins. PMID:26834461

  3. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  4. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    PubMed

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  5. Effect of Polyphenols on Oxidative Stress and Mitochondrial Dysfunction in Neuronal Death and Brain Edema in Cerebral Ischemia

    PubMed Central

    Panickar, Kiran S.; Anderson, Richard A.

    2011-01-01

    Polyphenols are natural substances with variable phenolic structures and are elevated in vegetables, fruits, grains, bark, roots, tea, and wine. There are over 8000 polyphenolic structures identified in plants, but edible plants contain only several hundred polyphenolic structures. In addition to their well-known antioxidant effects, select polyphenols also have insulin-potentiating, anti-inflammatory, anti-carcinogenic, anti-viral, anti-ulcer, and anti-apoptotic properties. One important consequence of ischemia is neuronal death and oxidative stress plays a key role in neuronal viability. In addition, neuronal death may be initiated by the activation of mitochondria-associated cell death pathways. Another consequence of ischemia that is possibly mediated by oxidative stress and mitochondrial dysfunction is glial swelling, a component of cytotoxic brain edema. The purpose of this article is to review the current literature on the contribution of oxidative stress and mitochondrial dysfunction to neuronal death, cell swelling, and brain edema in ischemia. A review of currently known mechanisms underlying neuronal death and edema/cell swelling will be undertaken and the potential of dietary polyphenols to reduce such neural damage will be critically reviewed. PMID:22174658

  6. How structure shapes (dys)function: a perspective to understanding brain region-specific degeneration in prion disease.

    PubMed

    Sišková, Zuzana

    2013-01-01

    Structure is a key determinant of function, with the nervous system being no exception. For example, in the nervous system the physiological properties of different synapses may be understood by comparing their structures. However, it is not clear whether specific structural properties of some neurons might play a role in driving their selective removal during chronic neurodegeneration or whether the structural properties might underpin why particular types of synapses or other neuronal compartments are more susceptible to degeneration (i.e., become dysfunctional) in certain brain regions than in others. Our recent study of the ultrastructure of the hippocampus and the cerebellum revealed that early synaptic loss is not a ubiquitous event in a brain undergoing chronic neurodegeneration. The prominent structural differences in proximity of the synaptic environment that are brought about by a degree of synaptic ensheathment by glial cells may help explain why Purkinje cell synapses remain intact, while pyramidal cell synapses progressively degenerate. The intrinsic structural organization of the hippocampal neuropil could contribute to the susceptibility of synapses to extracellular protein misfolding by a relatively higher degree of synaptic exposure to the extracellular environment. We suggest that neuronal structure may determine more than function; it might also predict dysfunction.

  7. Evaluation and treatment of persistent cognitive dysfunction following mild traumatic brain injury.

    PubMed

    Cozzarelli, Tara A

    2010-01-01

    The Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury (DCoE) and the Defense and Veterans Brain Injury Center (DVBIC) hosted a consensus conference to address persistent cognitive impairments following mild traumatic brain injury (mTBI) and the role of cognitive rehabilitation in this population. Fifty military and civilian subject matter experts developed clinical guidance for cognitive rehabilitation of Service members with cognitive symptoms persisting three or more months following injury. This article highlights the initial evaluation, comprehensive assessment and treatment recommendations contained within the guidance "Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury and Defense and Veterans Brain Injury Center Consensus Conference on Cognitive Rehabilitation for Mild Traumatic Brain Injury." The full clinical guidance is available at: (http://www.dcoe.health.mil/Resources.aspx).

  8. Evaluation of an Acute RNAi-Mediated Therapeutic for Visual Dysfunction Associated with Traumatic Brain Injury

    DTIC Science & Technology

    2013-10-01

    water from the brain to the blood and significantly impacts on brain swelling. We also show cognitive improvement in mice with focal cerebral...brain injury ( TBI ) is the leading cause of death in children and young adults globally. Malignant cerebral edema plays a major role in the...pathophysiology which evolves after severe TBI . Added to this is the significant morbidity and mortality from cerebral edema associated with acute stroke

  9. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

    PubMed Central

    2016-01-01

    Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs. PMID:27382348

  10. Ameliorative effect of traditional Japanese medicine yokukansan on age-related impairments of working memory and reversal learning in rats.

    PubMed

    Mizoguchi, K; Shoji, H; Tanaka, Y; Tabira, T

    2011-03-17

    Aging is thought to impair prefrontal cortical (PFC) structure-sensitive cognitive functions and flexibility, such as working memory and reversal learning. A traditional Japanese medicine, yokukansan (YKS), is frequently used to treat age-related neurodegenerative disorders such as Alzheimer's disease in Japan, but its pharmacological properties have not been elucidated. The present study was designed to examine whether YKS improves age-related cognitive deficits using aged rats. YKS was administered to 21-month-old rats for 3 months. The ability to learn initially a reward rule for a T-maze discrimination task (initial learning) was examined in young control (4-month-old), aged control (24-month-old) and YKS-treated aged (24-month-old) rats. Subsequently, working memory and reversal learning were examined in delayed alternation and reversal discrimination T-maze tasks, respectively. Locomotor activity was also measured in new environments. Although performance accuracy in the initial learning procedure did not differ among any experimental groups, accuracy in the delayed alternation task was significantly decreased in aged rats compared to young rats. Aged rats also showed significant decreases in accuracy in the reversal discrimination task. YKS treatment significantly ameliorated the age-related decreases in accuracy in the delayed alternation and reversal discrimination tasks. The ameliorative effects of YKS on impaired delayed alternation performance were reduced by intracranial infusions of a dopamine D1 receptor antagonist, SCH 23390, into the prelimbic cortical region of the PFC, and the YKS effects on impaired reversal learning were done by the infusions into the orbitofrontal cortex (OFC). Locomotor activity did not change in any experimental group. Thus, YKS ameliorated age-related impairments of working memory and reversal learning, which might be mediated by a dopaminergic mechanism in the PFC structure. These investigations provide information

  11. Executive Dysfunctions and Event-Related Brain Potentials in Patients with Amyotrophic Lateral Sclerosis

    PubMed Central

    Seer, Caroline; Fürkötter, Stefanie; Vogts, Maj-Britt; Lange, Florian; Abdulla, Susanne; Dengler, Reinhard; Petri, Susanne; Kopp, Bruno

    2015-01-01

    A growing body of evidence implies psychological disturbances in amyotrophic lateral sclerosis (ALS). Specifically, executive dysfunctions occur in up to 50% of ALS patients. The recently shown presence of cytoplasmic aggregates (TDP-43) in ALS patients and in patients with behavioral variants of frontotemporal dementia suggests that these two disease entities form the extremes of a spectrum. The present study aimed at investigating behavioral and electrophysiological indices of conflict processing in patients with ALS. A non-verbal variant of the flanker task demanded two-choice responses to target stimuli that were surrounded by flanker stimuli which either primed the correct response or the alternative response (the latter case representing the conflict situation). Behavioral performance, event-related potentials (ERP), and lateralized readiness potentials (LRP) were analyzed in 21 ALS patients and 20 controls. In addition, relations between these measures and executive dysfunctions were examined. ALS patients performed the flanker task normally, indicating preserved conflict processing. In similar vein, ERP and LRP indices of conflict processing did not differ between groups. However, ALS patients showed enhanced posterior negative ERP waveform deflections, possibly indicating increased modulation of visual processing by frontoparietal networks in ALS. We also found that the presence of executive dysfunctions was associated with more error-prone behavior and enhanced LRP amplitudes in ALS patients, pointing to a prefrontal pathogenesis of executive dysfunctions and to a potential link between prefrontal and motor cortical functional dysregulation in ALS, respectively. PMID:26733861

  12. Prevention of age-related macular degeneration

    PubMed Central

    Koo, Simon Chi Yan; Chan, Clement Wai Nang

    2010-01-01

    Age-related macular degeneration (AMD) is one of the leading causes of blindness in the developed world. Although effective treatment modalities such as anti-VEGF treatment have been developed for neovascular AMD, there is still no effective treatment for geographical atrophy, and therefore the most cost-effective management of AMD is to start with prevention. This review looks at current evidence on preventive measures targeted at AMD. Modalities reviewed include (1) nutritional supplements such as the Age-Related Eye Disease Study (AREDS) formula, lutein and zeaxanthin, omega-3 fatty acid, and berry extracts, (2) lifestyle modifications, including smoking and body-mass-index, and (3) filtering sunlight, i.e. sunglasses and blue-blocking intraocular lenses. In summary, the only proven effective preventive measures are stopping smoking and the AREDS formula. PMID:20862519

  13. Aging-related inflammation in osteoarthritis.

    PubMed

    Greene, M A; Loeser, R F

    2015-11-01

    It is well accepted that aging is an important contributing factor to the development of osteoarthritis (OA). The mechanisms responsible appear to be multifactorial and may include an age-related pro-inflammatory state that has been termed "inflamm-aging." Age-related inflammation can be both systemic and local. Systemic inflammation can be promoted by aging changes in adipose tissue that result in increased production of cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNFα). Numerous studies have shown an age-related increase in blood levels of IL-6 that has been associated with decreased physical function and frailty. Importantly, higher levels of IL-6 have been associated with an increased risk of knee OA progression. However, knockout of IL-6 in male mice resulted in worse age-related OA rather than less OA. Joint tissue cells, including chondrocytes and meniscal cells, as well as the neighboring infrapatellar fat in the knee joint, can be a local source of inflammatory mediators that increase with age and contribute to OA. An increased production of pro-inflammatory mediators that include cytokines and chemokines, as well as matrix-degrading enzymes important in joint tissue destruction, can be the result of cell senescence and the development of the senescence-associated secretory phenotype (SASP). Further studies are needed to better understand the basis for inflamm-aging and its role in OA with the hope that this work will lead to new interventions targeting inflammation to reduce not only joint tissue destruction but also pain and disability in older adults with OA.

  14. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury.

    PubMed

    De Blasio, Daiana; Fumagalli, Stefano; Longhi, Luca; Orsini, Franca; Palmioli, Alessandro; Stravalaci, Matteo; Vegliante, Gloria; Zanier, Elisa R; Bernardi, Anna; Gobbi, Marco; De Simoni, Maria-Grazia

    2017-03-01

    Mannose-binding lectin is present in the contusion area of traumatic brain-injured patients and in that of traumatic brain-injured mice, where mannose-binding lectin-C exceeds mannose-binding lectin-A. The reduced susceptibility to traumatic brain injury of mannose-binding lectin double knock-out mice (mannose-binding lectin(-/-)) when compared to wild type mice suggests that mannose-binding lectin may be a therapeutic target following traumatic brain injury. Here, we evaluated the effects of a multivalent glycomimetic mannose-binding lectin ligand, Polyman9, following traumatic brain injury in mice. In vitro surface plasmon resonance assay indicated that Polyman9 dose-dependently inhibits the binding to immobilized mannose residues of plasma mannose-binding lectin-C selectively over that of mannose-binding lectin-A. Male C57Bl/6 mice underwent sham/controlled cortical impact traumatic brain injury and intravenous treatment with Polyman9/saline. Ex-vivo surface plasmon resonance studies confirmed that Polyman9 effectively reduces the binding of plasma mannose-binding lectin-C to immobilized mannose residues. In vivo studies up to four weeks post injury, showed that Polyman9 induces significant improvement in sensorimotor deficits (by neuroscore and beam walk), promotes neurogenesis (73% increase in doublecortin immunoreactivity), and astrogliosis (28% increase in glial fibrillary acid protein). Polyman9 administration in brain-injured mannose-binding lectin(-/-) mice had no effect on post-traumatic brain-injured functional deficits, suggestive of the specificity of its neuroprotective effects. The neurobehavioral efficacy of Polyman9 implicates mannose-binding lectin-C as a novel therapeutic target for traumatic brain injury.

  15. Role of histaminergic system in blood-brain barrier dysfunction associated with neurological disorders.

    PubMed

    Bañuelos-Cabrera, Ivette; Valle-Dorado, María Guadalupe; Aldana, Blanca Irene; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2014-11-01

    Blood-brain barrier (BBB) disruption has been associated with several acute and chronic brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. This represents a critical situation because damaged integrity of the BBB is related to the influx of immune mediators, plasma proteins and other outside elements from blood to the central nervous system (CNS) that may trigger a cascade of events that leads to neuroinflammation. In this review, evidence that mast cells and the release of factors such as histamine play an important role in the neuroinflammatory process associated with brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy is presented.

  16. Age-related decline in oligodendrogenesis retards white matter repair in mice

    PubMed Central

    Miyamoto, Nobukazu; Pham, Loc-Duyen D.; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H.; Arai, Ken

    2013-01-01

    Background/Purpose Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask if compared to young brains, white matter regions in older brains may be more vulnerable in part due to decreased rates of compensatory oligodendrogenesis after injury. Methods A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells (OPCs) to sub-lethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Results Baseline myelin density in the corpus callosum was similar in 2-month and 8-month old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in CREB signaling may be involved because activating CREB with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of OPCs, alleviated myelin loss and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of OPCs. Conclusions An age-related decline in CREB-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate CREB signaling provide a potential therapeutic approach for treating white matter injury in aging brains. PMID:23881957

  17. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    PubMed

    Krishna, Gokul; Muralidhara

    2015-01-01

    Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against

  18. Behavioral stress causes mitochondrial dysfunction via ABAD up-regulation and aggravates plaque pathology in the brain of a mouse model of Alzheimer disease.

    PubMed

    Seo, Ji-Seon; Lee, Kang-Woo; Kim, Tae-Kyung; Baek, In-Sun; Im, Joo-Young; Han, Pyung-Lim

    2011-06-01

    Basic and clinical studies have reported that behavioral stress worsens the pathology of Alzheimer disease (AD), but the underlying mechanism has not been clearly understood. In this study, we determined the mechanism by which behavioral stress affects the pathogenesis of AD using Tg-APPswe/PS1dE9 mice, a murine model of AD. Tg-APPswe/PS1dE9 mice that were restrained for 2h daily for 16 consecutive days (2-h/16-day stress) from 6.5months of age had significantly increased Aβ(1-42) levels and plaque deposition in the brain. The 2-h/16-day stress increased oxidative stress and induced mitochondrial dysfunction in the brain. Treatment with glucocorticoid (corticosterone) and Aβ in SH-SY5Y cells increased the expression of 17β-hydroxysteroid dehydrogenase (ABAD), mitochondrial dysfunction, and levels of ROS, whereas blockade of ABAD expression by siRNA-ABAD in SH-SY5Y cells suppressed glucocorticoid-enhanced mitochondrial dysfunction and ROS accumulation. The 2-h/16-day stress up-regulated ABAD expression in mitochondria in the brain of Tg-APPswe/PS1dE9 mice. Moreover, all visible Aβ plaques were costained with anti-ABAD in the brains of Tg-APPswe/PS1dE9 mice. Together, these results suggest that behavioral stress aggravates plaque pathology and mitochondrial dysfunction via up-regulation of ABAD in the brain of a mouse model of AD.

  19. Psychological Effects of Stimulant Drugs in Children with Minimal Brain Dysfunction

    ERIC Educational Resources Information Center

    Conners, C. Keith

    1972-01-01

    Two technical studies involving the drugs dextroamphetamine, methylphenidate, and magnesium pemoline were reported in regard to the psychological characteristics and effects of stimulant drugs in children with minimal brain injuries. (CB)

  20. Blood-Brain Barrier Disruption and Neurovascular Unit Dysfunction in Diabetic Mice: Protection with the Mitochondrial Carbonic Anhydrase Inhibitor Topiramate.

    PubMed

    Salameh, Therese S; Shah, Gul N; Price, Tulin O; Hayden, Melvin R; Banks, William A

    2016-12-01

    All forms of diabetes mellitus are characterized by chronic hyperglycemia, resulting in the development of a number of microvascular and macrovascular pathologies. Diabetes is also associated with changes in brain microvasculature, leading to dysfunction and ultimately disruption of the blood-brain barrier (BBB). These changes are correlated with a decline in cognitive function. In diabetes, BBB damage is associated with increased oxidative stress and reactive oxygen species. This occurs because of the increased oxidative metabolism of glucose caused by hyperglycemia. Decreasing the production of bicarbonate with the use of a mitochondrial carbonic anhydrase inhibitor (mCAi) limits oxidative metabolism and the production of reactive oxygen species. In this study, we have demonstrated that 1) streptozotocin-induced diabetes resulted in BBB disruption, 2) ultrastructural studies showed a breakdown of the BBB and changes to the neurovascular unit (NVU), including a loss of brain pericytes and retraction of astrocytes, the two cell types that maintain the BBB, and 3) treatment with topiramate, a mCAi, attenuated the effects of diabetes on BBB disruption and ultrastructural changes in the neurovascular unit.

  1. Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain.

    PubMed

    Rangel-López, E; Colín-González, A L; Paz-Loyola, A L; Pinzón, E; Torres, I; Serratos, I N; Castellanos, P; Wajner, M; Souza, D O; Santamaría, A

    2015-01-29

    The endocannabinoid system (ECS) is involved in a considerable number of physiological processes in the Central Nervous System. Recently, a modulatory role of cannabinoid receptors (CBr) and CBr agonists on the reduction of the N-methyl-d-aspartate receptor (NMDAr) activation has been demonstrated. Quinolinic acid (QUIN), an endogenous analog of glutamate and excitotoxic metabolite produced in the kynurenine pathway (KP), selectively activates NMDAr and has been shown to participate in different neurodegenerative disorders. Since the early pattern of toxicity exerted by this metabolite is relevant to explain the extent of damage that it can produce in the brain, in this work we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) and other agonists (anandamide or AEA, and CP 55,940 or CP) on early markers of QUIN-induced toxicity in rat striatal cultured cells and rat brain synaptosomes. WIN, AEA and CP exerted protective effects on the QUIN-induced loss of cell viability. WIN also preserved the immunofluorescent signals for neurons and CBr labeling that were decreased by QUIN. The QUIN-induced early mitochondrial dysfunction, lipid peroxidation and reactive oxygen species (ROS) formation were also partially or completely prevented by WIN pretreatment, but not when this CBr agonist was added simultaneously with QUIN to brain synaptosomes. These findings support a neuroprotective and modulatory role of cannabinoids in the early toxic events elicited by agents inducing excitotoxic processes.

  2. Association of Mild Kidney Dysfunction with Silent Brain Lesions in Neurologically Normal Subjects

    PubMed Central

    Toyoda, Genya; Bokura, Hirokazu; Mitaki, Shingo; Onoda, Keiichi; Oguro, Hiroaki; Nagai, Atsushi; Yamaguchi, Shuhei

    2015-01-01

    Background Chronic kidney disease (CKD) has been closely associated with stroke. Although a large number of studies reported the relationship between CKD and different types of asymptomatic brain lesions, few comprehensive analyses have been performed for all types of silent brain lesions. Methods We performed a cross-sectional study involving 1,937 neurologically normal subjects (mean age 59.4 years). Mild CKD was defined as an estimated glomerular filtration rate between 30 and 60 ml/min/1.73 m2 or positive proteinuria. Results The prevalence of mild CKD was 8.7%. Univariate analysis revealed an association between CKD and all silent brain lesions, including silent brain infarction, periventricular hyperintensity, subcortical white matter lesion, and microbleeds, in addition to hypertension and diabetes mellitus after adjusting for age and sex. In binary logistic regression analysis, the presence of CKD was a significant risk factor for all types of silent brain lesions, independent of other risk factors. Conclusions These results suggest that mild CKD is independently associated with all types of silent brain lesions, even in neurologically normal subjects. PMID:25873927

  3. Endomorphins and morphine limit anoxia-reoxygenation-induced brain mitochondrial dysfunction in the mouse.

    PubMed

    Feng, Yun; Lu, Yingwei; Lin, Xin; Gao, Yanfeng; Zhao, Qianyu; Li, Wei; Wang, Rui

    2008-03-26

    The protection of brain mitochondria from oxidative stress is an important therapeutic strategy against ischemia-reperfusion injury and neurodegenerative disorders. Isolated brain mitochondria subjected to a 5 min period of anoxia followed by 5 min reoxygenation mirrored the effect of oxidative stress in the brain. The present study attempts to evaluate the protective effects of endomorphin 1 (EM1), endomorphin 2 (EM2), and morphine (Mor) in an in vitro mouse brain mitochondria anoxia-reoxygenation model. Endomorphins (EM1/2) and Mor were added to mitochondria prior to anoxia or reoxygenation. EM1/2 and Mor markedly improved mitochondrial respiratory activity with a decrease in state 4 and increases in state 3, respiratory control ratio (RCR) and the oxidative phosphorylation efficiency (ADP/O ratio), suggesting that they may play a protective role in mitochondria. These drugs inhibited alterations in mitochondrial membrane fluidity, lipoperoxidation, and cardiolipin (CL) release, which indicates protection of the mitochondrial membranes from oxidative damage. The protective effects of these drugs were concentration-dependent. Furthermore, these drugs blocked the enhanced release of cytochrome c (Cyt c), and consequently inhibited the cell apoptosis induced by the release of Cyt c. Our results suggest that EM1/2 and Mor effectively protect brain mitochondria against oxidative stresses induced by in vitro anoxia-reoxygenation and may play an important role in the prevention of deleterious effects during brain ischemia-reperfusion and neurodegenerative diseases.

  4. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    PubMed Central

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  5. Frog Virus 3 dissemination in the brain of tadpoles, but not in adult Xenopus, involves blood brain barrier dysfunction

    PubMed Central

    De Jesús Andino, Francisco; Jones, Letitia; Maggirwar, Sanjay B.; Robert, Jacques

    2016-01-01

    While increasing evidence points to a key role of monocytes in amphibian host defenses, monocytes are also thought to be important in the dissemination and persistent infection caused by ranavirus. However, little is known about the fate of infected macrophages or if ranavirus exploits immune privileged organs, such as the brain, in order to establish a reservoir. The amphibian Xenopus laevis and Frog Virus 3 (FV3) were established as an experimental platform for investigating in vivo whether ranavirus could disseminate to the brain. Our data show that the FV3 infection alters the BBB integrity, possibly mediated by an inflammatory response, which leads to viral dissemination into the central nervous system in X. laevis tadpole but not adult. Furthermore, our data suggest that the macrophages play a major role in viral dissemination by carrying the virus into the neural tissues. PMID:26931458

  6. Preventing painful age-related bone fractures

    PubMed Central

    Thompson, Michelle L; Chartier, Stephane R; Mitchell, Stefanie A

    2016-01-01

    Age-related bone fractures are usually painful and have highly negative effects on a geriatric patient’s functional status, quality of life, and survival. Currently, there are few analgesic therapies that fully control bone fracture pain in the elderly without significant unwanted side effects. However, another way of controlling age-related fracture pain would be to preemptively administer an osteo-anabolic agent to geriatric patients with high risk of fracture, so as to build new cortical bone and prevent the fracture from occurring. A major question, however, is whether an osteo-anabolic agent can stimulate the proliferation of osteogenic cells and build significant amounts of new cortical bone in light of the decreased number and responsiveness of osteogenic cells in aging bone. To explore this question, geriatric and young mice, 20 and 4 months old, respectively, received either vehicle or a monoclonal antibody that sequesters sclerostin (anti-sclerostin) for 28 days. From days 21 to 28, animals also received sustained administration of the thymidine analog, bromodeoxyuridine (BrdU), which labels the DNA of dividing cells. Animals were then euthanized at day 28 and the femurs were examined for cortical bone formation, bone mineral density, and newly borne BrdU+ cells in the periosteum which is a tissue that is pivotally involved in the formation of new cortical bone. In both the geriatric and young mice, anti-sclerostin induced a significant increase in the thickness of the cortical bone, bone mineral density, and the proliferation of newly borne BrdU+ cells in the periosteum. These results suggest that even in geriatric animals, anti-sclerostin therapy can build new cortical bone and increase the proliferation of osteogenic cells and thus reduce the likelihood of painful age-related bone fractures. PMID:27837171

  7. Age-related eye disease and gender.

    PubMed

    Zetterberg, Madeleine

    2016-01-01

    Worldwide, the prevalence of moderate to severe visual impairment and blindness is 285 millions, with 65% of visually impaired and 82% of all blind people being 50 years and older. Meta-analyses have shown that two out of three blind people are women, a gender discrepancy that holds true for both developed and developing countries. Cataract accounts for more than half of all blindness globally and gender inequity in access to cataract surgery is the major cause of the higher prevalence of blindness in women. In addition to gender differences in cataract surgical coverage, population-based studies on the prevalence of lens opacities indicate that women have a higher risk of developing cataract. Laboratory as well as epidemiologic studies suggest that estrogen may confer antioxidative protection against cataractogenesis, but the withdrawal effect of estrogen in menopause leads to increased risk of cataract in women. For the other major age-related eye diseases; glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy, data are inconclusive. Due to anatomic factors, angle closure glaucoma is more common in women, whereas the dominating glaucoma type; primary open-angle glaucoma (POAG), is more prevalent in men. Diabetic retinopathy also has a male predominance and vascular/circulatory factors have been implied both in diabetic retinopathy and in POAG. For AMD, data on gender differences are conflicting although some studies indicate increased prevalence of drusen and neovascular AMD in women. To conclude, both biologic and socioeconomic factors must be considered when investigating causes of gender differences in the prevalence of age-related eye disease.

  8. Pathophysiology of age-related diseases

    PubMed Central

    Campisi, Giuseppina; Chiappelli, Martina; De Martinis, Massimo; Franco, Vito; Ginaldi, Lia; Guiglia, Rosario; Licastro, Federico; Lio, Domenico

    2009-01-01

    A Symposium regarding the Pathophysiology of Successful and Unsuccessful Ageing was held in Palermo, Italy on 7-8 April 2009. Three lectures from that Symposium by G. Campisi, L. Ginaldi and F. Licastro are here summarized. Ageing is a complex process which negatively impacts on the development of various bodily systems and its ability to function. A long life in a healthy, vigorous, youthful body has always been one of humanity's greatest dreams. Thus, a better understanding of the pathophysiology of age-related diseases is urgently required to improve our understanding of maintaining good health in the elderly and to program possible therapeutic intervention. PMID:19737378

  9. Depression in Age-Related Macular Degeneration.

    PubMed

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling diseases. This article discusses the effect of depression on vision-related disability in patients with AMD, suggests methods for screening for depression, and summarizes interventions for preventing depression in this high-risk group.

  10. [Age-related macular degeneration (AMD)].

    PubMed

    Michels, Stephan; Kurz-Levin, Malaika

    2009-03-01

    Today age-related macular degeneration (AMD) is the most frequent cause for legal blindness in western industrialized countries. The prevalence of this disease rises with increasing age. A multifactorial pathogenesis of AMD is postulated including genetic predisposition and environmental risk factors. The most relevant modifiable risk factor is smoking. Up to today there is no cure of this chronic disease. Prophylaxis, including a healthy diet and antioxidants as nutrional supplements for selected patients, aims to slow down the disease progression. Significant progress has been made in the treatment of the neovascular form of the disease using inhibitors of the vascular endothelial growth factor (VEGF).

  11. Evolving concepts on the age-related changes in "muscle quality".

    PubMed

    Russ, David W; Gregg-Cornell, Kimberly; Conaway, Matthew J; Clark, Brian C

    2012-06-01

    The deterioration of skeletal muscle with advancing age has long been anecdotally recognized and has been of scientific interest for more than 150 years. Over the past several decades, the scientific and medical communities have recognized that skeletal muscle dysfunction (e.g., muscle weakness, poor muscle coordination, etc.) is a debilitating and life-threatening condition in the elderly. For example, the age-associated loss of muscle strength is highly associated with both mortality and physical disability. It is well-accepted that voluntary muscle force production is not solely dependent upon muscle size, but rather results from a combination of neurologic and skeletal muscle factors, and that biologic properties of both of these systems are altered with aging. Accordingly, numerous scientists and clinicians have used the term "muscle quality" to describe the relationship between voluntary muscle strength and muscle size. In this review article, we discuss the age-associated changes in the neuromuscular system-starting at the level of the brain and proceeding down to the subcellular level of individual muscle fibers-that are potentially influential in the etiology of dynapenia (age-related loss of muscle strength and power).

  12. Nitroxide pharmaceutical development for age-related degeneration and disease

    PubMed Central

    Zarling, Jacob A.; Brunt, Vienna E.; Vallerga, Anne K.; Li, Weixing; Tao, Albert; Zarling, David A.; Minson, Christopher T.

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed. PMID:26594225

  13. Nitroxide pharmaceutical development for age-related degeneration and disease.

    PubMed

    Zarling, Jacob A; Brunt, Vienna E; Vallerga, Anne K; Li, Weixing; Tao, Albert; Zarling, David A; Minson, Christopher T

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed.

  14. Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; You, Youbo; Tian, Jie

    2012-03-01

    Mild cognitive impairment (MCI) was recognized as the prodromal stage of Alzheimer's disease (AD). Recent researches have shown that cognitive and memory decline in AD patients is coupled with losses of small-world attributes. However, few studies pay attention to the characteristics of the whole brain networks in MCI patients. In the present study, we investigated the topological properties of the whole brain networks utilizing graph theoretical approaches in 16 MCI patients, compared with 18 age-matched healthy subjects as a control. Both MCI patients and normal controls showed small-world architectures, with large clustering coefficients and short characteristic path lengths. We detected significantly longer characteristic path length in MCI patients compared with normal controls at the low sparsity. The longer characteristic path lengths in MCI indicated disrupted information processing among distant brain regions. Compared with normal controls, MCI patients showed decreased nodal centrality in the brain areas of the angular gyrus, heschl gyrus, hippocampus and superior parietal gyrus, while increased nodal centrality in the calcarine, inferior occipital gyrus and superior frontal gyrus. These changes in nodal centrality suggested a widespread rewiring in MCI patients, which may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline. Our findings may be helpful for further understanding the pathological mechanisms of MCI.

  15. B7-H1 shapes T-cell–mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity

    PubMed Central

    Klotz, Luisa; Kuzmanov, Ivan; Hucke, Stephanie; Gross, Catharina C.; Posevitz, Vilmos; Dreykluft, Angela; Schulte-Mecklenbeck, Andreas; Janoschka, Claudia; Lindner, Maren; Herold, Martin; Schwab, Nicholas; Ludwig-Portugall, Isis; Kurts, Christian; Meuth, Sven G.; Kuhlmann, Tanja; Wiendl, Heinz

    2016-01-01

    Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood–brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4+ T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity. PMID:27671636

  16. Minimal Brain Dysfunction in Childhood: II. Late Outcome in Relation to Initial Presentation. III. Predictive Factors in Relation to Late Outcome.

    ERIC Educational Resources Information Center

    Milman, Doris H.

    Two studies explore the late outcome of minimal brain dysfunction in 73 patients in relation to their initial presentation and predictive factors. Both studies followed the patients for a period of 10 to 20 years. Findings from the first study of initial presentation in relation to adult outcome showed that there was a strong positive correlation…

  17. A Behavioral Treatment for Traumatic Brain Injury-Associated Visual Dysfunction Based on Adult Cortical Plasticity

    DTIC Science & Technology

    2014-12-01

    phase of eye movements , whereas the superimposed red and green sections are the fast saccadic movements in the left and right direction, respectively...in near vision, as well as in general processing speed, overall attention, cognitive processing, and involuntary eye movement suppression during... movement behaviors, thus supporting that improvements are contributed by brain plasticity following perceptual training. The observed improvement in

  18. Neural Correlates of Motor Dysfunction in Children with Traumatic Brain Injury: Exploration of Compensatory Recruitment Patterns

    ERIC Educational Resources Information Center

    Caeyenberghs, K.; Wenderoth, N.; Smits-Engelsman, B. C. M.; Sunaert, S.; Swinnen, S. P.

    2009-01-01

    Traumatic brain injury (TBI) is a common form of disability in children. Persistent deficits in motor control have been documented following TBI but there has been less emphasis on changes in functional cerebral activity. In the present study, children with moderate to severe TBI (n = 9) and controls (n = 17) were scanned while performing cyclical…

  19. Functional Brain Dysfunction in Patients with Benign Childhood Epilepsy as Revealed by Graph Theory.

    PubMed

    Adebimpe, Azeez; Aarabi, Ardalan; Bourel-Ponchel, Emilie; Mahmoudzadeh, Mahdi; Wallois, Fabrice

    2015-01-01

    There is growing evidence that brain networks are altered in epileptic subjects. In this study, we investigated the functional connectivity and brain network properties of benign childhood epilepsy with centrotemporal spikes using graph theory. Benign childhood epilepsy with centrotemporal spikes is the most common form of idiopathic epilepsy in young children under the age of 16 years. High-density EEG data were recorded from patients and controls in resting state with eyes closed. Data were preprocessed and spike and spike-free segments were selected for analysis. Phase locking value was calculated for all paired combinations of channels and for five frequency bands (δ, θ, α, β1 and β2). We computed the degree and small-world parameters--clustering coefficient (C) and path length (L)--and compared the two patient conditions to controls. A higher degree at epileptic zones during interictal epileptic spikes (IES) was observed in all frequency bands. Both patient conditions reduced connection at the occipital and right frontal regions close to the epileptic zone in the α band. The "small-world" features (high C and short L) were deviated in patients compared to controls. A changed from an ordered network in the δ band to a more randomly organized network in the α band was observed in patients compared to healthy controls. These findings show that the benign epileptic brain network is disrupted not only at the epileptic zone, but also in other brain regions especially frontal regions.

  20. 8 Areas of Age-Related Change

    MedlinePlus

    ... please turn Javascript on. Photo: PhotoDisc 1. Brain: Memory and Alzheimer's Disease (AD) As adults age, many ... Researchers from 12 institutions, including the NIH's National Human Genome Research Institute (NHGRI), recently announced the results ...

  1. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential mechanism involved in cannabis-related stroke.

    PubMed

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke.

  2. Neurobehavioural dysfunction following mild traumatic brain injury in childhood: a case report with positive findings on positron emission tomography (PET).

    PubMed

    Roberts, M A; Manshadi, F F; Bushnell, D L; Hines, M E

    1995-07-01

    The present case study describes the neurobehavioural, neurodiagnostic, and positron emission tomography (PET) scan findings in a child who sustained a whiplash-type injury in a motor vehicle accident. Although neck and back pain were reported immediately, neurobehavioural symptoms, such as staring spells, gradually increased in frequency over a 2-year period following the accident. At 4 years after the accident the patient's symptoms persisted, as reported by teachers and parents, and more extensive diagnostic work-up was initiated. Standard EEG was normal while two ambulatory EEGs were abnormal and interpreted as epileptiform. A PET scan showed evidence of marked hypometabolism in both temporal lobes. Neuropsychological findings were consistent with PET findings and reflected verbal and visual memory deficits in the context of high average intelligence. Treatment with carbamazepine, verapamil, and fluoxetine greatly improved the patient's symptoms. The present case illustrates an example of a poor outcome in a paediatric case of mild traumatic brain injury, the importance of PET in demonstrating definitive evidence of brain dysfunction, and the child's positive response to anticonvulsant medication.

  3. Dysfunctions in brain networks supporting empathy: An fMRI study in adults with autism spectrum disorders

    PubMed Central

    Schulte-Rüther, Martin; Greimel, Ellen; Markowitsch, Hans J.; Kamp-Becker, Inge; Remschmidt, Helmut; Fink, Gereon R.; Piefke, Martina

    2010-01-01

    The present study aimed at identifying dysfunctions in brain networks that may underlie disturbed empathic behavior in autism spectrum disorders (ASD). During functional magnetic resonance imaging, subjects were asked to identify the emotional state observed in a facial stimulus (other-task) or to evaluate their own emotional response (self-task). Behaviorally, ASD subjects performed equally to the control group during the other-task, but showed less emotionally congruent responses in the self-task. Activations in brain regions related to theory of mind were observed in both groups. Activations of the medial prefrontal cortex (MPFC) were located in dorsal subregions in ASD subjects and in ventral areas in control subjects. During the self-task, ASD subjects activated an additional network of frontal and inferior temporal areas. Frontal areas previously associated with the human mirror system were activated in both tasks in control subjects, while ASD subjects recruited these areas during the self-task only. Activations in the ventral MPFC may provide the basis for one's “emotional bond” with other persons’ emotions. Such atypical patterns of activation may underlie disturbed empathy in individuals with ASD. Subjects with ASD may use an atypical cognitive strategy to gain access to their own emotional state in response to other people's emotions. PMID:20945256

  4. Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain.

    PubMed

    Hawkins, Robert D

    2013-09-18

    Recent studies in Aplysia have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in mammals, where it may contribute to reward, memory, and their dysfunctions in several psychiatric disorders. In Aplysia, spontaneous release is enhanced by activation of presynaptic serotonin receptors, but presynaptic D1 dopamine receptors or nicotinic acetylcholine receptors could play a similar role in mammals. Those receptors enhance spontaneous release of glutamate in hippocampus, entorhinal cortex, prefrontal cortex, ventral tegmental area, and nucleus accumbens. In all of those brain areas, glutamate can activate postsynaptic receptors to elevate Ca(2+) and engage mechanisms of early-phase long-term potentiation (LTP), including AMPA receptor insertion, and of late-phase LTP, including protein synthesis and growth. Thus, presynaptic receptors and spontaneous release may contribute to postsynaptic mechanisms of plasticity in brain regions involved in reward and memory, and could play roles in disorders that affect plasticity in those regions, including addiction, Alzheimer's disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD).

  5. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

    PubMed Central

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities Vmax (complexes I, III, and IV activities), Vsucc (complexes II, III, and IV activities), Vtmpd (complex IV activity), together with mitochondrial coupling (Vmax/V0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased Vmax (−71%; P < 0.0001), Vsucc (−65%; P < 0.0001), and Vtmpd (−3.5%; P < 0.001). Mitochondrial coupling (Vmax/V0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke. PMID:25654095

  6. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    PubMed

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD.

  7. Tonic and phasic alertness training: a novel treatment for executive control dysfunction following mild traumatic brain injury.

    PubMed

    Van Vleet, Thomas M; Chen, Anthony; Vernon, Alana; Novakovic-Agopian, Tatjana; D'Esposito, Mark T

    2015-01-01

    Many individuals with traumatic brain injury (TBI) suffer difficulty regulating fundamental aspects of attention (focus, sustained attention) and may also exhibit hypo- or hyper-states of alertness. Deficits in the state of attention may underlie or exacerbate higher order executive dysfunction. Recent studies indicate that computerized cognitive training targeting attentional control and alertness can ameliorate attention deficits evident in patients with TBI or acquired brain injury. The current study examined whether improvements in attentional state following training can also influence performance on higher-order executive function and mood in individuals with mild TBI (mTBI). The current study examined five patients with executive control deficits as a result of mTBI, with or without persistent anxiety. Three patients engaged in ~5 hours of an executive control training task targeting inhibitory control and sustained attention; two additional patients were re-tested following the same period of time. Performance on standard neuropsychological measures of attention, executive function, and mood were evaluated pre- and post-training. The results indicate that tonic and phasic alertness training may improve higher-order executive function and mood regulation in individuals with TBI.

  8. [Treatment options for age-related infertility].

    PubMed

    Belaisch-Allart, Joëlle

    2010-06-20

    There has been a consistent trend towards delayed childbearing in most Western countries. Treatment options for age-related infertility includes controlled ovarian hyperstimulation with intrauterine insemination and in vitro fertilization (IVF). A sharp decline in pregnancy rate with advancing female age is noted with assisted reproductive technologies (ART) including IVF. Evaluation and treatment of infertility should not be delayed in women 35 years and older. No treatment other than oocyte donation has been shown to be effective for women over 40 and for those with compromised ovarian reserve, but its pratice is not easy in France hence the procreative tourism. As an increasing number of couples choose to postpone childbearing, they should be informed that maternal age is an important risk factor for failure to conceive.

  9. Medical bioremediation of age-related diseases

    PubMed Central

    Mathieu, Jacques M; Schloendorn, John; Rittmann, Bruce E; Alvarez, Pedro JJ

    2009-01-01

    Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods. PMID:19358742

  10. Genetic influences in emotional dysfunction and alcoholism-related brain damage

    PubMed Central

    Oscar-Berman, Marlene; Bowirrat, Abdalla

    2005-01-01

    Alcoholism is a complex, multifactorial disorder involving problematic ethanol ingestion; it results from the interplay between genetic and environmental factors. Personality, likewise, is formed from a combination of inherited and acquired influences. Because selected dimensions of emotional temperament are associated with distinct neurochemical substrates contributing to specific personality phenotypes, certain aspects of abnormal emotional traits in alcoholics may be inherited. Emotions involve complex subjective experiences engaging multiple brain regions, most notably the cortex, limbic system, and cerebellum. Results of in vivo magnetic resonance imaging and post-mortem neuropathological studies of alcoholics indicate that the greatest cortical loss occurs in the frontal lobes, with concurrent thinning of the corpus callosum. Additional damage has been documented for the amygdala and hippocampus, as well as in the white matter of the cerebellum. All of the critical areas of alcoholism-related brain damage are important for normal emotional functioning. When changes occur in these brain regions, either as a consequence of chronic ethanol abuse or from a genetic anomaly affecting temperament and/or a vulnerability to alcoholism, corresponding changes in emotional functions are to be expected. In alcoholics, such changes have been observed in their perception and evaluation of emotional facial expressions, interpretation of emotional intonations in vocal utterances, and appreciation of the meaning of emotional materials. PMID:18568071

  11. Are neurodegenerative disorder and psychotic manifestations avoidable brain dysfunctions with adequate dietary omega-3?

    PubMed

    Saugstad, Letten F

    2006-01-01

    The present mismatch between what our brain needs, and the modern diet neglects our marine heritage. Last century, the priority in nutrition and food production was to achieve a high protein diet and somatic growth and function. The dietary content of omega-3 (N-3) required by the brain was neglected although evidence for the essentiality of certain fatty acids was published in 1929 and specifically re-affirmed for omega 3 in the brain in the 1970s. Cognitive decline with age and neurodegenerative disorder with dementia are now rising. This review describes signs of N-3 deficit in Alzheimer and Parkinson Disease, where maximum change involves the primary sites: olfactory cortex and the hippocampus. The olfactory agnosia observed in schizophrenia supports an N-3 deficit as does a reduction of key ologodendrocyte- and myelin-related genes in this disorder and affective disorder, where a rise in dementia accords with a deficit of N-3 also in this disorder. N-3 normalizes cerebral excitability at all levels. That the two disorders are localized at the extremes of excitability, is supported by their opposing treatments: convulsant neuroleptics and anti-epileptic antidepressants. An adequate N-3 diet will probably prevent most psychotic episodes and prove that neurodegenerative disorder with dementia is also to a large extent not only preventable but avoidable.

  12. Are neurodegenerative disorder and psychotic manifestations avoidable brain dysfunctions with adequate dietary omega-3?

    PubMed

    Saugstad, Letten F

    2006-01-01

    The present mismatch between what our brain needs, and the modern diet neglects our marine heritage. Last century, the priority in nutrition and food production was to achieve a high protein diet and somatic growth and function. The dietary content of omega-3 (N-3) required by the brain was neglected although evidence for the essentiality of certain fatty acids was published in 1929 and specifically re-affirmed for omega 3 in the brain in the 1970s. Cognitive decline with age and neurodegenerative disorder with dementia are now rising. This review describes signs of N-3 deficit in Alzheimer and Parkinson Disease, where maximum change involves the primary sites: olfactory cortex and the hippocampus. The olfactory agnosia observed in schizophrenia supports an N-3 deficit as does a reduction of key ologodendrocyte- and myelin-related genes in this disorder and affective disorder, where a rise in dementia accords with a deficit of N-3 also in this disorder. N-3 normalizes cerebral excitability at all levels. That the two disorders are localized at the extremes of excitability, is supported by their opposing treatments: convulsant neuroleptics and anti-epileptic anti-depressants. An adequate N-3 diet will probably prevent most psychotic episodes and prove that neurodegenerative disorder with dementia is also to a large extent not only preventable but avoidable.

  13. Dysfunctional Activation and Brain Network Profiles in Youth with Obsessive-Compulsive Disorder: A Focus on the Dorsal Anterior Cingulate during Working Memory

    PubMed Central

    Diwadkar, Vaibhav A.; Burgess, Ashley; Hong, Ella; Rix, Carrie; Arnold, Paul D.; Hanna, Gregory L.; Rosenberg, David R.

    2015-01-01

    Brain network dysfunction is emerging as a central biomarker of interest in psychiatry, in large part, because psychiatric conditions are increasingly seen as disconnection syndromes. Understanding dysfunctional brain network profiles in task-active states provides important information on network engagement in an experimental context. This in turn may be predictive of many of the cognitive and behavioral deficits associated with complex behavioral phenotypes. Here we investigated brain network profiles in youth with obsessive-compulsive disorder (OCD), contrasting them with a group of age-comparable controls. Network interactions were assessed during simple working memory: in particular, we focused on the modulation by the dorsal anterior cingulate cortex (dACC) of cortical, striatal, and thalamic regions. The focus on the dACC was motivated by its hypothesized role in the pathophysiology of OCD. However, its task-active network signatures have not been investigated before. Network interactions were modeled using psychophysiological interaction, a simple directional model of seed to target brain interactions. Our results indicate that OCD is characterized by significantly increased dACC modulation of cortical, striatal, and thalamic targets during working memory, and that this aberrant increase in OCD patients is maintained regardless of working memory demand. The results constitute compelling evidence of dysfunctional brain network interactions in OCD and suggest that these interactions may be related to a combination of network inefficiencies and dACC hyper-activity that has been associated with the phenotype. PMID:25852529

  14. Age-Related Changes in Axonal and Mitochondrial Ultrastructure and Function in White Matter

    PubMed Central

    Stahon, Katharine E.; Bastian, Chinthasagar; Griffith, Shelby; Kidd, Grahame J.; Brunet, Sylvain

    2016-01-01

    The impact of aging on CNS white matter (WM) is of general interest because the global effects of aging on myelinated nerve fibers are more complex and profound than those in cortical gray matter. It is important to distinguish between axonal changes created by normal aging and those caused by neurodegenerative diseases, including multiple sclerosis, stroke, glaucoma, Alzheimer's disease, and traumatic brain injury. Using three-dimensional electron microscopy, we show that in mouse optic nerve, which is a pure and fully myelinated WM tract, aging axons are larger, have thicker myelin, and are characterized by longer and thicker mitochondria, which are associated with altered levels of mitochondrial shaping proteins. These structural alterations in aging mitochondria correlate with lower ATP levels and increased generation of nitric oxide, protein nitration, and lipid peroxidation. Moreover, mitochondria–smooth endoplasmic reticulum interactions are compromised due to decreased associations and decreased levels of calnexin and calreticulin, suggesting a disruption in Ca2+ homeostasis and defective unfolded protein responses in aging axons. Despite these age-related modifications, axon function is sustained in aging WM, which suggests that age-dependent changes do not lead to irreversible functional decline under normal conditions, as is observed in neurodegenerative diseases. SIGNIFICANCE STATEMENT Aging is a common risk factor for a number of neurodegenerative diseases, including stroke. Mitochondrial dysfunction and oxidative damage with age are hypothesized to increase risk for stroke. We compared axon–myelin–node–mitochondrion–smooth endoplasmic reticulum (SER) interactions in white matter obtained at 1 and 12 months. We show that aging axons have enlarged volume, thicker myelin, and elongated and thicker mitochondria. Furthermore, there are reduced SER connections to mitochondria that correlate with lower calnexin and calreticulin levels. Despite a

  15. Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity.

    PubMed

    Dong, Debo; Wang, Yulin; Chang, Xuebin; Luo, Cheng; Yao, Dezhong

    2017-03-11

    Schizophrenia is a complex mental disorder with disorganized communication among large-scale brain networks, as demonstrated by impaired resting-state functional connectivity (rsFC). Individual rsFC studies, however, vary greatly in their methods and findings. We searched for consistent patterns of network dysfunction in schizophrenia by using a coordinate-based meta-analysis. Fifty-six seed-based voxel-wise rsFC datasets from 52 publications (2115 patients and 2297 healthy controls) were included in this meta-analysis. Then, coordinates of seed regions of interest (ROI) and between-group effects were extracted and coded. Seed ROIs were categorized into seed networks by their location within an a priori template. Multilevel kernel density analysis was used to identify brain networks in which schizophrenia was linked to hyper-connectivity or hypo-connectivity with each a priori network. Our results showed that schizophrenia was characterized by hypo-connectivity within the default network (DN, self-related thought), affective network (AN, emotion processing), ventral attention network (VAN, processing of salience), thalamus network (TN, gating information) and somatosensory network (SS, involved in sensory and auditory perception). Additionally, hypo-connectivity between the VAN and TN, VAN and DN, VAN and frontoparietal network (FN, external goal-directed regulation), FN and TN, and FN and DN were found in schizophrenia. Finally, the only instance of hyper-connectivity in schizophrenia was observed between the AN and VAN. Our meta-analysis motivates an empirical foundation for a disconnected large-scale brain networks model of schizophrenia in which the salience processing network (VAN) plays the core role, and its imbalanced communication with other functional networks may underlie the core difficulty of patients to differentiate self-representation (inner world) and environmental salience processing (outside world).

  16. Learning and Aging Related Changes in Intrinsic Neuronal Excitability

    PubMed Central

    Oh, M. Matthew; Oliveira, Fernando A.; Disterhoft, John F.

    2010-01-01

    A goal of many laboratories that study aging is to find a key cellular change(s) that can be manipulated and restored to a young-like state, and thus, reverse the age-related cognitive deficits. We have chosen to focus our efforts on the alteration of intrinsic excitability (as reflected by the postburst afterhyperpolarization, AHP) during the learning process in hippocampal pyramidal neurons. We have consistently found that the postburst AHP is significantly reduced in hippocampal pyramidal neurons from young adults that have successfully learned a hippocampus-dependent task. In the context of aging, the baseline intrinsic excitability of hippocampal neurons is decreased and therefore cognitive learning is impaired. In aging animals that are able to learn, neuron changes in excitability similar to those seen in young neurons during learning occur. Our challenge, then, is to understand how and why excitability changes occur in neurons from aging brains and cause age-associated learning impairments. After understanding the changes, we should be able to formulate strategies for reversing them, thus making old neurons function more as they did when they were young. Such a reversal should rescue the age-related cognitive deficits. PMID:20552042

  17. The Potential of Chitosan and Its Derivatives in Prevention and Treatment of Age-Related Diseases

    PubMed Central

    Kerch, Garry

    2015-01-01

    Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed. PMID:25871293

  18. Age-related differences in pulmonary effects of acute and ...

    EPA Pesticide Factsheets

    Ozone (O3) is known to induce adverse pulmonary and systemic health effects. Importantly, children and older persons are considered at-risk populations for O3-induced dysfunction, yet the mechanisms accounting for the age-related pulmonary responses to O3 are uncertain. In this study, we examined age-related susceptibility to O3 using 1 mo (adolescent), 4 mo (young adult), 12 mo (adult) and 24 mo (senescent) male Brown Norway rats exposed to filtered air or O3 (0.25and 1.00 ppm), 6 h/day, two days/week for 1 week (acute) or 13 weeks (subchronic). Ventilatory function, assessed by whole-body plethysmography, and bronchoalveolar lavage fluid (BALF) biomarkers of injury and inflammation were used to examine O3-induced pulmonary effects.Relaxation time declined in all ages following the weekly exposures; however, this effect persisted only in the 24 mo rats following a five days recovery, demonstrating an inability to induce adaptation commonly seen with repeated O3 exposures. PenH was increased in all groups with an augmented response in the 4 mo rats following the subchronic O3 exposures. O3 led to increased breathing frequency and minute volume in the 1 and 4 mo animals. Markers ofpulmonary permeability were increased in all age groups. Elevations in BALF γ-glutamyl transferase activity and lung inflammation following an acute O3 exposure were noted in only the 1 and 4 mo rats, which likely received an increased effective O3 dose. These data demonstrate that ado

  19. Cholesterol homeostasis failure in the brain: implications for synaptic dysfunction and cognitive decline.

    PubMed

    Segatto, Marco; Leboffe, Loris; Trapani, Laura; Pallottini, Valentina

    2014-01-01

    Cholesterol is one of the most important molecules in cell physiology because of its involvement in several biological processes: for instance, it determines both physical and biochemical properties of cell membranes and proteins. Disruption to cholesterol homeostasis leads to coronary heart disease, atherosclerosis and metabolic syndrome. Strong evidence suggests that cholesterol also has a crucial role in the brain as various neurological and neurodegenerative disorders, including Alzheimer's, Huntington's and Parkinson diseases are associated with disruptions to cholesterol homeostasis. Here, we summarize the current knowledge about the role cholesterol plays at synaptic junctions and the pathological consequences caused by disruptions in the homeostatic maintenance of this compound.

  20. Central command dysfunction in rats with heart failure is mediated by brain oxidative stress and normalized by exercise training.

    PubMed

    Koba, Satoshi; Hisatome, Ichiro; Watanabe, Tatsuo

    2014-09-01

    Sympathoexcitation elicited by central command, a parallel activation of the motor and autonomic neural circuits in the brain, has been shown to become exaggerated in chronic heart failure (CHF). The present study tested the hypotheses that oxidative stress in the medulla in CHF plays a role in exaggerating central command-elicited sympathoexcitation, and that exercise training in CHF suppresses central command-elicited sympathoexcitation through its antioxidant effects in the medulla. In decerebrate rats, central command was activated by electrically stimulating the mesencephalic locomotor region (MLR) after neuromuscular blockade. The MLR stimulation at a current intensity greater than locomotion threshold in rats with CHF after myocardial infarction (MI) evoked larger (P < 0.05) increases in renal sympathetic nerve activity and arterial pressure than in sham-operated healthy rats (Sham) and rats with CHF that had completed longterm (8–12 weeks) exercise training (MI + TR). In the Sham and MI + TR rats, bilateral microinjection of a superoxide dismutase (SOD) mimetic Tempol into the rostral ventrolateral medulla (RVLM) had no effects on MLR stimulation-elicited responses. By contrast, in MI rats, Tempol treatment significantly reduced MLR stimulation-elicited responses. In a subset of MI rats, treatment with Tiron, another SOD mimetic, within the RVLM also reduced responses. Superoxide generation in the RVLM, as evaluated by dihydroethidium staining, was enhanced in MI rats compared with that in Sham and MI + TR rats. Collectively, these results support the study hypotheses. We suggest that oxidative stress in the medulla in CHF mediates central command dysfunction, and that exercise training in CHF is capable of normalizing central command dysfunction through its antioxidant effects in the medulla.

  1. Functional and dysfunctional brain circuits underlying emotional processing of music in autism spectrum disorders.

    PubMed

    Caria, Andrea; Venuti, Paola; de Falco, Simona

    2011-12-01

    Despite intersubject variability, dramatic impairments of socio-communicative skills are core features of autistic spectrum disorder (ASD). A deficit in the ability to express and understand emotions has often been hypothesized to be an important correlate of such impairments. Little is known about individuals with ASD's ability to sense emotions conveyed by nonsocial stimuli such as music. Music has been found to be capable of evoking and conveying strong and consistent positive and negative emotions in healthy subjects. The ability to process perceptual and emotional aspects of music seems to be maintained in ASD. Individuals with ASD and neurotypical (NT) controls underwent a single functional magnetic resonance imaging (fMRI) session while processing happy and sad music excerpts. Overall, fMRI results indicated that while listening to both happy and sad music, individuals with ASD activated cortical and subcortical brain regions known to be involved in emotion processing and reward. A comparison of ASD participants with NT individuals demonstrated decreased brain activity in the premotor area and in the left anterior insula, especially in response to happy music excerpts. Our findings shed new light on the neurobiological correlates of preserved and altered emotional processing in ASD.

  2. Calorie Restriction Reduces the Influence of Glucoregulatory Dysfunction on Regional Brain Volume in Aged Rhesus Monkeys

    PubMed Central

    Willette, Auriel A.; Bendlin, Barbara B.; Colman, Ricki J.; Kastman, Erik K.; Field, Aaron S.; Alexander, Andrew L.; Sridharan, Aadhavi; Allison, David B.; Anderson, Rozalyn; Voytko, Mary-Lou; Kemnitz, Joseph W.; Weindruch, Richard H.; Johnson, Sterling C.

    2012-01-01

    Insulin signaling dysregulation is related to neural atrophy in hippocampus and other areas affected by neurovascular and neurodegenerative disorders. It is not known if long-term calorie restriction (CR) can ameliorate this relationship through improved insulin signaling or if such an effect might influence task learning and performance. To model this hypothesis, magnetic resonance imaging was conducted on 27 CR and 17 control rhesus monkeys aged 19–31 years from a longitudinal study. Voxel-based regression analyses were used to associate insulin sensitivity with brain volume and microstructure cross-sectionally. Monkey motor assessment panel (mMAP) performance was used as a measure of task performance. CR improved glucoregulation parameters and related indices. Higher insulin sensitivity predicted more gray matter in parietal and frontal cortices across groups. An insulin sensitivity × dietary condition interaction indicated that CR animals had more gray matter in hippocampus and other areas per unit increase relative to controls, suggesting a beneficial effect. Finally, bilateral hippocampal volume adjusted by insulin sensitivity, but not volume itself, was significantly associated with mMAP learning and performance. These results suggest that CR improves glucose regulation and may positively influence specific brain regions and at least motor task performance. Additional studies are warranted to validate these relationships. PMID:22415875

  3. Mitochondrial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria.

    PubMed

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Haj Mohammad Ebrahim Tehrani, Kamaleddin; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal

    2016-01-01

    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the mitochondria as one of the possible molecular targets for INH toxicity, the aim of this study was to evaluate the mechanisms of INH mitochondrial toxicity on isolated mitochondria. Mitochondria were isolated by differential ultracentrifugation from male Sprague-Dawley rats and incubated with different concentrations of INH (25-2000 μM) for the investigation of mitochondrial parameters. The results indicated that INH could interact with mitochondrial respiratory chain and inhibit its activity. Our results showed an elevation in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and mitochondrial membrane potential collapse after exposure of isolated liver mitochondria in INH. However, different results were obtained in brain mitochondria. Noteworthy, significant glutathione oxidation, adenosine triphosphate (ATP) depletion and lipid peroxidation were observed in higher concentration of INH, as compared to liver mitochondria. In conclusion, our results suggest that INH may initiate its toxicity in liver mitochondria through interaction with electron transfer chain, lipid peroxidation, mitochondrial membrane potential decline and cytochrome c expulsion which ultimately lead to cell death signaling.

  4. Chagas Cardiomiopathy: The Potential of Diastolic Dysfunction and Brain Natriuretic Peptide in the Early Identification of Cardiac Damage

    PubMed Central

    Garcia-Alvarez, Ana; Sitges, Marta; Pinazo, María-Jesús; Regueiro-Cueva, Ander; Posada, Elizabeth; Poyatos, Silvia; Ortiz-Pérez, José Tomás; Heras, Magda; Azqueta, Manel; Gascon, Joaquim; Sanz, Ginés

    2010-01-01

    Introduction Chagas disease remains a major cause of mortality in several countries of Latin America and has become a potential public health problem in non-endemic countries as a result of migration flows. Cardiac involvement represents the main cause of mortality, but its diagnosis is still based on nonspecific criteria with poor sensitivity. Early identification of patients with cardiac involvement is desirable, since early treatment may improve prognosis. This study aimed to assess the role of diastolic dysfunction, abnormal myocardial strain and elevated brain natriuretic peptide (BNP) in the early identification of cardiac involvement in Chagas disease. Methodology/Principal Findings Fifty-four patients divided into 3 groups—group 1 (undetermined form: positive serology without ECG or 2D-echocardiographic abnormalities; N = 32), group 2 (typical ECG abnormalities of Chagas disease but normal 2D-echocardiography; N = 14), and group 3 (regional wall motion abnormalities, left ventricular [LV] end-diastolic diameter >55 mm or LV ejection fraction <50% on echocardiography; N = 8)—and 44 control subjects were studied. Patients with significant non-cardiac diseases, other heart diseases and previous treatment with benznidazol were excluded. The median age was 37 (20–58) years; 40% were men. BNP levels, longitudinal and radial myocardial strain and LV diastolic dysfunction increased progressively from group 1 to 3 (p for trend <0.01). Abnormal BNP levels (>37 pg/ml) were noted in 0%, 13%, 29% and 63% in controls and groups 1 to 3, respectively. Half of patients in the undetermined form had impaired relaxation patterns, whereas half of patients with ECG abnormalities suggestive of Chagas cardiomyopathy had normal diastolic function. In group 1, BNP levels were statistically higher in patients with diastolic dysfunction as compared to those with normal diastolic function (27±26 vs. 11±8 pg/ml, p = 0.03). Conclusion/Significance In conclusion

  5. Age-related changes in wavelength discrimination

    PubMed Central

    Shinomori, Keizo; Schefrin, Brooke E.; Werner, John S.

    2008-01-01

    Wavelength discrimination functions (420 to 620–650 nm) were measured for four younger (mean 30.9 years) and four older (mean 72.5 years) observers. Stimuli consisted of individually determined isoluminant monochromatic lights (10 Td) presented in each half of a 2° circular bipartite field with use of a Maxwellian-view optical system. A spatial two-alternative forced-choice method was used in combination with a staircase procedure to determine discrimination thresholds across the spectrum. Small but consistent elevations in discrimination thresholds were found for older compared with younger observers. Because the retinal illuminance of the stimuli was equated across all observers, these age-related losses in discrimination are attributable to neural changes. Analyses of these data reveal a significant change in Weber fraction across adulthood for a chromatically opponent pathway receiving primarily antagonistic signals from middle-wavelength-sensitive and long-wavelength-sensitive cones but not for a short-wavelength-sensitive cone pathway. PMID:11205976

  6. Statistical physics of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer disease and Parkinson disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin in the aging RPE. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the RPE the larger ones become fixed and grow by aggregation.

  7. Age-related crosslink in skin collagen

    SciTech Connect

    Yamauchi, M.; Mechanic, G.

    1986-05-01

    A stable crosslinking amino acid was isolated from mature bovine skin collagen and its structure was identified as histidinohydroxylysinonorleucine (HHL) using fast atom bombardment mass spectrometry and /sup 1/H, /sup 13/C-NMR. This newly identified crosslink has a linkage between C-2 histidine and C-6 of lysine in the latter's portion of hydroxylysinonorleucine. Quantitative studies using various aged samples of cow and human skin collagen indicated that this acid-heat stable nonreducible compound was the major age-related crosslink. In case of cow skin collagen, for example, during early embryonic development (3 and 5 month old embryos) the content of HHL stayed less than 0.01 residue/mole of collagen, however from the middle of gestation period (7 month old embryo) through the maturation stage it showed rapid increase with age and reached approximately 0.5 residues/mole of collagen in the 3 year old animal. Small increments (up to 0.65 res/mole of collagen) were observed in the 9 year old cow. The amounts of the crosslink unlike pyridinoline do not decrease with aging. Similar patterns were observed in human skin collagen.

  8. Physics of Age Related Macular Degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    2009-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer's disease, and Parkinson's disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. In this talk I will discuss a model of non-equilibrium cluster growth that we have developed for studying the formation and growth of lipofuscin in AMD [K.I. Mazzitello, C.M. Arizmendi, Fereydoon Family, H. E. Grossniklaus, Physical Review E (2009)]. I will also present an overview of our theoretical and computational efforts in modeling some other aspects of the physics of AMD, including CNV and the breakdown of Bruch's membrane [Ongoing collaboration with Abbas Shirinifard and James A. Glazier, Biocomplexity Institute and Department of Physics, Indiana University, Y. Jiang, Los Alamos, and Hans E. Grossniklaus, Department of Ophthalmology, Emory University].

  9. Mechanisms of age-related bone loss.

    PubMed

    Mosekilde, L

    2001-01-01

    The human skeleton is formed and modelled during childhood and youth through the influence of hormones and daily mechanical usage. Around the age of 20-25 years, the skeleton achieves its maximum mass and strength. Thereafter, and throughout adult life, bone is lost at an almost constant rate due to the dynamic bone turnover process: the remodelling process. During this process, small packets of bone are renewed by teams of bone cells coupled together in time and space. In an adult human skeleton there will be 1-2 million active remodelling sites at any time point. The vast number of turnover units combined with a slightly negative balance at the completion of each process leads to the age-related loss of bone mass mentioned above and, concomitantly, to loss of structural continuity and strength. The magnitude of this loss will be determined by hormonal factors, nutrition and mechanical usage. As a consequence of the remodelling process, the bone tissue of the skeleton will always be younger than the age of the individual. However, as a consequence of the remodelling process, osteopenia and osteoporotic fractures will also occur. In this article, the remodelling-induced changes in the human spine will be used as an example of ageing bone.

  10. Animal models of age related macular degeneration.

    PubMed

    Pennesi, Mark E; Neuringer, Martha; Courtney, Robert J

    2012-08-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.

  11. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  12. Executive dysfunction in chronic brain-injured patients: assessment in outpatient rehabilitation.

    PubMed

    Boelen, Danielle H E; Spikman, Jacoba M; Rietveld, Antonius C M; Fasotti, Luciano

    2009-10-01

    In this study 81 chronic brain-injured patients referred for outpatient rehabilitation, who complained of executive impairments in daily life situations and were observed by proxies and therapists to have such problems, were assessed using various tests and questionnaires of executive functioning, such as the BADS and the DEX Questionnaire. The main purpose was to examine the sensitivity of these instruments in this particular group of patients. The tests and the DEX were also administered to healthy controls to investigate which of the instruments discriminate optimally between patients and controls. The results indicate that the tests as well as the questionnaires were sensitive to the executive problems of the patients. There were no significant differences between DEX ratings of patients, proxies and therapists. This suggests that patients who were eligible for outpatient rehabilitation showed relatively intact awareness into their executive problems. A specific combination of three "open-ended" tests and the DEX contributed significantly to the prediction of group membership.

  13. Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood-brain barrier: protection by the antioxidant N-acetylcysteine.

    PubMed

    Erickson, Michelle A; Hansen, Kim; Banks, William A

    2012-10-01

    Impairment in two blood-brain barrier (BBB) efflux transporters, p-glycoprotein (Pgp) and low-density lipoprotein receptor-related protein-1 (LRP-1) are thought to contribute to the progression of Alzheimer's disease (AD) by resulting in the brain accumulation of their substrate amyloid beta peptide (Aβ). The initial cause of impaired efflux, however, is unknown. We have shown that induction of systemic inflammation by intraperitoneal administration of lipopolysaccharide impairs the efflux of Aβ from the brain, suggesting that systemic inflammation could be one such initiator. In this study, we determined whether pre-administration of the antioxidant N-aceytlcysteine (Nac) has a protective effect against LPS-induced Aβ transporter dysfunction. Our findings were that Nac protected against LPS-induced Aβ transport dysfunction at the BBB through an LRP-1-dependent and Pgp-independent mechanism. This was associated with Nac exerting antioxidant effects in the periphery but not the brain, despite an increased rate of entry of Nac into the brain following LPS. We also found that Nac pre-administration resulted in lower blood levels of the cytokines and chemokines interferon-γ, interleukin-10, CCL2, CCL4, and CCL5, but only lowered CCL4 in the cerebral cortex and hippocampus. Finally, we observed that hippocampal cytokine responses to LPS were decreased compared to cortex. These findings demonstrate a novel mechanism by which antioxidants prevent Aβ accumulation in the brain caused by inflammation, and therefore protect against AD.

  14. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice.

    PubMed

    Jia, Tingting; Sun, Zhiguo; Lu, Ying; Gao, Jie; Zou, Hao; Xie, Fangyuan; Zhang, Guoqing; Xu, Hao; Sun, Duxin; Yu, Yuan; Zhong, Yanqiang

    2016-01-01

    Due to the impermeability of the blood-brain barrier and the nonselective distribution of drugs in the brain, the therapeutic access to intractable neurological disorders is challenging. In this study, dual brain-targeting polymersomes (POs) functionalized by transferrin and Tet-1 peptide (Tf/Tet-1-POs) promoted the transportation of curcumin into the brain and provided neuroprotection. The modification of the ligands that bind to the surface of POs was revealed by X-ray photoelectron spectroscopy analysis. The cell uptake of a coculture model of mouse brain capillary endothelial cells with neurons showed that the Tf/Tet-1-POs had significant transportation properties and possessed affinity for neurons. The pharmacokinetic analysis showed that the blood-brain barrier permeability-surface efficiency of the Tf/Tet-1-POs was 0.28 mL/h/g and that the brain tissue uptake rate (% ID/g) was 0.08, which were significant compared with the controls (P<0.05). The curcumin-encapsulated Tf/Tet-1-POs provided neuroprotection and ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice. These results suggest that the dual brain-targeting POs are more capable of drug delivery to the brain that can be exploited as a multiple noninvasive vehicle for targeting therapeutics.

  15. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1–42-injected mice

    PubMed Central

    Jia, Tingting; Sun, Zhiguo; Lu, Ying; Gao, Jie; Zou, Hao; Xie, Fangyuan; Zhang, Guoqing; Xu, Hao; Sun, Duxin; Yu, Yuan; Zhong, Yanqiang

    2016-01-01

    Due to the impermeability of the blood–brain barrier and the nonselective distribution of drugs in the brain, the therapeutic access to intractable neurological disorders is challenging. In this study, dual brain-targeting polymersomes (POs) functionalized by transferrin and Tet-1 peptide (Tf/Tet-1-POs) promoted the transportation of curcumin into the brain and provided neuroprotection. The modification of the ligands that bind to the surface of POs was revealed by X-ray photoelectron spectroscopy analysis. The cell uptake of a coculture model of mouse brain capillary endothelial cells with neurons showed that the Tf/Tet-1-POs had significant transportation properties and possessed affinity for neurons. The pharmacokinetic analysis showed that the blood–brain barrier permeability–surface efficiency of the Tf/Tet-1-POs was 0.28 mL/h/g and that the brain tissue uptake rate (% ID/g) was 0.08, which were significant compared with the controls (P<0.05). The curcumin-encapsulated Tf/Tet-1-POs provided neuroprotection and ameliorated cognitive dysfunction in intrahippocampal amyloid-β1–42-injected mice. These results suggest that the dual brain-targeting POs are more capable of drug delivery to the brain that can be exploited as a multiple noninvasive vehicle for targeting therapeutics. PMID:27540290

  16. Age related macular degeneration and visual disability.

    PubMed

    Christoforidis, John B; Tecce, Nicola; Dell'Omo, Roberto; Mastropasqua, Rodolfo; Verolino, Marco; Costagliola, Ciro

    2011-02-01

    Age-related macular degeneration (AMD) is the leading cause of central blindness or low vision among the elderly in industrialized countries. AMD is caused by a combination of genetic and environmental factors. Among modifiable environmental risk factors, cigarette smoking has been associated with both the dry and wet forms of AMD and may increase the likelihood of worsening pre-existing AMD. Despite advances, the treatment of AMD has limitations and affected patients are often referred for low vision rehabilitation to help them cope with their remaining eyesight. The characteristic visual impairment for both forms of AMD is loss of central vision (central scotoma). This loss results in severe difficulties with reading that may be only partly compensated by magnifying glasses or screen-projection devices. The loss of central vision associated with the disease has a profound impact on patient quality of life. With progressive central visual loss, patients lose their ability to perform the more complex activities of daily living. Common vision aids include low vision filters, magnifiers, telescopes and electronic aids. Low vision rehabilitation (LVR) is a new subspecialty emerging from the traditional fields of ophthalmology, optometry, occupational therapy, and sociology, with an ever-increasing impact on the usual concepts of research, education, and services for visually impaired patients. Relatively few ophthalmologists practise LVR and fewer still routinely use prismatic image relocation (IR) in AMD patients. IR is a method of stabilizing oculomotor functions with the purpose of promoting better function of preferred retinal loci (PRLs). The aim of vision rehabilitation therapy consists in the achievement of techniques designed to improve PRL usage. The use of PRLs to compensate for diseased foveae has offered hope to these patients in regaining some function. However, in a recently published meta-analysis, prism spectacles were found to be unlikely to be of

  17. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments.

  18. Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice

    PubMed Central

    Smeland, Olav B; Hadera, Mussie G; McDonald, Tanya S; Sonnewald, Ursula; Borges, Karin

    2013-01-01

    Although certain metabolic characteristics such as interictal glucose hypometabolism are well established for temporal lobe epilepsy (TLE), its pathogenesis still remains unclear. Here, we performed a comprehensive study of brain metabolism in a mouse model of TLE, induced by pilocarpine–status epilepticus (SE). To investigate glucose metabolism, we injected mice 3.5–4 weeks after SE with [1,2-13C]glucose before microwave fixation of the head. Using 1H and 13C nuclear magnetic resonance spectroscopy, gas chromatography—mass spectrometry and high-pressure liquid chromatography, we quantified metabolites and 13C labeling in extracts of cortex and hippocampal formation (HF). Hippocampal levels of glutamate, glutathione and alanine were decreased in pilocarpine–SE mice compared with controls. Moreover, the contents of N-acetyl aspartate, succinate and reduced nicotinamide adenine dinucleotide (phosphate) NAD(P)H were decreased in HF indicating impairment of mitochondrial function. In addition, the reduction in 13C enrichment of hippocampal citrate and malate suggests decreased tricarboxylic acid (TCA) cycle turnover in this region. In cortex, we found reduced 13C labeling of glutamate, glutamine and aspartate via the pyruvate carboxylation and pyruvate dehydrogenation pathways, suggesting slower turnover of these amino acids and/or the TCA cycle. In conclusion, mitochondrial metabolic dysfunction and altered amino-acid metabolism is found in both cortex and HF in this epilepsy model. PMID:23611869

  19. Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion.

    PubMed

    Edrissi, Hamidreza; Schock, Sarah C; Cadonic, Robert; Hakim, Antoine M; Thompson, Charlie S

    2016-09-01

    Cerebral small vessel disease (CSVD) is a pathological process leading to lacunar infarcts, leukoaraiosis and cerebral microbleeds. Dysfunction of the blood brain barrier (BBB) has been proposed as a mechanism in the progression cerebral small vessel disease. A rodent model commonly used to study some aspects of CSVD is bilateral common carotid artery occlusion (BCCAO) in the rat. In the present study it was determined that gait impairment, as determined by a tapered beam test, and BBB permeability increased following BCCAO. Cilostazol, a type III phosphodiesterase inhibitor, has been shown to have anti-apoptotic effects and prevent white matter vacuolation and rarefaction induced by BCCAO in rats. In this study the protective effect of cilostazol administration on the increase BBB permeability following BCCAO was determined as well as the effect on plasma levels of circulating microparticles (MPs), cerebral white matter rarefaction, glial activation and gait disturbance. The effect of cilostazol on in vitro endothelial barriers was also evaluated. Cilostazol treatment improved BBB permeability and reduced gait disturbance, visual impairment and microglial activation in optic tract following BCCAO in vivo. It also reduced the degree of cell death and the reduction in trans-endothelial electrical resistance (TEER) in artificial endothelial barriers in vitro induced by MP treatment of in vitro barriers.

  20. miR-155 Modifies Inflammation, Endothelial Activation and Blood-Brain Barrier Dysfunction in Cerebral Malaria

    PubMed Central

    Barker, Kevin R; Lu, Ziyue; Kim, Hani; Zheng, Ying; Chen, Junmei; Conroy, Andrea L; Hawkes, Michael; Cheng, Henry S; Njock, Makon-Sébastien; Fish, Jason E; Harlan, John M; López, Jose A; Liles, W Conrad; Kain, Kevin C

    2017-01-01

    miR-155 has been shown to participate in host response to infection and neuroinflammation via negative regulation of blood-brain barrier (BBB) integrity and T cell function. We hypothesized that miR-155 may contribute to the pathogenesis of cerebral malaria (CM). To test this hypothesis, we used a genetic approach to modulate miR-155 expression in an experimental model of cerebral malaria (ECM). In addition, an engineered endothelialized microvessel system and serum samples from Ugandan children with CM were used to examine anti–miR-155 as a potential adjunctive therapeutic for severe malaria. Despite higher parasitemia, survival was significantly improved in miR-155-/- mice versus wild-type littermate mice in ECM. Improved survival was associated with preservation of BBB integrity and reduced endothelial activation, despite increased levels of proinflammatory cytokines. Pretreatment with antagomir-155 reduced vascular leak induced by human CM sera in an ex vivo endothelial microvessel model. These data provide evidence supporting a mechanistic role for miR-155 in host response to malaria via regulation of endothelial activation, microvascular leak and BBB dysfunction in CM. PMID:28182191

  1. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction

    PubMed Central

    Jones, Letitia D.; Jackson, Joseph W.; Maggirwar, Sanjay B.

    2016-01-01

    The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND. PMID:26986758

  2. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction.

    PubMed

    Bishop, Paul; Rocca, Dan; Henley, Jeremy M

    2016-08-15

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1-5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.

  3. Understanding Age-Related Changes in Skeletal Muscle Metabolism: Differences Between Females and Males.

    PubMed

    Gheller, Brandon J F; Riddle, Emily S; Lem, Melinda R; Thalacker-Mercer, Anna E

    2016-07-17

    Skeletal muscle is the largest metabolic organ system in the human body. As such, metabolic dysfunction occurring in skeletal muscle impacts whole-body nutrient homeostasis. Macronutrient metabolism changes within the skeletal muscle with aging, and these changes are associated in part with age-related skeletal muscle remodeling. Moreover, age-related changes in skeletal muscle metabolism are affected differentially between males and females and are likely driven by changes in sex hormones. Intrinsic and extrinsic factors impact observed age-related changes and sex-related differences in skeletal muscle metabolism. Despite some support for sex-specific differences in skeletal muscle metabolism with aging, more research is necessary to identify underlying differences in mechanisms. Understanding sex-specific aging skeletal muscle will assist with the development of therapies to attenuate adverse metabolic and functional outcomes.

  4. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy

    PubMed Central

    Sakellariou, Giorgos K.; Pearson, Timothy; Lightfoot, Adam P.; Nye, Gareth A.; Wells, Nicola; Giakoumaki, Ifigeneia I.; Vasilaki, Aphrodite; Griffiths, Richard D.; Jackson, Malcolm J.; McArdle, Anne

    2016-01-01

    Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging. PMID:27681159

  5. Brain Reward Pathway Dysfunction in Maternal Depression and Addiction: A Present and Future Transgenerational Risk

    PubMed Central

    Nephew, Benjamin C.; Murgatroyd, Christopher; Pittet, Florent; Febo, Marcelo

    2016-01-01

    Two research areas that could benefit from a greater focus on the role of the reward pathway are maternal depression and maternal addiction. Both depression and addiction in mothers are mediated by deficiencies in the reward pathway and represent substantial risks to the health of offspring and future generations. This targeted review discusses maternal reward deficits in depressed and addicted mothers, neural, genetic, and epigenetic mechanisms, and the transgenerational transmission of these deficits from mother to offspring. Postpartum depression and drug use disorders may entail alterations in the reward pathway, particularly in striatal and prefrontal areas, which may affect maternal attachment to offspring and heighten the risk of transgenerational effects on the oxytocin and dopamine systems. Alterations may involve neural circuitry changes, genetic factors that impact monoaminergic neurotransmission, as well as growth factors such as BDNF and stress-associated signaling in the brain. Improved maternal reward-based preventative measures and treatments may be specifically effective for mothers and their offspring suffering from depression and/or addiction. PMID:27617302

  6. The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction

    PubMed Central

    Weber, Daniel J.; Allette, Yohance M.; Wilkes, David S.

    2015-01-01

    Abstract Significance: Deceased patients who have suffered severe traumatic brain injury (TBI) are the largest source of organs for lung transplantation. However, due to severely compromised pulmonary lung function, only one-third of these patients are eligible organ donors, with far fewer capable of donating lungs (∼20%). As a result of this organ scarcity, understanding and controlling the pulmonary pathophysiology of potential donors are key to improving the health and long-term success of transplanted lungs. Recent Advances: Although the exact mechanism by which TBI produces pulmonary pathophysiology remains unclear, it may be related to the release of damage-associated molecular patterns (DAMPs) from the injured tissue. These heterogeneous, endogenous host molecules can be rapidly released from damaged or dying cells and mediate sterile inflammation following trauma. In this review, we highlight the interaction of the DAMP, high-mobility group box protein 1 (HMGB1) with the receptor for advanced glycation end-products (RAGE), and toll-like receptor 4 (TLR4). Critical Issues: Recently published studies are reviewed, implicating the release of HMGB1 as producing marked changes in pulmonary inflammation and physiology following trauma, followed by an overview of the experimental evidence demonstrating the benefits of blocking the HMGB1-RAGE axis. Future Directions: Targeting the HMGB1 signaling axis may increase the number of lungs available for transplantation and improve long-term benefits for organ recipient patient outcomes. Antioxid. Redox Signal. 23, 1316–1328. PMID:25751601

  7. Fronto-Limbic Brain Dysfunction during the Regulation of Emotion in Schizophrenia

    PubMed Central

    Eack, Shaun M.; Wojtalik, Jessica A.; Barb, Scott M.; Newhill, Christina E.; Keshavan, Matcheri S.; Phillips, Mary L.

    2016-01-01

    Schizophrenia is characterized by significant and widespread impairments in the regulation of emotion. Evidence is only recently emerging regarding the neural basis of these emotion regulation impairments, and few studies have focused on the regulation of emotion during effortful cognitive processing. To examine the neural correlates of deficits in effortful emotion regulation, schizophrenia outpatients (N = 20) and age- and gender-matched healthy volunteers (N = 20) completed an emotional faces n-back task to assess the voluntary attentional control subprocess of emotion regulation during functional magnetic resonance imaging. Behavioral measures of emotional intelligence and emotion perception were administered to examine brain-behavior relationships with emotion processing outcomes. Results indicated that patients with schizophrenia demonstrated significantly greater activation in the bilateral striatum, ventromedial prefrontal, and right orbitofrontal cortices during the effortful regulation of positive emotional stimuli, and reduced activity in these same regions when regulating negative emotional information. The opposite pattern of results was observed in healthy individuals. Greater fronto-striatal response to positive emotional distractors was significantly associated with deficits in facial emotion recognition. These findings indicate that abnormalities in striatal and prefrontal cortical systems may be related to deficits in the effortful emotion regulatory process of attentional control in schizophrenia, and may significantly contribute to emotion processing deficits in the disorder. PMID:26930284

  8. Association of Age Related Macular Degeneration and Age Related Hearing Impairment

    PubMed Central

    Ghasemi, Hassan; Pourakbari, Malihe Shahidi; Entezari, Morteza; Yarmohammadi, Mohammad Ebrahim

    2016-01-01

    Purpose: To evaluate the association between age-related macular degeneration (ARMD) and sensory neural hearing impairment (SHI). Methods: In this case-control study, hearing status of 46 consecutive patients with ARMD were compared with 46 age-matched cases without clinical ARMD as a control group. In all patients, retinal involvements were confirmed by clinical examination, fluorescein angiography (FA) and optical coherence tomography (OCT). All participants were examined with an otoscope and underwent audiological tests including pure tone audiometry (PTA), speech reception threshold (SRT), speech discrimination score (SDS), tympanometry, reflex tests and auditory brainstem response (ABR). Results: A significant (P = 0.009) association was present between ARMD, especially with exudative and choroidal neovascularization (CNV) components, and age-related hearing impairment primarily involving high frequencies. Patients had higher SRT and lower SDS against anticipated presbycusis than control subjects. Similar results were detected in exudative, CNV and scar patterns supporting an association between late ARMD with SRT and SDS abnormalities. ABR showed significantly prolonged wave I and IV latency times in ARMD (P = 0.034 and 0.022, respectively). Average latency periods for wave I in geographic atrophy (GA) and CNV, and that for wave IV in drusen patterns of ARMD were significantly higher than controls (P = 0.030, 0.007 and 0.050, respectively). Conclusion: The association between ARMD and age-related SHI may be attributed to common anatomical components such as melanin in these two sensory organs. PMID:27195086

  9. The Importance of Mitochondria in Age-Related and Inherited Eye Disorders

    PubMed Central

    Jarrett, Stuart G.; Lewin, Alfred S.; Boulton, Michael E.

    2010-01-01

    Mitochondria are critical for ocular function as they represent the major source of a cell's supply of energy and play an important role in cell differentiation and survival. Mitochondrial dysfunction can occur as a result of inherited mitochondrial mutations (e.g. Leber's hereditary optic neuropathy and chronic progressive external ophthalmoplegia) or stochastic oxidative damage which leads to cumulative mitochondrial damage and is an important factor in age-related disorders (e.g. age-related macular degeneration, cataract and diabetic retinopathy). Mitochondrial DNA (mtDNA) instability is an important factor in mitochondrial impairment culminating in age-related changes and pathology, and in all regions of the eye mtDNA damage is increased as a consequence of aging and age-related disease. It is now apparent that the mitochondrial genome is a weak link in the defenses of ocular cells since it is susceptible to oxidative damage and it lacks some of the systems that protect the nuclear genome, such as nucleotide excision repair. Accumulation of mitochondrial mutations leads to cellular dysfunction and increased susceptibility to adverse events which contribute to the pathogenesis of numerous sporadic and chronic disorders in the eye. PMID:20829642

  10. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence.

    PubMed

    Najjar, Souhel; Pearlman, Daniel M; Devinsky, Orrin; Najjar, Amanda; Zagzag, David

    2013-12-01

    About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer's disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches.

  11. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence

    PubMed Central

    2013-01-01

    About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches. PMID:24289502

  12. [Cerebral circulation and metabolism in the patients with higher brain dysfunction caused by chronic minor traumatic brain injury: a study by the positron emission tomography in twenty subjects with normal MRI findings].

    PubMed

    Kabasawa, Hidehiro; Ogawa, Tetsuo; Iida, Akihiko; Matsubara, Michitaka

    2002-06-01

    Many individuals are affected on their higher brain functions, such as intelligence, memory, and attention, even after minor traumatic brain injury (MTBI). Although higher brain dysfunction is based on impairment of the cerbral circulation and metabolism, the precise relationship between them remains unknown. This study was undertaken to investigate the relationship between the cerebral circulation or cerebral metabolism and higher brain dysfunction. Twenty subjects with higher brain dysfunction caused by chronic MTBI were studied. They had no abnormal MRI findings. The full-scale intelligence quotient (FIQ) were quantitatively evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-R), and the subjects were classified into the normal group and the impaired group. Concurrent with the evaluation of FIQ, positron emission tomography (PET) was performed by the steady state method with 15O gases inhalation. Regional cerebral blood flow (rCBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) were calculated in the bilateral frontal, parietal, temporal, and occipital lobe. First, of all twenty subjects, we investigated rCBF, OEF and CMRO2 in all regions. Then we compared rCBF, OEF, and CMRO2 between the normal group and the impaired group based on FIQ score. We also studied the change of FIQ score of 13 subjects 9.3 months after the first evaluation. In addition, we investigated the change of rCBF, OEF and CMRO2 along with the improvement of FIQ score. Although rCBF and OEF of all subjects were within the normal range in all regions, CMRO2 of more than half of subjects was under the lower normal limit in all regions except in the right occipital lobe, showing the presence of "relative luxury perfusion". Comparison of rCBF, OEF and CMRO2 between normal group and impaired group revealed that CMRO2 of the impaired group was significantly lower than that of the normal group in the bilateral frontal, temporal, and occipital lobe. After

  13. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  14. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease.

    PubMed

    Gu, Xue-Mei; Huang, Han-Chang; Jiang, Zhao-Feng

    2012-10-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.

  15. Usefulness of plasma brain natriuretic peptide measurement and tissue Doppler imaging in identifying isolated left ventricular diastolic dysfunction without heart failure.

    PubMed

    Goto, Toshihiko; Ohte, Nobuyuki; Wakami, Kazuaki; Asada, Kaoru; Fukuta, Hidekatsu; Mukai, Seiji; Tani, Tomomitsu; Kimura, Genjiro

    2010-07-01

    Left ventricular (LV) diastolic dysfunction carries a substantial risk for the subsequent development of heart failure and reduced survival, even when it is asymptomatic. Plasma brain natriuretic peptide (BNP) level and tissue Doppler imaging indexes provide powerful incremental assessment of LV diastolic function. Accordingly, the aim of this study was to clarify whether these methodologies could identify LV diastolic dysfunction without heart failure in 280 patients with preserved LV ejection fractions (> or =50%) who underwent echocardiography and cardiac catheterization for the evaluation of coronary artery disease. Patients were classified into 2 groups, those with diastolic dysfunction (tau > or =48 ms; n = 91) and those with normal diastolic function (tau <48 ms; n = 189). Plasma BNP > or =22.4 pg/ml, an unexpectedly low value, had sensitivity of 74.7% and specificity of 60.8% for identifying isolated LV diastolic dysfunction; the combined use of BNP > or =22.4 pg/mL and mitral annular velocity during early diastole <7.4 cm/s had relatively low sensitivity of 44.0% but high specificity of 86.8%. In conclusion, using plasma BNP level and with the combination of BNP level and mitral annular velocity during early diastole, invasively proved isolated LV diastolic dysfunction without heart failure could be identified in patients with coronary artery disease.

  16. Age-related differences in acute neurotoxicity produced by mevinphos, monocrotophos, dicrotophos, and phosphamidon

    EPA Science Inventory

    Age-related differences in the acute neurotoxicity of cholinesterase (ChE)-inhibiting pesticides have been well-studied for a few organophosphates, but not for many others. In this study, we directly compared dose-responses using brain and red blood cell (RBC) ChE measurements, a...

  17. Recent Advances in Berry Supplementation and Age-Related Cognitive Decline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To summarize recent findings and current concepts in the beneficial effects of berry consumption on brain function during aging. Berryfruit supplementation has continued to demonstrate efficacy in reversing age-related cognitive decline in animal studies. In terms of the mechanisms behind the effe...

  18. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.

    PubMed

    Kovacs, Gabor G; Ferrer, Isidro; Grinberg, Lea T; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J; Crary, John F; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M; Ironside, James W; Love, Seth; Mackenzie, Ian R; Munoz, David G; Murray, Melissa E; Nelson, Peter T; Takahashi, Hitoshi; Trojanowski, John Q; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Dugger, Brittany N; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Hatanpaa, Kimmo J; Heale, Richard; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Mann, David M; Matej, Radoslav; McKee, Ann C; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J; Murayama, Shigeo; Lee, Edward B; Rahimi, Jasmin; Rodriguez, Roberta D; Rozemüller, Annemieke; Schneider, Julie A; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B; Tolnay, Markus; Troncoso, Juan C; Vinters, Harry V; Weis, Serge; Wharton, Stephen B; White, Charles L; Wisniewski, Thomas; Woulfe, John M; Yamada, Masahito; Dickson, Dennis W

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  19. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy

    PubMed Central

    Ferrer, Isidro; Grinberg, Lea T.; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J.; Crary, John F.; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M.; Ironside, James W.; Love, Seth; Mackenzie, Ian R.; Munoz, David G.; Murray, Melissa E.; Nelson, Peter T.; Takahashi, Hitoshi; Trojanowski, John Q.; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G.; Bieniek, Kevin F.; Bigio, Eileen H.; Bodi, Istvan; Dugger, Brittany N.; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M.; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Heale, Richard; Hof, Patrick R.; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A.; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J.; Mann, David M.; Matej, Radoslav; McKee, Ann C.; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J.; Murayama, Shigeo; Lee, Edward B.; Rahimi, Jasmin; Rodriguez, Roberta D.; Rozemüller, Annemieke; Schneider, Julie A.; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B.; Tolnay, Markus; Troncoso, Juan C.; Vinters, Harry V.; Weis, Serge; Wharton, Stephen B.; White, Charles L.; Wisniewski, Thomas; Woulfe, John M.; Yamada, Masahito

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  20. A Subset of Men With Age-Related Decline in Testosterone Have Gonadotroph Autoantibodies

    PubMed Central

    Ricciuti, Adriana; Travison, Thomas G.; Di Dalmazi, Giulia; Talor, Monica V.; DeVincentiis, Ludovica; Manley, Robert W.; Bhasin, Shalender; Caturegli, Patrizio

    2016-01-01

    Context: Age-related decline in serum testosterone (T) is being increasingly diagnosed. In most men, it associates with low or inappropriately normal gonadotropin levels, which suggests a hypothalamic-pituitary etiology. Autoantibodies against adenohypophyseal cells have been associated with pituitary dysfunction; however, the prevalence of pituitary autoimmunity in this age-related T decline has not been assessed. Objectives: This is a proof-of-concept study with the objective of determining the prevalence of antibodies to gonadotrophs in older men with age-related low T and compare it with healthy young and older eugonadal men. Study Design: This is a cross-sectional case-control study of 182 men. Cases included 100 older men (≥65 years) with age-related low T levels; the control groups were composed of 50 young and 32 older healthy eugonadal men. Serum antibodies against the anterior pituitary gland were measured using a two-step approach: 1) single indirect immunofluorescence (ie, participant serum only) to determine the pattern of cytosolic staining; and 2) double indirect immunofluorescence (ie, participant serum plus a commercial adenohypophyseal hormone antibody) to identify the anterior pituitary cell type recognized by the patient's antibodies). Results: In participants with positive antipituitary antibodies, the granular cytosolic pattern (highly predictive of pituitary autoimmunity) was only seen in older men with age-related low T (4%) and none in control groups (0%, P = .001). Double indirect immunofluorescence confirmed that pituitary antibodies were exclusively directed against the gonadotrophs. Conclusion: A subset of older men with age-related low T levels have specific antibodies against the gonadotrophs. Whether these antibodies are pathogenic and contributory to the age-related decline in T remains to be established. PMID:26963952

  1. [Non-pharmacologic therapy of age-related macular degeneration, based on the etiopathogenesis of the disease].

    PubMed

    Fischer, Tamás

    2015-07-12

    It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction.

  2. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal.

    PubMed

    Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio

    2013-12-01

    Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs.

  3. Involvement of oxidative stress in SAMP10 mice with age-related neurodegeneration.

    PubMed

    Wang, Jun; Lei, Hongtao; Hou, Jincai; Liu, Jianxun

    2015-05-01

    Age-related changes in the brain tissue are reflected in many aspects. We sought to determine the morphology, Nissl bodies, behavioral appearance and oxidative stress in the brain using SAMP10 mice, a substrain of the senescence-accelerated mouse. SAMP10 mice groups divided by different ages (3, 5, 8 and 14 months) were compared with those of control groups with the above corresponding ages. Cortical thickness, Nissl bodies, behavioral appearance and oxidative stress were evaluated through image software, thionine staining, step-down test and colorimetry, respectively. The weight and cortical thickness of the brain in SAMP10 mice significantly reduced from 8 months of age. The results showed that the number of Nissl bodies decreased or Nissl bodies shrank with dark staining in histology. The same result appeared in a step-down test. As the SAMP10 mice grew older, the oxidative stress-related markers superoxide dismutase decreased and malondialdehyde increased after 8 months. Glutathione peroxidase activities showed no age-related changes. The changes of brain morphology and productions of oxidative stress in the brain tissue might contribute to the behavioral abnormality. Deceleration of age-related production of oxidative stress might be expected to be a potent strategy for anti-aging interventions.

  4. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model.

    PubMed

    Bock, J; Breuer, S; Poeggel, G; Braun, K

    2017-03-01

    In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ((14)C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.

  5. Age-related differences in pulmonary effects of acute and subchronic episodic ozone exposures in Brown Norway rats

    EPA Science Inventory

    Ozone (O3) is known to induce adverse pulmonary and systemic health effects. Importantly, children and older persons are considered at-risk populations for O3-induced dysfunction, yet the mechanisms accounting for the age-related pulmonary responses to O3 are uncertain. In this s...

  6. Executive Functioning and Processing Speed in Age-Related Differences in Memory: Contribution of a Coding Task

    ERIC Educational Resources Information Center

    Baudouin, Alexia; Clarys, David; Vanneste, Sandrine; Isingrini, Michel

    2009-01-01

    The aim of the present study was to examine executive dysfunctioning and decreased processing speed as potential mediators of age-related differences in episodic memory. We compared the performances of young and elderly adults in a free-recall task. Participants were also given tests to measure executive functions and perceptual processing speed…

  7. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration

    PubMed Central

    Valenzuela, Rita; Costa-Besada, Maria A; Iglesias-Gonzalez, Javier; Perez-Costas, Emma; Villar-Cheda, Begoña; Garrido-Gil, Pablo; Melendez-Ferro, Miguel; Soto-Otero, Ramon; Lanciego, Jose L; Henrion, Daniel; Franco, Rafael; Labandeira-Garcia, Jose L

    2016-01-01

    The renin–angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the ‘classical' humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration. It is normally assumed that the effects are mediated by the cell-surface-specific G-protein-coupled angiotensin type 1 and 2 receptors (AT1 and AT2). A combination of in vivo (rats, wild-type mice and knockout mice) and in vitro (primary mesencephalic cultures, dopaminergic neuron cell line cultures) experimental approaches (confocal microscopy, electron microscopy, laser capture microdissection, transfection of fluorescent-tagged receptors, treatments with fluorescent angiotensin, western blot, polymerase chain reaction, HPLC, mitochondrial respirometry and other functional assays) were used in the present study. We report the discovery of AT1 and AT2 receptors in brain mitochondria, particularly mitochondria of dopaminergic neurons. Activation of AT1 receptors in mitochondria regulates superoxide production, via Nox4, and increases respiration. Mitochondrial AT2 receptors are much more abundant and increase after treatment of cells with oxidative stress inducers, and produce, via nitric oxide, a decrease in mitochondrial respiration. Mitochondria from the nigral region of aged rats displayed altered expression of AT1 and AT2 receptors. AT2-mediated regulation of mitochondrial respiration represents an unrecognized primary line of defence against oxidative stress, which may be particularly important in neurons with increased levels of oxidative stress such as dopaminergic neurons. Altered expression of AT1 and AT2 receptors with aging may induce mitochondrial dysfunction, the main risk factor for neurodegeneration

  8. Psychological Disorders, Cognitive Dysfunction and Quality of Life in Nasopharyngeal Carcinoma Patients with Radiation-Induced Brain Injury

    PubMed Central

    Tang, Yamei; Luo, Donghua; Rong, Xiaoming; Shi, Xiaolei; Peng, Ying

    2012-01-01

    Purpose To evaluate factors affecting psychology, cognitive function and quality of life (QOL) of nasopharyngeal carcinoma (NPC) patients with radiation-induced brain injury (RI). Methods and Materials 46 recurrence-free NPC patients with RI and 46 matched control patients without RI were recruited in our study. Subjective and objective symptoms of RI were evaluated with the LENT/SOMA systems. Psychological assessment was measured with Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS). Montreal Cognitive Assessment (MoCA) was carried out in these patients for assessing their cognitive function. QOL was evaluated by means of WHOQOL BREF. Results Of the patients with RI, 39(84.8%) had depression and 40(87.0%) had anxiety. The patients with RI got higher scores both in SDS and SAS than those without RI (SDS, 63.48±8.11vs. 58.67±7.52, p = 0.008; SAS, 67.36±10.41vs. 60.34±9.76, p = 0.005). Score in MoCA of patients with RI was significantly lower than that of patients without RI (21.32±2.45vs. 25.98±1.73, p<0.001). SAS was positive correlated with post-radiotherapy interval. Both SAS and SDS had a significantly positive correlation with the rank of SOMA, while MoCA had a significantly negative correlation with SOMA. Chemotherapy was a risk factor for cognitive dysfunction. In addition, patients with RI got significantly lower scores in physical health (16.50±11.05 vs. 35.02±10.43, p<0.001), psychological health (17.70±10.33 vs. 39.48±12.00, p<0.001) and social relationship (48.00±18.65 vs. 67.15±19.70, p<0.001) compared with those in patients without RI. Multiple linear regression analysis revealed that anxiety and cognitive impairment were significant predictors of global QOL. Conclusions NPC patients with RI exhibit negative emotions, impaired cognitive function and QOL. The severity of clinical symptoms of RI plays an important role in both emotions and cognitive function. Anxiety and cognitive impairment are associated with

  9. High-Definition and Non-Invasive Brain Modulation of Pain and Motor Dysfunction in Chronic TMD

    PubMed Central

    Donnell, Adam; Nascimento, Thiago; Lawrence, Mara; Gupta, Vikas; Zieba, Tina; Truong, Dennis Q.; Bikson, Marom; Datta, Abhi; Bellile, Emily; DaSilva, Alexandre F.

    2015-01-01

    Background Temporomandibular disorders (TMD) have a relatively high prevalence and in many patients pain and masticatory dysfunction persist despite a range of treatments. Non-invasive brain neuromodulatory methods, namely transcranial direct current stimulation (tDCS), can provide relatively long-lasting pain relief in chronic pain patients. Objective To define the neuromodulatory effect of five daily 2×2 motor cortex high-definition tDCS (HD-tDCS) sessions on clinical pain and motor measures in chronic TMD patients. It is predicted that M1 HD-tDCS will selectively modulate clinical measures, by showing greater analgesic after-effects compared to placebo, and active treatment will increase pain free jaw movement more than placebo. Methods Twenty-four females with chronic myofascial TMD pain underwent five daily, 20-minute sessions of active or sham 2 milliamps (mA) HD-tDCS. Measurable outcomes included pain-free mouth opening, visual analog scale (VAS), sectional sensory-discriminative pain measures tracked by a mobile application, short form of the McGill Pain Questionnaire, and the Positive and Negative Affect Schedule. Follow-up occurred at one-week and four-weeks post treatment. Results There were significant improvements for clinical pain and motor measurements in the active HD-tDCS group compared to the placebo group for: responders with pain relief above 50% in the VAS at four-week follow-up (p=0.04); pain-free mouth opening at one-week follow-up (p<0.01); and sectional pain area, intensity and their sum measures contralateral to putative M1 stimulation during the treatment week (p<0.01). No changes in emotional values were shown between groups. Conclusion Putative M1 stimulation by HD-tDCS selectively improved meaningful clinical sensory-discriminative pain and motor measures during stimulation, and up to four weeks post-treatment in chronic myofascial TMD pain patients. PMID:26226938

  10. Age-Related Differences in Cortical Thickness Vary by Socioeconomic Status.

    PubMed

    Piccolo, Luciane R; Merz, Emily C; He, Xiaofu; Sowell, Elizabeth R; Noble, Kimberly G

    2016-01-01

    Recent findings indicate robust associations between socioeconomic status (SES) and brain structure in children, raising questions about the ways in which SES may modify structural brain development. In general, cortical thickness and surface area develop in nonlinear patterns across childhood and adolescence, with developmental patterns varying to some degree by cortical region. Here, we examined whether age-related nonlinear changes in cortical thickness and surface area varied by SES, as indexed by family income and parental education. We hypothesized that SES disparities in age-related change may be particularly evident for language- and literacy-supporting cortical regions. Participants were 1148 typically-developing individuals between 3 and 20 years of age. Results indicated that SES factors moderate patterns of age-associated change in cortical thickness but not surface area. Specifically, at lower levels of SES, associations between age and cortical thickness were curvilinear, with relatively steep age-related decreases in cortical thickness earlier in childhood, and subsequent leveling off during adolescence. In contrast, at high levels of SES, associations between age and cortical thickness were linear, with consistent reductions across the age range studied. Notably, this interaction was prominent in the left fusiform gyrus, a region that is critical for reading development. In a similar pattern, SES factors significantly moderated linear age-related change in left superior temporal gyrus, such that higher SES was linked with steeper age-related decreases in cortical thickness in this region. These findings suggest that SES may moderate patterns of age-related cortical thinning, especially in language- and literacy-supporting cortical regions.

  11. Age-Related Differences in Cortical Thickness Vary by Socioeconomic Status

    PubMed Central

    He, Xiaofu; Sowell, Elizabeth R.; Noble, Kimberly G.

    2016-01-01

    Recent findings indicate robust associations between socioeconomic status (SES) and brain structure in children, raising questions about the ways in which SES may modify structural brain development. In general, cortical thickness and surface area develop in nonlinear patterns across childhood and adolescence, with developmental patterns varying to some degree by cortical region. Here, we examined whether age-related nonlinear changes in cortical thickness and surface area varied by SES, as indexed by family income and parental education. We hypothesized that SES disparities in age-related change may be particularly evident for language- and literacy-supporting cortical regions. Participants were 1148 typically-developing individuals between 3 and 20 years of age. Results indicated that SES factors moderate patterns of age-associated change in cortical thickness but not surface area. Specifically, at lower levels of SES, associations between age and cortical thickness were curvilinear, with relatively steep age-related decreases in cortical thickness earlier in childhood, and subsequent leveling off during adolescence. In contrast, at high levels of SES, associations between age and cortical thickness were linear, with consistent reductions across the age range studied. Notably, this interaction was prominent in the left fusiform gyrus, a region that is critical for reading development. In a similar pattern, SES factors significantly moderated linear age-related change in left superior temporal gyrus, such that higher SES was linked with steeper age-related decreases in cortical thickness in this region. These findings suggest that SES may moderate patterns of age-related cortical thinning, especially in language- and literacy-supporting cortical regions. PMID:27644039

  12. Apolipoprotein E3/E3 genotype decreases the risk of pituitary dysfunction after traumatic brain injury due to various causes: preliminary data.

    PubMed

    Tanriverdi, Fatih; Taheri, Serpil; Ulutabanca, Halil; Caglayan, Ahmet Okay; Ozkul, Yusuf; Dundar, Munis; Selcuklu, Ahmet; Unluhizarci, Kursad; Casanueva, Felipe F; Kelestimur, Fahrettin

    2008-09-01

    Traumatic brain injury (TBI) is a devastating public health problem which may result in hypopituitarism. However, the mechanisms and the risk factors responsible for hypothalamo-pituitary dysfunction due to TBI are still unclear. Although APO E is one of the most abundant protein in hypothalamo-pituitary region, there is no study investigating the relation between APO E polymorphism and TBI-induced hypopituitarism. This study was undertaken to determine whether APO E genotypes modulate the pituitary dysfunction risk after TBI due to various causes, including traffic accident, boxing, and kickboxing. Ninety-three patients with TBI (mean age, 30.61 +/- 1.25 years) and 27 healthy controls (mean age, 29.03 +/- 1.70 years) were included in the study. Pituitary functions were evaluated, and APO E genotypes (E2/E2; E3/E3; E4/E4; E2/E3; E2/E4; E3/E4) were screened. Twenty-four of 93 subjects (25.8%) had pituitary dysfunction after TBI. The ratio of pituitary dysfunction was significantly lower in subjects with APO E3/E3 (17.7%) than the subjects without APO E3/E3 genotype (41.9%; p = 0.01), and the corresponding odds ratio was 0.29 (95% confidence interval [CI], 0.11-0.78). In conclusion, this study provides strong evidence for the first time that APO E polymorphism is associated with the development of TBI-induced pituitary dysfunction. Present data demonstrated that APO E3/E3 genotype decreases the risk of hypopituitarism after TBI. The demonstration of the association between the APO E polymorphism and TBI may provide a new point of view in this field and promote further studies.

  13. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases.

    PubMed

    Maessen, Dionne E M; Stehouwer, Coen D A; Schalkwijk, Casper G

    2015-06-01

    The formation and accumulation of advanced glycation endproducts (AGEs) are related to diabetes and other age-related diseases. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is the major precursor in the formation of AGEs. MGO is mainly formed as a byproduct of glycolysis. Under physiological circumstances, MGO is detoxified by the glyoxalase system into D-lactate, with glyoxalase I (GLO1) as the key enzyme in the anti-glycation defence. New insights indicate that increased levels of MGO and the major MGO-derived AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1), and dysfunctioning of the glyoxalase system are linked to several age-related health problems, such as diabetes, cardiovascular disease, cancer and disorders of the central nervous system. The present review summarizes the mechanisms through which MGO is formed, its detoxification by the glyoxalase system and its effect on biochemical pathways in relation to the development of age-related diseases. Although several scavengers of MGO have been developed over the years, therapies to treat MGO-associated complications are not yet available for application in clinical practice. Small bioactive inducers of GLO1 can potentially form the basis for new treatment strategies for age-related disorders in which MGO plays a pivotal role.

  14. ‘Metabolic syndrome’ in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition

    PubMed Central

    Agrawal, Rahul; Gomez-Pinilla, Fernando

    2012-01-01

    We pursued studies to determine the effects of the metabolic syndrome (MetS) on brain, and the possibility of modulating these effects by dietary interventions. In addition, we have assessed potential mechanisms by which brain metabolic disorders can impact synaptic plasticity and cognition. We report that high-dietary fructose consumption leads to an increase in insulin resistance index, and insulin and triglyceride levels, which characterize MetS. Rats fed on an n-3 deficient diet showed memory deficits in a Barnes maze, which were further exacerbated by fructose intake. In turn, an n-3 deficient diet and fructose interventions disrupted insulin receptor signalling in hippocampus as evidenced by a decrease in phosphorylation of the insulin receptor and its downstream effector Akt. We found that high fructose consumption with an n-3 deficient diet disrupts membrane homeostasis as evidenced by an increase in the ratio of n-6/n-3 fatty acids and levels of 4-hydroxynonenal, a marker of lipid peroxidation. Disturbances in brain energy metabolism due to n-3 deficiency and fructose treatments were evidenced by a significant decrease in AMPK phosphorylation and its upstream modulator LKB1 as well as a decrease in Sir2 levels. The decrease in phosphorylation of CREB, synapsin I and synaptophysin levels by n-3 deficiency and fructose shows the impact of metabolic dysfunction on synaptic plasticity. All parameters of metabolic dysfunction related to the fructose treatment were ameliorated by the presence of dietary n-3 fatty acid. Results showed that dietary n-3 fatty acid deficiency elevates the vulnerability to metabolic dysfunction and impaired cognitive functions by modulating insulin receptor signalling and synaptic plasticity. PMID:22473784

  15. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index.

  16. Slowing Down: Age-Related Neurobiological Predictors of Processing Speed

    PubMed Central

    Eckert, Mark A.

    2011-01-01

    Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging. PMID:21441995

  17. Oxygen-glucose deprivation and reoxygenation as an in vitro ischemia-reperfusion injury model for studying blood-brain barrier dysfunction.

    PubMed

    Alluri, Himakarnika; Anasooya Shaji, Chinchusha; Davis, Matthew L; Tharakan, Binu

    2015-05-07

    Ischemia-Reperfusion (IR) injury is known to contribute significantly to the morbidity and mortality associated with ischemic strokes. Ischemic cerebrovascular accidents account for 80% of all strokes. A common cause of IR injury is the rapid inflow of fluids following an acute/chronic occlusion of blood, nutrients, oxygen to the tissue triggering the formation of free radicals. Ischemic stroke is followed by blood-brain barrier (BBB) dysfunction and vasogenic brain edema. Structurally, tight junctions (TJs) between the endothelial cells play an important role in maintaining the integrity of the blood-brain barrier (BBB). IR injury is an early secondary injury leading to a non-specific, inflammatory response. Oxidative and metabolic stress following inflammation triggers secondary brain damage including BBB permeability and disruption of tight junction (TJ) integrity. Our protocol presents an in vitro example of oxygen-glucose deprivation and reoxygenation (OGD-R) on rat brain endothelial cell TJ integrity and stress fiber formation. Currently, several experimental in vivo models are used to study the effects of IR injury; however they have several limitations, such as the technical challenges in performing surgeries, gene dependent molecular influences and difficulty in studying mechanistic relationships. However, in vitro models may aid in overcoming many of those limitations. The presented protocol can be used to study the various molecular mechanisms and mechanistic relationships to provide potential therapeutic strategies. However, the results of in vitro studies may differ from standard in vivo studies and should be interpreted with caution.

  18. Age-related differences in acute neurotoxicity produced by mevinphos, monocrotophos, dicrotophos, and phosphamidon.

    PubMed

    Moser, Virginia C

    2011-01-01

    Age-related differences in the acute neurotoxicity of cholinesterase (ChE)-inhibiting pesticides have been well-studied for a few organophosphates, but not for many others. In this study, we directly compared dose-responses using brain and red blood cell (RBC) ChE measurements, along with motor activity, for mevinphos, monocrotophos, dicrotophos, and phosphamidon. Long-Evans hooded male rats were tested as adults and at postnatal day (PND) 17; PND11 pups were also tested with dicrotophos only. All chemicals were administered via oral gavage and tests were conducted at times intended to span peak behavioral and ChE effects. All OPs tested produced a rapid onset and recovery from the behavioral effects. There were age-related differences in the inhibition of brain, but not necessarily RBC, ChE. Mevinphos was clearly more toxic, up to 4-fold, to the young rat. On the other hand, monocrotophos, dicrotophos, and phosphamidon were somewhat more toxic to the young rat, but the magnitude of the differences was < 2-fold lower. Motor activity was consistently decreased in adults for all chemicals tested; however, there was more variability with the pups and clear age-related differences were only observed for mevinphos. These data show that three of these four OPs were only moderately more toxic in young rats, and further support findings that age-related differences in pesticide toxicity are chemical-specific.

  19. Accelerated aging-related transcriptome changes in the female prefrontal cortex.

    PubMed

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Boyd-Kirkup, Jerome; Khaitovich, Philipp; Somel, Mehmet

    2012-10-01

    Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimer's disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD.

  20. Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan

    PubMed Central

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-01-01

    Summary Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan. PMID:26867182

  1. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-02-10

    Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan.

  2. Age-related Dysregulation of Inflammation and Innate Immunity: Lessons Learned from Rodent Models

    PubMed Central

    Brubaker, Aleah L.; Palmer, Jessica L.; Kovacs, Elizabeth J.

    2011-01-01

    In the elderly patient population, it has become increasingly evident that immune dysregulation is a contributing factor to age-related pathologies and their associated morbidity and mortality. In particular, elderly subjects are plagued by poor responses to infectious challenge and immunization and are at heightened risk for the development of autoimmune, neuroinflammatory and tumor-associated pathologies. Rodent models of aging and age-related disorders have been utilized to better describe how innate immune cell dysfunction contributes to these clinical scenarios. As the elderly population continues to increase in size, use of these aging rodent models to study immune dysregulation may translate into increased healthy living years for these individuals. PMID:22396887

  3. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance

    PubMed Central

    Vajapey, Ramya; Rini, David; Walston, Jeremy; Abadir, Peter

    2014-01-01

    Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox) homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS). A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). Ang II binds with equal affinity to two main angiotensin receptors—type 1 (AT1R) and type 2 (AT2R). The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS). This Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell. AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a) report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b) discuss the effect of age-related activation of RAS on generation of free radicals. PMID:25505418

  4. Age-related changes in conditioned flavor preference in rats.

    PubMed

    Renteria, Adam F; Silbaugh, Bryant C; Tolentino, Jerlyn C; Gilbert, Paul E

    2008-03-17

    Age-related changes have been documented in regions of the brain shown to process reward information. However, few studies have examined the effects of aging on associative memory for reward. The present study tested 7- and 24-month-old rats on a conditioned flavor preference task. Half of the rats in each age group received an unsweetened grape-flavored solution (CS-) on odd-numbered days and a sweetened cherry-flavored solution (CS+) on even-numbered days. The remaining rats in each age group received a sweetened grape-flavored solution (CS+) on odd-numbered days and an unsweetened cherry-flavored solution (CS-) on even-numbered days. During the acquisition phase of testing, the designated solution (CS+ or CS-) was presented to each rat for 15 min daily across six consecutive days. On the preference phase, each rat received unsweetened cherry and unsweetened grape-flavored solutions simultaneously for 15 min daily across four consecutive days. The 7-month-old rats showed a significant preference for the flavor that was previously sweetened during the acquisition phase (CS+) compared to the previously unsweetened solution (CS-) when the two unsweetened solutions were presented simultaneously during the preference phase of testing. In contrast, the 24-month-old rats did not show a preference and consumed roughly equal amounts of the previously sweetened (CS+) and unsweetened (CS-) solutions. Thus, the data suggest that the ability to form flavor-reward associations declines with increasing age, resulting in impaired conditioned flavor preference.

  5. Nerve growth factor administration attenuates cognitive but not neurobehavioral motor dysfunction or hippocampal cell loss following fluid-percussion brain injury in rats.

    PubMed

    Sinson, G; Voddi, M; McIntosh, T K

    1995-11-01

    Lateral fluid-percussion brain injury in rats results in cognitive deficits, motor dysfunction, and selective hippocampal cell loss. Neurotrophic factors have been shown to have potential therapeutic applications in neurodegenerative diseases, and nerve growth factor (NGF) has been shown to be neuroprotective in models of excitotoxicity. This study evaluated the neuroprotective efficacy of intracerebral NGF infusion after traumatic brain injury. Male Sprague-Dawley rats received lateral fluid-percussion brain injury of moderate severity (2.1-2.3 atm). A miniosmotic pump was implanted 24 h after injury to infuse NGF (n = 34) or vehicle (n = 16) directly into the region of maximal cortical injury. Infusions of NGF continued until the animal was killed at 72 h, 1 week, or 2 weeks after injury. Animals were evaluated for cognitive dysfunction (Morris Water Maze) and regional neuronal cell loss (Nissl staining) at each of the three time points. Animals surviving for 1 or 2 weeks were also evaluated for neurobehavioral motor function. Although an improvement in memory scores was not observed at 72 h after injury, animals receiving NGF infusions showed significantly improved memory scores when tested at 1 or 2 weeks after injury compared with injured animals receiving vehicle infusions (p < 0.05). Motor scores and CA3 hippocampal cell loss were not significantly different in any group of NGF-treated animals when compared with controls. These data suggest that NGF administration, in the acute, posttraumatic period following fluid-percussion brain injury, may have potential in improving post-traumatic cognitive deficits.

  6. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice.

    PubMed

    Edut, S; Rubovitch, V; Rehavi, M; Schreiber, S; Pick, C G

    2014-12-01

    Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.

  7. Online electrochemical system as an in vivo method to study dynamic changes of ascorbate in rat brain during 3-methylindole-induced olfactory dysfunction.

    PubMed

    Li, Lijuan; Zhang, Yinghong; Hao, Jie; Liu, Junxiu; Yu, Ping; Ma, Furong; Mao, Lanqun

    2016-04-07

    This study demonstrates the application of an online electrochemical system (OECS) as an in vivo method to investigate the dynamic change of microdialysate ascorbate in the olfactory bulb (OB) of rats during the acute period of olfactory dysfunction induced by intraperitoneal (i.p.) injection of 3-methylindole (3-MI). The OECS is developed by directly coupling an electrochemical detector to in vivo microdialysis for the direct monitoring of ascorbate. The system benefits from the good electrochemical activity of single-walled carbon nanotubes towards the oxidation of ascorbate and exhibits high selectivity, good stability, reproducibility and linearity for the measurement of ascorbate in the OB under physiological conditions. With this method, the basal level of microdialysate ascorbate in the OB is determined to be 48.64 ± 5.44 μM. The administration of 3-MI clearly increases the microdialysate ascorbate in the OB after 3-MI treatments and this increase is obviously alleviated by intravenous administration of ascorbate and glutathione (GSH) within 10 min after i.p. injection of 3-MI. These observations with the OECS suggest that ascorbate may be involved in chemical processes during the early stages of 3-MI-induced olfactory dysfunction. This study essentially validates the OECS as an in vivo method for effective measurement of ascorbate in the OB in rat brain and such a method will find interesting applications in investigating chemical process associated with ascorbate underlying olfactory dysfunction.

  8. Pretreatment with Bacopa monnieri extract offsets 3-nitropropionic acid induced mitochondrial oxidative stress and dysfunctions in the striatum of prepubertal mouse brain.

    PubMed

    Shinomol, George K; Bharath, M M Srinivas; Muralidhara

    2012-05-01

    The present investigation was designed to determine the efficacy of Bacopa monnieri (Brahmi; BM) to offset 3-nitropropionic acid (3-NPA) induced oxidative stress and mitochondrial dysfunction in dopaminergic (N27) cells and prepubertal mouse brain. Pretreatment of N27 cells with BM ethanolic extract (BME) significantly attenuated 3-NPA-induced cytotoxicity. Further, we determined the degree of oxidative stress induction, redox status, enzymic antioxidants, and protein oxidation in the striatal mitochondria of mice given BME prophylaxis followed by 3-NPA challenge. While 3-NPA-induced marked oxidative stress in the mitochondria of the striatum, BME prophylaxis markedly prevented 3-NPA-induced oxidative dysfunctions and depletion of reduced glutathione and thiol levels. The activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, thioredoxin reductase), Na(+),K(+)-ATPase, and citric acid cycle enzymes in the striatum discernible among 3-NPA mice were significantly restored with BME prophylaxis. Interestingly, BME offered protection against 3-NPA-induced mitochondrial dysfunctions as evidenced by the restoration of the activities of ETC enzymes (NADH:ubiquinone oxidoreductase, NADH:cytochrome c reductase, succinate-ubiquinone oxidoreductase, and cytochrome c oxidase) and mitochondrial viability. We hypothesize that the neuroprotective effects of BME may be wholly or in part related to its propensity to scavenge free radicals, maintain redox status, and upregulate antioxidant machinery in striatal mitochondria.

  9. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain.

    PubMed

    Karri, Venkatanaidu; Schuhmacher, Marta; Kumar, Vikas

    2016-12-01

    Human exposure to toxic heavy metals is a global challenge. Concurrent exposure of heavy metals, such as lead (Pb), cadmium (Cd), arsenic (As) and methylmercury (MeHg) are particularly important due to their long lasting effects on the brain. The exact toxicological mechanisms invoked by exposure to mixtures of the metals Pb, Cd, As and MeHg are still unclear, however they share many common pathways for causing cognitive dysfunction. The combination of metals may produce additive/synergetic effects due to their common binding affinity with NMDA receptor (Pb, As, MeHg), Na(+) - K(+) ATP-ase pump (Cd, MeHg), biological Ca(+2) (Pb, Cd, MeHg), Glu neurotransmitter (Pb, MeHg), which can lead to imbalance between the pro-oxidant elements (ROS) and the antioxidants (reducing elements). In this process, ROS dominates the antioxidants factors such as GPx, GS, GSH, MT-III, Catalase, SOD, BDNF, and CERB, and finally leads to cognitive dysfunction. The present review illustrates an account of the current knowledge about the individual metal induced cognitive dysfunction mechanisms and analyse common Mode of Actions (MOAs) of quaternary metal mixture (Pb, Cd, As, MeHg). This review aims to help advancement in mixture toxicology and development of next generation predictive model (such as PBPK/PD) combining both kinetic and dynamic interactions of metals.

  10. Age-Related Impairment of Pancreatic Beta-Cell Function: Pathophysiological and Cellular Mechanisms

    PubMed Central

    De Tata, Vincenzo

    2014-01-01

    The incidence of type 2 diabetes significantly increases with age. The relevance of this association is dramatically magnified by the concomitant global aging of the population, but the underlying mechanisms remain to be fully elucidated. Here, some recent advances in this field are reviewed at the level of both the pathophysiology of glucose homeostasis and the cellular senescence of pancreatic islets. Overall, recent results highlight the crucial role of beta-cell dysfunction in the age-related impairment of pancreatic endocrine function and delineate the possibility of new original therapeutic interventions. PMID:25232350

  11. Senescence-accelerated Mice (SAMs) as a Model for Brain Aging and Immunosenescence

    PubMed Central

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2011-01-01

    The Senescence-Accelerated Mouse (SAM) represents a group of inbred mouse strains developed as a model for the study of human aging and age-related diseases. Senescence-prone (SAMP) strains exhibit an early onset of age-related decline in the peripheral immunity such as thymic involution, loss of CD4+ T cells, impaired helper T cell function, decreased antibody-forming capacity, dysfunction of antigen-presenting cells, decreased natural killer activity, increased auto-antibodies, and susceptibility to virus infection. Senescence-prone SAMP10 mice undergo age-related changes in the brain such as brain atrophy, shrinkage and loss of cortical neurons, retraction of cortical neuronal dendrites, loss of dendritic spines, loss of synapses, impaired learning and memory, depressive behavior, accumulation of neuronal DNA damage, neuronal ubiquitinated inclusions, reduced hippocampal cholinergic receptors, decreased neurotrophic factors, decreased hippocampal zinc and zinc transporters, increased sphyngomyelinase, and elevated oxidative-nitrative stress. Recent data indicating increased pro-inflammatory cytokines in the brain of SAMP10 mice are directing investigators toward an integration of immune and neural abnormalities to enhance understanding of the principles of brain aging. We highlight how mouse brain cells adopt cytokine-mediated responses and how SAMP10 mice are defective in these responses. SAMP10 model would be useful to study how age-related disturbances in peripheral immunity have an impact on dysregulation of brain tissue homeostasis, resulting in age-related neurodegeneration. PMID:22396891

  12. An age-related decline in striatal taurine is correlated with a loss of dopaminergic markers.

    PubMed

    Dawson, R; Pelleymounter, M A; Cullen, M J; Gollub, M; Liu, S

    1999-02-01

    Taurine is present in high concentration in the mammalian brain and is known to decline with aging. The present studies examined the relationship between the loss of striatal neurotransmitters and spatial learning ability in aged male Long-Evans rats. The effects of intrahippocampal infusions of neurotrophic factors-nerve growth factor (NGF) and brain-derived neurotrophic factor-were also examined for their ability to ameliorate the age-related decline in brain amino acid content. Taurine content was found to be significantly reduced in the striatum of aged rats (26 months old) that were impaired in spatial learning performance when compared to young unimpaired rats (5 months old). Aged rats that were behaviorally unimpaired had more modest reductions in taurine. Striatal dopamine content was also significantly reduced in aged learning-impaired rats. There was a significant (p < 0.001) correlation (r=0.61) between the striatal content of taurine and dopamine, but no such correlation was found for other striatal transmitters (glutamate, serotonin, norepinephrine). Treatment with neurotrophins had little effect on the age-related decline in striatal amino acids, although NGF treatment did improve spatial learning. These studies suggest (1) a link between age-related declines in striatal dopamine and taurine and (2) that NGF-induced improvement in spatial learning is not related to mechanisms involving changes in taurine or glutamate content.

  13. Impact of age-related neuroglial cell responses on hippocampal deterioration

    PubMed Central

    Ojo, Joseph O.; Rezaie, Payam; Gabbott, Paul L.; Stewart, Michael G.

    2015-01-01

    Aging is one of the greatest risk factors for the development of sporadic age-related neurodegenerative diseases and neuroinflammation is a common feature of this disease phenotype. In the immunoprivileged brain, neuroglial cells, which mediate neuroinflammatory responses, are influenced by the physiological factors in the microenvironment of the central nervous system (CNS). These physiological factors include but are not limited to cell-to-cell communication involving cell adhesion molecules, neuronal electrical activity and neurotransmitter and neuromodulator action. However, despite this dynamic control of neuroglial activity, in the healthy aged brain there is an alteration in the underlying neuroinflammatory response notably seen in the hippocampus, typified by astrocyte/microglia activation and increased pro-inflammatory cytokine production and signaling. These changes may occur without any overt concurrent pathology, however, they typically correlate with deteriorations in hippocamapal or cognitive function. In this review we examine two important phenomenons, firstly the relationship between age-related brain deterioration (focusing on hippocampal function) and underlying neuroglial response(s), and secondly how the latter affects molecular and cellular processes within the hippocampus that makes it vulnerable to age-related cognitive decline. PMID:25972808

  14. Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood-brain barrier dysfunction.

    PubMed

    Lenz, Q F; Arroyo, D S; Temp, F R; Poersch, A B; Masson, C J; Jesse, A C; Marafiga, J R; Reschke, C R; Iribarren, P; Mello, C F

    2014-09-26

    Current evidence suggests that inflammation plays a role in the pathophysiology of seizures. In line with this view, selected pro-inflammatory arachidonic acid derivatives have been reported to facilitate seizures. Kainate-induced seizures are accompanied by leukotriene formation, and are reduced by inhibitors of LOX/COX pathway. Moreover, LTD4 receptor blockade and LTD4 synthesis inhibition suppress pentylenetetrazol (PTZ)-induced kindling and pilocarpine-induced recurrent seizures. Although there is convincing evidence supporting that blood-brain-barrier (BBB) dysfunction facilitates seizures, no study has investigated whether the anticonvulsant effect of montelukast is associated with its ability to maintain BBB integrity. In this study we investigated whether montelukast and other CysLT receptor antagonists decrease PTZ-induced seizures, as well as whether these antagonists preserve BBB during PTZ-induced seizures. Adult male albino Swiss mice were stereotaxically implanted with a cannula into the right lateral ventricle, and two electrodes were placed over the parietal cortex along with a ground lead positioned over the nasal sinus for electroencephalography (EEG) recording. The effects of montelukast (0.03 or 0.3 μmol/1 μL, i.c.v.), pranlukast (1 or 3 μmol/1 μL, i.c.v.), Bay u-9773 (0.3, 3 or 30 nmol/1 μL, i.c.v.), in the presence or absence of the agonist LTD4 (0.2, 2, 6 or 20 pmol/1 μL, i.c.v.), on PTZ (1.8 μmol/2 μL)-induced seizures and BBB permeability disruption were determined. The animals were injected with the antagonists, agonist or vehicle 30 min before PTZ, and monitored for additional 30 min for the appearance of seizures by electrographic and behavioral methods. BBB permeability was assessed by sodium fluorescein method and by confocal microscopy for CD45 and IgG immunoreactivity. Bay-u9973 (3 and 30 nmol), montelukast (0.03 and 0.3 μmol) and pranlukast (1 and 3 μmol), increased the latency to generalized seizures and decreased the

  15. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction

    PubMed Central

    Weissberg, Itai; Wood, Lydia; Kamintsky, Lyn; Vazquez, Oscar; Milikovsky, Dan Z.; Alexander, Allyson; Oppenheim, Hannah; Ardizzone, Carolyn; Becker, Albert; Frigerio, Federica; Vezzani, Annamaria; Buckwalter, Marion S.; Huguenard, John; Friedman, Alon; Kaufer, Daniela

    2015-01-01

    Post injury epilepsy (PIE) is a common complication following brain insults, including ischemic and traumatic brain injuries. At present there are no means to identify the patients at-risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures, remains unknown. Here we demonstrate in-vitro and in-vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process, and highlight manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE. PMID:25836421

  16. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction.

    PubMed

    Weissberg, Itai; Wood, Lydia; Kamintsky, Lyn; Vazquez, Oscar; Milikovsky, Dan Z; Alexander, Allyson; Oppenheim, Hannah; Ardizzone, Carolyn; Becker, Albert; Frigerio, Federica; Vezzani, Annamaria; Buckwalter, Marion S; Huguenard, John R; Friedman, Alon; Kaufer, Daniela

    2015-06-01

    Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE.

  17. Outcome Uncertainty and Brain Activity Aberrance in the Insula and Anterior Cingulate Cortex Are Associated with Dysfunctional Impulsivity in Borderline Personality Disorder

    PubMed Central

    Mortensen, Jørgen Assar; Evensmoen, Hallvard Røe; Klensmeden, Gunilla; Håberg, Asta Kristine

    2016-01-01

    Uncertainty is recognized as an important component in distress, which may elicit impulsive behavior in patients with borderline personality disorder (BPD). These patients are known to be both impulsive and distress intolerant. The present study explored the connection between outcome uncertainty and impulsivity in BPD. The prediction was that cue primes, which provide incomplete information of subsequent target stimuli, led BPD patients to overrate the predictive value of these cues in order to reduce distress related to outcome uncertainty. This would yield dysfunctional impulsive behavior detected as commission errors to incorrectly primed targets. We hypothesized that dysfunctional impulsivity would be accompanied by aberrant brain activity in the right insula and anterior cingulate cortex (ACC), previously described to be involved in uncertainty processing, attention-/cognitive control and BPD pathology. 14 female BPD patients and 14 healthy matched controls (HCs) for comparison completed a Posner task during fMRI at 3T. The task was modified to limit the effect of spatial orientation and enhance the effect of conscious expectations. Brain activity was monitored in the priming phase where the effects of cue primes and neutral primes were compared. As predicted, the BPD group made significantly more commission errors to incorrectly primed targets than HCs. Also, the patients had faster reaction times to correctly primed targets relative to targets preceded by neutral primes. The BPD group had decreased activity in the right mid insula and increased activity in bilateral dorsal ACC during cue primes. The results indicate that strong expectations induced by cue primes led to reduced uncertainty, increased response readiness, and ultimately, dysfunctional impulsivity in BPD patients. We suggest that outcome uncertainty may be an important component in distress related impulsivity in BPD. PMID:27199724

  18. Kraepelin's dichotomy is true: contrasting brain dysfunction at the extremes of human growth and maturation. Excitability, the fundamental property of nervous tissue, is affected.

    PubMed

    Saugstad, Letten F

    2009-01-01

    The distribution of Kraepelin's ubiquitous dichotomy varies with standard of living and pubertal age: when one rises, the other declines. The universal similar clinical picture--mortality risk, manic depressive psychosis, episodic dysfunction of brainstem control systems (sleep-wake cycle, food, mood control mechanism)--is caused by abridged pubertal pruning of excitatory synapses, which is treated with anti-epileptics, as opposed to convulsant neuroleptics in dementia praecox, where the clinical variation reflects varying degrees of excessive pruning and deficit in excitability. Localization of cortical breakdown of circuitry, silent spots and persistent dysfunction due to insufficient fill-in mechanisms, determine the clinical picture. This ranges from dementia praecox in late puberty and poor living standards, to cognitive dysfunction (mainly with higher standards of living) with earlier puberty. This variation is the most likely explanation why the acceptance of dementia praecox as a disease entity was complicated. Kraepelin's dichotomy, episodic dysfunction against a clinical deterioration, is at the extremes of brain maturation; the fundamental property of nervous tissue, excitability, is affected. To reduce the risk of psychotic episodes, omega-3 might also be given, as it normalizes excitation at all levels. The neo-Kraepelinian atheoretical quantitative scoring systems have eliminated disease entities and neglected endogeneity in psychiatry. We are back to a pre-Kraepelinian state, without his systematic observations. What is psychiatry without Kraepelin's dichotomy? Mood stability is a fundamental personality trait with a normal distribution; what is considered within or outside normal variation is arbitrary. Given the mood-stabilizing effect of anti-epileptics and omega-3, these will increasingly dominate psychiatric treatment.

  19. Cerebral Visual Impairment: Which Perceptive Visual Dysfunctions Can Be Expected in Children with Brain Damage? A Systematic Review

    ERIC Educational Resources Information Center

    Boot, F. H.; Pel, J. J. M.; van der Steen, J.; Evenhuis, H. M.

    2010-01-01

    The current definition of Cerebral Visual Impairment (CVI) includes all visual dysfunctions caused by damage to, or malfunctioning of, the retrochiasmatic visual pathways in the absence of damage to the anterior visual pathways or any major ocular disease. CVI is diagnosed by exclusion and the existence of many different causes and symptoms make…

  20. Diffusion tensor imaging reveals adolescent binge ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral dysfunction.

    PubMed

    Vetreno, Ryan P; Yaxley, Richard; Paniagua, Beatriz; Crews, Fulton T

    2016-07-01

    Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction.

  1. Low Calorie Diet Affects Aging-Related Factors

    MedlinePlus

    ... Issue Past Issues Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / Summer ... learn more about the effects of sustained low-calorie diets in humans on factors affecting aging. This ...

  2. Absence of age-related prefrontal NAA change in adults with autism spectrum disorders

    PubMed Central

    Aoki, Y; Abe, O; Yahata, N; Kuwabara, H; Natsubori, T; Iwashiro, N; Takano, Y; Inoue, H; Kawakubo, Y; Gonoi, W; Sasaki, H; Murakami, M; Katsura, M; Nippashi, Y; Takao, H; Kunimatsu, A; Matsuzaki, H; Tsuchiya, K J; Kato, N; Kasai, K; Yamasue, H

    2012-01-01

    Atypical trajectory of brain growth in autism spectrum disorders (ASDs) has been recognized as a potential etiology of an atypical course of behavioral development. Numerous neuroimaging studies have focused on childhood to investigate atypical age-related change of brain structure and function, because it is a period of neuron and synapse maturation. Recent studies, however, have shown that the atypical age-related structural change of autistic brain expands beyond childhood and constitutes neural underpinnings for lifelong difficulty to behavioral adaptation. Thus, we examined effects of aging on neurochemical aspects of brain maturation using 3-T proton magnetic resonance spectroscopy (1H-MRS) with single voxel in the medial prefrontal cortex (PFC) in 24 adult men with non-medicated high-functioning ASDs and 25 age-, IQ- and parental-socioeconomic-background-matched men with typical development (TD). Multivariate analyses of covariance demonstrated significantly high N-acetylaspartate (NAA) level in the ASD subjects compared with the TD subjects (F=4.83, P=0.033). The low NAA level showed a significant positive correlation with advanced age in the TD group (r=−0.618, P=0.001), but was not evident among the ASD individuals (r=0.258, P=0.223). Fisher's r-to-z transformation showed a significant difference in the correlations between the ASD and TD groups (Z=−3.23, P=0.001), which indicated that the age–NAA relationship was significantly specific to people with TD. The current 1H-MRS study provided new evidence that atypical age-related change of neurochemical aspects of brain maturation in ASD individuals expands beyond childhood and persists during adulthood. PMID:23092982

  3. Ability of university-level education to prevent age-related decline in emotional intelligence.

    PubMed

    Cabello, Rosario; Navarro Bravo, Beatriz; Latorre, José Miguel; Fernández-Berrocal, Pablo

    2014-01-01

    Numerous studies have suggested that educational history, as a proxy measure of active cognitive reserve, protects against age-related cognitive decline and risk of dementia. Whether educational history also protects against age-related decline in emotional intelligence (EI) is unclear. The present study examined ability EI in 310 healthy adults ranging in age from 18 to 76 years using the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). We found that older people had lower scores than younger people for total EI and for the EI branches of perceiving, facilitating, and understanding emotions, whereas age was not associated with the EI branch of managing emotions. We also found that educational history protects against this age-related EI decline by mediating the relationship between age and EI. In particular, the EI scores of older adults with a university education were higher than those of older adults with primary or secondary education, and similar to those of younger adults of any education level. These findings suggest that the cognitive reserve hypothesis, which states that individual differences in cognitive processes as a function of lifetime intellectual activities explain differential susceptibility to functional impairment in the presence of age-related changes and brain pathology, applies also to EI, and that education can help preserve cognitive-emotional structures during aging.

  4. Age-related motor dysfunction: Manual slowing in Gorilla gorilla gorilla.

    PubMed

    Mahovetz, Lindsay M; Stoinski, Tara S

    2015-12-01

    Aging in humans and rhesus monkeys is commonly associated with motor function decrements including dexterity, speed, and strength. Despite their longevity and phylogenetic relatedness to humans, the effects of aging on motor function in non-human apes have been minimally studied. We conducted two experiments with western lowland gorillas (11-54 years of age) to determine whether aged gorillas exhibit motor deficits similar to those seen in other species. In experiment one, gorillas extracted up to 12 food rewards lodged in holes of a Lexan board. Extraction rates were calculated for eight test sessions. A repeated measures ANOVA revealed no main effects of session or sex on extraction rate, but a significant main effect of age. Comparisons between the first and last sessions showed that experience significantly improved extraction rates in young but not aged gorillas. In experiment two, gorillas retrieved a hex nut from three differently shaped rods with each hand for a reward. Latencies of retrieval were calculated for 16 test sessions. A repeated measures ANOVA revealed significant main effects of age class, sex, and session. There were significant interactions between session and sex, session and age, and session, sex, and age. These findings held when analyzing each rod shape separately. Post hoc comparisons revealed that young gorillas were significantly faster at the task than aged gorillas, and females were faster than males. This finding held only for the question mark shaped rod when analyzing each rod shape separately. Comparisons between the first and last sessions showed that experience did not significantly improve latencies in either age or sex class. The direction of these results are congruent with previous findings in humans and monkeys and suggest that aged gorillas experience deficits in bimanual coordination compared to younger gorillas and that age and sex influence fine motor ability in gorillas.

  5. Schisandrin B as a Hormetic Agent for Preventing Age-Related Neurodegenerative Diseases

    PubMed Central

    Lam, Philip Y.; Ko, Kam Ming

    2012-01-01

    Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of neurodegenerative diseases, with the latter preceding the appearance of clinical symptoms. The energy failure resulting from mitochondrial dysfunction further impedes brain function, which demands large amounts of energy. Schisandrin B (Sch B), an active ingredient isolated from Fructus Schisandrae, has been shown to afford generalized tissue protection against oxidative damage in various organs, including the brain, of experimental animals. Recent experimental findings have further demonstrated that Sch B can protect neuronal cells against oxidative challenge, presumably by functioning as a hormetic agent to sustain cellular redox homeostasis and mitoenergetic capacity in neuronal cells. The combined actions of Sch B offer a promising prospect for preventing or possibly delaying the onset of neurodegenerative diseases, as well as enhancing brain health. PMID:22666518

  6. Age-related gene expression changes in substantia nigra dopamine neurons of the rat.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2015-07-01

    Ageing affects most, if not all, functional systems in the body. For example, the somatic motor nervous system, responsible for initiating and regulating motor output to skeletal musculature, is vulnerable to ageing. The nigrostriatal dopamine pathway is one component of this system, with deficits in dopamine signalling contributing to major motor dysfunction, as exemplified in Parkinson's disease (PD). However, while the dopamine deficit in PD is due to degeneration of substantia nigra (SN) dopamine (DA) neurons, it is unclear whether there is sufficient loss of SN DA neurons with ageing to explain observed motor impairments. Instead, evidence suggests that age-related loss of DA neuron function may be more important than frank cell loss. To further elucidate the mechanisms of functional decline, we have investigated age-related changes in gene expression specifically in laser microdissected SN DA neurons. There were significant age-related changes in the expression of genes associated with neurotrophic factor signalling and the regulation of tyrosine hydroxylase activity. Furthermore, reduced expression of the DA neuron-associated transcription factor, Nurr1, may contribute to these changes. Together, these results suggest that altered neurotrophic signalling and tyrosine hydroxylase activity may contribute to altered DA neuron signalling and motor nervous system regulation in ageing.

  7. Compromised respiratory adaptation and thermoregulation in aging and age-related diseases.

    PubMed

    Chan, Sic L; Wei, Zelan; Chigurupati, Srinivasulu; Tu, Weihong

    2010-01-01

    Mitochondrial dysfunction and reactive oxygen species (ROS) production are at the heart of the aging process and are thought to underpin age-related diseases. Mitochondria are not only the primary energy-generating system but also the dominant cellular source of metabolically derived ROS. Recent studies unravel the existence of mechanisms that serve to modulate the balance between energy metabolism and ROS production. Among these is the regulation of proton conductance across the inner mitochondrial membrane that affects the efficiency of respiration and heat production. The field of mitochondrial respiration research has provided important insight into the role of altered energy balance in obesity and diabetes. The notion that respiration and oxidative capacity are mechanistically linked is making significant headway into the field of aging and age-related diseases. Here we review the regulation of cellular energy and ROS balance in biological systems and survey some of the recent relevant studies that suggest that respiratory adaptation and thermodynamics are important in aging and age-related diseases.

  8. Modulation of Mcl-1 expression reduces age-related cochlear degeneration.

    PubMed

    Yang, Wei Ping; Xu, Yang; Guo, Wei Wei; Liu, Hui Zhan; Hu, Bo Hua

    2013-11-01

    Mcl-1 is an anti-apoptotic member of the Bcl-2 family that modulates apoptosis-related signaling pathways and promotes cell survival. We have previously demonstrated a reduction of Mcl-1 expression in aging cochleae. To investigate whether restoring Mcl-1 expression would reduce aging-related cochlear degeneration, we developed a rat model of Mcl-1 overexpression. A plasmid encoding human Mcl-1/enhanced green fluorescent protein was applied to the round window of the cochlea. This in vivo treatment transfected both the sensory and supporting cells of the cochlear sensory epithelium and enhanced Mcl-1 expression at both the mRNA and the protein level. The upregulation of Mcl-1 expression reduced the progression of age-related cochlear dysfunction and sensory cell death. Furthermore, the transfection of Mcl-1 exerted its protective effect by suppressing cochlear apoptosis at the mitochondrial level. This study demonstrates that the genetic modulation of Mcl-1 expression reduces the progression of age-related cochlear degeneration.

  9. Loss of Rictor with aging in osteoblasts promotes age-related bone loss

    PubMed Central

    Lai, Pinling; Song, Qiancheng; Yang, Cheng; Li, Zhen; Liu, Sichi; Liu, Bin; Li, Mangmang; Deng, Hongwen; Cai, Daozhang; Jin, Dadi; Liu, Anling; Bai, Xiaochun

    2016-01-01

    Osteoblast dysfunction is a major cause of age-related bone loss, but the mechanisms underlying changes in osteoblast function with aging are poorly understood. This study demonstrates that osteoblasts in aged mice exhibit markedly impaired adhesion to the bone formation surface and reduced mineralization in vivo and in vitro. Rictor, a specific component of the mechanistic target of rapamycin complex 2 (mTORC2) that controls cytoskeletal organization and cell survival, is downregulated with aging in osteoblasts. Mechanistically, we found that an increased level of reactive oxygen species with aging stimulates the expression of miR-218, which directly targets Rictor and reduces osteoblast bone surface adhesion and survival, resulting in a decreased number of functional osteoblasts and accelerated bone loss in aged mice. Our findings reveal a novel functional pathway important for age-related bone loss and support for miR-218 and Rictor as potential targets for therapeutic intervention for age-related osteoporosis treatment. PMID:27735936

  10. Age-related decline in motor behavior and striatal dopamine transporter in cynomolgus monkeys.

    PubMed

    Yue, Feng; Zeng, Sien; Wu, Di; Yi, Deqiao; Alex Zhang, Y; Chan, Piu

    2012-08-01

    Advanced human aging is associated with progressive declines of motor function and a risk factor for Parkinson's disease, which mainly involves central nigrostriatal dopaminergic system. The present study investigated age-related changes in motor behaviors and alterations of the number of nigrostriatal dopaminergic terminals in non-human primates. A total of 30 cynomolgus monkeys (Macaca fascicularis) of age 3.5-15.5 years were studied. Motor behaviors including upper limb movement time and the amount of overall home cage activity were quantitatively assessed using a modified movement assessment panel and a newly developed webcam-based monitoring system. The function of the dopaminergic system was semi-quantitatively measured by (99m)Tc-TRODAT-1 uptake rates, a dopamine transporter (DAT) specific radiopharmaceutical with SPECT imaging. The results showed a significant decline in motor behaviors associated with aging which were significantly correlated with age-related decreases of (99m)Tc-TRODAT-1 uptake. A further partial correlation analysis independent of age indicated that age contributed to the relationship between striatal DAT levels and motor behaviors. Our results indicate that normal aging-related dopamine physiology influences certain aspects of motor behaviors and suggest that aging-associated dysfunction in the nigrostriatal dopaminergic system may be an important factor contributing to the decline of motor behaviors in aging cynomolgus monkeys.

  11. Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury.

    PubMed

    Hill, Rachel L; Singh, Indrapal N; Wang, Juan A; Hall, Edward D

    2017-03-23

    Traumatic brain injury (TBI) results in rapid reactive oxygen species (ROS) production and oxidative damage to essential brain cellular components leading to neuronal dysfunction and cell death. It is increasingly appreciated that a major player in TBI-induced oxidative damage is the reactive nitrogen species (RNS) peroxynitrite (PN) which is produced in large part in injured brain mitochondria. Once formed, PN decomposes into highly reactive free radicals that trigger membrane lipid peroxidation (LP) of polyunsaturated fatty acids (e.g. arachidonic acid) and protein nitration (3-nitrotyrosine, 3-NT) in mitochondria and other cellular membranes causing various functional impairments to mitochondrial oxidative phosphorylation and calcium (Ca(2+)) buffering capacity. The LP also results in the formation of neurotoxic reactive aldehyde byproducts including 4-hydroxynonenal (4-HNE) and propenal (acrolein) which exacerbates ROS/RNS production and oxidative protein damage in the injured brain. Ultimately, this results in intracellular Ca(2+) overload that activates proteolytic degradation of α-spectrin, a neuronal cytoskeletal protein. Therefore, the aim of this study was to establish the temporal evolution of mitochondrial dysfunction, oxidative damage and cytoskeletal degradation in the brain following a severe controlled cortical impact (CCI) TBI in young male adult rats. In mitochondria isolated from an 8 mm diameter cortical punch including the 5 mm wide impact site and their respiratory function studied ex vivo, we observed an initial decrease in complex I and II mitochondrial bioenergetics within 3 h (h). For complex I bioenergetics, this partially recovered by 12-16 h, whereas for complex II respiration the recovery was complete by 12 h. During the first 24 h, there was no evidence of an injury-induced increase in LP or protein nitration in mitochondrial or cellular homogenates. However, beginning at 24 h, there was a gradual secondary decline in complex

  12. Aging related erectile dysfunction—potential mechanism to halt or delay its onset

    PubMed Central

    Gonzalez-Cadavid, Nestor F.; Rajfer, Jacob

    2017-01-01

    Erectile dysfunction (ED) will visit every man at some time in his life. The age at when that knock on the door is heard is totally dependent on one’s genetics as well as other extrinsic factors. Unlike guests who come for a visit and then leave, once ED shows up it tends to hang around forever. To add insult to injury, the longer ED hangs around, the worse it will get. It is estimated that by the time a man is in his 40’s, he has about a 40% chance of having some form of ED and this prevalence increases about 10% per decade thereafter. This suggests that the aging related process that leads to ED begins early in life. It turns out that the most common cause of ED, regardless of the patient’s age, is due to a problem with the vascular system of the penis. However, this specific aging related vascular problem is not caused by arterial disease but due to a dysfunction and/or loss of the corporal smooth muscle cells (SMC), the main constituent of the corporal sinusoids. As one gets older, these SMC continue to degrade and disappear. When approximately 15% of these cells have been impacted, it results in an inability of the corporal tissue to retain and/or prevent the blood from “leaking” out of the corporal sinusoids into the systemic veins. However, the corporal SMC themselves begin to combat this aging process by expressing the inducible nitric oxide synthase (iNOS) enzyme to make nitric oxide (NO) in an attempt to quench the high intracellular oxidative stress responsible for the SMC apoptosis. When this iNOS pathway is then pharmacologically upregulated, reversal of these aging related changes in the corpora with correction of the venous leakage is observed. Since we believe that aging related ED is pathologically the same disorder as essential hypertension, the development of a therapeutic regimen that can halt, delay or possibly reverse the cellular processes that lead to aging related ED should also be applicable to those patients diagnosed with

  13. [The relationship between the polymorphism of immunity genes and both aging and age-related diseases].

    PubMed

    Ruan, Qing-Wei; Yu, Zhuo-Wei; Bao, Zhi-Jun; Ma, Yong-Xing

    2013-07-01

    Aging is acommon, progressive and irreversible state of multi-cell dysfunction. Immune aging mainly includes the declines of regenerative capacity and lymphoid lineage differentiation potential, the hyporesponsive to infection and vaccination, the hyperresponsive in the context of inflammatory pathology, and the increased risk of autoimmunity. The dysfunction of aged immune system accelerates the occurrence of aging and age-related diseases. The mutation of immunity genes that affect immune responses accelerates or slows aging process and age-related diseases. The frequencies of acquired immunity genes, such as immune protective HLA II DRB1*11 and DRB*16-associated haplotype, are increased in the longevity populations. The increased susceptibility of immune inflammatory response, morbidity and mortality in the elderly is often associated with decreased frequencies of anti-inflammatory factor IL-10 -1082G allele, TNF-β1 haplotype cnd10T/C, cnd25G/G, -988C/C, -800G/A, low proinflammatory fator TNFa level related extended TNF-A genotype -1031C/C, -863C/A, -857C/C, IL-6-174 CC and IFN-γ+874 T allele as well. The innate immunity genes, such as highly expressed anti-inflammatory +896 G KIR4 allele, CCR5Δ32 variant, -765 C Cox-2 allele, -1708 G and 21 C 5-Lox alleles are detected in centenarians. In age-related diseases, a higher CMV-specific IgG antibody level in elderly individuals is associated with a decreased frequency of KIR haplotypes KIR2DS5 and A1B10 and an increased frequency of MBL2 haplotypes LYPB, LYQC and HYPD that result in the absence of MBL2 protein. The increased frequencies of CRP ATG haplotypes and CFH 402 His allele indicate high mortality in the elderly. In the present study, we review the advances in the polymorphism and haplotype of innate and adoptive immunity genes, and their association with both aging and age-related diseases. To strengthen the analysis of extended haplotypes, epigenetic studies of immunity genes and genetic study of

  14. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex.

    PubMed

    Friedman, Amy L; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D; Hanna, Gregory L; Rosenberg, David R; Diwadkar, Vaibhav A

    2017-02-28

    In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a "motor set") or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD.

  15. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex

    PubMed Central

    Friedman, Amy L.; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D.; Hanna, Gregory L.; Rosenberg, David R.; Diwadkar, Vaibhav A.

    2017-01-01

    In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a “motor set”) or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD. PMID:27992792

  16. Age-related changes in pial arterial structure and blood flow in mice.

    PubMed

    Kang, Hye-Min; Sohn, Inkyung; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2016-01-01

    Age-related cerebral blood flow decreases are thought to deteriorate cognition and cause senescence, although the related mechanism is unclear. To investigate the relationships between aging and changes in cerebral blood flow and vasculature, we obtained fluorescence images of young (2-month-old) and old (12-month-old) mice using indocyanine green (ICG). First, we found that the blood flow in old mice's brains is lower than that in young mice and that old mice had more curved pial arteries and fewer pial artery junctions than young mice. Second, using Western blotting, we determined that the ratio of collagen to elastin (related to cerebral vascular wall distensibility) increased with age. Finally, we found that the peak ICG intensity and blood flow index decreased, whereas the mean transit time increased, with age in the middle cerebral artery and superior sagittal sinus. Age-related changes in pial arterial structure and composition, concurrent with the observed changes in the blood flow parameters, suggest that age-related changes in the cerebral vasculature structure and distensibility may induce altered brain blood flow.

  17. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.

  18. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis].

    PubMed

    Fischer, Tamás

    2015-03-01

    The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.

  19. Pathophysiology of ageing, longevity and age related diseases

    PubMed Central

    Bürkle, Alexander; Caselli, Graziella; Franceschi, Claudio; Mariani, Erminia; Sansoni, Paolo; Santoni, Angela; Vecchio, Giancarlo; Witkowski, Jacek M; Caruso, Calogero

    2007-01-01

    On April 18, 2007 an international meeting on Pathophysiology of Ageing, Longevity and Age-Related Diseases was held in Palermo, Italy. Several interesting topics on Cancer, Immunosenescence, Age-related inflammatory diseases and longevity were discussed. In this report we summarize the most important issues. However, ageing must be considered an unavoidable end point of the life history of each individual, nevertheless the increasing knowledge on ageing mechanisms, allows envisaging many different strategies to cope with, and delay it. So, a better understanding of pathophysiology of ageing and age-related disease is essential for giving everybody a reasonable chance for living a long and enjoyable final part of the life. PMID:17683521

  20. Age-related macular degeneration: current treatment and future options.

    PubMed

    Moutray, Tanya; Chakravarthy, Usha

    2011-09-01

    Age-related macular degeneration is the leading cause of visual impairment among older adults in the developed world. Epidemiological studies have revealed a number of genetic, ocular and environmental risk factors for this condition, which can be addressed by disease reduction strategies. We discuss the various treatment options for dry and exudative age-related macular degeneration available and explain how the recommended treatment depends on the exact type, location and extent of the degeneration. Currently, vascular endothelial growth factor (VEGF) inhibition therapy is the best available treatment for exudative age-related macular degeneration but is limited by the need for repeated intravitreal injections. The current treatment regime is being refined through research on optimal treatment frequency and duration and type of anti-VEGF drug. Different modes of drug delivery are being developed and in the future other methods of VEGF inhibition may be used.

  1. Plasma brain natriuretic peptide and troponin levels in severe sepsis and septic shock: relationships with systolic myocardial dysfunction and intensive care unit mortality.

    PubMed

    Klouche, Kada; Pommet, Stephane; Amigues, Laurent; Bargnoux, Anne Sophie; Dupuy, Anne Marie; Machado, Sonia; Serveaux-Delous, Marianne; Morena, Marion; Jonquet, Olivier; Cristol, Jean Paul

    2014-01-01

    The aim of this study was to evaluate and compare brain natriuretic peptide (BNP) and cardiac troponin I (cTnI) levels as mortality prognosticator and predictor for myocardial dysfunction in severe sepsis and septic shock. Baseline clinical and biological variables were collected from 47 patients with severe sepsis or septic shock. Ventricular systolic function assessed by echocardiography was measured over a 5-day period. Both cTnI and BNP plasmatic levels were determined at intensive care unit (ICU) admission and during the following 15 days. At admission, cTnI and BNP levels were compared to those of 12 control critically ill nonseptic patients. The plasma levels of BNP and cTnI in patients with sepsis were elevated at admission and significantly higher than in the controls. Among patients with sepsis, BNP levels were significantly more elevated in nonsurvivors compared to survivors at admission and 1 day later. The cTnI levels were also significantly more elevated in nonsurvivors compared to survivors, but only at admission. From admission to day 5, patients with sepsis with left ventricular systolic dysfunction had higher BNP plasmatic concentrations than those without; differences were significant at days 3 and 4. In contrast, plasma cTnI levels were similar between the 2 groups. In critically ill patients, sepsis induces significant increase in BNP and cTnI levels. High BNP and cTnI plasma levels during ICU admission appear to be associated with poor outcome of sepsis. Time course of BNP levels seems helpful to discriminate between surviving and nonsurviving patients with sepsis and to detect myocardial dysfunction where troponin levels fail to do so.

  2. Preliminary study of anxiety symptoms, family dysfunction, and the brain-derived neurotrophic factor (BDNF) Val66Met genotype in offspring of parents with bipolar disorder.

    PubMed

    Park, Min-Hyeon; Chang, Kiki D; Hallmayer, Joachim; Howe, Meghan E; Kim, Eunjoo; Hong, Seung Chul; Singh, Manpreet K

    2015-02-01

    Several genetic and environmental factors place youth offspring of parents with bipolar disorder (BD) at high risk for developing mood and anxiety disorders. Recent studies suggest that anxiety symptoms, even at subclinical levels, have been associated with an increased risk for developing BD. The brain-derived neurotrophic factor (BDNF) gene has been implicated in the pathophysiology of both BD and anxiety disorders. We aimed to explore whether anxiety in BD offspring was associated with the BDNF Val66Met polymorphism. 64 BD offspring (mean age: 13.73 (S.D. 3.45) M = 30, F = 34) and 51 HC (mean age: 13.68 (S.D. 2.68) M = 23, F = 28) were compared on presence of the met allele and on scores from the Multidimensional Anxiety Scale for Children (MASC). To assess family function, we used the Family Adaptability and Cohesion Evaluation Scales (FACES-IV). The Baron & Kenny method was the statistical approach used to examine the moderating effects between variables. BD offspring showed higher levels of overall anxiety than did the HC group. BD offspring with the val/val genotype showed higher levels of anxiety than BD offspring with other genotypes. No significant levels of anxiety or its association with BDNF genotype were found in the HC group. BD offspring group showed significantly more family dysfunction when compared with the HC group and the family dysfunction moderated the association between the BDNF genotype and anxiety symptoms. This study demonstrated the potential interplay of three factors: BD offspring, anxiety symptoms and family dysfunction.

  3. CKD increases the risk of age-related macular degeneration.

    PubMed

    Liew, Gerald; Mitchell, Paul; Wong, Tien Yin; Iyengar, Sudha K; Wang, Jie Jin

    2008-04-01

    Age-related macular degeneration is the leading cause of irreversible blindness in the United States and often coexists with chronic kidney disease. Both conditions share common genetic and environmental risk factors. A total of 1183 participants aged 54+ were examined in the population-based, prospective cohort Blue Mountains Eye Study (Australia) to determine if chronic kidney disease increases the risk of age-related macular degeneration. Moderate chronic kidney disease (estimated glomerular filtration rate < 60 ml/min per 1.73 m(2) based on the Cockcroft-Gault equation) was present in 24% of the population (286 of 1183). The 5-yr incidence of early age-related macular degeneration was 3.9% in participants with no/mild chronic kidney disease (35 of 897) and 17.5% in those with moderate chronic kidney disease (50 of 286). After adjusting for age, sex, cigarette smoking, hypertension, complement factor H polymorphism, and other risk factors, persons with moderate chronic kidney disease were 3 times more likely to develop early age-related macular degeneration than persons with no/mild chronic kidney disease (odds ratio = 3.2; 95% confidence interval, 1.8 to 5.7, P < 0.0001). Each SD (14.8 ml/min per 1.73 m(2)) decrease in Cockcroft-Gault estimated glomerular filtration rate was associated with a doubling of the adjusted risk for early age-related macular degeneration (odds ratio = 2.0; 95% confidence interval, 1.5 to 2.8, P < 0.0001). In conclusion, persons with chronic kidney disease have a higher risk of early age-related macular degeneration, suggesting the possibility of shared pathophysiologic mechanisms between the two conditions.

  4. Gulliver meets Descartes: early modern concepts of age-related memory loss.

    PubMed

    Schäfer, Daniel

    2003-03-01

    Age-related memory loss was a marginal issue in medical discussions during early modern times and until well into the second half of the 17th century. There are many possible explanations: the lack of similar traditions in antiquity and in the Middle Ages, insufficient physiological and morphological knowledge of the brain, and the underlying conflict between idealistic and materialistic perspectives on the functions of the soul and the conditions of these in old age. After these boundaries had been pushed back by the influence of Cartesianism and Iatromechanism, the problem of age-related memory loss was increasingly regarded as a physical illness and began to receive more attention. This trend first occurred in medicine, before spreading to the literary world, where the novel "Gulliver's Travels" is one clear and famous example.

  5. Protective effect of S-allylcysteine on 3-nitropropionic acid-induced lipid peroxidation and mitochondrial dysfunction in rat brain synaptosomes.

    PubMed

    Pérez-De La Cruz, Verónica; González-Cortés, Carolina; Pedraza-Chaverrí, José; Maldonado, Perla D; Andrés-Martínez, Leticia; Santamaría, Abel

    2006-01-30

    3-Nitropropionic acid is a neurotoxin that irreversibly inhibits succinate dehydrogenase, a relevant enzyme constituting the complex II of the respiratory chain during mitochondrial electron transport. 3-Nitropropionic acid is known to produce oxidative/nitrosative stress and evokes an experimental model of Huntington's disease. In this work we evaluated the effects of the antioxidant compound and major organosulfur garlic derivative, S-allylcysteine, on lipid peroxidation and mitochondrial dysfunction induced by 3-nitropropionic acid in synaptosomal fractions from rat brain. 3-Nitropropionic acid, at concentrations ranging 0.75-2.5 mM, produced enhanced levels of lipid peroxidation, while increasing concentrations of S-allylcysteine (0.1-2 mM) decreased the peroxidative action of 3-nitropropionic acid (1 mM) in synaptosomal fractions in a concentration-dependent manner. S-Allylcysteine (0.75 mM) also prevented the 3-nitropropionic acid (1mM)-induced mitochondrial dysfunction. These findings suggest that the protective actions that S-allylcysteine exert on the in vitro neurotoxicity induced by 3-nitropropionic acid are mediated by its antioxidant properties.

  6. Age-related decline in emotional prosody discrimination: acoustic correlates.

    PubMed

    Mitchell, Rachel L C; Kingston, Rachel A

    2014-01-01

    It is now accepted that older adults have difficulty recognizing prosodic emotion cues, but it is not clear at what processing stage this ability breaks down. We manipulated the acoustic characteristics of tones in pitch, amplitude, and duration discrimination tasks to assess whether impaired basic auditory perception coexisted with our previously demonstrated age-related prosodic emotion perception impairment. It was found that pitch perception was particularly impaired in older adults, and that it displayed the strongest correlation with prosodic emotion discrimination. We conclude that an important cause of age-related impairment in prosodic emotion comprehension exists at the fundamental sensory level of processing.

  7. [New possibilities in the pharmacologic prevention of age-related macular degeneration].

    PubMed

    Fischer, Tamás

    2008-01-20

    The beneficial effect achieved by the treatment of endothelial dysfunction in chronic cardiovascular diseases is already an evidence belonging to the basic treatment of the disease. Given the fact that the vascular system is uniform and consubstantial both physiologically, pathophysiologically and in terms of therapy, and that it plays a key role in age-related macular degeneration (AMD)--a disease leading to tragic loss of vision with its etiology and therapy being unknown--endothelial dysfunction should be treated. The pleiotropic effects of ACE-inhibitors, AR-blockers and statins help to restitute the balance between vasodilators and vasoconstrictors in endothelial dysfunction caused by oxidative stress, the balance of growth factors and their inhibitors, pro- and anti-inflammatory substances and prothrombotic and fibrinolytic factors, inhibit the formation of oxidative stress and its harmful effects; while aspirin with its pleiotropic effects acting as an antiaggregation substance on platelets helps to set the endothelial layer back to its normal balance regarding its vasodilating, antithrombotic, antiadhesive and anti-inflammatory functions; trimetazidine as an adjuvant agent helps to normalize, to restore the disturbed metabolism of the retinal tissue functioning insufficiently, in the end. For the above reasons it is suggested that, as a part of long term primary and/or secondary prevention, the following groups of patients with AMD receive--taking into consideration all possible side effects--ACE-inhibitor and/or AR blocker and statin and aspirin treatment, and trimetazidine as adjuvant medicine 1. those without maculopathy but being above the age of 50 and having risk factors inducing endothelial dysfunction; 2. those, who already developed AMD in one eye as a prevention in the second, unaffected eye; and 3. those patients who developed AMD in both eyes in order to ameliorate or merely slow the progression of the disease. Besides, it is advisory to

  8. Increased Electron Paramagnetic Resonance Signal Correlates with Mitochondrial Dysfunction and Oxidative Stress in an Alzheimer’s Disease Mouse Brain

    PubMed Central

    Fang, Du; Zhang, Zhihua; Li, Hang; Yu, Qing; Douglas, Justin T.; Bratasz, Anna; Kuppusamy, Periannan; Yan, Shirley ShiDu

    2016-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized clinically by cognitive decline and memory loss. The pathological features are amyloid-β peptide (Aβ) plaques and intracellular neurofibrillary tangles. Many studies have suggested that oxidative damage induced by reactive oxygen species (ROS) is an important mechanism for AD progression. Our recent study demonstrated that oxidative stress could further impair mitochondrial function. In the present study, we adopted a transgenic mouse model of AD (mAPP, overexpressing AβPP/Aβ in neurons) and performed redox measurements using in vivo electron paramagnetic resonance (EPR) imaging with methoxycarbamyl-proxyl (MCP) as a redox-sensitive probe for studying oxidative stress in an early stage of pathology in a transgenic AD mouse model. Through assessing oxidative stress, mitochondrial function and cognitive behaviors of mAPP mice at the age of 8–9 months, we found that oxidative stress and mitochondrial dysfunction appeared in the early onset of AD. Increased ROS levels were associated with defects of mitochondrial and cognitive dysfunction. Notably, the in vivo EPR method offers a unique way of assessing tissue oxidative stress in living animals under noninvasive conditions, and thus holds a potential for early diagnosis and monitoring the progression of AD. PMID:26890765

  9. Brain structure and intragenic DNA methylation are correlated, and predict executive dysfunction in fragile X premutation females

    PubMed Central

    Shelton, A L; Cornish, K M; Kolbe, S; Clough, M; Slater, H R; Li, X; Kraan, C M; Bui, Q M; Godler, D E; Fielding, J

    2016-01-01

    DNA methylation of the Fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary has been associated with executive dysfunction in female carriers of a FMR1 premutation (PM: 55–199 CGG repeats), whereas neuroanatomical changes have been associated with executive dysfunction in PM males. To our knowledge, this study for the first time examined the inter-relationships between executive function, neuroanatomical structure and molecular measures (DNA methylation and FMR1 mRNA levels in blood) in PM and control (<44 CGG repeats) females. In the PM group, FMR1 intron 1 methylation was positively associated with executive function and cortical thickness in middle and superior frontal gyri, and left inferior parietal gyrus. By contrast, in the control group, FMR1 intron 1 methylation was negatively associated with cortical thickness of the left middle frontal gyrus and superior frontal gyri. No significant associations were revealed for either group between FMR1 mRNA and neuroanatomical structure or executive function. In the PM group, the lack of any significant association between FMR1 mRNA levels and phenotypic measures found in this study suggests that either FMR1 expression is not well conserved between tissues, or that FMR1 intron 1 methylation is linked to neuroanatomical and cognitive phenotype in PM females via a different mechanism. PMID:27959330

  10. A Context for Teaching Aging-Related Public Policy.

    ERIC Educational Resources Information Center

    Brown, David K.

    1999-01-01

    Describes two points of view regarding age-related public programs (Medicaid, Medicare, Social Security): that of devolutionists who would curtail them and safety netters who maintain the government's role is indispensable. Uses Relative Deprivation theory as a framework for teaching public policy about aging. (SK)

  11. Glycosaminoglycans in the Human Cornea: Age-Related Changes

    PubMed Central

    Pacella, Elena; Pacella, Fernanda; De Paolis, Giulio; Parisella, Francesca Romana; Turchetti, Paolo; Anello, Giulia; Cavallotti, Carlo

    2015-01-01

    AIM To investigate possible age-related changes in glycosaminoglycans (GAGs) in the human cornea. The substances today called GAGs were previously referred to as mucopolysaccharides. METHODS Samples of human cornea were taken from 12 younger (age 21 ± 1.2) and 12 older (age 72 ± 1.6) male subjects. Samples were weighed, homogenized, and used for biochemical and molecular analyses. All the quantitative results were statistically analyzed. RESULTS The human cornea appears to undergo age-related changes, as evidenced by our biochemical and molecular results. The total GAG and hyaluronic acid counts were significantly higher in the younger subjects than in the older subjects. The sulfated heavy GAGs, such as chondroitin, dermatan, keratan, and heparan sulfate, were lower in the younger subjects than in the older subjects. DISCUSSION GAGs of the human cornea undergo numerous age-related changes. Their quantity is significantly altered in the elderly in comparison with younger subjects. GAGs play an important role in age-related diseases of the human cornea. PMID:25674020

  12. Nutritional influences on epigenetics and age-related disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  13. Age-Related Differences in Moral Identity across Adulthood

    ERIC Educational Resources Information Center

    Krettenauer, Tobias; Murua, Lourdes Andrea; Jia, Fanli

    2016-01-01

    In this study, age-related differences in adults' moral identity were investigated. Moral identity was conceptualized a context-dependent self-structure that becomes differentiated and (re)integrated in the course of development and that involves a broad range of value-orientations. Based on a cross-sectional sample of 252 participants aged 14 to…

  14. Nutritional modulation of age-related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated wi...

  15. [Impact of thymic function in age-related immune deterioration].

    PubMed

    Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles

    2013-01-01

    Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline.

  16. Age-Related Health Stereotypes and Illusory Correlation

    ERIC Educational Resources Information Center

    Madey, Scott F.; Chasteen, Alison L.

    2004-01-01

    This experiment investigated how age-related health stereotypes affect people's judgments of younger and older patients' medical compliance. Previous research has shown that stereotypes of young adults include healthy components, but stereotypes of older adults include both healthy and unhealthy components (Hummert, 1990). We predicted that…

  17. Age-Related Differences in Idiom Production in Adulthood

    ERIC Educational Resources Information Center

    Conner, Peggy S.; Hyun, Jungmoon; O'Connor Wells, Barbara; Anema, Inge; Goral, Mira; Monereau-Merry, Marie-Michelle; Rubino, Daniel; Kuckuk, Raija; Obler, Loraine K.

    2011-01-01

    To investigate whether idiom production was vulnerable to age-related difficulties, we asked 40 younger (ages 18-30) and 40 older healthy adults (ages 60-85) to produce idiomatic expressions in a story-completion task. Younger adults produced significantly more correct idiom responses (73%) than did older adults (60%). When older adults generated…

  18. The Experience of Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Wong, Elaine Y. H.; Guymer, Robyn H.; Hassell, Jennifer B.; Keeffe, Jill E.

    2004-01-01

    This qualitative article describes the impact of age-related macular degeneration (ARMD) among 15 participants: how a person makes sense of ARMD, the effect of ARMD on the person's quality of life, the psychological disturbances associated with the limitations of ARMD, and the influence of ARMD on social interactions. Such in-depth appreciation of…

  19. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  20. An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function.

    PubMed

    Pierno, Sabata; Tricarico, Domenico; Liantonio, Antonella; Mele, Antonietta; Digennaro, Claudio; Rolland, Jean-François; Bianco, Gianpatrizio; Villanova, Luciano; Merendino, Alessandro; Camerino, Giulia Maria; De Luca, Annamaria; Desaphy, Jean-François; Camerino, Diana Conte

    2014-02-01

    Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.

  1. Brain structural deficits and working memory fMRI dysfunction in young adults who were diagnosed with ADHD in adolescence.

    PubMed

    Roman-Urrestarazu, Andres; Lindholm, Päivi; Moilanen, Irma; Kiviniemi, Vesa; Miettunen, Jouko; Jääskeläinen, Erika; Mäki, Pirjo; Hurtig, Tuula; Ebeling, Hanna; Barnett, Jennifer H; Nikkinen, Juha; Suckling, John; Jones, Peter B; Veijola, Juha; Murray, Graham K

    2016-05-01

    When adolescents with ADHD enter adulthood, some no longer meet disorder diagnostic criteria but it is unknown if biological and cognitive abnorma lities persist. We tested the hypothesis that people diagnosed with ADHD during adolescence present residual brain abnormalities both in brain structure and in working memory brain function. 83 young adults (aged 20-24 years) from the Northern Finland 1986 Birth Cohort were classified as diagnosed with ADHD in adolescence (adolescence ADHD, n = 49) or a control group (n = 34). Only one patient had received medication for ADHD. T1-weighted brain scans were acquired and processed in a voxel-based analysis using permutation-based statistics. A sub-sample of both groups (ADHD, n = 21; controls n = 23) also performed a Sternberg working memory task whilst acquiring fMRI data. Areas of structural difference were used as a region of interest to evaluate the implications that structural abnormalities found in the ADHD group might have on working memory function. There was lower grey matter volume bilaterally in adolescence ADHD participants in the caudate (p < 0.05 FWE corrected across the whole brain) at age 20-24. Working memory was poorer in adolescence ADHD participants, with associated failure to show normal load-dependent caudate activation. Young adults diagnosed with ADHD in adolescence have structural and functional deficits in the caudate associated with abnormal working memory function. These findings are not secondary to stimulant treatment, and emphasise the importance of taking a wider perspective on ADHD outcomes than simply whether or not a particular patient meets diagnostic criteria at any given point in time.

  2. Age-Related Changes in 1/f Neural Electrophysiological Noise.

    PubMed

    Voytek, Bradley; Kramer, Mark A; Case, John; Lepage, Kyle Q; Tempesta, Zechari R; Knight, Robert T; Gazzaley, Adam

    2015-09-23

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15-53 years) and scalp EEG data from healthy younger (20-30 years) and older (60-70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <-1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. Significance statement: Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise-induced deficits in

  3. Measuring Executive Dysfunction Longitudinally and in Relation to Genetic Burden, Brain Volumetrics, and Depression in Prodromal Huntington Disease

    PubMed Central

    Papp, Kathryn V.; Snyder, Peter J.; Mills, James A.; Duff, Kevin; Westervelt, Holly J.; Long, Jeffrey D.; Lourens, Spencer; Paulsen, Jane S.

    2013-01-01

    Executive dysfunction (ED) is a characteristic of Huntington disease (HD), but its severity and progression is less understood in the prodromal phase, e.g., before gross motor abnormalities. We examined planning and problem-solving abilities using the Towers Task in HD mutation-positive individuals without motor symptoms (n = 781) and controls (n = 212). Participants with greater disease progression (determined using mutation size and current age) performed more slowly and with less accuracy on the Towers Task. Performance accuracy was negatively related to striatal volume while both accuracy and working memory were negatively related to frontal white matter volume. Disease progression at baseline was not associated with longitudinal performance over 4 years. Whereas the baseline findings indicate that ED becomes more prevalent with greater disease progression in prodromal HD and can be quantified using the Towers task, the absence of notable longitudinal findings indicates that the Towers Task exhibits limited sensitivity to cognitive decline in this population. PMID:23246934

  4. Dietary compound score and risk of age-related macular degeneration in the Age-Related Eye Disease Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Because foods provide many nutrients, which may interact with each other to modify risk for multifactorial diseases such as age-related macular degeneration (AMD), we sought to develop a composite scoring system to summarize the combined effect of multiple dietary nutrients on AMD risk. Th...

  5. Cognitive performance and age-related changes in the hippocampal proteome

    PubMed Central

    Freeman, Willard M.; VanGuilder, Heather D.; Bennett, Colleen; Sonntag, William E.

    2008-01-01

    Declining cognitive performance is associated with increasing age, even in the absence of overt pathological processes. We and others have reported that declining cognitive performance is associated with age-related changes in brain glucose utilization, long-term potentiation and paired-pulse facilitation, protein expression, neurotransmitter levels, and trophic factors. However, it is unclear whether these changes are causes or symptoms of the underlying alterations in dendritic and synaptic morphology that occur with age. In this study, we examined the hippocampal proteome for age- and cognition-associated changes in behaviorally stratified young and old rats, using 2-DIGE and MS/MS-MS. Comparison of old cognitively intact with old cognitively impaired animals revealed additional changes that would not have been detected otherwise. Interestingly, not all age-related changes in protein expression were associated with cognitive decline, and distinct differences in protein expression were found when comparing old cognitively intact with old cognitively impaired rats. A large number of protein changes with age were related to the glycolysis/gluconeogenesis pathway. In total, the proteomic changes suggest that age-related alterations act synergistically with other perturbations to result in cognitive decline. This study also demonstrates the importance of examining behaviorally-defined animals in proteomic studies, as comparison of young to old animals regardless of behavioral performance would have failed to detect many cognitive impairment-specific protein expression changes evident when behavioral stratification data was used. PMID:19135133

  6. Orgasmic dysfunction

    MedlinePlus

    Inhibited sexual excitement; Sex - orgasmic dysfunction; Anorgasmia; Sexual dysfunction - orgasmic; Sexual problem - orgasmic ... of knowledge about sexual function Negative feelings about sex (often learned in childhood or teen years) Shyness ...

  7. Mechanisms of age-related macular degeneration and therapeutic opportunities.

    PubMed

    van Lookeren Campagne, Menno; LeCouter, Jennifer; Yaspan, Brian L; Ye, Weilan

    2014-01-01

    As the age of the population increases in many nations, age-related degenerative diseases pose significant socioeconomic challenges. One of the key degenerative diseases that compromise quality of life is age-related macular degeneration (AMD). AMD is a multi-faceted condition that affects the central retina, which ultimately leads to blindness in millions of people worldwide. The pathophysiology and risk factors for AMD are complex, and the symptoms manifest in multiple related but distinct forms. The ability to develop effective treatments for AMD will depend on a thorough understanding of the underlying pathophysiology, risk factors, and driver molecular pathways, as well as the ability to develop useful animal models. This review provides an overview of the aforementioned aspects in AMD.

  8. Neuroanatomy accounts for age-related changes in risk preferences

    PubMed Central

    Grubb, Michael A.; Tymula, Agnieszka; Gilaie-Dotan, Sharon; Glimcher, Paul W.; Levy, Ifat

    2016-01-01

    Many decisions involve uncertainty, or ‘risk', regarding potential outcomes, and substantial empirical evidence has demonstrated that human aging is associated with diminished tolerance for risky rewards. Grey matter volume in a region of right posterior parietal cortex (rPPC) is predictive of preferences for risky rewards in young adults, with less grey matter volume indicating decreased tolerance for risk. That grey matter loss in parietal regions is a part of healthy aging suggests that diminished rPPC grey matter volume may have a role in modulating risk preferences in older adults. Here we report evidence for this hypothesis and show that age-related declines in rPPC grey matter volume better account for age-related changes in risk preferences than does age per se. These results provide a basis for understanding the neural mechanisms that mediate risky choice and a glimpse into the neurodevelopmental dynamics that impact decision-making in an aging population. PMID:27959326

  9. Investigations Into Age-related Changes in the Human Mandible().

    PubMed

    Parr, Nicolette M; Passalacqua, Nicholas V; Skorpinski, Katie

    2017-03-02

    While changes in mandibular shape over time are not widely recognized by skeletal biologists, mandibular remodeling and associated changes in gross morphology may result from a number of causes related to mechanical stress such as antemortem tooth loss, changes in bite force, or alterations of masticatory performance. This study investigated the relationship between age-related changes and antemortem tooth loss in adult humans via dry bone measurements. This study examined 10 standard mandibular measurements as well as individual antemortem tooth loss scores using the Eichner Index from a total of 319 female and male individuals with ages ranging from 16 to 99 years. Results indicate that few mandibular measurements exhibited age-related changes, and most were affected by antemortem tooth loss.

  10. Stem cell transplantation improves aging-related diseases

    PubMed Central

    Ikehara, Susumu; Li, Ming

    2014-01-01

    Aging is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. The number of patients with age-associated diseases such as type 2 diabetes mellitus (T2DM), osteoporosis, Alzheimer's disease (AD), Parkinson's disease, atherosclerosis, and cancer has increased recently. Aging-related diseases are related to a deficiency of the immune system, which results from an aged thymus and bone marrow cells. Intra bone marrow-bone marrow transplantation (IBM-BMT) is a useful method to treat intractable diseases. This review summarizes findings that IBM-BMT can improve and treat aging-related diseases, including T2DM, osteoporosis and AD, in animal models. PMID:25364723

  11. Epigenetics of Aging and Aging-related Disease

    PubMed Central

    2014-01-01

    Aging is associated with a wide range of human disorders, including cancer, diabetes, cardiovascular, and neurodegenerative diseases. Long thought to be an inexorable road toward decline and diseases, aging is in fact remarkably plastic. Such plasticity could be harnessed to approach age-related diseases from a novel perspective. Although many studies have focused on the genes that impact aging, the nongenetic regulation of aging is gaining increasing attention. Specifically, aging is associated with profound epigenetic changes, resulting in alterations of gene expression and disturbances in broad genome architecture and the epigenomic landscape. The potential reversibility of these epigenetic changes that occur as a hallmark of aging offers exciting opportunities to alter the trajectory of age-related diseases. This short review highlights key epigenetic players in the regulation of aging, as well as both future goals and challenges to the utilization of epigenetic strategies to delay and reverse the main diseases of aging. PMID:24833581

  12. Epigenetics of aging and aging-related disease.

    PubMed

    Brunet, Anne; Berger, Shelley L

    2014-06-01

    Aging is associated with a wide range of human disorders, including cancer, diabetes, cardiovascular, and neurodegenerative diseases. Long thought to be an inexorable road toward decline and diseases, aging is in fact remarkably plastic. Such plasticity could be harnessed to approach age-related diseases from a novel perspective. Although many studies have focused on the genes that impact aging, the nongenetic regulation of aging is gaining increasing attention. Specifically, aging is associated with profound epigenetic changes, resulting in alterations of gene expression and disturbances in broad genome architecture and the epigenomic landscape. The potential reversibility of these epigenetic changes that occur as a hallmark of aging offers exciting opportunities to alter the trajectory of age-related diseases. This short review highlights key epigenetic players in the regulation of aging, as well as both future goals and challenges to the utilization of epigenetic strategies to delay and reverse the main diseases of aging.

  13. Ageism, age relations, and garment industry work in Montreal.

    PubMed

    McMullin, J A; Marshall, V W

    2001-02-01

    This study examined the complexities of age relations at work. Garment workers believed that their fate was linked to ageism and that their work experience was discounted by management. Managers wanted to be rid of older workers because they commanded higher wages than younger workers. The issue was cost reduction, and age was implicated unintendedly. Still, managers seemed to use stereotypical images to discourage older workers and they did not organize work routines to facilitate the adaptation of them. Instead, they subcontracted the easy jobs, relying on the experience of the older employees for difficult work while not adapting the workplace. Theoretically, the authors argue that ageism and age discrimination can best be understood through a recognition of the importance of structured age relations and human agency.

  14. Idiom understanding in adulthood: examining age-related differences.

    PubMed

    Hung, Pei-Fang; Nippold, Marilyn A

    2014-03-01

    Idioms are figurative expressions such as hold your horses, kick the bucket, and lend me a hand, which commonly occur in everyday spoken and written language. Hence, the understanding of these expressions is essential for daily communication. In this study, we examined idiom understanding in healthy adults in their 20s, 40s, 60s and 80s (n=30 per group) to determine if performance would show an age-related decline. Participants judged their own familiarity with a set of 20 idioms, explained the meaning of each, described a situation in which the idiom could be used, and selected the appropriate interpretation from a set of choices. There was no evidence of an age-related decline on any tasks. Rather, the 60s group reported greater familiarity and offered better explanations than did the 20s group. Moreover, greater familiarity with idioms was associated with better understanding in adults.

  15. Lipids, Lipoproteins, and Age-Related Macular Degeneration

    PubMed Central

    Ebrahimi, Katayoon B.; Handa, James T.

    2011-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. While excellent treatment has emerged for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. A prominent age-related change is the accumulation of neutral lipid in normal Bruch's membrane (BrM) throughout adulthood and also disease-related BrM accumulations called basal deposits and drusen. AMD lesion formation has thus been conceptualized as sharing mechanisms with atherosclerotic plaque formation, where low-density lipoprotein (LDL) retention within the arterial wall initiates a cascade of pathologic events. However, we do not yet understand how lipoproteins contribute to AMD. This paper explores how systemic and local production of lipoproteins might contribute to the pathogenesis of AMD. PMID:21822496

  16. Age-related changes in intraventricular kinetic energy: a physiological or pathological adaptation?

    PubMed Central

    Wong, James; Chabiniok, Radomir; deVecchi, Adelaide; Dedieu, Nathalie; Sammut, Eva; Schaeffter, Tobias

    2016-01-01

    Aging has important deleterious effects on the cardiovascular system. We sought to compare intraventricular kinetic energy (KE) in healthy subjects of varying ages with subjects with ventricular dysfunction to understand if changes in energetic momentum may predispose individuals to heart failure. Four-dimensional flow MRI was acquired in 35 healthy subjects (age: 1–67 yr) and 10 patients with left ventricular (LV) dysfunction (age: 28–79 yr). Healthy subjects were divided into age quartiles (1st quartile: <16 yr, 2nd quartile: 17–32 yr, 3rd quartile: 33–48 yr, and 4th quartile: 49–64 yr). KE was measured in the LV throughout the cardiac cycle and indexed to ventricular volume. In healthy subjects, two large peaks corresponding to systole and early diastole occurred during the cardiac cycle. A third smaller peak was seen during late diastole in eight adults. Systolic KE (P = 0.182) and ejection fraction (P = 0.921) were preserved through all age groups. Older adults showed a lower early peak diastolic KE compared with children (P < 0.0001) and young adults (P = 0.025). Subjects with LV dysfunction had reduced ejection fraction (P < 0.001) and compared with older healthy adults exhibited a similar early peak diastolic KE (P = 0.142) but with the addition of an elevated KE in diastasis (P = 0.029). In healthy individuals, peak diastolic KE progressively decreases with age, whereas systolic peaks remain constant. Peak diastolic KE in the oldest subjects is comparable to those with LV dysfunction. Unique age-related changes in ventricular diastolic energetics might be physiological or herald subclinical pathology. PMID:26747496

  17. Versatile Functions of Caveolin-1 in Aging-related Diseases

    PubMed Central

    Nguyen, Kim Cuc Thi

    2017-01-01

    Caveolin-1 (Cav-1) is a trans-membrane protein that is a major component of the caveolae structure on the plasma membrane. Cav-1 is involved in the regulation of various cellular processes, including cell growth, differentiation, endocytosis, and in particular it has been implied in cellular senescence. Here we review current knowledge about Cav-1 in cellular signaling and discuss the role of Cav-1 in aging-related diseases. PMID:28184336

  18. Age-related changes in ultra-triathlon performances

    PubMed Central

    2012-01-01

    Background The age-related decline in performance has been investigated in swimmers, runners and triathletes. No study has investigated the age-related performance decline in ultra-triathletes. The purpose of this study was to analyse the age-related declines in swimming, cycling, running and overall race time for both Triple Iron ultra-triathlon (11.4-km swimming, 540-km cycling and 126.6-km running) and Deca Iron ultra-triathlon (38-km swimming, 1,800-km cycling and 420-km running). Methods The age and performances of 423 male Triple Iron ultra-triathletes and 119 male Deca Iron ultra-triathletes were analysed from 1992 to 2010 using regression analyses and ANOVA. Results The mean age of the finishers was significantly higher for Deca Iron ultra-triathletes (41.3 ± 3.1 years) compared to a Triple Iron ultra-triathletes (38.5 ± 3.3 years) (P < 0.05). For both ultra-distances, the fastest overall race times were achieved between the ages of 25 and 44 years. Deca Iron ultra-triathletes achieved the same level of performance in swimming and cycling between 25 and 54 years of age. Conclusions The magnitudes of age-related declines in performance in the three disciplines of ultra-triathlon differ slightly between Triple and Deca Iron ultra-triathlon. Although the ages of Triple Iron ultra-triathletes were on average younger compared to Deca Iron ultra-triathletes, the fastest race times were achieved between 25 and 44 years for both distances. Further studies should investigate the motivation and training of ultra-triathletes to gain better insights in ultra-triathlon performance. PMID:23849327

  19. Complement pathway biomarkers and age-related macular degeneration

    PubMed Central

    Gemenetzi, M; Lotery, A J

    2016-01-01

    In the age-related macular degeneration (AMD) ‘inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration. PMID:26493033

  20. Vitreomacular traction and age-related macular degeneration.

    PubMed

    Green-Simms, Amy E; Bakri, Sophie J

    2011-05-01

    The interaction between the vitreous and the internal limiting membrane of the retina is important in the pathoetiology of numerous ocular disease processes. Recent studies have focused on the vitreo-retinal interface in the context of age-related macular degeneration (AMD), linking vitreo-retinal adhesion to exudative AMD in particular. This review summarizes our knowledge of vitreous anatomy and recent investigations regarding vitreomacular adhesion and AMD.

  1. Supervised Recognition of Age-Related Spanish Temporal Phrases

    NASA Astrophysics Data System (ADS)

    Galicia-Haro, Sofia N.; Gelbukh, Alexander F.

    This paper reports research on temporal expressions shaped by a common temporal expression for a period of years modified by an adverb of time. From a Spanish corpus we found that some of those phrases are age-related expressions. To determine automatically the temporal phrases with such meaning we analyzed a bigger sample obtained from the Internet. We analyzed these examples to define the relevant features to support a learning method. We present some preliminary results when a decision tree is applied.

  2. Dietary Approaches that Delay Age-Related Diseases

    PubMed Central

    Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G

    2006-01-01

    Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2–15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet—disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood

  3. Smoking and age-related macular degeneration: review and update.

    PubMed

    Velilla, Sara; García-Medina, José Javier; García-Layana, Alfredo; Dolz-Marco, Rosa; Pons-Vázquez, Sheila; Pinazo-Durán, M Dolores; Gómez-Ulla, Francisco; Arévalo, J Fernando; Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto

    2013-01-01

    Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health.

  4. Smoking and Age-Related Macular Degeneration: Review and Update

    PubMed Central

    Velilla, Sara; García-Medina, José Javier; García-Layana, Alfredo; Pons-Vázquez, Sheila; Pinazo-Durán, M. Dolores; Gómez-Ulla, Francisco; Arévalo, J. Fernando; Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto

    2013-01-01

    Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health. PMID:24368940

  5. Early detection of age related macular degeneration: current status.

    PubMed

    Schwartz, Roy; Loewenstein, Anat

    2015-01-01

    Early diagnosis and treatment of choroidal neovascularization (CNV), a main cause of severe vision loss in age related macular degeneration (AMD), is crucial in order to preserve vision and the quality of life of patients. This review summarizes current literature on the subject of early detection of CNV, both in the clinic setting and mainly in the patient's home. New technologies are evolving to allow for earlier detection and thus vision preservation in AMD patients.

  6. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-09

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip.

  7. Age-related differences in working memory updating components.

    PubMed

    Linares, Rocío; Bajo, M Teresa; Pelegrina, Santiago

    2016-07-01

    The aim of this study was to investigate possible age-related changes throughout childhood and adolescence in different component processes of working memory updating (WMU): retrieval, transformation, and substitution. A set of numerical WMU tasks was administered to four age groups (8-, 11-, 14-, and 21-year-olds). To isolate the effect of each of the WMU components, participants performed different versions of a task that included different combinations of the WMU components. The results showed an expected overall decrease in response times and an increase in accuracy performance with age. Most important, specific age-related changes in the retrieval component were found, demonstrating that the effect of retrieval on accuracy was larger in children than in adolescents or young adults. These findings indicate that the availability of representations from outside the focus of attention may change with age. Thus, the retrieval component of updating could contribute to the age-related changes observed in the performance of many updating tasks.

  8. The Age-related Positivity Effect and Tobacco Warning Labels

    PubMed Central

    Roberts, Megan E.; Peters, Ellen; Ferketich, Amy K.; Klein, Elizabeth G.

    2016-01-01

    Objectives This study tested whether age is a factor in viewing time for tobacco warning labels. The approach drew from previous work demonstrating an age-related positivity effect, whereby older adults show preferences toward positive and away from negative stimuli. Methods Participants were 295 daily smokers from Appalachian Ohio (age range: 21–68). All participants took part in an eye-tracking paradigm that captured the attention paid to elements of health warning labels in the context of magazine advertisements. Participants also reported on their past cessation attempts and their beliefs about the dangers of smoking. Results Consistent with theory on age-related positivity, older age predi