Science.gov

Sample records for age-related cognitive declines

  1. Consequences of Age-Related Cognitive Declines

    PubMed Central

    Salthouse, Timothy

    2013-01-01

    Adult age differences in a variety of cognitive abilities are well documented, and many of those abilities have been found to be related to success in the workplace and in everyday life. However, increased age is seldom associated with lower levels of real-world functioning, and the reasons for this lab-life discrepancy are not well understood. This article briefly reviews research concerned with relations of age to cognition, relations of cognition to successful functioning outside the laboratory, and relations of age to measures of work performance and achievement. The final section discusses several possible explanations for why there are often little or no consequences of age-related cognitive declines in everyday functioning. PMID:21740223

  2. Veterans have less age-related cognitive decline.

    PubMed

    McLay, R N; Lyketsos, C G

    2000-08-01

    Military service involves exposure to a number of stresses, both psychological and physical. On the other hand, military personnel generally maintain excellent fitness, and veterans have increased access to education and health care. The overall effect on age-related cognitive decline, whether for good or ill, of having served in the armed forces has not been investigated previously. In this study, we examined a diverse population of 208 veterans and 1,216 civilians followed as part of the Epidemiologic Catchment Area Study in 1981, 1982, and 1993 to 1996. We examined change in Mini-Mental State Examination (MMSE) score after a median of 11.5 years. Veterans were found to have significantly less decrease in MMSE scores at follow-up even after sex, race, and education were taken into account. These results suggest an overall positive effect of military service on the rate of age-related cognitive decline. PMID:10957857

  3. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  4. The potential effects of meditation on age-related cognitive decline: a systematic review.

    PubMed

    Gard, Tim; Hölzel, Britta K; Lazar, Sara W

    2014-01-01

    With a rapidly aging society it becomes increasingly important to counter normal age-related decline in cognitive functioning. Growing evidence suggests that cognitive training programs may have the potential to counteract this decline. On the basis of a growing body of research that shows that meditation has positive effects on cognition in younger and middle-aged adults, meditation may be able to offset normal age-related cognitive decline or even enhance cognitive function in older adults. In this paper, we review studies investigating the effects of meditation on age-related cognitive decline. We searched the Web of Science (1900 to present), PsycINFO (1597 to present), MEDLINE (1950 to present), and CABI (1910 to present) to identify original studies investigating the effects of meditation on cognition and cognitive decline in the context of aging. Twelve studies were included in the review, six of which were randomized controlled trials. Studies involved a wide variety of meditation techniques and reported preliminary positive effects on attention, memory, executive function, processing speed, and general cognition. However, most studies had a high risk of bias and small sample sizes. Reported dropout rates were low and compliance rates high. We conclude that meditation interventions for older adults are feasible, and preliminary evidence suggests that meditation can offset age-related cognitive decline.

  5. The potential effects of meditation on age-related cognitive decline: a systematic review

    PubMed Central

    Gard, Tim; Hölzel, Britta K.; Lazar, Sara W.

    2014-01-01

    With a rapidly aging society it becomes increasingly important to counter normal age-related decline in cognitive functioning. Growing evidence suggests that cognitive training programs may have the potential to counteract this decline. On the basis of a growing body of research that shows that meditation has positive effects on cognition in younger and middle-aged adults, meditation may be able to offset normal age-related cognitive decline or even enhance cognitive function in older adults. In this paper, we review studies investigating the effects of meditation on age-related cognitive decline. We searched the Web of Science (1900 to present), PsycINFO (1597 to present), MEDLINE (1950 to present), and CABI (1910 to present) to identify original studies investigating the effects of meditation on cognition and cognitive decline in the context of aging. Twelve studies were included in the review, six of which were randomized controlled trials. Studies involved a wide variety of meditation techniques and reported preliminary positive effects on attention, memory, executive function, processing speed, and general cognition. However, most studies had a high risk of bias and small sample sizes. Reported dropout rates were low and compliance rates high. We conclude that meditation interventions for older adults are feasible, and preliminary evidence suggests that meditation can offset age-related cognitive decline. PMID:24571182

  6. Age-related decline in cognitive control: the role of fluid intelligence and processing speed

    PubMed Central

    2014-01-01

    Background Research on cognitive control suggests an age-related decline in proactive control abilities whereas reactive control seems to remain intact. However, the reason of the differential age effect on cognitive control efficiency is still unclear. This study investigated the potential influence of fluid intelligence and processing speed on the selective age-related decline in proactive control. Eighty young and 80 healthy older adults were included in this study. The participants were submitted to a working memory recognition paradigm, assessing proactive and reactive cognitive control by manipulating the interference level across items. Results Repeated measures ANOVAs and hierarchical linear regressions indicated that the ability to appropriately use cognitive control processes during aging seems to be at least partially affected by the amount of available cognitive resources (assessed by fluid intelligence and processing speed abilities). Conclusions This study highlights the potential role of cognitive resources on the selective age-related decline in proactive control, suggesting the importance of a more exhaustive approach considering the confounding variables during cognitive control assessment. PMID:24401034

  7. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

    PubMed Central

    Pereira, Ana C.; Lambert, Hilary K.; Grossman, Yael S.; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K.; Calakos, Katina; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2014-01-01

    The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  8. Prevention of Age-Related Cognitive Decline: Which Strategies, When, and for Whom?

    PubMed

    Shatenstein, Bryna; Barberger-Gateau, Pascale; Mecocci, Patrizia

    2015-01-01

    Brain aging is characterized by the progressive and gradual accumulation of detrimental changes in structure and function, which increase risk of age-related cognitive decline and dementia. This devastating chronic condition generates a huge social and economic burden and accounts for 11.2% of years of disability. The increase in lifespan has contributed to the increase in dementia prevalence; however, there is currently no curative treatment for most causes of dementias. This paper reviews evidence-based strategies to build, enhance, and preserve cognition over the lifespan by examining approaches that work best, proposing when in the life course they should be implemented, and in which population group(s). Recent work shows a tendency to decreased age-specific prevalence and incidence of cognitive problems and dementia among people born later in the first half of the 20th century, citing higher educational levels, improvements in lifestyle, and better handling of vascular risk factors. This implies that we can target modifiable environmental, lifestyle, and health risk factors to modify the trajectory of cognitive decline before the onset of irreversible dementia. Because building cognitive reserve and prevention of cognitive decline are of critical importance, interventions are needed at every stage of the life course to foster cognitive stimulation, and enable healthy eating habits and physical activity throughout the lifespan. Preventive interventions to decrease and delay cognitive decline and its consequences in old age will also require collaboration and action on the part of policy-makers at the political and social level.

  9. Can psychosocial work conditions protect against age-related cognitive decline? Results from a systematic review.

    PubMed

    Nexø, Mette Andersen; Meng, Annette; Borg, Vilhelm

    2016-07-01

    According to the use it or lose it hypothesis, intellectually stimulating activities postpone age-related cognitive decline. A previous systematic review concluded that a high level of mental work demands and job control protected against cognitive decline. However, it did not distinguish between outcomes that were measured as cognitive function at one point in time or as cognitive decline. Our study aimed to systematically review which psychosocial working conditions were prospectively associated with high levels of cognitive function and/or changes in cognitive function over time. Articles were identified by a systematic literature search (MEDLINE, Web of Science (WOS), PsycNET, Occupational Safety and Health (OSH)). We included only studies with longitudinal designs examining the impact of psychosocial work conditions on outcomes defined as cognitive function or changes in cognitive function. Two independent reviewers compared title-abstract screenings, full-text screenings and quality assessment ratings. Eleven studies were included in the final synthesis and showed that high levels of mental work demands, occupational complexity or job control at one point in time were prospectively associated with higher levels of cognitive function in midlife or late life. However, the evidence to clarify whether these psychosocial factors also affected cognitive decline was insufficient, conflicting or weak. It remains speculative whether job control, job demands or occupational complexity can protect against cognitive decline. Future studies using methodological advancements can reveal whether workers gain more cognitive reserve in midlife and late life than the available evidence currently suggests. The public health implications of a previous review should thereby be redefined accordingly. PMID:27178844

  10. Can psychosocial work conditions protect against age-related cognitive decline? Results from a systematic review

    PubMed Central

    Nexø, Mette Andersen; Meng, Annette; Borg, Vilhelm

    2016-01-01

    According to the use it or lose it hypothesis, intellectually stimulating activities postpone age-related cognitive decline. A previous systematic review concluded that a high level of mental work demands and job control protected against cognitive decline. However, it did not distinguish between outcomes that were measured as cognitive function at one point in time or as cognitive decline. Our study aimed to systematically review which psychosocial working conditions were prospectively associated with high levels of cognitive function and/or changes in cognitive function over time. Articles were identified by a systematic literature search (MEDLINE, Web of Science (WOS), PsycNET, Occupational Safety and Health (OSH)). We included only studies with longitudinal designs examining the impact of psychosocial work conditions on outcomes defined as cognitive function or changes in cognitive function. Two independent reviewers compared title-abstract screenings, full-text screenings and quality assessment ratings. Eleven studies were included in the final synthesis and showed that high levels of mental work demands, occupational complexity or job control at one point in time were prospectively associated with higher levels of cognitive function in midlife or late life. However, the evidence to clarify whether these psychosocial factors also affected cognitive decline was insufficient, conflicting or weak. It remains speculative whether job control, job demands or occupational complexity can protect against cognitive decline. Future studies using methodological advancements can reveal whether workers gain more cognitive reserve in midlife and late life than the available evidence currently suggests. The public health implications of a previous review should thereby be redefined accordingly. PMID:27178844

  11. A novel radial water tread maze tracks age-related cognitive decline in mice

    PubMed Central

    Pettan-Brewer, Christina; Touch, Dylan V.; Wiley, Jesse C.; Hopkins, Heather C.; Rabinovitch, Peter S.; Ladiges, Warren C.

    2013-01-01

    There is currently no treatment and cure for age-related dementia and cognitive impairment in humans. Mice suffer from age-related cognitive decline just as people do, but assessment is challenging because of cumbersome and at times stressful performance tasks. We developed a novel radial water tread (RWT) maze and tested male C57BL/6 (B6) and C57BL/6 x Balb/c F1 (CB6F1) mice at ages 4, 12, 20, and 28 months. B6 mice showed a consistent learning experience and memory retention that gradually decreased with age. CB6F1 mice showed a moderate learning experience in the 4 and 12 month groups, which was not evident in the 20 and 28 month groups. In conclusion, CB6F1 mice showed more severe age-related cognitive impairment compared to B6 mice and might be a suitable model for intervention studies. In addition, the RWT maze has a number of operational advantages compared to currently accepted tasks and can be used to assess age-related cognition impairment in B6 and CB6F1 mice as early as 12 months of age. PMID:24106580

  12. Foreign language training as cognitive therapy for age-related cognitive decline: a hypothesis for future research.

    PubMed

    Antoniou, Mark; Gunasekera, Geshri M; Wong, Patrick C M

    2013-12-01

    Over the next fifty years, the number of older adults is set to reach record levels. Protecting older adults from the age-related effects of cognitive decline is one of the greatest challenges of the next few decades as it places increasing pressure on families, health systems, and economies on a global scale. The disease-state of age-related cognitive decline-Alzheimer's disease and other dementias-hijacks our consciousness and intellectual autonomy. However, there is evidence that cognitively stimulating activities protect against the adverse effects of cognitive decline. Similarly, bilingualism is also considered to be a safeguard. We propose that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. It is recommended that future research should test this potentially fruitful hypothesis. PMID:24051310

  13. Superficial white matter as a novel substrate of age-related cognitive decline.

    PubMed

    Nazeri, Arash; Chakravarty, M Mallar; Rajji, Tarek K; Felsky, Daniel; Rotenberg, David J; Mason, Mikko; Xu, Li N; Lobaugh, Nancy J; Mulsant, Benoit H; Voineskos, Aristotle N

    2015-06-01

    Studies of diffusion tensor imaging have focused mainly on the role of deep white matter tract microstructural abnormalities associated with aging and age-related cognitive decline. However, the potential role of superficial white matter (SWM) in aging and, by extension, cognitive-aging, is less clear. Healthy individuals (n = 141; F/M: 66/75 years) across the adult lifespan (18-86 years) underwent diffusion tensor imaging and a battery of cognitive testing. SWM was assessed via a combination of probabilistic tractography and tract-based spatial statistics (TBSS). A widespread inverse relationship of fractional anisotropy (FA) values in SWM with age was observed. SWM-FA adjacent to the precentral gyri was associated with fine-motor-speed, whereas performance in visuomotor-attention/processing speed correlated with SWM-FA in all 4 lobes of the left-hemisphere and in right parieto-occipital SWM-FA (family-wise error corrected p < 0.05). Independent of deep white matter-FA, right frontal and right occipital SWM-FA-mediated age effects on motor-speed and visuomotor-attention/processing speed, respectively. Altogether, our results indicate that SWM-FA contributes uniquely to age-related cognitive performance, and should be considered as a novel biomarker of cognitive-aging. PMID:25834938

  14. Foreign language training as cognitive therapy for age-related cognitive decline: A hypothesis for future research

    PubMed Central

    Antoniou, Mark; Gunasekera, Geshri; Wong, Patrick C. M.

    2014-01-01

    Over the next fifty years, the number of older adults is set to reach record levels. Protecting older adults from the age-related effects of cognitive decline is one of the greatest challenges of the next few decades as it places increasing pressure on families, health systems, and economies on a global scale. The disease-state of age-related cognitive decline—Alzheimer's disease and other dementias—hijacks our consciousness and intellectual autonomy. However, there is evidence that cognitively stimulating activities protect against the adverse effects of cognitive decline. Similarly, bilingualism is also considered to be a safeguard. We propose that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. It is recommended that future research should test this potentially fruitful hypothesis. PMID:24051310

  15. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline

    PubMed Central

    Deibel, Scott H.; Zelinski, Erin L.; Keeley, Robin J.; Kovalchuk, Olga; McDonald, Robert J.

    2015-01-01

    Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline. PMID:26252151

  16. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline.

    PubMed

    Deibel, Scott H; Zelinski, Erin L; Keeley, Robin J; Kovalchuk, Olga; McDonald, Robert J

    2015-09-15

    Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline. PMID:26252151

  17. Enriched childhood experiences moderate age-related motor and cognitive decline.

    PubMed

    Metzler, Megan J; Saucier, Deborah M; Metz, Gerlinde A

    2013-01-01

    Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks.

  18. Enriched childhood experiences moderate age-related motor and cognitive decline

    PubMed Central

    Metzler, Megan J.; Saucier, Deborah M.; Metz, Gerlinde A.

    2012-01-01

    Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks. PMID:23423702

  19. Age-related cognitive decline during normal aging: the complex effect of education.

    PubMed

    Ardila, A; Ostrosky-Solis, F; Rosselli, M; Gómez, C

    2000-08-01

    The purpose of this study was to further analyze the effects of education on cognitive decline during normal aging. An 806-subject sample was taken from five different Mexican regions. Participants ranged in age from 16 to 85 years. Subjects were grouped into four educational levels: illiterate, 1-4, 5-9, and 10 or more years of education, and four age ranges: 16-30, 31-50, 51-65, and 66-85 years. A brief neuropsychological test battery (NEUROPSI), standardized and normalized in Spanish, was administered. The NEUROPSI test battery includes assessment of orientation, attention, memory, language, visuoperceptual abilities, motor skills, and executive functions. In general, test scores were strongly associated with level of educational, and differences among age groups were smaller than differences among education groups. However, there was an interaction between age and education such as that among illiterate individuals scores of participants 31-50 years old were higher than scores of participants 16-30 years old for over 50% of the tests. Different patterns of interaction among educational groups were distinguished. It was concluded that: (a) The course of life-span changes in cognition are affected by education. Among individuals with a low level of education, best neuropsychological test performance is observed at an older age than among higher-educated subjects; and (b) there is not a single relationship between age-related cognitive decline and education, but different patterns may be found, depending upon the specific cognitive domain. PMID:14590204

  20. Processing Speed, Inhibitory Control, and Working Memory: Three Important Factors to Account for Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Pereiro Rozas, Arturo X.; Juncos-Rabadan, Onesimo; Gonzalez, Maria Soledad Rodriguez

    2008-01-01

    Processing speed, inhibitory control and working memory have been identified as the main possible culprits of age-related cognitive decline. This article describes a study of their interrelationships and dependence on age, including exploration of whether any of them mediates between age and the others. We carried out a LISREL analysis of the…

  1. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  2. Effects of a computer-based cognitive exercise program on age-related cognitive decline.

    PubMed

    Bozoki, Andrea; Radovanovic, Mirjana; Winn, Brian; Heeter, Carrie; Anthony, James C

    2013-01-01

    We developed a 'senior friendly' suite of online 'games for learning' with interactive calibration for increasing difficulty, and evaluated the feasibility of a randomized clinical trial to test the hypothesis that seniors aged 60-80 can improve key aspects of cognitive ability with the aid of such games. Sixty community-dwelling senior volunteers were randomized to either an online game suite designed to train multiple cognitive abilities, or to a control arm with online activities that simulated the look and feel of the games but with low level interactivity and no calibration of difficulty. Study assessment included measures of recruitment, retention and play-time. Cognitive change was measured with a computerized assessment battery administered just before and within two weeks after completion of the six-week intervention. Impediments to feasibility included: limited access to in-home high-speed internet, large variations in the amount of time devoted to game play, and a reluctance to pursue more challenging levels. Overall analysis was negative for assessed performance (transference effects) even though subjects improved on the games themselves. Post hoc analyses suggest that some types of games may have more value than others, but these effects would need to be replicated in a study designed for that purpose. We conclude that a six-week, moderate-intensity computer game-based cognitive intervention can be implemented with high-functioning seniors, but the effect size is relatively small. Our findings are consistent with Owen et al. (2010), but there are open questions about whether more structured, longer duration or more intensive 'games for learning' interventions might yield more substantial cognitive improvement in seniors.

  3. Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness.

    PubMed

    Boot, Walter R; Champion, Michael; Blakely, Daniel P; Wright, Timothy; Souders, Dustin J; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a "brain fitness" game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants' ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why. PMID:23378841

  4. Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness.

    PubMed

    Boot, Walter R; Champion, Michael; Blakely, Daniel P; Wright, Timothy; Souders, Dustin J; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a "brain fitness" game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants' ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why.

  5. Video Games as a Means to Reduce Age-Related Cognitive Decline: Attitudes, Compliance, and Effectiveness

    PubMed Central

    Boot, Walter R.; Champion, Michael; Blakely, Daniel P.; Wright, Timothy; Souders, Dustin J.; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a “brain fitness” game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants’ ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why. PMID:23378841

  6. ROLE OF SOLUBLE EPOXIDE HYDROLASE IN AGE-RELATED VASCULAR COGNITIVE DECLINE

    PubMed Central

    Nelson, Jonathan W.; Young, Jennifer M.; Borkar, Rohan; Woltjer, Randy L.; Quinn, Joseph F.; Silbert, Lisa C.; Grafe, Marjorie R.; Alkayed, Nabil J.

    2014-01-01

    P450 eicosanoids are important regulators of the cerebral microcirculation, but their role in cerebral small vessel disease is unclear. We tested the hypothesis that vascular cognitive impairment (VCI) is linked to reduced cerebral microvascular eicosanoid signaling. We analyzed human brain tissue from individuals formerly enrolled in the Oregon Brain Aging Study, who had a history of cognitive impairment histopathological evidence of microvascular disease. VCI subjects had significantly higher lesion burden both on premortem MRI and postmortem histopathology compared to age- and sex-matched controls. Mass spectrometry-based eicosanoid analysis revealed that 14,15-dihydroxyeicosatrienoic acid (DHET) was elevated in cortical brain tissue from VCI subjects. Immunoreactivity of soluble epoxide hydrolase (sEH), the enzyme responsible for 14,15-DHET formation, was localized to cerebral microvascular endothelium, and was enhanced in microvessels of affected tissue. Finally, we evaluated the genotype frequency of two functional single nucleotide polymorphisms of sEH gene EPHX2 in VCI and control groups. Our findings support a role for sEH and a potential benefit from sEH inhibitors in age-related VCI. PMID:25277097

  7. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline.

    PubMed

    Jonsson, Thorlakur; Atwal, Jasvinder K; Steinberg, Stacy; Snaedal, Jon; Jonsson, Palmi V; Bjornsson, Sigurbjorn; Stefansson, Hreinn; Sulem, Patrick; Gudbjartsson, Daniel; Maloney, Janice; Hoyte, Kwame; Gustafson, Amy; Liu, Yichin; Lu, Yanmei; Bhangale, Tushar; Graham, Robert R; Huttenlocher, Johanna; Bjornsdottir, Gyda; Andreassen, Ole A; Jönsson, Erik G; Palotie, Aarno; Behrens, Timothy W; Magnusson, Olafur T; Kong, Augustine; Thorsteinsdottir, Unnur; Watts, Ryan J; Stefansson, Kari

    2012-08-01

    The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer's disease. The age-specific prevalence of Alzheimer's disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90 (ref. 3). Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer's disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer's disease and cognitive decline in the elderly without Alzheimer's disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer's disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer's disease, the two may be mediated through the same or similar mechanisms.

  8. Impact of the hypothalamic-pituitary-adrenal/gonadal axes on trajectory of age-related cognitive decline.

    PubMed

    Conrad, Cheryl D; Bimonte-Nelson, Heather A

    2010-01-01

    Life expectancies have increased substantially in the last century, dramatically amplifying the proportion of individuals who will reach old age. As individuals age, cognitive ability declines, although the rate of decline differs amongst the forms of memory domains and for different individuals. Memory domains especially impacted by aging are declarative and spatial memories. The hippocampus facilitates the formation of declarative and spatial memories. Notably, the hippocampus is particularly vulnerable to aging. Genetic predisposition and lifetime experiences and exposures contribute to the aging process, brain changes and subsequent cognitive outcomes. In this review, two factors to which an individual is exposed, the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis, will be considered regarding the impact of age on hippocampal-dependent function. Spatial memory can be affected by cumulative exposure to chronic stress via glucocorticoids, released from the HPA axis, and from gonadal steroids (estrogens, progesterone and androgens) and gonadotrophins, released from the HPG axis. Additionally, this review will discuss how these hormones impact age-related hippocampal function. We hypothesize that lifetime experiences and exposure to these hormones contribute to the cognitive makeup of the aged individual, and contribute to the heterogeneous aged population that includes individuals with cognitive abilities as astute as their younger counterparts, as well as individuals with severe cognitive decline or neurodegenerative disease.

  9. Is It Possible to Delay or Prevent Age-Related Cognitive Decline?

    PubMed

    Michel, Jean-Pierre

    2016-09-01

    Already in the 90s, Khachaturian stated that postponing dementia onset by five years would decrease the prevalence of the late onset dementia by 50%. After two decades of lack of success in dementia drug discovery and development, and knowing that worldwide, currently 36 million patients have been diagnosed with Alzheimer's disease, a number that will double by 2030 and triple by 2050, the World Health Organization and the Alzheimer's Disease International declared that prevention of cognitive decline was a 'public health priority.' Numerous longitudinal studies and meta-analyses were conducted to analyze the risk and protective factors for dementia. Among the 93 identified risk factors, seven major modifiable ones should be considered: low education, sedentary lifestyle, midlife obesity, midlife smoking, hypertension, diabetes, and midlife depression. Three other important modifiable risk factors should also be added to this list: midlife hypercholesterolemia, late life atrial fibrillation, and chronic kidney disease. After their identification, numerous authors attempted to establish dementia risk scores; however, the proposed values were not convincing. Identifying the possible interventions, able to either postpone or delay dementia has been an important challenge. Observational studies focused on a single life-style intervention increased the global optimism concerning these possibilities. However, a recent extensive literature review of the randomized control trials (RCTs) conducted before 2014 yielded negative results. The first results of RCTs of multimodal interventions (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, Multidomain Alzheimer Prevention Study, and Prediva) brought more optimism. Lastly, interventions targeting compounds of beta amyloid started in 2012 and no results have yet been published.

  10. Is It Possible to Delay or Prevent Age-Related Cognitive Decline?

    PubMed Central

    2016-01-01

    Already in the 90s, Khachaturian stated that postponing dementia onset by five years would decrease the prevalence of the late onset dementia by 50%. After two decades of lack of success in dementia drug discovery and development, and knowing that worldwide, currently 36 million patients have been diagnosed with Alzheimer's disease, a number that will double by 2030 and triple by 2050, the World Health Organization and the Alzheimer's Disease International declared that prevention of cognitive decline was a 'public health priority.' Numerous longitudinal studies and meta-analyses were conducted to analyze the risk and protective factors for dementia. Among the 93 identified risk factors, seven major modifiable ones should be considered: low education, sedentary lifestyle, midlife obesity, midlife smoking, hypertension, diabetes, and midlife depression. Three other important modifiable risk factors should also be added to this list: midlife hypercholesterolemia, late life atrial fibrillation, and chronic kidney disease. After their identification, numerous authors attempted to establish dementia risk scores; however, the proposed values were not convincing. Identifying the possible interventions, able to either postpone or delay dementia has been an important challenge. Observational studies focused on a single life-style intervention increased the global optimism concerning these possibilities. However, a recent extensive literature review of the randomized control trials (RCTs) conducted before 2014 yielded negative results. The first results of RCTs of multimodal interventions (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, Multidomain Alzheimer Prevention Study, and Prediva) brought more optimism. Lastly, interventions targeting compounds of beta amyloid started in 2012 and no results have yet been published. PMID:27688858

  11. Is It Possible to Delay or Prevent Age-Related Cognitive Decline?

    PubMed

    Michel, Jean-Pierre

    2016-09-01

    Already in the 90s, Khachaturian stated that postponing dementia onset by five years would decrease the prevalence of the late onset dementia by 50%. After two decades of lack of success in dementia drug discovery and development, and knowing that worldwide, currently 36 million patients have been diagnosed with Alzheimer's disease, a number that will double by 2030 and triple by 2050, the World Health Organization and the Alzheimer's Disease International declared that prevention of cognitive decline was a 'public health priority.' Numerous longitudinal studies and meta-analyses were conducted to analyze the risk and protective factors for dementia. Among the 93 identified risk factors, seven major modifiable ones should be considered: low education, sedentary lifestyle, midlife obesity, midlife smoking, hypertension, diabetes, and midlife depression. Three other important modifiable risk factors should also be added to this list: midlife hypercholesterolemia, late life atrial fibrillation, and chronic kidney disease. After their identification, numerous authors attempted to establish dementia risk scores; however, the proposed values were not convincing. Identifying the possible interventions, able to either postpone or delay dementia has been an important challenge. Observational studies focused on a single life-style intervention increased the global optimism concerning these possibilities. However, a recent extensive literature review of the randomized control trials (RCTs) conducted before 2014 yielded negative results. The first results of RCTs of multimodal interventions (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, Multidomain Alzheimer Prevention Study, and Prediva) brought more optimism. Lastly, interventions targeting compounds of beta amyloid started in 2012 and no results have yet been published. PMID:27688858

  12. Is It Possible to Delay or Prevent Age-Related Cognitive Decline?

    PubMed Central

    2016-01-01

    Already in the 90s, Khachaturian stated that postponing dementia onset by five years would decrease the prevalence of the late onset dementia by 50%. After two decades of lack of success in dementia drug discovery and development, and knowing that worldwide, currently 36 million patients have been diagnosed with Alzheimer's disease, a number that will double by 2030 and triple by 2050, the World Health Organization and the Alzheimer's Disease International declared that prevention of cognitive decline was a 'public health priority.' Numerous longitudinal studies and meta-analyses were conducted to analyze the risk and protective factors for dementia. Among the 93 identified risk factors, seven major modifiable ones should be considered: low education, sedentary lifestyle, midlife obesity, midlife smoking, hypertension, diabetes, and midlife depression. Three other important modifiable risk factors should also be added to this list: midlife hypercholesterolemia, late life atrial fibrillation, and chronic kidney disease. After their identification, numerous authors attempted to establish dementia risk scores; however, the proposed values were not convincing. Identifying the possible interventions, able to either postpone or delay dementia has been an important challenge. Observational studies focused on a single life-style intervention increased the global optimism concerning these possibilities. However, a recent extensive literature review of the randomized control trials (RCTs) conducted before 2014 yielded negative results. The first results of RCTs of multimodal interventions (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, Multidomain Alzheimer Prevention Study, and Prediva) brought more optimism. Lastly, interventions targeting compounds of beta amyloid started in 2012 and no results have yet been published.

  13. Computer Simulations of Loss of Organization of Neurons as a Model for Age-related Cognitive Decline

    NASA Astrophysics Data System (ADS)

    Cruz, Luis; Fengometidis, Elene; Jones, Frank; Jampani, Srinivas

    2011-03-01

    In normal aging, brains suffer from progressive cognitive decline not linked with loss of neurons common in neurodegenerative disorders such as Alzheimer's disease. However, in some brain areas neurons have lost positional organization specifically within microcolumns: arrays of interconnected neurons which may constitute fundamental computational units in the brain. This age-related loss of organization, likely a result of micron-sized random displacements in neuronal positions, is hypothesized to be a by-product of the loss of support from the surrounding medium, including dendrites. Using a dynamical model applied to virtual 3D representation of neuronal arrangements, that previously showed loss of organization in brains of cognitively tested rhesus monkeys, the relationship between these displacements and changes to the surrounding dendrite network are presented. The consequences of these displacements on the structure of the dendritic network, with possible disruptions in signal synchrony important to cognitive function, are discussed. NIH R01AG021133.

  14. Age-Related Decline in Brain Resources Modulates Genetic Effects on Cognitive Functioning

    PubMed Central

    Lindenberger, Ulman; Nagel, Irene E.; Chicherio, Christian; Li, Shu-Chen; Heekeren, Hauke R.; Bäckman, Lars

    2008-01-01

    Individual differences in cognitive performance increase from early to late adulthood, likely reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and anatomical brain resources in normal aging modulate the effects of common genetic variations on cognitive functioning. Our hypothesis is based on the assumption that the function relating brain resources to cognition is nonlinear, so that genetic differences exert increasingly large effects on cognition as resources recede from high to medium levels in the course of aging. Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008), who reported that the effects of the Catechol-O-Methyltransferase (COMT) gene on cognitive performance are magnified in old age and interacted with the Brain-Derived Neurotrophic Factor (BDNF) gene. We conclude that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to other polymorphisms are discussed. (150 of 150 words) PMID:19225597

  15. Age-Related Decline in Cognitive Pain Modulation Induced by Distraction: Evidence From Event-Related Potentials.

    PubMed

    Zhou, Shu; Després, Olivier; Pebayle, Thierry; Dufour, André

    2015-09-01

    Distraction is known to reduce perceived pain but not always efficiently. Overlapping cognitive resources play a role in both pain processing and executive functions. We hypothesized that with aging, the analgesic effects of cognitive modulation induced by distraction would be reduced as a result of functional decline of frontal networks. Twenty-eight elderly and 28 young participants performed a tonic heat pain test with and without distraction (P + D vs P condition), and 2 executive tasks involving the frontal network (1-back [working memory] and go/no-go [response inhibition]), during which event-related potentials were recorded. A significant age-related difference in modulatory effect was observed during the pain-distraction test, with the older group reporting higher pain perception than the younger group during the P + D than during the P condition. Greater brain activity of early processes (P2 component) in both go/no-go and 1-back tasks correlated with less perceived pain during distraction in younger participants. For later processes, more cognitive control and attentional resources (increased N2 and P3 amplitude) needed for working memory processes were associated with greater pain perception in the older group. Inhibition processes were related to conscious distraction estimation in both groups. These findings indicate that cognitive processes subtended by resources in the frontal network, particularly working memory processes, are elicited more in elderly than in younger individuals for pain tolerance when an irrelevant task is performed simultaneously. Perspective: This study suggests that age-related declines in pain modulation are caused by functional degeneration of frontal cerebral networks, which may contribute to a higher prevalence of chronic pain. Analyzing the impact of frontal network function on pain modulation may assist in the development of more effective targeted treatment plans. PMID:26080043

  16. A critical review of Vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease

    PubMed Central

    Harrison, Fiona E

    2013-01-01

    Antioxidants in the diet have long been thought to confer some level of protection against the oxidative damage that is involved in the pathology of Alzheimer’s disease as well as general cognitive decline in normal aging. Nevertheless, support for this hypothesis in the literature is equivocal. In the case of vitamin C (ascorbic acid) in particular, lack of consideration of some of the specific features of vitamin C metabolism has led to studies in which classification of participants according to vitamin C status is inaccurate, and the absence of critical information precludes the drawing of appropriate conclusions. Vitamin C levels in plasma are not always reported, and estimated daily intake from food diaries may not be accurate or reflect actual plasma values. The ability to transport ingested vitamin C from the intestines into blood is limited by the saturable sodium-dependent vitamin C transporter (SVCT1) and thus very high intakes, and the use of supplements are often erroneously considered to be of greater benefit that they really are. The current review documents differences among the studies in terms of vitamin C status of participants. Overall, there is a large body of evidence that maintaining healthy vitamin C levels can have a protective function against age-related cognitive decline and Alzheimer’s disease, but avoiding vitamin C deficiency is likely to be more beneficial than taking supplements on top of a normal, healthy diet. PMID:22366772

  17. Age-Related Declines in General Cognitive Abilities of Balb/C Mice and General Activity Are Associated with Disparities in Working Memory, Body Weight, and General Activity

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Grossman, Henya; Light, Kenneth; Townsend, David; Kolata, Stefan

    2008-01-01

    A defining characteristic of age-related cognitive decline is a deficit in general cognitive performance. Here we use a testing and analysis regimen that allows us to characterize the general learning abilities of young (3-5 mo old) and aged (19-21 mo old) male and female Balb/C mice. Animals' performance was assessed on a battery of seven diverse…

  18. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    PubMed

    Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.

  19. Over the Hill at 24: Persistent Age-Related Cognitive-Motor Decline in Reaction Times in an Ecologically Valid Video Game Task Begins in Early Adulthood

    PubMed Central

    Thompson, Joseph J.; Blair, Mark R.; Henrey, Andrew J.

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593

  20. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    PubMed

    Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593

  1. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition

    PubMed Central

    Pichora-Fuller, M. Kathleen; Mick, Paul; Reed, Marilyn

    2015-01-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging. PMID:27516713

  2. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition.

    PubMed

    Pichora-Fuller, M Kathleen; Mick, Paul; Reed, Marilyn

    2015-08-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging. PMID:27516713

  3. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition.

    PubMed

    Pichora-Fuller, M Kathleen; Mick, Paul; Reed, Marilyn

    2015-08-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging.

  4. Religiosity is negatively associated with later-life intelligence, but not with age-related cognitive decline.

    PubMed

    Ritchie, Stuart J; Gow, Alan J; Deary, Ian J

    2014-09-01

    A well-replicated finding in the psychological literature is the negative correlation between religiosity and intelligence. However, several studies also conclude that one form of religiosity, church attendance, is protective against later-life cognitive decline. No effects of religious belief per se on cognitive decline have been found, potentially due to the restricted measures of belief used in previous studies. Here, we examined the associations between religiosity, intelligence, and cognitive change in a cohort of individuals (initial n = 550) with high-quality measures of religious belief taken at age 83 and multiple cognitive measures taken in childhood and at four waves between age 79 and 90. We found that religious belief, but not attendance, was negatively related to intelligence. The effect size was smaller than in previous studies of younger participants. Longitudinal analyses showed no effect of either religious belief or attendance on cognitive change either from childhood to old age, or across the ninth decade of life. We discuss differences between our cohort and those in previous studies - including in age and location - that may have led to our non-replication of the association between religious attendance and cognitive decline.

  5. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions

    PubMed Central

    De Oliveira, Thaís Cristina Galdino; Soares, Fernanda Cabral; De Macedo, Liliane Dias E Dias; Diniz, Domingos Luiz Wanderley Picanço; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2014-01-01

    The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I]) or in communities with their families (noninstitutionalized [NI]). We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE) test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total). Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation), in the middle (after 24 sessions), and at the end (after 48 sessions) of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion, language tests should be routinely adopted in the neuropsychological assessment of elderly subjects, and long-term-care institutions need to include regular sensorimotor, social, and cognitive stimulation as a public health policy for elderly persons. PMID:24600211

  6. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions.

    PubMed

    De Oliveira, Thaís Cristina Galdino; Soares, Fernanda Cabral; De Macedo, Liliane Dias E Dias; Diniz, Domingos Luiz Wanderley Picanço; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2014-01-01

    The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I]) or in communities with their families (noninstitutionalized [NI]). We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE) test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total). Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation), in the middle (after 24 sessions), and at the end (after 48 sessions) of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion, language tests should be routinely adopted in the neuropsychological assessment of elderly subjects, and long-term-care institutions need to include regular sensorimotor, social, and cognitive stimulation as a public health policy for elderly persons. PMID:24600211

  7. Age-related cognitive decline and electroencephalogram slowing in Down's syndrome as a model of Alzheimer's disease.

    PubMed

    Soininen, H; Partanen, J; Jousmäki, V; Helkala, E L; Vanhanen, M; Majuri, S; Kaski, M; Hartikainen, P; Riekkinen, P

    1993-03-01

    We studied quantitative electroencephalogram and neuropsychological performance in an aging series of 31 patients with Down's syndrome and compared the findings with those of 36 patients with probable Alzheimer's disease and age-matched controls. We found an age-related decline of cortical functions and slowing of the electroencephalogram in Down's syndrome patients aged from 20 to 60 years. Slowing of the electroencephalogram, i.e. the decrease of the peak frequency, was significantly related to Mini-Mental status scores, and visual, praxic and speech functions, as well as memory in the Down patients, similar to the Alzheimer patients. Similar correlations were not demonstrated for young or elderly controls. This study provides neuropsychological and electrophysiological data to suggest that studying Down's syndrome patients of different ages can serve as a model for progression of Alzheimer's disease. PMID:8469312

  8. Age-related changes in synaptic markers and monocyte subsets link the cognitive decline of APPSwe/PS1 mice

    PubMed Central

    Naert, Gaëlle; Rivest, Serge

    2012-01-01

    Alzheimer's disease (AD) is characterized by a progressive memory decline and numerous pathological abnormalities, including amyloid β (Aβ) accumulation in the brain and synaptic dysfunction. Here we wanted to study whether these brain changes were associated with alteration in the population of monocyte subsets since accumulating evidence supports the concept that the innate immune system plays a role in the etiology of this disease. We then determined the immune profile together with expression of genes encoding synaptic proteins and neurotrophins in APPSwe/PS1 mice and their age-matched wild-type (WT) littermates. We found that the progressive cognitive decline and the dramatic decrease in the expression of numerous synaptic markers and neurotrophins correlated with a major defect in the subset of circulating inflammatory monocytes. Indeed the number of CX3CR1lowLy6-ChighCCR2+Gr1+ monocytes remained essentially similar between 5 weeks and 6 months of age in APPSwe/PS1 mice, while these cells significantly increased in 6-month-old WT littermates. Of great interest is that the onset of cognitive decline was closely associated with the accumulation of soluble Aβ, disruption of synaptic activity, alteration in the BDNF system, and a defective production in the subset of CX3CR1lowLy6-ChighCCR2+Gr1+ monocytes. However, these memory impairments can be prevented or restored by boosting the monocytic production, using a short treatment of macrophage colony-stimulating factor (M-CSF). In conclusion, low CCR2+ monocyte production by the hematopoietic system may be a direct biomarker of the cognitive decline in a context of AD. PMID:23125823

  9. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    PubMed

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.

  10. Long-term ginsenoside Rg1 supplementation improves age-related cognitive decline by promoting synaptic plasticity associated protein expression in C57BL/6J mice.

    PubMed

    Yang, Lumeng; Zhang, Jing; Zheng, Kunmu; Shen, Hui; Chen, Xiaochun

    2014-03-01

    In aging individuals, age-related cognitive decline is the most common cause of memory impairment. Among the remedies, ginsenoside Rg1, a major active component of ginseng, is often recommended for its antiaging effects. However, its role in improving cognitive decline during normal aging remains unknown and its molecular mechanism partially understood. This study employed a scheme of Rg1 supplementation for female C57BL/6J mice, which started at the age of 12 months and ended at 24 months, to investigate the effects of Rg1 supplementation on the cognitive performance. We found that Rg1 supplementation improved the performance of aged mice in behavior test and significantly upregulated the expression of synaptic plasticity-associated proteins in hippocampus, including synaptophysin, N-methyl-D-aspartate receptor subunit 1, postsynaptic density-95, and calcium/calmodulin-dependent protein kinase II alpha, via promoting mammalian target of rapamycin pathway activation. These data provide further support for Rg1 treatment of cognitive degeneration during aging.

  11. Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease.

    PubMed

    Dacks, P A; Shineman, D W; Fillit, H M

    2013-03-01

    An NIH State of the Science Conference panel concluded in 2010 that insufficient evidence is available to recommend the use of any primary prevention therapy for Alzheimer's disease or cognitive decline with age. Despite the insufficient evidence, candidate therapies with varying levels of evidence for safety and efficacy are taken by the public and discussed in the media. One example is the long-chain n-3 (omega-3) polyunsaturated fatty acids (n-3 LC-PUFA), DHA and EPA, found in some fish and dietary supplements. With this report, we seek to provide a practical overview and rating of the level and type of available evidence that n-3 LC-PUFA supplements are safe and protective against cognitive aging and Alzheimer's disease, with additional discussion of the evidence for effects on quality of life, vascular aging, and the rate of aging. We discuss available sources, dose, bioavailability, and variables that may impact the response to n-3 LC-PUFA treatment such as baseline n-3 LC-PUFA status, APOE ε4 genotype, depression, and background diet. Lastly, we list ongoing clinical trials and propose next research steps to validate these fatty acids for primary prevention of cognitive aging and dementia. Of particular relevance, epidemiology indicates a higher risk of cognitive decline in people in the lower quartile of n-3 LC-PUFA intake or blood levels but these populations have not been specifically targeted by RCTs. PMID:23459977

  12. Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease.

    PubMed

    Dacks, P A; Shineman, D W; Fillit, H M

    2013-03-01

    An NIH State of the Science Conference panel concluded in 2010 that insufficient evidence is available to recommend the use of any primary prevention therapy for Alzheimer's disease or cognitive decline with age. Despite the insufficient evidence, candidate therapies with varying levels of evidence for safety and efficacy are taken by the public and discussed in the media. One example is the long-chain n-3 (omega-3) polyunsaturated fatty acids (n-3 LC-PUFA), DHA and EPA, found in some fish and dietary supplements. With this report, we seek to provide a practical overview and rating of the level and type of available evidence that n-3 LC-PUFA supplements are safe and protective against cognitive aging and Alzheimer's disease, with additional discussion of the evidence for effects on quality of life, vascular aging, and the rate of aging. We discuss available sources, dose, bioavailability, and variables that may impact the response to n-3 LC-PUFA treatment such as baseline n-3 LC-PUFA status, APOE ε4 genotype, depression, and background diet. Lastly, we list ongoing clinical trials and propose next research steps to validate these fatty acids for primary prevention of cognitive aging and dementia. Of particular relevance, epidemiology indicates a higher risk of cognitive decline in people in the lower quartile of n-3 LC-PUFA intake or blood levels but these populations have not been specifically targeted by RCTs.

  13. Ginkgo biloba extract EGb 761® in the context of current developments in the diagnosis and treatment of age-related cognitive decline and Alzheimer's disease: a research perspective.

    PubMed

    Lautenschlager, Nicola T; Ihl, Ralf; Müller, Walter E

    2012-08-01

    In June 2011 a two-day expert meeting "The Ageing Brain" took place in Amsterdam, The Netherlands. The main aim was to discuss the available preclinical and clinical data on Ginkgo biloba special extract EGb 761® in the context of current developments in the diagnosis and treatment of age-related cognitive decline and Alzheimer's disease. 19 dementia experts covering the disciplines bio- and neurochemistry, gerontology, neurology, pharmacology, and psychiatry from Australia, Asia, Europe and North America reviewed available preclinical and clinical data for EGb 761® and identified core topics for future research. Based on a wide range of preclinical effects demonstrated for Ginkgo biloba, EGb 761® can be conceptualized as a multi-target compound with activity on distinct pathophysiological pathways in Alzheimer's disease (AD) and age-related cognitive decline. While symptomatic efficacy in dementia and mild cognitive impairment (MCI) has been demonstrated, interpretation of data from dementia prevention trials is complicated by important methodological issues. Bridging pre-clinical research and clinical research as well as deciding on suitable study designs for future trials with EGb 761® remain important questions. The participants of the "Ageing Brain" meeting on Ginkgo biloba special extract EGb 761® concluded that there is plenty of promising data, both pre-clinical and clinical, to consider future research with the compound targeting cognitive impairment in old age as a worthwhile activity.

  14. The suprachiasmatic nucleus: age-related decline in biological rhythms.

    PubMed

    Nakamura, Takahiro J; Takasu, Nana N; Nakamura, Wataru

    2016-09-01

    Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging. Furthermore, we have previously observed age-related infertility in female mice, caused by a mismatch between environmental light-dark cycles and the intrinsic, internal biological clocks. In this review, we address regulatory mechanisms underlying circadian rhythms in mammals and summarize recent literature describing the effects of aging on the circadian system.

  15. Ability of university-level education to prevent age-related decline in emotional intelligence

    PubMed Central

    Cabello, Rosario; Navarro Bravo, Beatriz; Latorre, José Miguel; Fernández-Berrocal, Pablo

    2014-01-01

    Numerous studies have suggested that educational history, as a proxy measure of active cognitive reserve, protects against age-related cognitive decline and risk of dementia. Whether educational history also protects against age-related decline in emotional intelligence (EI) is unclear. The present study examined ability EI in 310 healthy adults ranging in age from 18 to 76 years using the Mayer–Salovey–Caruso Emotional Intelligence Test (MSCEIT). We found that older people had lower scores than younger people for total EI and for the EI branches of perceiving, facilitating, and understanding emotions, whereas age was not associated with the EI branch of managing emotions. We also found that educational history protects against this age-related EI decline by mediating the relationship between age and EI. In particular, the EI scores of older adults with a university education were higher than those of older adults with primary or secondary education, and similar to those of younger adults of any education level. These findings suggest that the cognitive reserve hypothesis, which states that individual differences in cognitive processes as a function of lifetime intellectual activities explain differential susceptibility to functional impairment in the presence of age-related changes and brain pathology, applies also to EI, and that education can help preserve cognitive-emotional structures during aging. PMID:24653697

  16. Epigenetic modification of PKMζ rescues aging-related cognitive impairment.

    PubMed

    Chen, Chen; Meng, Shi-Qiu; Xue, Yan-Xue; Han, Ying; Sun, Cheng-Yu; Deng, Jia-Hui; Chen, Na; Bao, Yan-Ping; Zhang, Fei-Long; Cao, Lin-Lin; Zhu, Wei-Guo; Shi, Jie; Song, Wei-Hong; Lu, Lin

    2016-03-01

    Cognition is impacted by aging. However, the mechanisms that underlie aging-associated cognitive impairment are unclear. Here we showed that cognitive decline in aged rats was associated with changes in DNA methylation of protein kinase Mζ (PKMζ) in the prelimbic cortex (PrL). PKMζ is a crucial molecule involved in the maintenance of long-term memory. Using different behavioral models, we confirmed that aged rats exhibited cognitive impairment in memory retention test 24 h after training, and overexpression of PKMζ in the PrL rescued cognitive impairment in aged rats. After fear conditioning, the protein levels of PKMζ and the membrane expression of GluR2 increased in the PrL in young and adult rats but not in aged rats, and the levels of methylated PKMζ DNA in the PrL decreased in all age groups, whereas the levels of unmethylated PKMζ DNA increased only in young and adult rats. We also found that environmentally enriched housing reversed the hypermethylation of PKMζ and restored cognitive performance in aged rats. Inactivation of PKMζ prevented the potentiating effects of environmental enrichment on memory retention in aged rats. These results indicated that PKMζ might be a potential target for the treatment of aging-related cognitive impairment, suggesting a potential therapeutic avenue.

  17. Epigenetic modification of PKMζ rescues aging-related cognitive impairment

    PubMed Central

    Chen, Chen; Meng, Shi-Qiu; Xue, Yan-Xue; Han, Ying; Sun, Cheng-Yu; Deng, Jia-Hui; Chen, Na; Bao, Yan-Ping; Zhang, Fei-Long; Cao, Lin-Lin; Zhu, Wei-Guo; Shi, Jie; Song, Wei-Hong; Lu, Lin

    2016-01-01

    Cognition is impacted by aging. However, the mechanisms that underlie aging-associated cognitive impairment are unclear. Here we showed that cognitive decline in aged rats was associated with changes in DNA methylation of protein kinase Mζ (PKMζ) in the prelimbic cortex (PrL). PKMζ is a crucial molecule involved in the maintenance of long-term memory. Using different behavioral models, we confirmed that aged rats exhibited cognitive impairment in memory retention test 24 h after training, and overexpression of PKMζ in the PrL rescued cognitive impairment in aged rats. After fear conditioning, the protein levels of PKMζ and the membrane expression of GluR2 increased in the PrL in young and adult rats but not in aged rats, and the levels of methylated PKMζ DNA in the PrL decreased in all age groups, whereas the levels of unmethylated PKMζ DNA increased only in young and adult rats. We also found that environmentally enriched housing reversed the hypermethylation of PKMζ and restored cognitive performance in aged rats. Inactivation of PKMζ prevented the potentiating effects of environmental enrichment on memory retention in aged rats. These results indicated that PKMζ might be a potential target for the treatment of aging-related cognitive impairment, suggesting a potential therapeutic avenue. PMID:26926225

  18. Shared and Unique Genetic and Environmental Influences on Aging-Related Changes in Multiple Cognitive Abilities

    ERIC Educational Resources Information Center

    Tucker-Drob, Elliot M.; Reynolds, Chandra A.; Finkel, Deborah; Pedersen, Nancy L.

    2014-01-01

    Aging-related declines occur in many different domains of cognitive function during middle and late adulthood. However, whether a global dimension underlies individual differences in changes in different domains of cognition and whether global genetic influences on cognitive changes exist is less clear. We addressed these issues by applying…

  19. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    PubMed

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  20. Age-related decline in global form suppression.

    PubMed

    Wiegand, Iris; Finke, Kathrin; Töllner, Thomas; Starman, Kornelija; Müller, Hermann J; Conci, Markus

    2015-12-01

    Visual selection of illusory 'Kanizsa' figures, an assembly of local elements that induce the percept of a whole object, is facilitated relative to configurations composed of the same local elements that do not induce a global form--an instance of 'global precedence' in visual processing. Selective attention, i.e., the ability to focus on relevant and ignore irrelevant information, declines with increasing age; however, how this deficit affects selection of global vs. local configurations remains unknown. On this background, the present study examined for age-related differences in a global-local task requiring selection of either a 'global' Kanizsa- or a 'local' non-Kanizsa configuration (in the presence of the respectively other configuration) by analyzing event-related lateralizations (ERLs). Behaviorally, older participants showed a more pronounced global-precedence effect. Electrophysiologically, this effect was accompanied by an early (150-225 ms) 'positivity posterior contralateral' (PPC), which was elicited for older, but not younger, participants, when the target was a non-Kanizsa configuration and the Kanizsa figure a distractor (rather than vice versa). In addition, timing differences in the subsequent (250-500 ms) posterior contralateral negativity (PCN) indicated that attentional resources were allocated faster to Kanizsa, as compared to non-Kanizsa, targets in both age groups, while the allocation of spatial attention seemed to be generally delayed in older relative to younger age. Our results suggest that the enhanced global-local asymmetry in the older age group originated from less effective suppression of global distracter forms on early processing stages--indicative of older observers having difficulties with disengaging from a global default selection mode and switching to the required local state of attentional resolution. PMID:26498865

  1. Age-related decline of precision and binding in visual working memory.

    PubMed

    Peich, Muy-Cheng; Husain, Masud; Bays, Paul M

    2013-09-01

    Working memory declines with normal aging, but the nature of this impairment is debated. Studies based on detecting changes to arrays of visual objects have identified two possible components to age-related decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations (bindings) between individual object features. However, some investigations have reported intact binding with aging, and specific deficits arising only in Alzheimer's disease. Here, using a recently developed continuous measure of recall fidelity, we tested the precision with which adults of different ages could reproduce from memory the orientation and color of a probed array item. The results reveal a further component of cognitive decline: an age-related decrease in the resolution with which visual information can be maintained in working memory. This increase in recall variability with age was strongest under conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older participants were more likely to incorrectly report one of the unprobed items in memory, consistent with an age-related increase in misbinding. These results indicate a systematic decline with age in working memory resources that can be recruited to store visual information. The paradigm presented here provides a sensitive index of both memory resolution and feature binding, with the potential for assessing their modulation by interventions. The findings have implications for understanding the mechanisms underpinning working memory deficits in both health and disease. PMID:23978008

  2. Age-related differences in associative memory: the role of sensory decline.

    PubMed

    Naveh-Benjamin, Moshe; Kilb, Angela

    2014-09-01

    Numerous studies show age-related decline in episodic memory. One of the explanations for this decline points to older adults' deficit in associative memory, reflecting the difficulties they have in binding features of episodes into cohesive entities and retrieving these bindings. Here, we evaluate the degree to which this deficit may be mediated by sensory loss associated with increased age. In 2 experiments, young adults studied word pairs that were degraded at encoding either visually (Experiment 1) or auditorily (Experiment 2). We then tested their memory for both the component words and the associations with recognition tests. For both experiments, young adults under nondegraded conditions showed an advantage in associative over item memory, relative to a group of older adults. In contrast, under perceptually degraded conditions younger adults performed similarly to the older adults who were tested under nondegraded conditions. More specifically, under perceptual degradation, young adults' associative memory declined and their component memory improved somewhat, resulting in an associative deficit, similar to that shown by older adults. This evidence is consistent with a sensory acuity decline in old age being one mediator in the associative deficit of older adults. These results broaden our understanding of age-related memory changes and how sensory and cognitive processes interact to shape these changes. The theoretical implications of these results are discussed with respect to mechanisms underlying age-related changes in episodic memory and resource tradeoffs in the encoding of component and associative memory.

  3. Age-related decline in emotional prosody discrimination: acoustic correlates.

    PubMed

    Mitchell, Rachel L C; Kingston, Rachel A

    2014-01-01

    It is now accepted that older adults have difficulty recognizing prosodic emotion cues, but it is not clear at what processing stage this ability breaks down. We manipulated the acoustic characteristics of tones in pitch, amplitude, and duration discrimination tasks to assess whether impaired basic auditory perception coexisted with our previously demonstrated age-related prosodic emotion perception impairment. It was found that pitch perception was particularly impaired in older adults, and that it displayed the strongest correlation with prosodic emotion discrimination. We conclude that an important cause of age-related impairment in prosodic emotion comprehension exists at the fundamental sensory level of processing.

  4. Mechanisms of age-related decline in memory search across the adult life span.

    PubMed

    Hills, Thomas T; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R

    2013-12-01

    Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis). We investigated these 3 hypotheses by formally modeling the semantic recall patterns of 185 adults between 27 to 99 years of age in the animal fluency task (Thurstone, 1938). The results indicate that people switch between global frequency-based retrieval cues and local item-based retrieval cues to navigate their semantic memory. Contrary to the global slowing hypothesis that predicts no qualitative differences in dynamic search processes and the cluster-switching hypothesis that predicts reduced switching between retrieval cues, the results indicate that as people age, they tend to switch more often between local and global cues per item recalled, supporting the cue-maintenance hypothesis. Additional support for the cue-maintenance hypothesis is provided by a negative correlation between switching and digit span scores and between switching and total items recalled, which suggests that cognitive control may be involved in cue maintenance and the effective search of memory. Overall, the results are consistent with age-related decline in memory search being a consequence of reduced cognitive control, consistent with models suggesting that working memory is related to goal perseveration and the ability to inhibit distracting information.

  5. Cognitive performance and age-related changes in the hippocampal proteome

    PubMed Central

    Freeman, Willard M.; VanGuilder, Heather D.; Bennett, Colleen; Sonntag, William E.

    2008-01-01

    Declining cognitive performance is associated with increasing age, even in the absence of overt pathological processes. We and others have reported that declining cognitive performance is associated with age-related changes in brain glucose utilization, long-term potentiation and paired-pulse facilitation, protein expression, neurotransmitter levels, and trophic factors. However, it is unclear whether these changes are causes or symptoms of the underlying alterations in dendritic and synaptic morphology that occur with age. In this study, we examined the hippocampal proteome for age- and cognition-associated changes in behaviorally stratified young and old rats, using 2-DIGE and MS/MS-MS. Comparison of old cognitively intact with old cognitively impaired animals revealed additional changes that would not have been detected otherwise. Interestingly, not all age-related changes in protein expression were associated with cognitive decline, and distinct differences in protein expression were found when comparing old cognitively intact with old cognitively impaired rats. A large number of protein changes with age were related to the glycolysis/gluconeogenesis pathway. In total, the proteomic changes suggest that age-related alterations act synergistically with other perturbations to result in cognitive decline. This study also demonstrates the importance of examining behaviorally-defined animals in proteomic studies, as comparison of young to old animals regardless of behavioral performance would have failed to detect many cognitive impairment-specific protein expression changes evident when behavioral stratification data was used. PMID:19135133

  6. Alzheimer’s Disease and Age-Related Memory Decline (Preclinical)

    PubMed Central

    Terry, Alvin V.; Callahan, Patrick M.; Hall, Brandon; Webster, Scott J.

    2011-01-01

    An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer’s disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as “Mild Cognitive Impairment” (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD, MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy, adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory

  7. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline.

    PubMed

    Müller, Nils C J; Genzel, Lisa; Konrad, Boris N; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel; Dresler, Martin

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience-in our case piano skills-increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  8. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline

    PubMed Central

    Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  9. [Diabetes mellitus and cognitive decline].

    PubMed

    Iglseder, Bernhard

    2011-11-01

    From large epidemiological studies, it has been demonstrated that diabetes mellitus is a risk factor for cognitive decline: Compared to healthy controls, patients with diabetes perform worse on cognitive tests, they experience a pronounced cognitive decline over time and have a higher incidence of dementia. Mechanisms contributing to cognitive decline include vascular damage, negative consequences of hypo- and hyperglycemia, and various dysfunctions in insulin action, summarized as insulin resistance. Possible targets for prevention and treatment of cognitive decline have attracted scientific attention.

  10. Aging-related episodic memory decline: are emotions the key?

    PubMed

    Kinugawa, Kiyoka; Schumm, Sophie; Pollina, Monica; Depre, Marion; Jungbluth, Carolin; Doulazmi, Mohamed; Sebban, Claude; Zlomuzica, Armin; Pietrowsky, Reinhard; Pause, Bettina; Mariani, Jean; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the recollection of personal experiences that contain information on what has happened and also where and when these events took place. Episodic memory function is extremely sensitive to cerebral aging and neurodegerative diseases. We examined episodic memory performance with a novel test in young (N = 17, age: 21-45), middle-aged (N = 16, age: 48-62) and aged but otherwise healthy participants (N = 8, age: 71-83) along with measurements of trait and state anxiety. As expected we found significantly impaired episodic memory performance in the aged group as compared to the young group. The aged group also showed impaired working memory performance as well as significantly decreased levels of trait anxiety. No significant correlation between the total episodic memory and trait or state anxiety scores was found. The present results show an age-dependent episodic memory decline along with lower trait anxiety in the aged group. Yet, it still remains to be determined whether this difference in anxiety is related to the impaired episodic memory performance in the aged group.

  11. Aging-related episodic memory decline: are emotions the key?

    PubMed Central

    Kinugawa, Kiyoka; Schumm, Sophie; Pollina, Monica; Depre, Marion; Jungbluth, Carolin; Doulazmi, Mohamed; Sebban, Claude; Zlomuzica, Armin; Pietrowsky, Reinhard; Pause, Bettina; Mariani, Jean; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the recollection of personal experiences that contain information on what has happened and also where and when these events took place. Episodic memory function is extremely sensitive to cerebral aging and neurodegerative diseases. We examined episodic memory performance with a novel test in young (N = 17, age: 21–45), middle-aged (N = 16, age: 48–62) and aged but otherwise healthy participants (N = 8, age: 71–83) along with measurements of trait and state anxiety. As expected we found significantly impaired episodic memory performance in the aged group as compared to the young group. The aged group also showed impaired working memory performance as well as significantly decreased levels of trait anxiety. No significant correlation between the total episodic memory and trait or state anxiety scores was found. The present results show an age-dependent episodic memory decline along with lower trait anxiety in the aged group. Yet, it still remains to be determined whether this difference in anxiety is related to the impaired episodic memory performance in the aged group. PMID:23378831

  12. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.

    PubMed

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-08-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline.

  13. Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector.

    PubMed

    Poe, B H; Linville, C; Brunso-Bechtold, J

    2001-10-01

    The synapse, as the site of functional neural interaction, has been suggested as a possible substrate for age-related impairment of cognitive ability. Using the physical disector probe with tissue prepared for ultrastructural analysis, we find an age-related decline in the numerical density of presumptive inhibitory synapses in layer 2 of the sensorimotor cortex of the Brown Norway x Fisher 344 rat. This age-related decline in presumptive inhibitory synapses is maintained when the density of synapses is combined with the numerical density of neurons quantified from the same anatomical space to arrive at a ratio of synapses per neuron. The numerical density of these synapses declines between middle-aged (18 months) and old (29 months) animals by 36% whereas numerical density of neurons does not change between these ages, resulting in a decline in the ratio of presumptive inhibitory synapses per neuron in this cortical area. This study demonstrates a deficit in the intrinsic inhibitory circuitry of the aging neocortex, which suggests an anatomical substrate for age-related cognitive impairment.

  14. Experience-Based Mitigation of Age-Related Performance Declines: Evidence from Air Traffic Control

    ERIC Educational Resources Information Center

    Nunes, Ashley; Kramer, Arthur F.

    2009-01-01

    Previous research has found age-related deficits in a variety of cognitive processes. However, some studies have demonstrated age-related sparing on tasks where individuals have substantial experience, often attained over many decades. Here, the authors examined whether decades of experience in a fast-paced demanding profession, air traffic…

  15. Mechanisms of Age-Related Decline in Memory Search across the Adult Life Span

    ERIC Educational Resources Information Center

    Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.

    2013-01-01

    Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis).…

  16. Age-related reduction in microcolumnar structure in area 46 of the rhesus monkey correlates with behavioral decline

    PubMed Central

    Cruz, Luis; Roe, Daniel L.; Urbanc, Brigita; Cabral, Howard; Stanley, H. E.; Rosene, Douglas L.

    2004-01-01

    Many age-related declines in cognitive function are attributed to the prefrontal cortex, area 46 being especially critical. Yet in normal aging, studies indicate that neurons are not lost in area 46, suggesting that impairments result from more subtle processes. One cortical feature that is functionally important, but that has not been examined in normal aging because of a lack of efficient quantitative methods, is the vertical arrangement of neurons into microcolumns, a fundamental computational unit of the cortex. By using a density-map method derived from condensed-matter physics, we quantified microcolumns in area 46 of seven young and seven aged rhesus monkeys that had been cognitively tested. This analysis demonstrated that there is no age-related reduction in total neuronal density or in microcolumn width, length, or periodicity. There was, however, a statistically significant decrease in the strength of microcolumns, indicating microcolumnar disorganization. This reduction in strength was significantly correlated with age-related cognitive decline on tests of spatial working memory and recognition memory independent of the effect of age. Modeling demonstrated that random neuron displacements of ≈30% of a neuronal diameter (<3 μm) produced the observed reduction in strength. Hence, it is possible that, with changes in dendrites and myelinated axons, subtle displacements of neurons occur that alter microcolumnar structure and correlate with age-induced dysfunction. Therefore, quantitative measurement of microcolumnar structure may provide a sensitive morphological method to assay microcolumnar function in aging and other conditions. PMID:15520373

  17. ESTROGENS AND AGE-RELATED MEMORY DECLINE IN RODENTS: WHAT HAVE WE LEARNED AND WHERE DO WE GO FROM HERE?

    PubMed Central

    Frick, Karyn M.

    2009-01-01

    The question of whether ovarian hormone therapy can prevent or reduce age-related memory decline in menopausal women has been the subject of much recent debate. Although numerous studies have demonstrated a beneficial effect of estrogen and/or progestin therapy for certain types of memory in menopausal women, recent clinical trials suggest that such therapy actually increases the risk of cognitive decline and dementia. Because rodent models have been frequently used to examine the effects of age and/or ovarian hormone deficiency on mnemonic function, rodent models of age-related hormone and memory decline may be useful in helping to resolve this issue. This review will focus on evidence suggesting that estradiol modulates memory, particularly hippocampal-dependent memory, in young and aging female rats and mice. Various factors affecting the mnemonic response to estradiol in aging females will be highlighted to illustrate the complications inherent to studies of estrogen therapy in aging females. Avenues for future development of estradiol-based therapies will also be discussed, and it is argued that an approach to drug development based on identifying the molecular mechanisms underlying estrogenic modulation of memory may lead to promising future treatments for reducing age-related mnemonic decline. PMID:18835561

  18. Age-related hearing decline in individuals with and without occupational noise exposure.

    PubMed

    Hederstierna, Christina; Rosenhall, Ulf

    2016-01-01

    This study was conducted to compare the pattern of age-related hearing decline in individuals with and without self-reported previous occupational noise exposure. This was a prospective, population-based, longitudinal study of individuals aged 70-75 years, from an epidemiological investigation, comprising three age cohorts. In total there were 1013 subjects (432 men and 581 women). Participants were tested with pure tone audiometry, and they answered a questionnaire to provide information regarding number of years of occupational noise exposure. There were no significant differences in hearing decline, at any frequency, for those aged 70-75 years between the noise-exposed (N= 62 men, 22 women) and the nonexposed groups (N = 96 men, 158 women). This study supports the additive model of noise-induced hearing loss (NIHL) and age-related hearing loss (ARHL). The concept of different patterns of hearing decline between persons exposed and not exposed to noise could not be verified.

  19. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-02-10

    Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan. PMID:26867182

  20. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-02-10

    Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan.

  1. News of cognitive cure for age-related brain shrinkage is premature: a comment on Burgmans et al. (2009).

    PubMed

    Raz, Naftali; Lindenberger, Ulman

    2010-03-01

    The extant longitudinal literature consistently supports the notion of age-related declines in human brain volume. In a report on a longitudinal cognitive follow-up with cross-sectional brain measurements, Burgmans and colleagues (2009) claim that the extant studies overestimate brain volume declines, presumably due to inclusion of participants with preclinical cognitive pathology. Moreover, the authors of the article assert that such declines are absent among optimally healthy adults who maintain cognitive stability for several years. In this comment accompanied by reanalysis of previously published data, we argue that these claims are incorrect on logical, methodological, and empirical grounds. PMID:20230118

  2. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System.

    PubMed

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-02-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere's disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  3. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    PubMed Central

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  4. Normal cognitive decline or dementia?

    PubMed

    Ebmeier, Klaus P

    2010-01-01

    Cognitive speed, inhibitory function, and memory decline with age while crystallised, particularly verbal, abilities remain largely intact. Poor health, fewer years of education, lower activity, the presence of the APOE E4 allele, and high BP appear to predict faster cognitive decline. Dementia is diagnosed in the presence of objective cognitive impairment, both long- and short-term memory, plus at least one additional (cortical) cognitive deficit, such as dysphasia, dyspraxia, agnosia, or disturbance in executive functioning. In addition, patients have to show significant impairment in social or occupational functioning and a significant decline from previous levels. Both smoking and diabetes increase the risk of all types of dementia, not smoking or even stopping smoking reduces this risk, but better control of type 2 diabetes does not appear to have a measurable effect. Drinking small to moderate amounts of alcohol appears to confer some benefit in ameliorating cognitive decline. There is some evidence that HRT, DHEA, BP lowering in patients without prior cerebrovascular disease, statins, vitamin B6 and procaine are NOT helpful. There is insufficient evidence to establish or refute a beneficial effect for exercise, treatment of type 2 diabetes, omega-3 fatty acids, folic acid with/without vitamin B12, antioxidant vitamins, or ginkgo biloba. Depressive symptoms are more prevalent than dementia. Clinical (major) depression can present with cognitive deterioration, often associated with subjective complaints. Patients with subjective or objective memory impairment, but without functional deterioration, can be referred to the local memory clinic, while demented patients eligible for acetylcholinesterase inhibitor treatment, patients whose diagnosis is unclear and who may need some specific investigations, as well as patients who may benefit from a combined approach with psychotropic drugs and behavioural support should be referred to the local mental health team.

  5. Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution

    PubMed Central

    Sun, Liguang; Guo, Jianfei; Brown, Robert; Amagai, Takashi; Zhao, Yong; Su, Dong-Ming

    2010-01-01

    SUMMARY Age-related thymic involution may be triggered by gene expression changes in lymphohematopoietic and/or non-hematopoietic thymic epithelial cells (TECs). The role of epithelial cell-autonomous gene FoxN1 may be involved in the process, but it is still a puzzle due to shortage of evidence from gradual loss-of-function and exogenous gain-of-function studies. Using our recently generated loxP-floxed-FoxN1(fx) mouse carrying the ubiquitous CreERT (uCreERT) transgene with a low dose of spontaneous activation, which causes gradual FoxN1 deletion with age, we found that the uCreERT-fx/fx mice showed an accelerated age-related thymic involution due to progressive loss of FoxN1+ TECs. The thymic aging phenotypes were clearly observable as early as at 3–6 months of age, resembling the naturally aged (18–22-month-old) murine thymus. By intrathymically supplying aged wild-type mice with exogenous FoxN1-cDNA, thymic involution and defective peripheral CD4+ T-cell function could be partially rescued. The results support the notion that decline of a single epithelial cell-autonomous gene FoxN1 levels with age causes primary deterioration in TECs followed by impairment of the total postnatal thymic microenvironment, and potentially triggers age-related thymic involution in mice. PMID:20156205

  6. Age-related declines in car following performance under simulated fog conditions.

    PubMed

    Ni, Rui; Kang, Julie J; Andersen, George J

    2010-05-01

    The present study examined age-related differences in car following performance when contrast of the driving scene was reduced by simulated fog. Older (mean age of 72.6) and younger (mean age of 21.1) drivers were presented with a car following scenario in a simulator in which a lead vehicle (LV) varied speed according to a sum of three sine wave functions. Drivers were shown an initial following distance of 18 m and were asked to maintain headway distance by controlling speed to match changes in LV speed. Five simulated fog conditions were examined ranging from a no fog condition (contrast of 0.55) to a high fog condition (contrast of 0.03). Average LV speed varied across trials (40, 60, or 80 km/h). The results indicated age-related declines in car following performance for both headway distance and RMS (root mean square) error in matching speed. The greatest decline occurred at moderate speeds under the highest fog density condition, with older drivers maintaining a headway distance that was 21% closer than younger drivers. At higher speeds older drivers maintained a greater headway distance than younger drivers. These results suggest that older drivers may be at greater risk for a collision under high fog density and moderate speeds.

  7. Age-Related Cognitive Deficits In Rhesus Monkeys Mirror Human Deficits on an Automated Test Battery

    PubMed Central

    Nagahara, Alan H.; Bernot, Tim; Tuszynski, Mark H.

    2010-01-01

    Aged non-human primates are a valuable model for gaining insight into mechanisms underlying neural decline with aging and during the course of neurodegenerative disorders. Behavioral studies are a valuable component of aged primate models, but are difficult to perform, time consuming, and often of uncertain relevance to human cognitive measures. We now report findings from an automated cognitive test battery in aged primates using equipment that is identical, and tasks that are similar, to those employed in human aging and Alzheimer’s disease studies. Young (7.1 ± 0.8 years) and aged (23.0 ± 0.5 years) rhesus monkeys underwent testing on a modified version of the Cambridge Automated Neuropsychological Test Battery (CANTAB), examining cognitive performance on separate tasks that sample features of visuospatial learning, spatial working memory, discrimination learning, and skilled motor performance. We find selective cognitive impairments among aged subjects in visuospatial learning and spatial working memory, but not in delayed recall of previously learned discriminations. Aged monkeys also exhibit slower speed in skilled motor function. Thus, aged monkeys behaviorally characterized on a battery of automated tests reveal patterns of age-related cognitive impairment that mirror in quality and severity those of aged humans, and differ fundamentally from more severe patterns of deficits observed in Alzheimer’s Disease. PMID:18760505

  8. A neuropsychological instrument measuring age-related cerebral decline in older drivers: development, reliability, and validity of MedDrive

    PubMed Central

    Vaucher, Paul; Cardoso, Isabel; Veldstra, Janet L.; Herzig, Daniela; Herzog, Michael; Mangin, Patrice; Favrat, Bernard

    2014-01-01

    When facing age-related cerebral decline, older adults are unequally affected by cognitive impairment without us knowing why. To explore underlying mechanisms and find possible solutions to maintain life-space mobility, there is a need for a standardized behavioral test that relates to behaviors in natural environments. The aim of the project described in this paper was therefore to provide a free, reliable, transparent, computer-based instrument capable of detecting age-related changes on visual processing and cortical functions for the purposes of research into human behavior in computational transportation science. After obtaining content validity, exploring psychometric properties of the developed tasks, we derived (Study 1) the scoring method for measuring cerebral decline on 106 older drivers aged ≥70 years attending a driving refresher course organized by the Swiss Automobile Association to test the instrument's validity against on-road driving performance (106 older drivers). We then validated the derived method on a new sample of 182 drivers (Study 2). We then measured the instrument's reliability having 17 healthy, young volunteers repeat all tests included in the instrument five times (Study 3) and explored the instrument's psychophysical underlying functions on 47 older drivers (Study 4). Finally, we tested the instrument's responsiveness to alcohol and effects on performance on a driving simulator in a randomized, double-blinded, placebo, crossover, dose-response, validation trial including 20 healthy, young volunteers (Study 5). The developed instrument revealed good psychometric properties related to processing speed. It was reliable (ICC = 0.853) and showed reasonable association to driving performance (R2 = 0.053), and responded to blood alcohol concentrations of 0.5 g/L (p = 0.008). Our results suggest that MedDrive is capable of detecting age-related changes that affect processing speed. These changes nevertheless do not necessarily affect

  9. Grip strength is potentially an early indicator of age-related decline in mice

    PubMed Central

    Ge, Xuan; Cho, Anthony; Ciol, Marcia A.; Pettan-Brewer, Christina; Snyder, Jessica; Rabinovitch, Peter; Ladiges, Warren

    2016-01-01

    The hand grip test has been correlated with mobility and physical performance in older people and has been shown to be a long-term predictor of mortality. Implementation of new strategies for enhancing healthy aging and maintaining independent living are dependent on predictable preclinical studies. The mouse is used extensively as a model in these types of studies, and the paw grip strength test is similar to the hand grip test for people in that it assesses the ability to grip a device with the paw, is non-invasive and easy to perform, and provides reproducible information. However, little has been reported on how grip strength declines with increasing age in mice. This report shows that grip strength was decreased in C57BL/6 (B6) NIA and C57BL/6×BALB/c F1 (CB6F1) NIA male mice at 12 months of age compared to 8-month-old mice, and continued a robust decline to 20 months and then 28 months of age, when the study was terminated. The decline was not related to lean muscle mass, but extensive age-related carpal and digital exostosis could help explain the decreased grip strength times with increasing age. In conclusion, the grip strength test could be useful in mouse preclinical studies to help make translational predictions on treatment strategies to enhance healthy aging. PMID:27613499

  10. Grip strength is potentially an early indicator of age-related decline in mice.

    PubMed

    Ge, Xuan; Cho, Anthony; Ciol, Marcia A; Pettan-Brewer, Christina; Snyder, Jessica; Rabinovitch, Peter; Ladiges, Warren

    2016-01-01

    The hand grip test has been correlated with mobility and physical performance in older people and has been shown to be a long-term predictor of mortality. Implementation of new strategies for enhancing healthy aging and maintaining independent living are dependent on predictable preclinical studies. The mouse is used extensively as a model in these types of studies, and the paw grip strength test is similar to the hand grip test for people in that it assesses the ability to grip a device with the paw, is non-invasive and easy to perform, and provides reproducible information. However, little has been reported on how grip strength declines with increasing age in mice. This report shows that grip strength was decreased in C57BL/6 (B6) NIA and C57BL/6×BALB/c F1 (CB6F1) NIA male mice at 12 months of age compared to 8-month-old mice, and continued a robust decline to 20 months and then 28 months of age, when the study was terminated. The decline was not related to lean muscle mass, but extensive age-related carpal and digital exostosis could help explain the decreased grip strength times with increasing age. In conclusion, the grip strength test could be useful in mouse preclinical studies to help make translational predictions on treatment strategies to enhance healthy aging. PMID:27613499

  11. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences

    PubMed Central

    Fogerty, Daniel; Humes, Larry E.; Busey, Thomas A.

    2016-01-01

    Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking. PMID:27199737

  12. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences.

    PubMed

    Fogerty, Daniel; Humes, Larry E; Busey, Thomas A

    2016-01-01

    Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking.

  13. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences.

    PubMed

    Fogerty, Daniel; Humes, Larry E; Busey, Thomas A

    2016-01-01

    Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking. PMID:27199737

  14. Dietary Factors and Cognitive Decline

    PubMed Central

    Smith, P.J.; Blumenthal, J.A.

    2015-01-01

    Cognitive decline is an increasingly important public health problem, with more than 100 million adults worldwide projected to develop dementia by 2050. Accordingly, there has been an increased interest in preventive strategies that diminish this risk. It has been recognized that lifestyle factors including dietary patterns, may be important in the prevention of cognitive decline and dementia in later life. Several dietary components have been examined, including antioxidants, fatty acids, and B vitamins. In addition, whole dietary eating plans, including the Mediterranean diet (MeDi), and the Dietary Approaches to Stop Hypertension (DASH) diet, with and without weight loss, have become areas of increasing interest. Although prospective epidemiological studies have observed that antioxidants, fatty acids, and B vitamins are associated with better cognitive functioning, randomized clinical trials have generally failed to confirm the value of any specific dietary component in improving neurocognition. Several randomized trials have examined the impact of changing ‘whole’ diets on cognitive outcomes. The MeDi and DASH diets offer promising preliminary results, but data are limited and more research in this area is needed. PMID:26900574

  15. Age-related decline in metabolic competence of small and medium-sized synaptic mitochondria

    NASA Astrophysics Data System (ADS)

    Bertoni-Freddari, Carlo; Fattoretti, Patrizia; Giorgetti, Belinda; Spazzafumo, Liana; Solazzi, Moreno; Balietti, Marta

    2005-02-01

    A computer-assisted morphometric investigation of cytochrome oxidase (COX) activity, selectively evidenced by preferential diaminobenzidine cytochemistry, has been carried out on synaptic mitochondria in the cerebellar cortex of adult and old rats. The ratio (R) of the area of the cytochemical precipitate (CPA) to the overall area of each mitochondrion (MA) was calculated. R refers to the fraction of the inner mitochondrial membrane actively involved in cellular respiration, thus its quantitative estimation constitutes a reliable index of the mitochondrial metabolic competence (MMC). In adult rats a significant negative correlation between MA and R values was found, while in old animals there was just a positive trend. Paired-quartile comparisons of R values showed a significant age-related decrease in small and medium-sized mitochondria, whereas the lowest and not significant age-related reduction was found in oversized organelles. A paired decrease in number and increase in size is reported to be a general trend for mitochondria during aging, but oversized organelles, according to their low R value, constitute a scanty, though functional, compensating reaction. Thus, the present findings support the argument that the currently reported age-related cellular metabolic decay appears to rely both on the decline in MMC of the small and medium-sized mitochondria, and on their specific reduction in number. This novel result is of biological relevance since it is largely the small and medium-sized mitochondria that are required for the provision of adequate amounts of ATP for actual cellular performance, while the significantly enlarged organelles are thought to represent an intermediate ultrastructural feature in mitochondrial genesis and/or remodelling.

  16. Age-related declines in immune response in a wild mammal are unrelated to immune cell telomere length.

    PubMed

    Beirne, Christopher; Waring, Laura; McDonald, Robbie A; Delahay, Richard; Young, Andrew

    2016-02-24

    Senescence has been hypothesized to arise in part from age-related declines in immune performance, but the patterns and drivers of within-individual age-related changes in immunity remain virtually unexplored in natural populations. Here, using a long-term epidemiological study of wild European badgers (Meles meles), we (i) present evidence of a within-individual age-related decline in the response of a key immune-signalling cytokine, interferon-gamma (IFNγ), to ex vivo lymphocyte stimulation, and (ii) investigate three putative drivers of individual variation in the rate of this decline (sex, disease and immune cell telomere length; ICTL). That the within-individual rate of age-related decline markedly exceeded that at the population level suggests that individuals with weaker IFNγ responses are selectively lost from this population. IFNγ responses appeared to decrease with the progression of bovine tuberculosis infection (independent of age) and were weaker among males than females. However, neither sex nor disease influenced the rate of age-related decline in IFNγ response. Similarly, while ICTL also declines with age, variation in ICTL predicted neither among- nor within-individual variation in IFNγ response. Our findings provide evidence of within-individual age-related declines in immune performance in a wild mammal and highlight the likely complexity of the mechanisms that generate them. PMID:26888036

  17. Age-related declines in immune response in a wild mammal are unrelated to immune cell telomere length

    PubMed Central

    Waring, Laura; McDonald, Robbie A.; Delahay, Richard; Young, Andrew

    2016-01-01

    Senescence has been hypothesized to arise in part from age-related declines in immune performance, but the patterns and drivers of within-individual age-related changes in immunity remain virtually unexplored in natural populations. Here, using a long-term epidemiological study of wild European badgers (Meles meles), we (i) present evidence of a within-individual age-related decline in the response of a key immune-signalling cytokine, interferon-gamma (IFNγ), to ex vivo lymphocyte stimulation, and (ii) investigate three putative drivers of individual variation in the rate of this decline (sex, disease and immune cell telomere length; ICTL). That the within-individual rate of age-related decline markedly exceeded that at the population level suggests that individuals with weaker IFNγ responses are selectively lost from this population. IFNγ responses appeared to decrease with the progression of bovine tuberculosis infection (independent of age) and were weaker among males than females. However, neither sex nor disease influenced the rate of age-related decline in IFNγ response. Similarly, while ICTL also declines with age, variation in ICTL predicted neither among- nor within-individual variation in IFNγ response. Our findings provide evidence of within-individual age-related declines in immune performance in a wild mammal and highlight the likely complexity of the mechanisms that generate them. PMID:26888036

  18. Connecting Age-Related Biological Decline to Frailty and Late-Life Vulnerability.

    PubMed

    Walston, Jeremy D

    2015-01-01

    Frailty is an important construct in aging which allows for the identification of the most vulnerable subset of older adults. At least two conceptual models of frailty have been developed that have in turn facilitated the development of multiple frailty screening tools. This has enabled the study of populations of frail and nonfrail older adults, and facilitated the risk assessment for adverse health outcomes. In addition, using the syndromic approach to frailty, numerous biological hypotheses have been tested, which have identified chronic inflammatory pathway activation, hypothalamic-pituitary-adrenal axis activation, and sympathetic nervous system activity as important in the development of frailty. In addition, age-related molecular changes related to autophagy, mitochondrial decline, apoptosis, senescent cell development, and necroptosis likely contribute to the heterogeneous phenotype of frailty. The recent development of a frail mouse model with chronic inflammatory pathway activation has helped to facilitate further whole organism biological discoveries. The following article attempts to create an understanding of the connections between these age-related biological changes and frailty. PMID:26485518

  19. Age-related decline in bottom-up processing and selective attention in the very old.

    PubMed

    Zhuravleva, Tatyana Y; Alperin, Brittany R; Haring, Anna E; Rentz, Dorene M; Holcomb, Philip J; Daffner, Kirk R

    2014-06-01

    Previous research demonstrating age-related deficits in selective attention have not included old-old adults, an increasingly important group to study. The current investigation compared event-related potentials in 15 young-old (65-79 years old) and 23 old-old (80-99 years old) subjects during a color-selective attention task. Subjects responded to target letters in a specified color (Attend) while ignoring letters in a different color (Ignore) under both low and high loads. There were no group differences in visual acuity, accuracy, reaction time, or latency of early event-related potential components. The old-old group showed a disruption in bottom-up processing, indexed by a substantially diminished posterior N1 (smaller amplitude). They also demonstrated markedly decreased modulation of bottom-up processing based on selected visual features, indexed by the posterior selection negativity (SN), with similar attenuation under both loads. In contrast, there were no group differences in frontally mediated attentional selection, measured by the anterior selection positivity (SP). There was a robust inverse relationship between the size of the SN and SP (the smaller the SN, the larger the SP), which may represent an anteriorly supported compensatory mechanism. In the absence of a decline in top-down modulation indexed by the SP, the diminished SN may reflect age-related degradation of early bottom-up visual processing in old-old adults.

  20. From mind wandering to involuntary retrieval: Age-related differences in spontaneous cognitive processes.

    PubMed

    Maillet, David; Schacter, Daniel L

    2016-01-01

    The majority of studies that have investigated the effects of healthy aging on cognition have focused on age-related differences in voluntary and deliberately engaged cognitive processes. Yet many forms of cognition occur spontaneously, without any deliberate attempt at engaging them. In this article we review studies that have assessed age-related differences in four such types of spontaneous thought processes: mind-wandering, involuntary autobiographical memory, intrusive thoughts, and spontaneous prospective memory retrieval. These studies suggest that older adults exhibit a reduction in frequency of both mind-wandering and involuntary autobiographical memory, whereas findings regarding intrusive thoughts have been more mixed. Additionally, there is some preliminary evidence that spontaneous prospective memory retrieval may be relatively preserved in aging. We consider the roles of age-related differences in cognitive resources, motivation, current concerns and emotional regulation in accounting for these findings. We also consider age-related differences in the neural correlates of spontaneous cognitive processes.

  1. Closed-loop rehabilitation of age-related cognitive disorders.

    PubMed

    Mishra, Jyoti; Gazzaley, Adam

    2014-11-01

    Cognitive deficits are common in older adults, as a result of both the natural aging process and neurodegenerative disease. Although medical advancements have successfully prolonged the human lifespan, the challenge of remediating cognitive aging remains. The authors discuss the current state of cognitive therapeutic interventions and then present the need for development and validation of more powerful neurocognitive therapeutics. They propose that the next generation of interventions be implemented as closed-loop systems that target specific neural processing deficits, incorporate quantitative feedback to the individual and clinician, and are personalized to the individual's neurocognitive capacities using real-time performance-adaptive algorithms. This approach should be multimodal and seamlessly integrate other treatment approaches, including neurofeedback and transcranial electrical stimulation. This novel approach will involve the generation of software that engages the individual in an immersive and enjoyable game-based interface, integrated with advanced biosensing hardware, to maximally harness plasticity and assure adherence. Introducing such next-generation closed-loop neurocognitive therapeutics into the mainstream of our mental health care system will require the combined efforts of clinicians, neuroscientists, bioengineers, software game developers, and industry and policy makers working together to meet the challenges and opportunities of translational neuroscience in the 21st century. PMID:25520029

  2. Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey

    PubMed Central

    Ngwenya, Laura B.; Heyworth, Nadine C.; Shwe, Yamin; Moore, Tara L.; Rosene, Douglas L.

    2015-01-01

    The generation of new neurons in the adult mammalian brain is well-established for the hippocampal dentate gyrus (DG). However, the role of neurogenesis in hippocampal function and cognition, how it changes in aging, and the mechanisms underlying this are yet to be elucidated in the monkey brain. To address this, we investigated adult neurogenesis in the DG of 42 rhesus monkeys (39 cognitively tested) ranging in age from young adult to the elderly. We report here that there is an age-related decline in proliferation and a delayed development of adult neuronal phenotype. Additionally, we show that many of the new neurons survive throughout the lifetime of the animal and may contribute to a modest increase in total neuron number in the granule cell layer of the DG over the adult life span. Lastly, we find that measures of decreased adult neurogenesis are only modestly predictive of age-related cognitive impairment. PMID:26236203

  3. Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey.

    PubMed

    Ngwenya, Laura B; Heyworth, Nadine C; Shwe, Yamin; Moore, Tara L; Rosene, Douglas L

    2015-01-01

    The generation of new neurons in the adult mammalian brain is well-established for the hippocampal dentate gyrus (DG). However, the role of neurogenesis in hippocampal function and cognition, how it changes in aging, and the mechanisms underlying this are yet to be elucidated in the monkey brain. To address this, we investigated adult neurogenesis in the DG of 42 rhesus monkeys (39 cognitively tested) ranging in age from young adult to the elderly. We report here that there is an age-related decline in proliferation and a delayed development of adult neuronal phenotype. Additionally, we show that many of the new neurons survive throughout the lifetime of the animal and may contribute to a modest increase in total neuron number in the granule cell layer of the DG over the adult life span. Lastly, we find that measures of decreased adult neurogenesis are only modestly predictive of age-related cognitive impairment. PMID:26236203

  4. Neural correlates of age-related decline and compensation in visual attention capacity.

    PubMed

    Wiegand, Iris; Töllner, Thomas; Dyrholm, Mads; Müller, Hermann J; Bundesen, Claus; Finke, Kathrin

    2014-09-01

    We identified neural correlates of declined and preserved basic visual attention functions in aging individuals based on Bundesen "Theory of Visual Attention". In an interindividual difference approach, we contrasted electrophysiology of higher- and lower-performing younger and older participants. In both age groups, the same distinct components indexed performance levels of parameters visual processing speed C and visual short-term memory storage capacity K. The posterior N1 marked interindividual differences in C and the contralateral delay activity marked interindividual differences in K. Moreover, both parameters were selectively related to 2 further event-related potential waves in older age. The anterior N1 was reduced for older participants with lower processing speed, indicating that age-related loss of attentional resources slows encoding. An enhanced right-central positivity was found only for older participants with high storage capacity, suggesting compensatory recruitment for retaining visual short-term memory performance. Together, our results demonstrate that attentional capacity in older age depends on both preservation and successful reorganization of the underlying brain circuits.

  5. Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells.

    PubMed

    Rukavina, D; Laskarin, G; Rubesa, G; Strbo, N; Bedenicki, I; Manestar, D; Glavas, M; Christmas, S E; Podack, E R

    1998-10-01

    In this study a flow cytometric technique for detecting cytoplasmic perforin (P) has been used to quantify age-related changes in perforin expression in human peripheral blood lymphocytes (PBL). Proportions of P+ lymphocytes increased after birth, but declined rapidly after the age of 70 years. This was true for both T cells and CD16(+) and CD56(+) natural killer (NK) cells. Children showed in addition to high levels of perforin positive CD8(+) cells a much higher proportion of CD4(+)P+ cells than the other age groups. In elderly individuals there was also a highly significant reduction in mean levels of perforin per cell as compared with all other groups (P < .05 to .001). Adult women had consistently higher mean levels of perforin per cell than adult men for all P+ cell phenotypes. Functional tests clearly showed the deficiency in early spontaneous cytotoxic potential of PBL from elderly persons due to relative P deficiency, which can be corrected by stimulation of cytolytic cells with target cells and interleukin-2 (IL-2). The deficiency in cytolytic activity on the contact with target cells may have implications for antiviral and antitumor immunity in elderly persons.

  6. Nutritional management of older adults with cognitive decline and dementia.

    PubMed

    Ogawa, Sumito

    2014-04-01

    Age-related cognitive decline is a main predictor of disability among elderly people, and with the continued expansion of the aging population and the increase in life expectancy, the prevalence of mild cognitive impairment and dementia represented by Alzheimer's disease (AD), which is a multifactorial neurodegenerative disorder of older adults, have increased. Recent epidemiological and observational studies suggest a relationship exists between lifestyle factors, including nutrition and diet, and cognitive function in aging adults. It is also suggested that malnutrition and nutrient deficiencies are associated with cognitive decline in patients with dementia. There are a variety of nutritional factors, including nutritional status and dietary patterns, that might be associated with cognitive function, and specific micronutrients and dietary components have been suggested to have an association with cognitive function as well. Based on these findings and evidence, evaluation of nutritional state, as well as nutritional intervention, might be able to play a role in the management and prevention of dementia.

  7. Nutritional management of older adults with cognitive decline and dementia.

    PubMed

    Ogawa, Sumito

    2014-04-01

    Age-related cognitive decline is a main predictor of disability among elderly people, and with the continued expansion of the aging population and the increase in life expectancy, the prevalence of mild cognitive impairment and dementia represented by Alzheimer's disease (AD), which is a multifactorial neurodegenerative disorder of older adults, have increased. Recent epidemiological and observational studies suggest a relationship exists between lifestyle factors, including nutrition and diet, and cognitive function in aging adults. It is also suggested that malnutrition and nutrient deficiencies are associated with cognitive decline in patients with dementia. There are a variety of nutritional factors, including nutritional status and dietary patterns, that might be associated with cognitive function, and specific micronutrients and dietary components have been suggested to have an association with cognitive function as well. Based on these findings and evidence, evaluation of nutritional state, as well as nutritional intervention, might be able to play a role in the management and prevention of dementia. PMID:24650061

  8. Age-Related Differences in Functional Connectivity During Cognitive Emotion Regulation

    PubMed Central

    Kensinger, Elizabeth A.

    2014-01-01

    Objectives. Successful emotion regulation partly depends on our capacity to modulate emotional responses through the use of cognitive strategies. Age may affect the strategies employed most often; thus, we examined younger and older adults’ neural network connectivity when employing two different strategies: cognitive reappraisal and selective attention. Method. The current study used psychophysiological interaction analyses to examine functional connectivity with a region of anterior cingulate cortex (ACC) because it is a core part of an emotion regulation network showing relative structural preservation with age. Results. Functional connectivity between ACC and prefrontal cortex (PFC) was greater for reappraisal relative to selective attention and passive viewing conditions for both age groups. For younger adults, ACC was more strongly connected with lateral dorsolateral PFC, ventrolateral PFC, dorsomedial PFC, and posterior cingulate regions during reappraisal. For older adults, stronger connectivity during reappraisal was observed primarily in ventromedial PFC and orbitofrontal cortex. Discussion. Our results suggest that although young and older adults engage PFC networks during regulation, and particularly during reappraisal, the regions within these networks might differ. Additionally, these results clarify that, despite prior evidence for age-related declines in the structure and function of those regions, older adults are able to recruit ACC and PFC regions as part of coherent network during emotion regulation. PMID:25209373

  9. Perioperative Cognitive Decline in the Aging Population

    PubMed Central

    Terrando, Niccolò; Brzezinski, Marek; Degos, Vincent; Eriksson, Lars I.; Kramer, Joel H.; Leung, Jacqueline M.; Miller, Bruce L.; Seeley, William W.; Vacas, Susana; Weiner, Michael W.; Yaffe, Kristine; Young, William L.; Xie, Zhongcong; Maze, Mervyn

    2011-01-01

    Elderly patients who have an acute illness or who undergo surgery often experience cognitive decline. The pathophysiologic mechanisms that cause neurodegeneration resulting in cognitive decline, including protein deposition and neuroinflammation, also play a role in animal models of surgery-induced cognitive decline. With the aging of the population, surgical candidates of advanced age with underlying neurodegeneration are encountered more often, raising concerns that, in patients with this combination, cognitive function will precipitously decline postoperatively. This special article is based on a symposium that the University of California, San Francisco, convened to explore the contributions of surgery and anesthesia to the development of cognitive decline in the aged patient. A road map to further elucidate the mechanisms, diagnosis, risk factors, mitigation, and treatment of postoperative cognitive decline in the elderly is provided. PMID:21878601

  10. Age-Related Declines and Disease-Associated Variation in Immune Cell Telomere Length in a Wild Mammal

    PubMed Central

    Beirne, Christopher; Delahay, Richard; Hares, Michelle; Young, Andrew

    2014-01-01

    Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes (‘immune cells’), stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles). Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations. PMID:25268841

  11. Age-related declines and disease-associated variation in immune cell telomere length in a wild mammal.

    PubMed

    Beirne, Christopher; Delahay, Richard; Hares, Michelle; Young, Andrew

    2014-01-01

    Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes ('immune cells'), stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles). Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations. PMID:25268841

  12. Endothelin-1 vasoconstriction and the age-related decline in endothelium-dependent vasodilatation in men.

    PubMed

    Westby, Christian M; Weil, Brian R; Greiner, Jared J; Stauffer, Brian L; DeSouza, Christopher A

    2011-06-01

    ET (endothelin)-1, a potent vasoconstrictor peptide released by the endothelium, plays an important role in vasomotor regulation and has been linked to diminished endothelial vasodilator capacity in several pathologies associated with human aging, including hypertension, Type 2 diabetes and coronary artery disease. However, it is currently unknown whether the decline in endothelial vasodilatation with advancing age is due to elevated ET-1 vasoconstrictor activity. Accordingly, we tested the hypothesis that the age-related impairment in ACh (acetylcholine)-mediated endothelium-dependent vasodilatation is due, at least in part, to increased ET-1-mediated vasoconstrictor tone. FBF (forearm blood flow) responses to ACh, SNP (sodium nitroprusside) and BQ-123 (ET(A) receptor blocker) were determined in 14 young (age, 25 ± 1 years) and 14 older (age, 61 ± 2 years) healthy non-obese men. Additionally, FBF responses to ACh were determined in the presence of ETA blockade. Vasodilatation to ACh was lower (approx. 25%; P<0.05) in the older men (from 4.9 ± 0.2 to 13.9 ± 0.9 ml·100 ml(-1) of tissue·min(-1)) compared with the young men (4.6 ± 0.3 to 17.2 ± 1.0 ml·100 ml(-1) of tissue·min(-1)). There were no differences in FBF responses to SNP between the young (4.8 ± 0.3 to 18.5 ± 0.3 ml·100 ml(-1) of tissue·min(-1)) and older (5.1 ± 0.3 to 17.3 ± 0.8 ml·100 ml(-1) of tissue·min(-1)) men. In the young men, resting FBF was not significantly altered by BQ-123, whereas, in the older men, FBF increased approx. 25% in response to BQ-123 infusion (P<0.05). Co-infusion of ACh with BQ-123 resulted in an approx. 20% increase in the ACh-induced vasodilatation in older men compared with saline. In contrast, FBF responses to ACh were not significantly altered by ET(A) blockade in the young men. In conclusion, these results demonstrate that ET-1 vasoconstrictor activity contributes, at least in part, to diminished endothelium-dependent vasodilatation in older men.

  13. Age-related differences in cognition across the adult lifespan in autism spectrum disorder.

    PubMed

    Lever, Anne G; Geurts, Hilde M

    2016-06-01

    It is largely unknown how age impacts cognition in autism spectrum disorder (ASD). We investigated whether age-related cognitive differences are similar, reduced or increased across the adult lifespan, examined cognitive strengths and weaknesses, and explored whether objective test performance is related to subjective cognitive challenges. Neuropsychological tests assessing visual and verbal memory, generativity, and theory of mind (ToM), and a self-report measure assessing cognitive failures were administered to 236 matched participants with and without ASD, aged 20-79 years (IQ > 80). Group comparisons revealed that individuals with ASD had higher scores on visual memory, lower scores on generativity and ToM, and similar performance on verbal memory. However, ToM impairments were no longer present in older (50+ years) adults with ASD. Across adulthood, individuals with ASD demonstrated similar age-related effects on verbal memory, generativity, and ToM, while age-related differences were reduced on visual memory. Although adults with ASD reported many cognitive failures, those were not associated with neuropsychological test performance. Hence, while some cognitive abilities (visual and verbal memory) and difficulties (generativity and semantic memory) persist across adulthood in ASD, others become less apparent in old age (ToM). Age-related differences characteristic of typical aging are reduced or parallel, but not increased in individuals with ASD, suggesting that ASD may partially protect against an age-related decrease in cognitive functioning. Despite these findings, adults with ASD experience many cognitive daily challenges, which highlights the need for adequate social support and the importance of further research into this topic, including longitudinal studies. Autism Res 2016, 9: 666-676. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  14. Complement C3-Deficient Mice Fail to Display Age-Related Hippocampal Decline.

    PubMed

    Shi, Qiaoqiao; Colodner, Kenneth J; Matousek, Sarah B; Merry, Katherine; Hong, Soyon; Kenison, Jessica E; Frost, Jeffrey L; Le, Kevin X; Li, Shaomin; Dodart, Jean-Cosme; Caldarone, Barbara J; Stevens, Beth; Lemere, Cynthia A

    2015-09-23

    The complement system is part of the innate immune response responsible for removing pathogens and cellular debris, in addition to helping to refine CNS neuronal connections via microglia-mediated pruning of inappropriate synapses during brain development. However, less is known about the role of complement during normal aging. Here, we studied the role of the central complement component, C3, in synaptic health and aging. We examined behavior as well as electrophysiological, synaptic, and neuronal changes in the brains of C3-deficient male mice (C3 KO) compared with age-, strain-, and gender-matched C57BL/6J (wild-type, WT) control mice at postnatal day 30, 4 months, and 16 months of age. We found the following: (1) region-specific and age-dependent synapse loss in aged WT mice that was not observed in C3 KO mice; (2) age-dependent neuron loss in hippocampal CA3 (but not in CA1) that followed synapse loss in aged WT mice, neither of which were observed in aged C3 KO mice; and (3) significantly enhanced LTP and cognition and less anxiety in aged C3 KO mice compared with aged WT mice. Importantly, CA3 synaptic puncta were similar between WT and C3 KO mice at P30. Together, our results suggest a novel and prominent role for complement protein C3 in mediating aged-related and region-specific changes in synaptic function and plasticity in the aging brain. Significance statement: The complement cascade, part of the innate immune response to remove pathogens, also plays a role in synaptic refinement during brain development by the removal of weak synapses. We investigated whether complement C3, a central component, affects synapse loss during aging. Wild-type (WT) and C3 knock-out (C3 KO) mice were examined at different ages. The mice were similar at 1 month of age. However, with aging, WT mice lost synapses in specific brain regions, especially in hippocampus, an area important for memory, whereas C3 KO mice were protected. Aged C3 KO mice also performed better on

  15. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition

    PubMed Central

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17–88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  16. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition.

    PubMed

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17-88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident.

  17. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition.

    PubMed

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17-88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  18. Atrial Fibrillation, Cognitive Decline And Dementia

    PubMed Central

    Alonso, Alvaro; Arenas de Larriva, Antonio P.

    2016-01-01

    Atrial fibrillation (AF) is a common cardiac arrhythmia. Growing evidence supports a role for AF as a risk factor for cognitive decline and dementia. In this review, we summarize epidemiologic observations linking AF with cognitive outcomes, describe potential mechanisms, and explore the impact of AF treatments on cognitive decline and dementia. Community-based, observational studies show a consistent higher rate of cognitive decline and risk of dementia in persons with AF. These associations are partly due to the increased risk of clinical stroke in AF, but other mechanisms, including incidence of silent cerebral infarcts, microbleeds, and cerebral hypoperfusion, are likely additional contributors. Adequate oral anticoagulation and improved management of the overall cardiovascular risk profile in persons with AF offer the promise of reducing the impact of AF on cognitive decline and dementia. PMID:27547248

  19. Cognitive Abilities Explaining Age-Related Changes in Time Perception of Short and Long Durations

    ERIC Educational Resources Information Center

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2011-01-01

    The current study investigated how the development of cognitive abilities explains the age-related changes in temporal judgment over short and long duration ranges from 0.5 to 30 s. Children (5- and 9-year-olds) as well as adults were given a temporal bisection task with four different duration ranges: a duration range shorter than 1 s, two…

  20. Myelin Breakdown Mediates Age-Related Slowing in Cognitive Processing Speed in Healthy Elderly Men

    ERIC Educational Resources Information Center

    Lu, Po H.; Lee, Grace J.; Tishler, Todd A.; Meghpara, Michael; Thompson, Paul M.; Bartzokis, George

    2013-01-01

    Background: To assess the hypothesis that in a sample of very healthy elderly men selected to minimize risk for Alzheimer's disease (AD) and cerebrovascular disease, myelin breakdown in late-myelinating regions mediates age-related slowing in cognitive processing speed (CPS). Materials and methods: The prefrontal lobe white matter and the genu of…

  1. Age-Related Decline and Diagnostic Performance of More and Less Prevalent Clinical Cases

    ERIC Educational Resources Information Center

    St-Onge, Christina; Landry, Marjolaine; Xhignesse, Marianne; Voyer, Gilles; Tremblay-Lavoie, Stéphanie; Mamede, Sílvia; Schmidt, Henk; Rikers, Remy

    2016-01-01

    Since cognitive abilities have been shown to decrease with age, it is expected that older physicians would not perform as well as their younger counterparts on clinical cases unless their expertise can counteract the cognitive effects of aging. However, studies on the topic have shown contradictory results. This study aimed to further investigate…

  2. Periodontitis and Cognitive Decline in Alzheimer's Disease.

    PubMed

    Ide, Mark; Harris, Marina; Stevens, Annette; Sussams, Rebecca; Hopkins, Viv; Culliford, David; Fuller, James; Ibbett, Paul; Raybould, Rachel; Thomas, Rhodri; Puenter, Ursula; Teeling, Jessica; Perry, V Hugh; Holmes, Clive

    2016-01-01

    Periodontitis is common in the elderly and may become more common in Alzheimer's disease because of a reduced ability to take care of oral hygiene as the disease progresses. Elevated antibodies to periodontal bacteria are associated with an increased systemic pro-inflammatory state. Elsewhere raised serum pro-inflammatory cytokines have been associated with an increased rate of cognitive decline in Alzheimer's disease. We hypothesized that periodontitis would be associated with increased dementia severity and a more rapid cognitive decline in Alzheimer's disease. We aimed to determine if periodontitis in Alzheimer's disease is associated with both increased dementia severity and cognitive decline, and an increased systemic pro inflammatory state. In a six month observational cohort study 60 community dwelling participants with mild to moderate Alzheimer's Disease were cognitively assessed and a blood sample taken for systemic inflammatory markers. Dental health was assessed by a dental hygienist, blind to cognitive outcomes. All assessments were repeated at six months. The presence of periodontitis at baseline was not related to baseline cognitive state but was associated with a six fold increase in the rate of cognitive decline as assessed by the ADAS-cog over a six month follow up period. Periodontitis at baseline was associated with a relative increase in the pro-inflammatory state over the six month follow up period. Our data showed that periodontitis is associated with an increase in cognitive decline in Alzheimer's Disease, independent to baseline cognitive state, which may be mediated through effects on systemic inflammation. PMID:26963387

  3. Periodontitis and Cognitive Decline in Alzheimer's Disease.

    PubMed

    Ide, Mark; Harris, Marina; Stevens, Annette; Sussams, Rebecca; Hopkins, Viv; Culliford, David; Fuller, James; Ibbett, Paul; Raybould, Rachel; Thomas, Rhodri; Puenter, Ursula; Teeling, Jessica; Perry, V Hugh; Holmes, Clive

    2016-01-01

    Periodontitis is common in the elderly and may become more common in Alzheimer's disease because of a reduced ability to take care of oral hygiene as the disease progresses. Elevated antibodies to periodontal bacteria are associated with an increased systemic pro-inflammatory state. Elsewhere raised serum pro-inflammatory cytokines have been associated with an increased rate of cognitive decline in Alzheimer's disease. We hypothesized that periodontitis would be associated with increased dementia severity and a more rapid cognitive decline in Alzheimer's disease. We aimed to determine if periodontitis in Alzheimer's disease is associated with both increased dementia severity and cognitive decline, and an increased systemic pro inflammatory state. In a six month observational cohort study 60 community dwelling participants with mild to moderate Alzheimer's Disease were cognitively assessed and a blood sample taken for systemic inflammatory markers. Dental health was assessed by a dental hygienist, blind to cognitive outcomes. All assessments were repeated at six months. The presence of periodontitis at baseline was not related to baseline cognitive state but was associated with a six fold increase in the rate of cognitive decline as assessed by the ADAS-cog over a six month follow up period. Periodontitis at baseline was associated with a relative increase in the pro-inflammatory state over the six month follow up period. Our data showed that periodontitis is associated with an increase in cognitive decline in Alzheimer's Disease, independent to baseline cognitive state, which may be mediated through effects on systemic inflammation.

  4. Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity.

    PubMed

    Liu, Peiying; Hebrank, Andrew C; Rodrigue, Karen M; Kennedy, Kristen M; Section, Jarren; Park, Denise C; Lu, Hanzhang

    2013-09-01

    BOLD fMRI has provided a wealth of information about the aging brain. A common finding is that posterior regions of the brain manifest an age-related decrease in activation while the anterior regions show an age-related increase. Several neurocognitive models have been proposed to interpret these findings. However, one issue that has not been sufficiently considered to date is that the BOLD signal is based on vascular responses secondary to neural activity. Thus the above findings could be in part due to a vascular change, especially in view of the expected decline of vascular health with age. In the present study, we aim to examine age-related differences in memory-encoding fMRI response in the context of vascular aging. One hundred and thirty healthy subjects ranging from 20 to 89 years old underwent a scene-viewing fMRI task and, in the same session, cerebrovascular reactivity (CVR) was measured in each subject using a CO2-inhalation task. Without accounting for the influence of vascular changes, the task-activated fMRI signal showed the typical age-related decrease in visual cortex and medial temporal lobe (MTL), but manifested an increase in the right inferior frontal gyrus (IFG). In the same individuals, an age-related CVR reduction was observed in all of these regions. We then used a previously proposed normalization approach to calculate a CVR-corrected fMRI signal, which was defined as the uncorrected signal divided by CVR. Based on the CVR-corrected fMRI signal, an age-related increase is now seen in both the left and right sides of IFG; and no brain regions showed a signal decrease with age. We additionally used a model-based approach to examine the fMRI data in the context of CVR, which again suggested an age-related change in the two frontal regions, but not in the visual and MTL regions.

  5. Protective effect of myostatin gene deletion on aging-related muscle metabolic decline.

    PubMed

    Chabi, B; Pauly, M; Carillon, J; Carnac, G; Favier, F B; Fouret, G; Bonafos, B; Vanterpool, F; Vernus, B; Coudray, C; Feillet-Coudray, C; Bonnieu, A; Lacan, D; Koechlin-Ramonatxo, C

    2016-06-01

    While myostatin gene deletion is a promising therapy to fight muscle loss during aging, this approach induces also skeletal muscle metabolic changes such as mitochondrial deficits, redox alteration and increased fatigability. In the present study, we evaluated the effects of aging on these features in aged wild-type (WT) and mstn knockout (KO) mice. Moreover, to determine whether an enriched-antioxidant diet may be useful to prevent age-related disorders, we orally administered to the two genotypes a melon concentrate rich in superoxide dismutase for 12 weeks. We reported that mitochondrial functional abnormalities persisted (decreased state 3 and 4 of respiration; p<0.05) in skeletal muscle from aged KO mice; however, differences with WT mice were attenuated at old age in line with reduced difference on running endurance between the two genotypes. Interestingly, we showed an increase in glutathione levels, associated with lower lipid peroxidation levels in KO muscle. Enriched antioxidant diet reduced the aging-related negative effects on maximal aerobic velocity and running limit time (p<0.05) in both groups, with systemic adaptations on body weight. The redox status and the hypertrophic phenotype appeared to be beneficial to KO mice, mitigating the effect of aging on the skeletal muscle metabolic remodeling.

  6. Can exercise prevent cognitive decline?

    PubMed

    Behrman, Sophie; Ebmeier, Klaus P

    2014-01-01

    As the tolerability of pharmacological agents decreases with age, exercise may be particularly helpful as a possible treatment or stabiliser of mood and cognitive function in older age. Exercise has been most commonly evaluated for the treatment of depression. Exercise interventions designed primarily for treatment of physical conditions in the elderly do appear to confer psychological benefits as well, with reduction in depressive symptoms over the course of treatment. The effects of exercise on reducing depressive symptoms are not dissimilar to the effects of antidepressant drugs and cognitive behaviour therapy. Exercise may be a useful low-tech intervention for people with mild to moderate depression. In particular, exercise may be helpful in the elderly and in patients who have had insufficient response to, or are intolerant of, pharmacotherapy. Mastery of a new skill and positive feedback from others may increase feelings of self-esteem and improve mood. Exercise may distract participants from persistent negative thoughts. Exercise has been shown to improve executive function acutely in adults of all ages. It is possible that dance routines or other exercise regimens requiring some cognitive input may confer additional benefit to cognitive function. Exercise has a moderate effect on the ability of people with dementia to perform activities of daily living and may improve cognitive function. Midlife exercise may also have an impact on later cognitive function. PMID:24617099

  7. Age-Related Declines in the Fidelity of Newly Acquired Category Representations

    ERIC Educational Resources Information Center

    Davis, Tyler; Love, Bradley C.; Maddox, W. Todd

    2012-01-01

    We present a theory suggesting that the ability to build category representations that reflect the nuances of category structures in the environment depends upon clustering mechanisms instantiated in an MTL-PFC-based circuit. Because function in this circuit declines with age, we predict that the ability to build category representations will be…

  8. Association Between Age-Related Decline of Kidney Function and Plasma Malondialdehyde

    PubMed Central

    Chen, Yaqin; Hu, Hui; Liu, Li; Hu, Xiaofei; Wang, Jun; Shi, Wang; Yin, Dazhong

    2012-01-01

    Abstract Oxidative stress is a key factor linked renal function decline with age. However, there is still no large cohort study exploring the potential role of oxidative stress in mild insufficiency of kidney function (MIKF) and chronic kidney disease (CKD) after adjusting for confounding factors. This study tested the hypothesis that oxidative stress, indicated by plasma malondialdehyde (MDA), is associated with the prevalence of MIKF and CKD after controlling the effects of confounding factors. Plasma levels of MDA and serum levels of fasting glucose, cholesterol, triglycerides, creatinine, alanine aminotransferase, and aspartate aminotransferase were analyzed from 2,169 Chinese Han adults. A questionnaire and physical examination were performed to identify and suspect risk factors of renal function decline with age. Kidney function, as indicated by estimated glomerular filtration rate, showed a significant decline with age in both male and female. Although the association between age and plasma MDA levels was nonlinear, MDA was negatively related to kidney function. The multivariate-adjusted odds ratios showed that plasma MDA had a significantly graded relation to the prevalence of MIKF and CKD with or without adjustment for covariates. By comparison with the lowest quartile, individuals with the highest quartile of MDA level had a 99% and 223% increased risk of developing MIKF and CKD, respectively. Further results from multiinteraction analysis demonstrated that plasma MDA may be the mediator linking different covariates with renal function decline. The most striking finding of this study was that oxidative stress, as indicated by plasma MDA levels, is associated with the prevalence of MIKF and/or CKD. Although imposing an increasing burden on the kidney and/or promoting a cyclical process of oxidative stress in the body, high levels of MDA in plasma may link the decline of kidney function with age. PMID:22530729

  9. Age-related decline in ovarian follicle stocks differ between chimpanzees (Pan troglodytes) and humans.

    PubMed

    Cloutier, Christina T; Coxworth, James E; Hawkes, Kristen

    2015-02-01

    Similarity in oldest parturitions in humans and great apes suggests that we maintain ancestral rates of ovarian aging. Consistent with that hypothesis, previous counts of primordial follicles in postmortem ovarian sections from chimpanzees (Pan troglodytes) showed follicle stock decline at the same rate that human stocks decline across the same ages. Here, we correct that finding with a chimpanzee sample more than three times larger than the previous one, which also allows comparison into older ages. Analyses show depletion rates similar until about age 35, but after 35, the human counts continue to fall with age, while the change is much less steep in chimpanzees. This difference implicates likely effects on ovarian dynamics from other physiological systems that are senescing at different rates, and, potentially, different perimenopausal experience for chimpanzees and humans.

  10. Glutamate cysteine ligase and the age-related decline in cellular glutathione: The therapeutic potential of γ-glutamylcysteine.

    PubMed

    Ferguson, Gavin; Bridge, Wallace

    2016-03-01

    A consistent underlying index of aging is a decline in the cellular levels of the tripeptide glutathione (GSH). GSH is an essential thiol antioxidant produced in the cytosol of all cells and plays a key role in protecting against oxidative stress by neutralising free radicals and reactive oxygen species (ROS). The decline in GSH has been associated with changes in the expression and activity of the rate-limiting enzyme glutamate cysteine ligase (GCL), which produces the intermediate dipeptide γ-glutamylcysteine (γ-GC). The molecular mechanisms that affect these age-related changes remain unclear due to the complexity of GCL regulation. Impairment of the transcriptional activity of Nrf2 has been demonstrated to contribute to GCL dysregulation in aged rats. However, considering the complex nature of GCL regulation, relatively little research has been conducted to investigate the age-associated post-transcriptional controls of the enzyme. Defining these unknown mechanisms may inform our understanding of the aetiology of many age-related diseases and assist in formulating appropriate therapeutic strategies. This review focuses on the suitability of treatment with exogenous γ-GC to raise GSH levels by circumventing the age-related dysregulation of the rate-limiting step of GSH, providing promise for future research for the treatment of chronic oxidative stress-related diseases. PMID:26845022

  11. Nutrition, the brain and cognitive decline: insights from epigenetics.

    PubMed

    Dauncey, M J

    2014-11-01

    Nutrition affects the brain throughout life, with profound implications for cognitive decline and dementia. These effects are mediated by changes in expression of multiple genes, and responses to nutrition are in turn affected by individual genetic variability. An important layer of regulation is provided by the epigenome: nutrition is one of the many epigenetic regulators that modify gene expression without changes in DNA sequence. Epigenetic mechanisms are central to brain development, structure and function, and include DNA methylation, histone modifications and non-protein-coding RNAs. They enable cell-specific and age-related gene expression. Although epigenetic events can be highly stable, they can also be reversible, highlighting a critical role for nutrition in prevention and treatment of disease. Moreover, they suggest key mechanisms by which nutrition is involved in the pathogenesis of age-related cognitive decline: many nutrients, foods and diets have both immediate and long-term effects on the epigenome, including energy status, that is, energy intake, physical activity, energy metabolism and related changes in body composition, and micronutrients involved in DNA methylation, for example, folate, vitamins B6 and B12, choline, methionine. Optimal brain function results from highly complex interactions between numerous genetic and environmental factors, including food intake, physical activity, age and stress. Future studies linking nutrition with advances in neuroscience, genomics and epigenomics should provide novel approaches to the prevention of cognitive decline, and treatment of dementia and Alzheimer's disease.

  12. Formaldehyde as a trigger for protein aggregation and potential target for mitigation of age-related, progressive cognitive impairment.

    PubMed

    Su, Tao; Monte, Woodrow C; Hu, Xintian; He, Yingge; He, Rongqiao

    2016-01-01

    Recently, formaldehyde (FA), existing in a number of different cells including neural cells, was found to affect age-related cognitive impairment. Oral administration of methanol (the metabolic precursor of FA) triggers formation of senile plaques (SPs) and Tau hyperphosphorylation in the brains of monkeys with memory decline. Intraperitoneal injection of FA leads to hyperphosphorylation of Tau in wild-type mouse brains and N2a cells through activation of glycogen synthase kinase-3β (GSK-3β). Furthermore, formaldehyde at low concentrations can directly induce Tau aggregation and amyloid β (Aβ) peptide deposits in vitro. Formaldehyde-induced Tau aggregation is implicated in cytotoxicity and neural cell apoptosis. Clarifying how FA triggers Aβ deposits and Tau hyperphosphorlyation will not only improve our understanding of the molecular and cellular mechanisms of age-related cognitive impairment but will also contribute to the ongoing investigation of alternate targets for new drugs. Here, we review the role of FA, particularly that of endogenous origin, in protein aggregation and as a potential drug intervention in the development of agerelated cognitive impairment.

  13. AGE-RELATED DECLINES IN THE DETECTION OF PASSIVE WRIST MOVEMENT

    PubMed Central

    Wright, Melissa L.; Adamo, Diane E.; Brown, Susan H.

    2011-01-01

    Age-related changes in proprioceptive ability and their contributions to postural instability have been well documented. In contrast, and despite the known importance of proprioceptive feedback in the control of coordinated arm and hand movement, studies focusing on upper limb proprioception in older populations are few and equivocal in their findings. This study focused on kinesthetic awareness about the wrist joint in healthy young and older adults. Passive movement detection thresholds (PMDT) were twice as high in older compared to young participants. In contrast to previous findings demonstrating asymmetries in static position sense, PMDT did not differ between the dominant and non-dominant wrist joints nor did direction of joint displacement affect PMDT as has been reported for the lower limb. Preliminary analysis indicated that PMDT was significantly higher in older adults categorized as sedentary while active older adults were able to detect passive movement as well as young adults. These findings demonstrate that upper limb kinesthesia is impaired in older adults although the degree of impairment may be influenced by one’s level of physical activity. PMID:21704124

  14. Age-related declines in the fidelity of newly acquired category representations.

    PubMed

    Davis, Tyler; Love, Bradley C; Maddox, W Todd

    2012-01-01

    We present a theory suggesting that the ability to build category representations that reflect the nuances of category structures in the environment depends upon clustering mechanisms instantiated in an MTL-PFC-based circuit. Because function in this circuit declines with age, we predict that the ability to build category representations will be impaired in older adults. Consistent with this prediction, we find that older adults are impaired relative to younger adults at learning nuanced category structures that contain exceptions to the rule. Model-based analysis reveals that this deficit arises from older adults' failure to engage clustering mechanisms to separate exception and rule-following items in memory. PMID:22815536

  15. Cognitive Reserve Modifies Age-Related Alterations in CSF Biomarkers of Alzheimer's Disease

    PubMed Central

    Almeida, Rodrigo P.; Schultz, Stephanie A.; Austin, Benjamin P.; Boots, Elizabeth A.; Dowling, N. Maritza; Gleason, Carey E.; Bendlin, Barbara B.; Sager, Mark; Hermann, Bruce P.; Zetterberg, Henrik; Carlsson, Cindy; Johnson, Sterling; Asthana, Sanjay; Okonkwo, Ozioma C.

    2015-01-01

    Importance Although advancing age is the strongest risk factor for the development of symptomatic Alzheimer's disease (AD), recent studies have shown that there are individual differences in susceptibility to age-related alterations in the biomarkers of AD pathophysiology. Objective In this study, we investigated whether cognitive reserve modifies the adverse influence of age on key cerebrospinal fluid (CSF) biomarkers of AD. Design, Setting, and Participants Cross-sectional cohort of 268 individuals (211 cognitively normal and 57 cognitively impaired) from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center participated in this study. They underwent lumbar puncture for collection of CSF samples, from which amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) were immunoassayed. Additionally, we computed t-tau/Aβ42 and p-tau/Aβ42 ratios. Cognitive reserve was indexed by years of education, with ≥16 years taken to confer high reserve. Covariate-adjusted regression analyses were used to test whether the effect of age on CSF biomarkers was modified by cognitive reserve. Main outcome measures CSF levels of Aβ42, t-tau, p-tau, t-tau/Aβ42, and p-tau/Aβ42. Results There were significant age*cognitive reserve interactions for CSF t-tau (p=.019), p-tau (p=.009), t-tau/Aβ42 (p=.021), and p-tau/Aβ42 (p=.004). Specifically, with advancing age, individuals with high cognitive reserve exhibited attenuated adverse alterations in these CSF biomarkers compared with individuals with low cognitive reserve. This attenuation of age effects by cognitive reserve tended to be more pronounced in the cognitively-impaired group compared with the cognitively-normal group. Lastly, there was modest evidence of a dose response relationship such that the effect of age on the biomarkers was progressively attenuated given additional years of schooling. Conclusions and Relevance In a sample comprised of both cognitively

  16. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice.

    PubMed

    Varghese, George I; Zhu, Xiaoxia; Frisina, Robert D

    2005-11-01

    One role of the medial olivocochlear (MOC) auditory efferent system is to suppress cochlear outer hair cell (OHC) responses when presented with a contralateral sound. Using distortion product otoacoustic emissions (DPOAEs), the effects of active changes in OHC responses due to the MOC as a function of age can be observed when contralateral stimulation with a pure tone is applied. Previous studies have shown that there are age-related declines of the MOC when broad band noise is presented to the contralateral ear. In this study, we measured age-related changes in CBA/CaJ mice by comparing DPOAE generation with and without a contralateral pure tone at three different frequencies (12, 22, and 37 kHz). Young (n = 16), middle (n = 10) and old-aged (n = 10) CBA mice were tested. DPOAE-grams were obtained using L1 = 65 and L2 = 50 dB SPL, F1/F2 = 1.25, using eight points per octave covering a frequency range from 5.6-44.8 kHz. The pure tone was presented contralaterally at 55 dB SPL. DPOAE-grams and ABR levels indicated age-related hearing loss in the old mice. In addition, there was an overall change in DPOAEs in the middle-aged and old groups relative to the young. Pure tone stimulation was not as effective as a suppressor compared to broadband noise. An increase in pure tone frequency from 12 to 22 kHz induced greater suppression of DPOAEs, but the 37 kHz was least effective. These results indicate that as the mouse ages, there are significant changes in the efficiency of the suppression mechanism as elicited by contralateral narrowband stimuli. These findings reinforce the idea that age-related changes in the MOC or the operating points of OHCs play a role in the progression of presbycusis - age-related hearing loss in mammals.

  17. Age-related cognitive impairments in mice with a conditional ablation of the neural cell adhesion molecule.

    PubMed

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-04-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However, whether aging is associated with NCAM alterations that might contribute to age-related cognitive decline is not currently known. In this study, we determined whether conditional NCAM-deficient mice display increased vulnerability to age-related cognitive and emotional alterations. We assessed the NCAM expression levels in the hippocampus and medial prefrontal cortex (mPFC) and characterized the performance of adult and aged conditional NCAM-deficient mice and their age-matched wild-type littermates in a delayed matching-to-place test in the Morris water maze and a delayed reinforced alternation test in the T-maze. Although aging in wild-type mice is associated with an isoform-specific reduction of NCAM expression levels in the hippocampus and mPFC, these mice exhibited only mild impairments in working/episodic-like memory performance. However, aged conditional NCAM-deficient mice displayed pronounced impairments in both the delayed matching-to-place and the delayed reinforced alternation tests. Importantly, the deficits of aged NCAM-deficient mice in these working/episodic-like memory tasks could not be attributed to increased anxiety-like behaviors or to differences in locomotor activity. Taken together, these data indicate that reduced NCAM expression in the forebrain might be a critical factor for the occurrence of cognitive impairments during aging.

  18. Edited Magnetic Resonance Spectroscopy Detects an Age-Related Decline in Nonhuman Primate Brain GABA Levels

    PubMed Central

    Killiany, Ronald J.

    2016-01-01

    Recent research had shown a correlation between aging and decreasing Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain. However, how GABA level varies with age in the medial portion of the brain has not yet been studied. The purpose of this study was to investigate the GABA level variation with age focusing on the posterior cingulate cortex, which is the “core hub” of the default mode network. In this study, 14 monkeys between 4 and 21 years were recruited, and MEGA-PRESS MRS was performed to measure GABA levels, in order to explore a potential link between aging and GABA. Our results showed that a correlation between age and GABA+/Creatine ratio was at the edge of significance (r = −0.523, p = 0.081). There was also a near-significant trend between gray matter/white matter ratio and the GABA+/Creatine ratio (r = −0.518, p = 0.0848). Meanwhile, the correlation between age and grey matter showed no significance (r = −0.028, p = 0.93). Therefore, age and gray matter/white matter ratio account for different part of R-squared (adjusted R-squared = 0.5187) as independent variables for predicting GABA levels. Adjusted R-squared is about 0.5 for two independent variables. These findings suggest that there is internal neurochemical variation of GABA levels in the nonhuman primates associated with normal aging and structural brain decline.

  19. Edited Magnetic Resonance Spectroscopy Detects an Age-Related Decline in Nonhuman Primate Brain GABA Levels

    PubMed Central

    Killiany, Ronald J.

    2016-01-01

    Recent research had shown a correlation between aging and decreasing Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain. However, how GABA level varies with age in the medial portion of the brain has not yet been studied. The purpose of this study was to investigate the GABA level variation with age focusing on the posterior cingulate cortex, which is the “core hub” of the default mode network. In this study, 14 monkeys between 4 and 21 years were recruited, and MEGA-PRESS MRS was performed to measure GABA levels, in order to explore a potential link between aging and GABA. Our results showed that a correlation between age and GABA+/Creatine ratio was at the edge of significance (r = −0.523, p = 0.081). There was also a near-significant trend between gray matter/white matter ratio and the GABA+/Creatine ratio (r = −0.518, p = 0.0848). Meanwhile, the correlation between age and grey matter showed no significance (r = −0.028, p = 0.93). Therefore, age and gray matter/white matter ratio account for different part of R-squared (adjusted R-squared = 0.5187) as independent variables for predicting GABA levels. Adjusted R-squared is about 0.5 for two independent variables. These findings suggest that there is internal neurochemical variation of GABA levels in the nonhuman primates associated with normal aging and structural brain decline. PMID:27660760

  20. Parkinson's disease accelerates age-related decline in haptic perception by altering somatosensory integration.

    PubMed

    Konczak, Jürgen; Sciutti, Alessandra; Avanzino, Laura; Squeri, Valentina; Gori, Monica; Masia, Lorenzo; Abbruzzese, Giovanni; Sandini, Giulio

    2012-11-01

    This study investigated how Parkinson's disease alters haptic perception and the underlying mechanisms of somatosensory and sensorimotor integration. Changes in haptic sensitivity and acuity (the abilities to detect and to discriminate between haptic stimuli) due to Parkinson's disease were systematically quantified and contrasted to the performance of healthy older and young adults. Using a robotic force environment, virtual contours of various curvatures were presented. Participants explored these contours with their hands and indicated verbally whether they could detect or discriminate between two contours. To understand what aspects of sensory or sensorimotor integration are altered by ageing and disease, we manipulated the sensorimotor aspect of the task: the robot either guided the hand along the contour or the participant actively moved the hand. Active exploration relies on multimodal sensory and sensorimotor integration, while passive guidance only requires sensory integration of proprioceptive and tactile information. The main findings of the study are as follows: first, a decline in haptic precision can already be observed in adults before the age of 70 years. Parkinson's disease may lead to an additional decrease in haptic sensitivity well beyond the levels typically seen in middle-aged and older adults. Second, the haptic deficit in Parkinson's disease is general in nature. It becomes manifest as a decrease in sensitivity and acuity (i.e. a smaller perceivable range and a diminished ability to discriminate between two perceivable haptic stimuli). Third, thresholds during both active and passive exploration are elevated, but not significantly different from each other. That is, active exploration did not enhance the haptic deficit when compared to passive hand motion. This implies that Parkinson's disease affects early stages of somatosensory integration that ultimately have an impact on processes of sensorimotor integration. Our results suggest that

  1. Effect of IP3R3 and NPY on age-related declines in olfactory stem cell proliferation.

    PubMed

    Jia, Cuihong; Hegg, Colleen C

    2015-02-01

    Losing the sense of smell because of aging compromises health and quality of life. In the mouse olfactory epithelium, aging reduces the capacity for tissue homeostasis and regeneration. The microvillous cell subtype that expresses both inositol trisphosphate receptor type 3 (IP3R3) and the neuroproliferative factor neuropeptide Y (NPY) is critical for regulation of homeostasis, yet its role in aging is undefined. We hypothesized that an age-related decline in IP3R3 expression and NPY signaling underlie age-related homeostatic changes and olfactory dysfunction. We found a decrease in IP3R3(+) and NPY(+) microvillous cell numbers and NPY protein and a reduced sensitivity to NPY-mediated proliferation over 24 months. However, in IP3R3-deficient mice, there was no further age-related reduction in cell numbers, proliferation, or olfactory function compared with wild type. The proliferative response was impaired in aged IP3R3-deficient mice when injury was caused by satratoxin G, which induces IP3R3-mediated NPY release, but not by bulbectomy, which does not evoke NPY release. These data identify IP3R3 and NPY signaling as targets for improving recovery following olfactotoxicant exposure.

  2. Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando; Sauseng, Paul

    2015-04-01

    Aging-related decline in short-term memory capacity seems to be caused by deficient balancing of task-related and resting state brain networks activity; however, the exact neural mechanism underlying this deficit remains elusive. Here, we studied brain oscillatory activity in healthy young and old adults during visual information maintenance in a delayed match-to-sample task. Particular emphasis was on long range phase:amplitude coupling of frontal alpha (8-12 Hz) and posterior fast oscillatory activity (>30 Hz). It is argued that through posterior fast oscillatory activity nesting into the excitatory or the inhibitory phase of frontal alpha wave, long-range networks can be efficiently coupled or decoupled, respectively. On the basis of this mechanism, we show that healthy, elderly participants exhibit a lack of synchronization in task-relevant networks while maintaining synchronized regions of the resting state network. Lacking disconnection of this resting state network is predictive of aging-related short-term memory decline. These results support the idea of inefficient orchestration of competing brain networks in the aging human brain and identify the neural mechanism responsible for this control breakdown.

  3. Neural mechanisms of ageing and cognitive decline

    PubMed Central

    Bishop, Nicholas A.; Lu, Tao; Yankner, Bruce A.

    2010-01-01

    During the past century, treatments for the diseases of youth and middle age have helped raise life expectancy significantly. However, cognitive decline has emerged as one of the greatest health threats of old age, with nearly 50% of adults over the age of 85 afflicted with Alzheimer’s disease. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain ageing. Recent advances in the biology of ageing in model organisms, together with molecular and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline. PMID:20336135

  4. Anthropological contributions to the understanding of age-related cognitive impairment.

    PubMed

    Whitehouse, Peter J; Gaines, Atwood D; Lindstrom, Heather; Graham, Janice E

    2005-05-01

    Medical anthropology has not only helped us to understand the social, political, and ethical foundations of modern biomedicine, but also improved the identification and treatment of patients in various geographic, sociological, and medical contexts. In this article, we present an anthropological perspective on the understanding, diagnosis, and treatment of age-related cognitive impairment. The ubiquity of cognitive changes in the growing number of elderly people around the world, and the many diverse responses that human communities have taken to such challenges, require biocultural approaches. Anthropology can serve as an ally in accomplishing the goal of improving the quality of life of those with cognitive impairment by highlighting the role of sociocultural processes that influence the development, meaning, and experience of dementia. So too can it serve as a framework for criticism of biomedical research, theory, and practice. PMID:15847845

  5. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline.

    PubMed

    Cabelof, Diane C; Yanamadala, Sunitha; Raffoul, Julian J; Guo, ZhongMao; Soofi, Abdulsalam; Heydari, Ahmad R

    2003-03-01

    Caloric restriction is a potent experimental manipulation that extends mean and maximum life span and delays the onset and progression of tumors in laboratory rodents. While caloric restriction (CR) clearly protects the genome from deleterious damage, the mechanism by which genomic stability is achieved remains unclear. We provide evidence that CR promotes genomic stability by increasing DNA repair capacity, specifically base excision repair (BER). CR completely reverses the age-related decline in BER capacity (P<0.01) in all tissues tested (brain, liver, spleen and testes) providing aged, CR animals with the BER phenotype of young, ad libitum-fed animals. This CR-induced reversal of the aged BER phenotype is accompanied by a reversal in the age-related decline in DNA polymerase beta (beta-pol), a rate-limiting enzyme in the BER pathway. CR significantly reversed the age-related loss of beta-pol protein levels (P<0.01), mRNA levels (P<0.01) and enzyme activity (P<0.01) in all tissues tested. Additionally, in young (4-6-month-old) CR animals a significant up-regulation in BER capacity, beta-pol protein and beta-pol mRNA is observed (P<0.01), demonstrating an early effect of CR that may provide insight in distinguishing the anti-tumor from the anti-aging effects of CR. This up-regulation in BER by caloric restriction in young animals corresponds to increased protection from carcinogen exposure, as mutation frequency is significantly reduced in CR animals exposed to either DMS or 2-nitropropane (2-NP) (P<0.01). Overall the data suggest an important biological consequence of moderate BER up-regulation and provides support for the hormesis theory of caloric restriction.

  6. Gender differences in age-related decline in glomerular filtration rates in healthy people and chronic kidney disease patients

    PubMed Central

    2010-01-01

    Background Since men with chronic kidney disease (CKD) progress faster than women, an accurate assessment of CKD progression rates should be based on gender differences in age-related decline of glomerular filtration rate (GFR) in healthy individuals. Methods A Chinese sample population from a stratified, multistage, and clustered CKD screening study was classified into healthy, at-risk, and CKD groups. The gender differences in estimated GFR (eGFR) and age-related eGFR decline were calculated for each group after controlling for blood pressure, fasting glucose levels, serum lipids levels, education level, and smoking status. After referencing to the healthy group, gender-specific multivariate-adjusted rates of decline in eGFR and differences in the rates of decline were calculated for both CKD and at-risk groups. Results The healthy, at-risk, and CKD groups consisted of 4569, 7434, and 1573 people, respectively. In all the 3 groups, the multivariate-adjusted eGFRs in men were lower than the corresponding eGFRs in women. In addition, in the healthy and at-risk groups, the rates of decline in eGFR in men were lower than the corresponding rates of decline in women (healthy group: 0.51 mL·min-1·1.73 m-2·yr-1 vs. 0.74 mL·min-1·1.73 m-2·yr-1 and at-risk group: 0.60 mL·min-1·1.73 m-2·yr-1 vs. 0.73 mL·min-1·1.73 m-2·yr-1). However, in the CKD group, the rates of decline in eGFR in men were similar to those in women (0.96 mL·min-1·1.73 m-2·yr-1 vs. 0.91 mL·min-1·1.73 m-2·yr-1). However, after referencing to the healthy group, the rates of decline in eGFR in men in the at-risk and CKD groups were greater faster than the corresponding rates in women (at-risk group: 0.10 mL·min-1·1.73 m-2·yr-1 vs. -0.03 mL·min-1·1.73 m-2·yr-1 and CKD group: 0.44 mL·min-1·1.73 m-2·yr-1 vs. 0.15 mL·min-1·1.73 m-2·yr-1). Conclusion To accurately assess gender differences in CKD progression rates, gender differences in age-related decline in GFR should be considered

  7. Dietary anthocyanin intake and age-related decline in lung function: longitudinal findings from the VA Normative Aging Study123

    PubMed Central

    Mehta, Amar J; Cassidy, Aedín; Litonjua, Augusto A; Sparrow, David; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Background: It is unknown whether habitual intake of dietary flavonoids, known for their antioxidative and anti-inflammatory properties, affects longitudinal change in lung function. Objective: We investigated whether different flavonoid subclasses present in the habitual diet were associated with beneficial changes in lung function over time in the elderly. Design: This longitudinal analysis included 839 participants from the VA (Veterans Affairs) Normative Aging Study whose lung function [forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC)] was measured at 2 and up to 5 visits between 1992 and 2008 (n = 2623 measurements). Yearly average intake of major flavonoid subclasses (anthocyanins, flavanones, flavan-3-ols, flavonols, flavones, and polymers) was calculated from food-frequency questionnaires at each visit. We estimated adjusted differences in annual change in lung function associated with each flavonoid subclass, categorized into quartiles, in linear mixed-effects regression models after adjustment for lifestyle and dietary confounders. Results: Strong inverse associations were found between anthocyanin intake and age-related decline in lung function. Independent of dietary and nondietary risk factors, slower rates of FEV1 and FVC decline by 23.6 (95% CI: 16.6, 30.7) and 37.3 (95% CI: 27.8, 46.8) mL/y, respectively, were observed in participants in the fourth quartile of intake compared with participants in the first quartile (P-trend < 0.0001). The protective associations observed for anthocyanin intake were present in both current/former and never smokers. Compared with no or very low intakes, an intake of ≥2 servings of anthocyanin-rich blueberries/wk was associated with slower decline in FEV1 and FVC by 22.5 (95% CI: 10.8, 34.2) and 37.9 (95% CI: 22.1, 53.7) mL/y, respectively. To a lesser extent, higher flavan-3-ol intake was also associated with slower lung function decline. Conclusions: An attenuation of age-related lung function

  8. Reversal of cognitive decline in Alzheimer's disease

    PubMed Central

    Bredesen, Dale E.; Amos, Edwin C.; Canick, Jonathan; Ackerley, Mary; Raji, Cyrus; Fiala, Milan; Ahdidan, Jamila

    2016-01-01

    Alzheimer's disease is one of the most significant healthcare problems nationally and globally. Recently, the first description of the reversal of cognitive decline in patients with early Alzheimer's disease or its precursors, MCI (mild cognitive impairment) and SCI (subjective cognitive impairment), was published [1]. The therapeutic approach used was programmatic and personalized rather than monotherapeutic and invariant, and was dubbed metabolic enhancement for neurodegeneration (MEND). Patients who had had to discontinue work were able to return to work, and those struggling at work were able to improve their performance. The patients, their spouses, and their co-workers all reported clear improvements. Here we report the results from quantitative MRI and neuropsychological testing in ten patients with cognitive decline, nine ApoE4+ (five homozygous and four heterozygous) and one ApoE4−, who were treated with the MEND protocol for 5-24 months. The magnitude of the improvement is unprecedented, providing additional objective evidence that this programmatic approach to cognitive decline is highly effective. These results have far-reaching implications for the treatment of Alzheimer's disease, MCI, and SCI; for personalized programs that may enhance pharmaceutical efficacy; and for personal identification of ApoE genotype. PMID:27294343

  9. High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution

    PubMed Central

    Puccioni, Olga; Vallesi, Antonino

    2012-01-01

    Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors. PMID:23248595

  10. Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets.

    PubMed

    Wu, Rui-Xin; Bi, Chun-Sheng; Yu, Yang; Zhang, Lin-Lin; Chen, Fa-Ming

    2015-08-01

    In this study, periodontal ligament (PDL) stem cells (PDLSCs) derived from different-aged donors were used to evaluate the effect of aging on cell sheet formation. The activity of PDLSCs was first determined based on their colony-forming ability, surface markers, proliferative/differentiative potentials, senescence-associated β-galactosidase (SA-βG) staining, and expression of pluripotency-associated transcription factors. The ability of these cells to form sheets, based on their extracellular matrix (ECM) contents and their functional properties necessary for osteogenic differentiation, was evaluated to predict the age-related changes in the regenerative capacity of the cell sheets in their further application. It was found that human PDLSCs could be isolated from the PDL tissue of different-aged subjects. However, the ability of the PDLSCs to proliferate and to undergo osteogenic differentiation and their expression of pluripotency-associated transcription factors displayed age-related decreases. In addition, these cells exhibited an age-related increase in SA-βG expression. Aged cells showed an impaired ability to form functional cell sheets, as determined by morphological observations and Ki-67 immunohistochemistry staining. Based on the production of ECM proteins, such as fibronectin, integrin β1, and collagen type I; alkaline phosphatase (ALP) activity; and the expression of osteogenic genes, such as ALP, Runt-related transcription factor 2, and osteocalcin, cell sheets formed by PDLSCs derived from older donors demonstrated a less potent osteogenic capacity compared to those formed by PDLSCs from younger donors. Our data suggest that the age-associated decline in the matrix contents and osteogenic properties of PDLSC sheets should be taken into account in cell sheet engineering research and clinical periodontal regenerative therapy.

  11. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons

    PubMed Central

    Zhu, Xiaoxia; Walton, Joseph P.

    2016-01-01

    Age-related hearing loss (ARHL) -presbycusis - is the most prevalent neurodegenerative disease and number one communication disorder of our aged population; and affects hundreds of millions of people worldwide. Its prevalence is close to that of cardiovascular disease and arthritis, and can be a precursor to dementia. The auditory perceptual dysfunction is well understood, but knowledge of the biological bases of ARHL is still somewhat lacking. Surprisingly, there are no FDA-approved drugs for treatment. Based on our previous studies of human subjects, where we discovered relations between serum aldosterone levels and the severity of ARHL, we treated middle age mice with aldosterone, which normally declines with age in all mammals. We found that hearing thresholds and suprathreshold responses significantly improved in the aldosterone-treated mice compared to the non-treatment group. In terms of cellular and molecular mechanisms underlying this therapeutic effect, additional experiments revealed that spiral ganglion cell survival was significantly improved, mineralocorticoid receptors were upregulated via post-translational protein modifications, and age-related intrinsic and extrinsic apoptotic pathways were blocked by the aldosterone therapy. Taken together, these novel findings pave the way for translational drug development towards the first medication to prevent the progression of ARHL. PMID:27667674

  12. Age-related differences in gap detection: Effects of task difficulty and cognitive ability

    PubMed Central

    Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2009-01-01

    Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap-detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap

  13. Common SIRT1 variants modify the effect of abdominal adipose tissue on aging-related lung function decline.

    PubMed

    Curjuric, Ivan; Imboden, Medea; Bridevaux, Pierre-Olivier; Gerbase, Margaret W; Haun, Margot; Keidel, Dirk; Kumar, Ashish; Pons, Marco; Rochat, Thierry; Schikowski, Tamara; Schindler, Christian; von Eckardstein, Arnold; Kronenberg, Florian; Probst-Hensch, Nicole M

    2016-06-01

    Lung function is an independent predictor of mortality and serves as an aging marker in never smokers. The protein sirtuin-1 of gene SIRT1 has profound anti-inflammatory effects and regulates metabolic pathways. Its suggested longevity effects on lower organisms remain poorly studied in humans. In 1132 never smokers of the population-based SAPALDIA cohort, we investigated associations between single nucleotide polymorphisms (SNPs; rs730821, rs10997868, rs10823116) of SIRT1 and aging-related lung function decline over 11 years in terms of change in forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC ratio, and forced expiratory flow between 25 and 75 % of FVC (FEF25-75) using multiple linear regression models. Interactions between the SIRT1 SNPs and adiposity parameters (body mass index (BMI), its change and weight gain) were tested by including multiplicative interaction terms into the models. SIRT1 polymorphisms exhibited no main effects, but modified the association between obesity measures and FEV1/FVC and FEF25-75 decline (p = 0.009-0.046). Per risk allele, FEV1/FVC decline was accelerated up to -0.5 % (95 % CI -1.0 to 0 %) and -0.7 % (-1.3 to -0.2 %) over interquartile range increases in BMI (2.4 kg/m(2)) or weight (6.5 kg), respectively. For FEF25-75 decline, corresponding estimates were -57 mL/s (-117 to 4 mL/s) and -76 mL/s (-1429 to -9 mL/s). Interactions were not present in participants with genetically lowered C-reactive protein concentrations. Genetic variation in SIRT1 might therefore affect lung function and human longevity by modifying subclinical inflammation arising from abdominal adipose tissue. PMID:27125385

  14. Inspection Time and Cognitive Abilities in Twins Aged 7 to 17 Years: Age-Related Changes, Heritability and Genetic Covariance

    ERIC Educational Resources Information Center

    Edmonds, Caroline J.; Isaacs, Elizabeth B.; Visscher, Peter M.; Rogers, Mary; Lanigan, Julie; Singhal, Atul; Lucas, Alan; Gringras, Paul; Denton, Jane; Deary, Ian J.

    2008-01-01

    We studied the age-related differences in inspection time and multiple cognitive domains in a group of monozygotic (MZ) and dizygotic (DZ) twins aged 7 to 17 years. Data from 111 twin pairs and 19 singleton siblings were included. We found clear age-related trends towards more efficient visual information processing in older participants. There…

  15. Age-Related Decline of Neutrophilic Inflammation Is Associated with Better Postoperative Prognosis in Non-eosinophilic Nasal Polyps

    PubMed Central

    Kim, Dae Woo; Kim, Dong-Kyu; Jo, Ara; Jin, Hong Ryul; Eun, Kyoung Mi; Mo, Ji-Hun; Cho, Seong H.

    2016-01-01

    Background Innate and adaptive immune responses change with increasing age and affect the course of diseases. Previous study investigated immunologic alteration in Western nasal polyps (NP) which is mostly eosinophilic. However, there are no reports regarding age-related immune changes of non-eosinophilic NP (NE-NP) which is a predominant subtype in Asian population. Methods A total of 153 subjects, including 20 with control, 63 with chronic rhinosinusitis (CRS) without NP (CRSsNP), and 70 with CRS with NP were enrolled. Age-related changes in computed tomography (CT), cytokines and clinical information were investigated. Tissue samples were analyzed for protein levels of IL-5, IL-17A, IL-23, interferon (IFN)-γ, CCL-11, and CXCL-8, using Luminex immunoassay and for mRNA expression levels of interleukin (IL)-5, IL-17A, IL-23p19, IFN-γ, CCL-11, CXCL-1, CXCL-2, CXCL-8, and CXCR2 by quantitative RT-PCR. Immunohistochemistry (IHC) was performed for the number of inflammatory cells. Results We observed that Lund-Mackay CT scores decreased with age in NE-NP. The number of human neutrophil elastase-positive cells and myeloperoxidase gene expression decreased in older patients with NE-NP, but not in control subjects, CRSsNP, and E-NP. Neutrophil-associated cytokines including IL-17A and IL-23, were negatively correlated with age in NE-NP at the protein and mRNA levels. Additionally, the expression of CXCR2, a receptor for CXCL-1 and CXCL-2, was decreased with age in NE-NP. However, there were no age-related changes in blood neutrophil count, and neutrophil-recruiting chemokines such as CXCL-1, CXCL-2, and CXCL-8. Elderly NE-NP patients showed better endoscopic scores at 12 months after surgery compared with the non-elderly. Conclusion Age-related decline in neutrophil inflammation may favorably affect postoperative results in elderly patients with NE-NP. PMID:26849431

  16. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆

    PubMed Central

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  17. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep.

    PubMed

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  18. Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory

    PubMed Central

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most event-related potentials (ERP) research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM. PMID

  19. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    PubMed

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination.

  20. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates

    PubMed Central

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination. PMID:26716699

  1. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    PubMed

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination. PMID:26716699

  2. High prevalence rate of pituitary incidentaloma: is it associated with the age-related decline of the sex hormones levels?

    PubMed

    Kastelan, Darko; Korsic, Mirko

    2007-01-01

    Incidental pituitary adenoma is the common finding during brain imaging. According to multistep model of pituitary tumourigenesis genetic alterations provide the initiating event that transforms cells while hormones play a role in promoting cell proliferation. Development of pituitary adenoma in a case of excessive hypophysiotrophic hormones production or reduced feedback suppression by target gland hormones emphasizes the importance of hormonal stimulation in pituitary tumourigenesis. Pituitary hyperplasia has been reported in pregnancy, hypothyroidism and conditions such as CRH or GHRH hypersecretion. Moreover, recent study reported one case of gonadotroph macroadenoma and two cases of gonadotroph cells hyperplasia in patients with Klinefelter syndrome probably due to protracted stimulation of gonadotroph cells because of lack of androgen feedback. Significant changes of the hypothalamic-pituitary-gonadal axis occurred with aging. In females, after menopause, estradiol level decreases by 35-fold and estrone level by 20-fold that results in increased gonadotropins levels. Similarly, FSH, but not LH, level is increased with advancing age in men, too, although the age-related difference in the level is less in comparison with women. Regarding these data, we hypothesised that high prevalence rate of pituitary incidentaloma in the elderly is associated with age-related decline in sex hormones levels and subsequent lack of feedback suppression leading to permanent gonadotrophs stimulation which is the crucial step in the pituitary tumour development. According to previously mentioned multistep model of pituitary tumourigenesis, incidentaloma will develop only in persons with already present intrinsic pituitary cell defects. However, further studies have to answer the questions of whether the incidence of pituitary tumours is more frequent in elderly, whether women with late onset menopause or those taking long-term hormone replacement therapy have lower rate of

  3. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status

    PubMed Central

    D’Angelo, Maria C.; Smith, Victoria M.; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A.; Barense, Morgan D.; Ryan, Jennifer D.

    2016-01-01

    ABSTRACT Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals’ failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA. PMID:27049878

  4. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status.

    PubMed

    D'Angelo, Maria C; Smith, Victoria M; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A; Barense, Morgan D; Ryan, Jennifer D

    2016-11-01

    Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals' failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA.

  5. The Hippocampal Neuroproteome with Aging and Cognitive Decline: Past Progress and Future Directions

    PubMed Central

    VanGuilder, Heather D.; Freeman, Willard M.

    2011-01-01

    Although steady progress on understanding brain aging has been made over recent decades through standard anatomical, immunohistochemical, and biochemical techniques, the biological basis of non-neurodegenerative cognitive decline with aging remains to be determined. This is due in part to technical limitations of traditional approaches, in which only a small fraction of neurobiologically relevant proteins, mRNAs or metabolites can be assessed at a time. With the development and refinement of proteomic technologies that enable simultaneous quantitative assessment of hundreds to thousands of proteins, neuroproteomic studies of brain aging and cognitive decline are becoming more widespread. This review focuses on the contributions of neuroproteomic investigations to advances in our understanding of age-related deficits of hippocampus-dependent spatial learning and memory. Accumulating neuroproteomic data demonstrate that hippocampal aging involves common themes of dysregulated metabolism, increased oxidative stress, altered protein processing, and decreased synaptic function. Additionally, growing evidence suggests that cognitive decline does not represent a “more aged” phenotype, but rather is associated with specific neuroproteomic changes that occur in addition to age-related alterations. Understanding if and how age-related changes in the hippocampal neuroproteome contribute to cognitive decline and elucidating the pathways and processes that lead to cognitive decline are critical objectives that remain to be achieved. Progress in the field and challenges that remain to be addressed with regard to animal models, behavioral testing, and proteomic reporting are also discussed. PMID:21647399

  6. Cognitive Decline and the Default American Lifestyle

    PubMed Central

    2011-01-01

    Objectives. Upward trends in IQ, education, and mental work suggest that cognitive function among seniors should be rising strongly across cohorts. There is little sign of such improvement in recent decades, and some analyses find poorer function in the newer cohorts. This essay explores possible explanations of the anomaly. Methods. Major long-term trends that might increase cognitive impairment are reviewed, and their implications are considered. Results. Physical activity is declining, food is increasingly manufactured, body fat is increasing, diabetes and metabolic syndrome are on the rise, the number of prescription drugs per person is increasing, and the proportion of the population either old or obese is growing. Discussion. Technological and economic development may lower the cognitive function needed for survival. They also lower physical activity in daily life. Sedentary work, transportation, and leisure undermine the aerobic and metabolic fitness required for the brain to perform well. Some prescription drugs impair cognitive function, and others do so when taken for many years or in combination with others. The growing fraction of the population that is either old or obese may further lower physical activity norms and requirements and substitute medical intervention for health, accelerating a trend toward cognitive impairment. PMID:21743052

  7. Quantitative SPET 99Tcm-DMSA uptake by the kidneys: age-related decline in healthy males.

    PubMed

    Groshar, D; Gorenberg, M; Osamah, H

    1998-09-01

    To evaluate if 99Tcm-dimercaptosuccinic acid (99Tcm-DMSA) uptake by the kidneys is related to age and creatinine clearance in males with normal renal function, quantitative single photon emission tomography (SPET) of DMSA uptake by the kidneys was performed in 18 volunteers aged 20-79 years. The quantitative uptake of DMSA in the right kidney was 13.9 +/- 2.9% and in the left kidney 14.2 +/- 3.0%. There was no statistically significant difference between left and right kidney uptake (t = 1.2, N.S.). Global kidney uptake (right + left) was 28.1 +/- 5.9%. There was a statistically significant age-related decline in global DMSA uptake. The estimated DMSA uptake (%) was given by -0.27 x age + 42 (r = -0.87, P < 0.001). A good correlation was found between creatinine clearance and global DMSA uptake (r = 0.87, y = 2.8x + 28.3, P < 0.001). The results suggest that normal values of DMSA uptake by the kidneys are age-dependent.

  8. Metal chaperones prevent zinc-mediated cognitive decline.

    PubMed

    Adlard, Paul A; Parncutt, Jacqui; Lal, Varsha; James, Simon; Hare, Dominic; Doble, Philip; Finkelstein, David I; Bush, Ashley I

    2015-09-01

    Zinc transporter-3 (ZnT3) protein is responsible for loading zinc into presynaptic vesicles and consequently controls the availability of zinc at the glutamatergic synapse. ZnT3 has been shown to decline with age and in Alzheimer's disease (AD) and is crucially involved in learning and memory. In this study, we utilised whole animal behavioural analyses in the ZnT3 KO mouse line, together with electrophysiological analysis of long-term potentiation in brain slices from ZnT3 KO mice, to show that metal chaperones (clioquinol, 30 mg/kg/day for 6weeks) can prevent the age-dependent cognitive phenotype that characterises these animals. This likely occurs as a result of a homeostatic restoration of synaptic protein expression, as clioquinol significantly restored levels of various pre- and postsynaptic proteins that are critical for normal cognition, including PSD-95; AMPAR and NMDAR2b. We hypothesised that this clioquinol-mediated restoration of synaptic health resulted from a selective increase in synaptic zinc content within the hippocampus. While we demonstrated a small regional increase in hippocampal zinc content using synchrotron x-ray fluorescence microscopy, further sub-region analyses are required to determine whether this effect is seen in other regions of the hippocampal formation that are more closely linked to the synaptic plasticity effects observed in this study. These data support our recent report on the use of a different metal chaperone (PBT2) to prevent normal age-related cognitive decline and demonstrate that metal chaperones are efficacious in preventing the zinc-mediated cognitive decline that characterises ageing and disease.

  9. The emerging role of dietary fructose in obesity and cognitive decline.

    PubMed

    Lakhan, Shaheen E; Kirchgessner, Annette

    2013-08-08

    The incidence of obesity has increased dramatically over the past several years, and in parallel, so has the prevalence of type 2 diabetes (T2D). Numerous studies have demonstrated that both obesity and T2D are associated with lower cognitive performance, cognitive decline, and dementia. Intake of dietary fructose has also increased. In fact, high-fructose corn syrup (HFCS) accounts for as much as 40% of caloric sweeteners used in the United States. Given the increase in the incidence of Alzheimer's disease (AD), characterized by an age-related decline in memory and cognitive functioning, in this report we review the effects of obesity on cognitive performance and the impact of high fructose intake in promoting cognitive decline. The paper then considers the effects of omega-3 fatty acids (FAs), which have been linked to promising results in cognitive function including ameliorating the impact of a high-fructose diet.

  10. The emerging role of dietary fructose in obesity and cognitive decline.

    PubMed

    Lakhan, Shaheen E; Kirchgessner, Annette

    2013-01-01

    The incidence of obesity has increased dramatically over the past several years, and in parallel, so has the prevalence of type 2 diabetes (T2D). Numerous studies have demonstrated that both obesity and T2D are associated with lower cognitive performance, cognitive decline, and dementia. Intake of dietary fructose has also increased. In fact, high-fructose corn syrup (HFCS) accounts for as much as 40% of caloric sweeteners used in the United States. Given the increase in the incidence of Alzheimer's disease (AD), characterized by an age-related decline in memory and cognitive functioning, in this report we review the effects of obesity on cognitive performance and the impact of high fructose intake in promoting cognitive decline. The paper then considers the effects of omega-3 fatty acids (FAs), which have been linked to promising results in cognitive function including ameliorating the impact of a high-fructose diet. PMID:23924506

  11. Lower cognitive function in patients with age-related macular degeneration: a meta-analysis

    PubMed Central

    Zhou, Li-Xiao; Sun, Cheng-Lin; Wei, Li-Juan; Gu, Zhi-Min; Lv, Liang; Dang, Yalong

    2016-01-01

    Objective To investigate the cognitive impairment in patients with age-related macular degeneration (AMD). Methods Relevant articles were identified through a search of the following electronic databases through October 2015, without language restriction: 1) PubMed; 2) the Cochrane Library; 3) EMBASE; 4) ScienceDirect. Meta-analysis was conducted using STATA 12.0 software. Standardized mean differences with corresponding 95% confidence intervals were calculated. All of the included studies met the following four criteria: 1) the study design was a case–control or randomized controlled trial (RCT) study; 2) the study investigated cognitive function in the patient with AMD; 3) the diagnoses of AMD must be provided; 4) there were sufficient scores data to extract for evaluating cognitive function between cases and controls. The Newcastle–Ottawa Scale criteria were used to assess the methodological quality of the studies. Results Of the initial 278 literatures, only six case–control and one RCT studies met all of the inclusion criteria. A total of 794 AMD patients and 1,227 controls were included in this study. Five studies were performed with mini-mental state examination (MMSE), two studies with animal fluency, two studies with trail making test (TMT)-A and -B, one study with Mini-Cog. Results of the meta-analysis revealed lower cognitive function test scores in patients with AMD, especially with MMSE and Mini-Cog test (P≤0.001 for all). The results also showed that differences in the TMT-A (except AMD [total] vs controls) and TMT-B test had no statistical significance (P>0.01). The Newcastle–Ottawa Scale score was ≥5 for all of the included studies. Based on the sensitivity analysis, no single study influenced the overall pooled estimates. Conclusion This meta-analysis suggests lower cognitive function test scores in patients with AMD, especially with MMSE and Mini-Cog test. The other cognitive impairment screening tests, such as animal fluency test and

  12. Cognitive aging explains age-related differences in face-based recognition of basic emotions except for anger and disgust.

    PubMed

    Suzuki, Atsunobu; Akiyama, Hiroko

    2013-01-01

    This study aimed at a detailed understanding of the possible dissociable influences of cognitive aging on the recognition of facial expressions of basic emotions (happiness, surprise, fear, anger, disgust, and sadness). The participants were 36 older and 36 young adults. They viewed 96 pictures of facial expressions and were asked to choose one emotion that best described each. Four cognitive tasks measuring the speed of processing and fluid intelligence were also administered, the scores of which were used to compute a composite measure of general cognitive ability. A series of hierarchical regression analyses revealed that age-related deficits in identifying happiness, surprise, fear, and sadness were statistically explained by general cognitive ability, while the differences in anger and disgust were not. This provides clear evidence that age-related cognitive impairment remarkably and differentially affects the recognition of basic emotions, contrary to the common view that cognitive aging has a uniformly minor effect.

  13. Ascorbic Acid and the Brain: Rationale for the Use against Cognitive Decline

    PubMed Central

    Harrison, Fiona E.; Bowman, Gene L.; Polidori, Maria Cristina

    2014-01-01

    This review is focused upon the role of ascorbic acid (AA, vitamin C) in the promotion of healthy brain aging. Particular attention is attributed to the biochemistry and neuronal metabolism interface, transport across tissues, animal models that are useful for this area of research, and the human studies that implicate AA in the continuum between normal cognitive aging and age-related cognitive decline up to Alzheimer’s disease. Vascular risk factors and comorbidity relationships with cognitive decline and AA are discussed to facilitate strategies for advancing AA research in the area of brain health and neurodegeneration. PMID:24763117

  14. Ex vivo T2 relaxation: associations with age-related neuropathology and cognition.

    PubMed

    Dawe, Robert J; Bennett, David A; Schneider, Julie A; Leurgans, Sue E; Kotrotsou, Aikaterini; Boyle, Patricia A; Arfanakis, Konstantinos

    2014-07-01

    The transverse relaxation time constant, T(2), is sensitive to brain tissue's free water content and the presence of paramagnetic materials such as iron. In this study, ex vivo magnetic resonance imaging was used to investigate alterations in T(2) related to Alzheimer's disease (AD) pathology and other types of neuropathology common in old age, as well as the relationship between T(2) alterations and cognition. Cerebral hemispheres were obtained from 371 deceased older adults. Using fast spin-echo imaging with multiple echo times, T(2) maps were produced and warped to a study-specific template. Hemispheres underwent neuropathologic examination for identification of AD pathology and other common age-related neuropathologies. Voxelwise linear regression was carried out to detect regions of pathology-related T(2) alterations and, in separate analyses, regions in which T(2) alterations were linked to antemortem cognitive performance. AD pathology was associated with T(2) prolongation in white matter of all lobes and T(2) shortening in the basal ganglia and insula. Gross infarcts were associated with T(2) prolongation in white matter of all lobes, and in the thalamus and basal ganglia. Hippocampal sclerosis was associated with T(2) prolongation in the hippocampus and white matter of the temporal lobe. After controlling for neuropathology, T(2) prolongation in the frontal lobe white matter was associated with lower performance in the episodic, semantic, and working memory domains. In addition, voxelwise analysis of in vivo and ex vivo T(2) values indicated a positive relationship between the two, though further investigation is necessary to accurately translate findings of the present study to the in vivo case.

  15. Greater cognitive decline with aging among elders with high serum concentrations of organochlorine pesticides.

    PubMed

    Kim, Se-A; Lee, Yu-Mi; Lee, Ho-Won; Jacobs, David R; Lee, Duk-Hee

    2015-01-01

    Although cognitive decline is very common in elders, age-related cognitive decline substantially differs among elders and the determinants of the differences in age-related cognitive decline are unclear. We investigated our hypothesis that the association between age and cognition was stronger in those with higher serum concentrations of organochlorine (OC) pesticides, common persistent and strongly lipophilic neurotoxic chemicals. Participants were 644 elders aged 60-85, participating in the National Health and Nutrition Examination Survey 1999-2002. Six OC pesticides (p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodipenyldichloroethylene (DDE), β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide) were evaluated. "Lower cognitive function" was defined as having a low Digit-Symbol Substitution Test (DSST) score (<25th percentile of DSST score, cutpoint 28 symbols substituted). Higher levels of β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide modified the associations between age and lower cognitive function (Pinteraction<0.01, 0.03, <0.01, and 0.02, respectively). Elders in the 3rd tertile of these chemicals demonstrated a greater risk of lower cognitive function with aging, compared to those in the combined 1st and 2nd tertiles. Among those with highest OC pesticides (3rd tertile), the odds ratio for the risk of lower cognitive function was about 6 to 11 for the highest quintile of age (80-85 years) vs. the first quintile of age (60-63 years), while the association between age and lower cognitive function became flatter in those with lower OC pesticides (combined 1st and 2nd tertiles). Both DDT and DDE showed no interaction, with lower DSST scores for higher age irrespective of serum concentrations of DDT or DDE. Even though DSST score measures only one aspect of cognition, several OC pesticides modified aging-related prevalence of low cognitive score, a finding which should be evaluated in

  16. Differential age-related decline in conflict-driven task-set shielding from emotional versus non-emotional distracters

    PubMed Central

    Monti, Jim M.; Weintraub, Sandra; Egner, Tobias

    2010-01-01

    While normal aging is associated with a marked decline in cognitive abilities, such as memory and executive functions, recent evidence suggests that control processes involved in regulating responses to emotional stimuli may remain well-preserved in the elderly. However, neither the precise nature of these preserved control processes, nor their domain-specificity with respect to comparable non-emotional control processes, are currently well-established. Here, we tested the hypothesis of domain-specific preservation of emotional control in the elderly by employing two closely matched behavioral tasks that assessed the ability to shield the processing of task-relevant stimulus information from competition by task-irrelevant distracter stimuli that could be either non-emotional or emotional in nature. The efficacy of non-emotional versus emotional task-set shielding, gauged via the ‘conflict adaptation effect’, was compared between cohorts of healthy young adults, healthy elderly adults, and individuals diagnosed with probable Alzheimer’s disease (PRAD), age-matched to the elderly subjects. It was found that, compared to the young adult cohort, the healthy elderly displayed deficits in task-set shielding in the non-emotional but not in the emotional task, whereas PRAD subjects displayed impaired performance in both tasks. These results provide new evidence that healthy aging is associated with a domain-specific preservation of emotional control functions, specifically, the shielding of a current task-set from interference by emotional distracter stimuli. This selective preservation of function supports the notion of partly dissociable affective control mechanisms, and may either reflect different time-courses of degeneration in the neuroanatomical circuits mediating task-set maintenance in the face of non-emotional versus emotional distracters, or a motivational shift towards affective processing in the elderly. PMID:20176042

  17. Age-associated Cognitive Decline: Insights into Molecular Switches and Recovery Avenues

    PubMed Central

    Konar, Arpita; Singh, Padmanabh; Thakur, Mahendra K.

    2016-01-01

    Age-associated cognitive decline is an inevitable phenomenon that predisposes individuals for neurological and psychiatric disorders eventually affecting the quality of life. Scientists have endeavored to identify the key molecular switches that drive cognitive decline with advancing age. These newly identified molecules are then targeted as recovery of cognitive aging and related disorders. Cognitive decline during aging is multi-factorial and amongst several factors influencing this trajectory, gene expression changes are pivotal. Identifying these genes would elucidate the neurobiological underpinnings as well as offer clues that make certain individuals resilient to withstand the inevitable age-related deteriorations. Our laboratory has focused on this aspect and investigated a wide spectrum of genes involved in crucial brain functions that attribute to senescence induced cognitive deficits. We have recently identified master switches in the epigenome regulating gene expression alteration during brain aging. Interestingly, these factors when manipulated by chemical or genetic strategies successfully reverse the age-related cognitive impairments. In the present article, we review findings from our laboratory and others combined with supporting literary evidences on molecular switches of brain aging and their potential as recovery targets. PMID:27114845

  18. Cognitive decline is associated with risk aversion and temporal discounting in older adults without dementia.

    PubMed

    James, Bryan D; Boyle, Patricia A; Yu, Lei; Han, S Duke; Bennett, David A

    2015-01-01

    Risk aversion and temporal discounting are preferences that are strongly linked to sub-optimal financial and health decision making ability. Prior studies have shown they differ by age and cognitive ability, but it remains unclear whether differences are due to age-related cognitive decline or lower cognitive abilities over the life span. We tested the hypothesis that cognitive decline is associated with higher risk aversion and temporal discounting in 455 older persons without dementia from the Memory and Aging Project, a longitudinal cohort study of aging in Chicago. All underwent repeated annual cognitive evaluations using a detailed battery including 19 tests. Risk aversion was measured using standard behavioral economics questions: participants were asked to choose between a certain monetary payment versus a gamble in which they could gain more or nothing; potential gamble gains varied across questions. Temporal discounting: participants were asked to choose between an immediate, smaller payment and a delayed, larger one; two sets of questions addressed small and large stakes based on payment amount. Regression analyses were used to examine whether prior rate of cognitive decline predicted level of risk aversion and temporal discounting, controlling for age, sex, and education. Over an average of 5.5 (SD=2.9) years, cognition declined at an average of 0.016 units per year (SD=0.03). More rapid cognitive decline predicted higher levels of risk aversion (p=0.002) and temporal discounting (small stakes: p=0.01, high stakes: p=0.006). Further, associations between cognitive decline and risk aversion (p=0.015) and large stakes temporal discounting (p=0.026) persisted in analyses restricted to persons without any cognitive impairment (i.e., no dementia or mild cognitive impairment); the association of cognitive decline and small stakes temporal discounting was no longer statistically significant (p=0.078). These findings are consistent with the hypothesis that

  19. Cognitive Decline Is Associated with Risk Aversion and Temporal Discounting in Older Adults without Dementia

    PubMed Central

    James, Bryan D.; Boyle, Patricia A.; Yu, Lei; Han, S. Duke; Bennett, David A.

    2015-01-01

    Risk aversion and temporal discounting are preferences that are strongly linked to sub-optimal financial and health decision making ability. Prior studies have shown they differ by age and cognitive ability, but it remains unclear whether differences are due to age-related cognitive decline or lower cognitive abilities over the life span. We tested the hypothesis that cognitive decline is associated with higher risk aversion and temporal discounting in 455 older persons without dementia from the Memory and Aging Project, a longitudinal cohort study of aging in Chicago. All underwent repeated annual cognitive evaluations using a detailed battery including 19 tests. Risk aversion was measured using standard behavioral economics questions: participants were asked to choose between a certain monetary payment versus a gamble in which they could gain more or nothing; potential gamble gains varied across questions. Temporal discounting: participants were asked to choose between an immediate, smaller payment and a delayed, larger one; two sets of questions addressed small and large stakes based on payment amount. Regression analyses were used to examine whether prior rate of cognitive decline predicted level of risk aversion and temporal discounting, controlling for age, sex, and education. Over an average of 5.5 (SD=2.9) years, cognition declined at an average of 0.016 units per year (SD=0.03). More rapid cognitive decline predicted higher levels of risk aversion (p=0.002) and temporal discounting (small stakes: p=0.01, high stakes: p=0.006). Further, associations between cognitive decline and risk aversion (p=0.015) and large stakes temporal discounting (p=0.026) persisted in analyses restricted to persons without any cognitive impairment (i.e., no dementia or mild cognitive impairment); the association of cognitive decline and small stakes temporal discounting was no longer statistically significant (p=0.078). These findings are consistent with the hypothesis that

  20. Initiation of calorie restriction in middle-aged male rats attenuates aging-related motoric decline and bradykinesia without increased striatal dopamine.

    PubMed

    Salvatore, Michael F; Terrebonne, Jennifer; Fields, Victoria; Nodurft, Danielle; Runfalo, Cori; Latimer, Brian; Ingram, Donald K

    2016-01-01

    Aging-related bradykinesia affects ∼ 15% of those reaching age 65 and 50% of those reaching their 80s. Given this high risk and lack of pharmacologic therapeutics, noninvasive lifestyle strategies should be identified to diminish its risk and identify the neurobiological targets to reduce aging-related bradykinesia. Early-life, long-term calorie restriction (CR) attenuates aging-related bradykinesia in rodents. Here, we addressed whether CR initiation at middle age could attenuate aging-related bradykinesia and motoric decline measured as rotarod performance. A 30% CR regimen was implemented for 6 months duration in 12-month-old male Brown-Norway Fischer 344 F1 hybrid rats after establishing individual baseline locomotor activities. Locomotor capacity was assessed every 6 weeks thereafter. The ad libitum group exhibited predictably decreased locomotor activity, except movement speed, out to 18 months of age. In contrast, in the CR group, movement number and horizontal activity did not decrease during the 6-month trial, and aging-related decline in rotarod performance was attenuated. The response to CR was influenced by baseline locomotor activity. The lower the locomotor activity level at baseline, the greater the response to CR. Rats in the lower 50th percentile surpassed their baseline level of activity, whereas rats in the top 50th percentile decreased at 6 weeks and then returned to baseline by 12 weeks of CR. We hypothesized that nigrostriatal dopamine tissue content would be greater in the CR group and observed a modest increase only in substantia nigra with no group differences in striatum, nucleus accumbens, or ventral tegmental area. These results indicate that initiation of CR at middle age may reduce aging-related bradykinesia, and, furthermore, subjects with below average locomotor activity may increase baseline activity. Sustaining nigral dopamine neurotransmission may be one component of preserving locomotor capabilities during aging.

  1. VASCULAR RISK FACTORS AND COGNITIVE DECLINE IN A POPULATION SAMPLE

    PubMed Central

    Ganguli, Mary; Fu, Bo; Snitz, Beth E.; Unverzagt, Frederick W.; Loewenstein, David A.; Hughes, Tiffany F.; Chang, Chung-Chou H.

    2014-01-01

    We examined several vascular factors in relation to rates of decline in five cognitive domains in a population-based cohort. In an age-stratified random sample (N=1982) aged 65+ years, we assessed at baseline the cognitive domains of attention, executive function, memory, language, and visuospatial function, and also vascular, inflammatory, and metabolic indices. Random effects models generated slopes of cognitive decline over the next four years; linear models identified vascular factors associated with these slopes, adjusting for demographics, baseline cognition, and potential interactions. Several vascular risk factors (history of stroke, diabetes, central obesity, C-Reactive Protein), although associated with lower baseline cognitive performance, did not predict rate of subsequent decline. APOE*4 genotype was associated with accelerated decline in language, memory, and executive functions. Homocysteine elevation was associated with faster decline in executive function. Hypertension (history or systolic blood pressure >140 mm) was associated with slower decline in memory. Baseline alcohol consumption was associated with slower decline in attention, language, and memory. Different indices of vascular risk are associated with low performance and with rates of decline in different cognitive domains. Cardiovascular mechanisms explain at least some of the variance in cognitive decline. Selective survival may also play a role. PMID:24126216

  2. Egg freezing for age-related fertility decline: preventive medicine or a further medicalization of reproduction? Analyzing the new Israeli policy.

    PubMed

    Shkedi-Rafid, Shiri; Hashiloni-Dolev, Yael

    2011-08-01

    In December 2009, the Israel National Bioethics Council (INBC) issued recommendations permitting egg freezing to prevent both disease- and age-related fertility decline. The INBC report forms the basis of Israel's new policy regarding egg freezing. This article analyzes the medical section of the INBC's recommendations, comparing it with guidelines formulated by medical regulatory bodies in Europe and the United States. Our findings suggest that the INBC's recommendations consider age-related fertility decline to be a medical problem, and hence treat the new technology favorably, as preventive medicine, which we perceive as another instance of medicalization. The technology's risks are downplayed by the INBC, unlike the positions of medical organizations in both Europe and the United States, which consider the new technology experimental. This may culminate in raising false hopes about women's possible late genetic motherhood leading to involuntary future childlessness.

  3. Guidelines for the Evaluation of Dementia and Age-Related Cognitive Change

    ERIC Educational Resources Information Center

    American Psychologist, 2012

    2012-01-01

    Dementia in its many forms is a leading cause of functional limitation among older adults worldwide and will continue to ascend in global health importance as populations continue to age and effective cures remain elusive. The following guidelines were developed for psychologists who perform evaluations of dementia and age-related cognitive…

  4. Age-related testosterone decline is due to waning of both testicular and hypothalamic-pituitary function.

    PubMed

    Golan, Ron; Scovell, Jason M; Ramasamy, Ranjith

    2015-01-01

    Hypogonadism is a condition in which the endogenous secretion of testosterone is either insufficient or inadequate to maintain serum testosterone levels within normal range, and may manifest as a variety of signs and symptoms. Age-related hypogonadism is due to a combination of primary hypogonadism (testicular failure) and secondary hypogonadism (hypothalamic-pituitary axis failure). This review provides insight into the mechanisms resulting in the multifactorial nature of acquired androgen-deficiency, and outlines the current controversy regarding testosterone-replacement therapy in aging males.

  5. Nutraceutical properties of Mediterranean diet and cognitive decline: possible underlying mechanisms.

    PubMed

    Frisardi, Vincenza; Panza, Francesco; Seripa, Davide; Imbimbo, Bruno P; Vendemiale, Gianluigi; Pilotto, Alberto; Solfrizzi, Vincenzo

    2010-01-01

    Recent prospective studies provided evidence that higher adherence to a Mediterranean-type diet could be associated with slower cognitive decline, reduced risk of progression from mild cognitive impairment to Alzheimer's disease (AD), reduced risk of AD, and decreased mortality in AD patients. Furthermore, the Mediterranean diet (MeDi) combines several foods, micro- and macronutrients already separately proposed as potential protective factors against dementia and predementia syndromes. At present, epidemiological evidence suggests a possible association between fish consumption, monounsaturated fatty acids, and polyunsaturated fatty acids (PUFA) (particularly, n-3 PUFA), and reduced risk of cognitive decline and dementia. Light to moderate alcohol use may be associated with a reduced risk of incident dementia and AD, while for vascular dementia, cognitive decline, and predementia syndromes, the current evidence is only suggestive of a protective effect. Finally, the limited epidemiological evidence available on fruit and vegetable consumption and cognition generally support a protective role of these macronutrients against cognitive decline, dementia, and AD. We reviewed evidence on the possible mechanisms underlying the suggested protective role of MeDi against age-related changes in cognitive function, predementia syndromes, and dementia, examining the possible role of macronutrients and food nutrients of the MeDi and their nutraceutical properties in modulating the risk of cognitive decline. Although vascular variables are likely to be in the causal pathway between MeDi and dementia syndromes and should be considered as possible mediators, other nonvascular biological mechanisms (i.e., metabolic, oxidative, and inflammatory) may be invoked to explain the complex epidemiological association between MeDi and cognitive decline.

  6. Decrease in age-related tau hyperphosphorylation and cognitive improvement following vitamin D supplementation are associated with modulation of brain energy metabolism and redox state.

    PubMed

    Briones, T L; Darwish, H

    2014-03-14

    In the present study we examined whether vitamin D supplementation can reduce age-related tau hyperphosphorylation and cognitive impairment by enhancing brain energy homeostasis and protein phosphatase 2A (PP2A) activity, and modulating the redox state. Male F344 rats aged 20 months (aged) and 6 months (young) were randomly assigned to either vitamin D supplementation or no supplementation (control). Rats were housed in pairs and the supplementation group (n=10 young and n=10 aged) received subcutaneous injections of vitamin D (1, α25-dihydroxyvitamin D3) for 21 days. Control animals (n=10 young and n=10 aged) received equal volume of normal saline and behavioral testing in the water maze started on day 14 after the initiation of vitamin D supplementation. Tau phosphorylation, markers of brain energy metabolism (ADP/ATP ratio and adenosine monophosphate-activated protein kinase) and redox state (levels of reactive oxygen species, activity of superoxide dismutase, and glutathione levels) as well as PP2A activity were measured in hippocampal tissues. Our results extended previous findings that: (1) tau phosphorylation significantly increased during aging; (2) markers of brain energy metabolism and redox state are significantly decreased in aging; and (3) aged rats demonstrated significant learning and memory impairment. More importantly, we found that age-related changes in brain energy metabolism, redox state, and cognitive function were attenuated by vitamin D supplementation. No significant differences were seen in tau hyperphosphorylation, markers of energy metabolism and redox state in the young animal groups. Our data suggest that vitamin D ameliorated the age-related tau hyperphosphorylation and cognitive decline by enhancing brain energy metabolism, redox state, and PP2A activity making it a potentially useful therapeutic option to alleviate the effects of aging.

  7. Age-related decline in multiple unit action potentials of CA3 region of rat hippocampus: correlation with lipid peroxidation and lipofuscin concentration and the effect of centrophenoxine.

    PubMed

    Sharma, D; Maurya, A K; Singh, R

    1993-01-01

    Changes in lipid peroxidation, lipofuscin concentration, and multiple unit activity (MUA recorded in conscious animals) in the CA3 region were studied in the hippocampus of male Wistar rats aged 4, 8, 16, and 24 months. The lipid peroxidation and lipofuscin concentration were increased with age. The MUA, however, declined with age. Correlational analyses were performed for the four age groups to determine the relationship between the age-associated decline in MUA with the age-related alterations in lipid peroxidation and lipofuscin concentrations. The age-related increase in lipid peroxidation correlated positively with the age-associated increase in lipofuscin concentration. The age-related increases in lipid peroxidation and lipofuscin concentration correlated negatively with the changes in MUA. Since lipid peroxidation may affect neuronal electrophysiology, our data suggested that age-related increase in lipid peroxidation may contribute to an age-associated decline in neuronal electrical activity. Centrophenoxine effects were studied on the three above-mentioned age-associated changes in the hippocampus. The drug had no effect on all three parameters in 4- and 8-month-old rats. In 16- and 24-month-old rats, however, the drug significantly increased the MUA but concomitantly decreased lipofuscin concentration and lipid peroxidation. Correlational analyses of the data on MUA, lipid peroxidation and lipofuscin concentration from the centrophenoxine-treated animals showed that the drug-induced diminution in both lipofuscin and lipid peroxidation was significantly correlated with the drug-induced increase in MUA. The differential effect of the drug in younger (4-8 months) and older (16-24 months) animals indicated that the stimulation of MUA was clearly associated with concomitant decrease in lipid peroxidation and lipofuscin concentration.

  8. Age-related changes in the cerebral substrates of cognitive procedural learning.

    PubMed

    Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2009-04-01

    Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative, and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus, and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, the engagement of frontal and cingulate regions persisted in the older group as learning continued, whereas it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. PMID:18537110

  9. Longitudinal cognitive decline in the AIBL cohort: The role of APOE ε4 status.

    PubMed

    Albrecht, Matthew A; Szoeke, Cassandra; Maruff, Paul; Savage, Greg; Lautenschlager, Nicola T; Ellis, Kathryn A; Taddei, Kevin; Martins, Ralph; Masters, Colin L; Ames, David; Foster, Jonathan K

    2015-08-01

    The ε4 polymorphism of the APOE gene confers a substantially increased risk of developing Alzheimer's disease. However, the influence of the ε4 allele on age-related cognitive functioning is more contentious. Previously, we demonstrated relatively little evidence for a role of the ε4 allele on baseline cognitive performance in older adults in the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Ageing (Foster et al., 2013). We here investigated whether the APOE ε4 allele influenced cognitive status over time when the AIBL cohort was studied longitudinally over a 3-year period. The AIBL neuropsychological test battery was administered at baseline, after 18 months and again after 36 months. Participants comprised 764 Healthy Controls and 131 Mild Cognitively Impaired individuals enrolled in the AIBL Study of Ageing. We compared individuals within each group with and without an ε4 allele. Healthy Controls with an ε4 allele manifested a modest acceleration in cognitive decline over 36 months on measures of verbal episodic memory. By contrast, Mild Cognitively Impaired individuals with an ε4 allele showed increased cognitive decline across a range of cognitive tasks, putatively reflecting early cognitive signs of Alzheimer's disease. Given the long prodromal period that has been noted in late onset Alzheimer's disease, we suggest that these findings are consistent with a prodromal account rather than a phenotypic account of ε4-related cognitive ageing. PMID:26102189

  10. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    USGS Publications Warehouse

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  11. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality.

    PubMed

    Foster, Jane R; D'Amato, Anthony W; Bradford, John B

    2014-05-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20-30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25-30% higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics. PMID:24442595

  12. Dietary Approaches and Supplements in the Prevention of Cognitive Decline and Alzheimer's Disease.

    PubMed

    Dominguez, Ligia J; Barbagallo, Mario

    2016-01-01

    Age-associated cognitive decline and dementia are conditions in which there is deterioration in memory, thinking, and behavior, with profound effects on the ability to perform everyday activities and well-being. Even if dementia mainly affects older persons, it is not a normal part of aging. Alzheimer's disease accounts for 60-75% of dementia cases. The number of persons affected will increase in the next decades in parallel with aging of the world population. Hence, unless some approach is found to reduce age-related deterioration of cognitive functions, health care costs will continue to rise exponentially. There is a wealth of epidemiological evidence supporting a relationship between diet and Alzheimer's disease, and suggesting that the risk of cognitive decline may be reduced by dietary interventions. It has been proposed that adopting a healthy diet and lifestyle that improves cardiovascular function may help delaying the onset of Alzheimer's disease due to its potential association with vascular disease. Several nutrients, dietary components, supplements and dietary patterns have been reported in relation to their association with cognition and with the development of cognitive decline and Alzheimer's disease. The possible effect of diet on the prevention of dementia is of tremendous scientific and general interest, because hitherto there is no definitive evidence of any effective pharmacological treatment for dementia. The aim of this review is to evaluate the evidence for the effects of some dietary components, supplements, and dietary patterns as neuroprotective, with potential to delay cognitive decline and the onset of dementia.

  13. Protein kinase Mζ-dependent maintenance of GluA2 at the synapse: a possible target for preventing or treating age-related memory decline?

    PubMed

    Aicardi, Giorgio

    2013-08-01

    Age-related functional alterations in the perforant path projection from the entorhinal cortex to the dentate gyrus (DG) of the hippocampus play a major role in age-related memory impairments, but little is known about the molecular mechanisms responsible for these changes. In a recent interesting study, Hara and colleagues (J Neurosci 2012;32:7336-7344) tested young and aged monkeys on the visual recognition memory test "delayed nonmatching-to-sample" (DNMS). Then they performed electron microscopy immunocytochemistry in the hippocampal DG to determine the subcellular localization of the GluA2 subunit of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) and protein kinase Mζ (PKMζ), which promotes memory storage by regulating GluA2-containing AMPAR trafficking. The results obtained suggest that age-related deficits in visual recognition memory are coupled with impairment in PKMζ-dependent maintenance of GluA2 at the synapse. Together with previous evidence of the critical role of PKMζ in memory consolidation, these data render this enzyme an attractive potential therapeutic target for preventing or treating age-related memory decline, and support the view that the pharmacological manipulation of AMPAR trafficking in the synapses may provide new insights in the search of memory enhancers for aged individuals, including those affected by Alzheimer disease.

  14. Can Exercise Ameliorate Aromatase Inhibitor-Induced Cognitive Decline in Breast Cancer Patients?

    PubMed

    Li, Cuicui; Zhou, Chenglin; Li, Rena

    2016-08-01

    Aromatase inhibitors (AIs) have been commonly used as an effective adjuvant therapy in treatment of breast cancer, especially for menopausal women with estrogen receptor-positive breast cancer. Due to the nature of aromatase, the key enzyme for endogenous estrogen synthesis, inhibitory of aromatase-induced side effects, such as cognitive impairment has been reported in both human and animal studies. While extensive evidence suggested that physical exercises can improve learning and memory activity and even prevent age-related cognitive decline, basic research revealed some common pathways between exercise and estrogen signaling that affected cognitive function. This review draws on clinical and basic studies to assess the potential impact of exercise in cognitive function from women treated with AIs for breast cancer and explore the potential mechanism and effects of exercise on estrogen-related cognition. PMID:26223800

  15. Late Life Leisure Activities and Risk of Cognitive Decline

    PubMed Central

    2013-01-01

    Background. Studies concerning the effect of different types of leisure activities on various cognitive domains are limited. This study tests the hypothesis that mental, physical, and social activities have a domain-specific protection against cognitive decline. Methods. A cohort of a geographically defined population in China was examined in 2003–2005 and followed for an average of 2.4 years. Leisure activities were assessed in 1,463 adults aged 65 years and older without cognitive or physical impairment at baseline, and their cognitive performances were tested at baseline and follow-up examinations. Results. High level of mental activity was related to less decline in global cognition (β = −.23, p < .01), language (β = −.11, p < .05), and executive function (β = −.13, p < .05) in ANCOVA models adjusting for age, gender, education, history of stroke, body mass index, Apolipoprotein E genotype, and baseline cognition. High level of physical activity was related to less decline in episodic memory (β = −.08, p < .05) and language (β = −.15, p < .01). High level of social activity was associated with less decline in global cognition (β = −.11, p < .05). Further, a dose-response pattern was observed: although participants who did not engage in any of the three activities experienced a significant global cognitive decline, those who engaged in any one of the activities maintained their cognition, and those who engaged in two or three activities improved their cognition. The same pattern was observed in men and in women. Conclusions. Leisure activities in old age may protect against cognitive decline for both women and men, and different types of activities seem to benefit different cognitive domains. PMID:22879456

  16. Age-Related Wayfinding Differences in Real Large-Scale Environments: Detrimental Motor Control Effects during Spatial Learning Are Mediated by Executive Decline?

    PubMed Central

    Taillade, Mathieu; Sauzéon, Hélène; Arvind Pala, Prashant; Déjos, Marie; Larrue, Florian; Gross, Christian; N’Kaoua, Bernard

    2013-01-01

    The aim of this study was to evaluate motor control activity (active vs. passive condition) with regards to wayfinding and spatial learning difficulties in large-scale spaces for older adults. We compared virtual reality (VR)-based wayfinding and spatial memory (survey and route knowledge) performances between 30 younger and 30 older adults. A significant effect of age was obtained on the wayfinding performances but not on the spatial memory performances. Specifically, the active condition deteriorated the survey measure in all of the participants and increased the age-related differences in the wayfinding performances. Importantly, the age-related differences in the wayfinding performances, after an active condition, were further mediated by the executive measures. All of the results relative to a detrimental effect of motor activity are discussed in terms of a dual task effect as well as executive decline associated with aging. PMID:23843992

  17. Working memory in middle-aged males: age-related brain activation changes and cognitive fatigue effects.

    PubMed

    Klaassen, Elissa B; Evers, Elisabeth A T; de Groot, Renate H M; Backes, Walter H; Veltman, Dick J; Jolles, Jelle

    2014-02-01

    We examined the effects of aging and cognitive fatigue on working memory (WM) related brain activation using functional magnetic resonance imaging. Age-related differences were investigated in 13 young and 16 middle-aged male school teachers. Cognitive fatigue was induced by sustained performance on cognitively demanding tasks (compared to a control condition). Results showed a main effect of age on left dorsolateral prefrontal and superior parietal cortex activation during WM encoding; greater activation was evident in middle-aged than young adults regardless of WM load or fatigue condition. An interaction effect was found in the dorsomedial prefrontal cortex (DMPFC); WM load-dependent activation was elevated in middle-aged compared to young in the control condition, but did not differ in the fatigue condition due to a reduction in activation in middle-aged in contrast to an increase in activation in the young group. These findings demonstrate age-related activation differences and differential effects of fatigue on activation in young and middle-aged adults.

  18. Age-related decline in Kv3.1b expression in the mouse auditory brainstem correlates with functional deficits in the medial olivocochlear efferent system.

    PubMed

    Zettel, Martha L; Zhu, Xiaoxia; O'Neill, William E; Frisina, Robert D

    2007-06-01

    Kv3.1b channel protein is widely distributed in the mammalian auditory brainstem, but studies have focused mainly on regions critical for temporal processing, including the medial nucleus of the trapezoid body (MNTB) and anteroventral cochlear nucleus (AVCN). Because temporal processing declines with age, this study was undertaken to determine if the expression of Kv3.1b likewise declines, and if changes are specific to these nuclei. Immunocytochemistry using an anti-Kv3.1b antibody was performed, and the relative optical density of cells and neuropil was determined from CBA/CaJ mice of four age groups. Declines in expression in AVCN, MNTB, and lateral superior olive (35, 26, and 23%) were found, but changes were limited to neuropil. Interestingly, cellular optical density declines were found in superior paraolivary nucleus, ventral nucleus of the trapezoid body, and lateral nucleus of the trapezoid body (24, 29, and 26%), which comprise the medial olivocochlear (MOC) feedback system. All declines occurred by middle age (15 months old). No age-related changes were found in the remaining regions of cochlear nucleus or in the inferior colliculus. Contralateral suppression of distortion-product otoacoustic emission amplitudes of age-matched littermates also declined by middle age, suggesting a correlation between Kv3.1 expression and MOC function. In search of more direct evidence for such a correlation, Kv3.1b knockout mice were examined. Knockouts show poor MOC function as compared to +/+ and +/- genotypes. Thus, Kv3.1b expression declines in MOC neurons by middle age, and these changes appear to correlate with functional declines in efferent activity in both middle-aged CBA mice and Kv3.1b knockout mice.

  19. Age-Related Changes in Cognitive Processing of Moral and Social Conventional Violations

    ERIC Educational Resources Information Center

    Lahat, Ayelet; Helwig, Charles C.; Zelazo, Philip David

    2012-01-01

    Moral and conventional violations are usually judged differently: Only moral violations are treated as independent of social rules. To investigate the cognitive processing involved in the development of this distinction, undergraduates (N = 34), adolescents (N = 34), and children (N = 14) read scenarios presented on a computer that had 1 of 3…

  20. Decreased recall of primacy words predicts cognitive decline.

    PubMed

    Bruno, Davide; Reiss, Philip T; Petkova, Eva; Sidtis, John J; Pomara, Nunzio

    2013-03-01

    One of the cognitive changes associated with Alzheimer's disease is a diminution of the primacy effect, i.e., the tendency toward better recall of items studied early on a list compared with the rest. We examined whether learning and recall of primacy words predicted subsequent cognitive decline in 204 elderly subjects who were non-demented and cognitively intact when first examined. Our results show that poorer primacy performance in the Rey Auditory Verbal Learning Test delayed recall trials, but not in immediate recall trials, is an effective predictor of subsequent decline in general cognitive function. This pattern of performance can be interpreted as evidence that failure to consolidate primacy items is a marker of cognitive decline.

  1. Slowing Down: Age-Related Neurobiological Predictors of Processing Speed

    PubMed Central

    Eckert, Mark A.

    2011-01-01

    Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging. PMID:21441995

  2. TDP-43 Pathology, Cognitive Decline, and Dementia in Old Age

    PubMed Central

    Wilson, Robert S.; Yu, Lei; Trojanowski, John Q.; Chen, Er-Yun; Boyle, Patricia A.; Bennett, David A.; Schneider, Julie A.

    2013-01-01

    Importance Cognitive decline is a leading cause of disability and death in old age but its neurobiological bases are not well understood. Objective To test the hypothesis that transactive response DNA-binding protein 43 (TDP-43) is related to late life cognitive decline. Design Longitudinal clinical-pathologic cohort study. Setting More than 40 Catholic groups across the United States. Participants A total of 130 older Catholic nuns, priests, and monks underwent annual clinical evaluations, including detailed cognitive testing, for a mean of 10.1 years prior to death. On neuropathologic examination, we collected semiquantitative measures of TDP-43 pathology, density of neuronal neurofibrillary tangles, area occupied by amyloid-beta plaques, and the presence of alpha-synuclein Lewy bodies from multiple brain regions. Gross and microscopic cerebral infarcts and hippocampal sclerosis were also identified. Main Outcome Measure Annual rate of change in a previously established composite measure of global cognition during a mean of 10.1 years of annual observation before death. Results TDP-43 pathology ranging from sparse to severe was identified in 46% of participants and was associated with amyloid plaques, tangles, and hippocampal sclerosis but not neocortical Lewy bodies or cerebral infarcts. After controlling for amyloid plaques, tangles, and hippocampal sclerosis, TDP-43 pathology was associated with more rapid cognitive decline and accounted for nearly as much of the variability in rates of global cognitive decline as did tangles. TDP-43 pathology had a distinct cognitive profile that differed from other neuropathologic processes (related to decline in episodic and working memory but not in other cognitive domains), and it was elevated in those who developed dementia but not in those with mild cognitive impairment. Conclusion The results suggest that TDP-43 is an important brain pathology underlying cognitive decline and dementia in old age. PMID:24080705

  3. Rapamycin increases grip strength and attenuates age-related decline in maximal running distance in old low capacity runner rats

    PubMed Central

    Xue, Qian-Li; Yang, Huanle; Li, Hui-Fen; Abadir, Peter M.; Burks, Tyesha N.; Koch, Lauren G.; Britton, Steven L.; Carlson, Joshua; Chen, Laura; Walston, Jeremy D.; Leng, Sean X.

    2016-01-01

    Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p<.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p<.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans. PMID:26997106

  4. The Role of RFamide-Related Peptide-3 in Age-Related Reproductive Decline in Female Rats

    PubMed Central

    Geraghty, Anna C.; Muroy, Sandra E.; Kriegsfeld, Lance J.; Bentley, George E.; Kaufer, Daniela

    2016-01-01

    Reproductive senescence, the point in time when females cease to show estrous cyclicity, is associated with endocrine changes in the hypothalamus, pituitary, and gonads. However, the mechanisms triggering this transition are not well understood. To gain a better understanding of the top-down control of the transition from reproductive competence to a state of reproductive senescence, we investigated middle-aged female rats exhibiting varying degrees of reproductive decline, including individuals with normal cycles, irregular cycles, and complete cessation of cycles. We identified hormonal changes in the brain that manifest before ovarian cycles exhibit any deterioration. We found that females exhibit an increase in RFamide-related peptide-3 (RFRP3) mRNA expression in the hypothalamus in middle age prior to changes in estrous cycle length. This increase is transient and followed by subsequent decreases in kisspeptin (KiSS1) and gonadotropin-releasing hormone (GnRH) mRNA expression. Expression of RFRP3 and its receptor also increased locally in the ovaries with advancing age. While it is well known that aging is associated with decreased GnRH release and downstream disruption of the hypothalamic–pituitary–gonadal (HPG) axis, herein, we provide evidence that reproductive senescence is likely triggered by alterations in a network of regulatory neuropeptides upstream of the GnRH system. PMID:27445974

  5. The Role of RFamide-Related Peptide-3 in Age-Related Reproductive Decline in Female Rats.

    PubMed

    Geraghty, Anna C; Muroy, Sandra E; Kriegsfeld, Lance J; Bentley, George E; Kaufer, Daniela

    2016-01-01

    Reproductive senescence, the point in time when females cease to show estrous cyclicity, is associated with endocrine changes in the hypothalamus, pituitary, and gonads. However, the mechanisms triggering this transition are not well understood. To gain a better understanding of the top-down control of the transition from reproductive competence to a state of reproductive senescence, we investigated middle-aged female rats exhibiting varying degrees of reproductive decline, including individuals with normal cycles, irregular cycles, and complete cessation of cycles. We identified hormonal changes in the brain that manifest before ovarian cycles exhibit any deterioration. We found that females exhibit an increase in RFamide-related peptide-3 (RFRP3) mRNA expression in the hypothalamus in middle age prior to changes in estrous cycle length. This increase is transient and followed by subsequent decreases in kisspeptin (KiSS1) and gonadotropin-releasing hormone (GnRH) mRNA expression. Expression of RFRP3 and its receptor also increased locally in the ovaries with advancing age. While it is well known that aging is associated with decreased GnRH release and downstream disruption of the hypothalamic-pituitary-gonadal (HPG) axis, herein, we provide evidence that reproductive senescence is likely triggered by alterations in a network of regulatory neuropeptides upstream of the GnRH system.

  6. The Role of RFamide-Related Peptide-3 in Age-Related Reproductive Decline in Female Rats.

    PubMed

    Geraghty, Anna C; Muroy, Sandra E; Kriegsfeld, Lance J; Bentley, George E; Kaufer, Daniela

    2016-01-01

    Reproductive senescence, the point in time when females cease to show estrous cyclicity, is associated with endocrine changes in the hypothalamus, pituitary, and gonads. However, the mechanisms triggering this transition are not well understood. To gain a better understanding of the top-down control of the transition from reproductive competence to a state of reproductive senescence, we investigated middle-aged female rats exhibiting varying degrees of reproductive decline, including individuals with normal cycles, irregular cycles, and complete cessation of cycles. We identified hormonal changes in the brain that manifest before ovarian cycles exhibit any deterioration. We found that females exhibit an increase in RFamide-related peptide-3 (RFRP3) mRNA expression in the hypothalamus in middle age prior to changes in estrous cycle length. This increase is transient and followed by subsequent decreases in kisspeptin (KiSS1) and gonadotropin-releasing hormone (GnRH) mRNA expression. Expression of RFRP3 and its receptor also increased locally in the ovaries with advancing age. While it is well known that aging is associated with decreased GnRH release and downstream disruption of the hypothalamic-pituitary-gonadal (HPG) axis, herein, we provide evidence that reproductive senescence is likely triggered by alterations in a network of regulatory neuropeptides upstream of the GnRH system. PMID:27445974

  7. Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS.

    PubMed

    Xie, Fang; Zhang, Jiu-Cong; Fu, Han; Chen, Jun

    2013-11-01

    It has been shown that aging can greatly influence the integrity and ultrastructure of white matter and the myelin sheath; however, studies regarding the effects of aging on the expression of myelin proteins are still limited. In the present study, immunohistochemical mapping was used to investigate the overall expression of myelin basic protein (Mbp) and myelin oligodendrocyte glycoprotein (Mog) in the central nervous system (CNS) of rats in postnatal months 2, 5, 18 and 26. Astrocyte and microglia activation was also detected by glial fibrillary acidic protein (GFAP) or ionized calcium-binding adaptor molecule 1 (Iba1) staining and western blotting. A significant decline of Mbp and Mog was identified as a universal alteration in the CNS of aged rats. Aging also induced significant astrocyte and microglial activation. Correlation analysis indicated a negative correlation between the reduction of age‑related myelin proteins and glial activation in aging. This correlation of myelin breakdown and glial activation in aging may reveal new evidence in connecting the inflammation and myelin breakdown mechanism of age‑related neurodegenerative diseases.

  8. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  9. Obesity and cognitive decline: role of inflammation and vascular changes

    PubMed Central

    Nguyen, Jason C. D.; Killcross, A. Simon; Jenkins, Trisha A.

    2014-01-01

    The incidence of obesity in middle age is increasing markedly, and in parallel the prevalence of metabolic disorders including cardiovascular disease and type II diabetes is also rising. Numerous studies have demonstrated that both obesity and metabolic disorders are associated with poorer cognitive performance, cognitive decline, and dementia. In this review we discuss the effects of obesity on cognitive performance, including both clinical and preclinical observations, and discuss some of the potential mechanisms involved, namely inflammation and vascular and metabolic alterations. PMID:25477778

  10. Sex Differences in Age-Related Decline of Urinary Insulin-Like Growth Factor-Binding Protein-3 Levels in Adult Bonobos and Chimpanzees

    PubMed Central

    Behringer, Verena; Wudy, Stefan A.; Blum, Werner F.; Stevens, Jeroen M. G.; Remer, Thomas; Boesch, Christophe; Hohmann, Gottfried

    2016-01-01

    There is increasing interest in the characterization of normative senescence in humans. To assess to what extent aging patterns in humans are unique, comparative data from closely related species, such as non-human primates, can be very useful. Here, we use data from bonobos and chimpanzees, two closely related species that share a common ancestor with humans, to explore physiological markers that are indicative of aging processes. Many studies on aging in humans focus on the somatotropic axis, consisting of growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding proteins (IGFBPs). In humans, IGFBP-3 levels decline steadily with increasing age. We used urinary IGFBP-3 levels as an alternative endocrine marker for IGF-I to identify the temporal pattern known to be related with age-related changes in cell proliferation, growth, and apoptosis. We measured urinary IGFBP-3 levels in samples from 71 bonobos and 102 chimpanzees. Focusing on samples from individuals aged 10 years or older, we found that urinary IGFBP-3 levels decline in both ape species with increasing age. However, in both species, females start with higher urinary IGFBP-3 levels than males, experience a steeper decline with increasing age, and converge with male levels around the age of 30–35 years. Our measurements of urinary IGFBP-3 levels indicate that bonobos and chimpanzees mirror human patterns of age-related decline in IGFBP-3 in older individuals (<10 years) of both sexes. Moreover, such as humans, both ape species show sex-specific differences in IGFBP-3 levels with females having higher levels than males, a result that correlates with sex differences in life expectancy. Using changes in urinary IGFBP-3 levels as a proxy for changes in GH and IGF-I levels that mark age-related changes in cell proliferation, this approach provides an opportunity to investigate trade-offs in life-history strategies in cross-sectional and in longitudinal studies, both in captivity and in

  11. Sex Differences in Age-Related Decline of Urinary Insulin-Like Growth Factor-Binding Protein-3 Levels in Adult Bonobos and Chimpanzees.

    PubMed

    Behringer, Verena; Wudy, Stefan A; Blum, Werner F; Stevens, Jeroen M G; Remer, Thomas; Boesch, Christophe; Hohmann, Gottfried

    2016-01-01

    There is increasing interest in the characterization of normative senescence in humans. To assess to what extent aging patterns in humans are unique, comparative data from closely related species, such as non-human primates, can be very useful. Here, we use data from bonobos and chimpanzees, two closely related species that share a common ancestor with humans, to explore physiological markers that are indicative of aging processes. Many studies on aging in humans focus on the somatotropic axis, consisting of growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding proteins (IGFBPs). In humans, IGFBP-3 levels decline steadily with increasing age. We used urinary IGFBP-3 levels as an alternative endocrine marker for IGF-I to identify the temporal pattern known to be related with age-related changes in cell proliferation, growth, and apoptosis. We measured urinary IGFBP-3 levels in samples from 71 bonobos and 102 chimpanzees. Focusing on samples from individuals aged 10 years or older, we found that urinary IGFBP-3 levels decline in both ape species with increasing age. However, in both species, females start with higher urinary IGFBP-3 levels than males, experience a steeper decline with increasing age, and converge with male levels around the age of 30-35 years. Our measurements of urinary IGFBP-3 levels indicate that bonobos and chimpanzees mirror human patterns of age-related decline in IGFBP-3 in older individuals (<10 years) of both sexes. Moreover, such as humans, both ape species show sex-specific differences in IGFBP-3 levels with females having higher levels than males, a result that correlates with sex differences in life expectancy. Using changes in urinary IGFBP-3 levels as a proxy for changes in GH and IGF-I levels that mark age-related changes in cell proliferation, this approach provides an opportunity to investigate trade-offs in life-history strategies in cross-sectional and in longitudinal studies, both in captivity and in the

  12. Sex Differences in Age-Related Decline of Urinary Insulin-Like Growth Factor-Binding Protein-3 Levels in Adult Bonobos and Chimpanzees.

    PubMed

    Behringer, Verena; Wudy, Stefan A; Blum, Werner F; Stevens, Jeroen M G; Remer, Thomas; Boesch, Christophe; Hohmann, Gottfried

    2016-01-01

    There is increasing interest in the characterization of normative senescence in humans. To assess to what extent aging patterns in humans are unique, comparative data from closely related species, such as non-human primates, can be very useful. Here, we use data from bonobos and chimpanzees, two closely related species that share a common ancestor with humans, to explore physiological markers that are indicative of aging processes. Many studies on aging in humans focus on the somatotropic axis, consisting of growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding proteins (IGFBPs). In humans, IGFBP-3 levels decline steadily with increasing age. We used urinary IGFBP-3 levels as an alternative endocrine marker for IGF-I to identify the temporal pattern known to be related with age-related changes in cell proliferation, growth, and apoptosis. We measured urinary IGFBP-3 levels in samples from 71 bonobos and 102 chimpanzees. Focusing on samples from individuals aged 10 years or older, we found that urinary IGFBP-3 levels decline in both ape species with increasing age. However, in both species, females start with higher urinary IGFBP-3 levels than males, experience a steeper decline with increasing age, and converge with male levels around the age of 30-35 years. Our measurements of urinary IGFBP-3 levels indicate that bonobos and chimpanzees mirror human patterns of age-related decline in IGFBP-3 in older individuals (<10 years) of both sexes. Moreover, such as humans, both ape species show sex-specific differences in IGFBP-3 levels with females having higher levels than males, a result that correlates with sex differences in life expectancy. Using changes in urinary IGFBP-3 levels as a proxy for changes in GH and IGF-I levels that mark age-related changes in cell proliferation, this approach provides an opportunity to investigate trade-offs in life-history strategies in cross-sectional and in longitudinal studies, both in captivity and in the

  13. Sex Differences in Age-Related Decline of Urinary Insulin-Like Growth Factor-Binding Protein-3 Levels in Adult Bonobos and Chimpanzees

    PubMed Central

    Behringer, Verena; Wudy, Stefan A.; Blum, Werner F.; Stevens, Jeroen M. G.; Remer, Thomas; Boesch, Christophe; Hohmann, Gottfried

    2016-01-01

    There is increasing interest in the characterization of normative senescence in humans. To assess to what extent aging patterns in humans are unique, comparative data from closely related species, such as non-human primates, can be very useful. Here, we use data from bonobos and chimpanzees, two closely related species that share a common ancestor with humans, to explore physiological markers that are indicative of aging processes. Many studies on aging in humans focus on the somatotropic axis, consisting of growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding proteins (IGFBPs). In humans, IGFBP-3 levels decline steadily with increasing age. We used urinary IGFBP-3 levels as an alternative endocrine marker for IGF-I to identify the temporal pattern known to be related with age-related changes in cell proliferation, growth, and apoptosis. We measured urinary IGFBP-3 levels in samples from 71 bonobos and 102 chimpanzees. Focusing on samples from individuals aged 10 years or older, we found that urinary IGFBP-3 levels decline in both ape species with increasing age. However, in both species, females start with higher urinary IGFBP-3 levels than males, experience a steeper decline with increasing age, and converge with male levels around the age of 30–35 years. Our measurements of urinary IGFBP-3 levels indicate that bonobos and chimpanzees mirror human patterns of age-related decline in IGFBP-3 in older individuals (<10 years) of both sexes. Moreover, such as humans, both ape species show sex-specific differences in IGFBP-3 levels with females having higher levels than males, a result that correlates with sex differences in life expectancy. Using changes in urinary IGFBP-3 levels as a proxy for changes in GH and IGF-I levels that mark age-related changes in cell proliferation, this approach provides an opportunity to investigate trade-offs in life-history strategies in cross-sectional and in longitudinal studies, both in captivity and in

  14. Active cognitive lifestyle associates with cognitive recovery and a reduced risk of cognitive decline.

    PubMed

    Marioni, Riccardo E; van den Hout, Ardo; Valenzuela, Michael J; Brayne, Carol; Matthews, Fiona E

    2012-01-01

    Education and lifestyle factors linked with complex mental activity are thought to affect the progression of cognitive decline. Collectively, these factors can be combined to create a cognitive reserve or cognitive lifestyle score. This study tested the association between cognitive lifestyle score and cognitive change in a population-based cohort of older persons from five sites across England and Wales. Data came from 13,004 participants of the Medical Research Council Cognitive Function and Ageing Study who were aged 65 years and over. Cognition was assessed at multiple waves over 16 years using the Mini-Mental State Examination. Subjects were grouped into four cognitive states (no impairment, slight impairment, moderate impairment, severe impairment) and cognitive lifestyle score was assessed as a composite measure of education, mid-life occupation, and current social engagement. A multi-state model was used to test the effect of cognitive lifestyle score on cognitive transitions. Hazard ratios for cognitive lifestyle score showed significant differences between those in the upper compared to the lower tertile with a more active cognitive lifestyle associating with: a decreased risk of moving from no to slight impairment (0.58, 95% CI (0.45, 0.74)); recovery from a slightly impaired state back to a non-impaired state (2.93 (1.35, 6.38)); but an increased mortality risk from a severely impaired state (1.28 (1.12, 1.45)). An active cognitive lifestyle is associated with a more favorable cognitive trajectory in older persons. Future studies would ideally incorporate neuroradiological and neuropathological data to determine if there is causal evidence for these associations. PMID:21971400

  15. Fetuin-A, a New Vascular Biomarker of Cognitive Decline in Older Adults

    PubMed Central

    Laughlin, Gail A; McEvoy, Linda K.; Barrett-Connor, Elizabeth; Daniels, Lori B.; Ix, Joachim H.

    2014-01-01

    Objectives Fetuin-A is an abundant plasma protein known to predict vascular disease. Fetuin-A levels are lower in patients with Alzheimer’s disease in proportion to the severity of cognitive impairment, but their association with normal cognitive aging is unknown. We evaluated the association of serum fetuin-A levels with cognitive function in community-dwelling older adults. Design/Patients/Measurements A population-based study of 1382 older adults (median age 75) who had plasma fetuin-A levels and cognitive function evaluated in 1992–96; 855 had repeat cognitive function assessment a median of 4 years later. Results Adjusting for age, sex, education, and depression, higher levels of fetuin-A were associated with better baseline performance on the Mini-Mental Status Exam (MMSE) (P=0.012) and a tendency for better Trails Making B scores (P=0.066). In longitudinal analyses, the likelihood of a major decline (highest decile of change) in Trails B was 29% lower (P=0.010) for each SD higher baseline fetuin-A level; odds of major decline in MMSE was 42% lower (P=0.005) per SD higher fetuin-A for individuals with no known CVD, but were not related to fetuin-A in those with CVD (P=0.33). Fetuin-A was not related to Category Fluency performance. Results were independent of multiple vascular risk factors and comorbid conditions. Conclusions Higher plasma fetuin-A concentrations are associated with better performance on tests of global cognitive function and executive function and with less likelihood of major decline in these cognitive abilities over a 4-year period. Fetuin-A may serve as a biological link between vascular disease and normal age-related cognitive decline. PMID:24325554

  16. [Cognitive decline in elderly individuals with type 2 diabetes mellitus].

    PubMed

    Sakurai, Takashi

    2013-11-01

    Cognitive decline in diabetes impairs the activity of daily living and shortens the healthy life expectancy. Once diabetes is accompanied by demented disorders, it becomes difficult to achieve good control of diabetes. Treatment for diabetes and demented disease should be provided concomitantly, because cognitive dysfunction worsens diabetic control and hyperglycemia worsens cognitive function vice versa, resulting in increased risks of acute metabolic failure. Compliance to medical treatment of diabetes is seriously impaired in the elderly with cognitive decline. Comprehensive approach with several medical specialists and care stuffs is thus needed. This manuscript briefly summaries the recent evidence for target of glycemic control and appropriate use of anti-diabetic medication in diabetic elderly with cognitive impairment.

  17. Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline.

    PubMed

    Frick, Karyn M

    2012-02-01

    A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17β-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women.

  18. Building a better hormone therapy?: How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline

    PubMed Central

    Frick, Karyn M.

    2012-01-01

    A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17β-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women. PMID:22289043

  19. Clinical Report: Cognitive decline in a patient with Cardiofaciocutaneous syndrome.

    PubMed

    Cabrera, Sergio; Morel, Chantal; Tartaglia, Maria Carmela

    2016-05-01

    Cardiofaciocutaneous Syndrome (CFCS) is a rare genetic syndrome caused by mutations in one of four genes: BRAF, MAP2K1, MAP2K2, and KRAS. There is tremendous phenotypic heterogeneity in patients with CFCS and so confirmation of diagnosis requires genetic testing. Neurologic and/or cognitive symptoms are present in almost all CFCS individuals. Little is known about cognitive function in older patients with CFCS. In this report, we present the cognitive, neuropsychiatric, and imaging findings of a patient diagnosed with CFCS who after having remained stable developed progressive cognitive/behavioral and motor decline.

  20. Quantitative EEG and Cognitive Decline in Parkinson's Disease.

    PubMed

    Cozac, Vitalii V; Gschwandtner, Ute; Hatz, Florian; Hardmeier, Martin; Rüegg, Stephan; Fuhr, Peter

    2016-01-01

    Cognitive decline is common with the progression of Parkinson's disease (PD). Different candidate biomarkers are currently studied for the risk of dementia in PD. Several studies have shown that quantitative EEG (QEEG) is a promising predictor of PD-related cognitive decline. In this paper we briefly outline the basics of QEEG analysis and analyze the recent publications addressing the predictive value of QEEG in the context of cognitive decline in PD. The MEDLINE database was searched for relevant publications from January 01, 2005, to March 02, 2015. Twenty-four studies reported QEEG findings in various cognitive states in PD. Spectral and connectivity markers of QEEG could help to discriminate between PD patients with different level of cognitive decline. QEEG variables correlate with tools for cognitive assessment over time and are associated with significant hazard ratios to predict PD-related dementia. QEEG analysis shows high test-retest reliability and avoids learning effects associated with some neuropsychological testing; it is noninvasive and relatively easy to repeat.

  1. Infectious Burden and Cognitive Decline in the Northern Manhattan Study

    PubMed Central

    Wright, Clinton B.; Gardener, Hannah; Dong, Chuanhui; Yoshita, Mitsuhiro; DeCarli, Charles; Sacco, Ralph L.; Stern, Yaakov; Elkind, Mitchell S.V.

    2016-01-01

    Objectives To determine whether infectious burden (IB) is associated with worse performance and decline on a battery of neuropsychological tests. Design Prospective cohort study (Northern Manhattan Study (NOMAS)). Setting Community. Participants A subsample of 588 stroke-free NOMAS participants with IB and cognitive data (mean age 71±8, 62% female, 14% white, 16% black, 70% Hispanic) and 419 with repeat cognitive testing. Measurements Samples used for IB data were collected at baseline. Two waves of neurocognitive assessments occurred during follow-up. Participants underwent a neuropsychological battery and had repeated testing (mean time span 6±2 years). Using factor analysis–derived domain-specific Z scores for language, memory, executive function, and processing speed, associations between a quantitative stroke risk-weighted IB index (IBI), based on five common infections (Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus, herpes simplex viruses 1 and 2), and cognitive performance and decline in each domain was examined. Results Adjusting for demographic characteristics, socioeconomic status, crystallized cognitive abilities, and vascular risk factors, the IBI was inversely associated with executive function at baseline (beta=−0.10, p=.01) but not with baseline language, memory, or processing speed performance in adjusted analyses. The IBI was associated with cognitive decline in the memory domain, adjusting for demographic and vascular risk factors (p=.02). Conclusion A quantitative measure of IB explained variability in baseline executive function performance and associated with decline in memory. Past exposure to common infections may contribute to vascular cognitive impairment and warrants further study. PMID:26289683

  2. Quantitative EEG and Cognitive Decline in Parkinson's Disease

    PubMed Central

    Cozac, Vitalii V.; Gschwandtner, Ute; Hatz, Florian; Hardmeier, Martin; Rüegg, Stephan

    2016-01-01

    Cognitive decline is common with the progression of Parkinson's disease (PD). Different candidate biomarkers are currently studied for the risk of dementia in PD. Several studies have shown that quantitative EEG (QEEG) is a promising predictor of PD-related cognitive decline. In this paper we briefly outline the basics of QEEG analysis and analyze the recent publications addressing the predictive value of QEEG in the context of cognitive decline in PD. The MEDLINE database was searched for relevant publications from January 01, 2005, to March 02, 2015. Twenty-four studies reported QEEG findings in various cognitive states in PD. Spectral and connectivity markers of QEEG could help to discriminate between PD patients with different level of cognitive decline. QEEG variables correlate with tools for cognitive assessment over time and are associated with significant hazard ratios to predict PD-related dementia. QEEG analysis shows high test-retest reliability and avoids learning effects associated with some neuropsychological testing; it is noninvasive and relatively easy to repeat. PMID:27148466

  3. Can Training in a Real-Time Strategy Videogame Attenuate Cognitive Decline in Older Adults?

    PubMed Central

    Basak, Chandramallika; Boot, Walter R.; Voss, Michelle W.; Kramer, Arthur F.

    2014-01-01

    Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. Yet, recent research indicates that videogame training of young adults may engender broad transfer to skills of visual attention. In the current study, we used a real-time strategy videogame to attempt to train executive functions in older adults, such as working memory, task switching, short-term memory, inhibition, and reasoning. Older adults were either trained in a real-time strategy videogame for 23.5 hours (RON, n=20) or not (CONTROLS, n=20). A battery of cognitive tasks, including tasks of executive control and visuo-spatial skills, were assessed before, during, and after video game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the controls in a subset of the cognitive tasks, such as task switching, working memory, visual short term memory, and mental rotation. Trends in improvement were also observed, for the video game trainees, in inhibition and reasoning. Individual differences in changes in game performance were correlated with improvements in task-switching. The study has implications for the enhancement of executive control processes of older adults. PMID:19140648

  4. Quantitative T2 mapping of white matter: applications for ageing and cognitive decline.

    PubMed

    Knight, Michael J; McCann, Bryony; Tsivos, Demitra; Dillon, Serena; Coulthard, Elizabeth; Kauppinen, Risto A

    2016-08-01

    In MRI, the coherence lifetime T2 is sensitive to the magnetic environment imposed by tissue microstructure and biochemistry in vivo. Here we explore the possibility that the use of T2 relaxometry may provide information complementary to that provided by diffusion tensor imaging (DTI) in ageing of healthy controls (HC), Alzheimer's disease (AD) and mild cognitive impairment (MCI). T2 and diffusion MRI metrics were quantified in HC and patients with MCI and mild AD using multi-echo MRI and DTI. We used tract-based spatial statistics (TBSS) to evaluate quantitative MRI parameters in white matter (WM). A prolonged T2 in WM was associated with AD, and able to distinguish AD from MCI, and AD from HC. Shorter WM T2 was associated with better cognition and younger age in general. In no case was a reduction in T2 associated with poorer cognition. We also applied principal component analysis, showing that WM volume changes independently of  T2, MRI diffusion indices and cognitive performance indices. Our data add to the evidence that age-related and AD-related decline in cognition is in part attributable to WM tissue state, and much less to WM quantity. These observations suggest that WM is involved in AD pathology, and that T2 relaxometry is a potential imaging modality for detecting and characterising WM in cognitive decline and dementia. PMID:27384985

  5. Quantitative T2 mapping of white matter: applications for ageing and cognitive decline

    NASA Astrophysics Data System (ADS)

    Knight, Michael J.; McCann, Bryony; Tsivos, Demitra; Dillon, Serena; Coulthard, Elizabeth; Kauppinen, Risto A.

    2016-08-01

    In MRI, the coherence lifetime T2 is sensitive to the magnetic environment imposed by tissue microstructure and biochemistry in vivo. Here we explore the possibility that the use of T2 relaxometry may provide information complementary to that provided by diffusion tensor imaging (DTI) in ageing of healthy controls (HC), Alzheimer’s disease (AD) and mild cognitive impairment (MCI). T2 and diffusion MRI metrics were quantified in HC and patients with MCI and mild AD using multi-echo MRI and DTI. We used tract-based spatial statistics (TBSS) to evaluate quantitative MRI parameters in white matter (WM). A prolonged T2 in WM was associated with AD, and able to distinguish AD from MCI, and AD from HC. Shorter WM T2 was associated with better cognition and younger age in general. In no case was a reduction in T2 associated with poorer cognition. We also applied principal component analysis, showing that WM volume changes independently of  T2, MRI diffusion indices and cognitive performance indices. Our data add to the evidence that age-related and AD-related decline in cognition is in part attributable to WM tissue state, and much less to WM quantity. These observations suggest that WM is involved in AD pathology, and that T2 relaxometry is a potential imaging modality for detecting and characterising WM in cognitive decline and dementia.

  6. Combined effects of physical exercise and education on age-related cortical thinning in cognitively normal individuals

    PubMed Central

    Lee, Jin San; Shin, Hee Young; Kim, Hee Jin; Jang, Young Kyoung; Jung, Na-Yeon; Lee, Juyoun; Kim, Yeo Jin; Chun, Phillip; Yang, Jin-Ju; Lee, Jong-Min; Kang, Mira; Park, Key-Chung; Na, Duk L.; Seo, Sang Won

    2016-01-01

    We investigated the association between self-reported physical exercise and cortical thickness in a large sample of cognitively normal individuals. We also determined whether a combination of physical exercise and education had more protective effects on age-related cortical thinning than either parameter alone. A total of 1,842 participants were included in this analysis. Physical exercise was assessed using a questionnaire regarding intensity, frequency, and duration. Cortical thickness was measured using a surface-based method. Longer duration of exercise (≥1 hr/day), but not intensity or frequency, was associated with increased mean cortical thickness globally (P-value = 0.013) and in the frontal regions (P-value = 0.007). In particular, the association of exercise with cortical thinning had regional specificity in the bilateral dorsolateral prefrontal, precuneus, left postcentral, and inferior parietal regions. The combination of higher exercise level and higher education level showed greater global and frontal mean thickness than either parameter alone. Testing for a trend with the combination of high exercise level and high education level confirmed this finding (P-value = 0.001–0.003). Our findings suggest that combined exercise and education have important implications for brain health, especially considering the paucity of known protective factors for age-related cortical thinning. PMID:27063336

  7. Rapid cognitive decline: not always Creutzfeldt-Jakob disease.

    PubMed

    Randall, A; Ellis, R; Hywel, B; Davies, R R; Alusi, S H; Larner, A J

    2015-01-01

    A patient with rapidly progressive cognitive decline over an approximately four month period was suspected to have sporadic Creutzfeldt-Jakob disease. Features thought to support this diagnosis included psychiatric symptoms (anxiety and depression), visual hallucinations and a visual field defect. However, the finding of papilloedema broadened the differential diagnosis. Although standard brain imaging and electroencephalography had shown only non-specific abnormalities, subsequent cerebral angiography disclosed an intracranial dural arteriovenous fistula. Following embolisation, the patient made a good functional recovery. Intracranial dural arteriovenous fistula merits consideration in any patient with subacute cognitive decline, and should be included in the differential diagnosis of sporadic Creutzfeldt-Jakob disease. PMID:26517100

  8. Cognitive Decline in Older Persons Initiating Anticholinergic Medications

    PubMed Central

    Shah, Raj C.; Janos, Alicia L.; Kline, Julia E.; Yu, Lei; Leurgans, Sue E.; Wilson, Robert S.; Wei, Peter; Bennett, David A.; Heilman, Kenneth M.; Tsao, Jack W.

    2013-01-01

    Background This study examines the effect of initiating medications with anticholinergic activity on the cognitive functions of older persons. Methods Participants were 896 older community-dwelling, Catholic clergy without baseline dementia. Medication data was collected annually. The Anticholinergic Cognitive Burden Scale was utilized to identify use of a medication with probable or definite anticholinergic activity. Participants had at least two annual cognitive evaluations. Results Over a mean follow-up of 10 years, the annual rate of global cognitive function decline for never users, prevalent users, and incident users was −0.062 (SE = 0.005), −0.081(SE = 0.011), and −0.096 (SE = 0.007) z-score units/year, respectively. Compared to never users, incident users had a more rapid decline (difference = −0.034 z-score units/year, SE = 0.008, p<0.001) while prevalent users did not have a significantly more rapid decline (p = 0.1). Conclusions Older persons initiating a medication with anticholinergic activity have a steeper annual decline in cognitive functioning than those who are not taking these medications. PMID:23741303

  9. A review of new insights on the association between hearing loss and cognitive decline in ageing.

    PubMed

    Fortunato, S; Forli, F; Guglielmi, V; De Corso, E; Paludetti, G; Berrettini, S; Fetoni, A R

    2016-06-01

    Age-related hearing loss (ARHL) has a multifactorial pathogenesis and it is an inevitable hearing impairment associated with reduction of communicative skills related to ageing. Increasing evidence has linked ARHL to more rapid progression of cognitive decline and incidental dementia. Many aspects of daily living of elderly people have been associated to hearing abilities, showing that hearing loss (HL) affects the quality of life, social relationships, motor skills, psychological aspects and function and morphology in specific brain areas. Epidemiological and clinical studies confirm the assumption of a relationship between these conditions. However, the mechanisms are still unclear and are reviewed herein. Long-term hearing deprivation of auditory inputs can impact cognitive performance by decreasing the quality of communication leading to social isolation and depression and facilitate dementia. On the contrary, the limited cognitive skills may reduce the cognitive resources available for auditory perception, increasing the effects of HL. In addition, hearing loss and cognitive decline may reflect a 'common cause' on the auditory pathway and brain. In fact, some pathogenetic factors are recongised in common microvascular disease factors such as diabetes, atherosclerosis and hypertension. Interdisciplinary efforts to investigate and address HL in the context of brain and cognitive ageing are needed. Surprisingly, few studies have been adressed on the effectiveness of hearing aids in changing the natural history of cognitive decline. Effective interventions with hearing aids or cochlear implant may improve social and emotional function, communication, cognitive function and positively impact quality of life. The aim of this review is to overview new insights on this challenging topic and provide new ideas for future research.

  10. A review of new insights on the association between hearing loss and cognitive decline in ageing.

    PubMed

    Fortunato, S; Forli, F; Guglielmi, V; De Corso, E; Paludetti, G; Berrettini, S; Fetoni, A R

    2016-06-01

    Age-related hearing loss (ARHL) has a multifactorial pathogenesis and it is an inevitable hearing impairment associated with reduction of communicative skills related to ageing. Increasing evidence has linked ARHL to more rapid progression of cognitive decline and incidental dementia. Many aspects of daily living of elderly people have been associated to hearing abilities, showing that hearing loss (HL) affects the quality of life, social relationships, motor skills, psychological aspects and function and morphology in specific brain areas. Epidemiological and clinical studies confirm the assumption of a relationship between these conditions. However, the mechanisms are still unclear and are reviewed herein. Long-term hearing deprivation of auditory inputs can impact cognitive performance by decreasing the quality of communication leading to social isolation and depression and facilitate dementia. On the contrary, the limited cognitive skills may reduce the cognitive resources available for auditory perception, increasing the effects of HL. In addition, hearing loss and cognitive decline may reflect a 'common cause' on the auditory pathway and brain. In fact, some pathogenetic factors are recongised in common microvascular disease factors such as diabetes, atherosclerosis and hypertension. Interdisciplinary efforts to investigate and address HL in the context of brain and cognitive ageing are needed. Surprisingly, few studies have been adressed on the effectiveness of hearing aids in changing the natural history of cognitive decline. Effective interventions with hearing aids or cochlear implant may improve social and emotional function, communication, cognitive function and positively impact quality of life. The aim of this review is to overview new insights on this challenging topic and provide new ideas for future research. PMID:27214827

  11. Neighborhood Integration and Connectivity Predict Cognitive Performance and Decline

    PubMed Central

    Watts, Amber; Ferdous, Farhana; Moore, Keith Diaz; Burns, Jeffrey M.

    2015-01-01

    Objective Neighborhood characteristics may be important for promoting walking, but little research has focused on older adults, especially those with cognitive impairment. We evaluated the role of neighborhood characteristics on cognitive function and decline over a 2-year period adjusting for measures of walking. Method In a study of 64 older adults with and without mild Alzheimer's disease (AD), we evaluated neighborhood integration and connectivity using geographical information systems data and space syntax analysis. In multiple regression analyses, we used these characteristics to predict 2-year declines in factor analytically derived cognitive scores (attention, verbal memory, mental status) adjusting for age, sex, education, and self-reported walking. Results Neighborhood integration and connectivity predicted cognitive performance at baseline, and changes in cognitive performance over 2 years. The relationships between neighborhood characteristics and cognitive performance were not fully explained by self-reported walking. Discussion Clearer definitions of specific neighborhood characteristics associated with walkability are needed to better understand the mechanisms by which neighborhoods may impact cognitive outcomes. These results have implications for measuring neighborhood characteristics, design and maintenance of living spaces, and interventions to increase walking among older adults. We offer suggestions for future research measuring neighborhood characteristics and cognitive function. PMID:26504889

  12. Hearing loss and cognitive decline in older adults.

    PubMed

    Lin, Frank R; Yaffe, Kristine; Xia, Jin; Xue, Qian-Li; Harris, Tamara B; Purchase-Helzner, Elizabeth; Satterfield, Suzanne; Ayonayon, Hilsa N; Ferrucci, Luigi; Simonsick, Eleanor M

    2013-02-25

    BACKGROUND Whether hearing loss is independently associated with accelerated cognitive decline in older adults is unknown. METHODS We studied 1984 older adults (mean age, 77.4 years) enrolled in the Health ABC Study, a prospective observational study begun in 1997-1998. Our baseline cohort consisted of participants without prevalent cognitive impairment (Modified Mini-Mental State Examination [3MS] score, ≥80) who underwent audiometric testing in year 5. Participants were followed up for 6 years. Hearing was defined at baseline using a pure-tone average of thresholds at 0.5 to 4 kHz in the better-hearing ear. Cognitive testing was performed in years 5, 8, 10, and 11 and consisted of the 3MS (measuring global function) and the Digit Symbol Substitution test (measuring executive function). Incident cognitive impairment was defined as a 3MS score of less than 80 or a decline in 3MS score of more than 5 points from baseline. Mixed-effects regression and Cox proportional hazards regression models were adjusted for demographic and cardiovascular risk factors. RESULTS In total, 1162 individuals with baseline hearing loss (pure-tone average >25 dB) had annual rates of decline in 3MS and Digit Symbol Substitution test scores that were 41% and 32% greater, respectively, than those among individuals with normal hearing. On the 3MS, the annual score changes were -0.65 (95% CI, -0.73 to -0.56) vs -0.46 (95% CI, -0.55 to -0.36) points per year (P = .004). On the Digit Symbol Substitution test, the annual score changes were -0.83 (95% CI, -0.94 to -0.73) vs -0.63 (95% CI, -0.75 to -0.51) points per year (P = .02). Compared to those with normal hearing, individuals with hearing loss at baseline had a 24% (hazard ratio, 1.24; 95% CI, 1.05-1.48) increased risk for incident cognitive impairment. Rates of cognitive decline and the risk for incident cognitive impairment were linearly associated with the severity of an individual's baseline hearing loss. CONCLUSIONS Hearing loss is

  13. Performances on a cognitive theory of mind task: specific decline or general cognitive deficits? Evidence from normal aging.

    PubMed

    Fliss, Rafika; Lemerre, Marion; Mollard, Audrey

    2016-06-01

    Compromised theory of mind (ToM) can be explained either by a failure to implement specific representational capacities (mental state representations) or by more general executive selection demands. In older adult populations, evidence supporting affected executive functioning and cognitive ToM in normal aging are reported. However, links between these two functions remain unclear. In the present paper, we address these shortcomings by using a specific task of ToM and classical executive tasks. We studied, using an original cognitive ToM task, the effect of age on ToM performances, in link with the progressive executive decline. 96 elderly participants were recruited. They were asked to perform a cognitive ToM task, and 5 executive tests (Stroop test and Hayling Sentence Completion Test to appreciate inhibitory process, Trail Making Test and Verbal Fluency for shifting assessment and backward span dedicated to estimate working memory capacity). The results show changes in cognitive ToM performance according to executive demands. Correlational studies indicate a significant relationship between ToM performance and the selected executive measures. Regression analyzes demonstrates that level of vocabulary and age as the best predictors of ToM performance. The results are consistent with the hypothesis that ToM deficits are related to age-related domain-general decline rather than as to a breakdown in specialized representational system. The implications of these findings for the nature of social cognition tests in normal aging are also discussed. PMID:27277154

  14. Performances on a cognitive theory of mind task: specific decline or general cognitive deficits? Evidence from normal aging.

    PubMed

    Fliss, Rafika; Lemerre, Marion; Mollard, Audrey

    2016-06-01

    Compromised theory of mind (ToM) can be explained either by a failure to implement specific representational capacities (mental state representations) or by more general executive selection demands. In older adult populations, evidence supporting affected executive functioning and cognitive ToM in normal aging are reported. However, links between these two functions remain unclear. In the present paper, we address these shortcomings by using a specific task of ToM and classical executive tasks. We studied, using an original cognitive ToM task, the effect of age on ToM performances, in link with the progressive executive decline. 96 elderly participants were recruited. They were asked to perform a cognitive ToM task, and 5 executive tests (Stroop test and Hayling Sentence Completion Test to appreciate inhibitory process, Trail Making Test and Verbal Fluency for shifting assessment and backward span dedicated to estimate working memory capacity). The results show changes in cognitive ToM performance according to executive demands. Correlational studies indicate a significant relationship between ToM performance and the selected executive measures. Regression analyzes demonstrates that level of vocabulary and age as the best predictors of ToM performance. The results are consistent with the hypothesis that ToM deficits are related to age-related domain-general decline rather than as to a breakdown in specialized representational system. The implications of these findings for the nature of social cognition tests in normal aging are also discussed.

  15. Both Financial and Cognitive Decline Predict Clinical Progression in MCI.

    PubMed

    Gerstenecker, Adam; Triebel, Kristen L; Martin, Roy; Snyder, Scott; Marson, Daniel C

    2016-01-01

    We investigated the roles of financial/functional and cognitive abilities in predicting clinical progression in patients with mild cognitive impairment (MCI). In a longitudinal sample of 51 patients with consensus conference diagnosed MCI likely due to Alzheimer disease (AD), two-year change scores were calculated for a performance measure of functional ability, cognitive variables, and 3 outcome measures used to track progression in neurological disorders. We examined patterns of financial and cognitive decline across the 2-year study period, and used these data and the 3 outcome variables to construct discrete predictor models of clinical progression in MCI. We found that both financial skills and cognitive abilities declined over the 2-year study period, were significantly associated with clinical progression, and contributed unique variance to all 3 predictor models. The resulting models accounted for 40% to 75% of variance in clinical progression across outcome variables. Taken together, our results indicate that changes in both cognitive abilities and higher order functional skills appear integral to understanding clinical progression in MCI likely due to AD. Specifically, declines in financial skills contribute unique variance to measures commonly used to track progression in neurological disorders associated with aging, and thus represent an important functional marker of clinical progression in prodromal AD.

  16. Postmortem MRI: a novel window into the neurobiology of late life cognitive decline.

    PubMed

    Dawe, Robert J; Yu, Lei; Leurgans, Sue E; Schneider, Julie A; Buchman, Aron S; Arfanakis, Konstantinos; Bennett, David A; Boyle, Patricia A

    2016-09-01

    This study tested the hypothesis that indices of brain tissue integrity derived from postmortem magnetic resonance imaging (MRI) are associated with late life decline in cognitive function and dementia, over and above contributions from common age-related neuropathologies. Cerebral hemispheres were obtained from 425 deceased older adults who had undergone 2 or more annual cognitive assessments, which included clinical diagnosis of dementia. Specimens underwent MRI to produce maps of transverse relaxation rate, R2. Voxelwise regression revealed brain regions where R2 was associated with cognitive decline. We then used random effects models to quantify the extent to which R2 accounted for variation in decline, after adjustment for demographics and neuropathologic indices of the 3 most common causes of dementia: Alzheimer's disease, cerebrovascular disease, and Lewy body disease. We additionally tested whether R2 was tied to greater likelihood of clinical diagnosis of Alzheimer's dementia using logistic regression models. During an average of 8.1 years, the mean rate of decline in global cognitive function was 0.13 unit per year (p < 0.0001). The tissue alteration most commonly related to decline was R2 slowing in white matter. Each unit decrease in R2 was associated with an additional 0.053-unit per year steepening of the rate of global cognitive decline (p < 0.001). Furthermore, R2 accounted for 8.4% of the variance in rate of global cognitive decline, above and beyond the 26.5% accounted for by demographics and neuropathologic indices, and 7.1%-11.2% of the variance of the decline rates in episodic, semantic, and working memory and perceptual speed. Alterations in R2 were also related to an increased odds of clinical diagnosis of Alzheimer's dementia (odds ratio = 2.000, 95% confidence interval 1.600, 2.604). Therefore, postmortem MRI indices of brain tissue integrity, particularly in white matter, are useful for elucidating the basis of late life cognitive

  17. Age-Related Cognitive Impairment as a Sign of Geriatric Neurocardiovascular Interactions: May Polyphenols Play a Protective Role?

    PubMed Central

    Jagla, Fedor; Pechanova, Olga

    2015-01-01

    It is known that endothelial dysfunction plays an important role in the development and progression of cardiovascular diseases implicated also in cognitive decline. Experimental studies pointed to the fact that the modification of NO levels via NOS activity may affect the blood pressure level as well as several higher nervous functions—for example, learning and memory. There are emerging evidences from in vitro and animal studies suggesting that polyphenols may potentially have a protective effect on the development of neurodegenerative diseases and may improve cognitive function as well as positively affecting the blood pressure regulatory mechanisms. This review accentuates the need for precisely defined clinically controlled studies as well as for use of adequate experimental procedures discriminating between the human higher brain functions and the only overall activation of the brain cortex. The physiological neurocardiovascular interactions are implicated in the increased healthy life span as well. PMID:26180593

  18. Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease.

    PubMed

    Allen, Genevera I; Amoroso, Nicola; Anghel, Catalina; Balagurusamy, Venkat; Bare, Christopher J; Beaton, Derek; Bellotti, Roberto; Bennett, David A; Boehme, Kevin L; Boutros, Paul C; Caberlotto, Laura; Caloian, Cristian; Campbell, Frederick; Chaibub Neto, Elias; Chang, Yu-Chuan; Chen, Beibei; Chen, Chien-Yu; Chien, Ting-Ying; Clark, Tim; Das, Sudeshna; Davatzikos, Christos; Deng, Jieyao; Dillenberger, Donna; Dobson, Richard J B; Dong, Qilin; Doshi, Jimit; Duma, Denise; Errico, Rosangela; Erus, Guray; Everett, Evan; Fardo, David W; Friend, Stephen H; Fröhlich, Holger; Gan, Jessica; St George-Hyslop, Peter; Ghosh, Satrajit S; Glaab, Enrico; Green, Robert C; Guan, Yuanfang; Hong, Ming-Yi; Huang, Chao; Hwang, Jinseub; Ibrahim, Joseph; Inglese, Paolo; Iyappan, Anandhi; Jiang, Qijia; Katsumata, Yuriko; Kauwe, John S K; Klein, Arno; Kong, Dehan; Krause, Roland; Lalonde, Emilie; Lauria, Mario; Lee, Eunjee; Lin, Xihui; Liu, Zhandong; Livingstone, Julie; Logsdon, Benjamin A; Lovestone, Simon; Ma, Tsung-Wei; Malhotra, Ashutosh; Mangravite, Lara M; Maxwell, Taylor J; Merrill, Emily; Nagorski, John; Namasivayam, Aishwarya; Narayan, Manjari; Naz, Mufassra; Newhouse, Stephen J; Norman, Thea C; Nurtdinov, Ramil N; Oyang, Yen-Jen; Pawitan, Yudi; Peng, Shengwen; Peters, Mette A; Piccolo, Stephen R; Praveen, Paurush; Priami, Corrado; Sabelnykova, Veronica Y; Senger, Philipp; Shen, Xia; Simmons, Andrew; Sotiras, Aristeidis; Stolovitzky, Gustavo; Tangaro, Sabina; Tateo, Andrea; Tung, Yi-An; Tustison, Nicholas J; Varol, Erdem; Vradenburg, George; Weiner, Michael W; Xiao, Guanghua; Xie, Lei; Xie, Yang; Xu, Jia; Yang, Hojin; Zhan, Xiaowei; Zhou, Yunyun; Zhu, Fan; Zhu, Hongtu; Zhu, Shanfeng

    2016-06-01

    Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer's disease. The Alzheimer's disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer's disease based on high dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance.

  19. Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease.

    PubMed

    Allen, Genevera I; Amoroso, Nicola; Anghel, Catalina; Balagurusamy, Venkat; Bare, Christopher J; Beaton, Derek; Bellotti, Roberto; Bennett, David A; Boehme, Kevin L; Boutros, Paul C; Caberlotto, Laura; Caloian, Cristian; Campbell, Frederick; Chaibub Neto, Elias; Chang, Yu-Chuan; Chen, Beibei; Chen, Chien-Yu; Chien, Ting-Ying; Clark, Tim; Das, Sudeshna; Davatzikos, Christos; Deng, Jieyao; Dillenberger, Donna; Dobson, Richard J B; Dong, Qilin; Doshi, Jimit; Duma, Denise; Errico, Rosangela; Erus, Guray; Everett, Evan; Fardo, David W; Friend, Stephen H; Fröhlich, Holger; Gan, Jessica; St George-Hyslop, Peter; Ghosh, Satrajit S; Glaab, Enrico; Green, Robert C; Guan, Yuanfang; Hong, Ming-Yi; Huang, Chao; Hwang, Jinseub; Ibrahim, Joseph; Inglese, Paolo; Iyappan, Anandhi; Jiang, Qijia; Katsumata, Yuriko; Kauwe, John S K; Klein, Arno; Kong, Dehan; Krause, Roland; Lalonde, Emilie; Lauria, Mario; Lee, Eunjee; Lin, Xihui; Liu, Zhandong; Livingstone, Julie; Logsdon, Benjamin A; Lovestone, Simon; Ma, Tsung-Wei; Malhotra, Ashutosh; Mangravite, Lara M; Maxwell, Taylor J; Merrill, Emily; Nagorski, John; Namasivayam, Aishwarya; Narayan, Manjari; Naz, Mufassra; Newhouse, Stephen J; Norman, Thea C; Nurtdinov, Ramil N; Oyang, Yen-Jen; Pawitan, Yudi; Peng, Shengwen; Peters, Mette A; Piccolo, Stephen R; Praveen, Paurush; Priami, Corrado; Sabelnykova, Veronica Y; Senger, Philipp; Shen, Xia; Simmons, Andrew; Sotiras, Aristeidis; Stolovitzky, Gustavo; Tangaro, Sabina; Tateo, Andrea; Tung, Yi-An; Tustison, Nicholas J; Varol, Erdem; Vradenburg, George; Weiner, Michael W; Xiao, Guanghua; Xie, Lei; Xie, Yang; Xu, Jia; Yang, Hojin; Zhan, Xiaowei; Zhou, Yunyun; Zhu, Fan; Zhu, Hongtu; Zhu, Shanfeng

    2016-06-01

    Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer's disease. The Alzheimer's disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer's disease based on high dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance. PMID:27079753

  20. Monounsaturated, trans & saturated fatty acids and cognitive decline in women

    PubMed Central

    Naqvi, Asghar Z.; Harty, Brian; Mukamal, Kenneth J.; Stoddard, Anne M.; Vitolins, Mara; Dunn, Julie E.

    2011-01-01

    Objectives Prospectively assess effects of select dietary fats on cognitive decline Design Prospective observational; 3-year follow-up Setting Subjects recruited at Northwestern University who participated in Women's Health Initiative Observational Study or control group of Diet Modification arm. Participants 482 women ≥ 60 years Measurements We averaged dietary intake from a validated food frequency questionnaire (FFQ) administered twice (mean=2.7 years apart) before baseline cognitive assessment (mean=2.9 years after 2nd FFQ). Testing of memory, vision, executive function, language, and attention was performed at 2 time points, 3 years apart. We created a global Z-score for both time points by averaging all Z-scores for each participant and defined global cognitive change as the difference between follow-up and baseline Z-scores. Results Median intakes of saturated fats (SFA), trans-fats, (TFA), dietary cholesterol (DC) and monounsaturated fats (MUFA) were 18.53 g/d, 3.45 g/d, 0.201 g/d and 19.39 g/d, respectively. There were no associations between degree of cognitive decline and intakes of SFA (p=0.69), TFA (p=0.54) or DC (p=0.64) after adjusting for baseline cognition, total energy, age, education, reading ability, Apolipoprotein E (ε4) allele, BMI, estrogen and beta-blocker use, and intake of caffeine and other fatty acids. In contrast, compared with participants in the lowest quartile, MUFA intake was associated with lower cognitive decline in fully adjusted linear regression models, with decline of 0.21 + 0.05 SE in the lowest versus 0.05 + 0.05 SE in the highest quartiles (p=0.02). This effect of MUFA intake was primarily in the visual and memory domains (p=0.03 for both). Conclusion Higher intakes of SFA, TFA and DC in these women were not associated with cognitive decline, while MUFA intake was associated with less cognitive decline. PMID:21568955

  1. Decreased PM10 Exposure Attenuates Age-Related Lung Function Decline: Genetic Variants in p53, p21, and CCND1 Modify This Effect

    PubMed Central

    Imboden, Medea; Schwartz, Joel; Schindler, Christian; Curjuric, Ivan; Berger, Wolfgang; Liu, Sally L.J.; Russi, Erich W.; Ackermann-Liebrich, Ursula; Rochat, Thierry; Probst-Hensch, Nicole M.

    2009-01-01

    Background Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. Objective We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF25–75) associated with improved air quality. Methods Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter ≤ 10 μm (PM10) to each participant’s residential history 12 months before the baseline and follow-up assessments. Results The effect of diminishing PM10 exposure on FEF25–75 decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-μg/m3 decline in aver-age PM10 exposure over an 11-year period attenuated the average annual decline in FEF25–75 by 21.33 mL/year (95% confidence interval, 10.57–32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38–22.06) among GA genotypes, and by 6.00 mL/year (−4.54 to 16.54) among AA genotypes. Conclusions Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults. PMID:19750108

  2. Dietary patterns, cognitive decline, and dementia: a systematic review.

    PubMed

    van de Rest, Ondine; Berendsen, Agnes Am; Haveman-Nies, Annemien; de Groot, Lisette Cpgm

    2015-03-01

    Nutrition is an important modifiable risk factor that plays a role in the strategy to prevent or delay the onset of dementia. Research on nutritional effects has until now mainly focused on the role of individual nutrients and bioactive components. However, the evidence for combined effects, such as multinutrient approaches, or a healthy dietary pattern, such as the Mediterranean diet, is growing. These approaches incorporate the complexity of the diet and possible interaction and synergy between nutrients. Over the past few years, dietary patterns have increasingly been investigated to better understand the link between diet, cognitive decline, and dementia. In this systematic review we provide an overview of the literature on human studies up to May 2014 that examined the role of dietary patterns (derived both a priori as well as a posteriori) in relation to cognitive decline or dementia. The results suggest that better adherence to a Mediterranean diet is associated with less cognitive decline, dementia, or Alzheimer disease, as shown by 4 of 6 cross-sectional studies, 6 of 12 longitudinal studies, 1 trial, and 3 meta-analyses. Other healthy dietary patterns, derived both a priori (e.g., Healthy Diet Indicator, Healthy Eating Index, and Program National Nutrition Santé guideline score) and a posteriori (e.g., factor analysis, cluster analysis, and reduced rank regression), were shown to be associated with reduced cognitive decline and/or a reduced risk of dementia as shown by all 6 cross-sectional studies and 6 of 8 longitudinal studies. More conclusive evidence is needed to reach more targeted and detailed guidelines to prevent or postpone cognitive decline.

  3. Dietary Patterns, Cognitive Decline, and Dementia: A Systematic Review12

    PubMed Central

    van de Rest, Ondine; Berendsen, Agnes AM; Haveman-Nies, Annemien; de Groot, Lisette CPGM

    2015-01-01

    Nutrition is an important modifiable risk factor that plays a role in the strategy to prevent or delay the onset of dementia. Research on nutritional effects has until now mainly focused on the role of individual nutrients and bioactive components. However, the evidence for combined effects, such as multinutrient approaches, or a healthy dietary pattern, such as the Mediterranean diet, is growing. These approaches incorporate the complexity of the diet and possible interaction and synergy between nutrients. Over the past few years, dietary patterns have increasingly been investigated to better understand the link between diet, cognitive decline, and dementia. In this systematic review we provide an overview of the literature on human studies up to May 2014 that examined the role of dietary patterns (derived both a priori as well as a posteriori) in relation to cognitive decline or dementia. The results suggest that better adherence to a Mediterranean diet is associated with less cognitive decline, dementia, or Alzheimer disease, as shown by 4 of 6 cross-sectional studies, 6 of 12 longitudinal studies, 1 trial, and 3 meta-analyses. Other healthy dietary patterns, derived both a priori (e.g., Healthy Diet Indicator, Healthy Eating Index, and Program National Nutrition Santé guideline score) and a posteriori (e.g., factor analysis, cluster analysis, and reduced rank regression), were shown to be associated with reduced cognitive decline and/or a reduced risk of dementia as shown by all 6 cross-sectional studies and 6 of 8 longitudinal studies. More conclusive evidence is needed to reach more targeted and detailed guidelines to prevent or postpone cognitive decline. PMID:25770254

  4. Cognitive Declines Precede and Predict Functional Declines in Aging and Alzheimer’s Disease

    PubMed Central

    Zahodne, Laura B.; Manly, Jennifer J.; MacKay-Brandt, Anna; Stern, Yaakov

    2013-01-01

    Objective To investigate the temporal ordering of cognitive and functional declines separately in older adults with or without Alzheimer’s disease (AD). Design and Setting A community-based longitudinal study of aging and dementia in Northern Manhattan (Washington Heights/Hamilton Heights Inwood Columbia Aging Project) and a multicenter, clinic-based longitudinal study of prevalent AD at Columbia University Medical Center, Johns Hopkins School of Medicine, Massachusetts General Hospital, and the Hôpital de la Salpêtrière in Paris, France (the Predictors Study). Participants 3,443 initially non-demented older adults (612 with eventual incident dementia) and 517 patients with AD. Main Outcome Measures Cognitive measures included the modified Mini-Mental State Exam and composite scores of memory and language derived from a standardized neuropsychological battery. Function was measured with the Blessed Dementia Rating Scale, completed by the participant (in the sample of non-demented older adults) or an informant (in the sample of prevalent AD patients). Data were analyzed with autoregressive cross-lagged panel analysis. Results Cognitive scores more consistently predicted subsequent functional abilities than vice versa in non-demented older adults, participants with eventual incident dementia, and patients with prevalent AD. Conclusions Cognitive declines appear to precede and cause functional declines prior to and following dementia diagnosis. Standardized neuropsychological tests are valid predictors of later functional changes in both non-demented and demented older adults. PMID:24023894

  5. [Primary age-related tauopathy (PART): a novel term to describe age-related tangle pathology encompassing a wide range from cognitively normal condition to senile dementia of the neurofibrillary tangle type].

    PubMed

    Yamada, Masahito

    2016-03-01

    It has been reported that neurofibrillary tangles (NFTs) are commonly observed in older people, and that some of older individuals with dementia have a large amount of NFTs in the medial temporal lobe without amyloid(Aβ) plaques, which have been referred to as senile dementia of the NFT type (SD-NFT), tangle-predominant senile dementia (TPSD), or tangle-only dementia. In 2014, our international collaborative group proposed a new term, "primary age-related tauopathy(PART)", to describe such age-related tangle pathology, clinically encompassing a wide range from normal to cognitive impairment/ dementia (SD-NFT). This nomenclature would provide a conceptual foundation for future studies leading to development of clinical diagnosis for this condition. PMID:27025089

  6. Can education rescue genetic liability for cognitive decline?

    PubMed

    Cook, C Justin; Fletcher, Jason M

    2015-02-01

    Although there is a vast literature linking education and later health outcomes, the mechanisms underlying these associations are relatively unknown. In the spirit of some medical literature that leverages developmental abnormalities to understand mechanisms of normative functioning, we explore the ability of higher educational attainments to "rescue" biological/genetic liabilities in brain function through inheritance of a variant of the APOE gene shown to lead to cognitive decline, dementia, and Alzheimer's disease in old age. Deploying a between-sibling design that allows quasi-experimental variation in genotype and educational attainment within a standard gene-environment interaction framework, we show evidence that the genetic effects of the "risky" APOE variant on old-age cognitive decline are absent in individuals who complete college (vs. high school graduates). Auxiliary analyses suggest that the likely mechanisms of education are most consistent through changing brain processes (i.e., "how we think") and potentially building cognitive reserves, rather than alleviating old age cognitive decline through the channels of higher socioeconomic status and resources over the life course.

  7. Auditory Brainstem Gap Responses Start to Decline in Middle Age Mice: A Novel Physiological Biomarker for Age-Related Hearing Loss

    PubMed Central

    Williamson, Tanika T.; Zhu, Xiaoxia; Walton, Joseph P.; Frisina, Robert D.

    2014-01-01

    The CBA/CaJ mouse strain's auditory function is normal during the early phases of life and gradually declines over its lifespan, much like human age-related hearing loss (ARHL), but on a mouse life cycle “time frame”. This pattern of ARHL is relatively similar to that of most humans: difficult to clinically diagnose at its onset, and currently not treatable medically. To address the challenge of early diagnosis, CBA mice were used for the present study to analyze the beginning stages and functional onset biomarkers of ARHL. The results from Auditory Brainstem Response (ABR) audiogram and Gap-in-noise (GIN) ABR tests were compared for two groups of mice of different ages, young adult and middle age. ABR peak components from the middle age group displayed minor changes in audibility, but had a significantly higher prolonged peak latency and decreased peak amplitude in response to temporal gaps in comparison to the young adult group. The results for the younger subjects revealed gap thresholds and recovery rates that were comparable to previous studies of auditory neural gap coding. Our findings suggest that age-linked degeneration of the peripheral and brainstem auditory system is already beginning in middle age, allowing for the possibility of preventative biomedical or hearing protection measures to be implemented as a possibility for attenuating further damage to the auditory system due to ARHL. PMID:25307161

  8. Auditory brainstem gap responses start to decline in mice in middle age: a novel physiological biomarker for age-related hearing loss.

    PubMed

    Williamson, Tanika T; Zhu, Xiaoxia; Walton, Joseph P; Frisina, Robert D

    2015-07-01

    The auditory function of the CBA/CaJ mouse strain is normal during the early phases of life and gradually declines over its lifespan, much like human age-related hearing loss (ARHL) but within the "time frame" of a mouse life cycle. This pattern of ARHL is similar to that of most humans: difficult to diagnose clinically at its onset and currently not treatable medically. To address the challenge of early diagnosis, we use CBA mice to analyze the initial stages and functional onset biomarkers of ARHL. The results from Auditory Brainstem Response (ABR) audiogram and Gap-in-noise (GIN) ABR tests were compared for two groups of mice of different ages, namely young adult and middle age. ABR peak components from the middle age group displayed minor changes in audibility but had a significantly higher prolonged peak latency and decreased peak amplitude in response to temporal gaps in comparison with the young adult group. The results for the younger subjects revealed gap thresholds and recovery rates that were comparable with previous studies of auditory neural gap coding. Our findings suggest that age-linked degeneration of the peripheral and brainstem auditory system begins in middle age, allowing for the possibility of preventative biomedical or hearing protection measures to be implemented in order to attenuate further damage to the auditory system attributable to ARHL.

  9. Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline

    PubMed Central

    Schwarz, Flavio; Springer, Stevan A.; Altheide, Tasha K.; Varki, Nissi M.; Gagneux, Pascal; Varki, Ajit

    2016-01-01

    The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer’s dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer’s disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin. PMID:26621708

  10. Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline.

    PubMed

    Schwarz, Flavio; Springer, Stevan A; Altheide, Tasha K; Varki, Nissi M; Gagneux, Pascal; Varki, Ajit

    2016-01-01

    The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer's dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer's disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin. PMID:26621708

  11. Lipid Profiles and APOE4 Allele Impact Midlife Cognitive Decline in HIV-Infected Men on Antiretroviral Therapy

    PubMed Central

    Mukerji, Shibani S.; Locascio, Joseph J.; Misra, Vikas; Lorenz, David R.; Holman, Alex; Dutta, Anupriya; Penugonda, Sudhir; Wolinsky, Steven M.; Gabuzda, Dana

    2016-01-01

    Background. Dyslipidemia and apolipoprotein E4 (APOE ϵ4) allele are risk factors for age-related cognitive decline, but how these risks are modified by human immunodeficiency virus (HIV) infection is unclear. Methods. In a longitudinal nested study from the Multicenter AIDS Cohort Study, 273 HIV type 1–infected (HIV+) men aged 50–65 years with baseline HIV RNA <400 copies/mL and on continuous antiretroviral therapy (ART) in ≥95% of follow-up visits were matched by sociodemographic variables to 516 HIV-uninfected (HIV–) controls. The association between lipid markers (total cholesterol, low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], and triglycerides), APOE genotype, and cognitive decline in HIV infection was examined using mixed-effects models. Results. The median baseline age of participants was 51, 81% were white, and 89% had education >12 years. HIV+ men had similar baseline total cholesterol and LDL-C, but lower HDL-C and higher triglycerides than controls (P < .001). Higher total cholesterol and LDL-C were associated with faster rates of cognitive decline (P < .01), whereas higher HDL-C attenuated decline (P = .02) in HIV+ men. In HIV+ men with elevated cholesterol, statin use was associated with a slower estimated rate of decline (P = .02). APOE ϵ4 genotype accelerated cognitive decline in HIV+ but not HIV– men (P = .01), with trajectories diverging from HIV– ε4 carriers after age 50. Total cholesterol levels did not modify the association of ϵ4 genotype with decline (P = .9). Conclusions. Elevated cholesterol and APOE ϵ4 genotype are independent risk factors for cognitive decline in ART-adherent HIV+ men aged >50 years. Treatment of dyslipidemia may be an effective strategy to reduce cognitive decline in older HIV+ individuals. PMID:27448678

  12. ω-3 fatty acids in the prevention of cognitive decline in humans.

    PubMed

    Cederholm, Tommy; Salem, Norman; Palmblad, Jan

    2013-11-01

    The brain is a lipid-rich organ where docosahexaenoic acid (DHA) is enriched and where eicosapentaenoic acid (EPA) may have anti-inflammatory effects. The potential role for n-3 (ω-3) fatty acids such as DHA and EPA in the prevention of cognitive decline, including Alzheimer's disease (AD) has attracted major interest for the past 20 y. This review presents our understanding of recent observational, interventional, and experimental studies, with the aim of providing some answers to the following question: Can n-3 FA intake modulate cognitive function during aging? In longitudinal observation studies we mainly observe inverse relations between fish intake or serum concentrations of DHA and cognitive impairment. Intervention studies of EPA and DHA supplementation in healthy old individuals have been negative so far (i.e., after up to 2 years of treatment, no differences in cognitive decline between treated and nontreated participants have been observed). In studies that provided EPA and DHA to adults with mild cognitive impairment or age-related cognitive impairment the data seem to be positive. However, when patients with established AD were supplemented with EPA and DHA it appears no benefit was gained. For studies on healthy individuals, a major concern is that the treatment periods may have been too short. There might also be subgroup effects because of the carriage of apolipoprotein Eε4 alleles or risk factor burden. Experimental studies appear to be consistently positive (i.e., n-3 FA supplementation in rodents over a substantial portion of their lives reduces amyloid-β deposition and hippocampal neuron loss and improves cognitive functioning). We are getting closer to providing evidence-based recommendations on fish and fish oil intake to facilitate memory function during old age. In the meantime it is advised to follow the general CDC dietary recommendations of 2-3 fish meals per week or the equivalent intake of long chain n-3 fatty acids, particularly DHA

  13. Bilingualism Does Not Alter Cognitive Decline or Dementia Risk among Spanish-Speaking Immigrants

    PubMed Central

    Zahodne, Laura B.; Schofield, Peter W.; Farrell, Meagan T.; Stern, Yaakov; Manly, Jennifer J.

    2013-01-01

    Objective Clinic-based studies suggest that dementia is diagnosed at older ages in bilinguals compared to monolinguals. The current study sought to test this hypothesis in a large, prospective, community-based study of initially non-demented Hispanic immigrants living in a Spanish-speaking enclave of Northern Manhattan. Method Participants included 1,067 participants in the Washington/Hamilton Heights Inwood Columbia Aging Project (WHICAP) who were tested in Spanish and followed at 18–24 month intervals for up to 23 years. Spanish-English bilingualism was estimated via both self-report and an objective measure of English reading level. Multilevel models for change estimated the independent effects of bilingualism on cognitive decline in four domains: episodic memory, language, executive function, and speed. Over the course of the study, 282 participants developed dementia. Cox regression was used to estimate the independent effect of bilingualism on dementia conversion. Covariates included country of origin, gender, education, time spent in the United States, recruitment cohort, and age at enrollment. Results Independent of the covariates, bilingualism was associated with better memory and executive function at baseline. However bilingualism was not independently associated with rates of cognitive decline or dementia conversion. Results were similar whether bilingualism was measured via self-report or an objective test of reading level. Conclusions This study does not support a protective effect of bilingualism on age-related cognitive decline or the development of dementia. In this sample of Hispanic immigrants, bilingualism is related to higher initial scores on cognitive tests and higher educational attainment and may not represent a unique source of cognitive reserve. PMID:24188113

  14. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits.

    PubMed

    Oh, M Matthew; Simkin, Dina; Disterhoft, John F

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  15. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits

    PubMed Central

    Oh, M. Matthew; Simkin, Dina; Disterhoft, John F.

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  16. Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment.

    PubMed

    McDonald, Carrie R; Gharapetian, Lusineh; McEvoy, Linda K; Fennema-Notestine, Christine; Hagler, Donald J; Holland, Dominic; Dale, Anders M

    2012-02-01

    We investigated the relationship between regional atrophy rates and 2-year cognitive decline in a large cohort of patients with mild cognitive impairment (MCI; n = 103) and healthy controls (n = 90). Longitudinal magnetic resonance image (MRI) scans were analyzed using high-throughput image analysis procedures. Atrophy rates were derived by calculating percent cortical volume loss between baseline and 24 month scans. Stepwise regressions were performed to investigate the contribution of atrophy rates to language, memory, and executive functioning decline, controlling for age, gender, baseline performances, and disease progression. In MCI, left temporal lobe atrophy rates were associated with naming decline, whereas bilateral temporal, left frontal, and left anterior cingulate atrophy rates were associated with semantic fluency decline. Left entorhinal atrophy rate was associated with memory decline and bilateral frontal atrophy rates were associated with executive function decline. These data provide evidence that regional atrophy rates in MCI contribute to domain-specific cognitive decline, which appears to be partially independent of disease progression. MRI measures of regional atrophy can provide valuable information for understanding the neural basis of cognitive impairment in MCI.

  17. Mobile technologies in the early detection of cognitive decline.

    PubMed

    Allard, Michèle; Husky, Mathilde; Catheline, Gwénaëlle; Pelletier, Amandine; Dilharreguy, Bixente; Amieva, Hélène; Pérès, Karine; Foubert-Samier, Alexandra; Dartigues, Jean-François; Swendsen, Joel

    2014-01-01

    The identification of biological and pathophysiological processes implicated in different forms of dementia is itself dependent on reliable descriptions of cognitive performance and capacities. However, traditional instruments are often unable to detect subtle declines in cognitive functions due to natural variation at the time of testing. Mobile technologies permit the repeated assessment of cognitive functions and may thereby provide more reliable descriptions of early cognitive difficulties that are inaccessible to clinic or hospital-based instruments. This assessment strategy is also able to characterize in real-time the dynamic associations between cognitive performance and specific daily life behaviors or activities. In a cohort of elderly rural residents, 60 individuals were administered neuropsychological and neuroimaging exams as well as a one-week period of electronic ambulatory monitoring of behavior, semantic memory performance, and daily life experiences. Whereas imaging markers were unrelated to traditional neuropsychological test scores, they were significantly associated with mobile assessments of semantic memory performance. Moreover, certain daily life activities such as reading or completing crossword puzzles were associated with increases in semantic memory performance over the subsequent hours of the same day. The revolution in mobile technologies provides unprecedented opportunities to overcome the barriers of time and context that characterize traditional hospital and clinical-based assessments. The combination of both novel and traditional methods should provide the best opportunity for identifying the earliest risk factors and biomarkers for Alzheimer's disease and other forms of dementia.

  18. Patterns of Cognitive Decline Prior to Dementia in Persons with Mild Cognitive Impairment

    PubMed Central

    Cloutier, Simon; Chertkow, Howard; Kergoat, Marie-Jeanne; Gauthier, Serge; Belleville, Sylvie

    2015-01-01

    Abstract Only a limited number of studies have investigated the decline of discrete cognitive domains as individuals progress from mild cognitive impairment (MCI) to dementia. Thus, the goal of this longitudinal study was to evaluate the cognitive changes underway during the years preceding a diagnosis of probable Alzheimer’s disease (AD), and to compare these changes to those found in MCI participants who do not progress to dementia. Participants were compared as a function of whether they later converted to AD (n = 47) or not (n = 74). Cognitive change was assessed prior to the conversion year, using that year as a starting point. A combination of polynomial regression analyses and mixed ANOVAs assessed 1) the trajectory of cognitive decline for each domain and 2) the differences between non-progressors and those who had converted to AD. The different cognitive domains demonstrated very different patterns of decline in the group of MCI progressors. A quadratic function, i.e., many years of stable performance followed by a rapid decline just prior to diagnosis, was observed for delayed recall, working memory, and spatial memory. In contrast, a gradual linear decline was observed for immediate recall, executive function, and visuo-spatial abilities. Finally, language in progressors was impaired on all time periods relative to non-progressors, but there was no further change between the first assessments and conversion to AD. Individuals with MCI who progress to AD show abnormal cognition at least two years prior to their dementia diagnosis. The pattern of symptom change observed appears to depend upon the cognitive domain and thus, clinical studies should not assume similar rate of decline across domains. In contrast and, apart from verbal memory, the non-progressors present a performance similar to that of healthy older adults. PMID:26401770

  19. Luteinizing hormone as a key player in the cognitive decline of Alzheimer's disease.

    PubMed

    Burnham, Veronica L; Thornton, Janice E

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Alzheimer's disease is one of the most prevalent and costly neurological diseases in the world. Although decades of research have focused on understanding Alzheimer's disease pathology and progression, there is still a great lack of clinical treatments for those who suffer from it. One of the factors most commonly associated with the onset of Alzheimer's disease is a decrease in levels of gonadal hormones, such as estrogens and androgens. Despite the correlational and experimental data which support the role of these hormones in the etiology of Alzheimer's disease, clinical trials involving their reintroduction through hormone therapy have had varied results and these gonadal hormones often have accompanying health risks. More recently, investigation has turned toward other hormones in the hypothalamic-pituitary-gonadal axis that are disrupted by age-related decreases in gonadal hormones. Specifically, luteinizing hormone, which is increased with age in both men and women (in response to removal of negative feedback), has surfaced as a potentially powerful player in the risk and onset of Alzheimer's disease. Mounting evidence in basic research and epidemiological studies supports the role of elevated luteinizing hormone in exacerbating age-related cognitive decline in both males and females. This review summarizes the recent developments involving luteinizing hormone in increasing the cognitive deficits and molecular pathology characteristic of Alzheimer's disease.

  20. Relationship between Frailty and Cognitive Decline in Older Mexican Americans

    PubMed Central

    Samper-Ternent, Rafael; Snih, Soham Al; Raji, Mukaila A.; Markides, Kyriakos S.; Ottenbacher, Kenneth J.

    2009-01-01

    Objective Examine the association between frailty status and change in cognitive function over time in older Mexican Americans. Design Data used are from the Hispanic Established Population for the Epidemiological Study of the Elderly (H-EPESE) Setting Five Southwestern states: Texas, New Mexico, Colorado, Arizona, and California. Participants 1,370 non-institutionalized Mexican American men and women aged 65 and older with a Mini Mental State Examination (MMSE) ≥ 21 at baseline (1995−1996). Measurements Frailty defined as three or more of the following components: 1) unintentional weight-loss of > 10-lbs, 2) weakness (lowest 20% in grip-strength), 3) self-reported exhaustion, 4) slow walking speed (lowest 20% 16ft walk-time in seconds), and 5) low physical activity level (lowest 20% Physical Activity Scale for the Elderly (PASE) score). Socio-demographic factors, MMSE, medical conditions (stroke, heart-attack, diabetes, arthritis, cancer and hypertension), depressive symptoms and visual-impairment were obtained. Results Of the 1370 subjects, 684 (49.9%) were not-frail, 626 (45.7%) were pre-frail (1 − 2 components) and 60 (4.4%) were frail (≥3 components) in 1995/96. Using general linear mixed models, we found that frail subjects had greater cognitive decline over 10-years compared with non-frail subjects (Estimate = −0.67, SE = 0.13; p< .0001). This association remained statistically significant after controlling for potential confounding factors. Conclusion Frail status in older Mexican Americans with MMSE ≥ 21 at baseline is an independent predictor of MMSE score decline over a 10-year period. Future research is needed to establish pathophysiological components that can clarify the relationship between frailty and cognitive decline. PMID:18811611

  1. Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia.

    PubMed

    Solfrizzi, Vincenzo; Colacicco, Anna Maria; D'Introno, Alessia; Capurso, Cristiano; Parigi, Angelo Del; Capurso, Sabrina A; Torres, Francesco; Capurso, Antonio; Panza, Francesco

    2006-11-01

    A possible role of the macronutrients and the basic elements of carbohydrates (glucose administration or depletion), proteins (amino acids such as tryptophan and tyrosine), and fat (unsaturated fatty acids) was recently proposed for age-related changes of cognitive function, and the cognitive decline of degenerative (AD) or vascular origin. The availability and utilization of glucose has been implicated in cognitive function not only as a result of nutritional and systemic metabolic conditions, but also, although speculatively, as a crucial phase of the mechanism of action of molecules used as cognitive-enhancers. Furthermore, many lines of evidence have focused on the importance of oxidative stress mechanisms and free radical damage in AD pathogenesis. In addition, epidemiological studies have recently reported an association between alcohol and the incidence of AD and predementia syndromes. Foods with large amounts of aluminium-containing additives or aluminium from drinking water may affect the risk of developing AD, aluminium more likely acting as a cofactor somewhere in the cascade of events leading to the demented brain. A role for other metals in dementia have been speculated, given the encouraging results reported from studies on peripheral zinc concentrations, zinc supplementation, serum copper, either bound with ceruloplasmin or not, and iron metabolism in AD. Nonetheless, more data are needed to support a possible role of these metals in dementing diseases. Healthy diets, antioxidant supplements, and the prevention of nutritional deficiencies or exposure to foods and water with high content of metals could be considered the first line of defence against the development and progression of cognitive decline.

  2. Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia.

    PubMed

    Solfrizzi, Vincenzo; Colacicco, Anna Maria; D'Introno, Alessia; Capurso, Cristiano; Parigi, Angelo Del; Capurso, Sabrina A; Torres, Francesco; Capurso, Antonio; Panza, Francesco

    2006-11-01

    A possible role of the macronutrients and the basic elements of carbohydrates (glucose administration or depletion), proteins (amino acids such as tryptophan and tyrosine), and fat (unsaturated fatty acids) was recently proposed for age-related changes of cognitive function, and the cognitive decline of degenerative (AD) or vascular origin. The availability and utilization of glucose has been implicated in cognitive function not only as a result of nutritional and systemic metabolic conditions, but also, although speculatively, as a crucial phase of the mechanism of action of molecules used as cognitive-enhancers. Furthermore, many lines of evidence have focused on the importance of oxidative stress mechanisms and free radical damage in AD pathogenesis. In addition, epidemiological studies have recently reported an association between alcohol and the incidence of AD and predementia syndromes. Foods with large amounts of aluminium-containing additives or aluminium from drinking water may affect the risk of developing AD, aluminium more likely acting as a cofactor somewhere in the cascade of events leading to the demented brain. A role for other metals in dementia have been speculated, given the encouraging results reported from studies on peripheral zinc concentrations, zinc supplementation, serum copper, either bound with ceruloplasmin or not, and iron metabolism in AD. Nonetheless, more data are needed to support a possible role of these metals in dementing diseases. Healthy diets, antioxidant supplements, and the prevention of nutritional deficiencies or exposure to foods and water with high content of metals could be considered the first line of defence against the development and progression of cognitive decline. PMID:17119295

  3. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline

    PubMed Central

    Febo, Marcelo; Foster, Thomas C.

    2016-01-01

    Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline. PMID:27468264

  4. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline.

    PubMed

    Febo, Marcelo; Foster, Thomas C

    2016-01-01

    Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline. PMID:27468264

  5. [Preventive strategy for cognitive decline in elderly with diabetes mellitus].

    PubMed

    Sakurai, Takashi

    2014-04-01

    Diabetes increases the risk of cognitive decline including vascular dementia and Alzheimer's disease. Preventive strategy for cognitive impairment is thus needed in elderly with diabetes. To avoid brain injury in diabetic elderly patients, management of hypoglycemia, hyperglycemia, fluctuation of blood glucose, insulin resistance, and cerebral vessel disease is crucial. Recent clinical trials show hyperglycemia should be controlled with HbA1c of 7.2-7.4% for prevention of newly onset of dementia in the elderly. In contrast, little is known for target glucose levels in diabetic elderly combined with demented disease. Careful insight of hypoglycemia seems more important in the elderly. Now, a variety of pharmacological agents for treatment of diabetes is available and it seems clear that a comprehensive approach will be required in order to achieve healthy brain function.

  6. Reversal of cognitive decline: a novel therapeutic program.

    PubMed

    Bredesen, Dale E

    2014-09-01

    This report describes a novel, comprehensive, and personalized therapeutic program that is based on the underlying pathogenesis of Alzheimer's disease, and which involves multiple modalities designed to achieve metabolic enhancement for neurodegeneration (MEND). The first 10 patients who have utilized this program include patients with memory loss associated with Alzheimer's disease (AD), amnestic mild cognitive impairment (aMCI), or subjective cognitive impairment (SCI). Nine of the 10 displayed subjective or objective improvement in cognition beginning within 3-6 months, with the one failure being a patient with very late stage AD. Six of the patients had had to discontinue working or were struggling with their jobs at the time of presentation, and all were able to return to work or continue working with improved performance. Improvements have been sustained, and at this time the longest patient follow-up is two and one-half years from initial treatment, with sustained and marked improvement. These results suggest that a larger, more extensive trial of this therapeutic program is warranted. The results also suggest that, at least early in the course, cognitive decline may be driven in large part by metabolic processes. Furthermore, given the failure of monotherapeutics in AD to date, the results raise the possibility that such a therapeutic system may be useful as a platform on which drugs that would fail as monotherapeutics may succeed as key components of a therapeutic system. PMID:25324467

  7. Reversal of cognitive decline: A novel therapeutic program

    PubMed Central

    Bredesen, Dale E.

    2014-01-01

    This report describes a novel, comprehensive, and personalized therapeutic program that is based on the underlying pathogenesis of Alzheimer's disease, and which involves multiple modalities designed to achieve metabolic enhancement for neurodegeneration (MEND). The first 10 patients who have utilized this program include patients with memory loss associated with Alzheimer's disease (AD), amnestic mild cognitive impairment (aMCI), or subjective cognitive impairment (SCI). Nine of the 10 displayed subjective or objective improvement in cognition beginning within 3-6 months, with the one failure being a patient with very late stage AD. Six of the patients had had to discontinue working or were struggling with their jobs at the time of presentation, and all were able to return to work or continue working with improved performance. Improvements have been sustained, and at this time the longest patient follow-up is two and one-half years from initial treatment, with sustained and marked improvement. These results suggest that a larger, more extensive trial of this therapeutic program is warranted. The results also suggest that, at least early in the course, cognitive decline may be driven in large part by metabolic processes. Furthermore, given the failure of monotherapeutics in AD to date, the results raise the possibility that such a therapeutic system may be useful as a platform on which drugs that would fail as monotherapeutics may succeed as key components of a therapeutic system. PMID:25324467

  8. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity

    PubMed Central

    Foster, Thomas C.

    2012-01-01

    In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca2+) regulation and Ca2+-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca2+ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca2+ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging. PMID:22307057

  9. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline.

    PubMed

    Ballinger, Elizabeth C; Ananth, Mala; Talmage, David A; Role, Lorna W

    2016-09-21

    Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.

  10. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline.

    PubMed

    Ballinger, Elizabeth C; Ananth, Mala; Talmage, David A; Role, Lorna W

    2016-09-21

    Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders. PMID:27657448

  11. Cognitive decline is associated with reduced surface GluR1 expression in the hippocampus of aged rats.

    PubMed

    Yang, Yuan-Jian; Chen, Hai-Bo; Wei, Bo; Wang, Wei; Zhou, Ping-Liang; Zhan, Jin-Qiong; Hu, Mao-Rong; Yan, Kun; Hu, Bin; Yu, Bin

    2015-03-30

    Individual differences in cognitive aging exist in humans and in rodent populations, yet the underlying mechanisms remain largely unclear. Activity-dependent delivery of GluR1-containing AMPA receptor (AMPARs) plays an essential role in hippocampal synaptic plasticity, learning and memory. We hypothesize that alterations of surface GluR1 expression in the hippocampus might correlate with age-related cognitive decline. To test this hypothesis, the present study evaluated the cognitive function of young adult and aged rats using Morris water maze. After the behavioral test, the surface expression of GluR1 protein in hippocampal CA1 region of rats was determined using Western blotting. The results showed that the surface expression of GluR1 in the hippocampus of aged rats that are cognitively impaired was much lower than that of young adults and aged rats with preserved cognitive abilities. The phosphorylation levels of GluR1 at Ser845 and Ser831 sites, which promote the synaptic delivery of GluR1, were also selectively decreased in the hippocampus of aged-impaired rats. Correlation analysis reveals that greater decrease in surface GluR1 expression was associated with worse behavioral performance. These results suggest that reduced surface GluR1 expression may contribute to cognitive decline that occurs in normal aging, and different pattern of surface GluR1 expression might be responsible for the individual differences in cognitive aging. PMID:25697598

  12. Omega-3 fatty acids and risk of cognitive decline in the elderly: a meta-analysis of randomized controlled trials.

    PubMed

    Zhang, Xiao-Wei; Hou, Wen-Shang; Li, Min; Tang, Zhen-Yu

    2016-02-01

    Evidence has demonstrated that omega-3 fatty acids intake may be associated with age-related cognitive decline. However, randomized controlled trials (RCTs) have drawn inconsistent conclusions. We performed a meta-analysis to assess the association between omega-3 fatty acids and risk of cognitive decline in the elderly. A strategic literature search of PubMed, EMBASE, and Cochrane Library (updated to December 2014) was performed. We retrieved six randomized controlled studies as eligible for our meta-analysis. Among these six studies, the duration time ranged from 3 to 40 months. The dose of omega-3 fatty acids (DHA + EPA) ranged from 400 to 1800 mg. The result of our meta-analysis expressed that omega-3 fatty acids statistically decrease the rate of cognitive decline in MMSE score (WMD = 0.15, [0.05, 0.25]; p = 0.003). In conclusion, our meta-analysis indicated that omega-3 fatty acids may help to prevent cognitive decline in the elderly.

  13. Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging.

    PubMed

    Gold, Brian T; Johnson, Nathan F; Powell, David K

    2013-11-01

    Recent evidence suggests that lifelong bilingualism may contribute to cognitive reserve (CR) in normal aging. However, there is currently no neuroimaging evidence to suggest that lifelong bilinguals can retain normal cognitive functioning in the face of age-related neurodegeneration. Here we explored this issue by comparing white matter (WM) integrity and gray matter (GM) volumetric patterns of older adult lifelong bilinguals (N=20) and monolinguals (N=20). The groups were matched on a range of relevant cognitive test scores and on the established CR variables of education, socioeconomic status and intelligence. Participants underwent high-resolution structural imaging for assessment of GM volume and diffusion tensor imaging (DTI) for assessment of WM integrity. Results indicated significantly lower microstructural integrity in the bilingual group in several WM tracts. In particular, compared to their monolingual peers, the bilingual group showed lower fractional anisotropy and/or higher radial diffusivity in the inferior longitudinal fasciculus/inferior fronto-occipital fasciculus bilaterally, the fornix, and multiple portions of the corpus callosum. There were no group differences in GM volume. Our results suggest that lifelong bilingualism contributes to CR against WM integrity declines in aging.

  14. The Cognitive Decline of Marshal Philippe Pétain.

    PubMed

    Jennekens, Frans G I

    2015-01-01

    In 1940, at the age of 84, Marshal Pétain was appointed the head of state and government of France. His health was excellent but he tired easily. He felt unable to learn and his memory was weak. During a crisis situation in 1942, he did not lead, plan and decide and he was replaced as head of government. From 1943 on, he was increasingly apathetic. In 1945/1946 he had difficulty finding words after a short conversation. A parliamentary committee concluded in 1947 that he was senile. His mental condition worsened in the years thereafter. In retrospect, it is clear that the final responsibility for the policies of the French government in the Second World War had rested on a man who was going through a predementia process of cognitive decline. PMID:26107612

  15. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  16. Clinical predictors of cognitive decline in patients with mild cognitive impairment: the Chongqing aging study.

    PubMed

    Li, Ling; Wang, Yanjiang; Yan, Jiachuan; Chen, Yang; Zhou, Rui; Yi, Xu; Shi, Qianqian; Zhou, Huadong

    2012-07-01

    Mild cognitive impairment (MCI) is considered as the early stage of dementia which currently has no effective treatments. Reducing progression of cognitive decline at the MCI stage could be an important strategy for preventing conversion to dementia. The goal of this work was to screen for clinical predictors indicating the prognosis of MCI comprehensively; therefore, we assumed vascular risk factors (VRFs), carotid stenosis, and white matter changes (WMC) to be independent predictors. A total of 257 patients with MCI underwent collection of VRF information, neuropsychological evaluation, computed tomography angiography (CTA) to investigate carotid stenosis, and magnetic resonance imaging (MRI) to identify severity of WMC. After a 3-year follow-up period, the neuropsychological evaluation, CTA, and MRI were repeated to assess the progression of cognitive decline, carotid stenosis, and WMC. The conversion rate from MCI to dementia was 11.65% per year, and the conversion rate from MCI to Alzheimer's disease was 7.05% per year in our cohort. Cognitive decline (in terms of changes in Mini Mental State Examination scores) was associated with diabetes mellitus (p = 0.004), baseline WMC severity (p < 0.001), baseline carotid stenosis (p < 0.001), and WMC severity change (p < 0.001). Besides, diabetes, baseline WMC severity, baseline moderate-to-severe carotid stenosis, and carotid stenosis change during follow-up were predictors of conversion from MCI to dementia. Given the potential clinical predictors, our findings could imply that controlling blood glucose, removing carotid stenosis, and improving cerebral perfusion could be effective measures to delay cognitive decline in patients with MCI and prevent conversion from MCI to dementia. PMID:22186849

  17. Automated Semantic Indices Related to Cognitive Function and Rate of Cognitive Decline

    PubMed Central

    Pakhomov, Serguei V.S.; Hemmy, Laura S.; Lim, Kelvin O.

    2012-01-01

    The objective of our study is to introduce a fully automated, computational linguistic technique to quantify semantic relations between words generated on a standard semantic verbal fluency test and to determine its cognitive and clinical correlates. Cognitive differences between patients with Alzheimer’s disease and mild cognitive impairment are evident in their performance on the semantic verbal fluency test. In addition to the semantic verbal fluency test score, several other performance characteristics sensitive to disease status and predictive of future cognitive decline have been defined in terms of words generated from semantically related categories (clustering) and shifting between categories (switching). However, the traditional assessment of clustering and switching has been performed manually in a qualitative fashion resulting in subjective scoring with limited reproducibility and scalability. Our approach uses word definitions and hierarchical relations between the words in WordNet®, a large electronic lexical database, to quantify the degree of semantic similarity and relatedness between words. We investigated the novel semantic fluency indices of mean cumulative similarity and relatedness between all pairs of words regardless of their order, and mean sequential similarity and relatedness between pairs of adjacent words in a sample of patients with clinically diagnosed probable (n=55) or possible (n=27) Alzheimer’s disease or mild cognitive impairment (n=31). The semantic fluency indices differed significantly between the diagnostic groups, and were strongly associated with neuropsychological tests of executive function, as well as the rate of global cognitive decline. Our results suggest that word meanings and relations between words shared across individuals and computationally modeled via WordNet and large text corpora provide the necessary context to account for the variability in language-based behavior and relate it to cognitive dysfunction

  18. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice.

    PubMed

    Mingaud, Frédérique; Mormede, Cécile; Etchamendy, Nicole; Mons, Nicole; Niedergang, Betty; Wietrzych, Marta; Pallet, Véronique; Jaffard, Robert; Krezel, Wojciech; Higueret, Paul; Marighetto, Aline

    2008-01-01

    An increasing body of evidence indicates that the vitamin A metabolite retinoic acid (RA) plays a role in adult brain plasticity by activating gene transcription through nuclear receptors. Our previous studies in mice have shown that a moderate downregulation of retinoid-mediated transcription contributed to aging-related deficits in hippocampal long-term potentiation and long-term declarative memory (LTDM). Here, knock-out, pharmacological, and nutritional approaches were used in a series of radial-arm maze experiments with mice to further assess the hypothesis that retinoid-mediated nuclear events are causally involved in preferential degradation of hippocampal function in aging. Molecular and behavioral findings confirmed our hypothesis. First, a lifelong vitamin A supplementation, like short-term RA administration, was shown to counteract the aging-related hippocampal (but not striatal) hypoexpression of a plasticity-related retinoid target-gene, GAP43 (reverse transcription-PCR analyses, experiment 1), as well as short-term/working memory (STWM) deterioration seen particularly in organization demanding trials (STWM task, experiment 2). Second, using a two-stage paradigm of LTDM, we demonstrated that the vitamin A supplementation normalized memory encoding-induced recruitment of (hippocampo-prefrontal) declarative memory circuits, without affecting (striatal) procedural memory system activity in aged mice (Fos neuroimaging, experiment 3A) and alleviated their LTDM impairment (experiment 3B). Finally, we showed that (knock-out, experiment 4) RA receptor beta and retinoid X receptor gamma, known to be involved in STWM (Wietrzych et al., 2005), are also required for LTDM. Hence, aging-related retinoid signaling hypoexpression disrupts hippocampal cellular properties critically required for STWM organization and LTDM formation, and nutritional vitamin A supplementation represents a preventive strategy. These findings are discussed within current neurobiological

  19. Glutamatergic treatment strategies for age-related memory disorders.

    PubMed

    Müller, W E; Scheuer, K; Stoll, S

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7997073

  20. Cognitive aging: a common decline of episodic recollection and spatial memory in rats.

    PubMed

    Robitsek, R Jonathan; Fortin, Norbert J; Koh, Ming Teng; Gallagher, Michela; Eichenbaum, Howard

    2008-09-01

    In humans, recognition memory declines with aging, and this impairment is characterized by a selective loss in recollection of previously studied items contrasted with relative sparing of familiarity for items in the study list. Rodent models of cognitive aging have focused on water maze learning and have demonstrated an age-associated loss in spatial, but not cued memory. The current study examined odor recognition memory in young and aged rats and compared performance in recognition with that in water maze learning. In the recognition task, young rats used both recollection and familiarity. In contrast, the aged rats showed a selective loss of recollection and relative sparing of familiarity, similar to the effects of hippocampal damage. Furthermore, performance on the recall component, but not the familiarity component, of recognition was correlated with spatial memory and recollection was poorer in aged rats that were also impaired in spatial memory. These results extend the pattern of impairment in recollection and relative sparing of familiarity observed in human cognitive aging to rats, and suggest a common age-related impairment in both spatial learning and the recollective component of nonspatial recognition memory.

  1. Comparing three methods of computerised cognitive training for older adults with subclinical cognitive decline.

    PubMed

    Gooding, Amanda L; Choi, Jimmy; Fiszdon, Joanna M; Wilkins, Kirsten; Kirwin, Paul D; van Dyck, Christopher H; Devanand, Davangere; Bell, Morris D; Rivera Mindt, Monica

    2016-10-01

    Cognitive rehabilitation for mild cognitive impairment (MCI) and early Alzheimer's disease is readily available to the geriatric population. Initial evidence suggests that techniques incorporating motivational strategies to enhance treatment engagement may provide more benefit than computerised training alone. Seventy four adults with subclinical cognitive decline were randomly assigned to computerised cognitive training (CCT), Cognitive Vitality Training (CVT), or an Active Control Group (ACG), and underwent neuropsychological evaluations at baseline and four-month follow-up. Significant differences were found in changes in performance on the Modified Mini Mental State Examination (mMMSE) and measures of verbal learning and memory across treatment groups. Experimental groups showed greater preservation of functioning on the mMMSE than the ACG group, the CVT group performed better than the ACG group on one measure of verbal learning and both measures of verbal memory, and the CCT group performed better than the ACG group on one measure of verbal learning and one measure of verbal memory. There were no significant group differences between the CVT and CCT groups on measures of verbal learning or memory. It was concluded that computerised cognitive training may offer the most benefit when incorporated into a therapeutic milieu rather than administered alone, although both appear superior to more generic forms of cognitive stimulation.

  2. Consumption of alcoholic beverages and cognitive decline at middle age: the Doetinchem Cohort Study.

    PubMed

    Nooyens, Astrid C J; Bueno-de-Mesquita, H Bas; van Gelder, Boukje M; van Boxtel, Martin P J; Verschuren, W M Monique

    2014-02-01

    Accelerated cognitive decline increases the risk of dementia. Slowing down the rate of cognitive decline leads to the preservation of cognitive functioning in the elderly, who can live independently for a longer time. Alcohol consumption may influence the rate of cognitive decline. The aim of the present study was to evaluate the associations between the total consumption of alcoholic beverages and different types of alcoholic beverages and cognitive decline at middle age. In 2613 men and women of the Doetinchem Cohort Study, aged 43-70 years at baseline (1995-2002), cognitive function (global cognitive function and the domains memory, speed and flexibility) was assessed twice, with a 5-year time interval. In linear regression analyses, the consumption of different types of alcoholic beverages was analysed in relation to cognitive decline, adjusting for confounders. We observed that, in women, the total consumption of alcoholic beverages was inversely associated with the decline in global cognitive function over a 5-year period (P for trend = 0·02), while no association was observed in men. Regarding the consumption of different types of alcoholic beverages in men and women together, red wine consumption was inversely associated with the decline in global cognitive function (P for trend < 0·01) as well as memory (P for trend < 0·01) and flexibility (P for trend = 0·03). Smallest declines were observed at a consumption of about 1·5 glasses of red wine per d. No other types of alcoholic beverages were associated with cognitive decline. In conclusion, only (moderate) red wine consumption was consistently associated with less strong cognitive decline. Therefore, it is most likely that non-alcoholic substances in red wine are responsible for any cognition-preserving effects.

  3. Age-Related Changes in Electrophysiological and Neuropsychological Indices of Working Memory, Attention Control, and Cognitive Flexibility

    PubMed Central

    Peltz, Carrie Brumback; Gratton, Gabriele; Fabiani, Monica

    2011-01-01

    Older adults exhibit great variability in their cognitive abilities, with some maintaining high levels of performance on executive control tasks and others showing significant deficits. Previous event-related potential (ERP) work has shown that some of these performance differences are correlated with persistence of the novelty/frontal P3 in older adults elicited by task-relevant events, presumably reflecting variability in the capacity to suppress orienting to unexpected but no longer novel events. In recent ERP work in young adults, we showed that the operation-span (OSPAN) task (a measure of attention control) is predictive of the ability of individuals to keep track of stimulus sequencing and to maintain running mental representations of task stimuli, as indexed by the parietally distributed P300 (or P3b). Both of these phenomena reflect aspects of frontal function (cognitive flexibility and attention control, respectively). To investigate these phenomena we sorted both younger and older adults into low- and high-working memory spans and low- and high-cognitive flexibility subgroups, and examined ERPs during an equal-probability choice reaction time task. For both age groups (a) participants with high OSPAN scores were better able to keep track of stimulus sequencing, as indicated by their smaller P3b to sequential changes; and (b) participants with lower cognitive flexibility had larger P3a than their high-scoring counterparts. However, these two phenomena did not interact suggesting that they manifest dissociable control mechanisms. Further, the fact that both effects are already visible in younger adults suggests that at least some of the brain mechanisms underlying individual differences in cognitive aging may already operate early in life. PMID:21887150

  4. Age-Related Differences and Cognitive Correlates of Self-Reported and Direct Navigation Performance: The Effect of Real and Virtual Test Conditions Manipulation.

    PubMed

    Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène

    2015-01-01

    The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates.

  5. Age-Related Differences and Cognitive Correlates of Self-Reported and Direct Navigation Performance: The Effect of Real and Virtual Test Conditions Manipulation

    PubMed Central

    Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène

    2016-01-01

    The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates. PMID:26834666

  6. Trade off situation between thymus and growth hormone: age-related decline of growth hormone is a cause of thymic involution but favorable for elongation of lifespan.

    PubMed

    Hirokawa, Katsuiku; Utsuyama, Masanori; Kikuchi, Yuko

    2016-02-01

    High level of growth hormone (GH) is necessary for the activation of thymic function to promote T cell differentiation in the early stage of animal life. In the later stage of the life, administration of GH promotes the development of immune system and rejuvenates declined immune function of elderly people. By contraries, GH deficiency is favorable for the longer lifespan, as hypo-pituitary dwarf mice such as Ames and Snell dwarf mice exhibit longer lifespan than control. Furthermore over-expression of heterologous or homologous GH in transgenic mice shortens the lifespan. Ecuadorians carrying mutations of GH receptor gene are short in height, but exhibited low frequency of malignancy and no cases of diabetes. These data indicate that GH is necessary for the development of thymus dependent immune system but GH deficiency is favorable for long life span and decreases occurrence of cancer and DM. This situation is a kind of trade off situation between the immune system and GH. Thus the early decline of high level of GH occurring shortly after the birth is a cause of early decline of thymic functions, but favorable for longer lifespan. This situation could be a kind of trade off situation between thymus and GH.

  7. Relationship between metabolic and vascular conditions and cognitive decline among older Mexican Americans

    PubMed Central

    Downer, Brian; Raji, Mukaila A.; Markides, Kyriakos S.

    2015-01-01

    Objective Metabolic and vascular conditions have been independently associated with dementia and cognitive decline among older adults, but research on the combined effects that these conditions have on cognitive decline, especially among older Mexican Americans, is lacking. The purpose of this study was to examine the relationship between metabolic and vascular conditions and cognitive decline among older Mexican Americans. Methods The final sample included 2767 participants of the Hispanic Established Populations for the Epidemiologic Study of the Elderly. Linear mixed-effects regression was used to model cognitive decline across six examinations (1993–2007) according to the number (zero, one, two, and three to four) of metabolic and vascular conditions (hypertension, diabetes, stroke, and heart attack). Results Of the 2767 participants included in the final sample, 777 had zero conditions, 1314 had one condition, 553 had two conditions, and 123 had three to four conditions. Participants with two or three to four conditions had significantly greater cognitive decline compared with participants with zero or one condition. Stroke had the largest effect size on cognitive decline based on the proportion of variance that stroke accounted for in the linear mixed-effects model. Conclusion Mexican American older adults with multiple metabolic and vascular conditions exhibit greater cognitive decline than those with zero or one condition. Public health interventions designed to reduce the prevalence of chronic metabolic and vascular conditions, in particular stroke, may limit the severity of cognitive decline among older Mexican Americans. PMID:26032435

  8. A Validated Age-Related Normative Model for Male Total Testosterone Shows Increasing Variance but No Decline after Age 40 Years

    PubMed Central

    Kelsey, Thomas W.; Li, Lucy Q.; Mitchell, Rod T.; Whelan, Ashley; Anderson, Richard A.; Wallace, W. Hamish B.

    2014-01-01

    The diagnosis of hypogonadism in human males includes identification of low serum testosterone levels, and hence there is an underlying assumption that normal ranges of testosterone for the healthy population are known for all ages. However, to our knowledge, no such reference model exists in the literature, and hence the availability of an applicable biochemical reference range would be helpful for the clinical assessment of hypogonadal men. In this study, using model selection and validation analysis of data identified and extracted from thirteen studies, we derive and validate a normative model of total testosterone across the lifespan in healthy men. We show that total testosterone peaks [mean (2.5–97.5 percentile)] at 15.4 (7.2–31.1) nmol/L at an average age of 19 years, and falls in the average case [mean (2.5–97.5 percentile)] to 13.0 (6.6–25.3) nmol/L by age 40 years, but we find no evidence for a further fall in mean total testosterone with increasing age through to old age. However we do show that there is an increased variation in total testosterone levels with advancing age after age 40 years. This model provides the age related reference ranges needed to support research and clinical decision making in males who have symptoms that may be due to hypogonadism. PMID:25295520

  9. Autophagy involving age-related cognitive behavior and hippocampus injury is modulated by different caloric intake in mice

    PubMed Central

    Dong, Wen; Wang, Rong; Ma, Li-Na; Xu, Bao-Lei; Zhang, Jing-Shuang; Zhao, Zhi-Wei; Wang, Yu-Lan; Zhang, Xu

    2015-01-01

    Recent studies indicated that different caloric intake may influence neuronal function. Excessive caloric intake associated with accelerated aging of the brain and increased the risk of neurodegenerative disorders. And low caloric intake (caloric restriction, CR) could delay aging, and protect the central nervous system from neurodegenerative disorders. The underlying mechanisms remain poorly understood. In this study, thirty six-week-old male C57/BL male mice were randomly divided into three different dietary groups: normal control (NC) group (fed standard diet), CR group (fed low-caloric diet) and high-calorie (HC) group (fed high-caloric diet). After 10 months, spatial memory ability was determined by Morris water maze. Pathological changes of the hippocampus cells were detected with HE and Nissl staining. The expression of proteins involved in autophagy in the hippocampus was determined by immunofluorescence and Western blot. The result of Morris water maze showed that the learning and memory capacity significantly increased in the CR group, and significantly decreased in the HC group. HE and Nissl staining showed cells damaged obviously in the HC group. The expression of mTOR and p62 was increased in the HC group, and decreased in the CR group. The expression of Beclin1, LC3 and cathepsin B was decreased in the HC group, and increased in the CR group. Our findings demonstrate that long-term high caloric intake is a risk factor that can significantly contribute to the development of neurological disease via suppressing autophagy, and CR may prevent age-related learning ability impairment via activating autophagy in mice. PMID:26380026

  10. Impaired Sleep Predicts Cognitive Decline in Old People: Findings from the Prospective KORA Age Study

    PubMed Central

    Johar, Hamimatunnisa; Kawan, Rasmila; Emeny, Rebecca Thwing; Ladwig, Karl-Heinz

    2016-01-01

    Study Objectives: To investigate the association between sleep-related characteristics and cognitive change over 3 years of follow up in an aged population. Methods: Sleep characteristics and covariates were assessed at baseline in a standardized interview and clinical examination of the population-based KORA Age Study (n = 740, mean age = 75 years). Cognitive score (determined by telephone interview for cognitive status, TICS-m) was recorded at baseline and 3 years later. Results: At baseline, 82.83% (n = 613) of participants had normal cognitive status, 13.51% (n = 100) were classified with mild cognitive impairment (MCI), and 3.64% (n = 27) with probable dementia. The effect of three distinct patterns of poor sleep (difficulties initiating [DIS] or maintaining sleep [DMS], daytime sleepiness [DS] or sleep duration) were considered on a change in cognitive score with adjustments for potential confounders in generalized linear regression models. Cognitive decline was more pronounced in individuals with DMS compared to those with no DMS (β = 1.33, 95% CI = 0.41–2.24, P < 0.001). However, the predictive power of DMS was only significant in individuals with normal cognition and not impaired subjects at baseline. Prolonged sleep duration increased the risk for cognitive decline in cognitively impaired elderly (β = 1.86, 95% CI = 0.15–3.57, P = 0.03). Other sleep characteristics (DIS and DS) were not significantly associated with cognitive decline. Conclusions: DMS and long sleep duration were associated with cognitive decline in normal and cognitively impaired elderly, respectively. The identification of impaired sleep quality may offer intervention strategies to deter cognitive decline in the elderly with normal cognitive function. Citation: Johar H, Kawan R, Emeny RT, Ladwig KH. Impaired sleep predicts cognitive decline in old people: findings from the prospective KORA age study. SLEEP 2016;39(1):217–226. PMID:26414903

  11. Disentangling the effects of age and APOE on neuropathology and late life cognitive decline.

    PubMed

    Yu, Lei; Boyle, Patricia A; Leurgans, Sue; Schneider, Julie A; Bennett, David A

    2014-04-01

    Age and APOE are the most robust risk factors for dementia and cognitive decline, but the underlying neurobiology remains unclear. We examined the extent to which the hallmark pathologies of Alzheimer's disease, Lewy body disease, and cerebrovascular diseases account for the association of age and APOE with decline in episodic memory versus nonepisodic cognitive abilities. Up to 20 waves of longitudinal cognitive data were collected from 858 autopsied participants in 2 ongoing clinical-pathologic cohort studies of aging. Neuropathologic examinations quantified measures of beta amyloid (Aβ) plaque, mesial temporal and neocortical neurofibrillary tangles, macro- and microinfarcts, and neocortical Lewy bodies. Random coefficient models estimated person-specific slopes of decline in episodic memory and nonepisodic cognition. Path analysis examined the relation of age, APOE, and the 6 pathologic indices to the slopes of cognitive decline. The effect of age on decline in episodic memory was mediated by Aβ, mesial temporal and neocortical tau tangles, and macroscopic infarcts; age on decline in nonepisodic cognition was mediated by Aβ, neocortical tangles, and macroscopic infarcts. The effect of APOE on decline in episodic memory was mediated by Aβ, mesial temporal and neocortical tangles, and neocortical Lewy bodies; APOE on nonepisodic cognition was mediated by Aβ, neocortical tangles, and neocortical Lewy bodies. There were no direct effects of age and APOE on decline after accounting for these pathologic pathways.

  12. Walking ability to predict future cognitive decline in old adults: A scoping review.

    PubMed

    Kikkert, Lisette H J; Vuillerme, Nicolas; van Campen, Jos P; Hortobágyi, Tibor; Lamoth, Claudine J

    2016-05-01

    Early identification of individuals at risk for cognitive decline may facilitate the selection of those who benefit most from interventions. Current models predicting cognitive decline include neuropsychological and/or biological markers. Additional markers based on walking ability might improve accuracy and specificity of these models because motor and cognitive functions share neuroanatomical structures and psychological processes. We reviewed the relationship between walking ability at one point of (mid) life and cognitive decline at follow-up. A systematic literature search identified 20 longitudinal studies. The average follow-up time was 4.5 years. Gait speed quantified walking ability in most studies (n=18). Additional gait measures (n=4) were step frequency, variability and step-length. Despite methodological weaknesses, results revealed that gait slowing (0.68-1.1 m/sec) preceded cognitive decline and the presence of dementia syndromes (maximal odds and hazard ratios of 10.4 and 11.1, respectively). The results indicate that measures of walking ability could serve as additional markers to predict cognitive decline. However, gait speed alone might lack specificity. We recommend gait analysis, including dynamic gait parameters, in clinical evaluations of patients with suspected cognitive decline. Future studies should focus on examining the specificity and accuracy of various gait characteristics to predict future cognitive decline. PMID:26861693

  13. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  14. Age-Related Changes in 1/f Neural Electrophysiological Noise.

    PubMed

    Voytek, Bradley; Kramer, Mark A; Case, John; Lepage, Kyle Q; Tempesta, Zechari R; Knight, Robert T; Gazzaley, Adam

    2015-09-23

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15-53 years) and scalp EEG data from healthy younger (20-30 years) and older (60-70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <-1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. Significance statement: Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise-induced deficits in

  15. A Simulation Platform for Quantifying Survival Bias: An Application to Research on Determinants of Cognitive Decline.

    PubMed

    Mayeda, Elizabeth Rose; Tchetgen Tchetgen, Eric J; Power, Melinda C; Weuve, Jennifer; Jacqmin-Gadda, Hélène; Marden, Jessica R; Vittinghoff, Eric; Keiding, Niels; Glymour, M Maria

    2016-09-01

    Bias due to selective mortality is a potential concern in many studies and is especially relevant in cognitive aging research because cognitive impairment strongly predicts subsequent mortality. Biased estimation of the effect of an exposure on rate of cognitive decline can occur when mortality is a common effect of exposure and an unmeasured determinant of cognitive decline and in similar settings. This potential is often represented as collider-stratification bias in directed acyclic graphs, but it is difficult to anticipate the magnitude of bias. In this paper, we present a flexible simulation platform with which to quantify the expected bias in longitudinal studies of determinants of cognitive decline. We evaluated potential survival bias in naive analyses under several selective survival scenarios, assuming that exposure had no effect on cognitive decline for anyone in the population. Compared with the situation with no collider bias, the magnitude of bias was higher when exposure and an unmeasured determinant of cognitive decline interacted on the hazard ratio scale to influence mortality or when both exposure and rate of cognitive decline influenced mortality. Bias was, as expected, larger in high-mortality situations. This simulation platform provides a flexible tool for evaluating biases in studies with high mortality, as is common in cognitive aging research. PMID:27578690

  16. Bereavement and behavioral changes as risk factors for cognitive decline in adults with Down syndrome

    PubMed Central

    Fonseca, Luciana Mascarenhas; de Oliveira, Melaine Cristina; de Figueiredo Ferreira Guilhoto, Laura Maria; Cavalheiro, Esper Abrao; Bottino, Cássio MC

    2014-01-01

    Background Cognitive decline and Alzheimer’s disease often affect older adults with Down syndrome (DS) much earlier than those in the general population. There is also growing evidence of the effects of negative life events on the mental health and behavior of individuals with intellectual disability. However, to our knowledge, this is the first study investigating objective cognitive decline following bereavement in aging individuals with DS. Objective The objective of this study was to determine whether cognitive decline correlates with bereavement following the recent loss of a caregiver or with behavioral changes in a sample of adult individuals with DS who do not meet the criteria for dementia or depression, using the longitudinal assessment of the Cambridge Cognitive Examination (CAMCOG), together with the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). Methods We evaluated 18 subjects at baseline and over a follow-up period of 14–22 months, attempting to determine whether cognitive decline correlates with bereavement following the recent loss of the main caregiver or with behavioral changes (as assessed with the Neuropsychiatric Inventory). Results The mean rate of change in CAMCOG was −1.83 (standard deviation 4.51). Behavioral changes had a significant direct influence on cognitive decline. When bereavement was accompanied by behavioral changes, the probability of cognitive decline was 87% (odds ratio 3.82). Conclusion The occurrence of behavioral changes attributed to bereavement following the loss of the primary caregiver significantly increases the probability of cognitive decline in individuals with DS. Longitudinal comparison of the CAMCOG and use of the IQCODE appear to enrich the analysis of cognitive decline in individuals with DS. Further studies involving larger samples are needed in order to corroborate and expand upon our findings, which can have implications for the clinical management of older adults with DS. PMID

  17. Diet and cognitive decline at middle age: the role of antioxidants.

    PubMed

    Nooyens, Astrid C J; Milder, Ivon E J; van Gelder, Boukje M; Bueno-de-Mesquita, H Bas; van Boxtel, Martin P J; Verschuren, W M Monique

    2015-05-14

    To assess the relationship between dietary intake of antioxidants (vitamin C, vitamin E, β-carotene, lutein, flavonoids and lignans) and cognitive decline at middle age, analyses were performed on data from the population based Doetinchem Cohort Study. Habitual diet and cognitive function were assessed twice with a 5-year interval in 2613 persons aged 43-70 year at baseline (1995-2002). Diet was assessed with a validated 178-item semi-quantitative FFQ. Cognitive function was assessed with a neuropsychological test battery, consisting of the 15 Words Learning Test, the Stroop Test, the Word Fluency test, and the Letter Digit Substitution Test. Scores on global cognitive function, memory, processing speed, and cognitive flexibility were calculated. In regression analyses, quintiles of antioxidant intake were associated with change in cognitive domain scores. Results showed that higher lignan intake was linearly associated with less decline in global cognitive function (P= 0.01), memory (P< 0.01) and processing speed (P= 0.04), with about two times less declines in the highest v. the lowest quintile. In the lowest quintile of vitamin E intake, decline in memory was twice as fast as in all higher quintiles (P< 0.01). Global cognitive decline in the highest lutein intake group was greater than in the lowest intake group (P< 0.05). Higher flavonoid intake was associated with greater decline in cognitive flexibility (P for trend = 0.04). Intakes of other antioxidants were not associated with cognitive decline. We conclude that within the range of a habitual dietary intake, higher intake of lignans is associated with less cognitive decline at middle age.

  18. Sensorimotor and cognitive factors associated with the age-related increase of visual field dependence: a cross-sectional study.

    PubMed

    Agathos, Catherine P; Bernardin, Delphine; Huchet, Delphine; Scherlen, Anne-Catherine; Assaiante, Christine; Isableu, Brice

    2015-08-01

    Reliance on the visual frame of reference for spatial orientation (or visual field dependence) has been reported to increase with age. This has implications on old adults' daily living tasks as it affects stability, attention, and adaptation capacities. However, the nature and underlying mechanisms of this increase are not well defined. We investigated sensorimotor and cognitive factors possibly associated with increased visual field dependence in old age, by considering functions that are both known to degrade with age and important for spatial orientation and sensorimotor control: reliance on the (somatosensory-based) egocentric frame of reference, visual fixation stability, and attentional processing of complex visual scenes (useful field of view, UFOV). Twenty young, 18 middle-aged, and 20 old adults completed a visual examination, three tests of visual field dependence (RFT, RDT, and GEFT), a test of egocentric dependence (subjective vertical estimation with the body erect and tilted at 70°), a visual fixation task, and a test of visual attentional processing (UFOV®). Increased visual field dependence with age was associated with reduced egocentric dependence, visual fixation stability, and visual attentional processing. In addition, visual fixation instability and reduced UFOV were correlated. Results of middle-aged adults fell between those of the young and old, revealing the progressive nature of the age effects we evaluated. We discuss results in terms of reference frame selection with respect to ageing as well as visual and non-visual information processing. Inter-individual differences amongst old adults are highlighted and discussed with respect to the functionality of increased visual field dependence.

  19. Long-term association of food and nutrient intakes with cognitive and functional decline: a 13-year follow-up study of elderly French women.

    PubMed

    Vercambre, Marie-Noël; Boutron-Ruault, Marie-Christine; Ritchie, Karen; Clavel-Chapelon, Françoise; Berr, Claudine

    2009-08-01

    The objective of the present study was to determine the potential long-term impact of dietary habits on age-related decline among 4809 elderly women (born between 1925 and 1930) in the 'Etude Epidémiologique de Femmes de la Mutuelle Générale de l'Education Nationale' (E3N) study, a French epidemiological cohort. In 1993, an extensive diet history self-administered questionnaire was sent to all participants, and in 2006 another questionnaire on instrumental activities of daily living (IADL) and recent cognitive change was sent to a close relative or friend of each woman. Logistic models adjusted for socio-demographic, lifestyle and health factors were performed to evaluate associations between habitual dietary intakes and two outcomes of interest based on the informant response: recent cognitive decline and IADL impairment. Recent cognitive decline was associated with lower intakes of poultry, fish, and animal fats, as well as higher intakes of dairy desserts and ice-cream. IADL impairment was associated with a lower intake of vegetables. The odds of recent cognitive decline increased significantly with decreasing intake of soluble dietary fibre and n-3 fatty acids but with increasing intake of retinol. The odds of IADL impairment increased significantly with decreasing intakes of vitamins B2, B6 and B12. These results are consistent with a possible long-term neuroprotective effect of dietary fibre, n-3 polyunsaturated fats and B-group vitamins, and support dietary intervention to prevent cognitive decline. PMID:19203415

  20. A phytochemical-rich diet may explain the absence of age-related decline in visual acuity of Amazonian hunter-gatherers in Ecuador.

    PubMed

    London, Douglas S; Beezhold, Bonnie

    2015-02-01

    Myopia is absent in undisturbed hunter-gatherers but ubiquitous in modern populations. The link between dietary phytochemicals and eye health is well established, although transition away from a wild diet has reduced phytochemical variety. We hypothesized that when larger quantities and greater variety of wild, seasonal phytochemicals are consumed in a food system, there will be a reduced prevalence of degenerative-based eye disease as measured by visual acuity. We compared food systems and visual acuity across isolated Amazonian Kawymeno Waorani hunter-gatherers and neighboring Kichwa subsistence agrarians, using dietary surveys, dietary pattern observation, and Snellen Illiterate E visual acuity examinations. Hunter-gatherers consumed more food species (130 vs. 63) and more wild plants (80 vs. 4) including 76 wild fruits, thereby obtaining larger variety and quantity of phytochemicals than agrarians. Visual acuity was inversely related to age only in agrarians (r = -.846, P < .001). As hypothesized, when stratified by age (<40 and ≥ 40 years), Mann-Whitney U tests revealed that hunter-gatherers maintained high visual acuity throughout life, whereas agrarian visual acuity declined (P values < .001); visual acuity of younger participants was high across the board, however, did not differ between groups (P > .05). This unusual absence of juvenile-onset vision problems may be related to local, organic, whole food diets of subsistence food systems isolated from modern food production. Our results suggest that intake of a wider variety of plant foods supplying necessary phytochemicals for eye health may help maintain visual acuity and prevent degenerative eye conditions as humans age. PMID:25636674

  1. Changes in physical activity and cognitive decline in older adults living in the community.

    PubMed

    Lee, Yunhwan; Kim, Jinhee; Han, Eun Sook; Chae, Songi; Ryu, Mikyung; Ahn, Kwang Ho; Park, Eun Ju

    2015-01-01

    Accumulating evidence suggests that physical activity may be beneficial in preserving cognition in late life. This study examined the association between baseline and changes in physical activity and cognitive decline in community-dwelling older people. Data were from the Korean Longitudinal Study of Aging, with 2605 aged 65 years and older subjects interviewed in 2006 and followed up for 2 years. Cognitive decline was defined by calculating the Reliable Change Index using the Mini-Mental State Examination. Physical activity levels were categorized as sedentary, low, or high. Changes in physical activity were classified as inactive, decreaser, increaser, or active. Logistic regression analysis of baseline and changes in physical activity with cognitive decline was performed. Compared with the sedentary group at baseline, both the low and high activity groups were less likely to experience cognitive decline. The active (odds ratio [OR] = 0.40, 95 % confidence interval [CI] 0.23-0.68) and increaser (OR = 0.45, 95 % CI 0.27-0.74) group, compared with the inactive counterpart, demonstrated a significantly lower likelihood of cognitive decline. Older adults who remained active or increased activity over time had a reduced risk of cognitive decline. Engagement in physical activity in late life may have cognitive health benefits.

  2. Roles of Arterial Stiffness and Blood Pressure in Hypertension-Associated Cognitive Decline in Healthy Adults.

    PubMed

    Hajjar, Ihab; Goldstein, Felicia C; Martin, Greg S; Quyyumi, Arshed A

    2016-01-01

    Although there is strong evidence that hypertension leads to cognitive decline, especially in the executive domain, the relationship between blood pressure and cognition has been conflicted. Hypertension is characterized by blood pressure elevation and increased arterial stiffness. We aimed at investigating whether arterial stiffness would be superior to blood pressure in predicting cognitive decline and explaining the hypertension-executive decline association. A randomly selected asymptomatic population (n=591, age=49.2 years, 70% women, 27% black, and education=18 years) underwent annual vascular and cognitive assessments. Cognition was assessed using computerized versions commonly used cognitive tests, and principal component analysis was used for deriving cognitive scores for executive function, memory, and working memory. Arterial stiffness was measured by carotid-femoral pulse wave velocity (PWV). Higher PWV, but not blood pressure, was associated with a steeper decline in executive (P=0.0002), memory (P=0.05), and working memory (P=0.02) scores after adjusting for demographics, education, and baseline cognitive performance. This remained true after adjusting for hypertension. Hypertension was associated with greater decline in executive score (P=0.0029) and those with combined hypertension and elevated PWV (>7 m/s) had the greatest decline in executive score (P value hypertension×PWV=0.02). PWV explained the association between hypertension and executive function (P value for hypertension=0.0029 versus 0.24 when adjusting for PWV). In healthy adults, increased arterial stiffness is superior to blood pressure in predicting cognitive decline in all domains and in explaining the hypertension-executive function association. Arterial stiffness, especially in hypertension, may be a target in the prevention of cognitive decline.

  3. Cognitive reserve moderates decline in information processing speed in multiple sclerosis patients.

    PubMed

    Benedict, Ralph H B; Morrow, Sarah A; Weinstock Guttman, Bianca; Cookfair, Diane; Schretlen, David J

    2010-09-01

    Cognitive reserve is widely recognized as a moderator of cognitive decline in patients with senile dementias such as Alzheimer's disease. The same effect may occur in multiple sclerosis (MS), an immunologic disorder affecting the central nervous system. While MS is traditionally considered an inflammatory, white matter disease, degeneration of gray matter is increasingly recognized as the primary contributor to progressive cognitive decline. Our aim was to determine if individual differences in estimated cognitive reserve protect against the progression of cognitive dysfunction in MS. Ninety-one patients assessed twice roughly 5 years apart were identified retrospectively. Cognitive testing emphasized mental processing speed. Cognitive reserve was estimated by years of education and by performance on the North American Adult Reading Test (NAART). After controlling for baseline characteristics, both years of education (p = .013) and NAART scores (p = .049) significantly improved regression models predicting cognitive decline. Symbol Digit Modalities Test (SDMT) performance showed no significant change in patients with > 14 years of education, whereas it declined significantly in patients with ≤ 14 years of education. We conclude that greater cognitive reserve as indexed by either higher premorbid intelligence or more years of education protects against the progression of cognitive dysfunction in MS.

  4. Cognitive Decline and Oral Health in Middle-aged Adults in the ARIC Study

    PubMed Central

    Naorungroj, S.; Slade, G.D.; Beck, J.D.; Mosley, T.H.; Gottesman, R.F.; Alonso, A.; Heiss, G.

    2013-01-01

    Even before dementia becomes apparent, cognitive decline may contribute to deterioration in oral health. This cohort study of middle-aged adults evaluated associations of six-year change in cognitive function with oral health behaviors and conditions in the Atherosclerosis Risk in Communities (ARIC) study. Cognitive function was measured at study visits in 1990-1992 and 1996-1998 with three tests: (a) Delayed Word Recall (DWR), (b) Digit Symbol Substitution (DSS), and (c) Word Fluency (WF). Cognitive decline scores were computed as ‘studentized’ residuals of 1996-1998 scores regressed against 1990-1992 scores. In 1996-1998, 10,050 participants answered dental screening questions, and 5,878 of 8,782 dentate participants received a comprehensive oral examination. Multiple regression models used cognitive change to predict oral health behaviors and conditions with adjustment for covariates. In the fully adjusted models, greater decline in all three measures of cognitive function was associated with increased odds of complete tooth loss. Greater decline in DSS and WF scores was associated with infrequent toothbrushing. Decline in WF scores was also associated with higher plaque levels. In these middle-aged adults, six-year cognitive decline was modestly associated with less frequent toothbrushing, plaque deposit, and greater odds of edentulism, but not with other oral behaviors or diseases. PMID:23872988

  5. Cognitive decline and oral health in middle-aged adults in the ARIC study.

    PubMed

    Naorungroj, S; Slade, G D; Beck, J D; Mosley, T H; Gottesman, R F; Alonso, A; Heiss, G

    2013-09-01

    Even before dementia becomes apparent, cognitive decline may contribute to deterioration in oral health. This cohort study of middle-aged adults evaluated associations of six-year change in cognitive function with oral health behaviors and conditions in the Atherosclerosis Risk in Communities (ARIC) study. Cognitive function was measured at study visits in 1990-1992 and 1996-1998 with three tests: (a) Delayed Word Recall (DWR), (b) Digit Symbol Substitution (DSS), and (c) Word Fluency (WF). Cognitive decline scores were computed as 'studentized' residuals of 1996-1998 scores regressed against 1990-1992 scores. In 1996-1998, 10,050 participants answered dental screening questions, and 5,878 of 8,782 dentate participants received a comprehensive oral examination. Multiple regression models used cognitive change to predict oral health behaviors and conditions with adjustment for covariates. In the fully adjusted models, greater decline in all three measures of cognitive function was associated with increased odds of complete tooth loss. Greater decline in DSS and WF scores was associated with infrequent toothbrushing. Decline in WF scores was also associated with higher plaque levels. In these middle-aged adults, six-year cognitive decline was modestly associated with less frequent toothbrushing, plaque deposit, and greater odds of edentulism, but not with other oral behaviors or diseases. PMID:23872988

  6. Structural Neuroimaging Markers of Cognitive Decline in Parkinson's Disease.

    PubMed

    Hanganu, Alexandru; Monchi, Oury

    2016-01-01

    Cognitive impairment in patients with Parkinson's disease is a major challenge since it has been established that 25 to 40% of patients will develop cognitive impairment early in the disease. Furthermore, it has been reported that up to 80% of Parkinsonian patients will eventually develop dementia. Thus, it is important to improve the diagnosing procedures in order to detect cognitive impairment at early stages of development and to delay as much as possible the developing of dementia. One major challenge is that patients with mild cognitive impairment exhibit measurable cognitive deficits according to recently established criteria, yet those deficits are not severe enough to interfere with daily living, hence being avoided by patients, and might be overseen by clinicians. Recent advances in neuroimaging brain analysis allowed the establishment of several anatomical markers that have the potential to be considered for early detection of cognitive impairment in Parkinsonian patients. This review aims to outline the neuroimaging possibilities in diagnosing cognitive impairment in patients with Parkinson's disease and to take into consideration the near-future possibilities of their implementation into clinical practice.

  7. Structural Neuroimaging Markers of Cognitive Decline in Parkinson's Disease

    PubMed Central

    Hanganu, Alexandru; Monchi, Oury

    2016-01-01

    Cognitive impairment in patients with Parkinson's disease is a major challenge since it has been established that 25 to 40% of patients will develop cognitive impairment early in the disease. Furthermore, it has been reported that up to 80% of Parkinsonian patients will eventually develop dementia. Thus, it is important to improve the diagnosing procedures in order to detect cognitive impairment at early stages of development and to delay as much as possible the developing of dementia. One major challenge is that patients with mild cognitive impairment exhibit measurable cognitive deficits according to recently established criteria, yet those deficits are not severe enough to interfere with daily living, hence being avoided by patients, and might be overseen by clinicians. Recent advances in neuroimaging brain analysis allowed the establishment of several anatomical markers that have the potential to be considered for early detection of cognitive impairment in Parkinsonian patients. This review aims to outline the neuroimaging possibilities in diagnosing cognitive impairment in patients with Parkinson's disease and to take into consideration the near-future possibilities of their implementation into clinical practice. PMID:27190672

  8. Obstructive Sleep Apnea and 15-Year Cognitive Decline: The Atherosclerosis Risk in Communities (ARIC) Study

    PubMed Central

    Lutsey, Pamela L.; Bengtson, Lindsay G.S.; Punjabi, Naresh M.; Shahar, Eyal; Mosley, Thomas H.; Gottesman, Rebecca F.; Wruck, Lisa M.; MacLehose, Richard F.; Alonso, Alvaro

    2016-01-01

    Study Objectives: Prospective data evaluating abnormal sleep quality and quantity with cognitive decline are limited because most studies used subjective data and/or had short follow-up. We hypothesized that, over 15 y of follow-up, participants with objectively measured obstructive sleep apnea (OSA) and other indices of poor sleep quantity and quality would experience greater decline in cognitive functioning than participants with normal sleep patterns. Methods: ARIC participants (n = 966; mean age 61 y, 55% women) with in-home polysomnography (1996–1998) and repeated cognitive testing were followed for 15 y. Three cognitive tests (Delayed Word Recall, Word Fluency, and Digit Symbol Substitution) were administered at two time points (1996–1998 and 2011–2013). Ten additional cognitive tests were administered at the 2011–2013 neurocognitive examination. OSA was modeled using established clinical OSA severity categories. Multivariable linear regression was used to explore associations of OSA and other sleep indices with change in cognitive tests between the two assessments. Results: A median of 14.9 y (max: 17.3) passed between the two cognitive assessments. OSA category and additional indices of sleep (other measures of hypoxemia and disordered breathing, sleep fragmentation, sleep duration) were not associated with change in any cognitive test. Analyses of OSA severity categories and 10 cognitive tests administered only in 2011–2013 also showed little evidence of an association. Conclusions: Overall, abnormal sleep quality and quantity at midlife was not related to cognitive decline and later-life cognition. The effect of adverse sleep quality and quantity on cognitive decline among the elderly remains to be determined. Citation: Lutsey PL, Bengtson LG, Punjabi NM, Shahar E, Mosley TH, Gottesman RF, Wruck LM, MacLehose RF, Alonso A. Obstructive sleep apnea and 15-year cognitive decline: the Atherosclerosis Risk in Communities (ARIC) study. SLEEP 2016

  9. Pattern and Rate of Cognitive Decline in Cerebral Small Vessel Disease: A Prospective Study

    PubMed Central

    Lawrence, Andrew J.; Brookes, Rebecca L.; Zeestraten, Eva A.; Barrick, Thomas R.; Morris, Robin G.; Markus, Hugh S.

    2015-01-01

    Objectives Cognitive impairment, predominantly affecting processing speed and executive function, is an important consequence of cerebral small vessel disease (SVD). To date, few longitudinal studies of cognition in SVD have been conducted. We determined the pattern and rate of cognitive decline in SVD and used the results to determine sample size calculations for clinical trials of interventions reducing cognitive decline. Methods 121 patients with MRI confirmed lacunar stroke and leukoaraiosis were enrolled into the prospective St George’s Cognition And Neuroimaging in Stroke (SCANS) study. Patients attended one baseline and three annual cognitive assessments providing 36 month follow-up data. Neuropsychological assessment comprised a battery of tests assessing working memory, long-term (episodic) memory, processing speed and executive function. We calculated annualized change in cognition for the 98 patients who completed at least two time-points. Results Task performance was heterogeneous, but significant cognitive decline was found for the executive function index (p<0.007). Working memory and processing speed decreased numerically, but not significantly. The executive function composite score would require the smallest samples sizes for a treatment trial with an aim of halting decline, but this would still require over 2,000 patients per arm to detect a 30% difference with power of 0.8 over a three year follow-up. Conclusions The pattern of cognitive decline seen in SVD over three years is consistent with the pattern of impairments at baseline. Rates of decline were slow and sample sizes would need to be large for clinical trials aimed at halting decline beyond initial diagnosis using cognitive scores as an outcome measure. This emphasizes the importance of more sensitive surrogate markers in this disease. PMID:26273828

  10. Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: systematic review of the literature.

    PubMed

    Coyle, Hannah; Traynor, Victoria; Solowij, Nadia

    2015-04-01

    The aim of this study was to assess the efficacy of cognitive training, specifically computerized cognitive training (CCT) and virtual reality cognitive training (VRCT), programs for individuals living with mild cognitive impairment (MCI) or dementia and therefore at high risk of cognitive decline. After searching a range of academic databases (CINHAL, PSYCinfo, and Web of Science), the studies evaluated (N = 16) were categorized as CCT (N = 10), VRCT (N = 3), and multimodal interventions (N = 3). Effect sizes were calculated, but a meta-analysis was not possible because of the large variability of study design and outcome measures adopted. The cognitive domains of attention, executive function, and memory (visual and verbal) showed the most consistent improvements. The positive effects on psychological outcomes (N = 6) were significant reductions on depressive symptoms (N = 3) and anxiety (N = 2) and improved perceived use of memory strategy (N = 1). Assessments of activities of daily living demonstrated no significant improvements (N = 8). Follow-up studies (N = 5) demonstrated long-term improvements in cognitive and psychological outcomes (N = 3), and the intervention groups showed a plateau effect of cognitive functioning compared with the cognitive decline experienced by control groups (N = 2). CCT and VRCT were moderately effective in long-term improvement of cognition for those at high risk of cognitive decline. Total intervention time did not mediate efficacy. Future research needs to improve study design by including larger samples, longitudinal designs, and a greater range of outcome measures, including functional and quality of life measures, to assess the wider effect of cognitive training on individuals at high risk of cognitive decline.

  11. Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease

    PubMed Central

    Wang, Fen; Gordon, Brian A.; Ryman, Davis C.; Ma, Shengmei; Xiong, Chengjie; Hassenstab, Jason; Goate, Alison; Fagan, Anne M.; Cairns, Nigel J.; Marcus, Daniel S.; McDade, Eric; Ringman, John M.; Graff-Radford, Neill R.; Ghetti, Bernardino; Farlow, Martin R.; Sperling, Reisa; Salloway, Steve; Schofield, Peter R.; Masters, Colin L.; Martins, Ralph N.; Rossor, Martin N.; Jucker, Mathias; Danek, Adrian; Förster, Stefan; Lane, Christopher A.S.; Morris, John C.; Bateman, Randall J.

    2015-01-01

    Objective: To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). Methods: Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89–4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. Results: In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. Conclusions: Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials. PMID:26245925

  12. [Vascular factors and progression of cognitive decline in elderly people].

    PubMed

    Bidzan, Leszek; Bidzan, Mariola

    2005-01-01

    The aim of the study was to assess the impact of vascular factors on the rate of progression of cognitive impairment. The study included 291 subjects without dementia. Cognitive function were assessed with the Alzheimer Disease Assessment Scale--cognitive subscale (ADAS--cog) which were conducted at baseline and at the end of the study. Statistical analysis included 215 persons. During the observation AD developed in 19 subjects and 11 vascular and mix dementia (according to DSM-IIIR and DSM-IV criteria). Subjects were categorized by the baseline Modified Hachinski Ischemic Score as having vascular factors 0-1 point (n = 140) or vascular factors > 1 point (n = 75). Statistical analyses were based on the patients' Modified Hachinski Ischemic Score dichotomization. The results show that vascular factors were risk factors for Alzheimer type dementia but the study does not prove the impact of vascular factors on progression of cognitive impairment. PMID:16358597

  13. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline.

    PubMed

    Cho, Kyung-Ok; Lybrand, Zane R; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G; Birnbaum, Shari G; Scharfman, Helen E; Eisch, Amelia J; Hsieh, Jenny

    2015-03-26

    Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.

  14. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline.

    PubMed

    Cho, Kyung-Ok; Lybrand, Zane R; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G; Birnbaum, Shari G; Scharfman, Helen E; Eisch, Amelia J; Hsieh, Jenny

    2015-01-01

    Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult. PMID:25808087

  15. Children’s Internal Attributions of Anxiety-Related Physical Symptoms: Age-Related Patterns and the Role of Cognitive Development and Anxiety Sensitivity

    PubMed Central

    Mayer, Birgit; Freher, Nancy Kramer; Duncan, Sylvana; van den Hout, Annemiek

    2010-01-01

    The present study examined age-related patterns in children’s anxiety-related interpretations and internal attributions of physical symptoms. A large sample of 388 children aged between 4 and 13 years completed a vignette paradigm during which they had to explain the emotional response of the main character who experienced anxiety-related physical symptoms in a variety of daily situations. In addition, children completed measures of cognitive development and anxiety sensitivity. Results demonstrated that age, cognitive development, and anxiety sensitivity were all positively related to children’s ability to perceive physical symptoms as a signal of anxiety and making internal attributions. Further, while a substantial proportion of the younger children (i.e., <7 years) were able to make a valid anxiety-related interpretation of a physical symptom, very few were capable of making an internal attribution, which means that children of this age lack the developmental prerequisites for applying physical symptoms-based theories of childhood anxiety. PMID:20440551

  16. Fructose in obesity and cognitive decline: is it the fructose or the excess energy?

    PubMed

    Chiavaroli, Laura; Ha, Vanessa; de Souza, Russell J; Kendall, Cyril Wc; Sievenpiper, John L

    2014-03-25

    We read with interest the review by Lakhan and Kirchgessner, proposing that high fructose intake promotes obesity, metabolic syndrome, diabetes, and cognitive decline. Their focus on the role of fructose seems premature due to confounding from energy and the heavy reliance on low quality evidence from animal models. There is a lack of high quality evidence directly assessing the role of fructose in cognitive decline. Although one cannot exclude the possibility of a link, it remains an unconfirmed hypothesis.

  17. Effect of plasma lipids and APOE genotype on cognitive decline.

    PubMed

    Yasuno, Fumihiko; Asada, Takashi

    2013-03-01

    A central tenet of brain aging is that "what is good for the heart is good for the brain." We examined the combined effect of plasma lipids and APOE genotype on cognitive function in elderly individuals. Plasma concentrations of high-density lipoprotein (HDL), low-density lipoprotein, triglyceride, total cholesterol, and apolipoprotein E (apoE) were evaluated in 622 community-dwelling individuals aged 65 years and older. We investigated the associations between plasma lipids and cognitive function in APOE4 carrier (E4+) and APOE4 noncarrier (E4-) groups using 3-year longitudinal data. At baseline and 3 years later, cognitive scores were correlated with plasma apoE levels in both E4- and E4+, and HDL level in E4-. Our findings suggest that an interaction between apoE and HDL is facilitated by APOE4, and is possibly linked with an enhancement of neuroplasticity and with resultant protective effects on cognitive function in later life. Preservation of higher plasma apoE and HDL from early life is proposed as a possible strategy for maintaining cognitive function in later life, especially for APOE4-positive individuals.

  18. Biological mechanisms of physical activity in preventing cognitive decline.

    PubMed

    Lista, I; Sorrentino, G

    2010-05-01

    In order to guarantee better conditions for competition, the nervous system has developed not only mechanisms controlling muscle effectors, but also retrograde systems that, starting from peripheral structures, may influence brain functions. Under such perspective, physical activity could play an important role in influencing cognitive brain functions including learning and memory. The results of epidemiological studies (cross-sectional, prospective and retrospective) support a positive relationship between cognition and physical activities. Recent meta-analysis confirmed a significant effect of exercise on cognitive functions. However, the biological mechanisms that underlie such beneficial effects are still to be completely elucidated. They include supramolecular mechanisms (e.g. neurogenesis, synaptogenesis, and angiogenesis) which, in turn, are controlled by molecular mechanisms, such as BDNF, IGF-1, hormone and second messengers.

  19. Age Related Decline in Postural Control Mechanisms.

    ERIC Educational Resources Information Center

    Stelmach, George E.; And Others

    1989-01-01

    Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…

  20. Age-Related Declines Evident Before 60

    MedlinePlus

    ... and independent later in life, according to the study researchers. "The good news is, with proper attention and effort, the ability to function independently can often be preserved with regular exercise," said lead author Katherine Hall, an assistant professor of medicine. "Our research reinforces ...

  1. The role of B-vitamins in preventing and treating cognitive impairment and decline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many epidemiologic studies have considered the question of whether markers of B-vitamin status are associated with cognitive function and cognitive decline. This avenue of research was sparked by the homocysteine (Hcy) theory of cardiovascular disease (CVD), which was extended to Alzheimer’s disease...

  2. C-reactive protein and genetic variants and cognitive decline in old age: The PROSPER Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasma concentrations of C-reactive protein (CRP), a marker of chronic inflammation, have been associated with cognitive impairment in old age. However, it is unknown whether CRP is causally linked to cognitive decline. Within the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) tri...

  3. Relation of neuropathology with cognitive decline among older persons without dementia

    PubMed Central

    Boyle, Patricia A.; Yu, Lei; Wilson, Robert S.; Schneider, Julie A.; Bennett, David A.

    2013-01-01

    Objective: Although it is now widely accepted that dementia has a long preclinical phase during which neuropathology accumulates and cognition declines, little is known about the relation of neuropathology with the longitudinal rate of change in cognition among older persons without dementia. We quantified the burden of the neuropathologies of the three most common causes of dementia [i.e., Alzheimer’s disease (AD), cerebrovascular disease (CVD), and Lewy body disease (LBD)] and examined their relation with cognitive decline in a large cohort of persons without dementia proximate to death. Methods: A total of 467 deceased participants without dementia from two longitudinal clinical-pathologic studies, Rush Memory and Aging Project and Religious Orders Study, completed a mean of 7 annual evaluations including 17 cognitive tests. Neuropathologic examinations provided quantitative measures of AD (i.e., amyloid load, tangle density), CVD (i.e., macroscopic infarcts, microinfarcts), and neocortical Lewy bodies. Random coefficient models were used to examine the relation of the neuropathologies with rates of global cognitive decline as well as decline in four specific cognitive systems. Results: At autopsy, 82% of persons without dementia had amyloid, 100% had tangles, 29% had macroscopic infarcts, 25% had microinfarcts, and 6% had neocortical Lewy bodies. Global cognition declined a mean of 0.034 unit per year (SE = 0.003, p < 0.001). In separate analyses, amyloid, tangles (p-values <0.001) and neocortical Lewy bodies (p = 0.015) were associated with an increased rate of global cognitive decline; macroscopic infarcts and microinfarcts were not. Further, when analyzed simultaneously, amyloid, tangles, and neocortical Lewy bodies remained associated with global cognitive decline (p-values <0.024). Finally, measures of AD were associated with decline in three of four systems, including episodic memory (i.e., tangles), semantic memory (i.e., amyloid and tangles), and

  4. Correcting Bias Caused by Missing Data in the Estimate of the Effect of Apolipoprotein ε4 on Cognitive Decline.

    PubMed

    Hall, Charles B; Lipton, Richard B; Katz, Mindy J; Wang, Cuiling

    2015-01-01

    Longitudinal administration of neuropsychological instruments are often used to assess age-related changes in cognition. Informative loss to follow-up may bias the results of these studies. Herein, we use auxiliary data to adjust for informative loss to follow-up. In the Einstein Aging Study, memory was assessed annually in a community sample of adults age 70+, free of dementia at baseline, using the free recall from the Free and Cued Selective Reminding Test, and via telephone using the Memory Impairment Screen for Telephone (the auxiliary data). Joint linear mixed models were used to assess how the effect of the APOE ε4 genotype may be affected by informative missingness in the in-person data. A total of 620 EAS participants contributed 2085 person years of follow-up to the analyses. Memory decline rates estimated in joint models were 19% greater in ε4 negative participants and 27% greater in ε4 positive participants compared to traditional approaches; the effect of APOE ε4 on memory decline was 37% greater. Joint modeling methods can help address bias caused by informative missing data in the estimation of the effect of risk factors on cognitive change, and may be applicable to a broader range of outcomes in longitudinal aging studies. PMID:25389642

  5. Correcting bias caused by missing data in the estimate of the effect of apolipoprotein ε4 on cognitive decline

    PubMed Central

    Hall, Charles B.; Lipton, Richard B.; Katz, Mindy J.; Wang, Cuiling

    2014-01-01

    Objective Longitudinal administration of neuropsychological instruments are often used to assess age-related changes in cognition. Informative loss to follow-up may bias the results of these studies. Herein, we use auxiliary data to adjust for informative loss to follow-up. Method In the Einstein Aging Study, memory was assessed annually in a community sample of adults age 70+, free of dementia at baseline, using the free recall from the Free and Cued Selective Reminding Test, and via telephone using the Memory Impairment Screen for Telephone (the auxiliary data). Joint linear mixed models were used to assess how the effect of the APOE ε4 genotype may be affected by informative missingness in the in-person data. Results 620 EAS participants contributed 2085 person years of follow-up to the analyses. Memory decline rates estimated in joint models were 19% greater in ε4 negative participants and 27% greater in ε4 positive participants compared to traditional approaches; the effect of APOE ε4 on memory decline was 37% greater. Conclusions Joint modelling methods can help address bias caused by informative missing data in the estimation of the effect of risk factors on cognitive change, and may be applicable to a broader range of outcomes in longitudinal aging studies. PMID:25389642

  6. Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline.

    PubMed

    van de Rest, Ondine; van der Zwaluw, Nikita L; de Groot, Lisette C P G M

    2013-11-01

    As the population of elderly people is growing rapidly, the number of individuals with dementia and cognitive impairment is also increasing. One of the preventive measures against cognitive decline is diet and different dietary factors have already been investigated. This review provides an overview of studies on dietary protein and cognitive functioning and cognitive decline. Also studies on the individual amino acids that are related to brain function, tryptophan and tyrosine, are discussed. Overall, the role of dietary protein intake on cognitive functioning as well as cognitive decline has hardly been studied; we found eight observational studies and three intervention studies. More studies investigated the role of tryptophan (14 studies) and tyrosine (nine studies) in relation to cognitive functioning, but all these studies were performed in young adult populations and mostly under special conditions. Research in elderly populations, in particular, is warranted. Also more research is needed to come to definitive conclusions and specific recommendations regarding protein intake or intake of specific amino acids for maintaining optimal cognitive functioning.

  7. A systematic review of cognitive decline in dementia with Lewy bodies versus Alzheimer’s disease

    PubMed Central

    2014-01-01

    Introduction The aim of this review was to investigate whether there is a faster cognitive decline in dementia with Lewy bodies (DLB) than in Alzheimer’s disease (AD) over time. Methods PsycINFO and Medline were searched from 1946 to February 2013. A quality rating from 1 to 15 (best) was applied to the included studies. A quantitative meta-analysis was done on studies with mini mental state examination (MMSE) as the outcome measure. Results A total of 18 studies were included. Of these, six (36%) reported significant differences in the rate of cognitive decline. Three studies reported a faster cognitive decline on MMSE in patients with mixed DLB and AD compared to pure forms, whereas two studies reported a faster decline on delayed recall and recognition in AD and one in DLB on verbal fluency. Mean quality scores for studies that did or did not differ were not significantly different. Six studies reported MMSE scores and were included in the meta-analysis, which showed no significant difference in annual decline on MMSE between DLB (mean 3.4) and AD (mean 3.3). Conclusions Our findings do not support the hypothesis of a faster rate of cognitive decline in DLB compared to AD. Future studies should apply recent diagnostic criteria, as well as extensive diagnostic evaluation and ideally autopsy diagnosis. Studies with large enough samples, detailed cognitive tests, at least two years follow up and multivariate statistical analysis are also needed. PMID:25478024

  8. Cognitive decline is mediated by gray matter changes during middle age.

    PubMed

    Ferreira, Daniel; Molina, Yaiza; Machado, Alejandra; Westman, Eric; Wahlund, Lars-Olof; Nieto, Antonieta; Correia, Rut; Junqué, Carme; Díaz-Flores, Lucio; Barroso, José

    2014-05-01

    The present theoretical framework of Alzheimer's disease proposes that pathophysiological changes occur 10-20 years before the diagnosis of dementia. We addressed the question of how age-related changes in gray matter mediate the cognitive performance during middle age. Eighty-two participants (40-50 years, ±2) were assessed with a comprehensive neuropsychological battery covering a broad spectrum of cognitive domains and components. Mediation effects were studied with hierarchical regression and bootstrapping analysis. Results showed that more vulnerable cognitive components were related to executive functioning and in a lesser degree to processing speed. Age-related differences in gray matter mainly involved the frontal lobes. Moreover, age-related differences in visuoconstructive, visuospatial functions, reaction time, and mental flexibility and executive control were mediated by several gray matter regions. It is important to increase the knowledge of the impact of brain changes on cognitive function during middle age. To define the early stages of the aging process may allow early detection of pathologic changes and therapeutic interventions.

  9. Male cognitive performance declines in the absence of sexual selection

    PubMed Central

    Hollis, Brian; Kawecki, Tadeusz J.

    2014-01-01

    Sexual selection is responsible for the evolution of male ornaments and armaments, but its role in the evolution of cognition—the ability to process, retain and use information—is largely unexplored. Because successful courtship is likely to involve processing information in complex, competitive sexual environments, we hypothesized that sexual selection contributes to the evolution and maintenance of cognitive abilities in males. To test this, we removed mate choice and mate competition from experimental populations of Drosophila melanogaster by enforcing monogamy for over 100 generations. Males evolved under monogamy became less proficient than polygamous control males at relatively complex cognitive tasks. When faced with one receptive and several unreceptive females, polygamous males quickly focused on receptive females, whereas monogamous males continued to direct substantial courtship effort towards unreceptive females. As a result, monogamous males were less successful in this complex setting, despite being as quick to mate as their polygamous counterparts with only one receptive female. This diminished ability to use past information was not limited to the courtship context: monogamous males (but not females) also showed reduced aversive olfactory learning ability. Our results provide direct experimental evidence that the intensity of sexual selection is an important factor in the evolution of male cognitive ability. PMID:24573848

  10. Caffeine and cognitive decline in elderly women at high vascular risk

    PubMed Central

    Vercambre, Marie-Noël; Berr, Claudine; Ritchie, Karen; Kang, Jae H.

    2013-01-01

    Background Persons with vascular disorders are at higher risk of cognitive decline. Objective To determine whether caffeine may be associated with cognitive decline reduction in elderly at high vascular risk. Methods We included 2475 women aged 65+ years in the Women’s Antioxidant Cardiovascular Study, a randomized trial of antioxidants and B vitamins for cardiovascular disease secondary prevention. We ascertained regular caffeine intake at baseline (1995–1996) using a validated 116 item-food frequency questionnaire. From 1998–2000 to 2005–2006, we administered four telephone cognitive assessments at two-year intervals evaluating global cognition, verbal memory and category fluency. The primary outcome was the change in global cognitive score, which was the average of the z-scores of all tests. We used generalized linear models for repeated measures that were adjusted for various sociodemographic, health and lifestyle factors to evaluate the difference in cognitive decline rates across quintiles of caffeine intake. Results We observed significantly slower rates of cognitive decline with increasing caffeine intake (p-trend=0.02). The rate difference between the highest and lowest quintiles of usual caffeine intake (> 371 versus < 30 mg/day) was equivalent to that observed between those who were 7 years apart in age (p=0.006). Consumption of caffeinated coffee was significantly related to slower cognitive decline (p-trend=0.05), but not other caffeinated products (e.g., decaf, tea, cola, chocolate). We conducted interaction analyses and observed stronger associations in women assigned to vitamin B supplementation (p-interaction = 0.02). Conclusions Caffeine intake was related to moderately better cognitive maintenance over 5 years in older women with vascular disorders. PMID:23422357

  11. Controlled processes account for age-related decrease in episodic memory.

    PubMed

    Vanderaspoilden, Valérie; Adam, Stéphane; der Linden, Martial Van; Morais, José

    2007-05-01

    A decrease in controlled processes has been proposed to be responsible for age-related episodic memory decline. We used the Process Dissociation Procedure, a method that attempts to estimate the contribution of controlled and automatic processes to cognitive performance, and entered both estimates in regression analyses. Results indicate that only controlled processes explained a great part of the age-related variance in a word recall task, especially when little environmental support was offered. PMID:16860766

  12. Random change point model for joint modeling of cognitive decline and dementia.

    PubMed

    Jacqmin-Gadda, Hélène; Commenges, Daniel; Dartigues, Jean-François

    2006-03-01

    We propose a joint model for cognitive decline and risk of dementia to describe the pre-diagnosis phase of dementia. We aim to estimate the time when the cognitive evolution of subjects in the pre-dementia phase becomes distinguishable from normal evolution and to study whether the shape of cognitive decline depends on educational level. The model combines a piecewise polynomial mixed model with a random change point for the evolution of the cognitive test and a log-normal model depending on the random change point for the time to dementia. Parameters are estimated by maximum likelihood using a Newton-Raphson-like algorithm. The expected cognitive evolution given age to dementia is then derived and the marginal distribution of dementia is estimated to check the log-normal assumption.

  13. Clinical and radiological determinants of prestroke cognitive decline in a stroke cohort

    PubMed Central

    Pohjasvaara, T; Mantyla, R; Aronen, H; Leskela, M; Salonen, O; Kaste, M; Erkinjuntti, T

    1999-01-01

    OBJECTIVES—Stroke seems to be related to dementia more often than previously assumed and vascular factors are also related to Alzheimer's disease. The pathophysiology of poststroke dementia includes ischaemic changes in the brain, a combination of degenerative and vascular changes, and changes only related to Alzheimer's disease. Some cognitive decline recognised after a stroke may be due to pre-existing cognitive decline. The aim of this study was to determine the clinical and radiological determinants of prestroke cognitive decline.
METHODS—The study group comprised 337 of 486 consecutive patients aged 55 to 85 years who 3 months after ischaemic stroke completed a comprehensive neuropsychological test battery; structured medical, neurological, and mental status examination; interview of a knowledgeable informant containing structured questions on abnormality in the cognitive functions; assessment of social functions before the index stroke; and MRI.
RESULTS—Frequency of prestroke cognitive decline including that of dementia was 9.2% (31/337). The patients with prestroke cognitive decline were older, more often had less than 6 years of education, and had history of previous stroke. Vascular risk factors did not differ significantly between these two groups. White matter changes (p=0.004), cortical entorhinal, hippocampal, and medial temporal atrophy (p<0.001), cortical frontal atrophy (p=0.008); and any central atrophy (p<0.01), but not the frequencies or volumes of old, silent, or all infarcts on MRI differentiated those with and without prestroke cognitive decline. The correlates of prestroke cognitive decline in logistic regression analysis were medial temporal cortical atrophy (odds ratio (OR) 7.5, 95% confidence interval (95%CI) 3.2-18.2), history of previous ischaemic stroke (OR 4.4, 95% CI 1.8-10.6), and education (OR 0.9, 95% CI 0.8-0.9).
CONCLUSIONS—History of previous stroke, but not volumes or frequencies was found to correlate with

  14. Alzheimer's disease pattern of brain atrophy predicts cognitive decline in Parkinson's disease.

    PubMed

    Weintraub, Daniel; Dietz, Nicole; Duda, John E; Wolk, David A; Doshi, Jimit; Xie, Sharon X; Davatzikos, Christos; Clark, Christopher M; Siderowf, Andrew

    2012-01-01

    Research suggests overlap in brain regions undergoing neurodegeneration in Parkinson's and Alzheimer's disease. To assess the clinical significance of this, we applied a validated Alzheimer's disease-spatial pattern of brain atrophy to patients with Parkinson's disease with a range of cognitive abilities to determine its association with cognitive performance and decline. At baseline, 84 subjects received structural magnetic resonance imaging brain scans and completed the Dementia Rating Scale-2, and new robust and expanded Dementia Rating Scale-2 norms were applied to cognitively classify participants. Fifty-nine non-demented subjects were assessed annually with the Dementia Rating Scale-2 for two additional years. Magnetic resonance imaging scans were quantified using both a region of interest approach and voxel-based morphometry analysis, and a method for quantifying the presence of an Alzheimer's disease spatial pattern of brain atrophy was applied to each scan. In multivariate models, higher Alzheimer's disease pattern of atrophy score was associated with worse global cognitive performance (β = -0.31, P = 0.007), including in non-demented patients (β = -0.28, P = 0.05). In linear mixed model analyses, higher baseline Alzheimer's disease pattern of atrophy score predicted long-term global cognitive decline in non-demented patients [F(1, 110) = 9.72, P = 0.002], remarkably even in those with normal cognition at baseline [F(1, 80) = 4.71, P = 0.03]. In contrast, in cross-sectional and longitudinal analyses there was no association between region of interest brain volumes and cognitive performance in patients with Parkinson's disease with normal cognition. These findings support involvement of the hippocampus and parietal-temporal cortex with cognitive impairment and long-term decline in Parkinson's disease. In addition, an Alzheimer's disease pattern of brain atrophy may be a preclinical biomarker of cognitive decline in

  15. Recognition of Famous Names Predicts Episodic Memory Decline in Cognitively Intact Elders

    PubMed Central

    Seidenberg, Michael; Kay, Christina; Woodard, John L.; Nielson, Kristy A.; Smith, J. Carson; Kandah, Cassandra; Guidotti Breting, Leslie M.; Novitski, Julia; Lancaster, Melissa; Matthews, Monica; Hantke, Nathan; Butts, Alissa; Rao, Stephen M.

    2013-01-01

    Objective: Semantic memory impairment is common in both Mild Cognitive Impairment (MCI) and early Alzheimer’s disease (AD), and the ability to recognize familiar people is particularly vulnerable. A time-limited temporal gradient (TG) in which well known people from decades earlier are better recalled than those learned recently is also reported in both AD and MCI. In this study, we hypothesized that the TG pattern on a famous name recognition task (FNRT) administered to cognitively intact elders would predict future episodic memory decline, and would also show a significant correlation with hippocampal volume. Methods: 78 healthy elders (ages 65-90) with normal cognition and episodic memory at baseline were administered a FNRT. Follow-up episodic memory testing 18 months later produced two groups: Declining (≥ 1 SD reduction in episodic memory) and Stable (< 1 SD). Results: The Declining group (N=27) recognized fewer recent famous names than the Stable group (N=51), while recognition for remote names was comparable. Baseline MRI volumes for both the left and right hippocampus was significantly smaller in the Declining group than the Stable group. Smaller baseline hippocampal volume was also significantly correlated with poorer performance for recent, but not remote famous names. Logistic regression analyses indicated that baseline TG performance was a significant predictor of group status (Declining versus Stable) independent of chronological age and APOE ε4 inheritance. Conclusions: Famous name recognition may serve as an early pre-clinical cognitive marker of episodic memory decline in older individuals. PMID:23688215

  16. Demographic and clinical characteristics related to cognitive decline in Alzheimer disease in China

    PubMed Central

    Peng, Dantao; Shi, Zhihong; Xu, Jun; Shen, Lu; Xiao, Shifu; Zhang, Nan; Li, Yi; Jiao, Jinsong; Wang, Yan-Jiang; Liu, Shuai; Zhang, Meilin; Wang, Meng; Liu, Shuling; Zhou, Yuying; Zhang, Xiao; Gu, Xiao-hua; Yang, Ce-ce; Wang, Yu; Jiao, Bin; Tang, Beisha; Wang, Jinhuan; Yu, Tao; Ji, Yong

    2016-01-01

    Abstract Alzheimer disease (AD) is the most frequent cause of dementia. AD diagnosis, progression, and treatment have not been analyzed nationwide in China. The primary aim of this study was to analyze demographic and clinical characteristics related to cognitive decline in AD patients treated at outpatient clinics in China. We performed a retrospective study of 1993 AD patients at 10 cognitive centers across 8 cities in China from March 2011 to October 2014. Of these, 891 patients were followed for more than 1 year. The mean age at diagnosis was 72.0 ± 10.0 years (range 38–96 years), and the mean age at onset of AD was 69.8 ± 9.5 years. Most patients (65.1%) had moderate to severe symptoms at the time of diagnosis, and mean Mini-Mental State Examination at diagnosis was 15.7 ± 7.7. AD patients showed significant cognitive decline at 12 months after diagnosis. Having more than 9 years of formal education was an independent risk factor related to rapid cognitive decline [odds ratio (OR) = 1.80; 95% confidence interval (95% CI): 1.11–2.91]. Early-onset AD patients experienced more rapid cognitive decline than late-onset patients (OR = 1.83; 95% CI: 1.09–3.06). Most AD patients in China had moderate to severe symptoms at the time of diagnosis and experienced significant cognitive decline within 1 year. Rapid cognitive decline in AD was related to having a higher educational level and younger age of onset. PMID:27367978

  17. Cohorts based on Decade of Death: No Evidence for Secular Trends Favoring Later Cohorts in Cognitive Aging and Terminal Decline in the AHEAD Study

    PubMed Central

    Hülür, Gizem; Infurna, Frank J.; Ram, Nilam; Gerstorf, Denis

    2012-01-01

    Studies of birth-year cohorts examined over the same age range often report secular trends favoring later-born cohorts, who are cognitively fitter and show less steep cognitive declines than earlier-born cohorts. However, there is initial evidence that those advantages of later-born cohorts do not carry into the last years of life, suggesting that pervasive mortality-related processes minimize differences that were apparent earlier in life. Elaborating this work from an alternative perspective on cohort differences, we compared rates of cognitive aging and terminal decline in episodic memory between cohorts based on the year participants had died, earlier (between 1993 and 1999) or later in historical time (between 2000 and 2010). Specifically, we compared trajectories of cognitive decline in two death-year cohorts of participants in the Asset and Health Dynamics among the Oldest Old (AHEAD) Study that were matched on age at death and education and controlled for a variety of additional covariates. Results revealed little evidence of secular trends favoring later cohorts. To the contrary, the cohort that died in the 2000s showed a less favorable trajectory of age-related memory decline than the cohort who died in the 1990s. In examinations of change in relation to time-to-death, the cohort dying in the 2000s experienced even steeper terminal declines than the cohort dying in the 1990s. We suggest that secular increases in “manufacturing” survival may exacerbate age- and mortality-related cognitive declines among the oldest old. PMID:23046001

  18. Telmisartan prevented cognitive decline partly due to PPAR-{gamma} activation

    SciTech Connect

    Mogi, Masaki; Li Jianmei; Tsukuda, Kana; Iwanami, Jun; Min, Li-Juan; Sakata, Akiko; Fujita, Teppei; Iwai, Masaru; Horiuchi, Masatsugu

    2008-10-24

    Telmisartan is a unique angiotensin receptor blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor (PPAR)-{gamma}. Here, we investigated the preventive effect of telmisartan on cognitive decline in Alzheimer disease. In ddY mice, intracerebroventricular injection of A{beta} 1-40 significantly attenuated their cognitive function evaluated by shuttle avoidance test. Pretreatment with a non-hypotensive dose of telmisartan significantly inhibited such cognitive decline. Interestingly, co-treatment with GW9662, a PPAR-{gamma} antagonist, partially inhibited this improvement of cognitive decline. Another ARB, losartan, which has less PPAR-{gamma} agonistic effect, also inhibited A{beta}-injection-induced cognitive decline; however the effect was smaller than that of telmisartan and was not affected by GW9662. Immunohistochemical staining for A{beta} showed the reduced A{beta} deposition in telmisartan-treated mice. However, this reduction was not observed in mice co-administered GW9662. These findings suggest that ARB has a preventive effect on cognitive impairment in Alzheimer disease, and telmisartan, with PPAR-{gamma} activation, could exert a stronger effect.

  19. Chocolate Consumption is Associated with a Lower Risk of Cognitive Decline.

    PubMed

    Moreira, Afonso; Diógenes, Maria José; de Mendonça, Alexandre; Lunet, Nuno; Barros, Henrique

    2016-05-01

    Cocoa-related products like chocolate have taken an important place in our food habits and culture. In this work, we aim to examine the relationship between chocolate consumption and cognitive decline in an elderly cognitively healthy population. In the present longitudinal prospective study, a cohort of 531 participants aged 65 and over with normal Mini-Mental State Examination (MMSE; median 28) was selected. The median follow-up was 48 months. Dietary habits were evaluated at baseline. The MMSE was used to assess global cognitive function at baseline and at follow-up. Cognitive decline was defined by a decrease ≥ 2 points in the MMSE score between evaluations. Relative risk (RR) and 95% confidence interval (95% CI) estimates were adjusted for age, education, smoking, alcohol drinking, body mass index, hypertension, and diabetes. Chocolate intake was associated with a lower risk of cognitive decline (RR = 0.59, 95% CI 0.38-0.92). This protective effect was observed only among subjects with an average daily consumption of caffeine lower than 75 mg (69% of the participants; RR = 0.50, 95% CI 0.31-0.82). To our knowledge, this is the first prospective cohort study to show an inverse association between regular long-term chocolate consumption and cognitive decline in humans. PMID:27163823

  20. Trajectories of cognitive decline by driving mobility: evidence from the Health and Retirement Study

    PubMed Central

    Choi, Moon; Lohman, Matthew C.; Mezuk, Briana

    2014-01-01

    Objective The recent emphasis of the importance of “aging in place” has highlighted the role of transportation in health promotion over the life course. Driving cessation in later life is associated with numerous poor health outcomes including limitations in social and physical functioning and increased risk of mortality. However, little is known about the relationship between driving cessation and change in cognitive functioning in late life. This study examined the association between driving mobility and trajectories of cognitive functioning among older adults. Methods Using data from six waves [1998–2008] of the Health and Retirement Study, trajectories of cognitive functioning were estimated over a 10-year period using longitudinal mixed effects models [N = 9,135]. Cognitive function was assessed with a modified version of the Telephone Interview for Cognitive Status. Driving status and health characteristics were assessed by self-report. Results Older adults who did not drive (former and never drivers) at baseline had lower average cognitive scores compared with active drivers. Former drivers had accelerated cognitive decline over the subsequent 10 years compared with active drivers (β= −0.35, 95% Confidence Interval [CI] = −0.43 to −0.26) even after controlling for baseline cognitive functioning and health status. The transition to non-driving was associated with a faster cognitive decline among those who were driving at baseline (β = −0.31, 95% CI = −0.40 to −0.22). Conclusions Older adults without driving mobility had poorer cognitive functioning at baseline and experienced accelerated cognitive decline relative to active drivers over follow-up. PMID:24022894

  1. Association Between Long-Term Cognitive Decline in Vietnam Veterans With TBI and Caregiver Attachment Style

    PubMed Central

    Guevara, Andrea Brioschi; Demonet, Jean-François; Polejaeva, Elena; Knutson, Kristine M.; Wassermann, Eric M.; Krueger, Frank; Grafman, Jordan

    2015-01-01

    Objective To examine whether a caregiver's attachment style is associated with patient cognitive trajectory after traumatic brain injury (TBI). Setting National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland. Participants Forty Vietnam War veterans with TBI and their caregivers. Main Outcome Measure Cognitive performance, measured by the Armed Forces Qualification Test percentile score, completed at 2 time points: preinjury and 40 years postinjury. Design On the basis of caregivers’ attachment style (secure, fearful, preoccupied, dismissing), participants with TBI were grouped into a high or low group. To examine the association between cognitive trajectory of participants with TBI and caregivers’ attachment style, we ran four 2 × 2 analysis of covariance on cognitive performances. Results After controlling for other factors, cognitive decline was more pronounced in participants with TBI with a high fearful caregiver than among those with a low fearful caregiver. Other attachment styles were not associated with decline. Conclusion and Implication Caregiver fearful attachment style is associated with a significant decline in cognitive status after TBI. We interpret this result in the context of the neural plasticity and cognitive reserve literatures. Finally, we discuss its impact on patient demand for healthcare services and potential interventions. PMID:24695269

  2. Association Between Serum 25(OH) Vitamin D and the Risk of Cognitive Decline in Older Women

    PubMed Central

    Paudel, Misti; Taylor, Brent C.; Ishani, Areef; Rossom, Rebecca; Yaffe, Kristine; Blackwell, Terri; Lui, Li-Yung; Hochberg, Marc; Ensrud, Kristine E.

    2012-01-01

    Background: Results of prospective studies examining the association between 25 hydroxyvitamin D (25[OH]D) levels and cognitive decline have been inconsistent. We tested the hypothesis that lower 25(OH)D levels are associated with a greater likelihood of cognitive impairment and risk of cognitive decline. Methods: The study is a cross-sectional and longitudinal analysis of a prospective cohort of 6,257 community-dwelling elderly women followed for 4 years. Global cognitive function was measured by the Modified Mini-Mental State Examination and executive function was measured by Trail Making Test Part B (Trails B). Cognitive impairment at baseline was defined as a score >1.5 SD below the sample mean; cognitive decline was defined as decline from baseline to follow-up >1 SD from mean change in score. Results: Women with very low vitamin D levels had an increased odds of global cognitive impairment at baseline: odds ratio (95% confidence interval), 1.60 (1.05–2.42) for women with 25(OH)D <10 ng/mL (25 nmol/L) compared with those with 25(OH)D levels ≥30 ng/mL (75 nmol/L). Compared with women with baseline 25(OH)D level ≥30 ng/mL (75 nmol/L), women with lower levels had an increased risk of global cognitive decline: odds ratio (95% confidence interval), 1.58(1.12–2.22) for women with levels <10 ng/mL (25 nmol/L), and 1.31 (1.04–1.64) for those with levels 10–19.9 ng/mL (25–49 nmol/L). Levels of 25(OH)D were not associated with executive cognitive function. Conclusions: Low 25(OH)D levels among older women were associated with a higher odds of global cognitive impairment and a higher risk of global cognitive decline. PMID:22454371

  3. Cognitive Decline in Patients With Dementia as a Function of Depression

    PubMed Central

    Rapp, Michael A.; Schnaider-Beeri, Michal; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Grossman, Hillel T.; Heinz, Andreas; Haroutunian, Vahram

    2011-01-01

    Objective There is evidence that major depression increases the risk for dementia, but there is conflicting evidence as to whether depression may accelerate cognitive decline in dementia. The authors tested the hypothesis that decline in cognitive function over time is more pronounced in patients with dementia with comorbid depression, when compared with patients with dementia without depression history. Design Prospective, longitudinal cohort study of aging. Setting Nursing home. Participants Three hundred thirteen elderly nursing home residents (mean age at baseline: 86.99 years, standard deviation = 6.7; 83.1% women). At baseline, 192 residents were diagnosed with dementia, and another 27 developed dementia during follow-up. Thirty residents suffered from major depression at any point during the study, and 48 residents had a history of depression. Measurements The authors measured cognitive decline using change in Mini-Mental State Examination (MMSE) scores over up to 36 months. The authors calculated multilevel regression models to estimate the effects of age, gender, education, dementia status, depression, depression history, and an interaction between dementia and depression, on change in MMSE scores over time. Results Beyond the effects of age, gender, and education, residents showed steeper cognitive decline in the presence of dementia (β = 13.69, standard error = 1.38) and depression (β = −4.16, SE = 1.2), which was further accelerated by the presence of both depression and dementia (β = −2.72, SE = 0.65). Conclusions In dementia, the presence of depression corresponds to accelerated cognitive decline beyond gender and level of education, suggesting a unique influence of depression on the rate of cognitive decline in dementia. PMID:20808140

  4. Military risk factors for cognitive decline, dementia and Alzheimer's disease.

    PubMed

    Veitch, Dallas P; Friedl, Karl E; Weiner, Michael W

    2013-11-01

    Delayed neurological health consequences of environmental exposures during military service have been generally underappreciated. The rapidly expanding understanding of Alzheimer's disease (AD) pathogenesis now makes it possible to quantitate some of the likely long-term health risks associated with military service. Military risk factors for AD include both factors elevated in military personnel such as tobacco use, traumatic brain injury (TBI), depression, and post-traumatic stress disorder (PTSD) and other nonspecific risk factors for AD including, vascular risk factors such as obesity and obesity-related diseases (e.g., metabolic syndrome), education and physical fitness. The degree of combat exposure, Vietnam era Agent Orange exposure and Gulf War Illness may also influence risk for AD. Using available data on the association of AD and specific exposures and risk factors, the authors have conservatively estimated 423,000 new cases of AD in veterans by 2020, including 140,000 excess cases associated with specific military exposures. The cost associated with these excess cases is approximately $5.8 billion to $7.8 billion. Mitigation of the potential impact of military exposures on the cognitive function of veterans and management of modifiable risk factors through specifically designed programs will be instrumental in minimizing the impact of AD in veterans in the future decades. PMID:23906002

  5. Traditional used Plants against Cognitive Decline and Alzheimer Disease

    PubMed Central

    Eckert, Gunter Peter

    2010-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by progressive memory deficits, impaired cognitive function, and altered and inappropriate behavior. Aging represents the most important risk factor for AD and the global trend in the phenomenon of population aging has dramatic consequences for public health, healthcare financing, and delivery systems in the word and, especially in developing countries. Mounting evidence obtained in in vitro and in vivo studies, suggests that various traditionally used plants in Asia, India, and Europe significantly affect key metabolic alterations culminating in AD-typical neurodegeneration. The present article aims to bring the reader up-to-date on the most recent studies and advances describing the direct and indirect activities of traditional used plants and its constituents possibly relieving features of AD. A variety of traditional used plants and its extracts exerted activities on AD related drug targets including AChE activity, antioxidative activity, modulation of Aβ-producing secretase activities, Aβ-degradation, heavy metal chelating, induction of neurotrophic factors, and cell death mechanisms. Although pre-clinical investigations identified promising drug candidates for AD, clinical evidences are still pending. PMID:21833177

  6. Declined Neural Efficiency in Cognitively Stable Human Immunodeficiency Virus Patients

    PubMed Central

    Ernst, Thomas; Yakupov, Renat; Nakama, Helenna; Crocket, Grace; Cole, Michael; Watters, Michael; Ricardo-Dukelow, Mary Lynn; Chang, Linda

    2009-01-01

    Objective To determine whether brain activation changes in clinically and neurocognitively normal human immunodeficiency virus (HIV)–infected and in HIV-seronegative control (SN) participants over a 1-year period. Methods Functional magnetic resonance imaging (fMRI) was performed in 32 SN and 31 HIV patients (all with stable combination antiretroviral treatment) at baseline and after 1 year. Each participant performed a set of visual attention tasks with increasing attentional load (from tracking two, three, or four balls). All HIV and SN participants had normal neuropsychological function at both examinations. Results Over 1 year, HIV patients showed no change in their neurocognitive status or in task performance during fMRI. However, HIV patients showed significant 1-year increases in fMRI signals in the prefrontal and posterior parietal cortices for the more difficult tasks, whereas SN control participants showed only decreases in brain activation in these regions. This resulted in significant interactions between HIV status and time of study in left insula, left parietal, left temporal, and several frontal regions (left and right middle frontal gyrus, and anterior cingulate). Interpretation Because fMRI task performance remained unchanged in both groups, the HIV patients appeared to maintain performance by increasing usage of the attention network, whereas the control participants reduced usage of the attention network after 1 year. These findings suggest improved efficiency or a practice effect in the SN participants but declined efficiency of the neural substrate in HIV patients, possibly because of ongoing brain injury associated with the HIV infection, despite their apparent stable clinical course. PMID:19334060

  7. Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly

    PubMed Central

    Lesnick, Timothy G.; Przybelski, Scott A.; Knopman, David S.; Preboske, Greg M.; Kantarci, Kejal; Raman, Mekala R.; Machulda, Mary M.; Mielke, Michelle M.; Lowe, Val J.; Senjem, Matthew L.; Gunter, Jeffrey L.; Rocca, Walter A.; Roberts, Rosebud O.; Petersen, Ronald C.; Jack, Clifford R.

    2015-01-01

    Our primary objective was to investigate a biomarker driven model for the interrelationships between vascular disease pathology, amyloid pathology, and longitudinal cognitive decline in cognitively normal elderly subjects between 70 and 90 years of age. Our secondary objective was to investigate the beneficial effect of cognitive reserve on these interrelationships. We used brain amyloid-β load measured using Pittsburgh compound B positron emission tomography as a marker for amyloid pathology. White matter hyperintensities and brain infarcts were measured using fluid-attenuated inversion recovery magnetic resonance imaging as a marker for vascular pathology. We studied 393 cognitively normal elderly participants in the population-based Mayo Clinic Study of Aging who had a baseline 3 T fluid-attenuated inversion recovery magnetic resonance imaging assessment, Pittsburgh compound B positron emission tomography scan, baseline cognitive assessment, lifestyle measures, and at least one additional clinical follow-up. We classified subjects as being on the amyloid pathway if they had a global cortical amyloid-β load of ≥1.5 standard uptake value ratio and those on the vascular pathway if they had a brain infarct and/or white matter hyperintensities load ≥1.11% of total intracranial volume (which corresponds to the top 25% of white matter hyperintensities in an independent non-demented sample). We used a global cognitive z-score as a measure of cognition. We found no evidence that the presence or absence of vascular pathology influenced the presence or absence of amyloid pathology and vice versa, suggesting that the two processes seem to be independent. Baseline cognitive performance was lower in older individuals, in males, those with lower education/occupation, and those on the amyloid pathway. The rate of cognitive decline was higher in older individuals (P < 0.001) and those with amyloid (P = 0.0003) or vascular (P = 0.0037) pathologies. In those subjects with

  8. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease.

    PubMed

    Jessen, Frank; Amariglio, Rebecca E; van Boxtel, Martin; Breteler, Monique; Ceccaldi, Mathieu; Chételat, Gaël; Dubois, Bruno; Dufouil, Carole; Ellis, Kathryn A; van der Flier, Wiesje M; Glodzik, Lidia; van Harten, Argonde C; de Leon, Mony J; McHugh, Pauline; Mielke, Michelle M; Molinuevo, Jose Luis; Mosconi, Lisa; Osorio, Ricardo S; Perrotin, Audrey; Petersen, Ronald C; Rabin, Laura A; Rami, Lorena; Reisberg, Barry; Rentz, Dorene M; Sachdev, Perminder S; de la Sayette, Vincent; Saykin, Andrew J; Scheltens, Philip; Shulman, Melanie B; Slavin, Melissa J; Sperling, Reisa A; Stewart, Robert; Uspenskaya, Olga; Vellas, Bruno; Visser, Pieter Jelle; Wagner, Michael

    2014-11-01

    There is increasing evidence that subjective cognitive decline (SCD) in individuals with unimpaired performance on cognitive tests may represent the first symptomatic manifestation of Alzheimer's disease (AD). The research on SCD in early AD, however, is limited by the absence of common standards. The working group of the Subjective Cognitive Decline Initiative (SCD-I) addressed this deficiency by reaching consensus on terminology and on a conceptual framework for research on SCD in AD. In this publication, research criteria for SCD in pre-mild cognitive impairment (MCI) are presented. In addition, a list of core features proposed for reporting in SCD studies is provided, which will enable comparability of research across different settings. Finally, a set of features is presented, which in accordance with current knowledge, increases the likelihood of the presence of preclinical AD in individuals with SCD. This list is referred to as SCD plus.

  9. Critical levels of brain atrophy associated with homocysteine and cognitive decline.

    PubMed

    de Jager, Celeste A

    2014-09-01

    Few B-vitamin trials to lower homocysteine (Hcy) have reported evidence of beneficial effects on cognition in older adults with cognitive impairment or Alzheimer's disease. This article reviews the role of Hcy in cognitive decline. It also considers some reasons why meta-analyses have failed to find effects of B-vitamin treatment. Findings from the successful VITACOG trial are examined from a new perspective of critical levels of Hcy and brain atrophy that may impact on the efficacy of B-vitamin treatment. It appears that there is a critical level of brain shrinkage, possibly mediated by elevated Hcy, which when reached, results in cognitive decline, especially in episodic memory performance. Supplements, food sources, and effects of folic acid fortification are discussed in relation to B12 deficiency.

  10. Tooth loss, periodontal disease, and cognitive decline in the Atherosclerosis Risk in Communities (ARIC) study

    PubMed Central

    Naorungroj, S; Schoenbach, VJ; Wruck, L; Mosley, TH; Gottesman, RF; Alonso, A; Heiss, G; Beck, J; Slade, GD

    2014-01-01

    Objective The purpose of this prospective study was to investigate whether poor oral health predicted eight-year cognitive function change in predominantly late middle adults in the Atherosclerosis Risk in Communities (ARIC) study. Methods Participants included a subset of ARIC participants aged 52–75 years at 1996–1998 from two study sites: Forsyth County NC and Jackson MS. All subjects completed cognitive function assessments both in 1996–1998 and 2004–2006, and the same subjects received a dental examination at the initial visit. Cognitive assessment consisted of Delayed Word Recall (DWR), Digit Symbol Substitution (DSS), and Word Fluency (WF) tests. In the analysis, cognitive function for 911 dentally screened participants was evaluated, and 558 of 785 dentate participants received comprehensive oral examinations, including periodontal probing. Measures of oral health included dental status, number of teeth, and periodontal disease classified by the Biofilm-Gingival Interface (BGI) index. The generalized estimating equations (GEE) method was used to analyze repeated measures of cognitive scores with adjustment for socio-demographic characteristics and cardiovascular risk factors. Results Of 911 study participants, 13.8% were edentulous. About 13 % of dentally examined participants had periodontal pockets (≥4 mm) with severe bleeding. At the follow-up visit, DWR and WF scores were lower in edentulous compared to dentate people, whereas other oral health measures were not associated with cognitive function. Mean values declined over time for all three cognitive measures, although poor oral health conditions were not associated with greater degree of decline in cognitive function. Conclusions In these late-middle aged adults, complete tooth loss was significantly associated with lower cognitive performance. However, neither edentulism, number of teeth, nor periodontal disease predicted greater subsequent cognitive decline. PMID:25363061

  11. Perception and Cognition in the Ageing Brain: A Brief Review of the Short- and Long-Term Links between Perceptual and Cognitive Decline

    PubMed Central

    Roberts, Katherine L.; Allen, Harriet A.

    2016-01-01

    Ageing is associated with declines in both perception and cognition. We review evidence for an interaction between perceptual and cognitive decline in old age. Impoverished perceptual input can increase the cognitive difficulty of tasks, while changes to cognitive strategies can compensate, to some extent, for impaired perception. While there is strong evidence from cross-sectional studies for a link between sensory acuity and cognitive performance in old age, there is not yet compelling evidence from longitudinal studies to suggest that poor perception causes cognitive decline, nor to demonstrate that correcting sensory impairment can improve cognition in the longer term. Most studies have focused on relatively simple measures of sensory (visual and auditory) acuity, but more complex measures of suprathreshold perceptual processes, such as temporal processing, can show a stronger link with cognition. The reviewed evidence underlines the importance of fully accounting for perceptual deficits when investigating cognitive decline in old age. PMID:26973514

  12. Perception and Cognition in the Ageing Brain: A Brief Review of the Short- and Long-Term Links between Perceptual and Cognitive Decline.

    PubMed

    Roberts, Katherine L; Allen, Harriet A

    2016-01-01

    Ageing is associated with declines in both perception and cognition. We review evidence for an interaction between perceptual and cognitive decline in old age. Impoverished perceptual input can increase the cognitive difficulty of tasks, while changes to cognitive strategies can compensate, to some extent, for impaired perception. While there is strong evidence from cross-sectional studies for a link between sensory acuity and cognitive performance in old age, there is not yet compelling evidence from longitudinal studies to suggest that poor perception causes cognitive decline, nor to demonstrate that correcting sensory impairment can improve cognition in the longer term. Most studies have focused on relatively simple measures of sensory (visual and auditory) acuity, but more complex measures of suprathreshold perceptual processes, such as temporal processing, can show a stronger link with cognition. The reviewed evidence underlines the importance of fully accounting for perceptual deficits when investigating cognitive decline in old age.

  13. What do parents have to do with my cognitive reserve? Life-course perspectives on twelve-year cognitive decline

    PubMed Central

    González, Hector M.; Tarraf, Wassim; Bowen, Mary E.; Johnson-Jennings, Michelle D.; Fisher, Gwenith G.

    2013-01-01

    Background/Aims To examine the cognitive reserve hypothesis by comparing the contribution of early childhood and life-course factors related to cognitive functioning in a nationally representative sample of older Americans. Methods We examined a prospective, nationally probability cohort study (Health and Retirement Study HRS; 1998-2010) of older adults (N=8,833) in the contiguous 48 United States. The main cognitive functioning outcome was a 35-point composite of memory (recall), mental status, and working memory tests. The main predictors were childhood socioeconomic position (SEP) and health, and individual-level adult achievement and health. Results Individual-level achievement indicators (i.e., education, income, and wealth) were positively and significantly associated with baseline cognitive function, while adult health was negatively associated with cognitive function. Controlling for individual-level adult achievement and other model covariates, childhood health presented a relatively small negative, but statistically significant association with initial cognitive function. Neither individual achievement nor childhood SEP was statistically linked to decline over time. Conclusions Cognitive reserve purportedly acquired through learning and mental stimulation across the life-course was associated with higher initial global cognitive functioning over the twelve-year period in this nationally representative study of older Americans. We found little supporting evidence that childhood economic conditions were negatively associated with cognitive function and change, particularly when individual-level achievement is considered. PMID:23860477

  14. Role of physical activity in reducing cognitive decline in older Mexican-American adults.

    PubMed

    Ottenbacher, Allison J; Snih, Soham Al; Bindawas, Saad M; Markides, Kyriakos S; Graham, James E; Samper-Ternent, Rafael; Raji, Mukaila; Ottenbacher, Kenneth J

    2014-09-01

    The effect of physical activity on cognitive function in older adults from minority and disadvantaged populations is not well understood. This study examined the longitudinal association between physical activity and cognition in older Mexican Americans. The study methodology included a prospective cohort with longitudinal analysis of data from the Hispanic Established Populations for the Epidemiologic Study of the Elderly. General linear mixed models were used to assess the associations and interactions between physical activity and cognitive function over 14 years. Community-based assessments were performed in participants' homes. Physical activity was recorded for 1,669 older Mexican Americans using the Physical Activity Scale for the Elderly. Cognition was measured using the Mini-Mental State Examination (MMSE) and separated into memory and nonmemory components. A statistically significant positive association was observed between levels of physical activity and cognitive function after adjusting for age, sex, marital status, education, and comorbid health conditions. There was a statistically significant difference in MMSE scores over time between participants in the third (β = 0.11, standard error (SE) = 0.05) and fourth (β = 0.10, SE = 0.2) quartiles of physical activity and those in the first. The protective effect of physical activity on cognitive decline was evident for the memory component of the MMSE but not the nonmemory component after adjusting for covariates. Greater physical activity at baseline was associated with less cognitive decline over 14 years in older Mexican Americans. The reduction in cognitive decline appeared to be related to the memory components of cognitive function.

  15. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus.

    PubMed

    Rossetti, María F; Varayoud, Jorgelina; Moreno-Piovano, Guillermo S; Luque, Enrique H; Ramos, Jorge G

    2015-09-01

    We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved.

  16. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus.

    PubMed

    Rossetti, María F; Varayoud, Jorgelina; Moreno-Piovano, Guillermo S; Luque, Enrique H; Ramos, Jorge G

    2015-09-01

    We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved. PMID:26021641

  17. [Age-related changes of the brain].

    PubMed

    Paltsyn, A A; Komissarova, S V

    2015-01-01

    The first morphological signs of aging of the brain are found in the white matter already at a young age (20-40 years), and later (40-50 years) in a gray matter. After the 40-50 years appear and in subsequently are becoming more pronounced functional manifestations of morphological changes: the weakening of sensory-motor and cognitive abilities. While in principle this dynamic of age-related changes is inevitable, the rate of their development to a large extent determined by the genetic characteristics and lifestyle of the individual. According to modem concepts age-related changes in the number of nerve cells are different in different parts of the brain. However, these changes are not large and are not the main cause of senile decline brain. The main processes that contribute to the degradation of the brain develop as in the bodies of neurons and in neuropil. In the bodies of neurons--it is a damage (usually decrease) of the level of expression of many genes, and especially of the genes determining cell communication. In neuropil: reduction in the number of synapses and the strength of synaptic connections, reduction in the number of dendritic spines and axonal buttons, reduction in the number and thickness of the dendritic branches, demyelination of axons. As the result of these events, it becomes a violation of the rate of formation and rebuilding neuronal circuits. It is deplete associative ability, brain plasticity, and memory. PMID:27116888

  18. Automated Semantic Indices Related to Cognitive Function and Rate of Cognitive Decline

    ERIC Educational Resources Information Center

    Pakhomov, Serguei V. S.; Hemmy, Laura S.; Lim, Kelvin O.

    2012-01-01

    The objective of our study is to introduce a fully automated, computational linguistic technique to quantify semantic relations between words generated on a standard semantic verbal fluency test and to determine its cognitive and clinical correlates. Cognitive differences between patients with Alzheimer's disease and mild cognitive impairment are…

  19. Gene Behavior Interaction of Depressive Symptoms and the Apolipoprotein E ε4 Allele on Cognitive Decline

    PubMed Central

    Rajan, Kumar B.; Wilson, Robert S.; Skarupski, Kimberly A.; de Leon, Carlos Mendes; Evans, Denis A.

    2014-01-01

    Objective Depressive symptoms and the APOE ε4 allele are independent risk factors for cognitive decline. However, it is not clear whether the presence of both depressive symptoms and the APOE ε4 allele increases cognitive decline. Methods A prospective study of a population-based sample of 4,150 (70% African American and 63% women) participants, aged 65 years and older, who were interviewed at 3-year intervals. Depressive symptoms were measured using the 10-item version of the Center for Epidemiologic Studies Depression scale, with each item coded as presence or absence of a symptom. The APOE genotype was ascertained by DNA samples collected during follow-up. Cognitive function was assessed at the initial and follow-up interviews (average follow-up of 9.2 years), using a standardized global cognitive score. Results There were 1405 (34%) participants with one or more copies of the APOE ε4 allele. In participants with no depressive symptoms, cognitive function decreased by 0.0412-unit per year among those with no copies and 0.0704-unit per year among those with one or more copies of the APOE ε4 allele. For each additional symptom of depression, cognitive decline increased by 0.0021-unit per year among those with no copies and 0.0051-unit per year among those with one or more copies of the APOE ε4 allele. The three-way interaction of depressive symptoms, APOE ε4 allele, and time was significant (p=0.021). Conclusions The association of depressive symptoms on cognitive decline was increased among participants with one or more copies of the APOE ε4 allele compared to those without the allele. PMID:24434953

  20. APOE and BDNF polymorphisms moderate amyloid β-related cognitive decline in preclinical Alzheimer's disease

    PubMed Central

    Lim, Y Y; Villemagne, V L; Laws, S M; Pietrzak, R H; Snyder, P J; Ames, D; Ellis, K A; Harrington, K; Rembach, A; Martins, R N; Rowe, C C; Masters, C L; Maruff, P

    2015-01-01

    Accumulation of β-amyloid (Aβ) in the brain is associated with memory decline in healthy individuals as a prelude to Alzheimer's disease (AD). Genetic factors may moderate this decline. We examined the role of apolipoprotein E (ɛ4 carrier[ɛ4+], ɛ4 non-carrier[ɛ4−]) and brain-derived neurotrophic factor (BDNFVal/Val, BDNFMet) in the extent to which they moderate Aβ-related memory decline. Healthy adults (n=333, Mage=70 years) enrolled in the Australian Imaging, Biomarkers and Lifestyle study underwent Aβ neuroimaging. Neuropsychological assessments were conducted at baseline, 18-, 36- and 54-month follow-ups. Aβ positron emission tomography neuroimaging was used to classify participants as Aβ− or Aβ+. Relative to Aβ−ɛ4−, Aβ+ɛ4+ individuals showed significantly faster rates of cognitive decline over 54 months across all domains (d=0.40–1.22), while Aβ+ɛ4− individuals showed significantly faster decline only on verbal episodic memory (EM). There were no differences in rates of cognitive change between Aβ−ɛ4− and Aβ−ɛ4+ groups. Among Aβ+ individuals, ɛ4+/BDNFMet participants showed a significantly faster rate of decline on verbal and visual EM, and language over 54 months compared with ɛ4−/BDNFVal/Val participants (d=0.90–1.02). At least two genetic loci affect the rate of Aβ-related cognitive decline. Aβ+ɛ4+/BDNFMet individuals can expect to show clinically significant memory impairment after 3 years, whereas Aβ+ɛ4+/BDNFVal/Val individuals can expect a similar degree of impairment after 10 years. Little decline over 54 months was observed in the Aβ− and Aβ+ ɛ4− groups, irrespective of BDNF status. These data raise important prognostic issues in managing preclinical AD, and should be considered in designing secondary preventative clinical trials. PMID:25288138

  1. Fish Intake Is Associated with Slower Cognitive Decline in Chinese Older Adults123

    PubMed Central

    Qin, Bo; Plassman, Brenda L.; Edwards, Lloyd J.; Popkin, Barry M.; Adair, Linda S.; Mendez, Michelle A.

    2014-01-01

    Modifiable lifestyle changes, including dietary changes, could translate into a great reduction in the global burden of cognitive impairment and dementia. Few studies evaluated the benefits of fish intake for delaying cognitive decline, and no studies were conducted in a Chinese population, which may differ with respect to types, amounts, and correlates of fish consumption compared with Western populations. We hypothesized that higher consumption of fish would predict slower decline in cognitive function, independent of a wide range of potential confounders. This prospective cohort study comprised 1566 community-dwelling adults aged ≥55 y who completed a cognitive screening test at ≥2 waves of the China Health and Nutrition Survey in 1997, 2000, or 2004, with a mean follow-up of 5.3 y [age at entry (mean ± SD): 63 ± 6 y]. Diet was measured by 3-d 24-h recalls at baseline. Outcomes included repeated measures of global cognitive scores (baseline mean ± SD: 19 ± 6 points), composite cognitive Z-scores (standardized units), and standardized verbal memory scores (standardized units). Multivariable-adjusted linear mixed-effects models were used to evaluate the relation of fish intake with changes in cognitive scores. Age was found to significantly modify the association between fish consumption and cognitive change (P = 0.007). Among adults aged ≥65 y, compared with individuals who consumed <1 serving/wk (i.e., 100 g) fish, the mean annual rate of global cognitive decline was reduced by 0.35 point (95% CI: 0.13, 0.58) among those consuming ≥1 serving/wk, equivalent to the disparity associated with 1.6 y of age. Fish consumption was also associated with a slower decline in composite and verbal memory scores. No associations were observed among adults aged 55–64 y. Our findings suggest a potential role of fish consumption as a modifiable dietary factor to reduce the rate of cognitive decline in later life. PMID:25080536

  2. Electrophysiological entropy in younger adults, older controls and older cognitively declined adults.

    PubMed

    Hogan, Michael J; Kilmartin, Liam; Keane, Michael; Collins, Peter; Staff, Roger T; Kaiser, Jochen; Lai, Robert; Upton, Neil

    2012-03-22

    The current study examined electrophysiological entropy in younger adults, older adults, and older cognitively declined adults across four experimental conditions - eyes closed, eyes open, and during both encoding and recognition of words in a memory task. We hypothesised reduced entropy in older declined adults relative to both older controls and younger adults, with the largest group differences in entropy expected during the encoding and recognition phases of the experiment. We also hypothesised greater hemispheric asymmetry in younger adults compared with older controls and older declined adults. Results revealed significant increases in entropy from eyes closed to eyes open to task. Young adults showed higher entropy in the right relative to the left hemisphere in the temporal lobe and higher entropy in the left relative to the right hemisphere in the parietal lobe. Old cognitively declined adults showed no significant differences between right and left hemisphere entropy. There was a trend whereby older declined adults showed lower entropy than older controls in the frontal lobe, this difference being largest in the left hemisphere during the encoding phase of the experiment. Results indicate that measures of entropy are sensitive to information processing demands and that higher cognitive performance may not be a simple function of entropy level, but rather a combination of level and range, or differentiated range of entropy states across the brain.

  3. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia

    PubMed Central

    Gao, Yang; O'Caoimh, Rónán; Healy, Liam; Kerins, David M; Eustace, Joseph; Guyatt, Gordon; Sammon, David; Molloy, D William

    2013-01-01

    Objectives There is growing evidence that antihypertensive agents, particularly centrally acting ACE inhibitors (CACE-Is), which cross the blood–brain barrier, are associated with a reduced rate of cognitive decline. Given this, we compared the rates of cognitive decline in clinic patients with dementia receiving CACE-Is (CACE-I) with those not currently treated with CACE-Is (NoCACE-I), and with those who started CACE-Is, during their first 6 months of treatment (NewCACE-I). Design Observational case–control study. Setting 2 university hospital memory clinics. Participants 817 patients diagnosed with Alzheimer's disease, vascular or mixed dementia. Of these, 361 with valid cognitive scores were included for analysis, 85 CACE-I and 276 NoCACE-I. Measurements Patients were included if the baseline and end-point (standardised at 6 months apart) Standardised Mini-Mental State Examination (SMMSE) or Quick Mild Cognitive Impairment (Qmci) scores were available. Patients with comorbid depression or other dementia subtypes were excluded. The average 6-month rates of change in scores were compared between CACE-I, NoCACE-I and NewCACE-I patients. Results When the rate of decline was compared between groups, there was a significant difference in the median, 6-month rate of decline in Qmci scores between CACE-I (1.8 points) and NoCACE-I (2.1 points) patients (p=0.049), with similar, non-significant changes in SMMSE. Median SMMSE scores improved by 1.2 points in the first 6 months of CACE treatment (NewCACE-I), compared to a 0.8 point decline for the CACE-I (p=0.003) group and a 1 point decline for the NoCACE-I (p=0.001) group over the same period. Multivariate analysis, controlling for baseline characteristics, showed significant differences in the rates of decline, in SMMSE, between the three groups, p=0.002. Conclusions Cognitive scores may improve in the first 6 months after CACE-I treatment and use of CACE-Is is associated with a reduced rate of cognitive

  4. Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice.

    PubMed

    Nakashima, Yuya; Ohsawa, Ikuroh; Konishi, Fumiko; Hasegawa, Takashi; Kumamoto, Shoichiro; Suzuki, Yoshihiko; Ohta, Shigeo

    2009-10-30

    Oxidative stress is one of the major causes of age-dependent memory loss and cognitive decline. Cytotoxic aldehydes are derived from lipid peroxides and their accumulation may be responsible for age-dependent neurodegeneration, including Alzheimer's disease. Since aldehyde dehydrogenases detoxify such aldehydes, we constructed transgenic mice with mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity deficiency (DAL101 mice) as an age-dependent dementia model. This model animal is age-dependently progressed by persistent oxidative stress, and thus enables us to investigate foods that prevent dementia. Since Chlorella, a kind of alga, exhibits various anti-oxidative effects, we investigated whether Chlorella has the potential to prevent age-dependent cognitive impairment. We fed Chlorella to DAL101 mice and investigated its effects on oxidative stress and the progression of cognitive decline using the Morris water-maze and object recognition tests. The diet with Chlorella tended to reduce oxidative stress and significantly prevented the decline of cognitive ability, as shown by both methods. Moreover, consumption of Chlorella decreased the number of activated astrocytes in the DAL101 brain. These findings suggest that the prolonged consumption of Chlorella has the potential to prevent the progression of cognitive impairment.

  5. Use of the Internet as a prevention tool against cognitive decline in normal aging

    PubMed Central

    Klimova, Blanka

    2016-01-01

    Recent demographic trends indicate that older people appear to be one of the fastest growing population groups worldwide. In the year 2000, people older than 65 years represented 12.4% of the population. This number is expected to rise to 19% by 2030, particularly in developed countries. Therefore, there is sustained effort at both national and international levels to prolong the active life of these people as long as possible. Since the present older generation at the age of 55 years is already digitally literate, the use of technologies is one of the solutions. The purpose of this study is to discuss the role of the Internet in the prevention of cognitive decline in normal aging. The author examines clinical studies that exploit the use of the Internet, including online training programs, in the prevention of cognitive decline in healthy older individuals. The findings of the clinical studies indicate that the use of the Internet, especially online cognitive training programs, may have a positive effect on the improvement of cognitive functions in healthy older adults. Nevertheless, larger sample longitudinal randomized controlled clinical trials aimed at the prevention of cognitive decline among healthy older adults are needed. PMID:27672317

  6. Use of the Internet as a prevention tool against cognitive decline in normal aging

    PubMed Central

    Klimova, Blanka

    2016-01-01

    Recent demographic trends indicate that older people appear to be one of the fastest growing population groups worldwide. In the year 2000, people older than 65 years represented 12.4% of the population. This number is expected to rise to 19% by 2030, particularly in developed countries. Therefore, there is sustained effort at both national and international levels to prolong the active life of these people as long as possible. Since the present older generation at the age of 55 years is already digitally literate, the use of technologies is one of the solutions. The purpose of this study is to discuss the role of the Internet in the prevention of cognitive decline in normal aging. The author examines clinical studies that exploit the use of the Internet, including online training programs, in the prevention of cognitive decline in healthy older individuals. The findings of the clinical studies indicate that the use of the Internet, especially online cognitive training programs, may have a positive effect on the improvement of cognitive functions in healthy older adults. Nevertheless, larger sample longitudinal randomized controlled clinical trials aimed at the prevention of cognitive decline among healthy older adults are needed.

  7. Age of onset as a moderator of cognitive decline in pediatric-onset multiple sclerosis.

    PubMed

    Hosseini, Banafsheh; Flora, David B; Banwell, Brenda L; Till, Christine

    2014-09-01

    Cognitive impairment is often reported in pediatric-onset multiple sclerosis (MS). Using serial cognitive data from 35 individuals with pediatric-onset MS, this study examined how age at disease-onset and proxies of cognitive reserve may impact cognitive maturation over the course of childhood and adolescence. Neuropsychological evaluations were conducted at baseline and up to four more assessments. Of the 35 participants, 7 completed only one assessment, 5 completed two assessments, 13 completed three assessments, 10 completed four or more assessments. Growth curve modeling was used to assess longitudinal trajectories on the Trail Making Test-Part B (TMT-B) and the Symbol Digit Modalities (SDMT; oral version) and to examine how age at disease onset, baseline Full Scale IQ, and social status may moderate rate of change on these measures. Mean number of evaluations completed per patient was 2.8. Younger age at disease onset was associated with a greater likelihood of cognitive decline on both the TMT-B (p=.001) and SDMT (p=.005). Baseline IQ and parental social status did not moderate any of the cognitive trajectories. Findings suggest that younger age at disease-onset increases the vulnerability for disrupted performance on measures of information processing, visual scanning, perceptual/motor speed, and working memory. Proxies of cognitive reserve did not protect against the progression of decline on these measures. Young patients with MS should be advised to seek follow-up cognitive evaluation to assess cognitive maturation and to screen for the potential late emergence of cognitive deficits. (JINS, 2014, 20, 1-9).

  8. The 12 Years Preceding Mild Cognitive Impairment Due to Alzheimer’s Disease: The Temporal Emergence of Cognitive Decline

    PubMed Central

    Mistridis, Panagiota; Krumm, Sabine; Monsch, Andreas U.; Berres, Manfred; Taylor, Kirsten I.

    2015-01-01

    Abstract Background: The identification of the type and sequence of cognitive decline in preclinical mild cognitive impairment (MCI) prior to Alzheimer’s disease (AD) is crucial for understanding AD pathogenesis and implementing therapeutic interventions. Objective: To model the longitudinal courses of different neuropsychological functions in MCI due to AD. Methods: We investigated the prodromal phase of MCI over a 12-year period in 27 initially healthy participants with subsequent MCI preceding AD (NC-MCI) and 60 demographically matched healthy individuals (NC-NC). The longitudinal courses of cognitive performance (verbal and visual episodic memory, semantic memory, executive functioning, constructional praxis, psychomotor speed, language, and informant-based reports) were analyzed with linear mixed effects models. Results: The sequence with which different cognitive functions declined in the NC-MCI relative to the NC-NC group began with verbal memory and savings performance approximately eight years, and verbal episodic learning, visual memory, and semantic memory (animal fluency) circa four years prior to the MCI diagnosis. Executive functioning, psychomotor speed, and informant-based reports of the NC-MCI group declined approximately two years preceding the MCI diagnosis. Conclusions: Measurable neuropsychological deterioration occurs up to approximately eight years preceding MCI due to AD. PMID:26402083

  9. Vitamin D as a marker of cognitive decline in elderly Indian population

    PubMed Central

    Vedak, Tejal Kanhaiya; Ganwir, Vaishali; Shah, Arun B.; Pinto, Charles; Lele, Vikram R.; Subramanyam, Alka; Shah, Hina; Deo, Sudha Shrikant

    2015-01-01

    Objectives: Very few studies in India have addressed the role of vitamin D in cognitive function. The present study was conducted to assess the serum levels of 25-hydroxyvitamin D (25(OH)D) and its association with markers of cognitive impairment and homocysteine levels in the elderly Indian population. Materials and Methods: The study population consisted of patients with dementia (Group A, n = 32), mild cognitive impairment (MCI; Group B, n = 24), and elderly age-matched controls (Group C, n = 30). Measurement of serum levels of 25(OH)D and total homocysteine were done. Results: Significant decreased concentration of 25(OH)D and increased concentration of homocysteine was observed. Association of serum levels of vitamin D with markers of cognitive decline as well as serum homocysteine levels was observed in patients with dementia and MCI when compared to controls. Conclusion: Correlation of vitamin D with markers of cognitive decline and homocysteine opens a new door for early diagnosis of cognitive impairment. PMID:26425010

  10. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer's Disease.

    PubMed

    Daulatzai, Mak Adam

    2016-10-01

    Sporadic Alzheimer's disease (AD) is a devastating neurodegenerative disorder. It is essential to unravel its etiology and pathogenesis. This should enable us to study the presymptomatic stages of the disease and to analyze and reverse the antemortem behavioral, memory, and cognitive dysfunction. Prima facie, an ongoing chronic vulnerability involving neural insult may lead normal elderly to mild cognitive impairment (MCI) and then to AD. Development of effective preventive and therapeutic strategies to thwart the disease pathology obviously requires a thorough delineation of underlying disruptive neuropathological processes. Our sensory capacity for touch, smell, taste, hearing, and vision declines with advancing age. Declines in different sensory attributes are considered here to be the primary "first-tier pathologies." Olfactory loss is among the first clinical signs of neurodegenerative diseases including AD and Parkinson's disease (PD). Sensory dysfunction in the aged promotes pathological disturbances in the locus coeruleus, basal forebrain, entorhinal cortex, hippocampus, and several key areas of neocortex and brainstem. Hence, sensory dysfunction is the pivotal factor that may upregulate cognitive and memory dysfunction. The age-related constellation of comorbid pathological factors may include apolipoprotein E (APOE) genotype, obesity, diabetes, hypertension, alcohol abuse, head trauma, and obstructive sleep apnea. The concepts and trajectories delineated here are the dynamic pillars of the current hypothesis presented-it postulates that the sensory decline, in conjunction with the above pathologies, is crucial in triggering neurodegeneration and promoting cognitive/memory dysfunction in aging and AD. The application of this thesis can be important in formulating new multifactorial preventive and treatment strategies (suggested here) in order to attenuate cognitive and memory decline and ameliorate pathological dysfunction in aging, MCI, and AD.

  11. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer's Disease.

    PubMed

    Daulatzai, Mak Adam

    2016-10-01

    Sporadic Alzheimer's disease (AD) is a devastating neurodegenerative disorder. It is essential to unravel its etiology and pathogenesis. This should enable us to study the presymptomatic stages of the disease and to analyze and reverse the antemortem behavioral, memory, and cognitive dysfunction. Prima facie, an ongoing chronic vulnerability involving neural insult may lead normal elderly to mild cognitive impairment (MCI) and then to AD. Development of effective preventive and therapeutic strategies to thwart the disease pathology obviously requires a thorough delineation of underlying disruptive neuropathological processes. Our sensory capacity for touch, smell, taste, hearing, and vision declines with advancing age. Declines in different sensory attributes are considered here to be the primary "first-tier pathologies." Olfactory loss is among the first clinical signs of neurodegenerative diseases including AD and Parkinson's disease (PD). Sensory dysfunction in the aged promotes pathological disturbances in the locus coeruleus, basal forebrain, entorhinal cortex, hippocampus, and several key areas of neocortex and brainstem. Hence, sensory dysfunction is the pivotal factor that may upregulate cognitive and memory dysfunction. The age-related constellation of comorbid pathological factors may include apolipoprotein E (APOE) genotype, obesity, diabetes, hypertension, alcohol abuse, head trauma, and obstructive sleep apnea. The concepts and trajectories delineated here are the dynamic pillars of the current hypothesis presented-it postulates that the sensory decline, in conjunction with the above pathologies, is crucial in triggering neurodegeneration and promoting cognitive/memory dysfunction in aging and AD. The application of this thesis can be important in formulating new multifactorial preventive and treatment strategies (suggested here) in order to attenuate cognitive and memory decline and ameliorate pathological dysfunction in aging, MCI, and AD. PMID

  12. Later developments: molecular keys to age-related memory impairment.

    PubMed

    Barad, Mark

    2003-01-01

    Age-related memory impairment, a cognitive decline not clearly related to any gross pathology, is progressive and widespread in the population, although not universal. While the mechanisms of learning and memory remain incompletely understood, the study of their molecular mechanisms is already yielding promising approaches toward therapy for such "normal" declines in the efficiency of learning. This review presents the rationale and results for two such approaches. One approach, partial inhibition of the type IV cAMP specific phosphodiesterase, appears to act indirectly. Although little evidence supports an age-related decline in this system, considerable evidence indicates that this approach can facilitate the transition from short-term to long-term memory and thus counterbalance defects in long-term memory, which may be due to other causes. A second approach, inhibition of l-type voltage gated calcium channels (LVGCCs) may be a specific corrective for a molecular pathology of aging, as substantial evidence indicates that an ongoing increase occurs throughout the lifespan in the density of these channels in hippocampal pyramidal cells, with a concomitant reduction in cellular excitability. Because LVGCCs are also crucial to extinction, a paradigm of inhibitory learning, age-related memory impairment may be an unfortunate side effect of a developmental process necessary to the maturation of the ability to suppress inappropriate behavior, an interpretation consistent with the antagonistic pleiotropy theory of aging.

  13. Dietary patterns and cognitive decline in an Australian study of ageing.

    PubMed

    Gardener, S L; Rainey-Smith, S R; Barnes, M B; Sohrabi, H R; Weinborn, M; Lim, Y Y; Harrington, K; Taddei, K; Gu, Y; Rembach, A; Szoeke, C; Ellis, K A; Masters, C L; Macaulay, S L; Rowe, C C; Ames, D; Keogh, J B; Scarmeas, N; Martins, R N

    2015-07-01

    The aim of this paper was to investigate the association of three well-recognised dietary patterns with cognitive change over a 3-year period. Five hundred and twenty-seven healthy participants from the Australian Imaging, Biomarkers and Lifestyle study of ageing completed the Cancer Council of Victoria food frequency questionnaire at baseline and underwent a comprehensive neuropsychological assessment at baseline, 18 and 36 months follow-up. Individual neuropsychological test scores were used to construct composite scores for six cognitive domains and a global cognitive score. Based on self-reported consumption, scores for three dietary patterns, (1) Australian-style Mediterranean diet (AusMeDi), (2) western diet and (3) prudent diet were generated for each individual. Linear mixed model analyses were conducted to examine the relationship between diet scores and cognitive change in each cognitive domain and for the global score. Higher baseline adherence to the AusMeDi was associated with better performance in the executive function cognitive domain after 36 months in apolipoprotein E (APOE) ɛ4 allele carriers (P<0.01). Higher baseline western diet adherence was associated with greater cognitive decline after 36 months in the visuospatial cognitive domain in APOE ɛ4 allele non-carriers (P<0.01). All other results were not significant. Our findings in this well-characterised Australian cohort indicate that adherence to a healthy diet is important to reduce risk for cognitive decline, with the converse being true for the western diet. Executive function and visuospatial functioning appear to be particularly susceptible to the influence of diet.

  14. Preventing cognitive decline in older African Americans with mild cognitive impairment: design and methods of a randomized clinical trial.

    PubMed

    Rovner, Barry W; Casten, Robin J; Hegel, Mark T; Leiby, Benjamin E

    2012-07-01

    Mild Cognitive Impairment (MCI) affects 25% of older African Americans and predicts progression to Alzheimer's disease. An extensive epidemiologic literature suggests that cognitive, physical, and/or social activities may prevent cognitive decline. We describe the methods of a randomized clinical trial to test the efficacy of Behavior Activation to prevent cognitive decline in older African Americans with the amnestic multiple domain subtype of MCI. Community Health Workers deliver 6 initial in-home treatment sessions over 2-3 months and then 6 subsequent in-home booster sessions using language, materials, and concepts that are culturally relevant to older African Americans during this 24 month clinical trial. We are randomizing 200 subjects who are recruited from churches, senior centers, and medical clinics to Behavior Activation or Supportive Therapy, which controls for attention. The primary outcome is episodic memory as measured by the Hopkins Verbal Learning Test-Revised at baseline and at months 3, 12, 18, and 24. The secondary outcomes are general and domain-specific neuropsychological function, activities of daily living, depression, and quality-of-life. The negative results of recent clinical trials of drug treatments for MCI and Alzheimer's disease suggest that behavioral interventions may provide an alternative treatment approach to preserve cognition in an aging society.

  15. Preventing cognitive decline in older African Americans with mild cognitive impairment: design and methods of a randomized clinical trial.

    PubMed

    Rovner, Barry W; Casten, Robin J; Hegel, Mark T; Leiby, Benjamin E

    2012-07-01

    Mild Cognitive Impairment (MCI) affects 25% of older African Americans and predicts progression to Alzheimer's disease. An extensive epidemiologic literature suggests that cognitive, physical, and/or social activities may prevent cognitive decline. We describe the methods of a randomized clinical trial to test the efficacy of Behavior Activation to prevent cognitive decline in older African Americans with the amnestic multiple domain subtype of MCI. Community Health Workers deliver 6 initial in-home treatment sessions over 2-3 months and then 6 subsequent in-home booster sessions using language, materials, and concepts that are culturally relevant to older African Americans during this 24 month clinical trial. We are randomizing 200 subjects who are recruited from churches, senior centers, and medical clinics to Behavior Activation or Supportive Therapy, which controls for attention. The primary outcome is episodic memory as measured by the Hopkins Verbal Learning Test-Revised at baseline and at months 3, 12, 18, and 24. The secondary outcomes are general and domain-specific neuropsychological function, activities of daily living, depression, and quality-of-life. The negative results of recent clinical trials of drug treatments for MCI and Alzheimer's disease suggest that behavioral interventions may provide an alternative treatment approach to preserve cognition in an aging society. PMID:22406101

  16. One-trial 10-item free-recall performance in Taiwanese elderly and near-elderly: A potential screen for cognitive decline.

    PubMed

    Tractenberg, Rochelle E; Aisen, Paul S; Chuang, Yi-Li

    2005-01-01

    To explore a one-trial 10-item free-recall test as a potential dementia screening tool, we analyzed recall scores and individualized serial position effects in near-elderly (N = 2,336) and elderly (N = 2,371) participants in a population-based survey in Taiwan. Age and sex were significantly associated with recall score [younger > older (p < 0.001); men > women (p < 0.001)]; after controlling for gender and age group, weak association between recall and education was still observed. By contrast, serial position effects (SPEs), defined for each participant and analyzed aggregated over each age group, were not associated with education and tended not to be associated with sex. Primacy effects were observed in 67 to 80 percent, and recency effects were observed in 41 to 54 percent of respondents. Because SPEs were defined for each respondent, we could determine that loss of the primacy effect was associated with significantly larger losses in total recall score in elderly persons who had exhibited both SPEs at the first survey, as compared to those who maintained both SPEs at successive surveys (p < 0.01). Elderly subjects showed slight longitudinal decline in free recall. A one-trial 10-item free-recall test demonstrated age-related cognitive decline in this Taiwanese population survey cohort; SPEs at the individual level may be useful markers for important cognitive change and warrant further study and benchmarking against valid and reliable tests of memory and cognitive decline.

  17. Vascular disease and risk factors are associated with cognitive decline in the alzheimer disease spectrum.

    PubMed

    Lorius, Natacha; Locascio, Joseph J; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Viswanathan, Anand; Marshall, Gad A

    2015-01-01

    We investigated the relationship between vascular disease and risk factors versus cognitive decline cross-sectionally and longitudinally in normal older control, mild cognitive impairment, and mild Alzheimer disease (AD) dementia subjects. A total of 812 participants (229 normal older control, 395 mild cognitive impairment, 188 AD) underwent cognitive testing, brain magnetic resonance imaging, and clinical evaluations at baseline and over a period of 3 years. General linear, longitudinal mixed-effects, and Cox proportional hazards models were used. Greater homocysteine level and white matter hyperintensity volume were associated with processing speed impairment (homocysteine: P=0.02; white matter hyperintensity: P<0.0001); greater Vascular Index score was associated with memory impairment (P=0.007); and greater number of apolipoprotein E ε4 (APOE4) alleles was associated with global cognitive impairment (P=0.007) at baseline. Apolipoprotein E ε4 was associated with greater rate of increase in global cognitive impairment (P=0.002) and processing speed impairment (P=0.001) over time, whereas higher total cholesterol was associated with greater rate of increase in global cognitive impairment (P=0.02) and memory impairment (P=0.06) over time. These results suggest a significant association of increased vascular disease and risk factors with cognitive impairment at baseline and over time in the AD spectrum in a sample that was selected to have low vascular burden at baseline.

  18. Baseline white matter microstructural integrity is not related to cognitive decline after 5 years: The RUN DMC study.

    PubMed

    van Uden, I W M; van der Holst, H M; Schaapsmeerders, P; Tuladhar, A M; van Norden, A G W; de Laat, K F; Norris, D G; Claassen, J A H R; van Dijk, E J; Richard, E; Kessels, R P C; de Leeuw, F-E

    2015-12-01

    •DTI can provide information on microstructural white matter integrity.•White matter microstructural integrity is not related to cognitive decline in SVD.•These results are in contrast with cross-sectional findings.•Other factors than white matter microstructural damage underlie this cognitive decline.

  19. Does exercise protect from cognitive decline by altering brain cytokine and apoptotic protein levels? A systematic review of the literature.

    PubMed

    Packer, N; Pervaiz, N; Hoffman-Goetz, L

    2010-01-01

    Regular exercise is thought to provide protection against age-related cognitive decline and possibly reduce risk of dementias. The mechanisms for the exercise protective effects are not known although changes in inflammatory cytokine levels may be involved. We conducted a systematic review of the literature to assess (1) the effects of exercise on cytokines in the brain, (2) the methodological rigour of studies which have examined these exercise effects and (3) the potential role of regular exercise in reducing the pro-inflammatory cytokine milieu that may contribute to dementia. We also reviewed the effects of exercise on concurrent pro and anti-apoptotic protein expression in the brain as related to cytokine changes. Five databases were searched until January 2010 with an initial 630 articles identified; 61 articles were retrieved of which 10 met study inclusion criteria. Investigations of both acute and chronic (training) exercise were assessed for methodological quality using a modified PEDro scale. Two studies were carried out with human participants and eight with mouse or rat models; studies differed markedly in design and methodological rigour; the types, intensities and durations of exercise, the cytokine and apoptotic proteins measured, and the regions of the brain (or proxy compartments) sampled. Despite variations in design, specific cytokine outcomes, and exercise type, the 10 studies provide limited evidence that acute strenuous exercise increases and exercise training decreases pro-inflammatory cytokines centrally. Two animal studies relate training associated decreases in pro-inflammatory cytokines with improved cognitive function using behavioural assessments such as the Morris maze. Recommendations for the design of future research on exercise, central cytokines, and cognition are offered.

  20. The mismatch negativity as an index of cognitive decline for the early detection of Alzheimer's disease.

    PubMed

    Ruzzoli, Manuela; Pirulli, Cornelia; Mazza, Veronica; Miniussi, Carlo; Brignani, Debora

    2016-01-01

    Evidence suggests that Alzheimer's disease (AD) is part of a continuum, characterized by long preclinical phases before the onset of clinical symptoms. In several cases, this continuum starts with a syndrome, defined as mild cognitive impairment (MCI), in which daily activities are preserved despite the presence of cognitive decline. The possibility of having a reliable and sensitive neurophysiological marker that can be used for early detection of AD is extremely valuable because of the incidence of this type of dementia. In this study, we aimed to investigate the reliability of auditory mismatch negativity (aMMN) as a marker of cognitive decline from normal ageing progressing from MCI to AD. We compared aMMN elicited in the frontal and temporal locations by duration deviant sounds in short (400 ms) and long (4000 ms) inter-trial intervals (ITI) in three groups. We found that at a short ITI, MCI showed only the temporal component of aMMN and AD the frontal component compared to healthy elderly who presented both. At a longer ITI, aMMN was elicited only in normal ageing subjects at the temporal locations. Our study provides empirical evidence for the possibility to adopt aMMN as an index for assessing cognitive decline in pathological ageing. PMID:27616726

  1. Reduction of Endogenous Melatonin Accelerates Cognitive Decline in Mice in a Simulated Occupational Formaldehyde Exposure Environment

    PubMed Central

    Mei, Yufei; Duan, Chunli; Li, Xiaoxiao; Zhao, Yun; Cao, Fenghua; Shang, Shuai; Ding, Shumao; Yue, Xiangpei; Gao, Ge; Yang, Hui; Shen, Luxi; Feng, Xueyan; Jia, Jianping; Tong, Zhiqian; Yang, Xu

    2016-01-01

    Individuals afflicted with occupational formaldehyde (FA) exposure often suffer from abnormal behaviors such as aggression, depression, anxiety, sleep disorders, and in particular, cognitive impairments. Coincidentally, clinical patients with melatonin (MT) deficiency also complain of cognitive problems associated with the above mental disorders. Whether and how FA affects endogenous MT metabolism and induces cognitive decline need to be elucidated. To mimic occupational FA exposure environment, 16 healthy adult male mice were exposed to gaseous FA (3 mg/m3) for 7 consecutive days. Results showed that FA exposure impaired spatial memory associated with hippocampal neuronal death. Biochemical analysis revealed that FA exposure elicited an intensive oxidative stress by reducing systemic glutathione levels, in particular, decreasing brain MT concentrations. Inversely, intraperitoneal injection of MT markedly attenuated FA-induced hippocampal neuronal death, restored brain MT levels, and reversed memory decline. At tissue levels, injection of FA into the hippocampus distinctly reduced brain MT concentrations. Furthermore, at cellular and molecular levels, we found that FA directly inactivated MT in vitro and in vivo. These findings suggest that MT supplementation contributes to the rescue of cognitive decline, and may alleviate mental disorders in the occupational FA-exposed human populations. PMID:26938543

  2. Rate of cognitive decline during the premotor phase of essential tremor

    PubMed Central

    Louis, Elan D.; Sánchez-Ferro, Álvaro; Bermejo-Pareja, Félix

    2013-01-01

    Objective: To characterize the rate of cognitive decline during the premotor phase of essential tremor (ET) in comparison to prevalent ET cases and controls. Methods: In this population-based, prospective study of people aged 65 years and older (Neurological Disorders in Central Spain), a 37-item version of the Mini-Mental State Examination was administered at 2 visits (baseline and follow-up, approximately 3 years later). We compared the rate of cognitive decline in 3 groups: prevalent ET cases (i.e., participants diagnosed with ET at baseline and at follow-up), “premotor” ET cases (i.e., participants diagnosed with incident ET at follow-up, but not at baseline), and controls (i.e., participants not diagnosed with ET at baseline or follow-up). Results: The 2,375 participants included 135 prevalent ET cases, 56 premotor ET cases, and 2,184 controls. During the follow-up period of 3.4 ± 0.5 years (mean ± SD), the 37-item version of the Mini-Mental State Examination declined by 0.7 ± 3.3 points (0.2 ± 1.0 points/year) in prevalent ET cases, 1.1 ± 3.5 points (0.3 ± 1.0 points/year) in premotor ET cases, and 0.1 ± 3.9 points (0.0 ± 1.2 points/year) in controls (p = 0.014). The difference between premotor ET cases and controls was significant (p = 0.046), as was the difference between prevalent ET cases and controls (p = 0.027). Conclusions: In this prospective cohort, cognitive test scores in premotor and prevalent ET cases declined at a faster rate than in elders without this disease. A decline in global cognitive function may occur in a premotor phase of ET. PMID:23700331

  3. Optimizing Cognitive Development over the Life Course and Preventing Cognitive Decline: Introducing the Cognitive Health Environment Life Course Model (CHELM)

    ERIC Educational Resources Information Center

    Anstey, Kaarin J.

    2014-01-01

    Optimal cognitive development is defined in this article as the highest level of cognitive function reached in each cognitive domain given a person's biological and genetic disposition, and the highest possible maintenance of cognitive function over the adult life course. Theoretical perspectives underpinning the development of a framework…

  4. Compensatory larger cortical thickness in healthy elderly individuals with electroencephalographic risk for cognitive decline.

    PubMed

    Castro-Chavira, Susana A; Barrios, Fernando A; Pasaye, Erick H; Alatorre-Cruz, Graciela C; Fernández, Thalía

    2016-06-15

    Excess theta electroencephalographic (EEG) activity has been described as an accurate predictor for cognitive decline at least 7 years before symptom presentation. To test whether this predictor for cognitive decline correlates with structural changes in the brains of healthy elderly individuals, we compared the magnetic resonance structural images of healthy individuals with excess of theta activity [group with a risk for cognitive decline, risk group (RG); n=14] with healthy controls with normal EEG activity (control group; n=14). Neuropsychological and epidemiological analyses showed significant differences in only two features: more years of education and better performance in the visuospatial process task in the control group. Voxel-based morphometry results were not conclusive, but showed tendencies toward larger volumes in the prefrontal and parietal lobes, and smaller volumes in the right temporal lobe, right occipital lobe, and left cerebellum for the RG; these tendencies are in agreement with those proposed by the posterior-anterior shift in an aging model. Cortical-thickness analyses yielded a significant correlation between cortical thickness and years of education in the prefrontal and inferior-temporal regions, and larger cortical thickness in the RG, independent of age and years of education, in the right superior temporal region. These results suggest changes in the cortical thickness of structures related to memory and visuospatial functions in healthy, cognitively normal individuals before the appearance of cognitive decline. Thus, the performance of healthy elderly individuals with EEG risk may only be slightly different from normal because of compensation mechanisms allowing them to fulfill daily-life tasks, masking structural changes during preclinical neurocognitive disorders. PMID:27171033

  5. Aging, frailty and age-related diseases.

    PubMed

    Fulop, T; Larbi, A; Witkowski, J M; McElhaney, J; Loeb, M; Mitnitski, A; Pawelec, G

    2010-10-01

    The concept of frailty as a medically distinct syndrome has evolved based on the clinical experience of geriatricians and is clinically well recognizable. Frailty is a nonspecific state of vulnerability, which reflects multisystem physiological change. These changes underlying frailty do not always achieve disease status, so some people, usually very elderly, are frail without a specific life threatening illness. Current thinking is that not only physical but also psychological, cognitive and social factors contribute to this syndrome and need to be taken into account in its definition and treatment. Together, these signs and symptoms seem to reflect a reduced functional reserve and consequent decrease in adaptation (resilience) to any sort of stressor and perhaps even in the absence of extrinsic stressors. The overall consequence is that frail elderly are at higher risk for accelerated physical and cognitive decline, disability and death. All these characteristics associated with frailty can easily be applied to the definition and characterization of the aging process per se and there is little consensus in the literature concerning the physiological/biological pathways associated with or determining frailty. It is probably true to say that a consensus view would implicate heightened chronic systemic inflammation as a major contributor to frailty. This review will focus on the relationship between aging, frailty and age-related diseases, and will highlight possible interventions to reduce the occurrence and effects of frailty in elderly people. PMID:20559726

  6. EEG markers for cognitive decline in elderly subjects with subjective memory complaints.

    PubMed

    Alexander, David M; Arns, Martijn W; Paul, Robert H; Rowe, Donald L; Cooper, Nicholas; Esser, Aristide H; Fallahpour, Kamran; Stephan, Blossom C M; Heesen, Erica; Breteler, Rien; Williams, Leanne M; Gordon, Evian

    2006-03-01

    New treatments for Alzheimer's disease require early detection of cognitive decline. Most studies seeking to identify markers of early cognitive decline have focused on a limited number of measures. We sought to establish the profile of brain function measures which best define early neuropsychological decline. We compared subjects with subjective memory complaints to normative controls on a wide range of EEG derived measures, including a new measure of event-related spatio-temporal waves and biophysical modeling, which derives anatomical and physiological parameters based on subject's EEG measurements. Measures that distinguished the groups were then related to cognitive performance on a variety of learning and executive function tasks. The EEG measures include standard power measures, peak alpha frequency, EEG desynchronization to eyes-opening, and global phase synchrony. The most prominent differences in subjective memory complaint subjects were elevated alpha power and an increased number of spatio-temporal wave events. Higher alpha power and changes in wave activity related most strongly to a decline in verbal memory performance in subjects with subjective memory complaints, and also declines in maze performance and working memory reaction time. Interestingly, higher alpha power and wave activity were correlated with improved performance in reverse digit span in the subjective memory complaint group. The modeling results suggest that differences in the subjective memory complaint subjects were due to a decrease in cortical and thalamic inhibitory gains and slowed dendritic time-constants. The complementary profile that emerges from the variety of measures and analyses points to a nonlinear progression in electrophysiological changes from early neuropsychological decline to late-stage dementia, and electrophysiological changes in subjective memory complaint that vary in their relationships to a range of memory-related tasks. PMID:16544366

  7. Cognitive decline in dementia with Lewy bodies: a 5-year prospective cohort study

    PubMed Central

    Rongve, A; Soennesyn, H; Skogseth, Ragnhild; Oesterhus, Ragnhild; Hortobágyi, T; Ballard, Clive; Auestad, B H; Aarsland, D

    2016-01-01

    Objectives We report the cognitive decline in persons diagnosed with mild dementia with Lewy bodies (DLB) and mild Alzheimer's disease (AD) during 5 years of annual follow-ups. Methods Patients were recruited into the study from geriatric, psychiatric and neurology clinics in Western Norway during 2005–2013. They were diagnosed according to clinical consensus criteria, based on standardised clinical rating scales. Autopsy-based diagnoses were available for 20 cases. Cognitive decline for up to 5 years was assessed using the Clinical Dementia Rating (CDR) scale and the Mini-Mental State Examination (MMSE). Survival analysis including Cox regression (time to reach severe dementia) and linear mixed-effects (lme) modelling were used to model the decline on MMSE. Results At least one follow-up assessment was available for 67 patients with DLB and 107 patients with AD, with a median follow-up time of 4.3 years. The time to reach severe dementia was significantly shorter in DLB (median 1793 days) compared with AD (1947 days; p=0.033), and the difference remained significant in the multiple Cox regression analysis (HR=2.0, p<0.02). In the adjusted lme model, MMSE decline was faster in DLB (annual decline 4.4 points) compared with AD (3.2 points; p<0.008). Conclusions Our findings show that from the mild dementia stage, patients with DLB have a more rapid cognitive decline than in AD. Such prognostic information is vital for patients and families and crucial for planning clinical trials and enabling health economic modelling. PMID:26928028

  8. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease

    PubMed Central

    Small, Gary W.; Ercoli, Linda M.; Silverman, Daniel H. S.; Huang, S.-C.; Komo, Scott; Bookheimer, Susan Y.; Lavretsky, Helen; Miller, Karen; Siddarth, Prabha; Rasgon, Natalie L.; Mazziotta, John C.; Saxena, Sanjaya; Wu, H. M.; Mega, Michael S.; Cummings, Jeffrey L.; Saunders, Ann M.; Pericak-Vance, Margaret A.; Roses, Allen D.; Barrio, Jorge R.; Phelps, Michael E.

    2000-01-01

    The major known genetic risk for Alzheimer's disease (AD), apolipoprotein E-4 (APOE-4), is associated with lowered parietal, temporal, and posterior cingulate cerebral glucose metabolism in patients with a clinical diagnosis of AD. To determine cognitive and metabolic decline patterns according to genetic risk, we investigated cerebral metabolic rates by using positron emission tomography in middle-aged and older nondemented persons with normal memory performance. A single copy of the APOE-4 allele was associated with lowered inferior parietal, lateral temporal, and posterior cingulate metabolism, which predicted cognitive decline after 2 years of longitudinal follow-up. For the 20 nondemented subjects followed longitudinally, memory performance scores did not decline significantly, but cortical metabolic rates did. In APOE-4 carriers, a 4% left posterior cingulate metabolic decline was observed, and inferior parietal and lateral temporal regions demonstrated the greatest magnitude (5%) of metabolic decline after 2 years. These results indicate that the combination of cerebral metabolic rates and genetic risk factors provides a means for preclinical AD detection that will assist in response monitoring during experimental treatments. PMID:10811879

  9. Decreased Self-Appraisal Accuracy on Cognitive Tests of Executive Functioning Is a Predictor of Decline in Mild Cognitive Impairment

    PubMed Central

    Scherling, Carole S.; Wilkins, Sarah E.; Zakrezewski, Jessica; Kramer, Joel H.; Miller, Bruce L.; Weiner, Michael W.; Rosen, Howard J.

    2016-01-01

    Objective: Mild cognitive impairment (MCI) in older individuals is associated with increased risk of progression to dementia. The factors predicting progression are not yet well established, yet cognitive performance, particularly for memory, is known to be important. Anosognosia, meaning lack of awareness of one’s impaired function, is commonly reported in dementia and is often also a feature of MCI, but its association with risk of progression is not well understood. In particular, self-appraisal measures provide an autonomous measure of insight abilities, without the need of an informant. Methods: The present study examined the utility of self-appraisal accuracy at baseline for predicting cognitive decline in 51 patients using an informant-free assessment method. Baseline task performance scores were compared to self-assessments of performance to yield a discrimination score (DS) for tasks tapping into memory and executive functions. Results: Linear regression revealed that a larger DS for executive function tasks in MCI predicted functional decline, independent of age, education, and baseline memory and executive task scores. Conclusion: These findings indicate that objective estimates of self-appraisal can be used to quantify anosognosia and increase predictive accuracy for decline in MCI. PMID:27458368

  10. Sex-specific risk of cardiovascular disease and cognitive decline: pregnancy and menopause

    PubMed Central

    2013-01-01

    Understanding the biology of sex differences is integral to personalized medicine. Cardiovascular disease and cognitive decline are two related conditions, with distinct sex differences in morbidity and clinical manifestations, response to treatments, and mortality. Although mortality from all-cause cardiovascular diseases has declined in women over the past five years, due in part to increased educational campaigns regarding the recognition of symptoms and application of treatment guidelines, the mortality in women still exceeds that of men. The physiological basis for these differences requires further research, with particular attention to two physiological conditions which are unique to women and associated with hormonal changes: pregnancy and menopause. Both conditions have the potential to impact life-long cardiovascular risk, including cerebrovascular function and cognition in women. This review draws on epidemiological, translational, clinical, and basic science studies to assess the impact of hypertensive pregnancy disorders on cardiovascular disease and cognitive function later in life, and examines the effects of post-menopausal hormone treatments on cardiovascular risk and cognition in midlife women. We suggest that hypertensive pregnancy disorders and menopause activate vascular components, i.e., vascular endothelium and blood elements, including platelets and leukocytes, to release cell-membrane derived microvesicles that are potential mediators of changes in cerebral blood flow, and may ultimately affect cognition in women as they age. Research into specific sex differences for these disease processes with attention to an individual’s sex chromosomal complement and hormonal status is important and timely. PMID:23537114

  11. Children's Internal Attributions of Anxiety-Related Physical Symptoms: Age-Related Patterns and the Role of Cognitive Development and Anxiety Sensitivity

    ERIC Educational Resources Information Center

    Muris, Peter; Mayer, Birgit; Freher, Nancy Kramer; Duncan, Sylvana; van den Hout, Annemiek

    2010-01-01

    The present study examined age-related patterns in children's anxiety-related interpretations and internal attributions of physical symptoms. A large sample of 388 children aged between 4 and 13 years completed a vignette paradigm during which they had to explain the emotional response of the main character who experienced anxiety-related physical…

  12. Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities.

    PubMed

    Mossello, Enrico; Ballini, Elena; Boncinelli, Marta; Monami, Matteo; Lonetto, Giuseppe; Mello, Anna Maria; Tarantini, Francesca; Baldasseroni, Samuele; Mannucci, Edoardo; Marchionni, Niccolò

    2011-01-01

    Metabolic and neurodegenerative disorders have a growing prevalence in Western countries. Available epidemiologic and neurobiological evidences support the existence of a pathophysiological link between these conditions. Glucagon-like peptide 1 (GLP-1), whose activity is reduced in insulin resistance, has been implicated in central nervous system function, including cognition, synaptic plasticity, and neurogenesis. We review the experimental researches suggesting that GLP-1 dysfunction might be a mediating factor between Type 2 diabetes mellitus (T2DM) and neurodegeneration. Drug treatments enhancing GLP-1 activity hold out hope for treatment and prevention of Alzheimer's disease (AD) and cognitive decline.

  13. Neuropsychological Markers of Cognitive Decline in Persons With Alzheimer Disease Neuropathology.

    PubMed

    Hassenstab, Jason; Monsell, Sarah E; Mock, Charles; Roe, Catherine M; Cairns, Nigel J; Morris, John C; Kukull, Walter

    2015-11-01

    To evaluate cognitive performance among persons who did and did not develop clinical Alzheimer disease (AD) but had AD neuropathology at autopsy, we examined neuropsychological performance in cognitively healthy (Clinical Dementia Rating [CDR] = 0) participants who returned for at least 1 follow-up and died within 2 years of their last assessment. Nonprogressors remained at CDR = 0 until death; progressors developed symptomatic AD during life (CDR > 0). Cognitive performance at baseline was compared between progressors and nonprogressors on a global cognitive composite and 4 domain-specific composites (episodic memory, language, attention/working memory, and executive function). Models adjusted for age, education, sex, and non-AD neuropathology. Progressors (n = 173) had worse performance than nonprogressors (n = 141) in nearly all cognitive domains. Progressors scored lower on composites of global cognition (P < 0.001), executive function (P = 0.0006), language (P < 0.0001), and episodic memory (P = 0.0006) but not on attention/working memory (P = 0.91). These data indicate that individuals with underlying AD neuropathology who are clinically healthy but who later develop symptomatic AD have worse performance in a wide range of domains versus individuals with underlying AD neuropathology who are clinically healthy but do not become symptomatic during life. Therefore, subtle cognitive decline at baseline may indicate an increased risk of progression to symptomatic AD.

  14. Enhanced defense against mitochondrial hydrogen peroxide attenuates age-associated cognition decline.

    PubMed

    Chen, Liuji; Na, Ren; Ran, Qitao

    2014-11-01

    Increased mitochondrial hydrogen peroxide (H2O2) is associated with Alzheimer's disease and brain aging. Peroxiredoxin 3 (Prdx3) is the key mitochondrial antioxidant defense enzyme in detoxifying H2O2. To investigate the importance of mitochondrial H2O2 in age-associated cognitive decline, we compared cognition between aged (17-19 months) APP transgenic mice and APP/Prdx3 double transgenic mice (dTG) and between old (24 months) wild-type mice and Prdx3 transgenic mice (TG). Compared with aged APP mice, aged dTG mice showed improved cognition that was correlated with reduced brain amyloid beta levels and decreased amyloid beta production. Old TG mice also showed significantly increased cognitive ability compared with old wild-type mice. Both aged dTG mice and old TG mice had reduced mitochondrial oxidative stress and increased mitochondrial function. Moreover, CREB signaling, a signaling pathway important for cognition was enhanced in both aged dTG mice and old TG mice. Thus, our results indicate that mitochondrial H2O2 is a key culprit of age-associated cognitive impairment, and that a reduction of mitochondrial H2O2 could improve cognition by maintaining mitochondrial health and enhancing CREB signaling.

  15. Cancer, Coping, and Cognition: A Model for the Role of Stress Reactivity in Cancer-Related Cognitive Decline

    PubMed Central

    Andreotti, Charissa; Root, James C.; Ahles, Tim A.; McEwen, Bruce S.; Compas, Bruce E.

    2014-01-01

    Cognitive decline and accompanying neurological changes associated with non-CNS cancer diagnosis and treatment have been increasingly identified in a subset of patients. Initially believed to be due to neurotoxic effects of chemotherapy exposure, observation of cognitive decline in patients not treated with chemotherapy, cancer-diagnosed individuals prior to treatment, and patients receiving alternative treatment modalities (surgery, endocrine therapy, radiation), has led to investigation of additional potential etiologies and moderating factors. Stressful experiences have long been posited as a contributor to these cognitive changes. Through reciprocal connectivity with peripheral systems, the brain maintains a dynamic circuitry to adapt to stress (allostasis). However, overuse of this system leads to dysregulation and contributes to pathophysiology (allostatic load). At this time, little research has been conducted to systematically examine the role of allostatic load in cancer-related cognitive dysfunction. Here we integrate theories of stress biology, neuropsychology, and coping and propose a model through which individuals with a high level of allostatic load at diagnosis may be particularly vulnerable to the neurocognitive effects of cancer. Opportunities for future research to test and extend proposed mechanisms are discussed in addition to points of prevention and intervention based on individual variation in stress reactivity and coping skills. PMID:25286084

  16. Adverse Vascular Risk is Related to Cognitive Decline in Older Adults

    PubMed Central

    Jefferson, Angela L.; Hohman, Timothy J.; Liu, Dandan; Haj-Hassan, Shereen; Gifford, Katherine A.; Benson, Elleena M.; Skinner, Jeannine S.; Lu, Zengqi; Sparling, Jamie; Sumner, Emily C.; Bell, Susan; Ruberg, Frederick L.

    2014-01-01

    Background Cardiovascular disease (CVD) and related risk factors are associated with Alzheimer’s disease (AD). This association is less well-defined in normal cognition (NC) or prodromal AD (mild cognitive impairment (MCI)). Objective Cross-sectionally and longitudinally relate a vascular risk index to cognitive outcomes among elders free of clinical dementia. Methods 3117 MCI (74±8 years, 56% female) and 6603 NC participants (72±8 years, 68% female) were drawn from the National Alzheimer’s Coordinating Center. A composite measure of vascular risk was defined using the Framingham Stroke Risk Profile (FSRP) score (i.e., age, systolic blood pressure, anti-hypertensive medication, diabetes, cigarette smoking, CVD history, atrial fibrillation). Ordinary linear regressions and generalized linear mixed models related baseline FSRP to cross-sectional and longitudinal cognitive outcomes, separately for NC and MCI, adjusting for age, sex, race, education, and follow-up time (in longitudinal models). Results In NC participants, increasing FSRP was related to worse baseline global cognition, information processing speed, and sequencing abilities (p-values<0.0001) and a worse longitudinal trajectory on all cognitive measures (p-values<0.0001). In MCI, increasing FSRP correlated with worse longitudinal delayed memory (p=0.004). In secondary models using an age-excluded FSRP score, associations persisted in NC participants for global cognition, naming, information processing speed, and sequencing abilities. Conclusions An adverse vascular risk profile is associated with worse cognitive trajectory, especially global cognition, naming, and information processing speed, among NC elders. Future studies are needed to understand how effective management of CVD and related risk factors can modify cognitive decline to identify the ideal timeframe for primary prevention implementation. PMID:25471188

  17. The recency ratio as an index of cognitive performance and decline in elderly individuals.

    PubMed

    Bruno, Davide; Reichert, Chelsea; Pomara, Nunzio

    2016-11-01

    Individuals with Alzheimer's disease have been found to present a typical serial position curve in immediate recall tests, showing poor primacy performance and exaggerated recency recall. However, the recency advantage is usually lost after a delay. On this basis, we examined whether the recency ratio (Rr), calculated by dividing recency performance in an immediate memory task by recency performance in a delayed task, was a useful risk marker of cognitive decline. We tested whether change in Mini-Mental State Examination (MMSE) performance between baseline and follow-up was predicted by baseline Rr and found this to be the case (N = 245). From these analyses, we conclude that participants with high Rr scores, who show disproportionate recency recall in the immediate test compared to the delayed test, present signs of being at risk for cognitive decline or dysfunction.

  18. Hyperamylinemia as a risk factor for accelerated cognitive decline in diabetes.

    PubMed

    Ly, Han; Despa, Florin

    2015-01-01

    Type II diabetes increases the risk for cognitive decline via multiple traits. Amylin is a pancreatic hormone that has amyloidogenic and cytotoxic properties similar to the amyloid-β peptide. The amylin hormone is overexpressed in individuals with pre-diabetic insulin resistance or obesity leading to amylin oligomerization and deposition in pancreatic islets. Amylin oligomerization was implicated in the apoptosis of the insulin-producing β-cells. Recent studies showed that brain tissue from diabetic patients with cerebrovascular dementia or Alzheimer's disease contains significant deposits of oligomerized amylin. It has also been reported that the brain amylin deposition reduced exploratory drive, recognition memory and vestibulomotor function in a rat model that overexpresses human amylin in the pancreas. These novel findings are reviewed here and the hypothesis that type II diabetes is linked with cognitive decline by amylin accumulation in the brain is proposed. Deciphering the impact of hyperamylinemia on the brain is critical for both etiology and treatment of dementia.

  19. The relationship between long-term sunlight radiation and cognitive decline in the REGARDS cohort study

    NASA Astrophysics Data System (ADS)

    Kent, Shia T.; Kabagambe, Edmond K.; Wadley, Virginia G.; Howard, Virginia J.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Judd, Suzanne E.; Peace, Fredrick; McClure, Leslie A.

    2014-04-01

    Sunlight may be related to cognitive function through vitamin D metabolism or circadian rhythm regulation. The analysis presented here sought to test whether ground and satellite measures of solar radiation are associated with cognitive decline. The study used a 15-year residential history merged with satellite and ground monitor data to determine sunlight (solar radiation) and air temperature exposure for a cohort of 19,896 cognitively intact black and white participants aged 45+ from the 48 contiguous United States. Exposures of 15, 10, 5, 2, and 1-year were used to predict cognitive status at the most recent assessment in logistic regression models; 1-year insolation and maximum temperatures were chosen as exposure measures. Solar radiation interacted with temperature, age, and gender in its relationships with incident cognitive impairment. After adjustment for covariates, the odds ratio (OR) of cognitive decline for solar radiation exposure below the median vs above the median in the 3rd tertile of maximum temperatures was 1.88 (95 % CI: 1.24, 2.85), that in the 2nd tertile was 1.33 (95 % CI: 1.09, 1.62), and that in the 1st tertile was 1.22 (95 % CI: 0.92, 1.60). We also found that participants under 60 years old had an OR = 1.63 (95 % CI: 1.20, 2.22), those 60-80 years old had an OR = 1.18 (95 % CI: 1.02, 1.36), and those over 80 years old had an OR = 1.05 (0.80, 1.37). Lastly, we found that males had an OR = 1.43 (95 % CI: 1.22, 1.69), and females had an OR = 1.02 (0.87, 1.20). We found that lower levels of solar radiation were associated with increased odds of incident cognitive impairment.

  20. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline

    PubMed Central

    Engedal, Thorbjørn S; Moreton, Fiona; Hansen, Mikkel B; Wardlaw, Joanna M; Dalkara, Turgay; Markus, Hugh S; Muir, Keith W

    2015-01-01

    Cerebral small vessel disease (SVD) gives rise to one in five strokes worldwide and constitutes a major source of cognitive decline in the elderly. SVD is known to occur in relation to hypertension, diabetes, smoking, radiation therapy and in a range of inherited and genetic disorders, autoimmune disorders, connective tissue disorders, and infections. Until recently, changes in capillary patency and blood viscosity have received little attention in the aetiopathogenesis of SVD and the high risk of subsequent stroke and cognitive decline. Capillary flow patterns were, however, recently shown to limit the extraction efficacy of oxygen in tissue and capillary dysfunction therefore proposed as a source of stroke-like symptoms and neurodegeneration, even in the absence of physical flow-limiting vascular pathology. In this review, we examine whether capillary flow disturbances may be a shared feature of conditions that represent risk factors for SVD. We then discuss aspects of capillary dysfunction that could be prevented or alleviated and therefore might be of general benefit to patients at risk of SVD, stroke or cognitive decline. PMID:26661176

  1. Early-Stage White Matter Lesions Detected by Multispectral MRI Segmentation Predict Progressive Cognitive Decline

    PubMed Central

    Jokinen, Hanna; Gonçalves, Nicolau; Vigário, Ricardo; Lipsanen, Jari; Fazekas, Franz; Schmidt, Reinhold; Barkhof, Frederik; Madureira, Sofia; Verdelho, Ana; Inzitari, Domenico; Pantoni, Leonardo; Erkinjuntti, Timo

    2015-01-01

    White matter lesions (WML) are the main brain imaging surrogate of cerebral small-vessel disease. A new MRI tissue segmentation method, based on a discriminative clustering approach without explicit model-based added prior, detects partial WML volumes, likely representing very early-stage changes in normal-appearing brain tissue. This study investigated how the different stages of WML, from a “pre-visible” stage to fully developed lesions, predict future cognitive decline. MRI scans of 78 subjects, aged 65–84 years, from the Leukoaraiosis and Disability (LADIS) study were analyzed using a self-supervised multispectral segmentation algorithm to identify tissue types and partial WML volumes. Each lesion voxel was classified as having a small (33%), intermediate (66%), or high (100%) proportion of lesion tissue. The subjects were evaluated with detailed clinical and neuropsychological assessments at baseline and at three annual follow-up visits. We found that voxels with small partial WML predicted lower executive function compound scores at baseline, and steeper decline of executive scores in follow-up, independently of the demographics and the conventionally estimated hyperintensity volume on fluid-attenuated inversion recovery images. The intermediate and fully developed lesions were related to impairments in multiple cognitive domains including executive functions, processing speed, memory, and global cognitive function. In conclusion, early-stage partial WML, still too faint to be clearly detectable on conventional MRI, already predict executive dysfunction and progressive cognitive decline regardless of the conventionally evaluated WML load. These findings advance early recognition of small vessel disease and incipient vascular cognitive impairment. PMID:26696814

  2. Impaired Olfaction and Risk for Delirium or Cognitive Decline After Cardiac Surgery

    PubMed Central

    Brown, Charles H.; Morrissey, Candice; Ono, Masahiro; Yenokyan, Gayane; Selnes, Ola A.; Walston, Jeremy; Max, Laura; LaFlam, Andrew; Neufeld, Karin; Gottesman, Rebecca F.; Hogue, Charles W.

    2014-01-01

    Summary Statement Impaired olfaction, identified in 33% of patients undergoing cardiac surgery, was associated with the adjusted risk for postoperative delirium but not cognitive decline. Objectives The prevalence and significance of impaired olfaction is not well characterized in patients undergoing cardiac surgery. Because impaired olfaction has been associated with underlying neurologic disease, impaired olfaction may identify patients who are vulnerable to poor neurological outcomes in the perioperative period. The objective of this study was to determine the prevalence of impaired olfaction among patients presenting for cardiac surgery and the independent association of impaired olfaction with postoperative delirium and cognitive decline. Design Nested prospective cohort study Setting Academic hospital Participants 165 patients undergoing coronary artery bypass and/or valve surgery Measurements Olfaction was measured using the Brief Smell Identification Test, with impaired olfaction defined as an olfactory score < 5th percentile of normative data. Delirium was assessed using a validated chart-review method. Cognitive performance was assessed using a neuropsychological testing battery at baseline and 4–6 weeks after surgery. Results Impaired olfaction was identified in 54 of 165 patients (33%) prior to surgery. Impaired olfaction was associated with increased adjusted risk for postoperative delirium (relative risk [RR] 1.90, 95% CI 1.17–3.09; P=0.009). There was no association between impaired olfaction and change in composite cognitive score in the overall study population. Conclusion Impaired olfaction is prevalent in patients undergoing cardiac surgery and is associated with increased adjusted risk for postoperative delirium, but not cognitive decline. Impaired olfaction may identify unrecognized vulnerability for postoperative delirium among patients undergoing cardiac surgery. PMID:25597555

  3. Early-Stage White Matter Lesions Detected by Multispectral MRI Segmentation Predict Progressive Cognitive Decline.

    PubMed

    Jokinen, Hanna; Gonçalves, Nicolau; Vigário, Ricardo; Lipsanen, Jari; Fazekas, Franz; Schmidt, Reinhold; Barkhof, Frederik; Madureira, Sofia; Verdelho, Ana; Inzitari, Domenico; Pantoni, Leonardo; Erkinjuntti, Timo

    2015-01-01

    White matter lesions (WML) are the main brain imaging surrogate of cerebral small-vessel disease. A new MRI tissue segmentation method, based on a discriminative clustering approach without explicit model-based added prior, detects partial WML volumes, likely representing very early-stage changes in normal-appearing brain tissue. This study investigated how the different stages of WML, from a "pre-visible" stage to fully developed lesions, predict future cognitive decline. MRI scans of 78 subjects, aged 65-84 years, from the Leukoaraiosis and Disability (LADIS) study were analyzed using a self-supervised multispectral segmentation algorithm to identify tissue types and partial WML volumes. Each lesion voxel was classified as having a small (33%), intermediate (66%), or high (100%) proportion of lesion tissue. The subjects were evaluated with detailed clinical and neuropsychological assessments at baseline and at three annual follow-up visits. We found that voxels with small partial WML predicted lower executive function compound scores at baseline, and steeper decline of executive scores in follow-up, independently of the demographics and the conventionally estimated hyperintensity volume on fluid-attenuated inversion recovery images. The intermediate and fully developed lesions were related to impairments in multiple cognitive domains including executive functions, processing speed, memory, and global cognitive function. In conclusion, early-stage partial WML, still too faint to be clearly detectable on conventional MRI, already predict executive dysfunction and progressive cognitive decline regardless of the conventionally evaluated WML load. These findings advance early recognition of small vessel disease and incipient vascular cognitive impairment. PMID:26696814

  4. Faster Rate of Cognitive Decline in Essential Tremor Cases than Controls: A Prospective Study

    PubMed Central

    Louis, Elan D.; Benito-León, Julián; Vega-Quiroga, Saturio; Bermejo-Pareja, Félix

    2010-01-01

    Background Mild cognitive deficits have been reported in essential tremor (ET); however, these cognitive deficits have been assessed in cross-sectional rather than longitudinal analyses. Objective To determine whether decline in cognitive test scores occurs at a faster rate in ET cases than controls. Methods In a population-based study of older people (≥65 years) in central Spain (Neurological Disorders in Central Spain, NEDICES), non-demented ET cases and controls were followed prospectively. Participants with baseline or incident Parkinson’s disease or dementia were excluded, as were participants who developed incident ET. At baseline (1994–1995) and at follow-up (1997–1998), a 37-item version of the Mini-Mental State Examination (37-MMSE) was administered. Results 2,319 participants (72.4 ± 5.8 years) included 135 prevalent ET cases and 2,184 controls. At baseline, the mean 37-MMSE in cases was 28.8 ± 5.8 vs. 30.2 ± 4.8 in controls (p = 0.02). During the three year follow-up period, the 37-MMSE declined by 0.70 ± 3.2 points in cases vs. 0.11 ± 3.8 points in controls (p = 0.03). In analyses that adjusted for age, education and other potential confounders, the case-control difference remained robust. Discussion In this population-based, prospective study of non-demented elders, baseline cognitive test scores were lower in ET cases than controls; moreover, during the three-year follow-up period, these scores declined at a rate that was seven-times faster in ET cases. This study provides evidence that cognitive deficits in ET are not static and they appear to be progressing at a faster rate than in elders without this disease. PMID:20561042

  5. Relationship between Inflammation and Oxidative Stress and Cognitive Decline in the Institutionalized Elderly

    PubMed Central

    Baierle, Marília; Nascimento, Sabrina N.; Moro, Angela M.; Brucker, Natália; Freitas, Fernando; Gauer, Bruna; Durgante, Juliano; Bordignon, Suelen; Zibetti, Murilo; Trentini, Clarissa M.; Duarte, Marta M. M. F.; Grune, Tilman; Breusing, Nicolle; Garcia, Solange C.

    2015-01-01

    Objective. Cognitive impairment reduces quality of life and is related to vascular and neurodegenerative disorders. However, there is also a close relationship between these diseases and oxidative stress. Thus, the purpose of this study was to assess whether inflammation and oxidative damage are associated with low cognitive performance in the elderly with different housing conditions. Methods. The study groups consisted of 32 institutionalized and 25 noninstitutionalized Brazilian elderly subjects. Oxidative damage, inflammation markers, and cognitive function were evaluated. Results. The results demonstrated pronounced oxidative stress in the institutionalized elderly group, which also had a lower antioxidant status compared to noninstitutionalized subjects. High levels of proinflammatory cytokines were also observed in the institutionalized elderly. Furthermore, the raised levels of inflammatory markers were correlated with increased oxidative stress, and both were associated with low cognitive performance. However, based on multiple linear regression analysis, oxidative stress appears to be the main factor responsible for the cognitive decline. Conclusions. The findings suggest that individuals with lower antioxidant status are more vulnerable to oxidative stress, which is associated with cognitive function, leading to reduced life quality and expectancy. PMID:25874023

  6. Inside the Diabetic Brain: Role of Different Players Involved in Cognitive Decline.

    PubMed

    Gaspar, Joana M; Baptista, Filipa I; Macedo, M Paula; Ambrósio, António F

    2016-02-17

    Diabetes mellitus is the most common metabolic disease, and its prevalence is increasing. A growing body of evidence, both in animal models and epidemiological studies, has demonstrated that metabolic diseases like obesity, insulin resistance, and diabetes are associated with alterations in the central nervous system (CNS), being linked with development of cognitive and memory impairments and presenting a higher risk for dementia and Alzheimer's disease. The rising prevalence of diabetes together with its increasing earlier onset suggests that diabetes-related cognitive dysfunction will increase in the near future, causing substantial socioeconomic impact. Decreased insulin secretion or action, dysregulation of glucose homeostasis, impairment in the hypothalamic-pituitary-adrenal axis, obesity, hyperleptinemia, and inflammation may act independently or synergistically to disrupt neuronal homeostasis and cause diabetes-associated cognitive decline. However, the crosstalk between those factors and the mechanisms underlying the diabetes-related CNS complications is still elusive. During the past few years, different strategies (neuroprotective and antioxidant drugs) have emerged as promising therapies for this complication, which still remains to be preventable or treatable. This Review summarizes fundamental past and ongoing research on diabetes-associated cognitive decline, highlighting potential contributors, mechanistic mediators, and new pharmacological approaches to prevent and/or delay this complication. PMID:26667832

  7. Sleep disturbances and cognitive decline: recommendations on clinical assessment and the management.

    PubMed

    Guarnieri, Biancamaria; Cerroni, Gianluigi; Sorbi, Sandro

    2015-01-01

    In 2004, in Genoa (Italy), the Italian Dementia Research Association (SINDem) was born. The first congress of this new scientific society took place in Rome in 2006. SINDem soon recognized the importance to investigate sleep problems in cognitive decline and created a national "sleep study group "composed by neurologists and sleep specialists. In 2012, The SINDem study group, in close relationship with the Italian Association of sleep medicine (AIMS), published the study "Prevalence of sleep disturbances in mild cognitive impairment and dementing disorders: a multicenter Italian clinical cross-sectional study on 431 patients ", confirming the high prevalence of sleep disturbances in a wide Italian population of persons with cognitive decline. The study was supported by a grant from the Italian Minister of Health and was conducted with the fundamental contribution of the Italian National Research Center (CNR). In 2014, the same group published the paper "Recommendations of the Sleep Study Group of the Italian Dementia Research Association (SINDem) on clinical assessment and management of sleep disorders in individuals with mild cognitive impairment and dementia: a clinical review". The recommendations are wide and directed to professionals (neurologists but not exclusively) to try to establish uniform levels of care, promote collaborative studies into areas of uncertainty, and define the qualitative characteristics of Dementia Reference Centers about sleep disturbances. PMID:26742676

  8. Senescent-induced dysregulation of cAMP/CREB signaling and correlations with cognitive decline

    PubMed Central

    Hansen, Rolf T.; Zhang, Han-Ting

    2013-01-01

    It is well known that alongside senescence there is a gradual decline in cognitive ability, most noticeably certain kinds of memory such as working, episodic, spatial, and long term memory. However, until recently, not much has been known regarding the specific mechanisms responsible for the decline in cognitive ability with age. Over the past decades, researchers have become more interested in cAMP signaling, and its downstream transcription factor cAMP response element binding protein (CREB) in the context of senescence. However, there is still a lack of understanding on what ultimately causes the cognitive deficits observed with senescence. This review will focus on the changes in intracellular signaling in the brain, more specifically, alterations in cAMP/CREB signaling in aging. In addition, the downstream effects of altered cAMP signaling on cognitive ability with age will be further discussed. Overall, understanding the senescent-related changes that occur in cAMP/CREB signaling could be important for the development of novel drug targets for both healthy aging, and pathological aging such as Alzheimer's disease. PMID:23623816

  9. Daily stress magnifies the association between cognitive decline and everyday memory problems: an integration of longitudinal and diary methods.

    PubMed

    Rickenbach, Elizabeth Hahn; Almeida, David M; Seeman, Teresa E; Lachman, Margie E

    2014-12-01

    We examined whether long-term fluid cognitive decline was associated with memory problems in everyday life, and whether stress plays a moderating role. We expected that the association between cognitive decline and everyday memory problems would be magnified in the context of self-reported and physiological stress. Data are from the Boston Longitudinal Study, a subsample of the Midlife in the United States study. Participants in the current study (n = 112) completed a battery of tests measuring fluid cognitive functioning at Time 1 (T1) and 2 (T2) over 10 years. At T2, participants completed weekly diaries of self-reported daily stressors and everyday memory problems for 12 consecutive weeks. Also at T2, participants provided 4 saliva samples over the course of 1 day to assess physiological stress using diurnal cortisol profiles [cortisol awakening response (CAR) and diurnal cortisol slope (DCS)]. Self-reported daily stressors and a less healthy DCS were associated with more everyday memory problems, and participants with greater cognitive decline reported more memory problems compared to those with less or no decline. Self-reported daily stressors and CAR moderated the relationship of cognitive decline and memory problems. As expected, more cognitive decline was associated with greater increases in memory problems on weeks when individuals reported more daily stressors and for individuals with a less healthy CAR. The current findings can inform interventions aimed to identify factors, such as daily stress, that contribute to daily functioning in the context of cognitive decline.

  10. Prospective memory on a novel clinical task in older adults with mild cognitive impairment and subjective cognitive decline

    PubMed Central

    Rabin, Laura A.; Chi, Susan Y.; Wang, Cuiling; Fogel, Joshua; Kann, Sarah J.; Aronov, Avner

    2014-01-01

    Despite the relevance of prospective memory to everyday functioning and the ability to live independently, prospective memory tasks are rarely incorporated into clinical evaluations of older adults. We investigated the validity and clinical utility of a recently developed measure, the Royal Prince Alfred Prospective Memory Test (RPA-ProMem), in a demographically diverse, non-demented, community-dwelling sample of 257 older adults (mean age = 80.78 years, 67.7% female) with amnestic mild cognitive impairment (aMCI, n = 18), non-amestic mild cognitive impairment (naMCI, n = 38), subjective cognitive decline (SCD, n = 83) despite intact performance on traditional episodic memory tests, and healthy controls (HC, n = 118). Those with aMCI and naMCI performed significantly worse than controls on the RPA-ProMem and its subtasks (time-based, event-based, short-term, long-term). Also, those with SCD scored significantly lower than controls on long-term, more naturalistic subtasks. Additional results supported the validity and inter-rater reliability of the RPA-ProMem and demonstrated a relation between test scores and informant reports of real-world functioning. The RPA-ProMem may help detect subtle cognitive changes manifested by individuals in the earliest stages of dementia, which may be difficult to capture with traditional episodic memory tests. Also, assessment of prospective memory can help guide the development of cognitive interventions for older adults at risk for dementia. PMID:24875614

  11. Empirically Defining Trajectories of Late-Life Cognitive and Functional Decline

    PubMed Central

    Hochstetler, Helen; Trzepacz, Paula T.; Wang, Shufang; Yu, Peng; Case, Michael; Henley, David B.; Degenhardt, Elisabeth; Leoutsakos, Jeannie-Marie; Lyketsos, Constantine G.

    2015-01-01

    Background: Alzheimer’s disease (AD) is associated with variable cognitive and functional decline, and it is difficult to predict who will develop the disease and how they will progress. Objective: This exploratory study aimed to define latent classes from participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database who had similar growth patterns of both cognitive and functional change using Growth Mixture Modeling (GMM), identify characteristics associated with those trajectories, and develop a decision tree using clinical predictors to determine which trajectory, as determined by GMM, individuals will most likely follow. Methods: We used ADNI early mild cognitive impairment (EMCI), late MCI (LMCI), AD dementia, and healthy control (HC) participants with known amyloid-β status and follow-up assessments on the Alzheimer’s Disease Assessment Scale - Cognitive Subscale or the Functional Activities Questionnaire (FAQ) up to 24 months postbaseline. GMM defined trajectories. Classification and Regression Tree (CART) used certain baseline variables to predict likely trajectory path. Results: GMM identified three trajectory classes (C): C1 (n = 162, 13.6%) highest baseline impairment and steepest pattern of cognitive/functional decline; C3 (n = 819, 68.7%) lowest baseline impairment and minimal change on both; C2 (n = 211, 17.7%) intermediate pattern, worsening on both, but less steep than C1. C3 had fewer amyloid- or apolipoprotein-E ɛ4 (APOE4) positive and more healthy controls (HC) or EMCI cases. CART analysis identified two decision nodes using the FAQ to predict likely class with 82.3% estimated accuracy. Conclusions: Cognitive/functional change followed three trajectories with greater baseline impairment and amyloid and APOE4 positivity associated with greater progression. FAQ may predict trajectory class. PMID:26639960

  12. Chronical sleep interruption-induced cognitive decline assessed by a metabolomics method.

    PubMed

    Feng, Li; Wu, Hong-wei; Song, Guang-qing; Lu, Cong; Li, Ying-hui; Qu, Li-na; Chen, Shan-guang; Liu, Xin-min; Chang, Qi

    2016-04-01

    Good sleep is necessary for optimal health, especially for mental health. Insomnia, sleep deprivation will make your ability to learn and memory impaired. Nevertheless, the underlying pathophysiological mechanism of sleep disorders-induced cognitive decline is still largely unknown. In this study, the sleep deprivation of animal model was induced by chronical sleep interruption (CSI), the behavioral tests, biochemical index determinations, and a liquid chromatography-mass spectrometry (LC-MS) based serum metabolic profiling analysis were performed to explore the effects of CSI on cognitive function and the underlying mechanisms. After 14-days CSI, the cognitive function of the mice was evaluated by new objects preference (NOP) task and temporal order judgment (TOJ) task. Serum corticosterone (CORT), and brain Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Catalase (CAT) levels were determined by ELISA kits. Data were analyzed by Principal Component Analysis (PCA), Partial Least Squares project to latent structures-Discriminant Analysis (PLS-DA), and Student's t-test. We found that the cognitive function of the mice was significantly affected by CSI. Besides, levels of CORT and MDA were higher, and SOD and CAT were lower in CSI mice than those of control. Obvious body weight loss of CSI mice was also observed. Thirteen potential serum biomarkers including choline, valine, uric acid, allantoic acid, carnitines, and retinoids were identified. Affected metabolic pathways involve metabolism of purine, retinoid, lipids, and amino acid. These results showed that CSI can damage the cognitive performance notably. The cognitive decline may ascribe to excessive oxidative stress and a series of disturbed metabolic pathways. PMID:26747207

  13. Monocyte Phenotype and Polyfunctionality Are Associated With Elevated Soluble Inflammatory Markers, Cytomegalovirus Infection, and Functional and Cognitive Decline in Elderly Adults.

    PubMed

    de Pablo-Bernal, Rebeca Sara; Cañizares, Julio; Rosado, Isaac; Galvá, María Isabel; Alvarez-Ríos, Ana Isabel; Carrillo-Vico, Antonio; Ferrando-Martínez, Sara; Muñoz-Fernández, María Ángeles; Rafii-El-Idrissi Benhnia, Mohammed; Pacheco, Yolanda María; Ramos, Raquel; Leal, Manuel; Ruiz-Mateos, Ezequiel

    2016-05-01

    Monocytes are mediators of the inflammatory response and include three subsets: classical, intermediate, and nonclassical. Little is known about the phenotypical and functional age-related changes in monocytes and their association with soluble inflammatory biomarkers, cytomegalovirus infection, and functional and mental decline. We assayed the activation ex vivo and the responsiveness to TLR2 and TLR4 agonists in vitro in the three subsets and assessed the intracellular production of IL1-alpha (α), IL1-beta (β), IL-6, IL-8, TNF-α, and IL-10 of elderly adults (median 83 [67-90] years old;n= 20) compared with young controls (median 35 [27-40] years old;n= 20). Ex vivo, the elderly adults showed a higher percentage of classical monocytes that expressed intracellular IL1-α (p= .001), IL1-β (p= .001), IL-6 (p= .002), and IL-8 (p= .007). Similar results were obtained both for the intermediate and nonclassical subsets and in vitro. Polyfunctionality was higher in the elderly adults. The functionality ex vivo was strongly associated with soluble inflammatory markers. The activation phenotype was independently associated with the anti-cytomegalovirus IgG levels and with functional and cognitive decline. These data demonstrate that monocytes are key cell candidates for the source of the high soluble inflammatory levels. Our findings suggest that cytomegalovirus infection might be a driving force in the activation of monocytes and is associated with the functional and cognitive decline. PMID:26286603

  14. Monocyte Phenotype and Polyfunctionality Are Associated With Elevated Soluble Inflammatory Markers, Cytomegalovirus Infection, and Functional and Cognitive Decline in Elderly Adults.

    PubMed

    de Pablo-Bernal, Rebeca Sara; Cañizares, Julio; Rosado, Isaac; Galvá, María Isabel; Alvarez-Ríos, Ana Isabel; Carrillo-Vico, Antonio; Ferrando-Martínez, Sara; Muñoz-Fernández, María Ángeles; Rafii-El-Idrissi Benhnia, Mohammed; Pacheco, Yolanda María; Ramos, Raquel; Leal, Manuel; Ruiz-Mateos, Ezequiel

    2016-05-01

    Monocytes are mediators of the inflammatory response and include three subsets: classical, intermediate, and nonclassical. Little is known about the phenotypical and functional age-related changes in monocytes and their association with soluble inflammatory biomarkers, cytomegalovirus infection, and functional and mental decline. We assayed the activation ex vivo and the responsiveness to TLR2 and TLR4 agonists in vitro in the three subsets and assessed the intracellular production of IL1-alpha (α), IL1-beta (β), IL-6, IL-8, TNF-α, and IL-10 of elderly adults (median 83 [67-90] years old;n= 20) compared with young controls (median 35 [27-40] years old;n= 20). Ex vivo, the elderly adults showed a higher percentage of classical monocytes that expressed intracellular IL1-α (p= .001), IL1-β (p= .001), IL-6 (p= .002), and IL-8 (p= .007). Similar results were obtained both for the intermediate and nonclassical subsets and in vitro. Polyfunctionality was higher in the elderly adults. The functionality ex vivo was strongly associated with soluble inflammatory markers. The activation phenotype was independently associated with the anti-cytomegalovirus IgG levels and with functional and cognitive decline. These data demonstrate that monocytes are key cell candidates for the source of the high soluble inflammatory levels. Our findings suggest that cytomegalovirus infection might be a driving force in the activation of monocytes and is associated with the functional and cognitive decline.

  15. Cognitive decline in short and long sleepers: A prospective population-based study (NEDICES)

    PubMed Central

    Benito-León, Julián; Louis, Elan D.; Bermejo-Pareja, Félix

    2013-01-01

    Background It is not clear whether cognitive decline progresses more quickly in long sleepers than in short sleepers or than in participants with usual sleep duration. We assessed cognitive decline as a function of self-reported sleep duration in a prospective population-based cohort (NEDICES). Methods Participants were evaluated at baseline and 3 years later. Baseline demographic variables were recorded and participants indicated their daily sleep usual duration as the sum of nighttime sleep and daytime napping. The average daily total usual sleep duration was grouped into three categories: ≤5 hours (short sleepers), 6 to 8 hours (reference category), and ≥9 hours (long sleepers). At baseline and at follow-up, a 37-item version of the Mini-Mental State Examination (37-MMSE) was administered. Results The final sample, 2,715 participants (72.9±6.1 years), comprised 298 (11%) short sleepers, 1,086 (40%) long sleepers, and 1,331 (49%) in the reference group (6 to 8 hours). During the three year follow-up period, the 37-MMSE declined by 0.5±4.0 points in short sleepers, 0.6±4.3 points in long sleepers, and 0.2±3.8 points in the reference group (p=0.08). The difference between short sleepers and the reference group was not significant (p=0.142); however, the difference between long sleepers and the reference group was significant (p=0.040). In analyses adjusted for baseline age and other potential confounders, this difference remained robust. Conclusions In this study, cognitive test scores among long sleepers declined more rapidly than observed in a reference group. Additional studies are needed to confirm these results. PMID:24094933

  16. A randomized placebo-controlled trial of Ginkgo biloba for the prevention of cognitive decline

    PubMed Central

    Zitzelberger, T.; Oken, B.S.; Howieson, D.; Kaye, J.

    2009-01-01

    Objective To assess the feasibility, safety, and efficacy of Ginkgo biloba extract (GBE) on delaying the progression to cognitive impairment in normal elderly aged 85 and older. Methods Randomized, placebo-controlled, double-blind, 42-month pilot study with 118 cognitively intact subjects randomized to standardized GBE or placebo. Kaplan-Meier estimation, Cox proportional hazard, and random-effects models were used to compare the risk of progression from Clinical Dementia Rating (CDR) = 0 to CDR = 0.5 and decline in episodic memory function between GBE and placebo groups. Results In the intention-to-treat analysis, there was no reduced risk of progression to CDR = 0.5 (log-rank test, p = 0.06) among the GBE group. There was no less of a decline in memory function among the GBE group (p = 0.05). In the secondary analysis, where we controlled the medication adherence level, the GBE group had a lower risk of progression from CDR = 0 to CDR = 0.5 (HR = 0.33, p = 0.02), and a smaller decline in memory scores (p = 0.04). There were more ischemic strokes and TIAs in the GBE group (p = 0.01). Conclusions In unadjusted analyses, Ginkgo biloba extract (GBE) neither altered the risk of progression from normal to Clinical Dementia Rating (CDR) = 0.5, nor protected against a decline in memory function. Secondary analysis taking into account medication adherence showed a protective effect of GBE on the progression to CDR = 0.5 and memory decline. Results of larger prevention trials taking into account medication adherence may clarify the effectiveness of GBE. More stroke and TIA cases observed among the GBE group requires further study to confirm. PMID:18305231

  17. Computerized assessment of communication for cognitive stimulation for people with cognitive decline using spectral-distortion measures and phylogenetic inference.

    PubMed

    Pham, Tuan D; Oyama-Higa, Mayumi; Truong, Cong-Thang; Okamoto, Kazushi; Futaba, Terufumi; Kanemoto, Shigeru; Sugiyama, Masahide; Lampe, Lisa

    2015-01-01

    Therapeutic communication and interpersonal relationships in care homes can help people to improve their mental wellbeing. Assessment of the efficacy of these dynamic and complex processes are necessary for psychosocial planning and management. This paper presents a pilot application of photoplethysmography in synchronized physiological measurements of communications between the care-giver and people with dementia. Signal-based evaluations of the therapy can be carried out using the measures of spectral distortion and the inference of phylogenetic trees. The proposed computational models can be of assistance and cost-effectiveness in caring for and monitoring people with cognitive decline. PMID:25803586

  18. Self-serving appraisal as a cognitive coping strategy to deal with age-related limitations: an empirical study with elderly adults in a real-life stressful situation.

    PubMed

    De Raedt, Rudi; Ponjaert-Kristoffersen, I

    2006-03-01

    Elderly people are often confronted with stressful events that threaten psychological homeostasis. Nevertheless, the lack of a general age-related drop in life satisfaction remains intriguing. The objective of this study was to analyze the basic mechanisms of perceived control and self-protective processes. Eighty-four elderly adults who underwent a fitness-to-drive evaluation were asked how they appraised their performance in a driving simulation task and were classified as over-estimators versus people who estimated their performance correctly and people who didn't overestimate their performance. Decreased physical resources were related to self-serving appraisal and less depressive feelings. The results are in line with theories on self-immunizing processes and provide support for the use of cognitive therapies in dealing with age-related limitations.

  19. Relation between acute and long-term cognitive decline after surgery: Influence of metabolic syndrome☆

    PubMed Central

    Gambús, P.L; Trocóniz, I.F.; Feng, X.; Gimenez-Milá, M.; Mellado, R.; Degos, V.; Vacas, S.; Maze, M.

    2015-01-01

    Introduction The relationship between persistent postoperative cognitive decline and the more common acute variety remains unknown; using data acquired in preclinical studies of postoperative cognitive decline we attempted to characterize this relationship. Methods Low capacity runner (LCR) rats, which have all the features of the metabolic syndrome, were compared postoperatively with high capacity runner (HCR) rats for memory, assessed by trace fear conditioning (TFC) on the 7th postoperative day, and learning and memory (probe trial [PT]) assessed by the Morris water-maze (MWM) at three months postoperatively. Rate of learning (AL) data from the MWM test, were estimated by non-linear mixed effects modeling. The individual rat's TFC result at postoperative day (POD) 7 was correlated with its AL and PT from the MWM data sets at postoperative day POD 90. Results A single exponential decay model best described AL in the MWM with LCR and surgery (LCR–SURG) being the only significant covariates; first order AL rate constant was 0.07 s−1 in LCR–SURG and 0.16 s−1 in the remaining groups (p<0.05). TFC was significantly correlated with both AL (R = 0.74; p < 0.0001) and PT (R = 0.49; p < 0.01). Conclusion Severity of memory decline at 1 week after surgery presaged long-lasting deteriorations in learning and memory. PMID:26164200

  20. Does a physically active lifestyle attenuate decline in all cognitive functions in old age?

    PubMed

    Ballesteros, Soledad; Mayas, Julia; Reales, Jose Manuel

    2013-07-01

    In this study, the performance of a group of 20 physically active older adults was compared with that of a group of 20 sedentary healthy older adults while performing a series of cognitive tasks. These tasks were designed to assess processes that deteriorate most with age, namely executive control (assessed with the Wisconsin Card Sorting Task) and processing speed (simple and choice reaction time tasks). A repetition priming task that does not decline with age, involving attended and unattended picture outlines at encoding, was also included as a control task. The results show that a physically active lifestyle has a positive influence on executive control, processing speed, and controlled processing. As expected, a physically active lifestyle did not enhance repetition priming for attended stimuli, nor did it produce priming for unattended stimuli at encoding. Both groups exhibited robust priming for attended stimuli and no priming for unattended ones. Executive control functions are of vital importance for independent living in old age. These results have practical implications for enhancing the cognitive processes that decline most in old age. Promoting a physically active lifestyle throughout adulthood could significantly reduce the decline of effortful executive control functions in old age.

  1. Biochemical and neuroimaging studies in subjective cognitive decline: progress and perspectives.

    PubMed

    Sun, Yu; Yang, Fu-Chi; Lin, Ching-Po; Han, Ying

    2015-10-01

    Neurodegeneration due to Alzheimer's disease (AD) can progress over decades before dementia becomes apparent. Indeed, patients with mild cognitive impairment (MCI) already demonstrate significant lesion loads. In most cases, MCI is preceded by subjective cognitive decline (SCD), which is applied to individuals who have self-reported memory-related complaints and has been associated with a higher risk of future cognitive decline and conversion to dementia. Based on the schema of a well-received model of biomarker dynamics in AD pathogenesis, it has been postulated that SCD symptoms may result from compensatory changes in response to β-amyloid accumulation and neurodegeneration. Although SCD is considered a prodromal stage of MCI, it is also a common manifestation in old age, independent of AD, and the predictive value of SCD for AD pathology remains controversial. Here, we provide a review focused on the contributions of cross-sectional and longitudinal analogical studies of biomarkers and neuroimaging evidence in disentangling under what conditions SCD may be attributable to AD pathology. In conclusion, there is promising evidence indicating that clinicians should be able to differentiate pre-AD SCD based on the presence of pathophysiological biomarkers in cerebrospinal fluid (CSF) and neuroimaging. However, this neuroimaging approach is still at an immature stage without an established rubric of standards. A substantial amount of work remains in terms of replicating recent findings and validating the clinical utility of identifying SCD.

  2. Faster cognitive decline in the years prior to MR imaging is associated with smaller hippocampal volumes in cognitively healthy older persons

    PubMed Central

    Fleischman, Debra A.; Yu, Lei; Arfanakis, Konstantinos; Han, S. Duke; Barnes, Lisa L.; Arvanitakis, Zoe; Boyle, Patricia A.; Bennett, David A.

    2013-01-01

    Early identification of persons at risk for cognitive decline in aging is critical to optimizing treatment to delay or avoid a clinical diagnosis of mild cognitive impairment (MCI) or dementia due to Alzheimer's disease (AD). To accomplish early identification, it is essential that trajectories of cognitive change be characterized and associations with established biomarkers of MCI and AD be examined during the phase in which older persons are considered cognitively healthy. Here we examined the association of rate of cognitive decline in the years leading up to structural magnetic resonance imaging with an established biomarker, hippocampal volume. The sample comprised 211 participants of the Rush Memory and Aging Project who had an average of 5.5 years of cognitive data prior to structural scanning. Results showed that there was significant variability in the trajectories of cognitive change prior to imaging and that faster cognitive decline was associated with smaller hippocampal volumes. Domain-specific analyses suggested that this association was primarily driven by decline in working memory. The results emphasize the importance of closely examining cognitive change and its association with brain structure during the years in which older persons are considered cognitively healthy. PMID:23760360

  3. Compensatory mechanisms in higher-educated subjects with Alzheimer's disease: a study of 20 years of cognitive decline.

    PubMed

    Amieva, Hélène; Mokri, Hind; Le Goff, Mélanie; Meillon, Céline; Jacqmin-Gadda, Hélène; Foubert-Samier, Alexandra; Orgogozo, Jean-Marc; Stern, Yaakov; Dartigues, Jean-François

    2014-04-01

    A better knowledge of long-term trajectories of cognitive decline is a central feature of the study of the process leading to Alzheimer's dementia. Several factors may mitigate such decline, among which is education, a major risk factor for Alzheimer's disease. The aim of our work was to compare the pattern and duration of clinical trajectories before Alzheimer's dementia in individuals with low and high education within the PAQUID cohort involving 20 years of follow-up. The sample comprises 442 participants with incident Alzheimer's disease (27.2% were male)--171 with low education (mean age=86.2 years; standard deviation=5.3 years) and 271 with higher education (mean age=86.5; standard deviation=5.4)--and 442 control subjects matched according to age, sex and education. At each visit and up to the 20-year follow-up visit, several cognitive and clinical measures were collected and incident cases of Alzheimer's disease clinically diagnosed. The evolution of clinical measures in pre-demented subjects and matched controls was analysed with a semi-parametric extension of the mixed effects linear model. The results show that the first signs of cognitive decline occurred 15 to 16 years before achieving dementia threshold in higher-educated subjects whereas signs occurred at 7 years before dementia in low-educated subjects. There seemed to be two successive periods of decline in higher-educated subjects. Decline started ∼15 to 16 years before dementia with subtle impairment restricted to some cognitive tests and with no impact during the first 7 to 8 years on global cognition, cognitive complaints, or activities of daily living scales. Then, ∼7 years before dementia, global cognitive abilities begin to deteriorate, along with difficulties dealing with complex activities of daily living, the increase in self-perceived difficulties and depressive symptoms. By contrast, lower-educated subjects presented a single period of decline lasting ∼7 years, characterized by

  4. The Association of Age With Rate of Cognitive Decline in Elderly Individuals Residing in Supporting Care Facilities

    PubMed Central

    Ravona-Springer, Ramit; Luo, Xiaodong; Schmeidler, James; Wysocki, Michael; Lesser, Gerson T.; Rapp, Michael A.; Dahlman, Karen; Grossman, Hillel T.; Haroutunian, Vahram; Beeri, Michal Schnaider

    2012-01-01

    Objectives This study examines the effect of age on rate of cognitive decline in different stages of dementia, of nursing home and assisted-living residents. Methods In this longitudinal study, the Mini Mental State Examination (MMSE) was used to measure rate of cognitive decline in subjects who were nondemented [Clinical Dementia Rating (CDR)=0; n=353], questionably demented (CDR=0.5; n=121), or frankly demented (CDR≥1; n=213) at baseline. Results A generalized estimating equation was used to model the MMSE scores over time (mean follow-up 2.9±2.0 y). The generalized estimating equation model had the MMSE scores at successive follow-up time points as dependent variables and had linear and quadratic age, follow-up time from baseline, CDR at baseline, and all the interactions among them as independent variables, controlling for MMSE at baseline, sex, race, and education. The mean age of the entire sample was 85.2±7.4 years at baseline. There were no significant interactions of linear age effects with rate of cognitive decline. The analysis of interaction of quadratic age with rate of cognitive decline showed complex relationships: in the nondemented group, there was no substantial quadratic association of age with the rate of cognitive decline (P=0.13); in the questionable demented group, the oldest subjects declined relatively faster (P=0.02); and in the demented group, the youngest and oldest subjects tended to decline relatively less than subjects in the intermediate ages (P=0.07). Conclusions This study adds an additional aspect to the complexity of the association between age and rate of cognitive decline, showing that the direction and amplitude of this effect differs according to the stage along the course of cognitive decline. PMID:21572311

  5. Effects of vascular risk factors and APOE ε4 on white matter integrity and cognitive decline

    PubMed Central

    Fratiglioni, Laura; Laukka, Erika J.; Lövdén, Martin; Kalpouzos, Grégoria; Keller, Lina; Graff, Caroline; Salami, Alireza; Bäckman, Lars

    2015-01-01

    Objective: To investigate the effects of vascular risk factors and APOE status on white matter microstructure, and subsequent cognitive decline among older people. Methods: This study included 241 participants (age 60 years and older) from the population-based Swedish National Study on Aging and Care in Kungsholmen in central Stockholm, Sweden, who were free of dementia and stroke at baseline (2001–2004). We collected data through interviews, clinical examinations, and laboratory tests. We measured fractional anisotropy (FA) and mean diffusivity (MD) on diffusion tensor imaging, and estimated volume of white matter hyperintensities using automatic segmentation. We assessed global cognitive function with the Mini-Mental State Examination at baseline and at 3- and/or 6-year follow-up. We analyzed the data using multivariate linear regression and linear mixed models. Results: Heavy alcohol consumption, hypertension, and diabetes were significantly associated with lower FA or higher MD (p < 0.05). When aggregating heavy alcohol consumption, hypertension, and diabetes together with current smoking, having an increasing number of these 4 factors concurrently was associated with decreasing FA and increasing MD (ptrend < 0.01), independent of white matter hyperintensities. Vascular risk factors and APOE ε4 allele interacted to negatively affect white matter microstructure; having multiple (≥2) vascular factors was particularly detrimental to white matter integrity among APOE ε4 carriers. Lower tertile of FA and upper tertile of MD were significantly associated with faster Mini-Mental State Examination decline. Conclusions: Vascular risk factors are associated with reduced white matter integrity among older adults, which subsequently predicted faster cognitive decline. The detrimental effects of vascular risk factors on white matter microstructure were exacerbated among APOE ε4 carriers. PMID:25672924

  6. Autoimmune encephalitis: A potentially reversible cause of status epilepticus, epilepsy, and cognitive decline

    PubMed Central

    Pandit, Awadh Kishor; Ihtisham, Kavish; Garg, Ajay; Gulati, Sheffali; Padma, Madakasira Vasantha; Tripathi, Manjari

    2013-01-01

    Objectives: To review clinical characteristics and response to immunomodulation therapy in autoimmune encephalitis presenting with status epilepticus (SE), epilepsy, and cognitive decline. Design: Observational, prospective case series. Setting: All India Institute of Medical Sciences, New Delhi, India. Materials and Methods: Prospective analysis of 15 patients, who presented with SE, epilepsy, cognitive decline, and other neurological symptoms with positive autoantibodies. Demographic and clinical characteristics were recorded. Brain magnetic resonance imaging (MRI), cerebrospinal-fluid analysis (CSF), and tumor screening were done periodically. Treatment received and responses (categorized as per patients and treating doctor's information) were noted. Results: There were 15 (males = 10) patients of autoimmune encephalitis. The mean age of presentation was 24 years (range: 2-64 years). The most common onset was subacute (64%) and four (29%) patients presented as SE. Predominant clinical presentations were seizures (100%) almost of every semiology. CSF was done in 10 patients; it was normal in 60%. Brain MRI was done in all patients, in six (40%) it was normal, six (40%) showed T2W and FLAIR hyperintensities in bilateral limbic areas. Antibodies found were the N-methyl-D-aspartate receptor antibody in seven (50%), voltage-gated potassium channel antibody in five (36%), two of antiglutamic acid decarboxylase, and one patient with double stranded DNA (dsDNA) antibodies. None showed evidence of malignancy. Patients received immunotherapy, either steroids, intravenous immunoglobulin, or both. Follow-up showed significant improvement in majority of cases, neither further seizures nor relapse in nine (67%) cases. One death occurred, due to delayed presentation. Conclusions: Uncommon but potentially reversible causes of SE, epilepsy, and cognitive decline may be immune-related and high index of suspicion will prevent missing the diagnosis. PMID:24339583

  7. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  8. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension.

  9. The relationship between long-term sunlight radiation and cognitive decline in the REGARDS cohort study.

    PubMed

    Kent, Shia T; Kabagambe, Edmond K; Wadley, Virginia G; Howard, Virginia J; Crosson, William L; Al-Hamdan, Mohammad Z; Judd, Suzanne E; Peace, Fredrick; McClure, Leslie A

    2014-04-01

    Sunlight may be related to cognitive function through vitamin D metabolism or circadian rhythm regulation. The analysis presented here sought to test whether ground and satellite measures of solar radiation are associated with cognitive decline. The study used a 15-year residential history merged with satellite and ground monitor data to determine sunlight (solar radiation) and air temperature exposure for a cohort of 19,896 cognitively intact black and white participants aged 45+ from the 48 contiguous United States. Exposures of 15, 10, 5, 2, and 1-year were used to predict cognitive status at the most recent assessment in logistic regression models; 1-year insolation and maximum temperatures were chosen as exposure measures. Solar radiation interacted with temperature, age, and gender in its relationships with incident cognitive impairment. After adjustment for covariates, the odds ratio (OR) of cognitive decline for solar radiation exposure below the median vs above the median in the 3rd tertile of maximum temperatures was 1.88 (95 % CI: 1.24, 2.85), that in the 2nd tertile was 1.33 (95 % CI: 1.09, 1.62), and that in the 1st tertile was 1.22 (95 % CI: 0.92, 1.60). We also found that participants under 60 years old had an OR = 1.63 (95 % CI: 1.20, 2.22), those 60-80 years old had an OR = 1.18 (95 % CI: 1.02, 1.36), and those over 80 years old had an OR = 1.05 (0.80, 1.37). Lastly, we found that males had an OR = 1.43 (95 % CI: 1.22, 1.69), and females had an OR = 1.02 (0.87, 1.20). We found that lower levels of solar radiation were associated with increased odds of incident cognitive impairment.

  10. Cognitive decline impairs financial and health literacy among community-based older persons without dementia

    PubMed Central

    Boyle, Patricia A.; Yu, Lei; Wilson, Robert S.; Segawa, Eisuke; Buchman, Aron S.; Bennett, David A.

    2013-01-01

    Literacy is an important determinant of health and well-being across the lifespan but is critical in aging, when many influential health and financial decisions are made. Prior studies suggest that older persons exhibit lower literacy than younger persons, particularly in the domains of financial and health literacy, but the reasons why remain unknown. The objectives of this study were to: a) examine pathways linking diverse resources (i.e., education, word knowledge, cognitive function, and decision making style) to health and financial literacy among older persons and determine the extent to which the relation of age with literacy represents a direct effect versus an indirect effect due to decrements in specific cognitive functions (i.e., executive functions and episodic memory), and b) test the hypothesis that declines in executive function and episodic memory are associated with lower literacy among older persons without dementia. 645 community-based older persons without dementia underwent detailed assessments of diverse resources, including education, word knowledge, cognitive function (i.e., executive function, episodic memory) and decision making style (i.e., risk aversion), and completed a measure of literacy that included items similar to those assessed in the Health and Retirement Study, such as numeracy, financial concepts such as compound inflation and knowledge of stocks and bonds, and important health concepts such as understanding of drug risk and Medicare Part D. Path analysis revealed a strong effect of age on literacy, with about half of the effect of age on literacy due to decrements in executive functions and episodic memory. In addition, executive function had an indirect effect on literacy via decision making style (i.e., risk aversion), and education and word knowledge had independent effects on literacy. Finally, among (n=447) persons with repeated cognitive assessments available for up to 14 years, regression analysis supported the

  11. Exploring Experiences and Perceptions of Aging and Cognitive Decline Across Diverse Racial and Ethnic Groups

    PubMed Central

    Roberts, Lisa R.; Schuh, Holly; Sherzai, Dean; Belliard, Juan Carlos; Montgomery, Susanne B.

    2015-01-01

    Objective To explore how older adults from three prominent ethnoracial groups experience cognitive decline and aging. Method Semistructured key informant interviews (KIIs) and focus groups (FGs) were conducted with caregivers, experts, and older adults. Results (N = 75). Fifteen KIIs regarding cognitive aging issues were conducted among health care professionals and community-based agencies serving older adults. Eight FGs included family caregivers and physicians, and six FGs with Latino, African American, and White older adult community members. Major themes included (a) personal expectations about aging, (b) societal value of older adults, (c) model of care preferred, and (d) community concerns. An overarching theme was a sense of loss associated with aging; however, how this loss was experienced and dealt with varied. Discussion Distinct patterns of concerns and views are important to understand for the development of programs aimed at meeting the needs of diverse older adult community members to improve health outcomes. PMID:26925436

  12. Diabetes and cognitive decline in a French cohort of patients infected with HIV-1

    PubMed Central

    Richert, Laura; Thiébaut, Rodolphe; Bruyand, Mathias; Amieva, Hélène; Dauchy, Frédéric-Antoine; Dartigues, Jean-François; Neau, Didier; Morlat, Philippe; Dehail, Patrick; Dabis, François; Bonnet, Fabrice; Chêne, Geneviève

    2015-01-01

    Objective: We investigated the relationship of diabetes and prediabetes with cognitive performances, assessed through raw test and z scores and according to neurocognitive impairment (NCI) classification in a cohort of individuals infected with HIV. Methods: The ANRS CO3 Aquitaine cohort is a prospective hospital-based cohort of HIV-1–infected patients under routine clinical management in 6 public hospitals in southwestern France. Between 2007 and 2009, an ancillary study consisted of a neuropsychological battery of 10 tests at baseline and 2-year follow-up. The severity of NCI (normal, asymptomatic, mild, HIV dementia) was assessed according to international guidelines. Results: At baseline (400 patients, 33 with prediabetes, 39 with diabetes), in cross-sectional multivariable analyses, patients with diabetes performed significantly worse on 9 neuropsychological tests that assessed memory, executive functions, attention, psychomotor speed, language, and manual dexterity. Participants with prediabetes had worse performances compared with those who had normal glycemia in 5 tests. The longitudinal analysis of the association between glycemia status at baseline and change in cognitive performances over 2-year follow-up (n = 283) suggested that patients with diabetes also showed a slightly higher decline on 5 of the 10 tests, those involving executive functions and memory functioning. Glycemia status at baseline was not significantly associated with NCI severity in cross-sectional (p = 0.44) and longitudinal (p = 0.64) analyses. Conclusions: In this hospital-based cohort of people living with HIV, diabetes, but not the other cardiovascular risk factors, is associated with worse cognitive performances in several cognitive domains and with larger decline in fewer domains over the short term. PMID:26156515

  13. Monitoring the Early Signs of Cognitive Decline in Elderly by Computer Games: An MRI Study

    PubMed Central

    Sirály, Enikő; Szabó, Ádám; Szita, Bernadett; Kovács, Vivienne; Fodor, Zsuzsanna; Marosi, Csilla; Salacz, Pál; Hidasi, Zoltán; Maros, Viktor; Hanák, Péter; Csibri, Éva; Csukly, Gábor

    2015-01-01

    Background It is anticipated that current and future preventive therapies will likely be more effective in the early stages of dementia, when everyday functioning is not affected. Accordingly the early identification of people at risk is particularly important. In most cases, when subjects visit an expert and are examined using neuropsychological tests, the disease has already been developed. Contrary to this cognitive games are played by healthy, well functioning elderly people, subjects who should be monitored for early signs. Further advantages of cognitive games are their accessibility and their cost-effectiveness. Purpose The aim of the investigation was to show that computer games can help to identify those who are at risk. In order to validate games analysis was completed which measured the correlations between results of the 'Find the Pairs' memory game and the volumes of the temporal brain regions previously found to be good predictors of later cognitive decline. Participants and Methods 34 healthy elderly subjects were enrolled in the study. The volume of the cerebral structures was measured by MRI. Cortical reconstruction and volumetric segmentation were performed by Freesurfer. Results There was a correlation between the number of attempts and the time required to complete the memory game and the volume of the entorhinal cortex, the temporal pole, and the hippocampus. There was also a correlation between the results of the Paired Associates Learning (PAL) test and the memory game. Conclusions The results gathered support the initial hypothesis that healthy elderly subjects achieving lower scores in the memory game have increased level of atrophy in the temporal brain structures and showed a decreased performance in the PAL test. Based on these results it can be concluded that memory games may be useful in early screening for cognitive decline. PMID:25706380

  14. Disrupted White Matter Network and Cognitive Decline in Type 2 Diabetes Patients.

    PubMed

    Zhang, Junying; Liu, Zhen; Li, Zixiao; Wang, Yunxia; Chen, Yaojing; Li, Xin; Chen, Kewei; Shu, Ni; Zhang, Zhanjun

    2016-05-01

    Type 2 diabetes mellitus is accompanied by cognitive impairment and is associated with an increased risk of dementia. Damage to brain structures such as white matter network disruption may underlie this cognitive disturbance. In the present study, 886 non-diabetic and 163 type 2 diabetic participants completed a battery of neuropsychological tests. Among them, 38 diabetic patients and 34 non-diabetic participants that matched the patients for age/sex/education received a magnetic resonance imaging-based diffusion tensor imaging. Then we calculated the topological properties of the white matter network using a graph theoretical method to investigate network efficiency differences between groups. We found that type 2 diabetic patients had inferior performances compared to the non-diabetic controls, in several cognitive domains involving executive function, spatial processing, memory, and attention. We also found that diabetic patients exhibited a disrupted topological organization of the white matter network (including the global network properties, i.e., network strength, global efficiency, local efficiency and shortest path length, and the nodal efficiency of the right rolandic operculum) in the brain. Moreover, those global network properties and the nodal efficiency of the right rolandic operculum both had positive correlations with executive function in the patient group. The results suggest that type 2 diabetes mellitus leads to an alteration in the topological organization of the cortical white matter network and this alteration may account for the observed cognitive decline.

  15. Abnormal differentiation of newborn granule cells in age-related working memory impairments.

    PubMed

    Nyffeler, Myriel; Yee, Benjamin K; Feldon, Joram; Knuesel, Irene

    2010-11-01

    Age-related declines in spatial memory have been linked to abnormal functional properties and connectivity of newborn granule cells. However, the relationship between adult neurogenesis, aging, and cognitive performance seems more complex than previously anticipated, likely due to the difficulty of disentangling alterations related to training as such and those associated with cognitive performance. Here, we investigated how different aspects of adult neurogenesis might be related to training, age and cognitive performance amongst aged subjects by comparing behaviourally naïve and tested rats of 3, 6, 24mo of age. We separated aged rats into learning-impaired and -unimpaired groups based on their performance in the Morris water maze to investigate neurogenesis-related morphological and neurochemical changes. We report an age-related decline in cell proliferation and maturation independent of cognitive performance and testing. We confirm an age-related altered differentiation of newborn neurons which was particularly prominent in learning-impaired rats. This was associated with an abnormally prolonged expression of the early progenitor marker Nestin, potentially also affecting maturation, survival/integration of newborn neurons into existing neuronal networks, which might underlie the individual differences in cognitive performance during aging.

  16. 75 FR 3243 - NIH State-of-the-Science Conference: Preventing Alzheimer's Disease and Cognitive Decline; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... HUMAN SERVICES National Institutes of Health NIH State-of-the-Science Conference: Preventing Alzheimer's... the ``NIH State-of-the-Science Conference: Preventing Alzheimer's Disease and Cognitive Decline'' to... state of cognitive impairment or into various forms of dementia, including Alzheimer's disease....

  17. Physical activity and inflammation: effects on gray-matter volume and cognitive decline in aging.

    PubMed

    Papenberg, Goran; Ferencz, Beata; Mangialasche, Francesca; Mecocci, Patrizia; Cecchetti, Roberta; Kalpouzos, Grégoria; Fratiglioni, Laura; Bäckman, Lars

    2016-10-01

    Physical activity has been positively associated with gray-matter integrity. In contrast, pro-inflammatory cytokines seem to have negative effects on the aging brain and have been related to dementia. It was investigated whether an inactive lifestyle and high levels of inflammation resulted in smaller gray-matter volumes and predicted cognitive decline across 6 years in a population-based study of older adults (n = 414). Self-reported physical activity (fitness-enhancing, health-enhancing, inadequate) was linked to gray-matter volume, such that individuals with inadequate physical activity had the least gray matter. There were no overall associations between different pro-and anti-inflammatory markers (IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, G-CSF, and TNF-α) and gray-matter integrity. However, persons with inadequate activity and high levels of the pro-inflammatory marker IL-12p40 had smaller volumes of lateral prefrontal cortex and hippocampus and declined more on the Mini-Mental State Examination test over 6 years compared with physically inactive individuals with low levels of IL-12p40 and to more physically active persons, irrespective of their levels of IL-12p40. These patterns of data suggested that inflammation was particularly detrimental in inactive older adults and may exacerbate the negative effects of physical inactivity on brain and cognition in old age. Hum Brain Mapp 37:3462-3473, 2016. © 2016 Wiley Periodicals, Inc.

  18. Effects of education and race on cognitive decline: An integrative study of generalizability versus study-specific results.

    PubMed

    Gross, Alden L; Mungas, Dan M; Crane, Paul K; Gibbons, Laura E; MacKay-Brandt, Anna; Manly, Jennifer J; Mukherjee, Shubhabrata; Romero, Heather; Sachs, Bonnie; Thomas, Michael; Potter, Guy G; Jones, Richard N

    2015-12-01

    The objective of the study was to examine variability across multiple prospective cohort studies in level and rate of cognitive decline by race/ethnicity and years of education. We compare data across studies, we harmonized estimates of common latent factors representing overall or general cognitive performance, memory, and executive function derived from the: (a) Washington Heights, Hamilton Heights, Inwood Columbia Aging Project (N = 4,115), (b) Spanish and English Neuropsychological Assessment Scales (N = 525), (c) Duke Memory, Health, and Aging study (N = 578), and (d) Neurocognitive Outcomes of Depression in the Elderly (N = 585). We modeled cognitive change over age for cognitive outcomes by race, education, and study. We adjusted models for sex, dementia status, and study-specific characteristics. The results found that for baseline levels of overall cognitive performance, memory, and executive function, differences in race and education tended to be larger than between-study differences and consistent across studies. This pattern did not hold for rate of cognitive decline: effects of education and race/ethnicity on cognitive change were not consistently observed across studies, and when present were small, with racial/ethnic minorities and those with lower education declining at faster rates. In this diverse set of datasets, non-Hispanic Whites and those with higher education had substantially higher baseline cognitive test scores. However, differences in the rate of cognitive decline by race/ethnicity and education did not follow this pattern. This study suggests that baseline test scores and longitudinal change have different determinants, and future studies to examine similarities and differences of causes of cognitive decline in racially/ethnically and educationally diverse older groups is needed.

  19. Effects of education and race on cognitive decline: An integrative study of generalizability versus study-specific results.

    PubMed

    Gross, Alden L; Mungas, Dan M; Crane, Paul K; Gibbons, Laura E; MacKay-Brandt, Anna; Manly, Jennifer J; Mukherjee, Shubhabrata; Romero, Heather; Sachs, Bonnie; Thomas, Michael; Potter, Guy G; Jones, Richard N

    2015-12-01

    The objective of the study was to examine variability across multiple prospective cohort studies in level and rate of cognitive decline by race/ethnicity and years of education. We compare data across studies, we harmonized estimates of common latent factors representing overall or general cognitive performance, memory, and executive function derived from the: (a) Washington Heights, Hamilton Heights, Inwood Columbia Aging Project (N = 4,115), (b) Spanish and English Neuropsychological Assessment Scales (N = 525), (c) Duke Memory, Health, and Aging study (N = 578), and (d) Neurocognitive Outcomes of Depression in the Elderly (N = 585). We modeled cognitive change over age for cognitive outcomes by race, education, and study. We adjusted models for sex, dementia status, and study-specific characteristics. The results found that for baseline levels of overall cognitive performance, memory, and executive function, differences in race and education tended to be larger than between-study differences and consistent across studies. This pattern did not hold for rate of cognitive decline: effects of education and race/ethnicity on cognitive change were not consistently observed across studies, and when present were small, with racial/ethnic minorities and those with lower education declining at faster rates. In this diverse set of datasets, non-Hispanic Whites and those with higher education had substantially higher baseline cognitive test scores. However, differences in the rate of cognitive decline by race/ethnicity and education did not follow this pattern. This study suggests that baseline test scores and longitudinal change have different determinants, and future studies to examine similarities and differences of causes of cognitive decline in racially/ethnically and educationally diverse older groups is needed. PMID:26523693

  20. Genetic predisposition to higher production of interleukin-6 through -174 G > C polymorphism predicts global cognitive decline in oldest-old with cognitive impairment no dementia.

    PubMed

    Fraga, Vanessa G; Guimarães, Henrique C; Teixeira, Antônio L; Barbosa, Maira T; Mateo, Elvis C C; Carvalho, Maria G; Caramelli, Paulo; Gomes, Karina B

    2015-11-01

    Interleukin 6 (IL-6) is a pro-inflammatory cytokine upregulated in neurodegenerative contexts. The polymorphism IL-6 -174 G > C influences release levels of this cytokine. We aimed to evaluate the influence of IL-6 -174 G > C on global cognitive score of a group with cognitive impairment no dementia in one year of follow-up.Methods The subjects were categorized in two groups: short-term decline in global cognitive score and those with short-term stability or improvement. IL-6 174 G > C information were compared among these groups.Results We observed that individuals with cognitive impairment no dementia with GGlowergenotype were more frequent among global cognitive score non-decliners while carriers of at least one Chigherallele were more frequent in the group with global cognitive score decliners (p = 0.012; RR = 3.095 IC95%= 1.087-8.812).Conclusion These results suggest that the higher expression of IL-6 gene may be an independent risk factor for cognitive decline among individuals with cognitive impairment no dementia.

  1. Relative value of diverse brain MRI and blood-based biomarkers for predicting cognitive decline in the elderly

    NASA Astrophysics Data System (ADS)

    Madsen, Sarah K.; Ver Steeg, Greg; Daianu, Madelaine; Mezher, Adam; Jahanshad, Neda; Nir, Talia M.; Hua, Xue; Gutman, Boris A.; Galstyan, Aram; Thompson, Paul M.

    2016-03-01

    Cognitive decline accompanies many debilitating illnesses, including Alzheimer's disease (AD). In old age, brain tissue loss also occurs along with cognitive decline. Although blood tests are easier to perform than brain MRI, few studies compare brain scans to standard blood tests to see which kinds of information best predict future decline. In 504 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we first used linear regression to assess the relative value of different types of data to predict cognitive