Science.gov

Sample records for age-related cognitive dysfunction

  1. Consequences of Age-Related Cognitive Declines

    PubMed Central

    Salthouse, Timothy

    2013-01-01

    Adult age differences in a variety of cognitive abilities are well documented, and many of those abilities have been found to be related to success in the workplace and in everyday life. However, increased age is seldom associated with lower levels of real-world functioning, and the reasons for this lab-life discrepancy are not well understood. This article briefly reviews research concerned with relations of age to cognition, relations of cognition to successful functioning outside the laboratory, and relations of age to measures of work performance and achievement. The final section discusses several possible explanations for why there are often little or no consequences of age-related cognitive declines in everyday functioning. PMID:21740223

  2. eNOS-uncoupling in age-related erectile dysfunction.

    PubMed

    Johnson, J M; Bivalacqua, T J; Lagoda, G A; Burnett, A L; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH(4)) on erectile function in the aged rats. Male Fischer 344 'young' (4-month-old) and 'aged' (19-month-old) rats were treated with a BH(4) precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  3. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  4. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  5. Veterans have less age-related cognitive decline.

    PubMed

    McLay, R N; Lyketsos, C G

    2000-08-01

    Military service involves exposure to a number of stresses, both psychological and physical. On the other hand, military personnel generally maintain excellent fitness, and veterans have increased access to education and health care. The overall effect on age-related cognitive decline, whether for good or ill, of having served in the armed forces has not been investigated previously. In this study, we examined a diverse population of 208 veterans and 1,216 civilians followed as part of the Epidemiologic Catchment Area Study in 1981, 1982, and 1993 to 1996. We examined change in Mini-Mental State Examination (MMSE) score after a median of 11.5 years. Veterans were found to have significantly less decrease in MMSE scores at follow-up even after sex, race, and education were taken into account. These results suggest an overall positive effect of military service on the rate of age-related cognitive decline. PMID:10957857

  6. Epigenetic modification of PKMζ rescues aging-related cognitive impairment.

    PubMed

    Chen, Chen; Meng, Shi-Qiu; Xue, Yan-Xue; Han, Ying; Sun, Cheng-Yu; Deng, Jia-Hui; Chen, Na; Bao, Yan-Ping; Zhang, Fei-Long; Cao, Lin-Lin; Zhu, Wei-Guo; Shi, Jie; Song, Wei-Hong; Lu, Lin

    2016-03-01

    Cognition is impacted by aging. However, the mechanisms that underlie aging-associated cognitive impairment are unclear. Here we showed that cognitive decline in aged rats was associated with changes in DNA methylation of protein kinase Mζ (PKMζ) in the prelimbic cortex (PrL). PKMζ is a crucial molecule involved in the maintenance of long-term memory. Using different behavioral models, we confirmed that aged rats exhibited cognitive impairment in memory retention test 24 h after training, and overexpression of PKMζ in the PrL rescued cognitive impairment in aged rats. After fear conditioning, the protein levels of PKMζ and the membrane expression of GluR2 increased in the PrL in young and adult rats but not in aged rats, and the levels of methylated PKMζ DNA in the PrL decreased in all age groups, whereas the levels of unmethylated PKMζ DNA increased only in young and adult rats. We also found that environmentally enriched housing reversed the hypermethylation of PKMζ and restored cognitive performance in aged rats. Inactivation of PKMζ prevented the potentiating effects of environmental enrichment on memory retention in aged rats. These results indicated that PKMζ might be a potential target for the treatment of aging-related cognitive impairment, suggesting a potential therapeutic avenue.

  7. Epigenetic modification of PKMζ rescues aging-related cognitive impairment

    PubMed Central

    Chen, Chen; Meng, Shi-Qiu; Xue, Yan-Xue; Han, Ying; Sun, Cheng-Yu; Deng, Jia-Hui; Chen, Na; Bao, Yan-Ping; Zhang, Fei-Long; Cao, Lin-Lin; Zhu, Wei-Guo; Shi, Jie; Song, Wei-Hong; Lu, Lin

    2016-01-01

    Cognition is impacted by aging. However, the mechanisms that underlie aging-associated cognitive impairment are unclear. Here we showed that cognitive decline in aged rats was associated with changes in DNA methylation of protein kinase Mζ (PKMζ) in the prelimbic cortex (PrL). PKMζ is a crucial molecule involved in the maintenance of long-term memory. Using different behavioral models, we confirmed that aged rats exhibited cognitive impairment in memory retention test 24 h after training, and overexpression of PKMζ in the PrL rescued cognitive impairment in aged rats. After fear conditioning, the protein levels of PKMζ and the membrane expression of GluR2 increased in the PrL in young and adult rats but not in aged rats, and the levels of methylated PKMζ DNA in the PrL decreased in all age groups, whereas the levels of unmethylated PKMζ DNA increased only in young and adult rats. We also found that environmentally enriched housing reversed the hypermethylation of PKMζ and restored cognitive performance in aged rats. Inactivation of PKMζ prevented the potentiating effects of environmental enrichment on memory retention in aged rats. These results indicated that PKMζ might be a potential target for the treatment of aging-related cognitive impairment, suggesting a potential therapeutic avenue. PMID:26926225

  8. Increased Age-Related Cardiac Dysfunction in Bradykinin B2 Receptor-Deficient Mice.

    PubMed

    Feng, Wenjing; Xu, Xizhen; Zhao, Gang; Zhao, Junjie; Dong, Ruolan; Ma, Ben; Zhang, Yanjun; Long, Guangwen; Wang, Dao Wen; Tu, Ling

    2016-02-01

    Experimental evidence indicates that the kinin peptide binds to bradykinin B2 receptor (B2R) to trigger various beneficial effects on the cardiovascular system. However, the effects and underlying mechanisms of B2R in cardiac aging remain unknown. A significant age-dependent decrease in B2R expression in the myocardium was observed in C57BL/6J mice. Echocardiographic measurements showed that aging caused a significant cardiac dysfunction in C57BL/6J mice, and importantly B2R deficiency augmented this dysfunction in aging mice. The deficiency of B2R expression in the aging heart repressed p53-pGC-1α-induced mitochondria renewal, increased reactive oxygen species production, and destroyed mitochondrial ultrastructure. Age-related decrease or lack of B2R increased oxidative stress, macrophage infiltration, and inflammatory cytokine expression and compromised antioxidant enzyme expression. Moreover, the inflammatory signals were mainly mediated by the activation of p38 MAPK, JNK, and subsequent translocation of nuclear factor-kappa B to the nucleus. In summary, our data provide evidence that B2R deficiency contributes to the aging-induced cardiac dysfunction, which is likely mediated by increased mitochondrial dysfunction, oxidative stress, and inflammation. This study indicates that preventing the loss of cardioprotective B2R expression may be a novel approach for the prevention and treatment of age-related cardiac dysfunction.

  9. Olfactory dysfunction and cognitive impairment in age-related neurodegeneration: prevalence related to patient selection, diagnostic criteria and therapeutic treatment of aged clients receiving clinical neurology and community-based care.

    PubMed

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2011-11-01

    A decrease in olfactory function with age has been attributed to a variety of factors including normal anatomical and physiological changes in aging, surgery, trauma, environmental factors, medications and disease. Olfactory impairment has also been associated with neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Deficits in these chemical senses cannot only reduce the pleasure and comfort from food, but represent risk factors for nutritional and immune deficiencies as well as adherence to specific dietary regimens. Therapy is limited, but one should be aware of the existing medical and surgical treatment modalities. Reactive oxygen and nitrogen species, copper and zinc ions, glycating agents and reactive aldehydes, protein cross-linking and proteolytic dysfunction may all contribute to neurodegeneration, olfactory dysfunction, AD. Carnosine (beta-alanyl- L-histidine) is a naturally-occurring, pluripotent, homeostatic transglycating agent. The olfactory lobe is normally enriched in carnosine and zinc. Loss of olfactory function and oxidative damage to olfactory tissue are early symptoms of AD. Protein and lipid oxidation and glycation are integral components of the AD pathophysiology. Carnosine can suppress amyloidbeta peptide toxicity, inhibit production of oxygen free-radicals, scavenge hydroxyl radicals and reactive aldehydes, and suppresses protein glycation. The observations suggest that patented non-hydrolyzed carnosine lubricant drug delivery or perfume toilet water formulations combined with related moiety amino acid structures, such as beta-alanine, should be explored for therapeutic potential towards olfactory dysfunction, AD and other neurodegenerative disorders. "The olfactory system, anatomically, is right in the middle of the part of the brain that's very important for memory. There are strong neural connections between the two." ~ Donald Wilson.

  10. Red ginseng delays age-related hearing and vestibular dysfunction in C57BL/6 mice.

    PubMed

    Tian, Chunjie; Kim, Yeon Ju; Lim, Hye Jin; Kim, Young Sun; Park, Hun Yi; Choung, Yun-Hoon

    2014-09-01

    Since Korean red ginseng (KRG) has been proven to protect against gentamicin-induced vestibular and hearing dysfunction, the effects of KRG on age-related inner ear disorder in C57BL/6 mice were investigated. While age-related hearing loss was detected at the age of 6months (32kHz) and 9months (16kHz) in the control group, it was significantly delayed (p<0.05) in the 150mg/kg KRG-treated group. Vestibular dysfunction was observed in the tail-hanging and swimming tests, with significantly different severity scores and swimming times detected between the control and 150mg/kg KRG-treated group at the age of 12months (p<0.05). Mice treated with 500mg/kg KRG exhibited irritability and aggravated inner ear dysfunction. Histological observation supported the findings of hearing and vestibular function defects. In conclusion, C57BL/6 mice showed early-onset hearing loss and progressive vestibular dysfunction with aging, which were delayed by treatment with 150mg/kg KRG. However, 500mg/kg KRG treatment may induce aggressive behavior. PMID:24952098

  11. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline

    PubMed Central

    Deibel, Scott H.; Zelinski, Erin L.; Keeley, Robin J.; Kovalchuk, Olga; McDonald, Robert J.

    2015-01-01

    Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline. PMID:26252151

  12. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline.

    PubMed

    Deibel, Scott H; Zelinski, Erin L; Keeley, Robin J; Kovalchuk, Olga; McDonald, Robert J

    2015-09-15

    Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline. PMID:26252151

  13. From mind wandering to involuntary retrieval: Age-related differences in spontaneous cognitive processes.

    PubMed

    Maillet, David; Schacter, Daniel L

    2016-01-01

    The majority of studies that have investigated the effects of healthy aging on cognition have focused on age-related differences in voluntary and deliberately engaged cognitive processes. Yet many forms of cognition occur spontaneously, without any deliberate attempt at engaging them. In this article we review studies that have assessed age-related differences in four such types of spontaneous thought processes: mind-wandering, involuntary autobiographical memory, intrusive thoughts, and spontaneous prospective memory retrieval. These studies suggest that older adults exhibit a reduction in frequency of both mind-wandering and involuntary autobiographical memory, whereas findings regarding intrusive thoughts have been more mixed. Additionally, there is some preliminary evidence that spontaneous prospective memory retrieval may be relatively preserved in aging. We consider the roles of age-related differences in cognitive resources, motivation, current concerns and emotional regulation in accounting for these findings. We also consider age-related differences in the neural correlates of spontaneous cognitive processes.

  14. Closed-loop rehabilitation of age-related cognitive disorders.

    PubMed

    Mishra, Jyoti; Gazzaley, Adam

    2014-11-01

    Cognitive deficits are common in older adults, as a result of both the natural aging process and neurodegenerative disease. Although medical advancements have successfully prolonged the human lifespan, the challenge of remediating cognitive aging remains. The authors discuss the current state of cognitive therapeutic interventions and then present the need for development and validation of more powerful neurocognitive therapeutics. They propose that the next generation of interventions be implemented as closed-loop systems that target specific neural processing deficits, incorporate quantitative feedback to the individual and clinician, and are personalized to the individual's neurocognitive capacities using real-time performance-adaptive algorithms. This approach should be multimodal and seamlessly integrate other treatment approaches, including neurofeedback and transcranial electrical stimulation. This novel approach will involve the generation of software that engages the individual in an immersive and enjoyable game-based interface, integrated with advanced biosensing hardware, to maximally harness plasticity and assure adherence. Introducing such next-generation closed-loop neurocognitive therapeutics into the mainstream of our mental health care system will require the combined efforts of clinicians, neuroscientists, bioengineers, software game developers, and industry and policy makers working together to meet the challenges and opportunities of translational neuroscience in the 21st century. PMID:25520029

  15. Shared and Unique Genetic and Environmental Influences on Aging-Related Changes in Multiple Cognitive Abilities

    ERIC Educational Resources Information Center

    Tucker-Drob, Elliot M.; Reynolds, Chandra A.; Finkel, Deborah; Pedersen, Nancy L.

    2014-01-01

    Aging-related declines occur in many different domains of cognitive function during middle and late adulthood. However, whether a global dimension underlies individual differences in changes in different domains of cognition and whether global genetic influences on cognitive changes exist is less clear. We addressed these issues by applying…

  16. Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction

    PubMed Central

    Durik, Matej; Kavousi, Maryam; van der Pluijm, Ingrid; Isaacs, Aaron; Cheng, Caroline; Verdonk, Koen; Loot, Annemarieke E.; Oeseburg, Hisko; Musterd-Bhaggoe, Usha; Leijten, Frank; van Veghel, Richard; de Vries, Rene; Rudez, Goran; Brandt, Renata; Ridwan, Yanto R.; van Deel, Elza D.; de Boer, Martine; Tempel, Dennie; Fleming, Ingrid; Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Uitterlinden, Andre G.; Hofman, Albert; Duckers, Henricus J.; van Duijn, Cornelia M.; Oostra, Ben A.; Witteman, Jacqueline C.M.; Duncker, Dirk J.; Danser, A.H. Jan; Hoeijmakers, Jan H.; Roks, Anton J.M.

    2012-01-01

    Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease. PMID:22705887

  17. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction.

    PubMed

    Guan, Lili; Feng, Haiyan; Gong, Dezheng; Zhao, Xu; Cai, Li; Wu, Qiong; Yuan, Bo; Yang, Mei; Zhao, Jie; Zou, Yuan

    2013-12-01

    Insulin resistance (IR) increases with age and plays a key role in the pathogenesis of type 2 diabetes mellitus. Oxidative stress and mitochondrial dysfunction are supposed to be major factors leading to age-related IR. Genipin, an extract from Gardenia jasminoides Ellis fruit, has been reported to stimulate insulin secretion in pancreatic islet cells by regulating mitochondrial function. In this study, we first investigated the effects of genipin on insulin sensitivity and the potential mitochondrial mechanisms in the liver of aging rats. The rats were randomly assigned to receive intraperitoneal injections of either 25mg/kg genipin or vehicle once daily for 12days. The aging rats showed hyperinsulinemia and hyperlipidemia, and insulin resistance as examined by the decreased glucose decay constant rate during insulin tolerance test (kITT). The hepatic tissues showed steatosis and reduced glycogen content. Hepatic malondialdehyde level and mitochondrial reactive oxygen species (ROS) were higher, and levels of mitochondrial membrane potential (MMP) and ATP were lower as compared with the normal control rats. Administration of genipin ameliorated systemic and hepatic insulin resistance, alleviated hyperinsulinemia, hyperglyceridemia and hepatic steatosis, relieved hepatic oxidative stress and mitochondrial dysfunction in aging rats. Furthermore, genipin not only improved insulin sensitivity by promoting insulin-stimulated glucose consumption and glycogen synthesis, inhibited cellular ROS overproduction and alleviated the reduction of levels of MMP and ATP, but also reversed oxidative stress-associated JNK hyperactivation and reduced Akt phosphorylation in palmitate-treated L02 hepatocytes. In conclusion, genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. PMID:24041487

  18. The potential effects of meditation on age-related cognitive decline: a systematic review.

    PubMed

    Gard, Tim; Hölzel, Britta K; Lazar, Sara W

    2014-01-01

    With a rapidly aging society it becomes increasingly important to counter normal age-related decline in cognitive functioning. Growing evidence suggests that cognitive training programs may have the potential to counteract this decline. On the basis of a growing body of research that shows that meditation has positive effects on cognition in younger and middle-aged adults, meditation may be able to offset normal age-related cognitive decline or even enhance cognitive function in older adults. In this paper, we review studies investigating the effects of meditation on age-related cognitive decline. We searched the Web of Science (1900 to present), PsycINFO (1597 to present), MEDLINE (1950 to present), and CABI (1910 to present) to identify original studies investigating the effects of meditation on cognition and cognitive decline in the context of aging. Twelve studies were included in the review, six of which were randomized controlled trials. Studies involved a wide variety of meditation techniques and reported preliminary positive effects on attention, memory, executive function, processing speed, and general cognition. However, most studies had a high risk of bias and small sample sizes. Reported dropout rates were low and compliance rates high. We conclude that meditation interventions for older adults are feasible, and preliminary evidence suggests that meditation can offset age-related cognitive decline.

  19. The potential effects of meditation on age-related cognitive decline: a systematic review

    PubMed Central

    Gard, Tim; Hölzel, Britta K.; Lazar, Sara W.

    2014-01-01

    With a rapidly aging society it becomes increasingly important to counter normal age-related decline in cognitive functioning. Growing evidence suggests that cognitive training programs may have the potential to counteract this decline. On the basis of a growing body of research that shows that meditation has positive effects on cognition in younger and middle-aged adults, meditation may be able to offset normal age-related cognitive decline or even enhance cognitive function in older adults. In this paper, we review studies investigating the effects of meditation on age-related cognitive decline. We searched the Web of Science (1900 to present), PsycINFO (1597 to present), MEDLINE (1950 to present), and CABI (1910 to present) to identify original studies investigating the effects of meditation on cognition and cognitive decline in the context of aging. Twelve studies were included in the review, six of which were randomized controlled trials. Studies involved a wide variety of meditation techniques and reported preliminary positive effects on attention, memory, executive function, processing speed, and general cognition. However, most studies had a high risk of bias and small sample sizes. Reported dropout rates were low and compliance rates high. We conclude that meditation interventions for older adults are feasible, and preliminary evidence suggests that meditation can offset age-related cognitive decline. PMID:24571182

  20. Cognitive performance and age-related changes in the hippocampal proteome

    PubMed Central

    Freeman, Willard M.; VanGuilder, Heather D.; Bennett, Colleen; Sonntag, William E.

    2008-01-01

    Declining cognitive performance is associated with increasing age, even in the absence of overt pathological processes. We and others have reported that declining cognitive performance is associated with age-related changes in brain glucose utilization, long-term potentiation and paired-pulse facilitation, protein expression, neurotransmitter levels, and trophic factors. However, it is unclear whether these changes are causes or symptoms of the underlying alterations in dendritic and synaptic morphology that occur with age. In this study, we examined the hippocampal proteome for age- and cognition-associated changes in behaviorally stratified young and old rats, using 2-DIGE and MS/MS-MS. Comparison of old cognitively intact with old cognitively impaired animals revealed additional changes that would not have been detected otherwise. Interestingly, not all age-related changes in protein expression were associated with cognitive decline, and distinct differences in protein expression were found when comparing old cognitively intact with old cognitively impaired rats. A large number of protein changes with age were related to the glycolysis/gluconeogenesis pathway. In total, the proteomic changes suggest that age-related alterations act synergistically with other perturbations to result in cognitive decline. This study also demonstrates the importance of examining behaviorally-defined animals in proteomic studies, as comparison of young to old animals regardless of behavioral performance would have failed to detect many cognitive impairment-specific protein expression changes evident when behavioral stratification data was used. PMID:19135133

  1. Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD).

    PubMed

    Parfitt, Geraint J; Xie, Yilu; Geyfman, Mikhail; Brown, Donald J; Jester, James V

    2013-11-01

    Meibomian gland dysfunction (MGD) is frequent with aging and is the primary cause of dry eye disease, the most prevalent ocular complaint. We used a novel 3-D reconstruction technique, immunofluorescent computed tomography (ICT), to characterize meibomian gland keratinization and cell proliferation in a mouse model of age-related meibomian gland dysfunction (ARMGD). To visualize the changes associated with ARMGD, 5-month and 2-year old mouse eyelids were 3-D reconstructed by ICT using antibodies to cytokeratin (CK) 1, 5 and 6 and the proliferation marker Ki67. We quantified total gland, ductal and lipid volume from the reconstructions, observing a dramatic decrease in old glands. In young glands, proliferative ductules suggest a potential site of acinar progenitors that were found to be largely absent in aged, atrophic glands. In the aged mouse, we observed an anterior migration of the mucocutaneous junction (MCJ) and an absence of hyper-keratinization with meibomian gland atrophy. Thus, we propose that changes in the MCJ and glandular atrophy through a loss of meibocyte progenitors are most likely responsible for ARMGD and not ductal hyper-keratinization and gland obstruction.

  2. Absence of ductal hyper-keratinization in Mouse age-related meibomian gland dysfunction (ARMGD)

    PubMed Central

    Parfitt, Geraint J.; Xie, Yilu; Geyfman, Mikhail; Brown, Donald J.; Jester, James V.

    2013-01-01

    Meibomian gland dysfunction (MGD) is frequent with aging and is the primary cause of dry eye disease, the most prevalent ocular complaint. We used a novel 3-D reconstruction technique, immunofluorescent computed tomography (ICT), to characterize meibomian gland keratinization and cell proliferation in a mouse model of age-related meibomian gland dysfunction (ARMGD). To visualize the changes associated with ARMGD, 5-month and 2-year old mouse eyelids were 3-D reconstructed by ICT using antibodies to cytokeratin (CK) 1, 5 and 6 and the proliferation marker Ki67. We quantified total gland, ductal and lipid volume from the reconstructions, observing a dramatic decrease in old glands. In young glands, proliferative ductules suggest a potential site of acinar progenitors that were found to be largely absent in aged, atrophic glands. In the aged mouse, we observed an anterior migration of the mucocutaneous junction (MCJ) and an absence of hyper-keratinization with meibomian gland atrophy. Thus, we propose that changes in the MCJ and glandular atrophy through a loss of meibocyte progenitors are most likely responsible for ARMGD and not ductal hyper-keratinization and gland obstruction. PMID:24259272

  3. Age-related differences in cognition across the adult lifespan in autism spectrum disorder.

    PubMed

    Lever, Anne G; Geurts, Hilde M

    2016-06-01

    It is largely unknown how age impacts cognition in autism spectrum disorder (ASD). We investigated whether age-related cognitive differences are similar, reduced or increased across the adult lifespan, examined cognitive strengths and weaknesses, and explored whether objective test performance is related to subjective cognitive challenges. Neuropsychological tests assessing visual and verbal memory, generativity, and theory of mind (ToM), and a self-report measure assessing cognitive failures were administered to 236 matched participants with and without ASD, aged 20-79 years (IQ > 80). Group comparisons revealed that individuals with ASD had higher scores on visual memory, lower scores on generativity and ToM, and similar performance on verbal memory. However, ToM impairments were no longer present in older (50+ years) adults with ASD. Across adulthood, individuals with ASD demonstrated similar age-related effects on verbal memory, generativity, and ToM, while age-related differences were reduced on visual memory. Although adults with ASD reported many cognitive failures, those were not associated with neuropsychological test performance. Hence, while some cognitive abilities (visual and verbal memory) and difficulties (generativity and semantic memory) persist across adulthood in ASD, others become less apparent in old age (ToM). Age-related differences characteristic of typical aging are reduced or parallel, but not increased in individuals with ASD, suggesting that ASD may partially protect against an age-related decrease in cognitive functioning. Despite these findings, adults with ASD experience many cognitive daily challenges, which highlights the need for adequate social support and the importance of further research into this topic, including longitudinal studies. Autism Res 2016, 9: 666-676. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Age-related decline in cognitive control: the role of fluid intelligence and processing speed

    PubMed Central

    2014-01-01

    Background Research on cognitive control suggests an age-related decline in proactive control abilities whereas reactive control seems to remain intact. However, the reason of the differential age effect on cognitive control efficiency is still unclear. This study investigated the potential influence of fluid intelligence and processing speed on the selective age-related decline in proactive control. Eighty young and 80 healthy older adults were included in this study. The participants were submitted to a working memory recognition paradigm, assessing proactive and reactive cognitive control by manipulating the interference level across items. Results Repeated measures ANOVAs and hierarchical linear regressions indicated that the ability to appropriately use cognitive control processes during aging seems to be at least partially affected by the amount of available cognitive resources (assessed by fluid intelligence and processing speed abilities). Conclusions This study highlights the potential role of cognitive resources on the selective age-related decline in proactive control, suggesting the importance of a more exhaustive approach considering the confounding variables during cognitive control assessment. PMID:24401034

  5. [Cognitive dysfunction in fibromyalgia].

    PubMed

    Gelonch, Olga; Garolera, Maite; Rosselló, Lluís; Pifarré, Josep

    2013-06-01

    Introduccion. Las personas diagnosticadas de fibromialgia refieren de manera muy frecuente quejas sobre su pobre funcionamiento cognitivo. En los ultimos anos ha aumentado el interes para investigar cuales son las alteraciones cognitivas presentes en esta enfermedad. Objetivo. Realizar una revision de las investigaciones publicadas sobre fibromialgia y funciones cognitivas. Desarrollo. Se realizo una busqueda bibliografica con un intervalo temporal desde 1995 hasta 2012. Los terminos de busqueda incluyeron las palabras clave 'fibromyalgia' y 'cognition', 'attention', 'memory', 'language', 'perception', 'executive functions' y 'disexecutive syndrome'. Se seleccionaron 64 registros tras aplicar criterios de inclusion. Conclusiones. Los estudios que han analizado las funciones cognitivas en las personas diagnosticadas de fibromialgia han sido escasos y mayoritariamente con muestras pequenas. Se han identificado deficits principalmente en la memoria de trabajo y en las capacidades atencionales mas complejas, donde el factor distraccion tiene una relevancia importante. Tambien se ha identificado deterioro en la memoria a largo plazo y en las funciones ejecutivas. Existe consenso entre los diversos estudios en que el grado de dolor tiene una relacion directa con el nivel de disfuncion cognitiva, mientras que no existe total consenso para explicar la influencia de la depresion y ansiedad sobre el funcionamiento cognitivo en estos pacientes.

  6. Prefrontal Cortical GABAergic Dysfunction Contributes to Age-Related Working Memory Impairment

    PubMed Central

    Bañuelos, Cristina; Beas, B. Sofia; McQuail, Joseph A.; Gilbert, Ryan J.; Frazier, Charles J.; Setlow, Barry

    2014-01-01

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions. PMID:24599447

  7. Age-Related Impairments in Object-Place Associations Are Not Due to Hippocampal Dysfunction

    PubMed Central

    Hernandez, Abigail R.; Maurer, Andrew P.; Reasor, Jordan E.; Turner, Sean M.; Barthle, Sarah E.; Johnson, Sarah A.; Burke, Sara N.

    2016-01-01

    Age-associated cognitive decline can reduce an individual’s quality of life. As no single neurobiological deficit can account for the wide spectrum of behavioral impairments observed in old age, it is critical to develop an understanding of how interactions between different brain regions change over the life span. The performance of young and aged animals on behaviors that require the hippocampus and cortical regions to interact, however, has not been well characterized. Specifically, the ability to link a spatial location with specific features of a stimulus, such as object identity, relies on the hippocampus, perirhinal and prefrontal cortices. Although aging is associated with dysfunction in each of these brain regions, behavioral measures of functional change within the hippocampus, perirhinal and prefrontal cortices in individual animals are often not correlated. Thus, how dysfunction of a single brain region within this circuit, such as the hippocampus, impacts behaviors that require communication with the perirhinal and prefrontal cortices remains unknown. To address this question, young and aged rats were tested on the interregion dependent object-place paired association task, as well as a hippocampal-dependent test of spatial reference memory. This particular cohort of aged rats did not show deficits on the hippocampal-dependent task, but were significantly impaired at acquiring object-place associations relative to young. These data suggest that behaviors requiring functional connectivity across different regions of the memory network may be particularly sensitive to aging, and can be used to develop models that will clarify the impact of systems-level dysfunction in the elderly. PMID:26413723

  8. Cognitive Abilities Explaining Age-Related Changes in Time Perception of Short and Long Durations

    ERIC Educational Resources Information Center

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2011-01-01

    The current study investigated how the development of cognitive abilities explains the age-related changes in temporal judgment over short and long duration ranges from 0.5 to 30 s. Children (5- and 9-year-olds) as well as adults were given a temporal bisection task with four different duration ranges: a duration range shorter than 1 s, two…

  9. A novel radial water tread maze tracks age-related cognitive decline in mice

    PubMed Central

    Pettan-Brewer, Christina; Touch, Dylan V.; Wiley, Jesse C.; Hopkins, Heather C.; Rabinovitch, Peter S.; Ladiges, Warren C.

    2013-01-01

    There is currently no treatment and cure for age-related dementia and cognitive impairment in humans. Mice suffer from age-related cognitive decline just as people do, but assessment is challenging because of cumbersome and at times stressful performance tasks. We developed a novel radial water tread (RWT) maze and tested male C57BL/6 (B6) and C57BL/6 x Balb/c F1 (CB6F1) mice at ages 4, 12, 20, and 28 months. B6 mice showed a consistent learning experience and memory retention that gradually decreased with age. CB6F1 mice showed a moderate learning experience in the 4 and 12 month groups, which was not evident in the 20 and 28 month groups. In conclusion, CB6F1 mice showed more severe age-related cognitive impairment compared to B6 mice and might be a suitable model for intervention studies. In addition, the RWT maze has a number of operational advantages compared to currently accepted tasks and can be used to assess age-related cognition impairment in B6 and CB6F1 mice as early as 12 months of age. PMID:24106580

  10. Myelin Breakdown Mediates Age-Related Slowing in Cognitive Processing Speed in Healthy Elderly Men

    ERIC Educational Resources Information Center

    Lu, Po H.; Lee, Grace J.; Tishler, Todd A.; Meghpara, Michael; Thompson, Paul M.; Bartzokis, George

    2013-01-01

    Background: To assess the hypothesis that in a sample of very healthy elderly men selected to minimize risk for Alzheimer's disease (AD) and cerebrovascular disease, myelin breakdown in late-myelinating regions mediates age-related slowing in cognitive processing speed (CPS). Materials and methods: The prefrontal lobe white matter and the genu of…

  11. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

    PubMed Central

    Pereira, Ana C.; Lambert, Hilary K.; Grossman, Yael S.; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K.; Calakos, Katina; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2014-01-01

    The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  12. Hypoparathyroidism presenting as cognitive dysfunction.

    PubMed

    Kumar, Gunjan; Kaur, Darshpreet; Aggarwal, Puneet; Khurana, Tilak

    2013-01-01

    Metabolic dysfunction in hypoparathyroidism is an important cause of intracranial calcifications, which cause cognitive impairment depending on the calcified areas leading to difficulties in executing activities of daily living. We report a case of a 25-year-old man who presented with gradually decreasing organisational skills, memory problems and difficulty in carrying out daily activities. CT imaging of the brain showed extensive calcification in the basal ganglia and cerebral white matter. Comprehensive health-related quality of life and cognitive assessment revealed significant affliction in his activities of daily living along with impairment in recall memory, executive functions and verbal fluency. Owing to late diagnosis, chronicity of cognitive problems could not prevent him from discontinuing his college education. PMID:23709145

  13. Hypoparathyroidism presenting as cognitive dysfunction

    PubMed Central

    Kumar, Gunjan; Kaur, Darshpreet; Aggarwal, Puneet; Khurana, Tilak

    2013-01-01

    Metabolic dysfunction in hypoparathyroidism is an important cause of intracranial calcifications, which cause cognitive impairment depending on the calcified areas leading to difficulties in executing activities of daily living. We report a case of a 25-year-old man who presented with gradually decreasing organisational skills, memory problems and difficulty in carrying out daily activities. CT imaging of the brain showed extensive calcification in the basal ganglia and cerebral white matter. Comprehensive health-related quality of life and cognitive assessment revealed significant affliction in his activities of daily living along with impairment in recall memory, executive functions and verbal fluency. Owing to late diagnosis, chronicity of cognitive problems could not prevent him from discontinuing his college education. PMID:23709145

  14. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits.

    PubMed

    Oh, M Matthew; Simkin, Dina; Disterhoft, John F

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  15. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits

    PubMed Central

    Oh, M. Matthew; Simkin, Dina; Disterhoft, John F.

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  16. Foreign language training as cognitive therapy for age-related cognitive decline: A hypothesis for future research

    PubMed Central

    Antoniou, Mark; Gunasekera, Geshri; Wong, Patrick C. M.

    2014-01-01

    Over the next fifty years, the number of older adults is set to reach record levels. Protecting older adults from the age-related effects of cognitive decline is one of the greatest challenges of the next few decades as it places increasing pressure on families, health systems, and economies on a global scale. The disease-state of age-related cognitive decline—Alzheimer's disease and other dementias—hijacks our consciousness and intellectual autonomy. However, there is evidence that cognitively stimulating activities protect against the adverse effects of cognitive decline. Similarly, bilingualism is also considered to be a safeguard. We propose that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. It is recommended that future research should test this potentially fruitful hypothesis. PMID:24051310

  17. Foreign language training as cognitive therapy for age-related cognitive decline: a hypothesis for future research.

    PubMed

    Antoniou, Mark; Gunasekera, Geshri M; Wong, Patrick C M

    2013-12-01

    Over the next fifty years, the number of older adults is set to reach record levels. Protecting older adults from the age-related effects of cognitive decline is one of the greatest challenges of the next few decades as it places increasing pressure on families, health systems, and economies on a global scale. The disease-state of age-related cognitive decline-Alzheimer's disease and other dementias-hijacks our consciousness and intellectual autonomy. However, there is evidence that cognitively stimulating activities protect against the adverse effects of cognitive decline. Similarly, bilingualism is also considered to be a safeguard. We propose that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. It is recommended that future research should test this potentially fruitful hypothesis. PMID:24051310

  18. Cognitive Reserve Modifies Age-Related Alterations in CSF Biomarkers of Alzheimer's Disease

    PubMed Central

    Almeida, Rodrigo P.; Schultz, Stephanie A.; Austin, Benjamin P.; Boots, Elizabeth A.; Dowling, N. Maritza; Gleason, Carey E.; Bendlin, Barbara B.; Sager, Mark; Hermann, Bruce P.; Zetterberg, Henrik; Carlsson, Cindy; Johnson, Sterling; Asthana, Sanjay; Okonkwo, Ozioma C.

    2015-01-01

    Importance Although advancing age is the strongest risk factor for the development of symptomatic Alzheimer's disease (AD), recent studies have shown that there are individual differences in susceptibility to age-related alterations in the biomarkers of AD pathophysiology. Objective In this study, we investigated whether cognitive reserve modifies the adverse influence of age on key cerebrospinal fluid (CSF) biomarkers of AD. Design, Setting, and Participants Cross-sectional cohort of 268 individuals (211 cognitively normal and 57 cognitively impaired) from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center participated in this study. They underwent lumbar puncture for collection of CSF samples, from which amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) were immunoassayed. Additionally, we computed t-tau/Aβ42 and p-tau/Aβ42 ratios. Cognitive reserve was indexed by years of education, with ≥16 years taken to confer high reserve. Covariate-adjusted regression analyses were used to test whether the effect of age on CSF biomarkers was modified by cognitive reserve. Main outcome measures CSF levels of Aβ42, t-tau, p-tau, t-tau/Aβ42, and p-tau/Aβ42. Results There were significant age*cognitive reserve interactions for CSF t-tau (p=.019), p-tau (p=.009), t-tau/Aβ42 (p=.021), and p-tau/Aβ42 (p=.004). Specifically, with advancing age, individuals with high cognitive reserve exhibited attenuated adverse alterations in these CSF biomarkers compared with individuals with low cognitive reserve. This attenuation of age effects by cognitive reserve tended to be more pronounced in the cognitively-impaired group compared with the cognitively-normal group. Lastly, there was modest evidence of a dose response relationship such that the effect of age on the biomarkers was progressively attenuated given additional years of schooling. Conclusions and Relevance In a sample comprised of both cognitively

  19. Superficial white matter as a novel substrate of age-related cognitive decline.

    PubMed

    Nazeri, Arash; Chakravarty, M Mallar; Rajji, Tarek K; Felsky, Daniel; Rotenberg, David J; Mason, Mikko; Xu, Li N; Lobaugh, Nancy J; Mulsant, Benoit H; Voineskos, Aristotle N

    2015-06-01

    Studies of diffusion tensor imaging have focused mainly on the role of deep white matter tract microstructural abnormalities associated with aging and age-related cognitive decline. However, the potential role of superficial white matter (SWM) in aging and, by extension, cognitive-aging, is less clear. Healthy individuals (n = 141; F/M: 66/75 years) across the adult lifespan (18-86 years) underwent diffusion tensor imaging and a battery of cognitive testing. SWM was assessed via a combination of probabilistic tractography and tract-based spatial statistics (TBSS). A widespread inverse relationship of fractional anisotropy (FA) values in SWM with age was observed. SWM-FA adjacent to the precentral gyri was associated with fine-motor-speed, whereas performance in visuomotor-attention/processing speed correlated with SWM-FA in all 4 lobes of the left-hemisphere and in right parieto-occipital SWM-FA (family-wise error corrected p < 0.05). Independent of deep white matter-FA, right frontal and right occipital SWM-FA-mediated age effects on motor-speed and visuomotor-attention/processing speed, respectively. Altogether, our results indicate that SWM-FA contributes uniquely to age-related cognitive performance, and should be considered as a novel biomarker of cognitive-aging. PMID:25834938

  20. Prevention of Age-Related Cognitive Decline: Which Strategies, When, and for Whom?

    PubMed

    Shatenstein, Bryna; Barberger-Gateau, Pascale; Mecocci, Patrizia

    2015-01-01

    Brain aging is characterized by the progressive and gradual accumulation of detrimental changes in structure and function, which increase risk of age-related cognitive decline and dementia. This devastating chronic condition generates a huge social and economic burden and accounts for 11.2% of years of disability. The increase in lifespan has contributed to the increase in dementia prevalence; however, there is currently no curative treatment for most causes of dementias. This paper reviews evidence-based strategies to build, enhance, and preserve cognition over the lifespan by examining approaches that work best, proposing when in the life course they should be implemented, and in which population group(s). Recent work shows a tendency to decreased age-specific prevalence and incidence of cognitive problems and dementia among people born later in the first half of the 20th century, citing higher educational levels, improvements in lifestyle, and better handling of vascular risk factors. This implies that we can target modifiable environmental, lifestyle, and health risk factors to modify the trajectory of cognitive decline before the onset of irreversible dementia. Because building cognitive reserve and prevention of cognitive decline are of critical importance, interventions are needed at every stage of the life course to foster cognitive stimulation, and enable healthy eating habits and physical activity throughout the lifespan. Preventive interventions to decrease and delay cognitive decline and its consequences in old age will also require collaboration and action on the part of policy-makers at the political and social level.

  1. Can psychosocial work conditions protect against age-related cognitive decline? Results from a systematic review.

    PubMed

    Nexø, Mette Andersen; Meng, Annette; Borg, Vilhelm

    2016-07-01

    According to the use it or lose it hypothesis, intellectually stimulating activities postpone age-related cognitive decline. A previous systematic review concluded that a high level of mental work demands and job control protected against cognitive decline. However, it did not distinguish between outcomes that were measured as cognitive function at one point in time or as cognitive decline. Our study aimed to systematically review which psychosocial working conditions were prospectively associated with high levels of cognitive function and/or changes in cognitive function over time. Articles were identified by a systematic literature search (MEDLINE, Web of Science (WOS), PsycNET, Occupational Safety and Health (OSH)). We included only studies with longitudinal designs examining the impact of psychosocial work conditions on outcomes defined as cognitive function or changes in cognitive function. Two independent reviewers compared title-abstract screenings, full-text screenings and quality assessment ratings. Eleven studies were included in the final synthesis and showed that high levels of mental work demands, occupational complexity or job control at one point in time were prospectively associated with higher levels of cognitive function in midlife or late life. However, the evidence to clarify whether these psychosocial factors also affected cognitive decline was insufficient, conflicting or weak. It remains speculative whether job control, job demands or occupational complexity can protect against cognitive decline. Future studies using methodological advancements can reveal whether workers gain more cognitive reserve in midlife and late life than the available evidence currently suggests. The public health implications of a previous review should thereby be redefined accordingly. PMID:27178844

  2. Can psychosocial work conditions protect against age-related cognitive decline? Results from a systematic review

    PubMed Central

    Nexø, Mette Andersen; Meng, Annette; Borg, Vilhelm

    2016-01-01

    According to the use it or lose it hypothesis, intellectually stimulating activities postpone age-related cognitive decline. A previous systematic review concluded that a high level of mental work demands and job control protected against cognitive decline. However, it did not distinguish between outcomes that were measured as cognitive function at one point in time or as cognitive decline. Our study aimed to systematically review which psychosocial working conditions were prospectively associated with high levels of cognitive function and/or changes in cognitive function over time. Articles were identified by a systematic literature search (MEDLINE, Web of Science (WOS), PsycNET, Occupational Safety and Health (OSH)). We included only studies with longitudinal designs examining the impact of psychosocial work conditions on outcomes defined as cognitive function or changes in cognitive function. Two independent reviewers compared title-abstract screenings, full-text screenings and quality assessment ratings. Eleven studies were included in the final synthesis and showed that high levels of mental work demands, occupational complexity or job control at one point in time were prospectively associated with higher levels of cognitive function in midlife or late life. However, the evidence to clarify whether these psychosocial factors also affected cognitive decline was insufficient, conflicting or weak. It remains speculative whether job control, job demands or occupational complexity can protect against cognitive decline. Future studies using methodological advancements can reveal whether workers gain more cognitive reserve in midlife and late life than the available evidence currently suggests. The public health implications of a previous review should thereby be redefined accordingly. PMID:27178844

  3. Anthropological contributions to the understanding of age-related cognitive impairment.

    PubMed

    Whitehouse, Peter J; Gaines, Atwood D; Lindstrom, Heather; Graham, Janice E

    2005-05-01

    Medical anthropology has not only helped us to understand the social, political, and ethical foundations of modern biomedicine, but also improved the identification and treatment of patients in various geographic, sociological, and medical contexts. In this article, we present an anthropological perspective on the understanding, diagnosis, and treatment of age-related cognitive impairment. The ubiquity of cognitive changes in the growing number of elderly people around the world, and the many diverse responses that human communities have taken to such challenges, require biocultural approaches. Anthropology can serve as an ally in accomplishing the goal of improving the quality of life of those with cognitive impairment by highlighting the role of sociocultural processes that influence the development, meaning, and experience of dementia. So too can it serve as a framework for criticism of biomedical research, theory, and practice. PMID:15847845

  4. Psychopathy: cognitive and neural dysfunction.

    PubMed

    R Blair, R James

    2013-06-01

    Psychopathy is a developmental disorder marked by emotional deficits and an increased risk for antisocial behavior. It is not equivalent to the diagnosis Antisocial Personality Disorder, which concentrates only on the increased risk for antisocial behavior and not a specific cause-ie, the reduced empathy and guilt that constitutes the emotional deficit. The current review considers data from adults with psychopathy with respect to the main cognitive accounts of the disorder that stress either a primary attention deficit or a primary emotion deficit. In addition, the current review considers data regarding the neurobiology of this disorder. Dysfunction within the amygdala's role in reinforcement learning and the role of ventromedial frontal cortex in the representation of reinforcement value is stressed. Data is also presented indicating potential difficulties within parts of temporal and posterior cingulate cortex. Suggestions are made with respect to why these deficits lead to the development of the disorder.

  5. Psychopathy: cognitive and neural dysfunction.

    PubMed

    R Blair, R James

    2013-06-01

    Psychopathy is a developmental disorder marked by emotional deficits and an increased risk for antisocial behavior. It is not equivalent to the diagnosis Antisocial Personality Disorder, which concentrates only on the increased risk for antisocial behavior and not a specific cause-ie, the reduced empathy and guilt that constitutes the emotional deficit. The current review considers data from adults with psychopathy with respect to the main cognitive accounts of the disorder that stress either a primary attention deficit or a primary emotion deficit. In addition, the current review considers data regarding the neurobiology of this disorder. Dysfunction within the amygdala's role in reinforcement learning and the role of ventromedial frontal cortex in the representation of reinforcement value is stressed. Data is also presented indicating potential difficulties within parts of temporal and posterior cingulate cortex. Suggestions are made with respect to why these deficits lead to the development of the disorder. PMID:24174892

  6. Psychopathy: cognitive and neural dysfunction

    PubMed Central

    R. Blair, R. James

    2013-01-01

    Psychopathy is a developmental disorder marked by emotional deficits and an increased risk for antisocial behavior. It is not equivalent to the diagnosis Antisocial Personality Disorder, which concentrates only on the increased risk for antisocial behavior and not a specific cause—ie, the reduced empathy and guilt that constitutes the emotional deficit. The current review considers data from adults with psychopathy with respect to the main cognitive accounts of the disorder that stress either a primary attention deficit or a primary emotion deficit. In addition, the current review considers data regarding the neurobiology of this disorder. Dysfunction within the amygdala's role in reinforcement learning and the role of ventromedial frontal cortex in the representation of reinforcement value is stressed. Data is also presented indicating potential difficulties within parts of temporal and posterior cingulate cortex. Suggestions are made with respect to why these deficits lead to the development of the disorder. PMID:24174892

  7. Nutraceuticals, aging, and cognitive dysfunction.

    PubMed

    Head, Elizabeth; Zicker, Steven C

    2004-01-01

    Decline in cognitive function that accompanies aging in dogs might have a biological basis, and many of the disorders associated with aging in canines might be preventable through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of laboratory and clinical studies, antioxidants might be one class of nutraceutical that benefits aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which can lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes might lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs; however, determining which compounds, combinations, dosage ranges, when to initiate intervention, and long-term effects constitute critical gaps in knowledge about this subject.

  8. Age-Related Cognitive Deficits In Rhesus Monkeys Mirror Human Deficits on an Automated Test Battery

    PubMed Central

    Nagahara, Alan H.; Bernot, Tim; Tuszynski, Mark H.

    2010-01-01

    Aged non-human primates are a valuable model for gaining insight into mechanisms underlying neural decline with aging and during the course of neurodegenerative disorders. Behavioral studies are a valuable component of aged primate models, but are difficult to perform, time consuming, and often of uncertain relevance to human cognitive measures. We now report findings from an automated cognitive test battery in aged primates using equipment that is identical, and tasks that are similar, to those employed in human aging and Alzheimer’s disease studies. Young (7.1 ± 0.8 years) and aged (23.0 ± 0.5 years) rhesus monkeys underwent testing on a modified version of the Cambridge Automated Neuropsychological Test Battery (CANTAB), examining cognitive performance on separate tasks that sample features of visuospatial learning, spatial working memory, discrimination learning, and skilled motor performance. We find selective cognitive impairments among aged subjects in visuospatial learning and spatial working memory, but not in delayed recall of previously learned discriminations. Aged monkeys also exhibit slower speed in skilled motor function. Thus, aged monkeys behaviorally characterized on a battery of automated tests reveal patterns of age-related cognitive impairment that mirror in quality and severity those of aged humans, and differ fundamentally from more severe patterns of deficits observed in Alzheimer’s Disease. PMID:18760505

  9. High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution

    PubMed Central

    Puccioni, Olga; Vallesi, Antonino

    2012-01-01

    Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors. PMID:23248595

  10. Age-related differences in gap detection: Effects of task difficulty and cognitive ability

    PubMed Central

    Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2009-01-01

    Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap-detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap

  11. Inspection Time and Cognitive Abilities in Twins Aged 7 to 17 Years: Age-Related Changes, Heritability and Genetic Covariance

    ERIC Educational Resources Information Center

    Edmonds, Caroline J.; Isaacs, Elizabeth B.; Visscher, Peter M.; Rogers, Mary; Lanigan, Julie; Singhal, Atul; Lucas, Alan; Gringras, Paul; Denton, Jane; Deary, Ian J.

    2008-01-01

    We studied the age-related differences in inspection time and multiple cognitive domains in a group of monozygotic (MZ) and dizygotic (DZ) twins aged 7 to 17 years. Data from 111 twin pairs and 19 singleton siblings were included. We found clear age-related trends towards more efficient visual information processing in older participants. There…

  12. Age-related cognitive decline during normal aging: the complex effect of education.

    PubMed

    Ardila, A; Ostrosky-Solis, F; Rosselli, M; Gómez, C

    2000-08-01

    The purpose of this study was to further analyze the effects of education on cognitive decline during normal aging. An 806-subject sample was taken from five different Mexican regions. Participants ranged in age from 16 to 85 years. Subjects were grouped into four educational levels: illiterate, 1-4, 5-9, and 10 or more years of education, and four age ranges: 16-30, 31-50, 51-65, and 66-85 years. A brief neuropsychological test battery (NEUROPSI), standardized and normalized in Spanish, was administered. The NEUROPSI test battery includes assessment of orientation, attention, memory, language, visuoperceptual abilities, motor skills, and executive functions. In general, test scores were strongly associated with level of educational, and differences among age groups were smaller than differences among education groups. However, there was an interaction between age and education such as that among illiterate individuals scores of participants 31-50 years old were higher than scores of participants 16-30 years old for over 50% of the tests. Different patterns of interaction among educational groups were distinguished. It was concluded that: (a) The course of life-span changes in cognition are affected by education. Among individuals with a low level of education, best neuropsychological test performance is observed at an older age than among higher-educated subjects; and (b) there is not a single relationship between age-related cognitive decline and education, but different patterns may be found, depending upon the specific cognitive domain. PMID:14590204

  13. Age-related motor dysfunction and neuropathology in a transgenic mouse model of multiple system atrophy.

    PubMed

    Fernagut, P O; Meissner, W G; Biran, M; Fantin, M; Bassil, F; Franconi, J M; Tison, F

    2014-03-01

    Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by a progressive degeneration of the striatonigral, olivo-ponto-cerebellar, and autonomic systems. Glial cytoplasmic inclusions (GCIs) containing alpha-synuclein represent the hallmark of MSA and are recapitulated in mice expressing alpha-synuclein in oligodendrocytes. To assess if oligodendroglial expression of human wild-type alpha-synuclein in mice (proteolipid promoter, PLP-SYN) could be associated with age-related deficits, PLP-SYN and wild-type mice were assessed for motor function, brain morphometry, striatal levels of dopamine and metabolites, dopaminergic loss, and distribution of GCIs. PLP-SYN displayed age-related impairments on a beam-traversing task. MRI revealed a significantly smaller brain volume in PLP-SYN mice at 12 months, which further decreased at 18 months together with increased volume of ventricles and cortical atrophy. The distribution of GCIs was reminiscent of MSA with a high burden in the basal ganglia. Mild dopaminergic cell loss was associated with decreased dopamine turnover at 18 months. These data indicate that PLP-SYN mice may recapitulate some of the progressive features of MSA and deliver endpoints for the evaluation of therapeutic strategies.

  14. [The cognitive dysfunction in Parkinson's disease].

    PubMed

    Kanazawa, Akira

    2004-09-01

    Parkinson's disease (PD) is a slowly progressive disorder which begins with motor symptoms. Several cognitive deficits can be observed in nondemented patients with PD during their history. The core symptom in the cognitive deficits in PD is the executive dysfunction. Neuropsychological tests such as Wisconsin Card Sorting Test, Trail Making Test are used to measure the degree of this dysfunction. Executive dysfunction is thought related to abnormalities in the dorsolateral prefrontal circuit which largely passes through the caudate nucleus. The dysfunction emerges as the pathology spreads to the nigrocaudate project corresponding to Hoehn & Yahr stage II-III. Effective therapy for cognitive dysfunction in PD remains elusive, however donepezil, Attention Process Training, Music therapy and Transcranial magnetic stimulation have been reported to have partial efficacy. PMID:15462384

  15. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  16. Effects of a computer-based cognitive exercise program on age-related cognitive decline.

    PubMed

    Bozoki, Andrea; Radovanovic, Mirjana; Winn, Brian; Heeter, Carrie; Anthony, James C

    2013-01-01

    We developed a 'senior friendly' suite of online 'games for learning' with interactive calibration for increasing difficulty, and evaluated the feasibility of a randomized clinical trial to test the hypothesis that seniors aged 60-80 can improve key aspects of cognitive ability with the aid of such games. Sixty community-dwelling senior volunteers were randomized to either an online game suite designed to train multiple cognitive abilities, or to a control arm with online activities that simulated the look and feel of the games but with low level interactivity and no calibration of difficulty. Study assessment included measures of recruitment, retention and play-time. Cognitive change was measured with a computerized assessment battery administered just before and within two weeks after completion of the six-week intervention. Impediments to feasibility included: limited access to in-home high-speed internet, large variations in the amount of time devoted to game play, and a reluctance to pursue more challenging levels. Overall analysis was negative for assessed performance (transference effects) even though subjects improved on the games themselves. Post hoc analyses suggest that some types of games may have more value than others, but these effects would need to be replicated in a study designed for that purpose. We conclude that a six-week, moderate-intensity computer game-based cognitive intervention can be implemented with high-functioning seniors, but the effect size is relatively small. Our findings are consistent with Owen et al. (2010), but there are open questions about whether more structured, longer duration or more intensive 'games for learning' interventions might yield more substantial cognitive improvement in seniors.

  17. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    PubMed

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination.

  18. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates

    PubMed Central

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination. PMID:26716699

  19. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    PubMed

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination. PMID:26716699

  20. Enriched childhood experiences moderate age-related motor and cognitive decline.

    PubMed

    Metzler, Megan J; Saucier, Deborah M; Metz, Gerlinde A

    2013-01-01

    Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks.

  1. Enriched childhood experiences moderate age-related motor and cognitive decline

    PubMed Central

    Metzler, Megan J.; Saucier, Deborah M.; Metz, Gerlinde A.

    2012-01-01

    Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks. PMID:23423702

  2. Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection.

    PubMed

    Matamales, Miriam; Skrbis, Zala; Hatch, Robert J; Balleine, Bernard W; Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-04-20

    For goal-directed action to remain adaptive, new strategies are required to accommodate environmental changes, a process for which parafascicular thalamic modulation of cholinergic interneurons in the striatum (PF-to-CIN) appears critical. In the elderly, however, previously acquired experience frequently interferes with new learning, yet the source of this effect has remained unexplored. Here, combining sophisticated behavioral designs, cell-specific manipulation, and extensive neuronal imaging, we investigated the involvement of the PF-to-CIN pathway in this process. We found functional alterations of this circuit in aged mice that were consistent with their incapacity to update initial goal-directed learning, resulting in faulty activation of projection neurons in the striatum. Toxicogenetic ablation of CINs in young mice reproduced these behavioral and neuronal defects, suggesting that age-related deficits in PF-to-CIN function reduce the ability of older individuals to resolve conflict between actions, likely contributing to impairments in adaptive goal-directed action and executive control in aging. VIDEO ABSTRACT. PMID:27100198

  3. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction

    PubMed Central

    Mikhed, Yuliya; Daiber, Andreas; Steven, Sebastian

    2015-01-01

    The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan. PMID:26184181

  4. Lower cognitive function in patients with age-related macular degeneration: a meta-analysis

    PubMed Central

    Zhou, Li-Xiao; Sun, Cheng-Lin; Wei, Li-Juan; Gu, Zhi-Min; Lv, Liang; Dang, Yalong

    2016-01-01

    Objective To investigate the cognitive impairment in patients with age-related macular degeneration (AMD). Methods Relevant articles were identified through a search of the following electronic databases through October 2015, without language restriction: 1) PubMed; 2) the Cochrane Library; 3) EMBASE; 4) ScienceDirect. Meta-analysis was conducted using STATA 12.0 software. Standardized mean differences with corresponding 95% confidence intervals were calculated. All of the included studies met the following four criteria: 1) the study design was a case–control or randomized controlled trial (RCT) study; 2) the study investigated cognitive function in the patient with AMD; 3) the diagnoses of AMD must be provided; 4) there were sufficient scores data to extract for evaluating cognitive function between cases and controls. The Newcastle–Ottawa Scale criteria were used to assess the methodological quality of the studies. Results Of the initial 278 literatures, only six case–control and one RCT studies met all of the inclusion criteria. A total of 794 AMD patients and 1,227 controls were included in this study. Five studies were performed with mini-mental state examination (MMSE), two studies with animal fluency, two studies with trail making test (TMT)-A and -B, one study with Mini-Cog. Results of the meta-analysis revealed lower cognitive function test scores in patients with AMD, especially with MMSE and Mini-Cog test (P≤0.001 for all). The results also showed that differences in the TMT-A (except AMD [total] vs controls) and TMT-B test had no statistical significance (P>0.01). The Newcastle–Ottawa Scale score was ≥5 for all of the included studies. Based on the sensitivity analysis, no single study influenced the overall pooled estimates. Conclusion This meta-analysis suggests lower cognitive function test scores in patients with AMD, especially with MMSE and Mini-Cog test. The other cognitive impairment screening tests, such as animal fluency test and

  5. Age-Related Differences in Functional Connectivity During Cognitive Emotion Regulation

    PubMed Central

    Kensinger, Elizabeth A.

    2014-01-01

    Objectives. Successful emotion regulation partly depends on our capacity to modulate emotional responses through the use of cognitive strategies. Age may affect the strategies employed most often; thus, we examined younger and older adults’ neural network connectivity when employing two different strategies: cognitive reappraisal and selective attention. Method. The current study used psychophysiological interaction analyses to examine functional connectivity with a region of anterior cingulate cortex (ACC) because it is a core part of an emotion regulation network showing relative structural preservation with age. Results. Functional connectivity between ACC and prefrontal cortex (PFC) was greater for reappraisal relative to selective attention and passive viewing conditions for both age groups. For younger adults, ACC was more strongly connected with lateral dorsolateral PFC, ventrolateral PFC, dorsomedial PFC, and posterior cingulate regions during reappraisal. For older adults, stronger connectivity during reappraisal was observed primarily in ventromedial PFC and orbitofrontal cortex. Discussion. Our results suggest that although young and older adults engage PFC networks during regulation, and particularly during reappraisal, the regions within these networks might differ. Additionally, these results clarify that, despite prior evidence for age-related declines in the structure and function of those regions, older adults are able to recruit ACC and PFC regions as part of coherent network during emotion regulation. PMID:25209373

  6. ROLE OF SOLUBLE EPOXIDE HYDROLASE IN AGE-RELATED VASCULAR COGNITIVE DECLINE

    PubMed Central

    Nelson, Jonathan W.; Young, Jennifer M.; Borkar, Rohan; Woltjer, Randy L.; Quinn, Joseph F.; Silbert, Lisa C.; Grafe, Marjorie R.; Alkayed, Nabil J.

    2014-01-01

    P450 eicosanoids are important regulators of the cerebral microcirculation, but their role in cerebral small vessel disease is unclear. We tested the hypothesis that vascular cognitive impairment (VCI) is linked to reduced cerebral microvascular eicosanoid signaling. We analyzed human brain tissue from individuals formerly enrolled in the Oregon Brain Aging Study, who had a history of cognitive impairment histopathological evidence of microvascular disease. VCI subjects had significantly higher lesion burden both on premortem MRI and postmortem histopathology compared to age- and sex-matched controls. Mass spectrometry-based eicosanoid analysis revealed that 14,15-dihydroxyeicosatrienoic acid (DHET) was elevated in cortical brain tissue from VCI subjects. Immunoreactivity of soluble epoxide hydrolase (sEH), the enzyme responsible for 14,15-DHET formation, was localized to cerebral microvascular endothelium, and was enhanced in microvessels of affected tissue. Finally, we evaluated the genotype frequency of two functional single nucleotide polymorphisms of sEH gene EPHX2 in VCI and control groups. Our findings support a role for sEH and a potential benefit from sEH inhibitors in age-related VCI. PMID:25277097

  7. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation.

    PubMed

    Kodali, Maheedhar; Parihar, Vipan K; Hattiangady, Bharathi; Mishra, Vikas; Shuai, Bing; Shetty, Ashok K

    2015-01-28

    Greatly waned neurogenesis, diminished microvasculature, astrocyte hypertrophy and activated microglia are among the most conspicuous structural changes in the aged hippocampus. Because these alterations can contribute to age-related memory and mood impairments, strategies efficacious for mitigating these changes may preserve cognitive and mood function in old age. Resveratrol, a phytoalexin found in the skin of red grapes having angiogenic and antiinflammatory properties, appears ideal for easing these age-related changes. Hence, we examined the efficacy of resveratrol for counteracting age-related memory and mood impairments and the associated detrimental changes in the hippocampus. Two groups of male F344 rats in late middle-age having similar learning and memory abilities were chosen and treated with resveratrol or vehicle for four weeks. Analyses at ~25 months of age uncovered improved learning, memory and mood function in resveratrol-treated animals but impairments in vehicle-treated animals. Resveratrol-treated animals also displayed increased net neurogenesis and microvasculature, and diminished astrocyte hypertrophy and microglial activation in the hippocampus. These results provide novel evidence that resveratrol treatment in late middle age is efficacious for improving memory and mood function in old age. Modulation of the hippocampus plasticity and suppression of chronic low-level inflammation appear to underlie the functional benefits mediated by resveratrol.

  8. Cognitive aging explains age-related differences in face-based recognition of basic emotions except for anger and disgust.

    PubMed

    Suzuki, Atsunobu; Akiyama, Hiroko

    2013-01-01

    This study aimed at a detailed understanding of the possible dissociable influences of cognitive aging on the recognition of facial expressions of basic emotions (happiness, surprise, fear, anger, disgust, and sadness). The participants were 36 older and 36 young adults. They viewed 96 pictures of facial expressions and were asked to choose one emotion that best described each. Four cognitive tasks measuring the speed of processing and fluid intelligence were also administered, the scores of which were used to compute a composite measure of general cognitive ability. A series of hierarchical regression analyses revealed that age-related deficits in identifying happiness, surprise, fear, and sadness were statistically explained by general cognitive ability, while the differences in anger and disgust were not. This provides clear evidence that age-related cognitive impairment remarkably and differentially affects the recognition of basic emotions, contrary to the common view that cognitive aging has a uniformly minor effect.

  9. Ex vivo T2 relaxation: associations with age-related neuropathology and cognition.

    PubMed

    Dawe, Robert J; Bennett, David A; Schneider, Julie A; Leurgans, Sue E; Kotrotsou, Aikaterini; Boyle, Patricia A; Arfanakis, Konstantinos

    2014-07-01

    The transverse relaxation time constant, T(2), is sensitive to brain tissue's free water content and the presence of paramagnetic materials such as iron. In this study, ex vivo magnetic resonance imaging was used to investigate alterations in T(2) related to Alzheimer's disease (AD) pathology and other types of neuropathology common in old age, as well as the relationship between T(2) alterations and cognition. Cerebral hemispheres were obtained from 371 deceased older adults. Using fast spin-echo imaging with multiple echo times, T(2) maps were produced and warped to a study-specific template. Hemispheres underwent neuropathologic examination for identification of AD pathology and other common age-related neuropathologies. Voxelwise linear regression was carried out to detect regions of pathology-related T(2) alterations and, in separate analyses, regions in which T(2) alterations were linked to antemortem cognitive performance. AD pathology was associated with T(2) prolongation in white matter of all lobes and T(2) shortening in the basal ganglia and insula. Gross infarcts were associated with T(2) prolongation in white matter of all lobes, and in the thalamus and basal ganglia. Hippocampal sclerosis was associated with T(2) prolongation in the hippocampus and white matter of the temporal lobe. After controlling for neuropathology, T(2) prolongation in the frontal lobe white matter was associated with lower performance in the episodic, semantic, and working memory domains. In addition, voxelwise analysis of in vivo and ex vivo T(2) values indicated a positive relationship between the two, though further investigation is necessary to accurately translate findings of the present study to the in vivo case.

  10. Processing Speed, Inhibitory Control, and Working Memory: Three Important Factors to Account for Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Pereiro Rozas, Arturo X.; Juncos-Rabadan, Onesimo; Gonzalez, Maria Soledad Rodriguez

    2008-01-01

    Processing speed, inhibitory control and working memory have been identified as the main possible culprits of age-related cognitive decline. This article describes a study of their interrelationships and dependence on age, including exploration of whether any of them mediates between age and the others. We carried out a LISREL analysis of the…

  11. Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey

    PubMed Central

    Ngwenya, Laura B.; Heyworth, Nadine C.; Shwe, Yamin; Moore, Tara L.; Rosene, Douglas L.

    2015-01-01

    The generation of new neurons in the adult mammalian brain is well-established for the hippocampal dentate gyrus (DG). However, the role of neurogenesis in hippocampal function and cognition, how it changes in aging, and the mechanisms underlying this are yet to be elucidated in the monkey brain. To address this, we investigated adult neurogenesis in the DG of 42 rhesus monkeys (39 cognitively tested) ranging in age from young adult to the elderly. We report here that there is an age-related decline in proliferation and a delayed development of adult neuronal phenotype. Additionally, we show that many of the new neurons survive throughout the lifetime of the animal and may contribute to a modest increase in total neuron number in the granule cell layer of the DG over the adult life span. Lastly, we find that measures of decreased adult neurogenesis are only modestly predictive of age-related cognitive impairment. PMID:26236203

  12. Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey.

    PubMed

    Ngwenya, Laura B; Heyworth, Nadine C; Shwe, Yamin; Moore, Tara L; Rosene, Douglas L

    2015-01-01

    The generation of new neurons in the adult mammalian brain is well-established for the hippocampal dentate gyrus (DG). However, the role of neurogenesis in hippocampal function and cognition, how it changes in aging, and the mechanisms underlying this are yet to be elucidated in the monkey brain. To address this, we investigated adult neurogenesis in the DG of 42 rhesus monkeys (39 cognitively tested) ranging in age from young adult to the elderly. We report here that there is an age-related decline in proliferation and a delayed development of adult neuronal phenotype. Additionally, we show that many of the new neurons survive throughout the lifetime of the animal and may contribute to a modest increase in total neuron number in the granule cell layer of the DG over the adult life span. Lastly, we find that measures of decreased adult neurogenesis are only modestly predictive of age-related cognitive impairment. PMID:26236203

  13. News of cognitive cure for age-related brain shrinkage is premature: a comment on Burgmans et al. (2009).

    PubMed

    Raz, Naftali; Lindenberger, Ulman

    2010-03-01

    The extant longitudinal literature consistently supports the notion of age-related declines in human brain volume. In a report on a longitudinal cognitive follow-up with cross-sectional brain measurements, Burgmans and colleagues (2009) claim that the extant studies overestimate brain volume declines, presumably due to inclusion of participants with preclinical cognitive pathology. Moreover, the authors of the article assert that such declines are absent among optimally healthy adults who maintain cognitive stability for several years. In this comment accompanied by reanalysis of previously published data, we argue that these claims are incorrect on logical, methodological, and empirical grounds. PMID:20230118

  14. Cognitive dysfunction in pediatric multiple sclerosis

    PubMed Central

    Suppiej, Agnese; Cainelli, Elisa

    2014-01-01

    Cognitive and neuropsychological impairments are well documented in adult multiple sclerosis (MS). Research has only recently focused on cognitive disabilities in pediatric cases, highlighting some differences between pediatric and adult cases. Impairments in several functions have been reported in children, particularly in relation to attention, processing speed, visual–motor skills, and language. Language seems to be particularly vulnerable in pediatric MS, unlike in adults in whom it is usually preserved. Deficits in executive functions, which are considered MS-specific in adults, have been inconsistently reported in children. In children, as compared to adults, the relationship between cognitive dysfunctions and the two other main symptoms of MS, fatigue and psychiatric disorders, was poorly explored. Furthermore, data on the correlations of cognitive impairments with clinical and neuroimaging features are scarce in children, and the results are often incongruent; interestingly, involvement of corpus callosum and reduced thalamic volume differentiated patients identified as having a cognitive impairment from those without a cognitive impairment. Further studies about pediatric MS are needed in order to better understand the impact of the disease on brain development and the resulting effect on cognitive functions, particularly with respect to different therapeutic strategies. PMID:25092984

  15. Guidelines for the Evaluation of Dementia and Age-Related Cognitive Change

    ERIC Educational Resources Information Center

    American Psychologist, 2012

    2012-01-01

    Dementia in its many forms is a leading cause of functional limitation among older adults worldwide and will continue to ascend in global health importance as populations continue to age and effective cures remain elusive. The following guidelines were developed for psychologists who perform evaluations of dementia and age-related cognitive…

  16. Age-Related Decline in Brain Resources Modulates Genetic Effects on Cognitive Functioning

    PubMed Central

    Lindenberger, Ulman; Nagel, Irene E.; Chicherio, Christian; Li, Shu-Chen; Heekeren, Hauke R.; Bäckman, Lars

    2008-01-01

    Individual differences in cognitive performance increase from early to late adulthood, likely reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and anatomical brain resources in normal aging modulate the effects of common genetic variations on cognitive functioning. Our hypothesis is based on the assumption that the function relating brain resources to cognition is nonlinear, so that genetic differences exert increasingly large effects on cognition as resources recede from high to medium levels in the course of aging. Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008), who reported that the effects of the Catechol-O-Methyltransferase (COMT) gene on cognitive performance are magnified in old age and interacted with the Brain-Derived Neurotrophic Factor (BDNF) gene. We conclude that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to other polymorphisms are discussed. (150 of 150 words) PMID:19225597

  17. Biomarkers of postoperative delirium and cognitive dysfunction

    PubMed Central

    Androsova, Ganna; Krause, Roland; Winterer, Georg; Schneider, Reinhard

    2015-01-01

    Elderly surgical patients frequently experience postoperative delirium (POD) and the subsequent development of postoperative cognitive dysfunction (POCD). Clinical features include deterioration in cognition, disturbance in attention and reduced awareness of the environment and result in higher morbidity, mortality and greater utilization of social financial assistance. The aging Western societies can expect an increase in the incidence of POD and POCD. The underlying pathophysiological mechanisms have been studied on the molecular level albeit with unsatisfying small research efforts given their societal burden. Here, we review the known physiological and immunological changes and genetic risk factors, identify candidates for further studies and integrate the information into a draft network for exploration on a systems level. The pathogenesis of these postoperative cognitive impairments is multifactorial; application of integrated systems biology has the potential to reconstruct the underlying network of molecular mechanisms and help in the identification of prognostic and diagnostic biomarkers. PMID:26106326

  18. Cognitive Dysfunction in Obsessive-Compulsive Disorder.

    PubMed

    Benzina, Nabil; Mallet, Luc; Burguière, Eric; N'Diaye, Karim; Pelissolo, Antoine

    2016-09-01

    Obsessive-compulsive disorder (OCD) is a mental disorder featuring obsessions (intrusive thoughts) and compulsions (repetitive behaviors performed in the context of rigid rituals). There is strong evidence for a neurobiological basis of this disorder, involving limbic cortical regions and related basal ganglion areas. However, more research is needed to lift the veil on the precise nature of that involvement and the way it drives the clinical expression of OCD. Altered cognitive functions may underlie the symptoms and thus draw a link between the clinical expression of the disorder and its neurobiological etiology. Our extensive review demonstrates that OCD patients do present a broad range of neuropsychological dysfunctions across all cognitive domains (memory, attention, flexibility, inhibition, verbal fluency, planning, decision-making), but some methodological issues temper this observation. Thus, future research should have a more integrative approach to cognitive functioning, gathering contributions of both experimental psychology and more fundamental neurosciences. PMID:27423459

  19. Age-related changes in the cerebral substrates of cognitive procedural learning.

    PubMed

    Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2009-04-01

    Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative, and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus, and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, the engagement of frontal and cingulate regions persisted in the older group as learning continued, whereas it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. PMID:18537110

  20. Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness.

    PubMed

    Boot, Walter R; Champion, Michael; Blakely, Daniel P; Wright, Timothy; Souders, Dustin J; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a "brain fitness" game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants' ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why. PMID:23378841

  1. Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness.

    PubMed

    Boot, Walter R; Champion, Michael; Blakely, Daniel P; Wright, Timothy; Souders, Dustin J; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a "brain fitness" game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants' ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why.

  2. Video Games as a Means to Reduce Age-Related Cognitive Decline: Attitudes, Compliance, and Effectiveness

    PubMed Central

    Boot, Walter R.; Champion, Michael; Blakely, Daniel P.; Wright, Timothy; Souders, Dustin J.; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a “brain fitness” game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants’ ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why. PMID:23378841

  3. Disconnection as a Mechanism for Cognitive Dysfunction in Multiple Sclerosis

    ERIC Educational Resources Information Center

    Dineen, R. A.; Vilisaar, J.; Hlinka, J.; Bradshaw, C. M.; Morgan, P. S.; Constantinescu, C. S.; Auer, D. P.

    2009-01-01

    Disconnection of cognitively important processing regions by injury to the interconnecting white matter provides a potential mechanism for cognitive dysfunction in multiple sclerosis. The contribution of tract-specific white matter injury to dysfunction in different cognitive domains in patients with multiple sclerosis has not previously been…

  4. Computer Simulations of Loss of Organization of Neurons as a Model for Age-related Cognitive Decline

    NASA Astrophysics Data System (ADS)

    Cruz, Luis; Fengometidis, Elene; Jones, Frank; Jampani, Srinivas

    2011-03-01

    In normal aging, brains suffer from progressive cognitive decline not linked with loss of neurons common in neurodegenerative disorders such as Alzheimer's disease. However, in some brain areas neurons have lost positional organization specifically within microcolumns: arrays of interconnected neurons which may constitute fundamental computational units in the brain. This age-related loss of organization, likely a result of micron-sized random displacements in neuronal positions, is hypothesized to be a by-product of the loss of support from the surrounding medium, including dendrites. Using a dynamical model applied to virtual 3D representation of neuronal arrangements, that previously showed loss of organization in brains of cognitively tested rhesus monkeys, the relationship between these displacements and changes to the surrounding dendrite network are presented. The consequences of these displacements on the structure of the dendritic network, with possible disruptions in signal synchrony important to cognitive function, are discussed. NIH R01AG021133.

  5. Formaldehyde as a trigger for protein aggregation and potential target for mitigation of age-related, progressive cognitive impairment.

    PubMed

    Su, Tao; Monte, Woodrow C; Hu, Xintian; He, Yingge; He, Rongqiao

    2016-01-01

    Recently, formaldehyde (FA), existing in a number of different cells including neural cells, was found to affect age-related cognitive impairment. Oral administration of methanol (the metabolic precursor of FA) triggers formation of senile plaques (SPs) and Tau hyperphosphorylation in the brains of monkeys with memory decline. Intraperitoneal injection of FA leads to hyperphosphorylation of Tau in wild-type mouse brains and N2a cells through activation of glycogen synthase kinase-3β (GSK-3β). Furthermore, formaldehyde at low concentrations can directly induce Tau aggregation and amyloid β (Aβ) peptide deposits in vitro. Formaldehyde-induced Tau aggregation is implicated in cytotoxicity and neural cell apoptosis. Clarifying how FA triggers Aβ deposits and Tau hyperphosphorlyation will not only improve our understanding of the molecular and cellular mechanisms of age-related cognitive impairment but will also contribute to the ongoing investigation of alternate targets for new drugs. Here, we review the role of FA, particularly that of endogenous origin, in protein aggregation and as a potential drug intervention in the development of agerelated cognitive impairment.

  6. Working memory in middle-aged males: age-related brain activation changes and cognitive fatigue effects.

    PubMed

    Klaassen, Elissa B; Evers, Elisabeth A T; de Groot, Renate H M; Backes, Walter H; Veltman, Dick J; Jolles, Jelle

    2014-02-01

    We examined the effects of aging and cognitive fatigue on working memory (WM) related brain activation using functional magnetic resonance imaging. Age-related differences were investigated in 13 young and 16 middle-aged male school teachers. Cognitive fatigue was induced by sustained performance on cognitively demanding tasks (compared to a control condition). Results showed a main effect of age on left dorsolateral prefrontal and superior parietal cortex activation during WM encoding; greater activation was evident in middle-aged than young adults regardless of WM load or fatigue condition. An interaction effect was found in the dorsomedial prefrontal cortex (DMPFC); WM load-dependent activation was elevated in middle-aged compared to young in the control condition, but did not differ in the fatigue condition due to a reduction in activation in middle-aged in contrast to an increase in activation in the young group. These findings demonstrate age-related activation differences and differential effects of fatigue on activation in young and middle-aged adults.

  7. Age-related cognitive impairments in mice with a conditional ablation of the neural cell adhesion molecule.

    PubMed

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-04-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However, whether aging is associated with NCAM alterations that might contribute to age-related cognitive decline is not currently known. In this study, we determined whether conditional NCAM-deficient mice display increased vulnerability to age-related cognitive and emotional alterations. We assessed the NCAM expression levels in the hippocampus and medial prefrontal cortex (mPFC) and characterized the performance of adult and aged conditional NCAM-deficient mice and their age-matched wild-type littermates in a delayed matching-to-place test in the Morris water maze and a delayed reinforced alternation test in the T-maze. Although aging in wild-type mice is associated with an isoform-specific reduction of NCAM expression levels in the hippocampus and mPFC, these mice exhibited only mild impairments in working/episodic-like memory performance. However, aged conditional NCAM-deficient mice displayed pronounced impairments in both the delayed matching-to-place and the delayed reinforced alternation tests. Importantly, the deficits of aged NCAM-deficient mice in these working/episodic-like memory tasks could not be attributed to increased anxiety-like behaviors or to differences in locomotor activity. Taken together, these data indicate that reduced NCAM expression in the forebrain might be a critical factor for the occurrence of cognitive impairments during aging.

  8. Age-Related Changes in Cognitive Processing of Moral and Social Conventional Violations

    ERIC Educational Resources Information Center

    Lahat, Ayelet; Helwig, Charles C.; Zelazo, Philip David

    2012-01-01

    Moral and conventional violations are usually judged differently: Only moral violations are treated as independent of social rules. To investigate the cognitive processing involved in the development of this distinction, undergraduates (N = 34), adolescents (N = 34), and children (N = 14) read scenarios presented on a computer that had 1 of 3…

  9. Impact of the hypothalamic-pituitary-adrenal/gonadal axes on trajectory of age-related cognitive decline.

    PubMed

    Conrad, Cheryl D; Bimonte-Nelson, Heather A

    2010-01-01

    Life expectancies have increased substantially in the last century, dramatically amplifying the proportion of individuals who will reach old age. As individuals age, cognitive ability declines, although the rate of decline differs amongst the forms of memory domains and for different individuals. Memory domains especially impacted by aging are declarative and spatial memories. The hippocampus facilitates the formation of declarative and spatial memories. Notably, the hippocampus is particularly vulnerable to aging. Genetic predisposition and lifetime experiences and exposures contribute to the aging process, brain changes and subsequent cognitive outcomes. In this review, two factors to which an individual is exposed, the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis, will be considered regarding the impact of age on hippocampal-dependent function. Spatial memory can be affected by cumulative exposure to chronic stress via glucocorticoids, released from the HPA axis, and from gonadal steroids (estrogens, progesterone and androgens) and gonadotrophins, released from the HPG axis. Additionally, this review will discuss how these hormones impact age-related hippocampal function. We hypothesize that lifetime experiences and exposure to these hormones contribute to the cognitive makeup of the aged individual, and contribute to the heterogeneous aged population that includes individuals with cognitive abilities as astute as their younger counterparts, as well as individuals with severe cognitive decline or neurodegenerative disease.

  10. Age-Related Decline in Cognitive Pain Modulation Induced by Distraction: Evidence From Event-Related Potentials.

    PubMed

    Zhou, Shu; Després, Olivier; Pebayle, Thierry; Dufour, André

    2015-09-01

    Distraction is known to reduce perceived pain but not always efficiently. Overlapping cognitive resources play a role in both pain processing and executive functions. We hypothesized that with aging, the analgesic effects of cognitive modulation induced by distraction would be reduced as a result of functional decline of frontal networks. Twenty-eight elderly and 28 young participants performed a tonic heat pain test with and without distraction (P + D vs P condition), and 2 executive tasks involving the frontal network (1-back [working memory] and go/no-go [response inhibition]), during which event-related potentials were recorded. A significant age-related difference in modulatory effect was observed during the pain-distraction test, with the older group reporting higher pain perception than the younger group during the P + D than during the P condition. Greater brain activity of early processes (P2 component) in both go/no-go and 1-back tasks correlated with less perceived pain during distraction in younger participants. For later processes, more cognitive control and attentional resources (increased N2 and P3 amplitude) needed for working memory processes were associated with greater pain perception in the older group. Inhibition processes were related to conscious distraction estimation in both groups. These findings indicate that cognitive processes subtended by resources in the frontal network, particularly working memory processes, are elicited more in elderly than in younger individuals for pain tolerance when an irrelevant task is performed simultaneously. Perspective: This study suggests that age-related declines in pain modulation are caused by functional degeneration of frontal cerebral networks, which may contribute to a higher prevalence of chronic pain. Analyzing the impact of frontal network function on pain modulation may assist in the development of more effective targeted treatment plans. PMID:26080043

  11. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition

    PubMed Central

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17–88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  12. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition.

    PubMed

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17-88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident.

  13. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition.

    PubMed

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17-88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  14. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline.

    PubMed

    Jonsson, Thorlakur; Atwal, Jasvinder K; Steinberg, Stacy; Snaedal, Jon; Jonsson, Palmi V; Bjornsson, Sigurbjorn; Stefansson, Hreinn; Sulem, Patrick; Gudbjartsson, Daniel; Maloney, Janice; Hoyte, Kwame; Gustafson, Amy; Liu, Yichin; Lu, Yanmei; Bhangale, Tushar; Graham, Robert R; Huttenlocher, Johanna; Bjornsdottir, Gyda; Andreassen, Ole A; Jönsson, Erik G; Palotie, Aarno; Behrens, Timothy W; Magnusson, Olafur T; Kong, Augustine; Thorsteinsdottir, Unnur; Watts, Ryan J; Stefansson, Kari

    2012-08-01

    The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer's disease. The age-specific prevalence of Alzheimer's disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90 (ref. 3). Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer's disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer's disease and cognitive decline in the elderly without Alzheimer's disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer's disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer's disease, the two may be mediated through the same or similar mechanisms.

  15. Cognitive-Behavioral Erectile Dysfunction Treatment for Gay Men

    ERIC Educational Resources Information Center

    Hart, Trevor A.; Schwartz, Danielle R.

    2010-01-01

    The purpose of the present paper is to assist cognitive-behavioral therapists who are treating erectile dysfunction among gay men. Little information is available to cognitive-behavioral therapists about the psychological and social effects of erectile dysfunction in this population, or how to incorporate the concerns of gay men with erectile…

  16. Is It Possible to Delay or Prevent Age-Related Cognitive Decline?

    PubMed

    Michel, Jean-Pierre

    2016-09-01

    Already in the 90s, Khachaturian stated that postponing dementia onset by five years would decrease the prevalence of the late onset dementia by 50%. After two decades of lack of success in dementia drug discovery and development, and knowing that worldwide, currently 36 million patients have been diagnosed with Alzheimer's disease, a number that will double by 2030 and triple by 2050, the World Health Organization and the Alzheimer's Disease International declared that prevention of cognitive decline was a 'public health priority.' Numerous longitudinal studies and meta-analyses were conducted to analyze the risk and protective factors for dementia. Among the 93 identified risk factors, seven major modifiable ones should be considered: low education, sedentary lifestyle, midlife obesity, midlife smoking, hypertension, diabetes, and midlife depression. Three other important modifiable risk factors should also be added to this list: midlife hypercholesterolemia, late life atrial fibrillation, and chronic kidney disease. After their identification, numerous authors attempted to establish dementia risk scores; however, the proposed values were not convincing. Identifying the possible interventions, able to either postpone or delay dementia has been an important challenge. Observational studies focused on a single life-style intervention increased the global optimism concerning these possibilities. However, a recent extensive literature review of the randomized control trials (RCTs) conducted before 2014 yielded negative results. The first results of RCTs of multimodal interventions (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, Multidomain Alzheimer Prevention Study, and Prediva) brought more optimism. Lastly, interventions targeting compounds of beta amyloid started in 2012 and no results have yet been published.

  17. Is It Possible to Delay or Prevent Age-Related Cognitive Decline?

    PubMed Central

    2016-01-01

    Already in the 90s, Khachaturian stated that postponing dementia onset by five years would decrease the prevalence of the late onset dementia by 50%. After two decades of lack of success in dementia drug discovery and development, and knowing that worldwide, currently 36 million patients have been diagnosed with Alzheimer's disease, a number that will double by 2030 and triple by 2050, the World Health Organization and the Alzheimer's Disease International declared that prevention of cognitive decline was a 'public health priority.' Numerous longitudinal studies and meta-analyses were conducted to analyze the risk and protective factors for dementia. Among the 93 identified risk factors, seven major modifiable ones should be considered: low education, sedentary lifestyle, midlife obesity, midlife smoking, hypertension, diabetes, and midlife depression. Three other important modifiable risk factors should also be added to this list: midlife hypercholesterolemia, late life atrial fibrillation, and chronic kidney disease. After their identification, numerous authors attempted to establish dementia risk scores; however, the proposed values were not convincing. Identifying the possible interventions, able to either postpone or delay dementia has been an important challenge. Observational studies focused on a single life-style intervention increased the global optimism concerning these possibilities. However, a recent extensive literature review of the randomized control trials (RCTs) conducted before 2014 yielded negative results. The first results of RCTs of multimodal interventions (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, Multidomain Alzheimer Prevention Study, and Prediva) brought more optimism. Lastly, interventions targeting compounds of beta amyloid started in 2012 and no results have yet been published. PMID:27688858

  18. Is It Possible to Delay or Prevent Age-Related Cognitive Decline?

    PubMed

    Michel, Jean-Pierre

    2016-09-01

    Already in the 90s, Khachaturian stated that postponing dementia onset by five years would decrease the prevalence of the late onset dementia by 50%. After two decades of lack of success in dementia drug discovery and development, and knowing that worldwide, currently 36 million patients have been diagnosed with Alzheimer's disease, a number that will double by 2030 and triple by 2050, the World Health Organization and the Alzheimer's Disease International declared that prevention of cognitive decline was a 'public health priority.' Numerous longitudinal studies and meta-analyses were conducted to analyze the risk and protective factors for dementia. Among the 93 identified risk factors, seven major modifiable ones should be considered: low education, sedentary lifestyle, midlife obesity, midlife smoking, hypertension, diabetes, and midlife depression. Three other important modifiable risk factors should also be added to this list: midlife hypercholesterolemia, late life atrial fibrillation, and chronic kidney disease. After their identification, numerous authors attempted to establish dementia risk scores; however, the proposed values were not convincing. Identifying the possible interventions, able to either postpone or delay dementia has been an important challenge. Observational studies focused on a single life-style intervention increased the global optimism concerning these possibilities. However, a recent extensive literature review of the randomized control trials (RCTs) conducted before 2014 yielded negative results. The first results of RCTs of multimodal interventions (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, Multidomain Alzheimer Prevention Study, and Prediva) brought more optimism. Lastly, interventions targeting compounds of beta amyloid started in 2012 and no results have yet been published. PMID:27688858

  19. Is It Possible to Delay or Prevent Age-Related Cognitive Decline?

    PubMed Central

    2016-01-01

    Already in the 90s, Khachaturian stated that postponing dementia onset by five years would decrease the prevalence of the late onset dementia by 50%. After two decades of lack of success in dementia drug discovery and development, and knowing that worldwide, currently 36 million patients have been diagnosed with Alzheimer's disease, a number that will double by 2030 and triple by 2050, the World Health Organization and the Alzheimer's Disease International declared that prevention of cognitive decline was a 'public health priority.' Numerous longitudinal studies and meta-analyses were conducted to analyze the risk and protective factors for dementia. Among the 93 identified risk factors, seven major modifiable ones should be considered: low education, sedentary lifestyle, midlife obesity, midlife smoking, hypertension, diabetes, and midlife depression. Three other important modifiable risk factors should also be added to this list: midlife hypercholesterolemia, late life atrial fibrillation, and chronic kidney disease. After their identification, numerous authors attempted to establish dementia risk scores; however, the proposed values were not convincing. Identifying the possible interventions, able to either postpone or delay dementia has been an important challenge. Observational studies focused on a single life-style intervention increased the global optimism concerning these possibilities. However, a recent extensive literature review of the randomized control trials (RCTs) conducted before 2014 yielded negative results. The first results of RCTs of multimodal interventions (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, Multidomain Alzheimer Prevention Study, and Prediva) brought more optimism. Lastly, interventions targeting compounds of beta amyloid started in 2012 and no results have yet been published.

  20. Age-Related Cognitive Impairment as a Sign of Geriatric Neurocardiovascular Interactions: May Polyphenols Play a Protective Role?

    PubMed Central

    Jagla, Fedor; Pechanova, Olga

    2015-01-01

    It is known that endothelial dysfunction plays an important role in the development and progression of cardiovascular diseases implicated also in cognitive decline. Experimental studies pointed to the fact that the modification of NO levels via NOS activity may affect the blood pressure level as well as several higher nervous functions—for example, learning and memory. There are emerging evidences from in vitro and animal studies suggesting that polyphenols may potentially have a protective effect on the development of neurodegenerative diseases and may improve cognitive function as well as positively affecting the blood pressure regulatory mechanisms. This review accentuates the need for precisely defined clinically controlled studies as well as for use of adequate experimental procedures discriminating between the human higher brain functions and the only overall activation of the brain cortex. The physiological neurocardiovascular interactions are implicated in the increased healthy life span as well. PMID:26180593

  1. [Overview and assessment of cognitive function in interpreting postoperative cognitive dysfunction].

    PubMed

    Miura, Rina; Hattori, Hideyuki

    2014-11-01

    The most important point for evaluation of the post-operative cognitive dysfunction is that we understand "cognitive function". First we described the definition of the "cognitive function" and second, outlined each function (dysfunction) and introduced the main assessment methods from the view point of neuropsychology. Cognitive function (dysfunction) described in this paper includes consciousness (confusional state, disturbance of consciousness), generalized attention (disorder of generalized attention), memory (amnesia), orientation (disorientation), executive function (dysexecutive syndrome), social cognition (social cognitive impairment), language (aphasia), cognition (agnosia), behavior (apraxia), directed attention (unilateral spatial neglect), and construction (constructional disorder).

  2. Combined effects of physical exercise and education on age-related cortical thinning in cognitively normal individuals

    PubMed Central

    Lee, Jin San; Shin, Hee Young; Kim, Hee Jin; Jang, Young Kyoung; Jung, Na-Yeon; Lee, Juyoun; Kim, Yeo Jin; Chun, Phillip; Yang, Jin-Ju; Lee, Jong-Min; Kang, Mira; Park, Key-Chung; Na, Duk L.; Seo, Sang Won

    2016-01-01

    We investigated the association between self-reported physical exercise and cortical thickness in a large sample of cognitively normal individuals. We also determined whether a combination of physical exercise and education had more protective effects on age-related cortical thinning than either parameter alone. A total of 1,842 participants were included in this analysis. Physical exercise was assessed using a questionnaire regarding intensity, frequency, and duration. Cortical thickness was measured using a surface-based method. Longer duration of exercise (≥1 hr/day), but not intensity or frequency, was associated with increased mean cortical thickness globally (P-value = 0.013) and in the frontal regions (P-value = 0.007). In particular, the association of exercise with cortical thinning had regional specificity in the bilateral dorsolateral prefrontal, precuneus, left postcentral, and inferior parietal regions. The combination of higher exercise level and higher education level showed greater global and frontal mean thickness than either parameter alone. Testing for a trend with the combination of high exercise level and high education level confirmed this finding (P-value = 0.001–0.003). Our findings suggest that combined exercise and education have important implications for brain health, especially considering the paucity of known protective factors for age-related cortical thinning. PMID:27063336

  3. Heading in Soccer: Integral Skill or Grounds for Cognitive Dysfunction?

    ERIC Educational Resources Information Center

    Kirkendall, Donald T.; Garrett, William E., Jr.

    2001-01-01

    Discusses how purposeful heading of soccer balls and head injuries affect soccer players' cognitive dysfunction. Cognitive deficits may occur for many reasons. Heading cannot be blamed when details of the actual event and impact are unknown. Concussions are the most common head injury in soccer and a factor in cognitive deficits and are probably…

  4. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions

    PubMed Central

    De Oliveira, Thaís Cristina Galdino; Soares, Fernanda Cabral; De Macedo, Liliane Dias E Dias; Diniz, Domingos Luiz Wanderley Picanço; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2014-01-01

    The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I]) or in communities with their families (noninstitutionalized [NI]). We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE) test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total). Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation), in the middle (after 24 sessions), and at the end (after 48 sessions) of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion, language tests should be routinely adopted in the neuropsychological assessment of elderly subjects, and long-term-care institutions need to include regular sensorimotor, social, and cognitive stimulation as a public health policy for elderly persons. PMID:24600211

  5. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions.

    PubMed

    De Oliveira, Thaís Cristina Galdino; Soares, Fernanda Cabral; De Macedo, Liliane Dias E Dias; Diniz, Domingos Luiz Wanderley Picanço; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2014-01-01

    The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I]) or in communities with their families (noninstitutionalized [NI]). We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE) test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total). Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation), in the middle (after 24 sessions), and at the end (after 48 sessions) of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion, language tests should be routinely adopted in the neuropsychological assessment of elderly subjects, and long-term-care institutions need to include regular sensorimotor, social, and cognitive stimulation as a public health policy for elderly persons. PMID:24600211

  6. Age-Related Declines in General Cognitive Abilities of Balb/C Mice and General Activity Are Associated with Disparities in Working Memory, Body Weight, and General Activity

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Grossman, Henya; Light, Kenneth; Townsend, David; Kolata, Stefan

    2008-01-01

    A defining characteristic of age-related cognitive decline is a deficit in general cognitive performance. Here we use a testing and analysis regimen that allows us to characterize the general learning abilities of young (3-5 mo old) and aged (19-21 mo old) male and female Balb/C mice. Animals' performance was assessed on a battery of seven diverse…

  7. A critical review of Vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease

    PubMed Central

    Harrison, Fiona E

    2013-01-01

    Antioxidants in the diet have long been thought to confer some level of protection against the oxidative damage that is involved in the pathology of Alzheimer’s disease as well as general cognitive decline in normal aging. Nevertheless, support for this hypothesis in the literature is equivocal. In the case of vitamin C (ascorbic acid) in particular, lack of consideration of some of the specific features of vitamin C metabolism has led to studies in which classification of participants according to vitamin C status is inaccurate, and the absence of critical information precludes the drawing of appropriate conclusions. Vitamin C levels in plasma are not always reported, and estimated daily intake from food diaries may not be accurate or reflect actual plasma values. The ability to transport ingested vitamin C from the intestines into blood is limited by the saturable sodium-dependent vitamin C transporter (SVCT1) and thus very high intakes, and the use of supplements are often erroneously considered to be of greater benefit that they really are. The current review documents differences among the studies in terms of vitamin C status of participants. Overall, there is a large body of evidence that maintaining healthy vitamin C levels can have a protective function against age-related cognitive decline and Alzheimer’s disease, but avoiding vitamin C deficiency is likely to be more beneficial than taking supplements on top of a normal, healthy diet. PMID:22366772

  8. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status

    PubMed Central

    D’Angelo, Maria C.; Smith, Victoria M.; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A.; Barense, Morgan D.; Ryan, Jennifer D.

    2016-01-01

    ABSTRACT Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals’ failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA. PMID:27049878

  9. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status.

    PubMed

    D'Angelo, Maria C; Smith, Victoria M; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A; Barense, Morgan D; Ryan, Jennifer D

    2016-11-01

    Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals' failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA.

  10. Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders.

    PubMed

    Schatten, Heide; Sun, Qing-Yuan

    2015-07-01

    The effects of oocyte aging on meiotic spindle dynamics have been well recognised, but the mechanisms underlying the effects are not well understood. In this paper we review the role of centrosomes and the microtubule cytoskeleton in meiotic spindle formation and maintenance, and the impact of oocyte aging on spindle integrity resulting in centrosome and microtubule dysfunctions that are associated with aneuploidy. Loss of spindle integrity includes dispersion of proteins from the centrosome core structure and loss of attachment of microtubules to centrosomes and kinetochores, which will result in abnormal chromosome separation. The inability of centrosomal proteins to accurately associate with the centrosome structure may be the result of destabilisation of the core structure itself or of microtubule destabilisation at the centrosome-facing microtubule areas that are acetylated in fresh oocytes but may not be acetylated in aging oocytes. Microtubule destabilisation prevents accurate motor-driven transport of centrosomal proteins along microtubules to form and maintain a functional centrosome. Other factors to form and maintain the MII spindle include signal transductions that affect microtubule dynamics and stability. Understanding the mechanisms underlying centrosome and microtubule dysfunctions during oocyte aging will allow diagnosis and analysis of oocyte quality and abnormalities as important aspects for targeted treatment of aging oocytes to extend or restore viability and developmental capacity. New therapeutic approaches will allow improvements in reproductive success rates in IVF clinics, as well as improvements in reproductive success rates in farm animals. This review is focused on: (1) centrosome and microtubule dynamics in fresh and aging oocytes; (2) regulation of centrosome and/or microtubule dynamics and function; and (3) possible treatments to extend the oocyte's reproductive capacity and viability span. PMID:25903261

  11. Age-related acceleration of endothelial dysfunction and subclinical atherosclerosis in subjects with coronary artery lesions after Kawasaki disease.

    PubMed

    Noto, Nobutaka; Okada, Tomoo; Karasawa, Kensuke; Ayusawa, Mamoru; Sumitomo, Naokata; Harada, Kensuke; Mugishima, Hideo

    2009-04-01

    The objective of this study was to test the hypothesis that accelerated endothelial dysfunction and the development of premature atherosclerosis are associated with age in subjects with coronary artery lesions after Kawasaki disease (KD). A case-control study was performed at a university hospital that included 35 post-KD subjects across a wide age range (range, 8-42 years) without traditional cardiovascular risk factors and 35 age- and sex-matched healthy control subjects (Cont). Flow-mediated dilatation (FMD) of the brachial artery-induced by reactive hyperemia, intima media thickness (IMT), and elastic modulus (Ep) of the common carotid artery were compared between KD and Cont subjects assessed against age. KD subjects had slightly higher levels of body mass index, lipid profile, and HbA1c than Cont subjects, but the differences were not significant. The mean IMT (p < 0.001), age-adjusted percentage normal IMT (%N IMT; p < 0.0001), and Ep (p < 0.001) were significantly higher in KD than Cont subjects, and the peak FMD% (p < 0.01) was significantly lower in KD than Cont subjects. There were significant correlations between FMD% and age (r = -0.51 p < 0.0001), IMT and age (r = 0.68, p < 0.001), and Ep and age (r = 0.58, p < 0.01) in KD but not Cont subjects. When the difference in FMD% between KD and matched Cont subjects (DeltaFMD%) was plotted against age, no significant relationship was found, although significant correlations between DeltaIMT and age (r = 0.52, p < 0.01) as well as between DeltaEp and age (r = 0.46, p < 0.05) were observed. When we defined values that were +2.0 SD over the mean control values (i.e., %N IMT >or= 120% and/or Ep >or= 50 kPa) as markers of subclinical atherosclerosis, 15 subjects met the criteria. Subjects over the age of 22 years were more likely to have (OR = 16.54, p = 0.0001) subclinical atherosclerosis in this cohort. Our results suggest that endothelial dysfunction and the development of premature atherosclerosis were

  12. [Primary age-related tauopathy (PART): a novel term to describe age-related tangle pathology encompassing a wide range from cognitively normal condition to senile dementia of the neurofibrillary tangle type].

    PubMed

    Yamada, Masahito

    2016-03-01

    It has been reported that neurofibrillary tangles (NFTs) are commonly observed in older people, and that some of older individuals with dementia have a large amount of NFTs in the medial temporal lobe without amyloid(Aβ) plaques, which have been referred to as senile dementia of the NFT type (SD-NFT), tangle-predominant senile dementia (TPSD), or tangle-only dementia. In 2014, our international collaborative group proposed a new term, "primary age-related tauopathy(PART)", to describe such age-related tangle pathology, clinically encompassing a wide range from normal to cognitive impairment/ dementia (SD-NFT). This nomenclature would provide a conceptual foundation for future studies leading to development of clinical diagnosis for this condition. PMID:27025089

  13. Left Atrial Volume and Pulmonary Artery Diameter Are Noninvasive Measures of Age-Related Diastolic Dysfunction in Mice.

    PubMed

    Medrano, Guillermo; Hermosillo-Rodriguez, Jesus; Pham, Thuy; Granillo, Alejandro; Hartley, Craig J; Reddy, Anilkumar; Osuna, Patricia Mejia; Entman, Mark L; Taffet, George E

    2016-09-01

    Impaired cardiac diastolic function occurs with aging in many species and may be difficult to measure noninvasively. In humans, left atrial (LA) volume is a robust measure of chronic diastolic function as the LA is exposed to increased left ventricular filling pressures. We hypothesized that LA volume would be a useful indicator of diastolic function in aging mice. Further, we asked whether pressures were propagated backwards affecting pulmonary arteries (PAs) and right ventricle (RV). We measured LA, PA, and RV infundibulum dimensions with echocardiography and used mouse-specific Doppler systems and pressure catheters for noninvasive and invasive measures. As C57BL/6 mice aged from 3 to 29-31 months, LA volume almost tripled. LA volume increases correlated with traditional diastolic function measures. Within groups of 14- and 31-month-old mice, LA volume correlated with diastolic function measured invasively. In serial studies, mice evaluated at 20 and 24 months showed monotonic increases in LA volume; other parameters changed less predictably. PA diameters, larger in 30-month-old mice than 6-month-old mice, correlated with LA volumes. Noninvasive LA volume and PA diameter assessments are useful and state independent measures of diastolic function in mice, correlating with other measures of diastolic dysfunction in aging. Furthermore, serial measurements over 4 months demonstrated consistent increases in LA volume suitable for longitudinal cardiac aging studies.

  14. Left Atrial Volume and Pulmonary Artery Diameter Are Noninvasive Measures of Age-Related Diastolic Dysfunction in Mice.

    PubMed

    Medrano, Guillermo; Hermosillo-Rodriguez, Jesus; Pham, Thuy; Granillo, Alejandro; Hartley, Craig J; Reddy, Anilkumar; Osuna, Patricia Mejia; Entman, Mark L; Taffet, George E

    2016-09-01

    Impaired cardiac diastolic function occurs with aging in many species and may be difficult to measure noninvasively. In humans, left atrial (LA) volume is a robust measure of chronic diastolic function as the LA is exposed to increased left ventricular filling pressures. We hypothesized that LA volume would be a useful indicator of diastolic function in aging mice. Further, we asked whether pressures were propagated backwards affecting pulmonary arteries (PAs) and right ventricle (RV). We measured LA, PA, and RV infundibulum dimensions with echocardiography and used mouse-specific Doppler systems and pressure catheters for noninvasive and invasive measures. As C57BL/6 mice aged from 3 to 29-31 months, LA volume almost tripled. LA volume increases correlated with traditional diastolic function measures. Within groups of 14- and 31-month-old mice, LA volume correlated with diastolic function measured invasively. In serial studies, mice evaluated at 20 and 24 months showed monotonic increases in LA volume; other parameters changed less predictably. PA diameters, larger in 30-month-old mice than 6-month-old mice, correlated with LA volumes. Noninvasive LA volume and PA diameter assessments are useful and state independent measures of diastolic function in mice, correlating with other measures of diastolic dysfunction in aging. Furthermore, serial measurements over 4 months demonstrated consistent increases in LA volume suitable for longitudinal cardiac aging studies. PMID:26511013

  15. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition

    PubMed Central

    Pichora-Fuller, M. Kathleen; Mick, Paul; Reed, Marilyn

    2015-01-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging. PMID:27516713

  16. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition.

    PubMed

    Pichora-Fuller, M Kathleen; Mick, Paul; Reed, Marilyn

    2015-08-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging. PMID:27516713

  17. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition.

    PubMed

    Pichora-Fuller, M Kathleen; Mick, Paul; Reed, Marilyn

    2015-08-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging.

  18. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    PubMed

    Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.

  19. Over the Hill at 24: Persistent Age-Related Cognitive-Motor Decline in Reaction Times in an Ecologically Valid Video Game Task Begins in Early Adulthood

    PubMed Central

    Thompson, Joseph J.; Blair, Mark R.; Henrey, Andrew J.

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593

  20. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    PubMed

    Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593

  1. Age-related changes in synaptic markers and monocyte subsets link the cognitive decline of APPSwe/PS1 mice

    PubMed Central

    Naert, Gaëlle; Rivest, Serge

    2012-01-01

    Alzheimer's disease (AD) is characterized by a progressive memory decline and numerous pathological abnormalities, including amyloid β (Aβ) accumulation in the brain and synaptic dysfunction. Here we wanted to study whether these brain changes were associated with alteration in the population of monocyte subsets since accumulating evidence supports the concept that the innate immune system plays a role in the etiology of this disease. We then determined the immune profile together with expression of genes encoding synaptic proteins and neurotrophins in APPSwe/PS1 mice and their age-matched wild-type (WT) littermates. We found that the progressive cognitive decline and the dramatic decrease in the expression of numerous synaptic markers and neurotrophins correlated with a major defect in the subset of circulating inflammatory monocytes. Indeed the number of CX3CR1lowLy6-ChighCCR2+Gr1+ monocytes remained essentially similar between 5 weeks and 6 months of age in APPSwe/PS1 mice, while these cells significantly increased in 6-month-old WT littermates. Of great interest is that the onset of cognitive decline was closely associated with the accumulation of soluble Aβ, disruption of synaptic activity, alteration in the BDNF system, and a defective production in the subset of CX3CR1lowLy6-ChighCCR2+Gr1+ monocytes. However, these memory impairments can be prevented or restored by boosting the monocytic production, using a short treatment of macrophage colony-stimulating factor (M-CSF). In conclusion, low CCR2+ monocyte production by the hematopoietic system may be a direct biomarker of the cognitive decline in a context of AD. PMID:23125823

  2. Neuroanatomical Substrates of Social Cognition Dysfunction in Autism

    ERIC Educational Resources Information Center

    Pelphrey, Kevin; Adolphs, Ralph; Morris, James P.

    2004-01-01

    In this review article, we summarize recent progress toward understanding the neural structures and circuitry underlying dysfunctional social cognition in autism. We review selected studies from the growing literature that has used the functional neuroimaging techniques of cognitive neuroscience to map out the neuroanatomical substrates of social…

  3. Cognitive Developmental Therapy: Aiding Adult Children of Dysfunctional Families.

    ERIC Educational Resources Information Center

    Towers, David A.

    The works of Kegan and Guidano have presented cognition and emotion as complementary modes of knowing that develop together. Cognition is conceived of as being concerned with the knowledge of reality, and emotions are conceptualized as people's system for knowing of their relationship to that reality. Adult children of dysfunctional families are a…

  4. Cognitive Dysfunction and its Determinants in Patients with Neurocysticercosis

    PubMed Central

    Varghese, Vinod; Chandra, Sadanandavalli Retnaswami; Christopher, Rita; Rajeswaran, Jamuna; Prasad, Chandrajit; Subasree, R.; Issac, Thomas Gregor

    2016-01-01

    Introduction: Neurocysticercosis (NCC) is the most common parasitic infection of man. In addition to a headache, seizures, and focal deficits, this is associated with significant cognitive dysfunction. Many studies revealed that the number and location of lesions are not always responsible for cognitive dysfunction. Cholinesterase and pseudocholinesterase are found in the walls of the cysticercus which could contribute to cholinergic depletion and thus cognitive dysfunction. Patients and Methods: A total of 43 patients who presented with NCC were evaluated for cognitive deficits, as well as cholinesterase levels in cerebrospinal fluid (CSF) with control CSF from patients undergoing spinal anesthesia. Blood levels of interleukin-10 and tumor necrosis factor alpha were also estimated and correlated with cognitive deficits. Results: There is a mild increase in the acetylcholinesterase in CSF of patients compared to controls, but it did not correlate with cognitive deficits. There is an increase in interleukins to a significant level which correlates with vesicular stage of the organism and cognitive impairment. The number of lesions also correlated with cognitive impairment even though the location did not. The domains of cognitive deficits seen are sustained attention, category fluency, verbal working memory, planning, set shifting, verbal learning, visual memory, and construction. Discussion and Conclusion: NCC is associated with multi-domain cognitive impairment correlates with vescicular stage, proinflammatory cytokines and number of lesions but not location, vesicular stage, and proinflammatory cytokines. PMID:27114627

  5. Long-term dietary extra-virgin olive oil rich in polyphenols reverses age-related dysfunctions in motor coordination and contextual memory in mice: role of oxidative stress.

    PubMed

    Pitozzi, Vanessa; Jacomelli, Michela; Catelan, Dolores; Servili, Maurizio; Taticchi, Agnese; Biggeri, Annibale; Dolara, Piero; Giovannelli, Lisa

    2012-12-01

    The aim of this study was to evaluate the effects of olive oil phenols on brain aging in mice and to verify whether the antioxidant and antiinflammatory activities of these polyphenols were involved. C57Bl/6J mice were fed from middle age to senescence with extra-virgin olive oil (10% wt/wt dry diet) rich in phenols (total polyphenol dose/day, 6 mg/kg). Behavioral tests were employed to assess cognitive, motor, and emotional behavior after 6 or 12 months of treatment. Parameters of oxidative status and inflammation were measured in different brain areas at the same times and evaluated for correlation with behavioral changes. The treatment with olive oil phenols improved contextual memory in the step-down test to levels similar to young animals and prevented the age-related impairment in motor coordination in the rotarod test. This motor effect was correlated with reduced lipid peroxidation in the cerebellum (p<0.05), whereas the memory effect did not correlate with oxidation or inflammation parameters. In conclusion, this work points out that natural polyphenols contained in extra-virgin olive oil can improve some age-related dysfunctions by differentially affecting different brain areas. Such a modulation can be obtained with an olive oil intake that is normal in the Mediterranean area, provided that the oil has a sufficiently high content of polyphenols.

  6. Lower uric Acid linked with cognitive dysfunction in the elderly.

    PubMed

    Méndez-Hernández, Edna; Salas-Pacheco, José; Ruano-Calderón, Luis; Téllez-Valencia, Alfredo; Cisneros-Martínez, Jorge; Barraza-Salas, Marcelo; Arias-Carrión, Oscar

    2015-01-01

    Uric acid has been associated as a risk factor for cardiovascular disease. Recently, however, there is growing evidence that uric acid plays a role as antioxidant in the brain. In cognitive dysfunction, vascular and oxidative stress mechanisms play a role, but the link remains unknown. Therefore, we investigated the link between serum uric acid-levels and cognitive function in 62 elderly subjects. The statistical analysis was adjusted to age, sex and cardiovascular risk factors. Here, we found that lower serum uric acid levels are linked to cognitive dysfunction. In a Mexican population, higher levels of uric acid are associated with a decreased risk of dementia. PMID:25925000

  7. Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis.

    PubMed

    Dineen, R A; Vilisaar, J; Hlinka, J; Bradshaw, C M; Morgan, P S; Constantinescu, C S; Auer, D P

    2009-01-01

    Disconnection of cognitively important processing regions by injury to the interconnecting white matter provides a potential mechanism for cognitive dysfunction in multiple sclerosis. The contribution of tract-specific white matter injury to dysfunction in different cognitive domains in patients with multiple sclerosis has not previously been studied. We apply tract-based spatial statistics (TBSS) to diffusion tensor imaging (DTI) in a cohort of multiple sclerosis patients to identify loci where reduced white matter tract fractional anisotropy (FA) predicts impaired performance in cognitive testing. Thirty-seven multiple sclerosis patients in remission (median age 43.5 years; Expanded Disability Status Scale range 1.5-6.5; 35 relapsing remitting, two secondary-progressive) underwent 3 T MRI including high-resolution DTI. Multiple sclerosis patients underwent formal testing of performance in multiple cognitive domains. Normalized cognitive scores were used for voxel-wise statistical analysis using TBSS, while treating age as a covariate of no interest. Permutation-based inference on cluster size (t > 2, P <0.05 corrected) was used to correct for multiple comparisons. Statistical mapping revealed differential patterns of FA reduction for tests of sustained attention, working memory and processing speed, visual working memory and verbal learning and recall. FA was not associated with frontal lobe function or visuospatial perception. Cognitively relevant tract localizations only partially overlapped with areas of high FLAIR lesion probability, confirming the contribution of normal-appearing white matter abnormality to cognitive dysfunction. Of note, tract localizations showing significant associations with cognitive impairment were found to interconnect cortical regions thought to be involved in processing in these cognitive domains, or involve possible compensatory processing pathways. This suggests that TBSS reveals functionally relevant tract injury underlying

  8. Trends in cognitive dysfunction following surgery for intracranial tumors

    PubMed Central

    Dhandapani, Manju; Gupta, Sandhya; Mohanty, Manju; Gupta, Sunil Kumar; Dhandapani, Sivashanmugam

    2016-01-01

    Background: This study was conducted to prospectively assess the cognitive function of patients with intracranial tumors. Methods: The cognitive status of patients with intracranial tumors were prospectively studied before surgery, and later at 1 and 6 months following surgery, on purposive sampling, using validated post graduate institute (PGI) battery for brain dysfunction (score 0–30) with a higher dysfunction rating score indicating poor cognitive status. Results: Out of 23 patients enrolled, 20 could complete the study. They had substantial cognitive dysfunction before surgery (score 17.1 ± 9.4). Though there was no significant improvement (16.9 ± 9.0) at 1 month, the score improved significantly (10.3 ± 9.2) at 6 months following surgery (P = 0.008). The improvement was relatively subdued in intra-axial, malignant, and radiated tumors. Overall, there was a significant improvement in mental balance (P = 0.048), verbal retention of dissimilar pairs (P = 0.01), and recognition (P = 0.01), while dysfunction persisted in the domains of memory, verbal retention to similar pairs, and visual retention. Conclusion: Patients with intracranial tumors have substantial cognitive dysfunction, which tend to show significant improvement beyond 6 months following surgery, especially among tumors, which were extra-axial, benign, and nonirradiated. PMID:27114854

  9. Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory

    PubMed Central

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most event-related potentials (ERP) research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM. PMID

  10. Ocular motor signatures of cognitive dysfunction in multiple sclerosis.

    PubMed

    Fielding, Joanne; Clough, Meaghan; Beh, Shin; Millist, Lynette; Sears, Derek; Frohman, Ashley N; Lizak, Nathaniel; Lim, Jayne; Kolbe, Scott; Rennaker, Robert L; Frohman, Teresa C; White, Owen B; Frohman, Elliot M

    2015-11-01

    The anatomical and functional overlap between ocular motor command circuitry and the higher-order networks that form the scaffolding for cognition makes for a compelling hypothesis that measures of ocular motility could provide a means to sensitively interrogate cognitive dysfunction in people with multiple sclerosis (MS). Such an approach may ultimately provide objective and reproducible measures of cognitive dysfunction that offer an innovative capability to refine diagnosis, improve prognostication, and more accurately codify disease burden. A further dividend may be the validation and application of biomarkers that can be used in studies aimed at identifying and monitoring preventative, protective and even restorative properties of novel neurotherapeutics in MS. This Review discusses the utility of ocular motor measures in patients with MS to characterize disruption to wide-ranging networks that support cognitive function.

  11. Cognitive Visual Dysfunctions in Preterm Children with Periventricular Leukomalacia

    ERIC Educational Resources Information Center

    Fazzi, Elisa; Bova, Stefania; Giovenzana, Alessia; Signorini, Sabrina; Uggetti, Carla; Bianchi, Paolo

    2009-01-01

    Aim: Cognitive visual dysfunctions (CVDs) reflect an impairment of the capacity to process visual information. The question of whether CVDs might be classifiable according to the nature and distribution of the underlying brain damage is an intriguing one in child neuropsychology. Method: We studied 22 children born preterm (12 males, 10 females;…

  12. Perturbed Energy Metabolism and Neuronal Circuit Dysfunction in Cognitive Impairment

    PubMed Central

    Kapogiannis, Dimitrios; Mattson, Mark P.

    2010-01-01

    Summary Epidemiological, neuropathological and functional neuroimaging evidence implicates global and regional derangements in brain metabolism and energetics in the pathogenesis of cognitive impairment. Nerve cell microcircuits are modified adaptively by excitatory and inhibitory synaptic activity and neurotrophic factors. Aging and Alzheimer’s disease (AD) cause perturbations in cellular energy metabolism, level of excitation/inhibition and neurotrophic factor release that overwhelm compensatory mechanisms and result in neuronal microcircuit and brain network dysfunction. A prolonged positive energy balance impairs the ability of neurons to respond adaptively to oxidative and metabolic stress. Experimental studies in animals demonstrate how derangements related to chronic positive energy balance, such as diabetes, set the stage for accelerated cognitive aging and AD. Therapeutic interventions to allay cognitive dysfunction that target energy metabolism and adaptive stress responses (such as neurotrophin signaling) have shown efficacy in animal models and preliminary studies in humans. PMID:21147038

  13. Cosmic radiation exposure and persistent cognitive dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  14. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  15. Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury.

    PubMed

    Smith, D H; Okiyama, K; Gennarelli, T A; McIntosh, T K

    1993-07-23

    We evaluated the therapeutic effects of two noncompetitive antagonists of the N-methyl-D-aspartate (NMDA) receptor, MgCl2 and ketamine, both individually and together, on cognitive dysfunction observed following parasagittal fluid-percussion (FP) brain injury in the rat. Using a modified Morris water maze technique, we found significant attenuation of post-traumatic memory dysfunction in animals treated with either MgCl2 (125 mumol) or ketamine (4 mg/kg) (P < 0.005). Combined MgCl2 and ketamine treatment also preserved memory function (P < 0.005), with no apparent additive effect.

  16. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    PubMed

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.

  17. Religiosity is negatively associated with later-life intelligence, but not with age-related cognitive decline.

    PubMed

    Ritchie, Stuart J; Gow, Alan J; Deary, Ian J

    2014-09-01

    A well-replicated finding in the psychological literature is the negative correlation between religiosity and intelligence. However, several studies also conclude that one form of religiosity, church attendance, is protective against later-life cognitive decline. No effects of religious belief per se on cognitive decline have been found, potentially due to the restricted measures of belief used in previous studies. Here, we examined the associations between religiosity, intelligence, and cognitive change in a cohort of individuals (initial n = 550) with high-quality measures of religious belief taken at age 83 and multiple cognitive measures taken in childhood and at four waves between age 79 and 90. We found that religious belief, but not attendance, was negatively related to intelligence. The effect size was smaller than in previous studies of younger participants. Longitudinal analyses showed no effect of either religious belief or attendance on cognitive change either from childhood to old age, or across the ninth decade of life. We discuss differences between our cohort and those in previous studies - including in age and location - that may have led to our non-replication of the association between religious attendance and cognitive decline.

  18. Cerebrovascular complications of diabetes: focus on cognitive dysfunction.

    PubMed

    Hardigan, Trevor; Ward, Rebecca; Ergul, Adviye

    2016-10-01

    The incidence of diabetes has more than doubled in the United States in the last 30 years and the global disease rate is projected to double by 2030. Cognitive impairment has been associated with diabetes, worsening quality of life in patients. The structural and functional interaction of neurons with the surrounding vasculature is critical for proper function of the central nervous system including domains involved in learning and memory. Thus, in this review we explore cognitive impairment in patients and experimental models, focusing on links to vascular dysfunction and structural changes. Lastly, we propose a role for the innate immunity-mediated inflammation in neurovascular changes in diabetes. PMID:27634842

  19. Dysfunctional cognitive appraisal and psychophysiological reactivity in acute stress disorder.

    PubMed

    Elsesser, Karin; Freyth, Claudia; Lohrmann, Thomas; Sartory, Gudrun

    2009-10-01

    The present study investigated the extent of dysfunctional appraisal as measured with the Posttraumatic Cognitions Inventory (PTCI) and physiological responses to trauma-related material in patients with acute stress disorder (ASD; N=44) in comparison to participants without trauma exposure (N=27). Heart-rate (HR), skin conductance responses (SCR), and viewing time were recorded in response to - for trauma victims - idiosyncratically trauma-relevant and control pictures. ASD patients evidenced greater dysfunctional appraisal than control participants with regard to the PTCI scales Self and World and also an accelerative HR reaction and greater SCRs to trauma-relevant pictures. Among patients, PTCI was highly correlated with ASD severity while PTCI World was positively correlated with resting HR and depression. Amplitude of the HR reaction to trauma-related pictures was negatively correlated with viewing time. Results suggest that dysfunctional appraisal and autonomic reactivity are only loosely related in ASD.

  20. Dreaming and cognition in patients with frontotemporal dysfunction.

    PubMed

    Paiva, Teresa; Bugalho, Paulo; Bentes, Carla

    2011-12-01

    Individuals with Parkinson's disease (PD) and temporal lobe epilepsy (TLE) have hallucinations and mild cognitive dysfunction. The objective of this work was to study dreams in PD and TLE patients using a common functional model of dream production involving the limbic and paralimbic structures. Dreams were characterised in early-stage PD (19 males) and TLE patients (52) with dream diaries classified by the Hall van de Castle system and were compared with matched controls. In PD, there were significant differences between patients' dreams and those of controls: animals, physical aggression, and a befriender were more common in patients, and aggressor and bodily misfortunes were less common. The dreams of patients with frontal dysfunction showed more aggressive features. TLE patients had lower recall than PD patients and a higher proportion of dreams involving family and familiar settings, lower proportions involving success, and a higher incidence of frontal dysfunction. The dreams of PD and TLE patients share important features.

  1. Age-related cognitive decline and electroencephalogram slowing in Down's syndrome as a model of Alzheimer's disease.

    PubMed

    Soininen, H; Partanen, J; Jousmäki, V; Helkala, E L; Vanhanen, M; Majuri, S; Kaski, M; Hartikainen, P; Riekkinen, P

    1993-03-01

    We studied quantitative electroencephalogram and neuropsychological performance in an aging series of 31 patients with Down's syndrome and compared the findings with those of 36 patients with probable Alzheimer's disease and age-matched controls. We found an age-related decline of cortical functions and slowing of the electroencephalogram in Down's syndrome patients aged from 20 to 60 years. Slowing of the electroencephalogram, i.e. the decrease of the peak frequency, was significantly related to Mini-Mental status scores, and visual, praxic and speech functions, as well as memory in the Down patients, similar to the Alzheimer patients. Similar correlations were not demonstrated for young or elderly controls. This study provides neuropsychological and electrophysiological data to suggest that studying Down's syndrome patients of different ages can serve as a model for progression of Alzheimer's disease. PMID:8469312

  2. Decrease in age-related tau hyperphosphorylation and cognitive improvement following vitamin D supplementation are associated with modulation of brain energy metabolism and redox state.

    PubMed

    Briones, T L; Darwish, H

    2014-03-14

    In the present study we examined whether vitamin D supplementation can reduce age-related tau hyperphosphorylation and cognitive impairment by enhancing brain energy homeostasis and protein phosphatase 2A (PP2A) activity, and modulating the redox state. Male F344 rats aged 20 months (aged) and 6 months (young) were randomly assigned to either vitamin D supplementation or no supplementation (control). Rats were housed in pairs and the supplementation group (n=10 young and n=10 aged) received subcutaneous injections of vitamin D (1, α25-dihydroxyvitamin D3) for 21 days. Control animals (n=10 young and n=10 aged) received equal volume of normal saline and behavioral testing in the water maze started on day 14 after the initiation of vitamin D supplementation. Tau phosphorylation, markers of brain energy metabolism (ADP/ATP ratio and adenosine monophosphate-activated protein kinase) and redox state (levels of reactive oxygen species, activity of superoxide dismutase, and glutathione levels) as well as PP2A activity were measured in hippocampal tissues. Our results extended previous findings that: (1) tau phosphorylation significantly increased during aging; (2) markers of brain energy metabolism and redox state are significantly decreased in aging; and (3) aged rats demonstrated significant learning and memory impairment. More importantly, we found that age-related changes in brain energy metabolism, redox state, and cognitive function were attenuated by vitamin D supplementation. No significant differences were seen in tau hyperphosphorylation, markers of energy metabolism and redox state in the young animal groups. Our data suggest that vitamin D ameliorated the age-related tau hyperphosphorylation and cognitive decline by enhancing brain energy metabolism, redox state, and PP2A activity making it a potentially useful therapeutic option to alleviate the effects of aging.

  3. Age-Related Changes in Electrophysiological and Neuropsychological Indices of Working Memory, Attention Control, and Cognitive Flexibility

    PubMed Central

    Peltz, Carrie Brumback; Gratton, Gabriele; Fabiani, Monica

    2011-01-01

    Older adults exhibit great variability in their cognitive abilities, with some maintaining high levels of performance on executive control tasks and others showing significant deficits. Previous event-related potential (ERP) work has shown that some of these performance differences are correlated with persistence of the novelty/frontal P3 in older adults elicited by task-relevant events, presumably reflecting variability in the capacity to suppress orienting to unexpected but no longer novel events. In recent ERP work in young adults, we showed that the operation-span (OSPAN) task (a measure of attention control) is predictive of the ability of individuals to keep track of stimulus sequencing and to maintain running mental representations of task stimuli, as indexed by the parietally distributed P300 (or P3b). Both of these phenomena reflect aspects of frontal function (cognitive flexibility and attention control, respectively). To investigate these phenomena we sorted both younger and older adults into low- and high-working memory spans and low- and high-cognitive flexibility subgroups, and examined ERPs during an equal-probability choice reaction time task. For both age groups (a) participants with high OSPAN scores were better able to keep track of stimulus sequencing, as indicated by their smaller P3b to sequential changes; and (b) participants with lower cognitive flexibility had larger P3a than their high-scoring counterparts. However, these two phenomena did not interact suggesting that they manifest dissociable control mechanisms. Further, the fact that both effects are already visible in younger adults suggests that at least some of the brain mechanisms underlying individual differences in cognitive aging may already operate early in life. PMID:21887150

  4. Methyllycaconitine- and scopolamine-induced cognitive dysfunction: differential reversal effect by cognition-enhancing drugs.

    PubMed

    Andriambeloson, Emile; Huyard, Bertrand; Poiraud, Etienne; Wagner, Stéphanie

    2014-08-01

    There is a growing body of evidence pointing to the pivotal role of alpha-7 nicotinic acetylcholine receptor (α7 nAchR) dysfunction in cognitive disorders such as Alzheimer's disease or schizophrenia. This study was undertaken to establish and characterize an in vivo model for cognitive disorder secondary to the blockade of α7 nAChR by its specific antagonist, methyllycaconitine (MLA). The results show that MLA elicited cognitive dysfunction as assessed by reduced spontaneous alternation of mice in the T-maze. The maximal effect of MLA produced 25-30% reduction in the spontaneous alternation of mice, a level comparable with that induced by the muscarinic antagonism of scopolamine. Donepezil and galantamine fully reversed both MLA and scopolamine-induced cognitive dysfunction. However, the ED50 of donepezil and galantamine was significantly shifted to the left in the MLA- compared to scopolamine-treated mice (0.0005 and 0.002 mg/kg for donepezil; 0.0003 and 0.7 mg/kg for galantamine). Moreover, memantine elicited marked reversion of cognitive dysfunction (up to 70%) in MLA-treated mice while only a weak reversal effect at high dose of memantine (less than 20%) was observed in scopolamine-treated mice. The above findings indicate that MLA-induced cognitive dysfunction in the mouse is highly sensitive and more responsive to the current procognitive drugs than the traditional scopolamine-based assay. Thus, it can be of value for the preclinical screening and profiling of cognition-enhancing drugs. PMID:25505596

  5. White Matter Atrophy and Cognitive Dysfunctions in Neuromyelitis Optica

    PubMed Central

    Blanc, Frederic; Noblet, Vincent; Jung, Barbara; Rousseau, François; Renard, Felix; Bourre, Bertrand; Longato, Nadine; Cremel, Nadjette; Di Bitonto, Laure; Kleitz, Catherine; Collongues, Nicolas; Foucher, Jack; Kremer, Stephane; Armspach, Jean-Paul; de Seze, Jerome

    2012-01-01

    Neuromyelitis optica (NMO) is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N) to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain) and VBM for focal brain volume (GM and WM), NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54%) had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM) was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in NMO patients

  6. Autophagy involving age-related cognitive behavior and hippocampus injury is modulated by different caloric intake in mice

    PubMed Central

    Dong, Wen; Wang, Rong; Ma, Li-Na; Xu, Bao-Lei; Zhang, Jing-Shuang; Zhao, Zhi-Wei; Wang, Yu-Lan; Zhang, Xu

    2015-01-01

    Recent studies indicated that different caloric intake may influence neuronal function. Excessive caloric intake associated with accelerated aging of the brain and increased the risk of neurodegenerative disorders. And low caloric intake (caloric restriction, CR) could delay aging, and protect the central nervous system from neurodegenerative disorders. The underlying mechanisms remain poorly understood. In this study, thirty six-week-old male C57/BL male mice were randomly divided into three different dietary groups: normal control (NC) group (fed standard diet), CR group (fed low-caloric diet) and high-calorie (HC) group (fed high-caloric diet). After 10 months, spatial memory ability was determined by Morris water maze. Pathological changes of the hippocampus cells were detected with HE and Nissl staining. The expression of proteins involved in autophagy in the hippocampus was determined by immunofluorescence and Western blot. The result of Morris water maze showed that the learning and memory capacity significantly increased in the CR group, and significantly decreased in the HC group. HE and Nissl staining showed cells damaged obviously in the HC group. The expression of mTOR and p62 was increased in the HC group, and decreased in the CR group. The expression of Beclin1, LC3 and cathepsin B was decreased in the HC group, and increased in the CR group. Our findings demonstrate that long-term high caloric intake is a risk factor that can significantly contribute to the development of neurological disease via suppressing autophagy, and CR may prevent age-related learning ability impairment via activating autophagy in mice. PMID:26380026

  7. [Music therapy for dementia and higher cognitive dysfunction: a review].

    PubMed

    Satoh, Masayuki

    2011-12-01

    Music is known to affect the human mind and body. Music therapy utilizes the effects of music for medical purposes. The history of music therapy is quite long, but only limited evidence supports its usefulness in the treatment of higher cognitive dysfunction. As for dementia, some studies conclude that music therapy is effective for preventing cognitive deterioration and the occurrence of behavioral and psychological symptoms of dementia (BPSD). In patients receiving music therapy for the treatment of higher cognitive dysfunction, aphasia was reported as the most common symptom. Many studies have been conducted to determine whether singing can improve aphasic symptoms: singing familiar and/or unfamiliar songs did not show any positive effect on aphasia. Melodic intonation therapy (MIT) is a method that utilizes melody and rhythm to improve speech output. MIT is a method that is known to have positive effects on aphasic patients. Some studies of music therapy for patients with unilateral spatial neglect; apraxia; hemiparesis; and walking disturbances, including parkinsonian gait, are available in the literature. Studies showed that the symptoms of unilateral spatial neglect and hemiparesis significantly improved when musical instruments were played for several months as a part of the music therapy. Here, I describe my study in which mental singing showed a positive effect on parkinsonian gait. Music is interesting, and every patient can go through training without any pain. Future studies need to be conducted to establish evidence of the positive effects of music therapy on neurological and neuropsychological symptoms.

  8. Long-term ginsenoside Rg1 supplementation improves age-related cognitive decline by promoting synaptic plasticity associated protein expression in C57BL/6J mice.

    PubMed

    Yang, Lumeng; Zhang, Jing; Zheng, Kunmu; Shen, Hui; Chen, Xiaochun

    2014-03-01

    In aging individuals, age-related cognitive decline is the most common cause of memory impairment. Among the remedies, ginsenoside Rg1, a major active component of ginseng, is often recommended for its antiaging effects. However, its role in improving cognitive decline during normal aging remains unknown and its molecular mechanism partially understood. This study employed a scheme of Rg1 supplementation for female C57BL/6J mice, which started at the age of 12 months and ended at 24 months, to investigate the effects of Rg1 supplementation on the cognitive performance. We found that Rg1 supplementation improved the performance of aged mice in behavior test and significantly upregulated the expression of synaptic plasticity-associated proteins in hippocampus, including synaptophysin, N-methyl-D-aspartate receptor subunit 1, postsynaptic density-95, and calcium/calmodulin-dependent protein kinase II alpha, via promoting mammalian target of rapamycin pathway activation. These data provide further support for Rg1 treatment of cognitive degeneration during aging.

  9. Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity

    PubMed Central

    Sibille, E; Su, J; Leman, S; Le Guisquet, AM; Ibarguen-Vargas, Y; Joeyen-Waldorf, J; Glorioso, C; Tseng, GC; Pezzone, M; Hen, R; Belzung, C

    2008-01-01

    Normal aging of the brain differs from pathological conditions and is associated with increased risk for psychiatric and neurological disorders. In addition to its role in the etiology and treatment of mood disorders, altered serotonin (5-HT) signaling is considered a contributing factor to aging; however, no causative role has been identified in aging. We hypothesized that a deregulation of the 5-HT system would reveal its contribution to age-related processes and investigated behavioral and molecular changes throughout adult life in mice lacking the regulatory presynaptic 5-HT1B receptor (5-HT1BR), a candidate gene for 5-HT-mediated age-related functions. We show that the lack of 5-HT1BR (Htr1bKO mice) induced an early age-related motor decline and resulted in decreased longevity. Analysis of life-long transcriptome changes revealed an early and global shift of the gene expression signature of aging in the brain of Htr1bKO mice. Moreover, molecular changes reached an apparent maximum effect at 18-months in Htr1bKO mice, corresponding to the onset of early death in that group. A comparative analysis with our previous characterization of aging in the human brain revealed a phylogenetic conservation of age-effect from mice to humans, and confirmed the early onset of molecular aging in Htr1bKO mice. Potential mechanisms appear independent of known central mechanisms (Bdnf, inflammation), but may include interactions with previously identified age-related systems (IGF-1, sirtuins). In summary, our findings suggest that the onset of age-related events can be influenced by altered 5-HT function, thus identifying 5-HT as a modulator of brain aging, and suggesting age-related consequences to chronic manipulation of 5-HT. PMID:17420766

  10. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis

    PubMed Central

    Bales, James W.; Wagner, Amy K.; Kline, Anthony E.; Dixon, C. Edward

    2010-01-01

    Traumatic brain injury (TBI) represents a significant cause of death and disability in industrialized countries. Of particular importance to patients the chronic effect that TBI has on cognitive function. Therapeutic strategies have been difficult to evaluate because of the complexity of injuries and variety of patient presentations within a TBI population. However, pharmacotherapies targeting dopamine (DA) have consistently shown benefits in attention, behavioral outcome, executive function, and memory. Still it remains unclear what aspect of TBI pathology is targeted by DA therapies and what time-course of treatment is most beneficial for patient outcomes. Fortunately, ongoing research in animal models has begun to elucidate the pathophysiology of DA alterations after TBI. The purpose of this review is to discuss clinical and experimental research examining DAergic therapies after TBI, which will in turn elucidate the importance of DA for cognitive function/dysfunction after TBI as well as highlight the areas that require further study. PMID:19580914

  11. Sensorimotor and cognitive factors associated with the age-related increase of visual field dependence: a cross-sectional study.

    PubMed

    Agathos, Catherine P; Bernardin, Delphine; Huchet, Delphine; Scherlen, Anne-Catherine; Assaiante, Christine; Isableu, Brice

    2015-08-01

    Reliance on the visual frame of reference for spatial orientation (or visual field dependence) has been reported to increase with age. This has implications on old adults' daily living tasks as it affects stability, attention, and adaptation capacities. However, the nature and underlying mechanisms of this increase are not well defined. We investigated sensorimotor and cognitive factors possibly associated with increased visual field dependence in old age, by considering functions that are both known to degrade with age and important for spatial orientation and sensorimotor control: reliance on the (somatosensory-based) egocentric frame of reference, visual fixation stability, and attentional processing of complex visual scenes (useful field of view, UFOV). Twenty young, 18 middle-aged, and 20 old adults completed a visual examination, three tests of visual field dependence (RFT, RDT, and GEFT), a test of egocentric dependence (subjective vertical estimation with the body erect and tilted at 70°), a visual fixation task, and a test of visual attentional processing (UFOV®). Increased visual field dependence with age was associated with reduced egocentric dependence, visual fixation stability, and visual attentional processing. In addition, visual fixation instability and reduced UFOV were correlated. Results of middle-aged adults fell between those of the young and old, revealing the progressive nature of the age effects we evaluated. We discuss results in terms of reference frame selection with respect to ageing as well as visual and non-visual information processing. Inter-individual differences amongst old adults are highlighted and discussed with respect to the functionality of increased visual field dependence.

  12. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    PubMed Central

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  13. Extracellular RNAs as a chemical initiator for postoperative cognitive dysfunction.

    PubMed

    Chen, Chan; Cheng, Xu; Li, Ji; Chen, Hai; Zhang, Shu; Dong, Yuanlin; Gan, Lu; Liu, Jin; Zhu, Tao

    2016-09-01

    Postoperative cognitive dysfunction (POCD) is a common complication that presents in the postoperative stage, especially in elderly patients. Despite years of considerable progress, the detailed molecular mechanisms of POCD remain largely unknown. Neuroinflammation has been increasingly pointed out as one of the core mechanisms for the pathogenesis of POCD. However, application of anti-inflammatory drugs failed to show consistent beneficial effect in patients with cognitive decline. Hence, it might be of great importance to identify the inflammatory initiators that are involved in the mediation, amplification and perpetuation of postoperative neuroinflammatory reactions. Extracellular RNAs (exRNAs), released from necrotic cells, were demonstrated to initiate the inflammatory responses in various pathological conditions. Recent study has suggested neuroprotective and edema protective effects of ribonuclease (RNase), the counterpart of RNA, in acute stroke. It was theorized that RNase acted against endogenous RNA that was released from tissue damage. Similarly, we have observed significant attenuation of cognitive impairment by RNase in aged mice after unilateral nephrectomy. Damping the systemic initiators at early stages may help to prevent the chain reaction that triggers the central inflammatory or apoptotic response. Therefore, we propose the hypothesis that exRNAs released upon stress, through acting on the peripheral and/or central receptors, may trigger a damaging cascade leading to the development of POCD. Undoubtedly, further study is urgently needed to elucidated the exact signaling mechanisms and confirm the proposed hypothesis. PMID:27515198

  14. Preoperative Cognitive Intervention Reduces Cognitive Dysfunction in Elderly Patients after Gastrointestinal Surgery: A Randomized Controlled Trial

    PubMed Central

    Saleh, Amin J.; Tang, Guan-Xiu; Hadi, Sally M.; Yan, Liao; Chen, Ming-Hua; Duan, Kai-Ming; Tong, Jianbin; Ouyang, Wen

    2015-01-01

    Background Preoperative conditions may play a significant role in postoperative cognitive dysfunction (POCD) development in elderly patients. We aimed to investigate whether preoperative cognitive training could lower the incidence of POCD one week after surgery. Material/Methods A total of 141 ASA I–III elderly patients who underwent gastrointestinal surgery were enrolled into the study. Patients were randomized into either the Intervention group (69 analyzed) or the Control group (72 analyzed). Patients in the intervention group were instructed and trained in a cognition mnemonic skill for a total of three 1-hour sessions with the method of loci (MoL). Controls did not receive any cognitive training during hospitalization. All patients were tested using neuropsychological battery tests (NPTs) on admission and one week after surgery. Result The incidence of POCD in the intervention group (15.9%) was significantly lower than in the controls (36.1%) (P<0.05). Patients’ performance in Brief Visuospatial Memory Test-Revised and Symbol-Digit Modalities Test were improved by the cognitive training. Increasing age, longer length of anesthesia and surgery, and lack of cognitive training were associated with a significantly higher risk of POCD (P<0.05). Conclusions Cognitive training with MoL can reduce the decline of early postoperative cognitive function in elderly patients undergoing major gastrointestinal surgery. PMID:25782136

  15. Children’s Internal Attributions of Anxiety-Related Physical Symptoms: Age-Related Patterns and the Role of Cognitive Development and Anxiety Sensitivity

    PubMed Central

    Mayer, Birgit; Freher, Nancy Kramer; Duncan, Sylvana; van den Hout, Annemiek

    2010-01-01

    The present study examined age-related patterns in children’s anxiety-related interpretations and internal attributions of physical symptoms. A large sample of 388 children aged between 4 and 13 years completed a vignette paradigm during which they had to explain the emotional response of the main character who experienced anxiety-related physical symptoms in a variety of daily situations. In addition, children completed measures of cognitive development and anxiety sensitivity. Results demonstrated that age, cognitive development, and anxiety sensitivity were all positively related to children’s ability to perceive physical symptoms as a signal of anxiety and making internal attributions. Further, while a substantial proportion of the younger children (i.e., <7 years) were able to make a valid anxiety-related interpretation of a physical symptom, very few were capable of making an internal attribution, which means that children of this age lack the developmental prerequisites for applying physical symptoms-based theories of childhood anxiety. PMID:20440551

  16. The Effects of the Cognitive-Behavioral Marriage Enrichment Program on the Dysfunctional Attitudes of Couples

    ERIC Educational Resources Information Center

    Kalkan, Melek; Ersanli, Ercumend

    2009-01-01

    The aim of this study is to investigate the effectiveness of cognitive-behavioral marriage enrichment program to decrease the level of the dysfunctional attitudes of the couples. Forty participants with dysfunctional attitudes determined by The Dysfunctional Attitude Scale were randomly chosen as experimental and control groups. The results of the…

  17. Maternal Depressive Symptoms, Dysfunctional Cognitions, and Infant Night Waking: The Role of Maternal Nighttime Behavior

    ERIC Educational Resources Information Center

    Teti, Douglas M.; Crosby, Brian

    2012-01-01

    Mechanisms were examined to clarify relations between maternal depressive symptoms, dysfunctional cognitions, and infant night waking among 45 infants (1-24 months) and their mothers. A mother-driven mediational model was tested in which maternal depressive symptoms and dysfunctional cognitions about infant sleep predicted infant night waking via…

  18. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    PubMed

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  19. Cognitive dysfunction in children with brain tumors at diagnosis

    PubMed Central

    Studer, Martina; Ritter, Barbara Catherine; Steinlin, Maja; Leibundgut, Kurt; Heinks, Theda

    2015-01-01

    Background Survivors of brain tumors have a high risk for a wide range of cognitive problems. These dysfunctions are caused by the lesion itself and its surgical removal, as well as subsequent treatments (chemo‐ and/or radiation therapy). Multiple recent studies have indicated that children with brain tumors (BT) might already exhibit cognitive problems at diagnosis, i.e., before the start of any medical treatment. The aim of the present study was to investigate the baseline neuropsychological profile in children with BT compared to children with an oncological diagnosis not involving the central nervous system (CNS). Methods Twenty children with BT and 27 children with an oncological disease without involvement of the CNS (age range: 6.1–16.9 years) were evaluated with an extensive battery of neuropsychological tests tailored to the patient's age. Furthermore, the child and his/her parent(s) completed self‐report questionnaires about emotional functioning and quality of life. In both groups, tests were administered before any therapeutic intervention such as surgery, chemotherapy, or irradiation. Groups were comparable with regard to age, gender, and socioeconomic status. Results Compared to the control group, patients with BTs performed significantly worse in tests of working memory, verbal memory, and attention (effect sizes between 0.28 and 0.47). In contrast, the areas of perceptual reasoning, processing speed, and verbal comprehension were preserved at the time of measurement. Conclusion Our results highlight the need for cognitive interventions early in the treatment process in order to minimize or prevent academic difficulties as patients return to school. Pediatr Blood Cancer 2015;62:1805–1812. © 2015 The Authors. Pediatric Blood & Cancer, published by Wiley Periodicals, Inc. PMID:26053691

  20. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB.

    PubMed

    Walker, Ashley E; Kaplon, Rachelle E; Pierce, Gary L; Nowlan, Molly J; Seals, Douglas R

    2014-12-01

    Habitual aerobic exercise prevents age-related impairments in endothelium-dependent dilation (EDD). We have hypothesized that the pro-inflammatory transcription factor nuclear factor κB (NF-κB) impairs EDD with sedentary aging, and habitual aerobic exercise prevents this age-related suppression of EDD by NF-κB. To test this hypothesis, we have inhibited NF-κB signalling via oral salsalate administration in healthy older aerobic exercise-trained adults (OT, n=14, 58 ± 2 years), older non-exercising adults (ON, n=16, 61 ± 1 years) and young non-exercising controls (YN, n=8, 23 ± 1 years). Salsalate reduced endothelial cell expression of NF-κB p65 by ~25% in ON (P<0.05) but did not significantly change expression in OT or YN (P>0.05). EDD, assessed by brachial artery flow-mediated dilation (FMD), was improved by salsalate in ON (4.0 ± 0.7% compared with 6.8 ± 0.7%, placebo compared with salsalate, P<0.001) but did not change with salsalate in OT or YN (OT: 7.2 ± 0.7% compared with 7.7 ± 0.6%; YN: 7.6 ± 0.9% compared with 8.1 ± 0.8%; placebo compared with salsalate, P>0.05). Endothelium-independent dilation was not affected by salsalate in any group (P>0.05). In ON, vitamin C infusion improved FMD by ~30% during placebo (P<0.001) but had no affect during salsalate (P>0.05). In OT and YN, vitamin C infusion did not affect FMD during either placebo or salsalate (P>0.05). Salsalate reduced endothelial cell nitrotyrosine content by ~25% and NADPH oxidase p47phox expression by ~30% in ON (P<0.05) but had no effect in OT or YN (P>0.05). Our results suggest that endothelial NF-κB signalling is associated with oxidative stress-related impairment of EDD in healthy non-exercising but not aerobically exercising older adults. This may be a key mechanism by which regular aerobic exercise preserves endothelial function and reduces cardiovascular risk with aging.

  1. Difference of perceptions and evaluation of cognitive dysfunction in major depressive disorder patients across psychiatrists internationally

    PubMed Central

    Hammi, Emna El; Samp, Jennifer; Rémuzat, Cécile; Auray, Jean-Paul; Lamure, Michel; Aballéa, Samuel; Kooli, Amna; Akhras, Kasem

    2014-01-01

    Background: Many studies have suggested that major depressive disorder (MDD) is often associated with cognitive dysfunction. Despite this, guidance addressing assessment of cognitive dysfunction in MDD is lacking. The aim of this study was to examine psychiatrists’ perceptions and evaluation of cognitive dysfunction in routine practice in MDD patients across different countries. Method: A total of 61 psychiatrists in the US, Germany, France, Spain, Hong Kong, and Australia participated in an online survey about perceptions of cognitive dysfunction in MDD patients, evaluation of cognition and instruments used in cognitive evaluation. Results: Most psychiatrists reportedly relied on patient history interviews for cognitive evaluation (83% in France and approximately 60% in the USA, Germany, Australia and Hong Kong). The remainder used a cognitive instrument or a combination of cognitive instrument and patient history interview for assessment. Of those using instruments for cognitive assessment, only nine named instruments that were appropriate for cognitive evaluation. The remainder reported other clinical measures not intended for cognitive evaluation. Conclusions: Overall, psychiatrists in routine clinical practice value the assessment of cognitive in MDD. However, there is a lack of standardization in these assessments and misconceptions regarding proper assessment. PMID:24490027

  2. Cognitive Dysfunction in Chronic Fatigue Syndrome: a Review of Recent Evidence.

    PubMed

    Cvejic, Erin; Birch, Rachael C; Vollmer-Conna, Uté

    2016-05-01

    Cognitive difficulties represent a common and debilitating feature of the enigmatic chronic fatigue syndrome (CFS). These difficulties manifest as self-reported problems with attention, memory, and concentration and present objectively as slowed information processing speed particularly on complex tasks requiring sustained attention. The mechanisms underlying cognitive dysfunction remain to be established; however, alterations in autonomic nervous system activity and cerebral blood flow have been proposed as possibilities. Heterogeneity in the experience of cognitive impairment, as well as differences in the methods utilised to quantify dysfunction, may contribute to the difficulties in establishing plausible biological underpinnings. The development of a brief neurocognitive battery specifically tailored to CFS and adoption by the international research community would be beneficial in establishing a profile of cognitive dysfunction. This could also provide better insights into the underlying biological mechanisms of cognitive dysfunction in CFS and enhance the development of targeted treatments. PMID:27032787

  3. Green tea consumption affects cognitive dysfunction in the elderly: a pilot study.

    PubMed

    Ide, Kazuki; Yamada, Hiroshi; Takuma, Norikata; Park, Mijong; Wakamiya, Noriko; Nakase, Junpei; Ukawa, Yuuichi; Sagesaka, Yuko M

    2014-09-29

    Green tea is known to have various health benefits for humans. However, the effect of green tea consumption on cognitive dysfunction remains to be clinically verified. We conducted a clinical study to investigate the effects of green tea consumption on cognitive dysfunction. Twelve elderly nursing home residents with cognitive dysfunction (Mini-Mental State Examination Japanese version (MMSE-J) score: <28) participated in the study (2 men, 10 women; mean age, 88 years). The participants consumed green tea powder 2 g/day for 3 months. After three months of green tea consumption, the participants' MMSE-J scores were significantly improved (before, 15.3 ± 7.7; after, 17.0 ± 8.2; p = 0.03). This result suggests that green tea consumption may be effective in improving cognitive function or reducing the progression of cognitive dysfunction; however, long-term large-scale controlled studies are needed to further clarify the effect.

  4. Cognitive Rehabilitation for Executive Dysfunction in Parkinson's Disease: Application and Current Directions

    PubMed Central

    Calleo, Jessica; Burrows, Cristina; Levin, Harvey; Marsh, Laura; Lai, Eugene; York, Michele K.

    2012-01-01

    Cognitive dysfunction in Parkinson's disease contributes to disability, caregiver strain, and diminished quality of life. Cognitive rehabilitation, a behavioral approach to improve cognitive skills, has potential as a treatment option to improve and maintain cognitive skills and increase quality of life for those with Parkinson's disease-related cognitive dysfunction. Four cognitive rehabilitation programs in individuals with PD are identified from the literature. Characteristics of the programs and outcomes are reviewed and critiqued. Current studies on cognitive rehabilitation in PD demonstrate feasibility and acceptability of a cognitive rehabilitation program for patients with PD, but are limited by their small sample size and data regarding generalization of effects over the long term. Because PD involves progressive heterogeneous physical, neurological, and affective difficulties, future cognitive rehabilitation programs should aim for flexibility and individualization, according to each patient's strengths and deficits. PMID:22135762

  5. Adaptive and regulatory mechanisms in aged rats with postoperative cognitive dysfunction

    PubMed Central

    Bi, Yanlin; Liu, Shuyun; Yu, Xinjuan; Wang, Mingshan; Wang, Yuelan

    2014-01-01

    Inflammation may play a role in postoperative cognitive dysfunction. 5′ Adenosine monophosphate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-α are involved in inflammation. Therefore, these inflammatory mediators may be involved in postoperative cognitive dysfunction. Western immunoblot analysis revealed 5′ adenosine monophosphate-activated protein kinase and nuclear factor-kappa B in the hippocampus of aged rats were increased 1–7 days after splenectomy. Moreover, interleukin-1β and tumor necrosis factor-α were upregulated and gradually decreased. Therefore, these inflammatory mediators may participate in the splenectomy model of postoperative cognitive dysfunction in aged rats. PMID:25206851

  6. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  7. Cognitive dysfunction in major depressive disorder: a state-of-the-art clinical review.

    PubMed

    Bortolato, Beatrice; Carvalho, Andre F; McIntyre, Roger S

    2014-01-01

    Major depressive disorder (MDD) is a prevalent and recurring mental disorder often associated with high rates of non-recovery and substantial consequences on psychosocial outcome. Cognitive impairment is one of the most frequent residual symptoms of MDD. The persistence of cognitive impairment even in remitted phases of the disorder, notably in the domains of executive function and attention, suggests that it may serve as a mediational nexus between MDD and poor functional outcome, accounting for occupational and relational difficulties regardless of clinical improvement on depressive symptoms. The critical impact of cognitive deficits on psychosocial dysfunction invites clinicians to regularly screen and assess cognition across multiple domains, taking into account also clinical correlates of cognitive dysfunction in MDD. Despite the availability of several instruments for the screening and assessment of cognitive dysfunction, the lack of consensus guiding the choice of appropriate instruments increases the likelihood to underestimate cognitive dysfunction in MDD in clinical settings. On the other hand, the unsatisfactory effect of most antidepressant treatments on cognitive deficits for many individuals with MDD calls for the development of genuinely novel therapeutic agents with potential to target cognitive dysfunction. Notwithstanding the necessity of further investigations, this review indicates that neuropsychological deficits (e.g., impaired executive functions) are stable markers of MDD and underscores the need for the development of integrative and multi-modal strategies for the prevention and treatment of neuropsychological impairments in MDD. PMID:25470396

  8. Congenital prosopagnosia--a common hereditary cognitive dysfunction in humans.

    PubMed

    Kennerknecht, Ingo; Pluempe, Nina; Welling, Brigitte

    2008-01-01

    The apparent selectivity of agnosia for faces is termed prosopagnosia or face blindness. This cognitive dysfunction can be seen after traumatic events--involving at least the right occipital temporal region--or very frequently congenital in the absence of any detectable lesions. The familiarity of congenital prosopagnosia was studied in two independently ascertained collections of subjects with prosopagnosia. One was an unselected group of pupils and students who underwent a questionnaire based screening. The others were self reported subjects after having heard for the first time about the phenomenon of prosopagnosia from mass media citing our studies and/or from our homepage (www.prosopagnosia.de). Those who agreed with consecutive studies of their family members had mostly one or more prosopagnosic first degree relatives. The segregation patterns derived from 39 families are compatible with autosomal dominant inheritance. Hence, mutation(s) in one gene are sufficient for manifestation of the phenotype. Still fitting the concept of autosomal dominant inheritance, we have evidence for a slightly reduced penetrance (4 normal transmitters from distinct families) and one or two de novo mutations.

  9. Hereditary vulnerabilities to post-operative cognitive dysfunction and dementia.

    PubMed

    Hogan, Kirk J

    2013-12-01

    In view of multiple prospective investigations reporting an incidence of 10% or greater in elderly patients after cardiac and non-cardiac procedures, it is surprising that no families, twins or even individual cases have been reported with persistent post-operative cognitive dysfunction (POCD) or post-operative dementia (POD) that is otherwise unexplained. As POCD and POD research has shifted in recent years from surgical and anesthetic variables to predictors of intrinsic, patient-specific susceptibility, a number of markers based on DNA sequence variation have been investigated. Nevertheless, no heritable, genomic indices of persistent POCD or post-operative dementia lasting 3 months or longer after surgery have been identified to date. The present manuscript surveys challenges confronting the search for markers of heritable vulnerability to POCD and POD, and proposes steps forward to be taken now, including the addition of surgical and anesthetic descriptors to ongoing longitudinal dementia protocols and randomized clinical trials (RCTs) comprising serial psychometric testing, and a fresh focus on phenotypes and genotypes shared between outliers with "extreme" POCD and POD traits.

  10. Efficiently Assessing Negative Cognition in Depression: An Item Response Theory Analysis of the Dysfunctional Attitude Scale

    ERIC Educational Resources Information Center

    Beevers, Christopher G.; Strong, David R.; Meyer, Bjorn; Pilkonis, Paul A.; Miller, Ivan R.

    2007-01-01

    Despite a central role for dysfunctional attitudes in cognitive theories of depression and the widespread use of the Dysfunctional Attitude Scale, form A (DAS-A; A. Weissman, 1979), the psychometric development of the DAS-A has been relatively limited. The authors used nonparametric item response theory methods to examine the DAS-A items and…

  11. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer's Disease.

    PubMed

    Daulatzai, Mak Adam

    2016-10-01

    Sporadic Alzheimer's disease (AD) is a devastating neurodegenerative disorder. It is essential to unravel its etiology and pathogenesis. This should enable us to study the presymptomatic stages of the disease and to analyze and reverse the antemortem behavioral, memory, and cognitive dysfunction. Prima facie, an ongoing chronic vulnerability involving neural insult may lead normal elderly to mild cognitive impairment (MCI) and then to AD. Development of effective preventive and therapeutic strategies to thwart the disease pathology obviously requires a thorough delineation of underlying disruptive neuropathological processes. Our sensory capacity for touch, smell, taste, hearing, and vision declines with advancing age. Declines in different sensory attributes are considered here to be the primary "first-tier pathologies." Olfactory loss is among the first clinical signs of neurodegenerative diseases including AD and Parkinson's disease (PD). Sensory dysfunction in the aged promotes pathological disturbances in the locus coeruleus, basal forebrain, entorhinal cortex, hippocampus, and several key areas of neocortex and brainstem. Hence, sensory dysfunction is the pivotal factor that may upregulate cognitive and memory dysfunction. The age-related constellation of comorbid pathological factors may include apolipoprotein E (APOE) genotype, obesity, diabetes, hypertension, alcohol abuse, head trauma, and obstructive sleep apnea. The concepts and trajectories delineated here are the dynamic pillars of the current hypothesis presented-it postulates that the sensory decline, in conjunction with the above pathologies, is crucial in triggering neurodegeneration and promoting cognitive/memory dysfunction in aging and AD. The application of this thesis can be important in formulating new multifactorial preventive and treatment strategies (suggested here) in order to attenuate cognitive and memory decline and ameliorate pathological dysfunction in aging, MCI, and AD.

  12. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer's Disease.

    PubMed

    Daulatzai, Mak Adam

    2016-10-01

    Sporadic Alzheimer's disease (AD) is a devastating neurodegenerative disorder. It is essential to unravel its etiology and pathogenesis. This should enable us to study the presymptomatic stages of the disease and to analyze and reverse the antemortem behavioral, memory, and cognitive dysfunction. Prima facie, an ongoing chronic vulnerability involving neural insult may lead normal elderly to mild cognitive impairment (MCI) and then to AD. Development of effective preventive and therapeutic strategies to thwart the disease pathology obviously requires a thorough delineation of underlying disruptive neuropathological processes. Our sensory capacity for touch, smell, taste, hearing, and vision declines with advancing age. Declines in different sensory attributes are considered here to be the primary "first-tier pathologies." Olfactory loss is among the first clinical signs of neurodegenerative diseases including AD and Parkinson's disease (PD). Sensory dysfunction in the aged promotes pathological disturbances in the locus coeruleus, basal forebrain, entorhinal cortex, hippocampus, and several key areas of neocortex and brainstem. Hence, sensory dysfunction is the pivotal factor that may upregulate cognitive and memory dysfunction. The age-related constellation of comorbid pathological factors may include apolipoprotein E (APOE) genotype, obesity, diabetes, hypertension, alcohol abuse, head trauma, and obstructive sleep apnea. The concepts and trajectories delineated here are the dynamic pillars of the current hypothesis presented-it postulates that the sensory decline, in conjunction with the above pathologies, is crucial in triggering neurodegeneration and promoting cognitive/memory dysfunction in aging and AD. The application of this thesis can be important in formulating new multifactorial preventive and treatment strategies (suggested here) in order to attenuate cognitive and memory decline and ameliorate pathological dysfunction in aging, MCI, and AD. PMID

  13. Developing Interventions for Cancer-Related Cognitive Dysfunction in Childhood Cancer Survivors

    PubMed Central

    Ullrich, Nicole J.; Whelen, Megan J.; Lange, Beverly J.

    2014-01-01

    Survivors of childhood cancer frequently experience cancer-related cognitive dysfunction, commonly months to years after treatment for pediatric brain tumors, acute lymphoblastic leukemia (ALL), or tumors involving the head and neck. Risk factors for cancer-related cognitive dysfunction include young age at diagnosis, treatment with cranial irradiation, use of parenteral or intrathecal methotrexate, female sex, and pre-existing comorbidities. Limiting use and reducing doses and volume of cranial irradiation while intensifying chemotherapy have improved survival and reduced the severity of cognitive dysfunction, especially in leukemia. Nonetheless, problems in core functional domains of attention, processing speed, working memory and visual-motor integration continue to compromise quality of life and performance. We review the epidemiology, pathophysiology and assessment of cancer-related cognitive dysfunction, the impact of treatment changes for prevention, and the broad strategies for educational and pharmacological interventions to remediate established cognitive dysfunction following childhood cancer. The increased years of life saved after childhood cancer warrants continued study toward the prevention and remediation of cancer-related cognitive dysfunction, using uniform assessments anchored in functional outcomes. PMID:25080574

  14. Developing interventions for cancer-related cognitive dysfunction in childhood cancer survivors.

    PubMed

    Castellino, Sharon M; Ullrich, Nicole J; Whelen, Megan J; Lange, Beverly J

    2014-08-01

    Survivors of childhood cancer frequently experience cancer-related cognitive dysfunction, commonly months to years after treatment for pediatric brain tumors, acute lymphoblastic leukemia (ALL), or tumors involving the head and neck. Risk factors for cancer-related cognitive dysfunction include young age at diagnosis, treatment with cranial irradiation, use of parenteral or intrathecal methotrexate, female sex, and pre-existing comorbidities. Limiting use and reducing doses and volume of cranial irradiation while intensifying chemotherapy have improved survival and reduced the severity of cognitive dysfunction, especially in leukemia. Nonetheless, problems in core functional domains of attention, processing speed, working memory and visual-motor integration continue to compromise quality of life and performance. We review the epidemiology, pathophysiology and assessment of cancer-related cognitive dysfunction, the impact of treatment changes for prevention, and the broad strategies for educational and pharmacological interventions to remediate established cognitive dysfunction following childhood cancer. The increased years of life saved after childhood cancer warrants continued study toward the prevention and remediation of cancer-related cognitive dysfunction, using uniform assessments anchored in functional outcomes. PMID:25080574

  15. Mild cognitive dysfunction: an epidemiological perspective with an emphasis on African Americans.

    PubMed

    Unverzagt, Frederick W; Sujuan Gao; Lane, Kathleen A; Callahan, Christopher; Ogunniyi, Adesola; Baiyewu, Olusegun; Gureje, Oye; Hall, Kathleen S; Hendrie, Hugh C

    2007-12-01

    This review begins with a historical accounting of the evolution of the concept of mild cognitive dysfunction, including nomenclature and criteria from Kral to Petersen. A critical analysis of the main elements relating to assessment and diagnosis of mild cognitive dysfunction is provided. Methodological limitations in design, measurement, and characterization, especially as they relate to older African Americans, are identified. Data from a 15-year longitudinal study of community-dwelling African Americans in Indianapolis, Indiana, indicate a 23% prevalence of all-cause mild cognitive dysfunction, with approximately 25% progressing to dementia in 2 years and another 25% reverting to normal cognition in the same interval. Factors contributing to this longitudinal variability in outcomes are reviewed, including the role of medical health factors. The review closes with suggestions for next steps in the epidemiological research of mild cognitive impairment.

  16. Change in Dysfunctional Beliefs About Sleep in Behavior Therapy, Cognitive Therapy, and Cognitive-Behavioral Therapy for Insomnia.

    PubMed

    Eidelman, Polina; Talbot, Lisa; Ivers, Hans; Bélanger, Lynda; Morin, Charles M; Harvey, Allison G

    2016-01-01

    As part of a larger randomized controlled trial, 188 participants were randomized to behavior therapy (BT), cognitive therapy (CT), or cognitive-behavioral therapy (CBT) for insomnia. The aims of this study were threefold: (a) to determine whether change in dysfunctional beliefs about sleep was related to change in sleep, insomnia symptoms, and impairment following treatment; (b) to determine whether BT, CT, and CBT differ in their effects on dysfunctional beliefs; and (c) to determine whether the treatments differ in their effects on particular kinds of dysfunctional beliefs. Beliefs, sleep, insomnia symptoms, and sleep-related psychosocial impairment were assessed at pretreatment, posttreatment, and 6- and 12-month follow-up. Greater change in dysfunctional beliefs occurring over the course of BT, CT, or CBT was associated with greater improvement in insomnia symptoms and impairment at posttreatment and both follow-ups. All groups experienced a significant decrease in dysfunctional beliefs during treatment, which were sustained through 6- and 12-month follow-up. Compared with the BT group, a greater proportion of participants in the CT and/or CBT groups endorsed dysfunctional beliefs below a level considered clinically significant at posttreatment and 12-month follow-up. The results demonstrate the importance of targeting dysfunctional beliefs in insomnia treatment, suggest that beliefs may be significantly modified with BT alone, and indicate that cognitive interventions may be particularly powerful in enhancing belief change.

  17. Change in Dysfunctional Beliefs About Sleep in Behavior Therapy, Cognitive Therapy, and Cognitive-Behavioral Therapy for Insomnia.

    PubMed

    Eidelman, Polina; Talbot, Lisa; Ivers, Hans; Bélanger, Lynda; Morin, Charles M; Harvey, Allison G

    2016-01-01

    As part of a larger randomized controlled trial, 188 participants were randomized to behavior therapy (BT), cognitive therapy (CT), or cognitive-behavioral therapy (CBT) for insomnia. The aims of this study were threefold: (a) to determine whether change in dysfunctional beliefs about sleep was related to change in sleep, insomnia symptoms, and impairment following treatment; (b) to determine whether BT, CT, and CBT differ in their effects on dysfunctional beliefs; and (c) to determine whether the treatments differ in their effects on particular kinds of dysfunctional beliefs. Beliefs, sleep, insomnia symptoms, and sleep-related psychosocial impairment were assessed at pretreatment, posttreatment, and 6- and 12-month follow-up. Greater change in dysfunctional beliefs occurring over the course of BT, CT, or CBT was associated with greater improvement in insomnia symptoms and impairment at posttreatment and both follow-ups. All groups experienced a significant decrease in dysfunctional beliefs during treatment, which were sustained through 6- and 12-month follow-up. Compared with the BT group, a greater proportion of participants in the CT and/or CBT groups endorsed dysfunctional beliefs below a level considered clinically significant at posttreatment and 12-month follow-up. The results demonstrate the importance of targeting dysfunctional beliefs in insomnia treatment, suggest that beliefs may be significantly modified with BT alone, and indicate that cognitive interventions may be particularly powerful in enhancing belief change. PMID:26763501

  18. Fixed belief in cognitive dysfunction despite normal neuropsychological scores: neurocognitive hypochondriasis?

    PubMed

    Boone, Kyle Brauer

    2009-08-01

    A subset of patients who present for neuropsychological testing report dysfunction in daily life activities secondary to cognitive deficits, but are found on formal testing to have no objective abnormalities, raising the possibility of "neurocognitive hypochondriasis." Such a case is presented, and the factors that appear to give rise to this presentation are explored. Cases of hypochondriacal overconcern regarding cognitive function are likely not rare, particularly given research showing there is little correlation between objective report of cognitive dysfunction and actual test scores in such conditions as mild traumatic brain injury, chronic fatigue syndrome, fibromyalgia, toxic mold exposure, and post-polio syndrome. PMID:18923966

  19. Dysfunctional schemas and cognitive distortions in psychopathology: a test of the specificity hypothesis.

    PubMed

    Leung, P W; Poon, M W

    2001-09-01

    This study aimed at testing whether there were different types of dysfunctional schemas and cognitive distortions that could help to differentiate three emotional/behavioural problems, i.e., anxiety, depression, and aggression, from each other. Five hundred and eighty-one Chinese adolescents from five mainstream high schools in Hong Kong were recruited and completed several self-report questionnaires. Bivariate correlation showed an indiscriminate pattern of association between dysfunctional schemas, cognitive distortions, and the three emotional/behavioural problems. However, when the effects of the confounding correlated emotional/behavioural problems were controlled in regression analysis, different problems did show some specific association with different types of dysfunctional schemas and/or cognitive distortions. Despite some inconsistency, these findings generally supported a specificity hypothesis. Cognitive variables were thus not only relevant in understanding psychopathology, but their different patterns of association with anxiety, depression, and aggression also supported the separability of these three emotional/behavioural problems, despite their significant correlation.

  20. Children's Internal Attributions of Anxiety-Related Physical Symptoms: Age-Related Patterns and the Role of Cognitive Development and Anxiety Sensitivity

    ERIC Educational Resources Information Center

    Muris, Peter; Mayer, Birgit; Freher, Nancy Kramer; Duncan, Sylvana; van den Hout, Annemiek

    2010-01-01

    The present study examined age-related patterns in children's anxiety-related interpretations and internal attributions of physical symptoms. A large sample of 388 children aged between 4 and 13 years completed a vignette paradigm during which they had to explain the emotional response of the main character who experienced anxiety-related physical…

  1. Graded model of diffuse axonal injury for studying head injury-induced cognitive dysfunction in rats.

    PubMed

    Maruichi, Katsuhiko; Kuroda, Satoshi; Chiba, Yasuhiro; Hokari, Masaaki; Shichinohe, Hideo; Hida, Kazutoshi; Iwasaki, Yoshinobu

    2009-04-01

    Diffuse axonal injury (DAI) plays a major role in the development of cognitive dysfunction, emotional difficulties and behavioral disturbances in patients following closed head injury, even when they have no definite abnormalities on conventional MRI. This study aimed to develop a highly controlled and reproducible model for DAI that simulates post-traumatic cognitive dysfunction in humans. Sprague-Dawley (SD) rats were subjected to impact acceleration head injury, using a pneumatic impact targeted to a steel disc centered onto their skull. The severity of injury was graded as three levels by adjusting the driving pressure at 60, 70 or 80 pounds per square inch. In vivo MRI was obtained 2 days post-injury. Cognitive function was evaluated using the Morris water maze at 1 and 2 weeks post-injury. HE staining and immunohistochemistry were performed to assess neuronal and axonal damages after 2 weeks. MRI demonstrated that this model induced no gross structural modification in the brain. The degree and duration of cognitive dysfunction were dependent on the force of impact. Histological analysis revealed the force-dependent damage of the neurons and microtubule-associated protein 2-positive axons in the neocortex. Hippocampal damage was much less pronounced and was not linked to cognitive dysfunction. This is the first report that precisely evaluates the threshold of impact energy to lead to neocortical damage and cognitive dysfunction in rodents. This model would be suitable for clarifying the complex mechanisms of post-traumatic brain damage and testing novel therapeutic approaches against post-traumatic cognitive dysfunction due to diffuse axonal damage.

  2. Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction.

    PubMed

    Couette, Maryline; Boisse, Marie-Françoise; Maison, Patrick; Brugieres, Pierre; Cesaro, Pierre; Chevalier, Xavier; Gherardi, Romain K; Bachoud-Levi, Anne-Catherine; Authier, François-Jérôme

    2009-11-01

    Macrophagic myofasciitis (MMF) is an emerging condition, characterized by specific muscle lesions assessing long-term persistence of aluminum hydroxide within macrophages at the site of previous immunization. Affected patients mainly complain of arthromyalgias, chronic fatigue, and cognitive difficulties. We designed a comprehensive battery of neuropsychological tests to prospectively delineate MMF-associated cognitive dysfunction (MACD). Compared to control patients with arthritis and chronic pain, MMF patients had pronounced and specific cognitive impairment. MACD mainly affected (i) both visual and verbal memory; (ii) executive functions, including attention, working memory, and planning; and (iii) left ear extinction at dichotic listening test. Cognitive deficits did not correlate with pain, fatigue, depression, or disease duration. Pathophysiological mechanisms underlying MACD remain to be determined. In conclusion, long-term persistence of vaccine-derived aluminum hydroxide within the body assessed by MMF is associated with cognitive dysfunction, not solely due to chronic pain, fatigue and depression.

  3. Immune-Mediated Metabolic Kynurenine Pathways Are Involved in the Postoperative Cognitive Dysfunction after Cardiopulmonary Bypass.

    PubMed

    Yi, Shuang Qiang; Yang, Mi; Duan, Kai Ming

    2015-10-01

    Postoperative cognitive dysfunction (POCD) after cardiopulmonary bypass is a serious complication that can lead to personality changes, memory loss, reduction in the ability to learn, and other central nervous system dysfunctions. In recent years, there have been improvements in measures to protect the brain during surgery, although the incidence of cognitive dysfunction after cardiac surgery remains high (33 to 83% short-term and 20 to 60% long-term cognitive dysfunction). Despite the large amount of basic and clinical research on the incidence of POCD, its exact pathogenesis and complexity are not clear. Many studies have shown that the kynurenine pathway (KP) and cognitive function in humans are closely related. Some reports also show that the imbalance of some metabolites of the KP such as kynurenic acid and quinolinic acid (QUIN), which act in dynamic equilibrium under physiologic conditions, have effects on the central nervous system and can significantly affect cognitive function. Further studies have shown that inflammatory mediators may act on key enzymes of the KP causing KP-induced disorders. Severe inflammatory reaction occurs in patients undergoing cardiopulmonary bypass, which triggers metabolic pathways that are closely related to changes in cognitive function. In this review, we summarize that inflammation-induced metabolic kynurenine (KYN) pathway disorders are likely to have an important role in incidence of POCD after CPB surgery. PMID:25893921

  4. Cognitive dysfunction in mice deficient for TNF- and its receptors.

    PubMed

    Baune, Bernhard T; Wiede, Florian; Braun, Anja; Golledge, Jonathan; Arolt, Volker; Koerner, Heinrich

    2008-10-01

    Recent evidence suggests a role for tumor necrosis factor alpha (TNF) in the functioning of the central nervous system (CNS). The aim of this work was to examine the effect of a deficiency of TNF (TNF(-/-)) and its main receptors (TNF-R1(-/-) and TNF-R2(-/-)) on cognitive function. A standardized survey on cognition-like behavior assessing learning and retention, spatial learning/memory, cognitive flexibility, and learning effectiveness was used in B6.WT and B6.TNF gene targeted mice strains (B6.wild-type, B6.TNF(-/-), B6.TNF-R1(-/-), B6.TNF-R2(-/-) mice). All studied mice strains demonstrated successful exploration and learning processes during the training phases of the tests, which made the specific cognition-like tests valid in these mice strains. In the specific cognition-like tests, the B6.TNF(-/-) mice demonstrated significantly poorer learning and retention in the novel object test compared to B6.WT, B6.TNF-R1(-/-) and B6.TNF-R2(-/-) mice. In addition, spatial learning and learning effectiveness were significantly poorer in B6.TNF(-/-) mice compared to B6.WT mice. Moreover, the moderately impaired cognitive performance with similar degrees in B6.TNF-R1(-/-) or B6.TNF-R2(-/-) mice was generally better than in TNF(-/-) mice but also poorer than in B6.WT mice. While the absence of TNF was correlated with poor cognitive functioning, the deletion of both TNF-receptors was involved in partially reduced cognitive functioning. Low-levels of TNF under non-inflammatory immune conditions appear essential for normal cognitive function. TNF displays an interesting candidate gene for cognitive function. Translational research is required to investigate associations between genetic variants of TNF and cognitive function in healthy subjects and neuropsychiatric samples.

  5. Cognitive dysfunction syndrome: a disease of canine and feline brain aging.

    PubMed

    Landsberg, Gary M; Nichol, Jeff; Araujo, Joseph A

    2012-07-01

    Brain aging is a degenerative process manifest by impairment of cognitive function; although not all pets are affected at the same level, once cognitive decline begins it is generally a progressive disorder. Diagnosis of cognitive dysfunction syndrome (CDS) is based on recognition of behavioral signs and exclusion of other medical causes that might mimic CDS or complicate its diagnosis. Drugs, diets, and supplements are now available that might slow CDS progression by various mechanisms including reducing oxidative stress and inflammation or improving mitochondrial and neuronal function. Moreover, available therapeutics may provide some level of improvement in cognitive and clinical signs of CDS. PMID:22720812

  6. Age-Related Differences and Cognitive Correlates of Self-Reported and Direct Navigation Performance: The Effect of Real and Virtual Test Conditions Manipulation.

    PubMed

    Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène

    2015-01-01

    The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates.

  7. Age-Related Differences and Cognitive Correlates of Self-Reported and Direct Navigation Performance: The Effect of Real and Virtual Test Conditions Manipulation

    PubMed Central

    Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène

    2016-01-01

    The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates. PMID:26834666

  8. Ginkgo biloba extract EGb 761® in the context of current developments in the diagnosis and treatment of age-related cognitive decline and Alzheimer's disease: a research perspective.

    PubMed

    Lautenschlager, Nicola T; Ihl, Ralf; Müller, Walter E

    2012-08-01

    In June 2011 a two-day expert meeting "The Ageing Brain" took place in Amsterdam, The Netherlands. The main aim was to discuss the available preclinical and clinical data on Ginkgo biloba special extract EGb 761® in the context of current developments in the diagnosis and treatment of age-related cognitive decline and Alzheimer's disease. 19 dementia experts covering the disciplines bio- and neurochemistry, gerontology, neurology, pharmacology, and psychiatry from Australia, Asia, Europe and North America reviewed available preclinical and clinical data for EGb 761® and identified core topics for future research. Based on a wide range of preclinical effects demonstrated for Ginkgo biloba, EGb 761® can be conceptualized as a multi-target compound with activity on distinct pathophysiological pathways in Alzheimer's disease (AD) and age-related cognitive decline. While symptomatic efficacy in dementia and mild cognitive impairment (MCI) has been demonstrated, interpretation of data from dementia prevention trials is complicated by important methodological issues. Bridging pre-clinical research and clinical research as well as deciding on suitable study designs for future trials with EGb 761® remain important questions. The participants of the "Ageing Brain" meeting on Ginkgo biloba special extract EGb 761® concluded that there is plenty of promising data, both pre-clinical and clinical, to consider future research with the compound targeting cognitive impairment in old age as a worthwhile activity.

  9. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction.

    PubMed

    Hu, Rong; Huang, Dong; Tong, Jianbin; Liao, Qin; Hu, Zhonghua; Ouyang, Wen

    2014-01-15

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.

  10. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction

    PubMed Central

    Hu, Rong; Huang, Dong; Tong, Jianbin; Liao, Qin; Hu, Zhonghua; Ouyang, Wen

    2014-01-01

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction. PMID:25206795

  11. Omega 3 Fatty Acids: Novel Neurotherapeutic Targets for Cognitive Dysfunction in Mood Disorders and Schizophrenia?

    PubMed

    Knöchel, Christian; Voss, Martin; Grüter, Florian; Alves, Gilberto S; Matura, Silke; Sepanski, Beate; Stäblein, Michael; Wenzler, Sofia; Prvulovic, David; Carvalho, André F; Oertel-Knöchel, Viola

    2015-01-01

    An increasing body of evidences from preclinical as well as epidemiological and clinical studies suggest a potential beneficial role of dietary intake of omega-3 fatty acids for cognitive functioning. In this narrative review, we will summarize and discuss recent findings from epidemiological, interventional and experimental studies linking dietary consumption of omega-3 fatty acids to cognitive function in healthy adults. Furthermore, affective disorders and schizophrenia (SZ) are characterized by cognitive dysfunction encompassing several domains. Cognitive dysfunction is closely related to impaired functioning and quality of life across these conditions. Therefore, the current review focues on the potential influence of omega-3 fatty acids on cognition in SZ and affective disorders. In sum, current data predominantly from mechanistic models and animal studies suggest that adjunctive omega-3 fatty acid supplementation could lead to improved cognitive functioning in SZ and affective disorders. However, besides its translational promise, evidence for clinical benefits in humans has been mixed. Notwithstanding evidences indicate that adjunctive omega-3 fatty acids may have benefit for affective symptoms in both unipolar and bipolar depression, to date no randomized controlled trial had evaluated omega-3 as cognitive enhancer for mood disorders, while a single published controlled trial suggested no therapeutic benefit for cognitive improvement in SZ. Considering the pleiotropic mechanisms of action of omega-3 fatty acids, the design of well-designed controlled trials of omega-3 supplementation as a novel, domain-specific, target for cognitive impairment in SZ and affective disorders is warranted.

  12. Cognitive Dysfunction in Major Depressive Disorder. A Translational Review in Animal Models of the Disease

    PubMed Central

    Darcet, Flavie; Gardier, Alain M.; Gaillard, Raphael; David, Denis J.; Guilloux, Jean-Philippe

    2016-01-01

    Major Depressive Disorder (MDD) is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age) could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed. PMID:26901205

  13. Special Supplement Introduction: The Fourth Kraepelin Symposium-Cognitive Dysfunction in Schizophrenia: Origins and Innovative Treatment.

    PubMed

    Schaub, Annette; Falkai, Peter

    2016-07-01

    This Special Supplement presents reports from working groups meeting at the Fourth Kraepelin Symposium in Munich, Germany, in September 2014. It covers the origins and therapy of cognitive dysfunction in schizophrenia. Cognitive deficits are core symptoms of schizophrenia being decisive for the long-term prognosis only improved moderately by antipsychotic treatment, however, showing more evidence for cognitive remediation. The authors refer to neurobiological and psychological underpinnings of cognitive deficits and to innovative treatment interventions aimed at improving cognitive dysfunction in order to improve outcome and to support coping with the illness. Therapeutic approaches include aerobic exercise, cognitive training, psychoeducation, cognitive therapy, noninvasive brain stimulation and pharmacotherapy in acute to post-acute patients. The supplement also presents novel diagnostic tools for early recognition, such as biomarkers, as well as cognitive training to prevent worsening of symptoms in individuals at clinical high risk for psychosis. In recent years there has been progress in basic science and outcomes research as well as psychopharmacological and psychological treatment options. Despite of this, treatment of cognitive deficits needs significant improvement and further research is needed. PMID:27460613

  14. Omega 3 Fatty Acids: Novel Neurotherapeutic Targets for Cognitive Dysfunction in Mood Disorders and Schizophrenia?

    PubMed Central

    Knöchel, Christian; Voss, Martin; Grter, Florian; Alves, Gilberto S.; Matura, Silke; Sepanski, Beate; Stäblein, Michael; Wenzler, Sofia; Prvulovic, David; Carvalho, André F.; Oertel-Knöchel, Viola

    2015-01-01

    An increasing body of evidences from preclinical as well as epidemiological and clinical studies suggest a potential beneficial role of dietary intake of omega-3 fatty acids for cognitive functioning. In this narrative review, we will summarize and discuss recent findings from epidemiological, interventional and experimental studies linking dietary consumption of omega-3 fatty acids to cognitive function in healthy adults. Furthermore, affective disorders and schizophrenia (SZ) are characterized by cognitive dysfunction encompassing several domains. Cognitive dysfunction is closely related to impaired functioning and quality of life across these conditions. Therefore, the current review focues on the potential influence of omega-3 fatty acids on cognition in SZ and affective disorders. In sum, current data predominantly from mechanistic models and animal studies suggest that adjunctive omega-3 fatty acid supplementation could lead to improved cognitive functioning in SZ and affective disorders. However, besides its translational promise, evidence for clinical benefits in humans has been mixed. Notwithstanding evidences indicate that adjunctive omega-3 fatty acids may have benefit for affective symptoms in both unipolar and bipolar depression, to date no randomized controlled trial had evaluated omega-3 as cognitive enhancer for mood disorders, while a single published controlled trial suggested no therapeutic benefit for cognitive improvement in SZ. Considering the pleiotropic mechanisms of action of omega-3 fatty acids, the design of well-designed controlled trials of omega-3 supplementation as a novel, domain-specific, target for cognitive impairment in SZ and affective disorders is warranted. PMID:26467414

  15. PBA regulates neurogenesis and cognition dysfunction after repeated electroconvulsive shock in a rat model.

    PubMed

    Yao, Zhao-Hui; Kang, Xiang; Yang, Liu; Niu, Yi; Lu, Ye; Nie, Li

    2015-12-15

    Electroconvulsive therapy (ECT) was widely used to treat the refractory depression. But ECT led to the cognitive deficits plaguing the depression patients. The underlying mechanisms of the cognitive deficits remain elusive. Repeated electroconvulsive shock (rECS) was used to simulate ECT and explore the mechanisms of ECT during the animal studies. Previous studies showed rECS could lead to neurogenesis and cognitive impairment. But it was well known that neurogenesis could improve the cognition. So these suggested that the mechanism of the cognitive deficit after rECS was very complex. In present study, we explored the probable mechanisms of the cognitive deficit after rECS from neurogenesis aspect. We found the cognitive deficit was reversible and neurogenesis could bring a long-term beneficial effect on cognition. Astrogliosis and NR1 down-regulation probably participated in the reversible cognitive deficits after rECS. Phenylbutyric acid (PBA), generally as an agent to investigate the roles of histone acetylation, could prevent the reversible cognitive dysfunction, but PBA could diminish the long-term effect of enhanced cognition by rECS. These suggested that ECT could possibly bring the long-term beneficial cognitive effect by regulating neurogenesis.

  16. Vascular Factors and Cognitive Dysfunction in Alzheimer Disease

    PubMed Central

    Pachalska, Maria; Bidzan, Leszek; Bidzan, Mariola; Góral-Półrola, Jolanta

    2015-01-01

    Background The purpose of the present study was to assess the influence of vascular factors on the degree of intensity and rate of progression of cognitive disorders in the course of Alzheimer Disease (AD). Material/Methods The research group consisted of 39 persons, all of whom were diagnosed with AD according to the NINCDS/ADRDA criteria. We divided these patients into 2 subgroups, based on the vascular factors measured by the modified Hachinski Ischemic Scale (Ha-mod): group A, without the vascular component (HA-mod score of 0–1 point), and group B, with the vascular component (a score over 1 point). Cognitive functions were evaluated at baseline and again 2 years later, using the Cognitive Part of the Alzheimer Disease Assessment Scale (ADAS-cog). Results We found that the patients from subgroup B, with the stronger vascular component, demonstrated the highest intensity of cognitive disorders at baseline, both in terms of the overall ADAS-cog score, and in the subscores for ideational praxis, orientation, spoken language ability, comprehension of spoken language, and word-finding difficulty in spontaneous speech. Another variable which was connected with the intensity of dementia was age. After 2 years, however, the rate of progression of cognitive disorders was not significantly different between the 2 groups. Conclusions The severity of vascular factors correlates directly with the intensity of cognitive disturbances. At the 2-year follow-up examination, however, no correlation was observed in the research group between greater vascular involvement and more rapid progression of cognitive disorders, as measured by the ADAS-cog scale. PMID:26561951

  17. Erectile Dysfunction, Vascular Risk, and Cognitive Performance in Late Middle Age

    PubMed Central

    Moore, Caitlin S.; Grant, Michael D.; Zink, Tyler A.; Panizzon, Matthew S.; Franz, Carol E.; Logue, Mark W.; Hauger, Richard L.; Kremen, William S.; Lyons, Michael J.

    2016-01-01

    Vascular disease is the most common etiology of erectile dysfunction (ED). Men with ED are at a 65% increased relative risk of developing coronary heart disease and a 43% increased risk of stroke within 10 years. Vascular disease is associated with cognitive impairment; ED—an overt manifestation of vascular dysfunction—could also signal early compromised cognition. We sought to determine whether cognitive differences existed between men with ED and healthy peers. Our sample consisted of 651 men (ages 51–60 years) from the Vietnam Era Twin Study of Aging. ED was associated with poorer cognitive performance, particularly on attention–executive–psychomotor speed tasks. ED remained significantly associated with cognition after inclusion of other cardiovascular risk factors (including hypertension, high cholesterol, body mass index, and smoking). These findings underscore the importance of further study of ED as a predictor of cognitive and cardiovascular health. PMID:24660805

  18. Cognitive Dysfunction Survey of the Japanese Patients with Moyamoya Disease (COSMO-JAPAN Study): study protocol.

    PubMed

    Takagi, Yasushi; Miyamoto, Susumu

    2015-01-01

    Moyamoya disease is a cerebrovascular occlusive disease characterized by progressive stenosis or by occlusion at the terminal portion of the bilateral internal carotid arteries. The unusual vascular network (moyamoya vessels) at the base of the brain with this disease as collateral channels is developed in this disease. Social independence because of cognitive impairment has recently been recognized as an important unsolved social issue with adult moyamoya disease. The patients with cognitive impairment have difficulty in proving their status because the standard neuroradiological and neuropsychological methods to define cognitive impairment with moyamoya disease are not determined. These patients with cognitive impairment should be supported by social welfare as psychologically handicapped persons. Thus Cognitive Dysfunction Survey of the Japanese Patients with Moyamoya Disease (COSMO-JAPAN study) is planned. In this study, we want to establish a standard finding of the cognitive impairment in patients with moyamoya disease.

  19. Self-serving appraisal as a cognitive coping strategy to deal with age-related limitations: an empirical study with elderly adults in a real-life stressful situation.

    PubMed

    De Raedt, Rudi; Ponjaert-Kristoffersen, I

    2006-03-01

    Elderly people are often confronted with stressful events that threaten psychological homeostasis. Nevertheless, the lack of a general age-related drop in life satisfaction remains intriguing. The objective of this study was to analyze the basic mechanisms of perceived control and self-protective processes. Eighty-four elderly adults who underwent a fitness-to-drive evaluation were asked how they appraised their performance in a driving simulation task and were classified as over-estimators versus people who estimated their performance correctly and people who didn't overestimate their performance. Decreased physical resources were related to self-serving appraisal and less depressive feelings. The results are in line with theories on self-immunizing processes and provide support for the use of cognitive therapies in dealing with age-related limitations.

  20. Cerebellar Dysfunction, Cognitive Flexibility and Autistic Traits in a Non-Clinical Sample

    ERIC Educational Resources Information Center

    Ridley, Nicole J.; Homewood, Judi; Walters, Jenny

    2011-01-01

    Cerebellar dysfunction and impaired cognitive flexibility are key features of autism spectrum disorders (ASD). However, despite the increasing interest in subclinical autism, no research has yet examined the relationship between these signs and autistic traits in the wider population. This study used the Autism-Spectrum Quotient (AQ) questionnaire…

  1. Cognitive Dysfunction, Locus of Control and Treatment Outcome among Chronic Alcoholics.

    ERIC Educational Resources Information Center

    Abbott, Max W.

    While alcoholism is no longer regarded as a unitary disorder, conventional measures of congition and personality have yet to be shown capable of consistently predicting clinical outcomes. To investigate cognitive dysfunction and locus of control as predictors of post treatment outcome in a large sample of alcoholics, 106 alcoholics (74 men, 32…

  2. The Possible Link between GABAergic Dysfunction and Cognitive Decline in a Patient with Idiopathic Hypoparathyroidism.

    PubMed

    Terada, Tatsuhiro; Kakimoto, Akihiro; Yoshikawa, Etsuji; Kono, Satoshi; Bunai, Tomoyasu; Hosoi, Yasushi; Sakao-Suzuki, Makiko; Konishi, Takashi; Miyajima, Hiroaki; Ouchi, Yasuomi

    2015-01-01

    Idiopathic hypoparathyroidism (IHP) is accompanied by cognitive impairment. We report the case of a 70-year-old IHP patient with cognitive disturbance. Brain computed tomography showed bilateral calcification in basal ganglia, thalamus, and cerebellum. Neuropsychological assessment revealed low scores for intelligence, memory, and perseverative errors. Brain positron emission tomography showed a significant reduction in [(18)F]-Fludeoxyglucose (FDG) uptake in bilateral frontal, left temporal and parietal cortices, along with a marked reduction in [(11)C]-flumazenil binding in left frontal, temporal, parietal, and bilateral cerebellum. These findings suggest cognitive impairment in IHP may be ascribed to GABAergic dysfunction, thus leading to, or coexisting with, cerebral hypometabolism.

  3. Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease.

    PubMed

    Dacks, P A; Shineman, D W; Fillit, H M

    2013-03-01

    An NIH State of the Science Conference panel concluded in 2010 that insufficient evidence is available to recommend the use of any primary prevention therapy for Alzheimer's disease or cognitive decline with age. Despite the insufficient evidence, candidate therapies with varying levels of evidence for safety and efficacy are taken by the public and discussed in the media. One example is the long-chain n-3 (omega-3) polyunsaturated fatty acids (n-3 LC-PUFA), DHA and EPA, found in some fish and dietary supplements. With this report, we seek to provide a practical overview and rating of the level and type of available evidence that n-3 LC-PUFA supplements are safe and protective against cognitive aging and Alzheimer's disease, with additional discussion of the evidence for effects on quality of life, vascular aging, and the rate of aging. We discuss available sources, dose, bioavailability, and variables that may impact the response to n-3 LC-PUFA treatment such as baseline n-3 LC-PUFA status, APOE ε4 genotype, depression, and background diet. Lastly, we list ongoing clinical trials and propose next research steps to validate these fatty acids for primary prevention of cognitive aging and dementia. Of particular relevance, epidemiology indicates a higher risk of cognitive decline in people in the lower quartile of n-3 LC-PUFA intake or blood levels but these populations have not been specifically targeted by RCTs. PMID:23459977

  4. Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease.

    PubMed

    Dacks, P A; Shineman, D W; Fillit, H M

    2013-03-01

    An NIH State of the Science Conference panel concluded in 2010 that insufficient evidence is available to recommend the use of any primary prevention therapy for Alzheimer's disease or cognitive decline with age. Despite the insufficient evidence, candidate therapies with varying levels of evidence for safety and efficacy are taken by the public and discussed in the media. One example is the long-chain n-3 (omega-3) polyunsaturated fatty acids (n-3 LC-PUFA), DHA and EPA, found in some fish and dietary supplements. With this report, we seek to provide a practical overview and rating of the level and type of available evidence that n-3 LC-PUFA supplements are safe and protective against cognitive aging and Alzheimer's disease, with additional discussion of the evidence for effects on quality of life, vascular aging, and the rate of aging. We discuss available sources, dose, bioavailability, and variables that may impact the response to n-3 LC-PUFA treatment such as baseline n-3 LC-PUFA status, APOE ε4 genotype, depression, and background diet. Lastly, we list ongoing clinical trials and propose next research steps to validate these fatty acids for primary prevention of cognitive aging and dementia. Of particular relevance, epidemiology indicates a higher risk of cognitive decline in people in the lower quartile of n-3 LC-PUFA intake or blood levels but these populations have not been specifically targeted by RCTs.

  5. Cognitive estimations as a measure of executive dysfunction in childhood epilepsy.

    PubMed

    MacAllister, William S; Vasserman, Marsha; Coulehan, Kelly; Hall, Ari F; Bender, H Allison

    2016-01-01

    Children and adolescents with epilepsy are known to demonstrate executive function deficits. Despite prior work that has shown that cognitive estimation tasks are sensitive to executive dysfunction in children, such tasks have not been studied in children with epilepsy. This is particularly important given the fact that executive tasks have heretofore shown poor ecological validity, and it has been speculated that estimation tasks may show stronger ecological validity than other executive tests. One hundred and thirteen clinically referred children and adolescents with epilepsy were included. The Biber Cognitive Estimations Test was sensitive to cognitive dysfunction, with about half showing impairments on this task in comparison to age-matched normative data; the most frequently impaired subscales were quantity estimation and time estimation. Moreover, the Biber Cognitive Estimation Test showed moderate correlations with not only overall intellectual functions and academic achievement but also other commonly administered tests of executive functions, including digit span, Trailmaking, and the Tower of London but not with the contingency naming test. Cognitive estimations were also modestly correlated with age of epilepsy onset but not other epilepsy-severity variables such as number of antiepilepsy drugs (AEDs) or seizure frequency. Unfortunately, the hypothesis that the Biber Cognitive Estimation Test would show strong ecological validity was not supported, as it showed weak relations with parent-reported executive function deficits. The significance and limitations of this investigation are discussed.

  6. Rational pharmacological approaches for cognitive dysfunction and depression in Parkinson's disease.

    PubMed

    Sandoval-Rincón, Maritza; Sáenz-Farret, Michel; Miguel-Puga, Adán; Micheli, Federico; Arias-Carrión, Oscar

    2015-01-01

    Parkinson's disease (PD) is not a single entity but rather a heterogeneous neurodegenerative disorder. The present study aims to conduct a critical systematic review of the literature to describe the main pharmacological strategies to treat cognitive dysfunction and major depressive disorder in PD patients. We performed a search of articles cited in PubMed from 2004 to 2014 using the following MeSH terms (Medical subject headings) "Parkinson disease"; "Delirium," "Dementia," "Amnestic," "Cognitive disorders," and "Parkinson disease"; "depression," "major depressive disorder," "drug therapy." We found a total of 71 studies related to pharmacological treatment in cognitive dysfunction and 279 studies for pharmacological treatment in major depressive disorder. After fulfillment of all the inclusion and exclusion criteria, 13 articles remained for cognitive dysfunction and 11 for major depressive disorder, which are presented and discussed in this study. Further research into non-motor symptoms of PD may provide insights into mechanisms of neurodegeneration, and provide better quality of life by using rational drugs. PMID:25873910

  7. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer’s Disease-Like Models

    PubMed Central

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-01-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer’s disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697

  8. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer's Disease-Like Models.

    PubMed

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-05-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697

  9. Rational Pharmacological Approaches for Cognitive Dysfunction and Depression in Parkinson’s Disease

    PubMed Central

    Sandoval-Rincón, Maritza; Sáenz-Farret, Michel; Miguel-Puga, Adán; Micheli, Federico; Arias-Carrión, Oscar

    2015-01-01

    Parkinson’s disease (PD) is not a single entity but rather a heterogeneous neurodegenerative disorder. The present study aims to conduct a critical systematic review of the literature to describe the main pharmacological strategies to treat cognitive dysfunction and major depressive disorder in PD patients. We performed a search of articles cited in PubMed from 2004 to 2014 using the following MeSH terms (Medical subject headings) “Parkinson disease”; “Delirium,” “Dementia,” “Amnestic,” “Cognitive disorders,” and “Parkinson disease”; “depression,” “major depressive disorder,” “drug therapy.” We found a total of 71 studies related to pharmacological treatment in cognitive dysfunction and 279 studies for pharmacological treatment in major depressive disorder. After fulfillment of all the inclusion and exclusion criteria, 13 articles remained for cognitive dysfunction and 11 for major depressive disorder, which are presented and discussed in this study. Further research into non-motor symptoms of PD may provide insights into mechanisms of neurodegeneration, and provide better quality of life by using rational drugs. PMID:25873910

  10. Cognitive dysfunctions associated with PTSD: evidence from World War II prisoners of war.

    PubMed

    Hart, John; Kimbrell, Timothy; Fauver, Peter; Cherry, Barbara J; Pitcock, Jeffery; Booe, Leroy Q; Tillman, Gail; Freeman, Thomas W

    2008-01-01

    The authors aim to delineate cognitive dysfunction associated with posttraumatic stress disorder (PTSD) by evaluating a well-defined cohort of former World War II prisoners of war (POWs) with documented trauma and minimal comorbidities. The authors studied a cross-sectional assessment of neuropsychological performance in former POWs with PTSD, PTSD with other psychiatric comorbidities, and those with no PTSD or psychiatric diagnoses. Participants who developed PTSD had average IQ, while those who did not develop PTSD after similar traumatic experiences had higher IQs than average (approximately 116). Those with PTSD performed significantly less well in tests of selective frontal lobe functions and psychomotor speed. In addition, PTSD patients with co-occurring psychiatric conditions experienced impairment in recognition memory for faces. Higher IQ appears to protect individuals who undergo a traumatic experience from developing long-term PTSD, while cognitive dysfunctions appear to develop with or subsequent to PTSD. These distinctions were supported by the negative and positive correlations of these cognitive dysfunctions with quantitative markers of trauma, respectively. There is a suggestion that some cognitive decrements occur in PTSD patients only when they have comorbid psychiatric diagnoses.

  11. A Method for Investigating Age-related Differences in the Functional Connectivity of Cognitive Control Networks Associated with Dimensional Change Card Sort Performance

    PubMed Central

    DeBenedictis, Bianca; Morton, J. Bruce

    2014-01-01

    The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages. PMID:24837515

  12. Correlations among central serotonergic parameters and age-related emotional and cognitive changes assessed through the elevated T-maze and the Morris water maze.

    PubMed

    Oliveira, Luciana; Graeff, Frederico G; Pereira, Silvia R C; Oliveira-Silva, Ieda F; Franco, Glaura C; Ribeiro, Angela Maria

    2010-06-01

    Emotion and spatial cognitive aspects were assessed in adult and middle-aged rats using the elevated T-maze (ETM) and the Morris water maze (MWM) tasks. Both adult and middle-aged rats were able to acquire inhibitory avoidance behaviour, though the middle-aged subjects showed larger latencies along the trials, including the baseline, which was significantly longer than that showed by adult rats. Further, compared to adult rats, middle-aged rats had longer escape latency. In spite of the worse performance in the second session of the spatial cognitive task, the middle-aged rats were able to learn the task and remember the information along the whole probe trial test. Both thalamic serotonin (5-HT) concentration and amygdala serotonergic activity (5-HIAA/5-HT) are significantly correlated, respectively, to escape latency and behavioural extinction in the MWM only for middle-aged rats. A significant correlation between the 5-HIAA/5-HT ratio in the amygdala and behavioural extinction for middle-aged, but not for adult, rats was observed. This result suggests that serotonergic activity in the amygdala may regulate behavioural flexibility in aged animals. In addition, a significant negative correlation was found between hippocampal 5-HIAA/5-HT ratio and the path length at the second training session of the MWM task, although only for adult subjects. This was the only session where a significant difference between the performance of middle-aged and adult rats has occurred. Although the involvement of the hippocampus in learning and memory is well established, the present work shows, for the first time, a correlation between a serotonergic hippocampal parameter and performance of a spatial task, which is lost with ageing.

  13. Age-related changes in prefrontal norepinephrine transporter density: The basis for improved cognitive flexibility after low doses of atomoxetine in adolescent rats.

    PubMed

    Bradshaw, Sarah E; Agster, Kara L; Waterhouse, Barry D; McGaughy, Jill A

    2016-06-15

    Adolescence is a period of major behavioral and brain reorganization. As diagnoses and treatment of disorders like attention deficit hyperactivity disorder (ADHD) often occur during adolescence, it is important to understand how the prefrontal cortices change and how these changes may influence the response to drugs during development. The current study uses an adolescent rat model to study the effect of standard ADHD treatments, atomoxetine and methylphenidate on attentional set shifting and reversal learning. While both of these drugs act as norepinephrine reuptake inhibitors, higher doses of atomoxetine and all doses of methylphenidate also block dopamine transporters (DAT). Low doses of atomoxetine, were effective at remediating cognitive rigidity found in adolescents. In contrast, methylphenidate improved performance in rats unable to form an attentional set due to distractibility but was without effect in normal subjects. We also assessed the effects of GBR 12909, a selective DAT inhibitor, but found no effect of any dose on behavior. A second study in adolescent rats investigated changes in norepinephrine transporter (NET) and dopamine beta hydroxylase (DBH) density in five functionally distinct sub-regions of the prefrontal cortex: infralimbic, prelimbic, anterior cingulate, medial and lateral orbitofrontal cortices. These regions are implicated in impulsivity and distractibility. We found that NET, but not DBH, changed across adolescence in a regionally selective manner. The prelimbic cortex, which is critical to cognitive rigidity, and the lateral orbitofrontal cortex, critical to reversal learning and some forms of response inhibition, showed higher levels of NET at early than mid- to late adolescence. This article is part of a Special Issue entitled SI: Noradrenergic System. PMID:26774596

  14. Prostaglandin D2 signaling mediated by the CRTH2 receptor is involved in MK-801-induced cognitive dysfunction.

    PubMed

    Onaka, Yusuke; Shintani, Norihito; Nakazawa, Takanobu; Kanoh, Takuya; Ago, Yukio; Matsuda, Toshio; Hashimoto, Ryota; Ohi, Kazutaka; Hirai, Hiroyuki; Nagata, Kin-Ya; Nakamura, Masataka; Kasai, Atsushi; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Takuma, Kazuhiro; Ogawa, Asao; Baba, Akemichi; Hashimoto, Hitoshi

    2016-11-01

    Chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), which is a second receptor for prostaglandin (PG) D2, is involved in inflammatory responses in peripheral tissue; however, its role in cognitive function remains unclear. Here, we demonstrate that CRTH2 is involved in cognitive function using a well-established animal model of cognitive dysfunction induced by MK-801, an N-methyl-d-aspartate receptor antagonist. Genetic deletion and pharmacological inhibition of CRTH2 suppressed MK-801-induced cognitive dysfunction. Pharmacological inhibition of cyclooxygenase-1, a rate-limiting enzyme in PG synthesis, also suppressed MK-801-induced cognitive dysfunction. Moreover, an MK-801-induced increase in c-Fos expression in the paraventricular nucleus (PVN) was abolished in the CRTH2-deficient mice. Together, these results suggest that PGD2-CRTH2 signaling is involved in both MK-801-induced cognitive dysfunction and neuronal activity regulation in the PVN. Furthermore, genetic association studies suggest that CRTH2 is weakly associated with cognitive function in humans. Our study provides evidence that PGD2-CRTH2 signaling is involved in cognitive function and may represent a potential therapeutic target for cognitive dysfunction in patients with psychiatric disorders.

  15. The Link Between Physical Activity and Cognitive Dysfunction in Alzheimer Disease.

    PubMed

    Phillips, Cristy; Baktir, Mehmet Akif; Das, Devsmita; Lin, Bill; Salehi, Ahmad

    2015-07-01

    Alzheimer disease (AD) is a primary cause of cognitive dysfunction in the elderly population worldwide. Despite the allocation of enormous amounts of funding and resources to studying this brain disorder, there are no effective pharmacological treatments for reducing the severity of pathology and restoring cognitive function in affected people. Recent reports on the failure of multiple clinical trials for AD have highlighted the need to diversify further the search for new therapeutic strategies for cognitive dysfunction. Thus, studies detailing the neuroprotective effects of physical activity (PA) on the brain in AD were reviewed, and mechanisms by which PA might mitigate AD-related cognitive decline were explored. A MEDLINE database search was used to generate a list of studies conducted between January 2007 and September 2014 (n=394). These studies, along with key references, were screened to identify those that assessed the effects of PA on AD-related biomarkers and cognitive function. The search was not limited on the basis of intensity, frequency, duration, or mode of activity. However, studies in which PA was combined with another intervention (eg, diet, pharmacotherapeutics, ovariectomy, cognitive training, behavioral therapy), and studies not written in English were excluded. Thirty-eight animal and human studies met entry criteria. Most of the studies suggested that PA attenuates neuropathology and positively affects cognitive function in AD. Although the literature lacked sufficient evidence to support precise PA guidelines, convergent evidence does suggest that the incorporation of regular PA into daily routines mitigates AD-related symptoms, especially when deployed earlier in the disease process. Here the protocols used to alter the progression of AD-related neuropathology and cognitive decline are highlighted, and the implications for physical therapist practice are discussed. PMID:25573757

  16. Subtle Cognitive Dysfunction in Resolving High Altitude Cerebral Edema Revealed by a Clock Drawing Test.

    PubMed

    Quigley, Ian; Zafren, Ken

    2016-06-01

    High altitude cerebral edema (HACE) is a life-threatening condition that can affect people who ascend to altitudes above 2500 m. Altered mental status and the presence of ataxia distinguishes HACE from acute mountain sickness (AMS). We describe a patient with subtle cognitive dysfunction, likely due to HACE that had not fully resolved. When he initially presented, the patient appeared to have normal mental status and was not ataxic. The diagnosis of HACE was missed initially but was made when further history became available. Cognitive dysfunction was then diagnosed based on abnormal performance of a clock drawing test. A formal mental status examination, using a clock drawing test, may be helpful in assessing whether a patient at high altitude with apparently normal mental status and with normal gait has HACE.

  17. Cognitive Impairment and Age-Related Vision Disorders: Their Possible Relationship and the Evaluation of the Use of Aspirin and Statins in a 65 Years-and-Over Sardinian Population

    PubMed Central

    Mandas, Antonella; Mereu, Rosa Maria; Catte, Olga; Saba, Antonio; Serchisu, Luca; Costaggiu, Diego; Peiretti, Enrico; Caminiti, Giulia; Vinci, Michela; Casu, Maura; Piludu, Stefania; Fossarello, Maurizio; Manconi, Paolo Emilio; Dessí, Sandra

    2014-01-01

    Neurological disorders (Alzheimer’s disease, vascular and mixed dementia) and visual loss (cataract, age-related macular degeneration, glaucoma, and diabetic retinopathy) are among the most common conditions that afflict people of at least 65 years of age. An increasing body of evidence is emerging, which demonstrates that memory and vision impairment are closely, significantly, and positively linked and that statins and aspirin may lessen the risk of developing age-related visual and neurological problems. However, clinical studies have produced contradictory results. Thus, the intent of the present study was to reliably establish whether a relationship exist between various types of dementia and age-related vision disorders, and to establish whether statins and aspirin may or may not have beneficial effects on these two types of disorders. We found that participants with dementia and/or vision problems were more likely to be depressed and displayed worse functional ability in basic and instrumental activities of daily living than controls. Mini mental state examination scores were significantly lower in patients with vision disorders compared to subjects without vision disorders. A closer association with macular degeneration was found in subjects with Alzheimer’s disease than in subjects without dementia or with vascular dementia, mixed dementia, or other types of age-related vision disorders. When we considered the associations between different types of dementia and vision disorders and the use of statins and aspirin, we found a significant positive association between Alzheimer’s disease and statins on their own or in combination with aspirin, indicating that these two drugs do not appear to reduce the risk of Alzheimer’s disease or improve its clinical evolution and may, on the contrary, favor its development. No significant association in statin use alone, aspirin use alone, or the combination of these was found in subjects without vision

  18. Cognitive Impairment and Age-Related Vision Disorders: Their Possible Relationship and the Evaluation of the Use of Aspirin and Statins in a 65 Years-and-Over Sardinian Population.

    PubMed

    Mandas, Antonella; Mereu, Rosa Maria; Catte, Olga; Saba, Antonio; Serchisu, Luca; Costaggiu, Diego; Peiretti, Enrico; Caminiti, Giulia; Vinci, Michela; Casu, Maura; Piludu, Stefania; Fossarello, Maurizio; Manconi, Paolo Emilio; Dessí, Sandra

    2014-01-01

    Neurological disorders (Alzheimer's disease, vascular and mixed dementia) and visual loss (cataract, age-related macular degeneration, glaucoma, and diabetic retinopathy) are among the most common conditions that afflict people of at least 65 years of age. An increasing body of evidence is emerging, which demonstrates that memory and vision impairment are closely, significantly, and positively linked and that statins and aspirin may lessen the risk of developing age-related visual and neurological problems. However, clinical studies have produced contradictory results. Thus, the intent of the present study was to reliably establish whether a relationship exist between various types of dementia and age-related vision disorders, and to establish whether statins and aspirin may or may not have beneficial effects on these two types of disorders. We found that participants with dementia and/or vision problems were more likely to be depressed and displayed worse functional ability in basic and instrumental activities of daily living than controls. Mini mental state examination scores were significantly lower in patients with vision disorders compared to subjects without vision disorders. A closer association with macular degeneration was found in subjects with Alzheimer's disease than in subjects without dementia or with vascular dementia, mixed dementia, or other types of age-related vision disorders. When we considered the associations between different types of dementia and vision disorders and the use of statins and aspirin, we found a significant positive association between Alzheimer's disease and statins on their own or in combination with aspirin, indicating that these two drugs do not appear to reduce the risk of Alzheimer's disease or improve its clinical evolution and may, on the contrary, favor its development. No significant association in statin use alone, aspirin use alone, or the combination of these was found in subjects without vision disorders but

  19. Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury

    PubMed Central

    Wolf, John A.; Koch, Paul F.

    2016-01-01

    Traumatic brain injury (TBI) is a heterogeneous disorder with many factors contributing to a spectrum of severity, leading to cognitive dysfunction that may last for many years after injury. Injury to axons in the white matter, which are preferentially vulnerable to biomechanical forces, is prevalent in many TBIs. Unlike focal injury to a discrete brain region, axonal injury is fundamentally an injury to the substrate by which networks of the brain communicate with one another. The brain is envisioned as a series of dynamic, interconnected networks that communicate via long axonal conduits termed the “connectome”. Ensembles of neurons communicate via these pathways and encode information within and between brain regions in ways that are timing dependent. Our central hypothesis is that traumatic injury to axons may disrupt the exquisite timing of neuronal communication within and between brain networks, and that this may underlie aspects of post-TBI cognitive dysfunction. With a better understanding of how highly interconnected networks of neurons communicate with one another in important cognitive regions such as the limbic system, and how disruption of this communication occurs during injury, we can identify new therapeutic targets to restore lost function. This requires the tools of systems neuroscience, including electrophysiological analysis of ensemble neuronal activity and circuitry changes in awake animals after TBI, as well as computational modeling of the effects of TBI on these networks. As more is revealed about how inter-regional neuronal interactions are disrupted, treatments directly targeting these dysfunctional pathways using neuromodulation can be developed. PMID:27242454

  20. Cognitive dysfunction in schizophrenia: unifying basic research and clinical aspects

    PubMed Central

    Niznikiewicz, Margaret A.; Salisbury, Dean F.; Nestor, Paul G.; O’Donnell, Brian F.; Hirayasu, Yoshio; Grunze, Heinz; Greene, Robert W.; Shenton, Martha E.

    2010-01-01

    Seeking to unite psychological and biological approaches, this paper links cognitive and cellular hypotheses and data about thought and language abnormalities in schizophrenia. The common thread, it is proposed, is a dysregulated suppression of associations (at the behavioral and functional neural systems level), paralleled by abnormalities of inhibition at the cellular and molecular level, and by an abnormal anatomical substrate (reduced MRI gray matter volume) in areas subserving language. At the level of behavioral experiments and connectionist modeling, data suggest an abnormal semantic network connectivity (strength of associations) in schizophrenia, but not an abnormality of network size (number of associates). This connectivity abnormality is likely to be a preferential processing of the dominant (strongest) association, with the neglect of preceding contextual information. At the level of functional neural systems, the N400 event-related potential amplitude is used to index the extent of “search” for a semantic match to a word. In a short stimulus-onset-asynchrony condition, both schizophrenic and schizotypal personality disorder subjects showed, compared with controls, a reduced N400 amplitude to the target words that were related to cues, e.g. cat-dog, a result compatible with behavioral data. Other N400 data strongly and directly suggest that schizophrenics do not efficiently utilize context. At the level of anatomical system substrates, considerable MRI data indicate abnormalities in the temporal lobe structures that subserve language and verbal associations. Gray matter volume is reduced in the posterior portion of the dominant superior temporal gyrus in both chronic and first episode schizophrenics (but not in manic-depressive psychosis), with the magnitude of reduction correlating with the degree of thought disorder. At the level of in vitro cellular and molecular analysis, NMDA receptors on inhibitory neurons are much more sensitive to blockade

  1. Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction

    PubMed Central

    Hsing, Chung-Hsi; Hung, Shih-Kai; Chen, Yeong-Chang; Wei, Tsui-Shan; Sun, Ding-Ping; Wang, Jhi-Joung; Yeh, Ching-Hua

    2015-01-01

    Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs) modulate cytokine synthesis and release. Trichostatin A (TSA), an HDAC inhibitor, is documented to be anti-inflammatory and neuroprotective. We investigated whether TSA reduces lipopolysaccharide- (LPS-) induced neuroinflammation and cognitive dysfunction. ICR mice were first intraperitoneally (i.p.) injected with vehicle or TSA (0.3 mg/kg). One hour later, they were injected (i.p.) with saline or Escherichia coli LPS (1 mg/kg). We analyzed the food and water intake, body weight loss, and sucrose preference of the injected mice and then determined the microglia activation and inflammatory cytokine expression in the brains of LPS-treated mice and LPS-treated BV-2 microglial cells. In the TSA-pretreated mice, microglial activation was lower, anhedonia did not occur, and LPS-induced cognitive dysfunction (anorexia, weight loss, and social withdrawal) was attenuated. Moreover, mRNA expression of HDAC2, HDAC5, indoleamine 2,3-dioxygenase (IDO), TNF-α, MCP-1, and IL-1β in the brain of LPS-challenged mice and in the LPS-treated BV-2 microglial cells was lower. TSA diminished LPS-induced inflammatory responses in the mouse brain and modulated the cytokine-associated changes in cognitive function, which might be specifically related to reducing HDAC2 and HDAC5 expression. PMID:26273133

  2. Postoperative Structural Brain Changes and Cognitive Dysfunction in Patients with Breast Cancer

    PubMed Central

    Kawai, Masaaki; Kotozaki, Yuka; Nouchi, Rui; Tada, Hiroshi; Takeuchi, Hikaru; Ishida, Takanori; Taki, Yasuyuki; Kawashima, Ryuta; Ohuchi, Noriaki

    2015-01-01

    Objective The primary purpose of this study was to clarify the influence of the early response to surgery on brain structure and cognitive function in patients with breast cancer. It was hypothesized that the structure of the thalamus would change during the early response after surgery due to the effects of anesthesia and would represent one aspect of an intermediate phenotype of postoperative cognitive dysfunction (POCD). Methods We examined 32 postmenopausal females with breast cancer and 20 age-matched controls. We assessed their cognitive function (attention, memory, and executive function), and performed brain structural MRI 1.5 ± 0.5 days before and 5.6 ± 1.2 days after surgery. Results We found a significant interaction between regional grey matter volume (rGMV) in the thalamus (P < 0.05, familywise error (FWE), small volume correction (SVC)) and one attention domain subtest (P = 0.001, Bonferroni correction) after surgery in the patient group compared with the control group. Furthermore, the changes in attention were significantly associated with sevoflurane anesthetic dose (r2 = 0.247, β = ‒0.471, P = 0.032) and marginally associated with rGMV changes in the thalamus (P = 0.07, FWE, SVC) in the Pt group. Conclusion Our findings suggest that alterations in brain structure, particularly in the thalamus, may occur shortly after surgery and may be associated with attentional dysfunction. This early postoperative response to anesthesia may represent an intermediate phenotype of POCD. It was assumed that patients experiencing other risk factors of POCD, such as the severity of surgery, the occurrence of complications, and pre-existing cognitive impairments, would develop clinical POCD with broad and multiple types of cognitive dysfunction. PMID:26536672

  3. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Acharya, Munjal M.; Baulch, Janet E.; Lusardi, Theresa A.; Allen, Barrett. D.; Chmielewski, Nicole N.; Baddour, Al Anoud D.; Limoli, Charles L.; Boison, Detlev

    2016-01-01

    Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered

  4. Neuroimaging of Cognitive Dysfunction and Depression in Aging Retired NFL Players: A cross-sectional study

    PubMed Central

    Hart, John; Kraut, Michael A.; Womack, Kyle B.; Strain, Jeremy; Didehbani, Nyaz; Bartz, Elizabeth; Conover, Heather; Mansinghani, Sethesh; Lu, Hanzhang; Cullum, C. Munro

    2013-01-01

    Objective To assess for the presence of cognitive impairment and depression in aging former NFL players, and identify neuroimaging correlates of these dysfunctions. Design Comparison of aging NFL players with cognitive impairment and depression to those without these dysfunctions and with matched healthy controls Setting Research center in the North Texas region of the United States. Patients We performed a cross-sectional study of retired professional football players with and without a history of concussion recruited from the North Texas region, along with age-, education-, and IQ-matched controls. We studied thirty-four retired NFL players (mean age 62) neurologically and neuropsychologically. A subset of 26 also underwent detailed neuroimaging; imaging data in this subset were compared to imaging data acquired in 26 healthy matched controls. Main Outcome Measures Neuropsychological measures, clinical diagnoses of depression, neuroimaging measures of white matter pathology, and a measure of cerebral blood flow (CBF). Results Of the 34 participants, 20 were cognitively normal, 4 were diagnosed with a fixed cognitive deficit, 8 with Mild Cognitive Impairment, and 2 with dementia; 8 were diagnosed with depression. Of the subgroup in which neuroimaging data were acquired, cognitively impaired (CI) participants showed greatest deficits on tests of naming, word finding, and visual/verbal episodic memory. We found significant differences in white matter abnormalities in CI players and depressed players compared to their respective controls. Regional blood flow differences in the CI group (left temporal pole, inferior parietal lobule, superior temporal gyrus) corresponded to regions associated with impaired neurocognitive performance (problems with memory, naming and word finding). Conclusions Cognitive deficits and depression appear to be more common in aging NFL players compared to controls. These deficits are correlated with white matter abnormalities and changes in

  5. Mitochondria-Targeted Peptide Reverses Mitochondrial Dysfunction and Cognitive Deficits in Sepsis-Associated Encephalopathy.

    PubMed

    Wu, Jing; Zhang, Mingqiang; Hao, Shuangying; Jia, Ming; Ji, Muhuo; Qiu, Lili; Sun, Xiaoyan; Yang, Jianjun; Li, Kuanyu

    2015-08-01

    Sepsis-associated encephalopathy (SAE) is associated with increased mortality, morbidity, and long-term cognitive impairments. Its pathophysiology remains to be determined and an effective pharmacologic treatment is lacking. The goal of this study was to investigate the effects of the mitochondria-targeted peptide SS-31 on mitochondrial function and cognitive deficits in SAE mice. C57BL/6 male mice were randomly divided into sham, sham + SS-31, cecal ligation and puncture (CLP), and CLP + SS-31 groups. Peptide SS-31 (5 mg/kg) was intraperitoneally administrated immediately after operation and afterwards once daily for six consecutive days. Surviving mice were subjected to behavioral tests and the hippocampus was collected for biochemical analysis 7 days after operation. The results showed that CLP resulted in high mortality rate and cognitive deficits, representative characteristics of SAE. A physiological mechanistic investigation revealed that mitochondrial function of hippocampus was severely impaired, coupled with reactive oxygen species (ROS) generation, triggering neuronal apoptosis and inflammation. Notably, administration of peptide SS-31 protected the integrity of mitochondria, reversed the mitochondrial dysfunction, inhibited the apoptosis resulting from the release of cytochrome c, diminished the response of inflammation, and ultimately reversed the behavior deficits in the SAE mice. In conclusion, our data demonstrate that daily treatment with mitochondria-targeted peptide SS-31 reduces mortality rate and ameliorates cognitive deficits, which is possibly through a mechanism of reversing mitochondrial dysfunction and partial inhibition of neuronal apoptosis and inflammation in the hippocampus of the SAE mice.

  6. Slow Progression of Cognitive Dysfunction of Alzheimer's Disease in Sexagenarian Women with Schizophrenia

    PubMed Central

    Sakai, Kazuo; Oda, Haruhiko; Terashima, Akira; Ishii, Kazunari; Maeda, Kiyoshi

    2015-01-01

    Although both schizophrenia (SCZ) and Alzheimer's disease (AD) are among the most common psychiatric diseases, the interaction of these two is not well-understood. We investigated three women with SCZ who developed AD in their 60s. The patients presented with cognitive dysfunction such as loss of recent memory, which was confirmed by both clinical observations and neuropsychological tests. Their magnetic resonance and functional imaging findings were consistent with AD. Their brain atrophy advanced significantly during a 6-year observation period. However, their global cognitive function did not deteriorate significantly during this period. Although the cognitive reserve model might account for this discrepancy, our results suggest some interactions between the neuropathology of SCZ and AD and warrant further research. PMID:26246928

  7. Iron Metabolism Dysregulation and Cognitive Dysfunction in Pediatric Obesity: Is There a Connection?

    PubMed Central

    Grandone, Anna; Marzuillo, Pierluigi; Perrone, Laura; Miraglia del Giudice, Emanuele

    2015-01-01

    Obesity and iron deficiency (ID) are two of the most common nutritional disorders in the world. In children both conditions deserve particular attention. Several studies revealed an association between obesity and iron deficiency in children and, in some cases, a reduced response to oral supplementation. The connecting mechanism, however, is not completely known. This review is focused on: (1) iron deficiency in obese children and the role of hepcidin in the connection between body fat and poor iron status; (2) iron status and consequences on health, in particular on cognitive function; (3) cognitive function and obesity; (4) suggestion of a possible link between cognitive dysfunction and ID in pediatric obesity; and implications for therapy and future research. PMID:26561830

  8. Iron Metabolism Dysregulation and Cognitive Dysfunction in Pediatric Obesity: Is There a Connection?

    PubMed

    Grandone, Anna; Marzuillo, Pierluigi; Perrone, Laura; Del Giudice, Emanuele Miraglia

    2015-11-06

    Obesity and iron deficiency (ID) are two of the most common nutritional disorders in the world. In children both conditions deserve particular attention. Several studies revealed an association between obesity and iron deficiency in children and, in some cases, a reduced response to oral supplementation. The connecting mechanism, however, is not completely known. This review is focused on: (1) iron deficiency in obese children and the role of hepcidin in the connection between body fat and poor iron status; (2) iron status and consequences on health, in particular on cognitive function; (3) cognitive function and obesity; (4) suggestion of a possible link between cognitive dysfunction and ID in pediatric obesity; and implications for therapy and future research.

  9. The General Movement Assessment Helps Us to Identify Preterm Infants at Risk for Cognitive Dysfunction

    PubMed Central

    Einspieler, Christa; Bos, Arend F.; Libertus, Melissa E.; Marschik, Peter B.

    2016-01-01

    Apart from motor and behavioral dysfunctions, deficits in cognitive skills are among the well-documented sequelae of preterm birth. However, early identification of infants at risk for poor cognition is still a challenge, as no clear association between pathological findings based on neuroimaging scans and cognitive functions have been detected as yet. The Prechtl General Movement Assessment (GMA) has shown its merits for the evaluation of the integrity of the young nervous system. It is a reliable tool for identifying infants at risk for neuromotor deficits. Recent studies on preterm infants demonstrate that abnormal general movements (GMs) also reflect impairments of brain areas involved in cognitive development. The aim of this systematic review was to discuss studies that included (i) the Prechtl GMA applied in preterm infants, and (ii) cognitive outcome measures in six data bases. Seven studies met the inclusion criteria and yielded the following results: (a) children born preterm with consistently abnormal GMs up to 8 weeks after term had lower intelligence quotients at school age than children with an early normalization of GMs; (b) from 3 to 5 months after term, several qualitative, and quantitative aspects of the concurrent motor repertoire, including postural patterns, were predictive of intelligence at 7–10 years of age. These findings in 428 individuals born preterm suggest that normal GMs along with a normal motor repertoire during the first months after term are markers for normal cognitive development until at least age 10. PMID:27047429

  10. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism.

    PubMed

    Neill, Joanna C; Barnes, Samuel; Cook, Samantha; Grayson, Ben; Idris, Nagi F; McLean, Samantha L; Snigdha, Shikha; Rajagopal, Lakshmi; Harte, Michael K

    2010-12-01

    Cognitive deficits in schizophrenia remain an unmet clinical need. Improved understanding of the neuro- and psychopathology of these deficits depends on the availability of carefully validated animal models which will assist the development of novel therapies. There is much evidence that at least some of the pathology and symptomatology (particularly cognitive and negative symptoms) of schizophrenia results from a dysfunction of the glutamatergic system which may be modelled in animals through the use of NMDA receptor antagonists. The current review examines the validity of this model in rodents. We review the ability of acute and sub-chronic treatment with three non-competitive NMDA antagonists; phencyclidine (PCP), ketamine and MK801 (dizocilpine) to produce cognitive deficits of relevance to schizophrenia in rodents and their subsequent reversal by first- and second-generation antipsychotic drugs. Effects of NMDA receptor antagonists on the performance of rodents in behavioural tests assessing the various domains of cognition and negative symptoms are examined: novel object recognition for visual memory, reversal learning and attentional set shifting for problem solving and reasoning, 5-Choice Serial Reaction Time for attention and speed of processing; in addition to effects on social behaviour and neuropathology. The evidence strongly supports the use of NMDA receptor antagonists to model cognitive deficit and negative symptoms of schizophrenia as well as certain pathological disturbances seen in the illness. This will facilitate the evaluation of much-needed novel pharmacological agents for improved therapy of cognitive deficits and negative symptoms in schizophrenia.

  11. The General Movement Assessment Helps Us to Identify Preterm Infants at Risk for Cognitive Dysfunction.

    PubMed

    Einspieler, Christa; Bos, Arend F; Libertus, Melissa E; Marschik, Peter B

    2016-01-01

    Apart from motor and behavioral dysfunctions, deficits in cognitive skills are among the well-documented sequelae of preterm birth. However, early identification of infants at risk for poor cognition is still a challenge, as no clear association between pathological findings based on neuroimaging scans and cognitive functions have been detected as yet. The Prechtl General Movement Assessment (GMA) has shown its merits for the evaluation of the integrity of the young nervous system. It is a reliable tool for identifying infants at risk for neuromotor deficits. Recent studies on preterm infants demonstrate that abnormal general movements (GMs) also reflect impairments of brain areas involved in cognitive development. The aim of this systematic review was to discuss studies that included (i) the Prechtl GMA applied in preterm infants, and (ii) cognitive outcome measures in six data bases. Seven studies met the inclusion criteria and yielded the following results: (a) children born preterm with consistently abnormal GMs up to 8 weeks after term had lower intelligence quotients at school age than children with an early normalization of GMs; (b) from 3 to 5 months after term, several qualitative, and quantitative aspects of the concurrent motor repertoire, including postural patterns, were predictive of intelligence at 7-10 years of age. These findings in 428 individuals born preterm suggest that normal GMs along with a normal motor repertoire during the first months after term are markers for normal cognitive development until at least age 10. PMID:27047429

  12. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease.

    PubMed

    Tyebji, Shiraz; Saavedra, Ana; Canas, Paula M; Pliassova, Anna; Delgado-García, José M; Alberch, Jordi; Cunha, Rodrigo A; Gruart, Agnès; Pérez-Navarro, Esther

    2015-02-01

    Stimulation of dopamine D1 receptor (D1R) and adenosine A2A receptor (A2AR) increases cAMP-dependent protein kinase (PKA) activity in the brain. In Huntington's disease, by essentially unknown mechanisms, PKA activity is increased in the hippocampus of mouse models and patients and contributes to hippocampal-dependent cognitive impairment in R6 mice. Here, we show for the first time that D1R and A2AR density and functional efficiency are increased in hippocampal nerve terminals from R6/1 mice, which accounts for increased cAMP levels and PKA signaling. In contrast, PKA signaling was not altered in the hippocampus of Hdh(Q7/Q111) mice, a full-length HD model. In line with these findings, chronic (but not acute) combined treatment with D1R plus A2AR antagonists (SCH23390 and SCH58261, respectively) normalizes PKA activity in the hippocampus, facilitates long-term potentiation in behaving R6/1 mice, and ameliorates cognitive dysfunction. By contrast, chronic treatment with either D1R or A2AR antagonist alone does not modify PKA activity or improve cognitive dysfunction in R6/1 mice. Hyperactivation of both D1R and A2AR occurs in HD striatum and chronic treatment with D1R plus A2AR antagonists normalizes striatal PKA activity but it does not affect motor dysfunction in R6/1 mice. In conclusion, we show that parallel alterations in dopaminergic and adenosinergic signaling in the hippocampus contribute to increase PKA activity, which in turn selectively participates in hippocampal-dependent learning and memory deficits in HD. In addition, our results point to the chronic inhibition of both D1R and A2AR as a novel therapeutic strategy to manage early cognitive impairment in this neurodegenerative disease. PMID:25449908

  13. Memory Loss and Frontal Cognitive Dysfunction in a Patient with Adult-onset Neuronal Intranuclear Inclusion Disease.

    PubMed

    Araki, Kunihiko; Sone, Jun; Fujioka, Yusuke; Masuda, Michihito; Ohdake, Reiko; Tanaka, Yasuhiro; Nakamura, Tomohiko; Watanabe, Hirohisa; Sobue, Gen

    2016-01-01

    Neuronal intranuclear inclusion disease (NIID) is an uncommon progressive neurodegenerative disorder. Adult-onset NIID can result in prominent dementia. We herein describe the case of a 74-year-old man who presented with dementia, cerebellar ataxia, neuropathy, and autonomic dysfunction. Diffusion-weighted imaging showed hyperintensity of the corticomedullary junction. Fluid-attenuated inversion recovery images showed frontal-dominant white matter hyperintensity. NIID was diagnosed from the presence of intranuclear inclusions in a skin biopsy sample. Neuropsychological testing revealed memory loss and frontal cognitive dysfunction, especially in relation to language and executive functions. We were therefore able to confirm the association of NIID with cognitive dysfunction. PMID:27523009

  14. Neuropharmacology of depression in aging and age-related diseases.

    PubMed

    Gareri, Pietro; De Fazio, Pasquale; De Sarro, Giovambattista

    2002-02-01

    Depression in the elderly is nowadays a predominant health care problem, mainly due to the progressive aging of the population. It results from psychosocial stress, polypathology, as well as some biochemical changes which occur in the aged brain and can lead to cognitive impairments, increased symptoms from medical illness, higher utilization of health care services and increased rates of suicide and non-suicide mortality. Depression may be also caused by a various number of drugs currently administered; this is remarkable especially in elderly people, where polypathology is often associated with polypharmacotherapy. However, the pathogenesis of geriatric depression is not well understood; major depression may arise from dysfunction of the limbic-hypothalamic-pituitary-adrenal axis. Some clinical observations also suggest that striato-frontal dysfunction is associated with late life depression. A number of hypotheses have been made, focusing that mood disturbances are probably linked to a disturbed central metabolism of monoamines 5-hydroxytryptamine, noradrenaline and dopamine; however most of this knowledge is derived from animal models. Parkinson's and Alzheimer's diseases are age-related diseases associated to decreased activity or brain lesions in the orbital frontal cortex and basal ganglia. These observations lead to the hypothesis that the dysfunction of one or more of the cortical basal ganglia-thalamic neuronal loops are involved in the pathophysiology of primary and secondary depression. This dysfunction may be mediated by decreased serotonin release and probably, also by reduction in serotonin receptors. Development of novel approaches such as dynamic brain imaging methods, together with indirect knowledge coming from the effects of new antidepressants, will increase the understanding of neurochemistry of depression in old age. PMID:12039452

  15. Pathogenesis of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea: A Hypothesis with Emphasis on the Nucleus Tractus Solitarius

    PubMed Central

    Daulatzai, Mak Adam

    2012-01-01

    OSA is characterized by the quintessential triad of intermittent apnea, hypoxia, and hypoxemia due to pharyngeal collapse. This paper highlights the upstream mechanisms that may trigger cognitive decline in OSA. Three interrelated steps underpin cognitive dysfunction in OSA patients. First, several risk factors upregulate peripheral inflammation; these crucial factors promote neuroinflammation, cerebrovascular endothelial dysfunction, and oxidative stress in OSA. Secondly, the neuroinflammation exerts negative impact globally on the CNS, and thirdly, important foci in the neocortex and brainstem are rendered inflamed and dysfunctional. A strong link is known to exist between neuroinflammation and neurodegeneration. A unique perspective delineated here underscores the importance of dysfunctional brainstem nuclei in etiopathogenesis of cognitive decline in OSA patients. Nucleus tractus solitarius (NTS) is the central integration hub for afferents from upper airway (somatosensory/gustatory), respiratory, gastrointestinal, cardiovascular (baroreceptor and chemoreceptor) and other systems. The NTS has an essential role in sympathetic and parasympathetic systems also; it projects to most key brain regions and modulates numerous physiological functions. Inflamed and dysfunctional NTS and other key brainstem nuclei may play a pivotal role in triggering memory and cognitive dysfunction in OSA. Attenuation of upstream factors and amelioration of the NTS dysfunction remain important challenges. PMID:23470865

  16. Rehabilitation for a Patient with Hemiplegia, Ataxia, and Cognitive Dysfunction Caused by Pontine Hemorrhage

    PubMed Central

    Tsunoda, Tetsuya; Maeshima, Shinichiro; Watanabe, Makoto; Nagai, Ayako; Ueno, Yoshiya; Ozeki, Yasunori; Okamoto, Sayaka; Mizuno, Shiho; Sonoda, Shigeru

    2015-01-01

    Patients with pontine hemorrhage usually experience severe disturbances of consciousness, pupillary abnormalities, quadriparesis, and respiratory failure. However, little is known regarding cognitive dysfunction in patients with pontine hemorrhage. We report the case of a rehabilitation patient presenting with hemiplegia, ataxia, and cognitive dysfunction caused by a pontine hemorrhage. A 55-year-old, right-handed male suffered sudden onset of vertigo, dysarthria, and hemiplegia on the right side. He was diagnosed with brain stem hemorrhage, and conservative treatment was administered. The vertigo improved, but dysarthria, ataxia, hemiplegia, and gait disorder persisted. He was disoriented with respect to time and place and showed a poor attention span, impaired executive function, and reduced volition. A computed tomography revealed hematomas across the pons on both sides, but no lesions were obvious in the cerebellum and cerebrum. Single-photon emission tomography showed decreased perfusion in the brain stem, bilateral basal ganglia, and frontal and parietal lobes in the left hemisphere. The patient received exercise therapy and cognitive rehabilitation, and home modifications were performed to allow him to continue living at home under the supervision of his family. His symptoms improved, along with enhanced regional cerebral blood flow to the frontal and temporal lobes. These findings suggest that the pontine hemorrhage caused diaschisis resulting in secondary reduction of activity in the cerebral hemisphere and the occurrence of cortical symptoms. Therefore, rehabilitation is necessary, along with active instructions for the family members of patients with severe neurological deficits. PMID:26600785

  17. Ethanol extract of Brazilian propolis ameliorates cognitive dysfunction and suppressed protein aggregations caused by hyperhomocysteinemia.

    PubMed

    Miyazaki, Yuta; Sugimoto, Yasushi; Fujita, Akikazu; Kanouchi, Hiroaki

    2015-01-01

    Homocysteine (Hcy) has been proposed to be a risk factor for cognitive dysfunction. We investigated the effects and the underlying mechanisms of action of propolis, which has antioxidant activity on Hcy-induced oxidative stress in vitro and in vivo. For the in vitro assays, neuroblastoma SH-SY5Y and glioblastoma U-251MG cells were cultured with Hcy and various concentrations of propolis. Cell death and reactive oxygen species production were significantly suppressed by propolis in dose-dependent manner, compared with Hcy alone. For the in vivo assays, mice were fed a propolis-containing diet and Hcy thiolactone in water. Cognitive function was evaluated using the Morris water maze test. Propolis suppressed cognitive dysfunction caused by hyperhomocysteinemia. Accumulation of aggregated protein in brain was accelerated in hyperhomocysteinemia, and the accumulation was suppressed by propolis. Hyperhomocysteinemia, however, did not enhance the oxidative stress in brain. In vitro amyloid formation assay showed that Hcy accelerated lysozyme aggregation and propolis inhibited the aggregation.

  18. Slowing Down: Age-Related Neurobiological Predictors of Processing Speed

    PubMed Central

    Eckert, Mark A.

    2011-01-01

    Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging. PMID:21441995

  19. Diabetes type 2, hypertension and cognitive dysfunction in middle age women.

    PubMed

    Petrova, Marina; Prokopenko, Semen; Pronina, Elena; Mozheyko, Elena

    2010-12-15

    Type 2 diabetes mellitus and hypertension are two widely spread diseases among the adults that are known to be risk factors for vascular disease. They are highly related such that comorbidity is common. The purpose of the present study was to investigate the comorbid effects of type 2 diabetes and hypertension on cognitive decline. One hundred and thirteen patients with type 2 diabetes (women, age 56±7.4 years, diabetes duration 8±6.7 years, hypertension duration 13.4±7.7 years) were assessed for cognitive impairment (CI) in comparison with 27 diabetes patients without hypertension (women, age 53±7.45 years, diabetes duration 4.4±5.6 years), all non-demented at baseline. Patients were screened for cognitive dysfunction with the Mini Mental State Examination (MMSE), a clock-drawing test (CDT) and Frontal Assessment Battery (FAB). We assessed history of DM and hypertension by interview. 87% of women with diabetes and hypertension and 70% of normotensive diabetic patients had cognitive impairment (p=0.0282), of mild and subtle degree. The frequency of alterations in the FAB was higher in subjects with diabetes and hypertension (48%) compared to normotensive diabetic patients (26%) p=0.0402. Our results show that people with diabetes type 2 and hypertension demonstrate greater cognitive changes as compared to normotensive diabetic patients.

  20. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function

    PubMed Central

    Jeon, Won Je; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia. PMID:26630957

  1. Involvement of decreased neuroglobin protein level in cognitive dysfunction induced by 1-bromopropane in rats.

    PubMed

    Guo, Ying; Yuan, Hua; Jiang, Lulu; Yang, Junlin; Zeng, Tao; Xie, Keqin; Zhang, Cuili; Zhao, Xiulan

    2015-03-10

    1-Bromopropane (1-BP) is used as a substitute for ozone-depleting solvents (ODS) in industrial applications. 1-BP could display central nervous system (CNS) neurotoxicity manifested by cognitive dysfunction. Neuroglobin (Ngb) is an endogenous neuroprotectant and is predominantly expressed in the nervous system. The present study aimed to investigate Ngb involvement in CNS neurotoxicity induced by 1-BP in rats. Male Wistar rats were randomly divided into 5 groups (n=14) and treated with 0, 100, 200, 400 and 800 mg/kg bw 1-BP, respectively, by gavage for consecutive 12 days. Rats displayed cognitive dysfunction dose-dependently through Morris water maze (MWM) test. Significant neuron loss in layer 5 of the prelimbic cortex (PL) was observed. Moreover, 1-BP decreased Ngb protein level in cerebral cortex and Ngb decrease was significantly positively correlated with cognitive dysfunction. Glutathione (GSH) content, GSH/oxidized glutathione (GSSG) ratio and glutamate cysteine ligase (GCL) activity decreased in cerebral cortex, coupled with the increase in GSSG content. GSH and GSH/GSSG ratio decrease were significantly positively correlated with cortical Ngb decrease. Additionally, levels of N-epsilon-hexanoyl-lysine (HEL) and 4-hydroxy-2-nonenal (4-HNE) modified proteins in cerebral cortex of 1-BP-treated rats increased significantly. In conclusion, it was suggested that 1-BP resulted in decreased endogenous neuroprotectant Ngb in cerebral cortex, which might play an important role in CNS neurotoxicity induced by 1-BP and that 1-BP-induced oxidative stress in cerebral cortex might partly be responsible for Ngb decrease.

  2. Primary Sjögren's Syndrome White Matter Changes and Cognitive Dysfunction.

    PubMed

    Dess, Mary; Heidenreich, Wayne F

    2016-01-01

    This case report describes a 52-year-old, female applicant for long term-care insurance with a history of an autoimmune connective tissue disease initially diagnosed as systemic lupus erythematosus (SLE). Over several years, the signs and symptoms evolved into a clear diagnosis of primary Sjögren's syndrome (PSS). The specific criteria for this diagnosis are reviewed including the symptoms, antinuclear antibodies (ANA), extractable nuclear antigen antibodies (ENA), abnormal salivary scintigraphy and positive Schirmer test. Symptoms of neuropathy and the possibility of a cognitive dysfunction are discussed as part of PSS. The association of white matter lesions (WML) with PSS is significant for underwriting consideration. PMID:27562110

  3. NRSF and BDNF polymorphisms as biomarkers of cognitive dysfunction in adults with newly diagnosed epilepsy

    PubMed Central

    Warburton, Alix; Miyajima, Fabio; Shazadi, Kanvel; Crossley, Joanne; Johnson, Michael R.; Marson, Anthony G.; Baker, Gus A.; Quinn, John P.; Sills, Graeme J.

    2016-01-01

    Cognitive dysfunction is a common comorbidity in people with epilepsy, but its causes remain unclear. It may be related to the etiology of the disorder, the consequences of seizures, or the effects of antiepileptic drug treatment. Genetics may also play a contributory role. We investigated the influence of variants in the genes encoding neuron-restrictive silencer factor (NRSF) and brain-derived neurotrophic factor (BDNF), proteins previously associated with cognition and epilepsy, on cognitive function in people with newly diagnosed epilepsy. A total of 82 patients who had previously undergone detailed neuropsychological assessment were genotyped for single nucleotide polymorphisms (SNPs) across the NRSF and BDNF genes. Putatively functional SNPs were included in a genetic association analysis with specific cognitive domains, including memory, psychomotor speed, and information processing. Cross-sectional and longitudinal designs were used to explore genetic influences on baseline cognition at diagnosis and change from baseline over the first year since diagnosis, respectively. We found a statistically significant association between genotypic variation and memory function at both baseline (NRSF: rs1105434, rs2227902 and BDNF: rs1491850, rs2030324, rs11030094) and in our longitudinal analysis (NRSF: rs2227902 and BDNF: rs12273363). Psychomotor speed was also associated with genotype (NRSF rs3796529) in the longitudinal assessment. In line with our previous work on general cognitive function in the healthy aging population, we observed an additive interaction between risk alleles for the NRSF rs2227902 (G) and BDNF rs6265 (A) polymorphisms which was again consistent with a significantly greater decline in delayed recall over the first year since diagnosis. These findings support a role for the NRSF–BDNF pathway in the modulation of cognitive function in patients with newly diagnosed epilepsy. PMID:26708060

  4. Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways.

    PubMed

    Salas-Ramirez, Kaliris Y; Bagnall, Ciara; Frias, Leslie; Abdali, Syed A; Ahles, Tim A; Hubbard, Karen

    2015-10-01

    Chemotherapy is associated with long-term cognitive deficits in breast cancer survivors. Studies suggest that these impairments result in the loss of cognitive reserve and/or induce a premature aging of the brain. This study has been aimed to determine the potential underlying mechanisms that induce cognitive impairments by chemotherapeutic agents commonly used in breast cancer. Intact and ovariectomized (OVX) female rats were treated intravenously with either saline or a combination of cyclophosphamide (40 mg/kg) and doxorubicin (4 mg/kg). All subjects were tested for anxiety, locomotor activity, working, visual and spatial memory consecutively. Although anxiety and visual memory were not affected, chemotherapy significantly decreased locomotor activity and impaired working and spatial memory in female rats, independent of their hormonal status. The cognitive deficits observed are hippocampal dependent. Therefore, as a first step to identity the potential signaling pathways involved in this cognitive dysfunction, the protein levels of extracellular signal-regulated kinase 1/2 (Erk1/2), Akt (neuroprotectant) BDNF and (structural protein) PSD95 in hippocampal lysates were measured. Erk1/2 and Akt pathways are known to modulate synaptic plasticity, neuronal survival, aging and cancer. We found an increased activation of Erk1/2 and Akt as well as an increase in the protein levels of PSD95 in OVX female rodents. However, OVX females had a higher overall BDNF level, independent of chemotherapy. These studies provide additional evidence that commonly used chemotherapeutic agents affect cognitive function and impact synaptic plasticity/aging molecules which may be part of the underlying biology explaining cognitive change and can be potential therapeutic targets.

  5. NRSF and BDNF polymorphisms as biomarkers of cognitive dysfunction in adults with newly diagnosed epilepsy.

    PubMed

    Warburton, Alix; Miyajima, Fabio; Shazadi, Kanvel; Crossley, Joanne; Johnson, Michael R; Marson, Anthony G; Baker, Gus A; Quinn, John P; Sills, Graeme J

    2016-01-01

    Cognitive dysfunction is a common comorbidity in people with epilepsy, but its causes remain unclear. It may be related to the etiology of the disorder, the consequences of seizures, or the effects of antiepileptic drug treatment. Genetics may also play a contributory role. We investigated the influence of variants in the genes encoding neuron-restrictive silencer factor (NRSF) and brain-derived neurotrophic factor (BDNF), proteins previously associated with cognition and epilepsy, on cognitive function in people with newly diagnosed epilepsy. A total of 82 patients who had previously undergone detailed neuropsychological assessment were genotyped for single nucleotide polymorphisms (SNPs) across the NRSF and BDNF genes. Putatively functional SNPs were included in a genetic association analysis with specific cognitive domains, including memory, psychomotor speed, and information processing. Cross-sectional and longitudinal designs were used to explore genetic influences on baseline cognition at diagnosis and change from baseline over the first year since diagnosis, respectively. We found a statistically significant association between genotypic variation and memory function at both baseline (NRSF: rs1105434, rs2227902 and BDNF: rs1491850, rs2030324, rs11030094) and in our longitudinal analysis (NRSF: rs2227902 and BDNF: rs12273363). Psychomotor speed was also associated with genotype (NRSF rs3796529) in the longitudinal assessment. In line with our previous work on general cognitive function in the healthy aging population, we observed an additive interaction between risk alleles for the NRSF rs2227902 (G) and BDNF rs6265 (A) polymorphisms which was again consistent with a significantly greater decline in delayed recall over the first year since diagnosis. These findings support a role for the NRSF-BDNF pathway in the modulation of cognitive function in patients with newly diagnosed epilepsy. PMID:26708060

  6. NRSF and BDNF polymorphisms as biomarkers of cognitive dysfunction in adults with newly diagnosed epilepsy.

    PubMed

    Warburton, Alix; Miyajima, Fabio; Shazadi, Kanvel; Crossley, Joanne; Johnson, Michael R; Marson, Anthony G; Baker, Gus A; Quinn, John P; Sills, Graeme J

    2016-01-01

    Cognitive dysfunction is a common comorbidity in people with epilepsy, but its causes remain unclear. It may be related to the etiology of the disorder, the consequences of seizures, or the effects of antiepileptic drug treatment. Genetics may also play a contributory role. We investigated the influence of variants in the genes encoding neuron-restrictive silencer factor (NRSF) and brain-derived neurotrophic factor (BDNF), proteins previously associated with cognition and epilepsy, on cognitive function in people with newly diagnosed epilepsy. A total of 82 patients who had previously undergone detailed neuropsychological assessment were genotyped for single nucleotide polymorphisms (SNPs) across the NRSF and BDNF genes. Putatively functional SNPs were included in a genetic association analysis with specific cognitive domains, including memory, psychomotor speed, and information processing. Cross-sectional and longitudinal designs were used to explore genetic influences on baseline cognition at diagnosis and change from baseline over the first year since diagnosis, respectively. We found a statistically significant association between genotypic variation and memory function at both baseline (NRSF: rs1105434, rs2227902 and BDNF: rs1491850, rs2030324, rs11030094) and in our longitudinal analysis (NRSF: rs2227902 and BDNF: rs12273363). Psychomotor speed was also associated with genotype (NRSF rs3796529) in the longitudinal assessment. In line with our previous work on general cognitive function in the healthy aging population, we observed an additive interaction between risk alleles for the NRSF rs2227902 (G) and BDNF rs6265 (A) polymorphisms which was again consistent with a significantly greater decline in delayed recall over the first year since diagnosis. These findings support a role for the NRSF-BDNF pathway in the modulation of cognitive function in patients with newly diagnosed epilepsy.

  7. Cognitive dysfunction at baseline predicts symptomatic 1-year outcome in first-episode schizophrenics.

    PubMed

    Moritz, S; Krausz, M; Gottwalz, E; Lambert, M; Perro, C; Ganzer, S; Naber, D

    2000-01-01

    The present study addresses the consequences of cognitive disturbances on symptomatic outcome. Fifty-three first-episode schizophrenics were reassessed (n = 32) 1 year after admission. Simple regression analyses revealed that several self-perceived cognitive deficits at baseline as measured with the Frankfurt Complaint Questionnaire significantly predicted increased Brief Psychiatric Rating Scale global scores at follow-up (p = 0.05 to p = 0.005). A stepwise regression analysis proved memory dysfunction to be the strongest predictor of symptomatic worsening (p = 0.005). It is suggested that the exploration and treatment of neuropsychological deficits in schizophrenia is of great clinical importance with regard to its impact on both functional and symptomatic outcome in schizophrenia.

  8. Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex.

    PubMed

    Shansky, Rebecca M; Lipps, Jennifer

    2013-01-01

    The mechanisms and neural circuits that drive emotion and cognition are inextricably linked. Activation of the hypothalamic-pituitary-adrenal (HPA) axis as a result of stress or other causes of arousal initiates a flood of hormone and neurotransmitter release throughout the brain, affecting the way we think, decide, and behave. This review will focus on factors that influence the function of the prefrontal cortex (PFC), a brain region that governs higher-level cognitive processes and executive function. The PFC becomes markedly impaired by stress, producing measurable deficits in working memory. These deficits arise from the interaction of multiple neuromodulators, including glucocorticoids, catecholamines, and gonadal hormones; here we will discuss the non-human primate and rodent literature that has furthered our understanding of the circuitry, receptors, and signaling cascades responsible for stress-induced prefrontal dysfunction.

  9. Cognitive dysfunction at baseline predicts symptomatic 1-year outcome in first-episode schizophrenics.

    PubMed

    Moritz, S; Krausz, M; Gottwalz, E; Lambert, M; Perro, C; Ganzer, S; Naber, D

    2000-01-01

    The present study addresses the consequences of cognitive disturbances on symptomatic outcome. Fifty-three first-episode schizophrenics were reassessed (n = 32) 1 year after admission. Simple regression analyses revealed that several self-perceived cognitive deficits at baseline as measured with the Frankfurt Complaint Questionnaire significantly predicted increased Brief Psychiatric Rating Scale global scores at follow-up (p = 0.05 to p = 0.005). A stepwise regression analysis proved memory dysfunction to be the strongest predictor of symptomatic worsening (p = 0.005). It is suggested that the exploration and treatment of neuropsychological deficits in schizophrenia is of great clinical importance with regard to its impact on both functional and symptomatic outcome in schizophrenia. PMID:10601828

  10. Current management of the cognitive dysfunction in Parkinson's disease: how far have we come?

    PubMed

    Vale, Salvador

    2008-08-01

    Parkinson's disease (PD) clinical features comprise both motor and nonmotor manifestations. Among the nonmotor complications, dementia is the most important. Approximately 40% of PD patients are affected by cognitive impairment. Remarkably, in addition to age, dementia is an independent predictor of mortality, whereas age at onset of PD and severity of neurological symptoms are not. In this review, I summarize the current knowledge of the pathogenesis of the PD cognitive impairment in relation to the therapies presently accessible and those that could become strategic in the near future. It is hypothesized that patients with PD show two components of cognitive dysfunction (CD): a generalized profile of subcortical dementia (PDsCD), and an overlapped pattern suggesting specific prefrontal damage with CD (PDpFCD). PDsCD is associated with structural neocortical/subcortical changes in the brain (in frontal, parietal, limbic, and temporal lobes, as well as in midbrain structures). In PDpFCD cognitive deficits comprise impairments in neuropsychological tests sensitive for frontal lobe function (discrete elements of episodic and working memory for instance), which are considered to be the consequence of dysfunction in neuronal loops connecting the prefrontal cortex and basal ganglia. Drugs reviewed for targeting PDsCD include: cholinesterase inhibitors, agents with mixed cholinergic and dopaminergic properties, antiglutamatergic drugs, mixed antiglutamatergic/dopaminergic agents; antioxidants and enhancers of mitochondrial functions, and anti-COX-2, as well as other anti-inflammatory mediators. Preliminary studies with vehicles that may target PDpFCD include piribedil, tolcapone, amantadine, and farampator. Additional agents (citicoline and neuroimmuniphilines, among others) will be outlined. A brief overview on neuroprotection and promising new biological advances in PD (deep brain stimulation, stem cells, gene therapy) also will be summarized.

  11. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder.

    PubMed

    Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B

    2015-11-01

    The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder. PMID:26373604

  12. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder.

    PubMed

    Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B

    2015-11-01

    The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder.

  13. Autophagy Is Involved in the Sevoflurane Anesthesia-Induced Cognitive Dysfunction of Aged Rats

    PubMed Central

    Zhang, Xiaoming; Zhou, Youfa; Xu, Mingmin; Chen, Gang

    2016-01-01

    Autophagy is associated with regulation of both the survival and death of neurons, and has been linked to many neurodegenerative diseases. Postoperative cognitive dysfunction is commonly observed in elderly patients following anesthesia, but the pathophysiological mechanisms are largely unexplored. Similar effects have been found in aged rats under sevoflurane anesthesia; however, the role of autophagy in sevoflurane anesthesia-induced hippocampal neuron apoptosis of older rats remains elusive. The present study was designed to investigate the effects of autophagy on the sevoflurane-induced cognitive dysfunction in aged rats, and to identify the role of autophagy in sevoflurane-induced neuron apoptosis. We used 20-month-old rats under sevoflurane anesthesia to study memory performance, neuron apoptosis, and autophagy. The results demonstrated that sevoflurane anesthesia significantly impaired memory performance and induced hippocampal neuron apoptosis. Interestingly, treatment of rapamycin, an autophagy inducer, improved the cognitive deficit observed in the aged rats under sevoflurane anesthesia by improving autophagic flux. Rapamycin treatment led to the rapid accumulation of autophagic bodies and autophagy lysosomes, decreased p62 protein levels, and increased the ratio of microtubule-associated protein light chain 3 II (LC3-II) to LC3-I in hippocampal neurons through the mTOR signaling pathway. However, administration of an autophagy inhibitor (chloroquine) attenuated the autophagic flux and increased the severity of sevoflurane anesthesia-induced neuronal apoptosis and memory impairment. These findings suggest that impaired autophagy in the hippocampal neurons of aged rats after sevoflurane anesthesia may contribute to cognitive impairment. Therefore, our findings represent a potential novel target for pro-autophagy treatments in patients with sevoflurane anesthesia-induced neurodegeneration. PMID:27111854

  14. Pharmacological and non-pharmacological interventions to improve cognitive dysfunction and functional ability in clinical depression--a systematic review.

    PubMed

    Baune, Bernhard T; Renger, Lisa

    2014-09-30

    Cognitive dysfunction is of clinical significance and exerts longstanding implication on patients׳ function. Pharmacological and non-pharmacological treatments of cognitive dysfunction are emerging. This review evaluates pharmacological and non-pharmacological treatments of cognitive impairment primarily in the domains of memory, attention, processing speed and executive function in clinical depression. A total of 35 studies were retrieved from Pubmed, PsycInfo and Scopus after applying inclusion and exclusion criteria. Results show that various classes of antidepressants exert improving effects on cognitive function across several cognitive domains. Specifically, studies suggest that SSRIs, the SSRE tianeptine, the SNRI duloxetine, vortioxetine and other antidepressants such as bupropion and moclobemide may exert certain improving effects on cognitive function in depression, such as in learning and memory and executive function. Class-specific cognitive domains or specific dose-response relationships were not identified yet. The few non-pharmacological studies conducted employing cognitive orientated treatments and cognitive remediation therapy show promising results for the improvement of cognitive impairment in depression. However, several methodological constraints of studies limit generalizability of the results and caution the interpretation. Future direction should consider the development of a neuropsychological consensus cognitive battery to support the discovery, clinical assessment, comparison of studies and registration of new agents in clinical depression. PMID:24863864

  15. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    PubMed

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  16. Protective Effect of RNase on Unilateral Nephrectomy-Induced Postoperative Cognitive Dysfunction in Aged Mice

    PubMed Central

    Gan, Lu; Dong, Yuanlin; Zhu, Tao; Ma, Gang; Li, Tao; Zhang, Xiyang; Li, Qian; Cheng, Xu; Wu, Chaomeng; Yang, Jing; Zuo, Yunxia; Liu, Jin

    2015-01-01

    Postoperative cognitive dysfunction (POCD) is a common complication after surgery, especially for elderly patients. Administration of RNase has been reported to exhibit neuroprotective effects in acute stroke. However, the potential role of RNase on POCD is unknown. Therefore, we sought to investigate whether RNase treatment could mitigate unilateral nephrectomy induced-cognitive deficit in aged mice. In the present study, twelve-month-old mice were administered RNase or an equal amount of normal saline perioperatively. All mice underwent Morris Water Maze (MWM) training 3 times per day for 7 days to acclimatize them to the water maze before surgical operation, and testing on days 1, 3 and 7 after surgery. We found that perioperative administration of RNase: 1) attenuated unilateral nephrectomy-induced cognitive impairment at day 3 after surgery; 2) reduced the hippocampal cytokines mRNA production and serum cytokines protein production at day 1 and day 7 (for MCP-1) after surgery, and; 3) inhibited hippocampal apoptosis as indicated by cleaved caspase-3 western blot and TUNEL staining at day 1 after surgery. In addition, a trend decrease of total serum RNA levels was detected in the RNase treated group after surgery compared with the untreated group. Further, our protocol of RNase administration had no impact on the arterial blood gas analysis right after surgery, kidney function and mortality rate at the observed days postoperatively. In conclusion, perioperative RNase treatment attenuated unilateral nephrectomy-induced cognitive impairment in aged mice. PMID:26225860

  17. Effects of ketoprofen for prevention of postoperative cognitive dysfunction in aged rats.

    PubMed

    Kawano, Takashi; Takahashi, Tetsuya; Iwata, Hideki; Morikawa, Akihiro; Imori, Satoko; Waki, Sayaka; Tamura, Takahiko; Yamazaki, Fumimoto; Eguchi, Satoru; Kumagai, Naoko; Yokoyama, Masataka

    2014-12-01

    Postoperative cognitive dysfunction is a common geriatric complication that may be associated with increased mortality. Here, we investigated the effects of postoperative analgesia with ketoprofen on cognitive functions in aged animals and compared its effectiveness to morphine. Rats were randomly allocated to one of four groups: isoflurane anesthesia without surgery (group C), isoflurane anesthesia with laparotomy (group IL), and isoflurane anesthesia with laparotomy plus postoperative analgesia with ketoprofen or morphine. There was no difference in postoperative locomotor activity among groups. In group IL, postoperative pain levels assessed by the Rat Grimace Scale significantly increased until 8 h after surgery, which was similarly inhibited by both ketoprofen and morphine. Cognitive function was assessed using radial arm maze testing for 12 consecutive days from postoperative day 3. Results showed that the number of memory errors in group IL were significantly higher than those in goup C. However, both ketoprofen and morphine could attenuate the increase in memory errors following surgery to a similar degree. Conversely, ketoprofen showed no effect on cognitive function in the nonsurgical rats that did not experience pain. Our findings suggest that postoperative analgesia with ketoprofen can prevent the development of surgery-associated memory deficits via its pain-relieving effects.

  18. Whole-food diet worsened cognitive dysfunction in an Alzheimer's disease mouse model.

    PubMed

    Parrott, Matthew D; Winocur, Gordon; Bazinet, Richard P; Ma, David W L; Greenwood, Carol E

    2015-01-01

    Food combinations have been associated with lower incidence of Alzheimer's disease. We hypothesized that a combination whole-food diet containing freeze-dried fish, vegetables, and fruits would improve cognitive function in TgCRND8 mice by modulating brain insulin signaling and neuroinflammation. Cognitive function was assessed by a comprehensive battery of tasks adapted to the Morris water maze. Unexpectedly, a "Diet × Transgene" interaction was observed in which transgenic animals fed the whole-food diet exhibited even worse cognitive function than their transgenic counterparts fed the control diet on tests of spatial memory (p < 0.01) and strategic rule learning (p = 0.034). These behavioral deficits coincided with higher hippocampal gene expression of tumor necrosis factor-α (p = 0.013). There were no differences in cortical amyloid-β peptide species according to diet. These results indicate that a dietary profile identified from epidemiologic studies exacerbated cognitive dysfunction and neuroinflammation in a mouse model of familial Alzheimer's disease. We suggest that normally adaptive cellular responses to dietary phytochemicals were impaired by amyloid-beta deposition leading to increased oxidative stress, neuroinflammation, and behavioral deficits.

  19. Treatment of Cognitive Impairment in Schizophrenia: Potential Value of Phosphodiesterase Inhibitors in Prefrontal Dysfunction.

    PubMed

    Duinen, Marlies Van; Reneerkens, Olga A H; Lambrecht, Lena; Sambeth, Anke; Rutten, Bart P F; Os, Jim Van; Blokland, Arjan; Prickaerts, Jos

    2015-01-01

    No pharmacological treatment is available to date that shows satisfactory effects on cognitive symptoms in patients diagnosed with schizophrenia. Phosphodiesterase inhibitors (PDE-Is) improve neurotransmitter signaling by interfering in intracellular second messenger cascades. By preventing the breakdown of cAMP and/or cGMP, central neurotransmitter activity is maintained. Different PDE families exist with distinct characteristics among which substrate specificity and regional distribution. Preclinical data is promising especially with regard to inhibition of PDE2, PDE4, PDE5 and PDE10. In addition, cognitive improvement has been reported in both elderly and/or non-impaired young human subjects after PDE1 or PDE4 inhibition. Moreover, some of these studies show effects on cognitive domains relevant to schizophrenia, in particular memory. The current review incorporates an overview of the distinct molecular characteristics of the different PDE families and their relationship to the neurobiological mechanisms related to cognitive dysfunction in schizophrenia. So far, procognitive effects of only three types of PDE-Is have been assessed in patients diagnosed with schizophrenia inhibiting PDE3, PDE5 and PDE10. However, the limited data available do not allow to draw firm conclusions on the value of PDE-Is as cognitive enhancers in schizophrenia yet. The field is still in its infancy, but nevertheless different PDE-Is seem promising as candidate to optimise neural communication in the prefrontal cortex favouring cognitive functioning in patients diagnosed with schizophrenia, in particular dual inhibitors including PDE1-Is, PDE3-Is and PDE10A-Is.

  20. Definition and application of neuropsychological test battery to evaluate postoperative cognitive dysfunction

    PubMed Central

    Valentin, Lívia Stocco Sanches; Pietrobon, Ricardo; de Aguiar, Wagner; Rios, Ruth Pinto Camarão; Stahlberg, Mariane Galzerano; de Menezes, Iolanda Valois Galvão; Osternack-Pinto, Kátia; Carmona, Maria José Carvalho

    2015-01-01

    Objective To investigate the adequacy of the neuropsychological test battery proposed by the International Study of Postoperative Cognitive Dysfunction to evaluate this disorder in Brazilian elderly patients undergoing surgery under general anesthesia. Methods A neuropsychological assessment was made in patients undergoing non-cardiac surgery under general anesthesia, aged over 65 years, literate, with no history of psychiatric or neurological problems and score on the Mini Mental State Examination at or above the cutoff point for the Brazilian population (>18 or >23) according to the schooling level of the subject. Eighty patients were evaluated by a trained team of neuropsychologists up to 24 hours before elective surgery. Results Among the patients evaluated, one was excluded due to score below the cutoff point in the Mini Mental State Examination and two did not complete the test battery, thus remaining 77 patients in the study. The mean age was 69±7.5 years, and 62.34% of the subjects had ±4 years of study. The subjects had significantly lower averages than expected (p<0.001) for normative tables on neuropsychological tests. Conclusion The study demonstrated the applicability of the instruments in the Brazilian elderly and low schooling level population, but suggested the need to determine cutoff points appropriate for these individuals, ensuring the correct interpretation of results. This battery is relevant to postoperative follow-up evaluations, favoring the diagnosis of postoperative cognitive dysfunction in patients undergoing different types of surgery and anesthetic techniques. PMID:25993064

  1. The Global Cognition, Frontal Lobe Dysfunction and Behavior Changes in Chinese Patients with Multiple System Atrophy

    PubMed Central

    Cao, Bei; Zhao, Bi; Wei, Qian-Qian; Chen, Ke; Yang, Jing; Ou, RuWei; Wu, Ying; Shang, Hui-Fang

    2015-01-01

    Background Studies on cognition in multiple system atrophy (MSA) patients are limited. Methods A total of 110 MSA patients were evaluated using Addenbrooke's Cognitive Examination-Revised (ACE-R), Frontal Assessment Battery (FAB), Frontal Behavioral Inventory (FBI), and Unified MSA Rating Scale (UMSARS) tests. Fifty-five age-, sex-, education- and domicile-matched healthy controls were recruited to perform the FAB and ACE-R scales. Results Approximately 32.7% of the patients had global cognitive deficits with the most impaired domain being verbal fluency and visuospatial ability (26.4%), followed by memory (24.5%), language (20%) and orientation/attention (20%) based on a cut-off score of ACE-R ≤ 70. A total of 41.6% of the patients had frontal lobe dysfunction, with inhibitory control (60.9%) as the most impaired domain based on a cut-off score of FAB ≤14. Most patients (57.2%) showed moderate frontal behavior changes (FBI score 4–15), with incontinence (64.5%) as the most impaired domain. The binary logistic regression model revealed that an education level < 9 years (OR:13.312, 95% CI:2.931–60.469, P = 0.001) and UMSARS ≥ 40 (OR: 2.444, 95%CI: 1.002–5.962, P< 0.049) were potential determinants of abnormal ACE-R, while MSA-C (OR: 4.326, 95%CI: 1.631–11.477, P = 0.003), an education level < 9 years (OR:2.809 95% CI:1.060–7.444, P = 0.038) and UMSARS ≥ 40 (OR:5.396, 95%CI: 2.103–13.846, P < 0.0001) were potential determinants of abnormal FAB. Conclusions Cognitive impairment is common in Chinese MSA patients. MSA-C patients with low education levels and severe motor symptoms are likely to experience frontal lobe dysfunction, while MSA patients with low education levels and severe motor symptoms are likely to experience global cognitive deficits. These findings strongly suggest that cognitive impairment should not be an exclusion criterion for the diagnosis of MSA. PMID:26431430

  2. Innate Immune Signalling Genetics of Pain, Cognitive Dysfunction and Sickness Symptoms in Cancer Pain Patients Treated with Transdermal Fentanyl.

    PubMed

    Barratt, Daniel T; Klepstad, Pål; Dale, Ola; Kaasa, Stein; Somogyi, Andrew A

    2015-01-01

    Common adverse symptoms of cancer and chemotherapy are a major health burden; chief among these is pain, with opioids including transdermal fentanyl the mainstay of treatment. Innate immune activation has been implicated generally in pain, opioid analgesia, cognitive dysfunction, and sickness type symptoms reported by cancer patients. We aimed to determine if genetic polymorphisms in neuroimmune activation pathways alter the serum fentanyl concentration-response relationships for pain control, cognitive dysfunction, and other adverse symptoms, in cancer pain patients. Cancer pain patients (468) receiving transdermal fentanyl were genotyped for 31 single nucleotide polymorphisms in 19 genes: CASP1, BDNF, CRP, LY96, IL6, IL1B, TGFB1, TNF, IL10, IL2, TLR2, TLR4, MYD88, IL6R, OPRM1, ARRB2, COMT, STAT6 and ABCB1. Lasso and backward stepwise generalised linear regression were used to identify non-genetic and genetic predictors, respectively, of pain control (average Brief Pain Inventory < 4), cognitive dysfunction (Mini-Mental State Examination ≤ 23), sickness response and opioid adverse event complaint. Serum fentanyl concentrations did not predict between-patient variability in these outcomes, nor did genetic factors predict pain control, sickness response or opioid adverse event complaint. Carriers of the MYD88 rs6853 variant were half as likely to have cognitive dysfunction (11/111) than wild-type patients (69/325), with a relative risk of 0.45 (95% CI: 0.27 to 0.76) when accounting for major non-genetic predictors (age, Karnofsky functional score). This supports the involvement of innate immune signalling in cognitive dysfunction, and identifies MyD88 signalling pathways as a potential focus for predicting and reducing the burden of cognitive dysfunction in cancer pain patients.

  3. Combination of Spirulina with glycyrrhizin prevents cognitive dysfunction in aged obese rats

    PubMed Central

    Madhavadas, Sowmya; Subramanian, Sarada

    2015-01-01

    Objectives: To evaluate the cognition enhancing effect of the combination of Spirulina and glycyrrhizin in monosodium glutamate (MSG)-induced obese aged rats. Materials and Methods: Obesity was induced in rats by administration of MSG (intraperitoneally, 4 mg/g body weight) for 14 consecutive days from day 1 after birth. Subsequently, the animals were allowed to grow for 18 months with food and water ad libitum. Hypercholesterolemia, hyperglycemia, leptin resistance, were monitored in these animals. Cognitive status was assessed by Barne's maze task and hippocampal acetylcholinesterase (AChE) levels. Further, the animals were treated with Spirulina (Sp) (oral route, 1 g/Kg body weight, for 30 days) alone or glycyrrhizin (Gly) alone (intraperitoneal route, 0.1 mg/Kg, on day 15 and day 21), or their combination (SpGly). Counting of the treatment days was done by considering first day of Sp administration as day 1. After the completion of 30 days of Spirulina treatment or 2 doses of Gly administration or the combination (SpGly) treatment, the animals were left for 3 weeks. They were then were assessed for their biochemical and cognitive changes. Results: The combination of Sp with Gly showed a significant reduction (P < 0.0001) in glucose, cholesterol, leptin levels in the serum with improvement in cognitive functions with concomitant reduction in AChE activity in the hippocampal tissue homogenates (P < 0.0001) of the obese rats. Conclusion: SpGly combination has a potential role in reversing cognitive dysfunctions associated with aging and obesity. PMID:25821309

  4. Functional correlates of cognitive dysfunction in multiple sclerosis: A multicenter fMRI Study.

    PubMed

    Rocca, Maria A; Valsasina, Paola; Hulst, Hanneke E; Abdel-Aziz, Khaled; Enzinger, Christian; Gallo, Antonio; Pareto, Debora; Riccitelli, Gianna; Muhlert, Nils; Ciccarelli, Olga; Barkhof, Frederik; Fazekas, Franz; Tedeschi, Gioacchino; Arévalo, Maria J; Filippi, Massimo

    2014-12-01

    In this multicenter study, we applied functional magnetic resonance imaging (fMRI) to define the functional correlates of cognitive dysfunction in patients with multiple sclerosis (MS). fMRI scans during the performance of the N-back task were acquired from 42 right-handed relapsing remitting (RR) MS patients and 52 sex-matched right-handed healthy controls, studied at six European sites using 3.0 Tesla scanners. Patients with at least two abnormal (<2 standard deviations from the normative values) neuropsychological tests at a standardized evaluation were considered cognitively impaired (CI). FMRI data were analyzed using the SPM8 software, modeling regions showing load-dependent activations/deactivations with increasing task difficulty. Twenty (47%) MS patients were CI. During the N-back load condition, compared to controls and CI patients, cognitively preserved (CP) patients had increased recruitment of the right dorsolateral prefrontal cortex. As a function of increasing task difficulty, CI MS patients had reduced activations of several areas located in the fronto-parieto-temporal lobes as well as reduced deactivations of regions which are part of the default mode network compared to the other two groups. Significant correlations were found between abnormal fMRI patterns of activations and deactivations and behavioral measures, cognitive performance, and brain T2 and T1 lesion volumes. This multicenter study supports the theory that a preserved fMRI activity of the frontal lobe is associated with a better cognitive profile in MS patients. It also indicates the feasibility of fMRI to monitor disease evolution and treatment effects in future studies.

  5. MMP-9 gene ablation mitigates hyperhomocystenemia-induced cognition and hearing dysfunction.

    PubMed

    Bhargava, Seema; Pushpakumar, Sathnur; Metreveli, Naira; Givvimani, Srikanth; Tyagi, Suresh C

    2014-08-01

    Hyperhomocysteinemia (HHcy) is associated with cognitive decline and hearing loss due to vascular dysfunction. Although we have shown that HHcy-induced increased expression of matrix metalloproteinase-9 (MMP-9) is associated with cochlear pathology in cystathionine-β-synthase heterozygous (CBS(+/-)) mice, it is still unclear whether MMP-9 contributes to functional deficit in cognition and hearing. Therefore, we hypothesize that HHcy-induced MMP-9 activation causes vascular, cerebral and cochlear remodeling resulting in diminished cognition and hearing. Wildtype (WT), CBS(+/-), MMP-9(-/-) and CBS(+/-)/MMP-9(-/-) double knock-out (DKO) mice were genotyped and used. Doppler flowmetry of internal carotid artery (ICA) was performed for peak systolic velocity [PSV], pulsatility index [PI] and resistive index [RI]. Cognitive functions were assessed by Novel Object Recognition Test (NORT) and for cochlear function Auditory brainstem response (ABR) was elicited. Peak systolic velocity, pulsatility and resistive indices of ICA were decreased in CBS(+/-) mice, indicating reduced perfusion. ABR threshold was increased and maximum ABR amplitude and NORT indices (recognition, discrimination) were decreased in CBS(+/-) mice compared to WT and MMP-9(-/-). All these parameters were attenuated in DKO mice suggesting a significant role of MMP-9 in HHcy-induced vascular, neural and cochlear pathophysiology. Regression analysis of PSV with ABR and cognitive parameters revealed significant correlation (0.44-0.58). For the first time, MMP-9 has been correlated directly to functional deficits of brain and cochlea, and found to have a significant role. Our data suggests a dual pathology of HHcy occurring due to a decrease in blood supply (vasculo-neural and vasculo-cochlear) and direct tissue remodeling.

  6. Executive Cognitive Dysfunction and ADHD in Cocaine Dependence: Searching for a Common Cognitive Endophenotype for Addictive Disorders

    PubMed Central

    Cunha, Paulo Jannuzzi; Gonçalves, Priscila Dib; Ometto, Mariella; dos Santos, Bernardo; Nicastri, Sergio; Busatto, Geraldo F.; de Andrade, Arthur Guerra

    2013-01-01

    executive dysfunction in CDI. It remains to be investigated by future studies if symptoms such as impulsivity or a pre-existing ECF dysfunction could represent underlying cognitive endophenotypes that would substantially increase the risk for acquiring addictive disorders. PMID:24155725

  7. The role of nonverbal cognitive ability in the association of adverse life events with dysfunctional attitudes and hopelessness in adolescence.

    PubMed

    Flouri, Eirini; Panourgia, Constantina

    2012-10-01

    The aim of this study was to test whether nonverbal cognitive ability buffers the effect of life stress (number of adverse life events in the last year) on diatheses for depression. It was expected that, as problem-solving aptitude, nonverbal cognitive ability would moderate the effect of life stress on those diatheses (such as dysfunctional attitudes) that are depressogenic because they represent deficits in information-processing or problem-solving skills, but not on diatheses (such as hopelessness) that are depressogenic because they represent deficits in motivation or effort to apply problem-solving skills. The sample included 558 10- to 19-year-olds from a state secondary school in London. Nonverbal cognitive ability was negatively associated with both dysfunctional attitudes and hopelessness. As expected, nonverbal cognitive ability moderated the association between life adversity and dysfunctional attitudes. However, hopelessness was not related to life stress, and therefore, there was no life stress effect for nonverbal cognitive ability to moderate. This study adds to knowledge about the association between problem-solving ability and depressogenic diatheses. By identifying life stress as a risk factor for dysfunctional attitudes but not hopelessness, it highlights the importance of considering outcome specificity in models predicting adolescent outcomes from adverse life events. Importantly for practice, it suggests that an emphasis on recent life adversity will likely underestimate the true level of hopelessness among adolescents.

  8. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    PubMed

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction.

  9. Neuroprotective Effects of Intravenous Lidocaine on Early Postoperative Cognitive Dysfunction in Elderly Patients Following Spine Surgery

    PubMed Central

    Chen, Kui; Wei, Penghui; Zheng, Qiang; Zhou, Jinfeng; Li, Jianjun

    2015-01-01

    Background This study aimed to evaluate the effects of lidocaine treatment on cognitive impairment in aged patients undergoing spine surgery and to explore the underlying mechanism. Material/Methods Patients were randomly divided into 2 treatment groups: (1) saline (control) and (2) lidocaine. After induction of anesthesia, the lidocaine group received lidocaine as a bolus of 1 mg/kg over 5 minutes, followed by a continuous infusion at 1.5 mg/kg/h until the end of the surgery. We examined the effects of lidocaine treatment on the improvement of cognitive function using the Mini-Mental State Examination (MMSE) at preoperation and 3 days postoperation. Serum samples were collected to assess the levels of IL-6, TNF-α, MDA, S100β, and NSE before inducing anesthesia, at the end of surgery, and 3 days after the end of surgery. Results We found that the MMSE scores in the lidocaine group were markedly higher than those in the control group at 3 days after surgery. Moreover, lidocaine treatment markedly suppressed the release of IL-6, S100β, and NSE into the serum at the end of surgery and 3 days after the end of surgery. In the control group, serum MDA levels increased by 3 days after the end of surgery. The lidocaine group had lower serum MDA levels than those in the control group. Conclusions Lidocaine may be an effective neuroprotective agent in treating early postoperative cognitive dysfunction in elderly patients undergoing spine surgery. PMID:25975969

  10. Rapid improvement of canine cognitive dysfunction with immunotherapy designed for Alzheimer's disease.

    PubMed

    Bosch, Maria Neus; Gimeno-Bayón, Javier; Rodríguez, Manuel J; Pugliese, Marco; Mahy, Nicole

    2013-06-01

    Immunotherapy against amyloid-β(Aβ) may improve rodent cognitive function by reducing amyloid neuropathology and is being validated in clinical trials with positive preliminary results. However, for a complete understanding of the direct and long-term immunization responses in the aged patient, and also to avoid significant side effects, several key aspects remain to be clarified. Thus, to investigate brain Aβ clearance and Th2 responses in the elderly, and the reverse inflammatory events not found in the immunized rodent, better Alzheimer's disease (AD) models are required. In the aged familiar canine with a Cognitive Dysfunction Syndrome (CDS) we describe the rapid effectiveness and the full safety profile of a new active vaccine candidate for human AD prevention and treatment. In these aged animals, besidesa weak immune system, the antibody response activated a coordinated central and peripheral Aβ clearance, that rapidly improved their cognitive function in absence of any side effects. Our results also confirm the interest to use familiar dogs to develop innovative and reliable therapies for AD.

  11. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction

    PubMed Central

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2016-01-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983

  12. Pyrrolidine Dithiocarbamate Prevents Neuroinflammation and Cognitive Dysfunction after Endotoxemia in Rats.

    PubMed

    Kan, Min Hui; Yang, Ting; Fu, Hui Qun; Fan, Long; Wu, Yan; Terrando, Niccolò; Wang, Tian-Long

    2016-01-01

    Systemic inflammation, for example as a result of infection, often contributes to long-term complications. Neuroinflammation and cognitive decline are key hallmarks of several neurological conditions, including advance age. The contribution of systemic inflammation to the central nervous system (CNS) remains not fully understood. Using a model of peripheral endotoxemia with lipopolysaccharide (LPS) we investigated the role of nuclear factor-κB (NF-κB) activity in mediating long-term neuroinflammation and cognitive dysfunction in aged rats. Herein we describe the anti-inflammatory effects of pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor, in modulating systemic cytokines including tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β) and CNS markers after LPS exposure in aged rats. In the hippocampus, PDTC not only reduced neuroinflammation by modulating canonical NF-κB activity but also affected IL-1β expression in astrocytes. Parallel effects were observed on behavior and postsynaptic density-95 (PSD95), a marker of synaptic function. Taken together these changes improved acute and long-term cognitive function in aged rats after LPS exposure. PMID:27493629

  13. Cognitive impairment and memory dysfunction after a stroke diagnosis: a post-stroke memory assessment.

    PubMed

    Al-Qazzaz, Noor Kamal; Ali, Sawal Hamid; Ahmad, Siti Anom; Islam, Shabiul; Mohamad, Khairiyah

    2014-01-01

    Cognitive impairment and memory dysfunction following stroke diagnosis are common symptoms that significantly affect the survivors' quality of life. Stroke patients have a high potential to develop dementia within the first year of stroke onset. Currently, efforts are being exerted to assess stroke effects on the brain, particularly in the early stages. Numerous neuropsychological assessments are being used to evaluate and differentiate cognitive impairment and dementia following stroke. This article focuses on the role of available neuropsychological assessments in detection of dementia and memory loss after stroke. This review starts with stroke types and risk factors associated with dementia development, followed by a brief description of stroke diagnosis criteria and the effects of stroke on the brain that lead to cognitive impairment and end with memory loss. This review aims to combine available neuropsychological assessments to develop a post-stroke memory assessment (PSMA) scheme based on the most recognized and available studies. The proposed PSMA is expected to assess different types of memory functionalities that are related to different parts of the brain according to stroke location. An optimal therapeutic program that would help stroke patients enjoy additional years with higher quality of life is presented. PMID:25228808

  14. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, attenuates postoperative cognitive dysfunction in aging mice

    PubMed Central

    Jia, Min; Liu, Wen-Xue; Sun, He-Liang; Chang, Yan-Qing; Yang, Jiao-Jiao; Ji, Mu-Huo; Yang, Jian-Jun; Feng, Chen-Zhuo

    2015-01-01

    Postoperative cognitive dysfunction (POCD) is a recognized clinical entity characterized with cognitive deficits after anesthesia and surgery, especially in aged patients. Previous studies have shown that histone acetylation plays a key role in hippocampal synaptic plasticity and memory formation. However, its role in POCD remains to be determined. Here, we show that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, attenuates POCD in aging Mice. After exposed to the laparotomy, a surgical procedure involving an incision into abdominal walls to examine the abdominal organs, 16- but not 3-month old male C57BL/6 mice developed obvious cognitive impairments in the test of long-term contextual fear conditioning. Intracerebroventricular (i.c.v.) injection of SAHA at the dose of (20 μg/2 μl) 3 h before and daily after the laparotomy restored the laparotomy-induced reduction of hippocampal acetyl-H3 and acetyl-H4 levels and significantly attenuated the hippocampus-dependent long-term memory (LTM) impairments in 16-month old mice. SAHA also reduced the expression of cleaved caspase-3, inducible nitric oxide synthase (iNOS) and N-methyl-D-aspartate (NMDA) receptor-calcium/calmodulin dependent kinase II (CaMKII) pathway, and increased the expression of brain-derived neurotrophic factor (BDNF), synapsin 1, and postsynaptic density 95 (PSD95). Taken together, our data suggest that the decrease of histone acetylation contributes to POCD and may serve as a target to improve the neurological outcome of POCD. PMID:26441515

  15. Expression of Tau protein in rats with cognitive dysfunction induced by cerebral hypoperfusion

    PubMed Central

    Li, Ji-Feng; Wang, Zhou; Sun, Qin-Jian; Du, Yi-Feng

    2015-01-01

    The aim of this study was to investigate the relationship between chronic cerebral hypoperfusion and the occurrence and development of Alzheimer’s disease (AD). A cerebral hypoperfusion rat model was established by two vessels occlusion (2VO). The cognitive function of the rats with chronic cerebral hypoperfusion and the expression of p-Tau protein in the hippocampus were observed dynamically. Before the operation, no differences were observed in the cognitive functions of the control and 2VO group (P > 0.05). However, a significant difference was found at 2, 4, 8, and 12 weeks after the operation. The shock number required to reach the “learned” standard in the 2VO group increased remarkably compared with that of the control group (P < 0.01). With the passage of time, the shock number in the model group increased gradually. The p-Tau-positive cells in the CA1 region of the hippocampus also increased markedly in the model group in a time-dependent manner as compared with that in the control group (P < 0.01). Cerebral hypoperfusion can cause and aggravate the phosphorylation of Tau protein in the brain, leading to cognitive dysfunction. Therefore, this protein is an important initiating and promoting factor involved in the development of AD. PMID:26770632

  16. Pyrrolidine Dithiocarbamate Prevents Neuroinflammation and Cognitive Dysfunction after Endotoxemia in Rats

    PubMed Central

    Kan, Min Hui; Yang, Ting; Fu, Hui Qun; Fan, Long; Wu, Yan; Terrando, Niccolò; Wang, Tian-Long

    2016-01-01

    Systemic inflammation, for example as a result of infection, often contributes to long-term complications. Neuroinflammation and cognitive decline are key hallmarks of several neurological conditions, including advance age. The contribution of systemic inflammation to the central nervous system (CNS) remains not fully understood. Using a model of peripheral endotoxemia with lipopolysaccharide (LPS) we investigated the role of nuclear factor-κB (NF-κB) activity in mediating long-term neuroinflammation and cognitive dysfunction in aged rats. Herein we describe the anti-inflammatory effects of pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor, in modulating systemic cytokines including tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β) and CNS markers after LPS exposure in aged rats. In the hippocampus, PDTC not only reduced neuroinflammation by modulating canonical NF-κB activity but also affected IL-1β expression in astrocytes. Parallel effects were observed on behavior and postsynaptic density-95 (PSD95), a marker of synaptic function. Taken together these changes improved acute and long-term cognitive function in aged rats after LPS exposure. PMID:27493629

  17. Severe Cognitive Dysfunction and Occupational Extremely Low Frequency Magnetic Field Exposure among Elderly Mexican Americans

    PubMed Central

    Davanipour, Zoreh; Tseng, Chiu-Chen; Lee, Pey-Jiuan; Markides, Kyriakos S.; Sobel, Eugene

    2014-01-01

    Aims This report is the first study of the possible relationship between extremely low frequency (50–60 Hz, ELF) magnetic field (MF) exposure and severe cognitive dysfunction. Earlier studies investigated the relationships between MF occupational exposure and Alzheimer’s disease (AD) or dementia. These studies had mixed results, depending upon whether the diagnosis of AD or dementia was performed by experts and upon the methodology used to classify MF exposure. Study Design Population-based case-control. Place and Duration of Study Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, 2 years. Methodology The study population consisted of 3050 Mexican Americans, aged 65+, enrolled in Phase 1 of the Hispanic Established Population for the Epidemiologic Study of the Elderly (H-EPESE) study. Mini-Mental State Exam (MMSE) results, primary occupational history, and other data were collected. Severe cognitive dysfunction was defined as an MMSE score below 10. The MF exposure methodology developed and used in earlier studies was used. Results Univariate odds ratios (OR) were 3.4 (P< .03; 95% CI: 1.3–8.9) for high and 1.7 (P=.27; 95% CI: 0.7–4.1) for medium or high (M/H) MF occupations. In multivariate main effects models, the results were similar. When interaction terms were allowed in the models, the interactions between M/H or high occupational MF exposure and smoking history or age group were statistically significant, depending upon whether two (65–74, 75+) or three (65–74, 75–84, 85+) age groups were considered, respectively. When the analyses were limited to subjects aged 75+, the interactions between M/H or high MF occupations and a positive smoking history were statistically significant. Conclusion The results of this study indicate that working in an occupation with high or M/H MF exposure may increase the risk of severe cognitive dysfunction. Smoking and older age may increase the deleterious effect of MF

  18. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision.

  19. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition

    PubMed Central

    D'Angelo, Egidio; Casali, Stefano

    2013-01-01

    Following the fundamental recognition of its involvement in sensory-motor coordination and learning, the cerebellum is now also believed to take part in the processing of cognition and emotion. This hypothesis is recurrent in numerous papers reporting anatomical and functional observations, and it requires an explanation. We argue that a similar circuit structure in all cerebellar areas may carry out various operations using a common computational scheme. On the basis of a broad review of anatomical data, it is conceivable that the different roles of the cerebellum lie in the specific connectivity of the cerebellar modules, with motor, cognitive, and emotional functions (at least partially) segregated into different cerebro-cerebellar loops. We here develop a conceptual and operational framework based on multiple interconnected levels (a meta-levels hypothesis): from cellular/molecular to network mechanisms leading to generation of computational primitives, thence to high-level cognitive/emotional processing, and finally to the sphere of mental function and dysfunction. The main concept explored is that of intimate interplay between timing and learning (reminiscent of the “timing and learning machine” capabilities long attributed to the cerebellum), which reverberates from cellular to circuit mechanisms. Subsequently, integration within large-scale brain loops could generate the disparate cognitive/emotional and mental functions in which the cerebellum has been implicated. We propose, therefore, that the cerebellum operates as a general-purpose co-processor, whose effects depend on the specific brain centers to which individual modules are connected. Abnormal functioning in these loops could eventually contribute to the pathogenesis of major brain pathologies including not just ataxia but also dyslexia, autism, schizophrenia, and depression. PMID:23335884

  20. Evidence of neurodegeneration in obstructive sleep apnea: Relationship between obstructive sleep apnea and cognitive dysfunction in the elderly.

    PubMed

    Daulatzai, Mak Adam

    2015-12-01

    The incidence of dementia and obstructive sleep apnea (OSA) increases with age. Late-onset Alzheimer's disease (AD) is an irreversible neurodegenerative disease of the elderly characterized by amyloid β (Aβ) plaques and neurofibrillary tangles. The disease involves widespread synaptic loss in the neocortex and the hippocampus. Rodent and clinical studies suggest that OSA impairs the structural integrity of several brain regions, including the medial temporal lobe. Indeed, hypoxia, hypertension, hypoperfusion, endothelial dysfunction, inflammation, and oxidative stress noted in OSA patients also occur in AD patients. This Review highlights pathological commonality, showing that OSA upregulates Aβ, tau hyperphosphorylation, and synaptic dysfunction. Indeed, OSA and hypertension trigger hypoperfusion and hypometabolism of brain regions, including cortex and hippocampus. Several studies show that hypertension-driven brain damage and pathogenic mechanisms lead to an Aβ increase. The pathophysiological mechanism by which OSA enhances hypertension may be linked to sympathoexcitation, oxidative stress, and endothelial dysfunction. Strong pathophysiological similarities that exist between OSA and AD are underscored here. For example, the hippocampus is negatively impacted in both OSA and AD. OSA promotes hippocampal atrophy, which is associated with memory impairment. Cognitive impairment, even in the absence of manifest dementia, is an important independent predictor of mortality. However, several pathophysiological mechanisms in OSA are reversible with appropriate therapy. OSA, therefore, is a modifiable risk factor of cognitive dysfunction, and treating OSA prior to mild cognitive impairment may be an effective prevention strategy to reduce risk for cognitive decline and AD in middle-aged persons and the elderly. PMID:26301370

  1. Age-Related Conjunctival Disease in the C57BL/6.NOD-Aec1Aec2 Mouse Model of Sjögren Syndrome Develops Independent of Lacrimal Dysfunction

    PubMed Central

    You, In-Cheon; Bian, Fang; Volpe, Eugene A.; de Paiva, Cintia S.; Pflugfelder, Stephen C.

    2015-01-01

    Purpose. To investigate parameters of ocular surface disease in C57BL/6.NOD-Aec1Aec2 (Aec) mice with aging and their correlation with development of Sjögren syndrome (SS)–like lacrimal gland (LG) disease. Methods. Aec and C57BL/6 wild-type (B6) female mice were evaluated at 4, 12, and 20 weeks of age. Whole LG and eyes and adnexa were excised for histology and gene expression analysis and evaluated by flow cytometry and immunohistochemistry. Tear volume and goblet cell density was measured. Quantitative PCR evaluated T-cell–related cytokine expression in cornea and conjunctiva. Results. Both strains showed age-related conjunctival goblet cell loss that was more pronounced in the Aec strain and significantly greater than in B6 mice at 12 weeks. This was accompanied by CD4+ T-cell infiltration of the conjunctiva that was greater in Aec strain at 20 weeks. Aec mice had higher levels of IL-17A, IL-17R, IL-1α, IL-1β, and TNF-α in the conjunctiva, and they significantly increase with aging. Aec mice had greater lymphocytic infiltration of the LG and conjunctiva at 20 weeks that consisted of a mixture of CD4+ and CD8+ cells. Flow cytometry showed a significant increase in CD4+ T cells in Aec LG compared to B6 mice. Tear volume was significantly increased in both strains at 20 weeks. Conclusions. Aec mice developed greater conjunctival goblet cell loss associated with lymphocytic infiltration of the LG and conjunctiva with aging. Increased expression of certain T helper or inflammatory cytokines in these tissues was observed in Aec mice. The conjunctival disease appeared to be due to inflammation and not a decrease in tear volume. PMID:25758816

  2. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease

    PubMed Central

    Müller, Martijn L. T. M.; Kotagal, Vikas; Koeppe, Robert A.; Kilbourn, Michael A.; Albin, Roger L.; Frey, Kirk A.

    2010-01-01

    Olfactory dysfunction is common in subjects with Parkinson’s disease. The pathophysiology of such dysfunction, however, remains poorly understood. Neurodegeneration within central regions involved in odour perception may contribute to olfactory dysfunction in Parkinson’s disease. Central cholinergic deficits occur in Parkinson’s disease and cholinergic neurons innervate regions, such as the limbic archicortex, involved in odour perception. We investigated the relationship between performance on an odour identification task and forebrain cholinergic denervation in Parkinson’s disease subjects without dementia. Fifty-eight patients with Parkinson’s disease (mean Hoehn and Yahr stage 2.5 ± 0.5) without dementia (mean Mini-Mental State Examination, 29.0 ± 1.4) underwent a clinical assessment, [11C]methyl-4-piperidinyl propionate acetylcholinesterase brain positron emission tomography and olfactory testing with the University of Pennsylvania Smell Identification Test. The diagnosis of Parkinson’s disease was confirmed by [11C]dihydrotetrabenazine vesicular monoamine transporter type 2 positron emission tomography. We found that odour identification test scores correlated positively with acetylcholinesterase activity in the hippocampal formation (r = 0.56, P < 0.0001), amygdala (r = 0.50, P < 0.0001) and neocortex (r = 0.46, P = 0.0003). Striatal monoaminergic activity correlated positively with odour identification scores (r = 0.30, P < 0.05). Multiple regression analysis including limbic (hippocampal and amygdala) and neocortical acetylcholinesterase activity as well as striatal monoaminergic activity, using odour identification scores as the dependent variable, demonstrated a significant regressor effect for limbic acetylcholinesterase activity (F = 10.1, P < 0.0001), borderline for striatal monoaminergic activity (F = 1.6, P = 0.13), but not significant for cortical acetylcholinesterase activity (F = 0.3, P = 0.75). Odour identification scores

  3. Tardive dyskinesia in bipolar affective disorder: aging, cognitive dysfunction, course of illness, and exposure to neuroleptics and lithium.

    PubMed

    Waddington, J L; Youssef, H A

    1988-05-01

    Cognitive function, course of illness, and medication history were assessed in 42 bipolar patients evaluated for the presence of involuntary movements. Among the 25 patients 55 years old or older, the 16 with involuntary movements were not distinguished from the nine without involuntary movements by past or current exposure to neuroleptics, anticholinergics, or carbamazepine, but they showed poorer cognitive function, had fewer major depressive episodes, and had received briefer exposure to lithium. The association between involuntary movements and cognitive dysfunction parallels that found in schizophrenia, suggesting that similar neurological processes may contribute to vulnerability to involuntary movements in the major functional psychoses.

  4. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation.

    PubMed

    Akiyama, K; Tanaka, R; Sato, M; Takeda, N

    2001-12-01

    Cognitive dysfunction and histological changes in the brain were investigated following irradiation in 20 Fischer 344 rats aged 6 months treated with whole brain irradiation (WBR) (25 Gy/single dose), and compared with the same number of sham-irradiated rats as controls. Performance of the Morris water maze task and the passive avoidance task were examined one year after WBR. Finally, histological and immunohistochemical examinations using antibodies to myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and neurofilament (NF) were performed of the rat brains. The irradiated rats continued to gain weight 7 months after WBR whereas the control rats stopped gaining weight. Cognitive functions in both the water maze task and the passive avoidance task were lower in the irradiated rats than in the control rats. Brain damage consisting of demyelination only or with necrosis was found mainly in the body of the corpus callosum and the parietal white matter near the corpus callosum in the irradiated rats. Immunohistochemical examination of the brains without necrosis found MBP-positive fibers were markedly decreased in the affected areas by irradiation; NF-positive fibers were moderately decreased and irregularly dispersed in various shapes in the affected areas; and GFAP-positive fibers were increased, with gliosis in those areas. These findings are similar to those in clinically accelerated brain aging in conditions such as Alzheimer's disease, Binswanger's disease, and multiple sclerosis.

  5. A multilevel analysis of cognitive dysfunction and psychopathology associated with chromosome 22q11.2 deletion syndrome in children

    PubMed Central

    SIMON, TONY J.; BISH, JOEL P.; BEARDEN, CARRIE E.; DING, LIJUN; FERRANTE, SAMANTHA; NGUYEN, VY; GEE, JAMES C.; McDONALD–McGINN, DONNA M.; ZACKAI, ELAINE H.; EMANUEL, BEVERLY S.

    2006-01-01

    We present a multilevel approach to developing potential explanations of cognitive impairments and psychopathologies common to individuals with chromosome 22q11.2 deletion syndrome. Results presented support our hypothesis of posterior parietal dysfunction as a central determinant of characteristic visuospatial and numerical cognitive impairments. Converging data suggest that brain development anomalies, primarily tissue reductions in the posterior brain and changes to the corpus callosum, may affect parietal connectivity. Further findings indicate that dysfunction in “frontal” attention systems may explain some executive cognition impairments observed in affected children, and that there may be links between these domains of cognitive function and some of the serious psychiatric conditions, such as attention-deficit/hyperactivity disorder, autism, and schizophrenia, that have elevated incidence rates in the syndrome. Linking the neural structure and the cognitive processing levels in this way enabled us to develop an elaborate structure/function mapping hypothesis for the impairments that are observed. We show also, that in the case of the catechol-O-methyltransferase gene, a fairly direct relationship between gene expression, cognitive function, and psychopathology exists in the affected population. Beyond that, we introduce the idea that variation in other genes may further explain the phenotypic variation in cognitive function and possibly the anomalies in brain development. PMID:16262991

  6. Relationship between Cognitive Performance and Motor Dysfunction in Patients with Parkinson's Disease: A Pilot Cross-Sectional Study

    PubMed Central

    Varalta, Valentina; Fonte, Cristina; Amato, Stefania; Melotti, Camilla; Zatezalo, Vanja; Saltuari, Leopold; Smania, Nicola

    2015-01-01

    The aim of this pilot cross-sectional study was to extensively investigate the relationships between cognitive performance and motor dysfunction involving balance and gait ability in patients with Parkinson's disease. Twenty subjects with Parkinson's disease underwent a cognitive (outcomes: Frontal Assessment Battery-Italian version, Montreal overall Cognitive Assessment, Trail Making Test, Semantic Verbal Fluency Test, and Memory with Interference Test) and motor (outcomes: Berg Balance Scale, 10-Meter Walking Test, 6-Minute Walking Test, Timed Up and Go Test performed also under dual task condition, and Unified Parkinson's Disease Rating Scale) assessment. Our correlation analyses showed that balance skills are significantly correlated with executive functions, cognitive impairment, and ability to switch attention between two tasks. Furthermore, functional mobility showed a significant correlation with cognitive impairment, verbal fluency, and ability to switch attention between two tasks. In addition, the functional mobility evaluated under the dual task condition showed a significant correlation with cognitive impairment and ability to switch attention between two tasks. These findings might help early identification of cognitive deficits or motor dysfunctions in patients with Parkinson's disease who may benefit from rehabilitative strategies. Future prospective larger-scale studies are needed to strengthen our results. PMID:25918713

  7. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage.

    PubMed

    Pascual, María; Baliño, Pablo; Alfonso-Loeches, Silvia; Aragón, Carlos M G; Guerri, Consuelo

    2011-06-01

    Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions.

  8. Dexmedetomidine alleviates postoperative cognitive dysfunction by inhibiting neuron excitation in aged rats

    PubMed Central

    Xiong, Bo; Shi, Qiqing; Fang, Hao

    2016-01-01

    The perioperative stress response is one of the factors leading to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) can reduce the stress response and hippocampus neuroapoptosis, but its mechanism of action on POCD remains unknown. This study investigated the protective effect and possible mechanism of Dex on POCD in aged rats. Ninety-six aged male rats were randomly divided into four groups (n = 24 rats per group): a non-surgical control group, a surgical (model) group, a surgical group receiving a high dose of Dex (12 μg/kg), and a surgical group receiving a low dose of Dex (3 μg/kg). Cognitive function and neuronal apoptosis were evaluated after splenectomy. Compared with the control group, the model group had significantly longer escape latencies and fewer platform crossings in the Morris water-maze test. Immunohistochemistry showed that relaxin-3 and c-fos positive neurons in the hippocampus increased on postoperative days 1 and 3. Greater downregulation of the Bcl-2 protein and upregulation of Fas, caspase-8, and caspase-9 significantly increased neuroapoptosis in the model group. Compared with the model group, rats given Dex had (1) shorter escape latencies, (2) more platform crossings, (3) fewer relaxin-3 and c-fos positive neurons in the hippocampal CA1 area, (4) upregulation of Bcl-2, (5) downregulation of Fas, caspase-8, and caspase-9 proteins, and (6) decreased neuroapoptosis in the hippocampus. Thus, our data suggest that Dex may improve cognitive functioning in aged rats by inhibiting neural over-excitability. The mechanism may operate by restraining relaxin-3 and c-fos expression. PMID:27069541

  9. Berberine alleviates postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice.

    PubMed

    Zhang, Zhijie; Li, Xiuhua; Li, Fayin; An, Lijun

    2016-09-01

    Postoperative cognitive dysfunction (POCD) is a significant cause of morbidity after surgery, especially for the elderly. Accumulating evidence has demonstrated that neuroinflammation plays a key role in the pathogenesis of POCD. Thus, we hypothesized that berberine, an isoquinoline alkaloid with anti-inflammatory effects, could improve surgery-induced cognitive impairment. Twenty-month-old male C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to mimic the clinical human abdominal surgery. For the interventional studies, mice received berberine (10mg/kg) or vehicle intraperitoneally. For the in vitro study, we examined the effects of berberine on lipopolysaccharide (LPS)-induced inflammatory mediators by cultured BV2 cells. Behavioral tests, expressions of IBA1, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 were performed at the indicated time points. In the present study, we showed that surgery impaired the contextual fear memory, as evidenced by the significantly decreased freezing time to the context. This behavioral change coincided with marked increases in IBA1, TNF-α, IL-1β, and IL-6 in the prefrontal cortex and hippocampus only at 24h but not 7 d after surgery. In BV2 cells, LPS induced significantly increased TNF-α and IL-1β expressions. Notably, berberine treatment rescued surgery-induced cognitive impairment and inhibited the release of IBA1, IL-1β, and IL-6 in the hippocampus. In line with the in vivo study, berberine treatment suppressed LPS-stimulated production of TNF-α and IL-1β in BV2 cells. In conclusion, our study suggests that berberine could alleviate POCD by suppressing neuroinflammation in aged mice. PMID:27376853

  10. Mouse models of age-related mitochondrial neurosensory hearing loss.

    PubMed

    Han, Chul; Someya, Shinichi

    2013-07-01

    Hearing loss is the most common sensory disorder in the elderly population. Overall, 10% of the population has a hearing loss in the US, and this age-related hearing disorder is projected to afflict more than 28 million Americans by 2030. Age-related hearing loss is associated with loss of sensory hair cells (sensory hearing loss) and/or spiral ganglion neurons (neuronal hearing loss) in the cochlea of the inner ear. Many lines of evidence indicate that oxidative stress and associated mitochondrial dysfunction play a central role in age-related neurodegenerative diseases and are a cause of age-related neurosensory hearing loss. Yet, the molecular mechanisms of how oxidative stress and/or mitochondrial dysfunction lead to hearing loss during aging remain unclear, and currently there is no treatment for this age-dependent disorder. Several mouse models of aging and age-related diseases have been linked to age-related mitochondrial neurosensory hearing loss. Evaluation of these animal models has offered basic knowledge of the mechanism underlying hearing loss associated with oxidative stress, mitochondrial dysfunction, and aging. Here we review the evidence that specific mutations in the mitochondrial DNA or nuclear DNA that affect mitochondrial function result in increased oxidative damage and associated loss of sensory hair cells and/or spiral ganglion neurons in the cochlea during aging, thereby causing hearing loss in these mouse models. Future studies comparing these models will provide further insight into fundamental knowledge about the disordered process of hearing and treatments to improve the lives of individuals with communication disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.

  11. A new test battery to assess aphasic disturbances and associated cognitive dysfunctions -- German normative data on the aphasia check list.

    PubMed

    Kalbe, Elke; Reinhold, Nadine; Brand, Matthias; Markowitsch, Hans J; Kessler, Josef

    2005-10-01

    Aphasia, defined as an acquired impairment of linguistic abilities, can be accompanied by a diversity of neuropsychological dysfunction. Accordingly, the necessity to include cognitive testing in the diagnosis of aphasia is increasingly recognized. Here we present the Aphasia Check List (ACL), a new test battery for the assessment of aphasic and associated cognitive disorders. The language part of the battery provides a differentiated profile of important linguistic abilities. In addition, the ACL includes nonverbal screening tests for three neuropsychological domains: memory, attention, and reasoning. Dysfunctions in these domains have been observed in aphasic patients and can have an impact on language function. The ACL is applicable to patients with language disturbances of different etiologies, different stages of disease, and to patients with mild to severe aphasia. As the entire test duration is only about 30 minutes, the ACL is also economically valuable. It thus presents an adequate starting point in aphasia diagnosis for a wide range of patients. Here we describe the construction of the ACL, and the normative study of its original German version with 154 aphasic patients and 106 healthy comparison subjects. The ACL cognition part revealed additional neuropsychological dysfunction in the aphasia group. We present the patterns of these dysfunctions and their correlations with language deficits.

  12. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia.

    PubMed

    Daulatzai, Mak Adam

    2014-04-01

    The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota-termed "dysbiosis", impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional "Gut-Brain Axis" pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia. PMID:24590859

  13. The Impact of Age on Cognition.

    PubMed

    Murman, Daniel L

    2015-08-01

    This article reviews the cognitive changes that occur with normal aging, the structural and functional correlates of these cognitive changes, and the prevalence and cognitive effects of age-associated diseases. Understanding these age-related changes in cognition is important given our growing elderly population and the importance of cognition in maintaining functional independence and effective communication with others. The most important changes in cognition with normal aging are declines in performance on cognitive tasks that require one to quickly process or transform information to make a decision, including measures of speed of processing, working memory, and executive cognitive function. Cumulative knowledge and experiential skills are well maintained into advanced age. Structural and function changes in the brain correlate with these age-related cognitive changes, including alterations in neuronal structure without neuronal death, loss of synapses, and dysfunction of neuronal networks. Age-related diseases accelerate the rate of neuronal dysfunction, neuronal loss, and cognitive decline, with many persons developing cognitive impairments severe enough to impair their everyday functional abilities. There is emerging evidence that healthy lifestyles may decrease the rate of cognitive decline seen with aging and help delay the onset of cognitive symptoms in the setting of age-associated diseases. PMID:27516712

  14. Meta-Analysis of Functional Neuroimaging and Cognitive Control Studies in Schizophrenia: Preliminary Elucidation of a Core Dysfunctional Timing Network.

    PubMed

    Alústiza, Irene; Radua, Joaquim; Albajes-Eizagirre, Anton; Domínguez, Manuel; Aubá, Enrique; Ortuño, Felipe

    2016-01-01

    Timing and other cognitive processes demanding cognitive control become interlinked when there is an increase in the level of difficulty or effort required. Both functions are interrelated and share neuroanatomical bases. A previous meta-analysis of neuroimaging studies found that people with schizophrenia had significantly lower activation, relative to normal controls, of most right hemisphere regions of the time circuit. This finding suggests that a pattern of disconnectivity of this circuit, particularly in the supplementary motor area, is a trait of this mental disease. We hypothesize that a dysfunctional temporal/cognitive control network underlies both cognitive and psychiatric symptoms of schizophrenia and that timing dysfunction is at the root of the cognitive deficits observed. The goal of our study was to look, in schizophrenia patients, for brain structures activated both by execution of cognitive tasks requiring increased effort and by performance of time perception tasks. We conducted a signed differential mapping (SDM) meta-analysis of functional neuroimaging studies in schizophrenia patients assessing the brain response to increasing levels of cognitive difficulty. Then, we performed a multimodal meta-analysis to identify common brain regions in the findings of that SDM meta-analysis and our previously-published activation likelihood estimate (ALE) meta-analysis of neuroimaging of time perception in schizophrenia patients. The current study supports the hypothesis that there exists an overlap between neural structures engaged by both timing tasks and non-temporal cognitive tasks of escalating difficulty in schizophrenia. The implication is that a deficit in timing can be considered as a trait marker of the schizophrenia cognitive profile. PMID:26925013

  15. Meta-Analysis of Functional Neuroimaging and Cognitive Control Studies in Schizophrenia: Preliminary Elucidation of a Core Dysfunctional Timing Network

    PubMed Central

    Alústiza, Irene; Radua, Joaquim; Albajes-Eizagirre, Anton; Domínguez, Manuel; Aubá, Enrique; Ortuño, Felipe

    2016-01-01

    Timing and other cognitive processes demanding cognitive control become interlinked when there is an increase in the level of difficulty or effort required. Both functions are interrelated and share neuroanatomical bases. A previous meta-analysis of neuroimaging studies found that people with schizophrenia had significantly lower activation, relative to normal controls, of most right hemisphere regions of the time circuit. This finding suggests that a pattern of disconnectivity of this circuit, particularly in the supplementary motor area, is a trait of this mental disease. We hypothesize that a dysfunctional temporal/cognitive control network underlies both cognitive and psychiatric symptoms of schizophrenia and that timing dysfunction is at the root of the cognitive deficits observed. The goal of our study was to look, in schizophrenia patients, for brain structures activated both by execution of cognitive tasks requiring increased effort and by performance of time perception tasks. We conducted a signed differential mapping (SDM) meta-analysis of functional neuroimaging studies in schizophrenia patients assessing the brain response to increasing levels of cognitive difficulty. Then, we performed a multimodal meta-analysis to identify common brain regions in the findings of that SDM meta-analysis and our previously-published activation likelihood estimate (ALE) meta-analysis of neuroimaging of time perception in schizophrenia patients. The current study supports the hypothesis that there exists an overlap between neural structures engaged by both timing tasks and non-temporal cognitive tasks of escalating difficulty in schizophrenia. The implication is that a deficit in timing can be considered as a trait marker of the schizophrenia cognitive profile. PMID:26925013

  16. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients.

  17. Glutamatergic treatment strategies for age-related memory disorders.

    PubMed

    Müller, W E; Scheuer, K; Stoll, S

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7997073

  18. Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: two case reports

    NASA Astrophysics Data System (ADS)

    Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2010-02-01

    Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1" diameter with 61 diodes each - 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms.

  19. Common cell biologic and biochemical changes in aging and age-related diseases of the eye: Toward new therapeutic approaches to age-related ocular diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reviews of information about age related macular degeneration (AMD), cataract, and glaucoma make it apparent that while each eye tissue has its own characteristic metabolism, structure and function, there are common perturbations to homeostasis that are associated with age-related dysfunction. The c...

  20. [Age-related changes of the brain].

    PubMed

    Paltsyn, A A; Komissarova, S V

    2015-01-01

    The first morphological signs of aging of the brain are found in the white matter already at a young age (20-40 years), and later (40-50 years) in a gray matter. After the 40-50 years appear and in subsequently are becoming more pronounced functional manifestations of morphological changes: the weakening of sensory-motor and cognitive abilities. While in principle this dynamic of age-related changes is inevitable, the rate of their development to a large extent determined by the genetic characteristics and lifestyle of the individual. According to modem concepts age-related changes in the number of nerve cells are different in different parts of the brain. However, these changes are not large and are not the main cause of senile decline brain. The main processes that contribute to the degradation of the brain develop as in the bodies of neurons and in neuropil. In the bodies of neurons--it is a damage (usually decrease) of the level of expression of many genes, and especially of the genes determining cell communication. In neuropil: reduction in the number of synapses and the strength of synaptic connections, reduction in the number of dendritic spines and axonal buttons, reduction in the number and thickness of the dendritic branches, demyelination of axons. As the result of these events, it becomes a violation of the rate of formation and rebuilding neuronal circuits. It is deplete associative ability, brain plasticity, and memory. PMID:27116888

  1. SCN1A mutations in Dravet syndrome: Impact of interneuron dysfunction on neural networks and cognitive outcome

    PubMed Central

    Bender, Alex C.; Morse, Richard P.; Scott, Rod C.; Holmes, Gregory L.; Lenck-Santini, Pierre-Pascal

    2012-01-01

    Dravet syndrome (DS) is a childhood disorder associated with loss-of-function mutations in SCN1A and is characterized by frequent seizures and severe cognitive impairment. Animal studies have revealed new insights into the mechanisms by which mutations in this gene, encoding the type I voltage-gated sodium channel (Nav1.1), may lead to seizure activity and cognitive dysfunction. In this review, we further consider the function of fast-spiking GABAergic neurons, one cell type particularly affected by these mutations, in the context of the temporal coordination of neural activity subserving cognitive functions. We hypothesize that disruptions in GABAergic firing may directly contribute to the poor cognitive outcomes in children with DS, and discuss the therapeutic implications of this possibility. PMID:22341965

  2. Cinnamomum loureirii Extract Inhibits Acetylcholinesterase Activity and Ameliorates Trimethyltin-Induced Cognitive Dysfunction in Mice.

    PubMed

    Kim, Cho Rong; Choi, Soo Jung; Kwon, Yoon Kyung; Kim, Jae Kyeom; Kim, Youn-Jung; Park, Gwi Gun; Shin, Dong-Hoon

    2016-01-01

    The pathogenesis of Alzheimer's disease (AD) has been linked to the deficiency of neurotransmitter acetylcholine (ACh) in the brain, and the main treatment strategy for improving AD symptoms is the inhibition of acetylcholinesterase (AChE) activity. In the present study, we aimed to identify potent AChE inhibitors from Cinnamomum loureirii extract via bioassay-guided fractionation. We demonstrated that the most potent AChE inhibitor present in the C. loureirii extract was 2,4-bis(1,1-dimethylethyl)phenol. To confirm the antiamnesic effects of the ethanol extract of C. loureirii, mice were intraperitoneally injected with the neurotoxin trimethyltin (2.5 mg/kg) to induce cognitive dysfunction, and performance in the Y-maze and passive avoidance tests was assessed. Treatment with C. loureirii extract significantly improved performance in both behavioral tests, suggesting that this extract may be neuroprotective and therefore beneficial in preventing or ameliorating the degenerative processes of AD, potentially by restoring cholinergic function. PMID:27374288

  3. Effect of Ulinastatin in the Treatment of Postperative Cognitive Dysfunction: Review of Current Literature.

    PubMed

    Lv, Zheng-Tao; Huang, Jun-Ming; Zhang, Jin-Ming; Zhang, Jia-Ming; Guo, Jin-Feng; Chen, An-Min

    2016-01-01

    Background. Ulinastatin, identified as a urinary trypsin inhibitor, has been widely used in patients with inflammatory disorders. However, little is known about its effect on postoperative cognitive dysfunction (POCD). The aim of our current work is to review the current body of literature. Methods. A systematic literature search in PubMed and EMBASE was performed to identify randomized controlled trials. Incidence of POCD, MMSE score, and laboratory indicators (IL-6, TNF-α, CRP, and S100β) were selected as outcomes. Results. Five RCTs involving 461 elderly patients that underwent surgical operations were identified. The meta-analysis suggested no statistical difference of incidence of POCD between ulinastatin and control groups on postoperative day 1; but ulinastatin could significantly decrease the incidence of POCD on postoperative day 3 and day 7 when compared with control treatment. Ulinastatin was effective in improving the MMSE score on day 1, day 3, and day 7 after operation. IL-6 and S100β concentrations were lower up to postoperative day 2. The incidences of postoperative complications in ulinastatin groups were lower than control. Conclusion. Ulinastatin administration was effective in treating early POCD (postoperative day 3 and day 7) and reducing IL-6 and S100β concentrations within two days after operations. Studies with larger-scale and rigorous design are urgently needed.

  4. Effect of Ulinastatin in the Treatment of Postperative Cognitive Dysfunction: Review of Current Literature

    PubMed Central

    Zhang, Jin-ming; Zhang, Jia-ming; Guo, Jin-feng

    2016-01-01

    Background. Ulinastatin, identified as a urinary trypsin inhibitor, has been widely used in patients with inflammatory disorders. However, little is known about its effect on postoperative cognitive dysfunction (POCD). The aim of our current work is to review the current body of literature. Methods. A systematic literature search in PubMed and EMBASE was performed to identify randomized controlled trials. Incidence of POCD, MMSE score, and laboratory indicators (IL-6, TNF-α, CRP, and S100β) were selected as outcomes. Results. Five RCTs involving 461 elderly patients that underwent surgical operations were identified. The meta-analysis suggested no statistical difference of incidence of POCD between ulinastatin and control groups on postoperative day 1; but ulinastatin could significantly decrease the incidence of POCD on postoperative day 3 and day 7 when compared with control treatment. Ulinastatin was effective in improving the MMSE score on day 1, day 3, and day 7 after operation. IL-6 and S100β concentrations were lower up to postoperative day 2. The incidences of postoperative complications in ulinastatin groups were lower than control. Conclusion. Ulinastatin administration was effective in treating early POCD (postoperative day 3 and day 7) and reducing IL-6 and S100β concentrations within two days after operations. Studies with larger-scale and rigorous design are urgently needed.

  5. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction.

    PubMed

    Pitcher, Jonathan; Abt, Anna; Myers, Jaclyn; Han, Rachel; Snyder, Melissa; Graziano, Alessandro; Festa, Lindsay; Kutzler, Michele; Garcia, Fernando; Gao, Wen-Jun; Fischer-Smith, Tracy; Rappaport, Jay; Meucci, Olimpia

    2014-02-01

    Interaction of the chemokine CXCL12 with its receptor CXCR4 promotes neuronal function and survival during embryonic development and throughout adulthood. Previous studies indicated that μ-opioid agonists specifically elevate neuronal levels of the protein ferritin heavy chain (FHC), which negatively regulates CXCR4 signaling and affects the neuroprotective function of the CXCL12/CXCR4 axis. Here, we determined that CXCL12/CXCR4 activity increased dendritic spine density, and also examined FHC expression and CXCR4 status in opiate abusers and patients with HIV-associated neurocognitive disorders (HAND), which is typically exacerbated by illicit drug use. Drug abusers and HIV patients with HAND had increased levels of FHC, which correlated with reduced CXCR4 activation, within cortical neurons. We confirmed these findings in a nonhuman primate model of SIV infection with morphine administration. Transfection of a CXCR4-expressing human cell line with an iron-deficient FHC mutant confirmed that increased FHC expression deregulated CXCR4 signaling and that this function of FHC was independent of iron binding. Furthermore, examination of morphine-treated rodents and isolated neurons expressing FHC shRNA revealed that FHC contributed to morphine-induced dendritic spine loss. Together, these data implicate FHC-dependent deregulation of CXCL12/CXCR4 as a contributing factor to cognitive dysfunction in neuroAIDS.

  6. The potent effects of ginseng root extract and memantine on cognitive dysfunction in male albino rats.

    PubMed

    Al-Hazmi, Mansour A; Rawi, Sayed M; Arafa, Nadia Ms; Wagas, Abeer; Montasser, Ayat Os

    2015-06-01

    The study determined the maximum intraperitoneal (ip) scopolamine dose inducing memory impairment in rats (2 mg/kg) compared to 0.5 or 1 mg/kg dose. The effect reflected by significant increase from normal in the latency time required for rats to find the hidden platform in water maze task and acetylcholinesterase (AChE) activities in cortex, hippocampus and striatum. The dose-related histopathological effect via the hemorrhage, vacuolation and gliosis in cortex and hippocampus is assessed. Then the study investigated the potency of Panax ginseng root extract on scopolamine cognitive dysfunction rat model compared to memantine hydrochloride as reference Food and Drug Administration approved. Ginseng extract was administered at dose 100 or 200 mg/kg/day and memantine at 20 mg/kg/day orally for 2 weeks. All treatments showed improvement in the water maze task, however, ginseng (200 mg/kg) group acquired the advantage without statistical difference control. Scopolamine (2 mg/kg ip) group showed significant increase in AChE reactivity and glutamate level and reduced monoamines (norepinephrine, dopamine and serotonin) and γ-aminobutyric acid contents in cortex, hippocampus and striatum. Ginseng extract in a dose-dependent manner appears effective as memantine and can improve memory impairment through the retrieved homeostasis via neurotransmitter levels and AChE activities in rat brain areas with partial effect on the histological feature of the brain tissue.

  7. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction

    PubMed Central

    Pitcher, Jonathan; Abt, Anna; Myers, Jaclyn; Han, Rachel; Snyder, Melissa; Graziano, Alessandro; Festa, Lindsay; Kutzler, Michele; Garcia, Fernando; Gao, Wen-Jun; Fischer-Smith, Tracy; Rappaport, Jay; Meucci, Olimpia

    2014-01-01

    Interaction of the chemokine CXCL12 with its receptor CXCR4 promotes neuronal function and survival during embryonic development and throughout adulthood. Previous studies indicated that μ-opioid agonists specifically elevate neuronal levels of the protein ferritin heavy chain (FHC), which negatively regulates CXCR4 signaling and affects the neuroprotective function of the CXCL12/CXCR4 axis. Here, we determined that CXCL12/CXCR4 activity increased dendritic spine density, and also examined FHC expression and CXCR4 status in opiate abusers and patients with HIV-associated neurocognitive disorders (HAND), which is typically exacerbated by illicit drug use. Drug abusers and HIV patients with HAND had increased levels of FHC, which correlated with reduced CXCR4 activation, within cortical neurons. We confirmed these findings in a nonhuman primate model of SIV infection with morphine administration. Transfection of a CXCR4-expressing human cell line with an iron-deficient FHC mutant confirmed that increased FHC expression deregulated CXCR4 signaling and that this function of FHC was independent of iron binding. Furthermore, examination of morphine-treated rodents and isolated neurons expressing FHC shRNA revealed that FHC contributed to morphine-induced dendritic spine loss. Together, these data implicate FHC-dependent deregulation of CXCL12/CXCR4 as a contributing factor to cognitive dysfunction in neuroAIDS. PMID:24401274

  8. Effect of Ulinastatin in the Treatment of Postperative Cognitive Dysfunction: Review of Current Literature

    PubMed Central

    Zhang, Jin-ming; Zhang, Jia-ming; Guo, Jin-feng

    2016-01-01

    Background. Ulinastatin, identified as a urinary trypsin inhibitor, has been widely used in patients with inflammatory disorders. However, little is known about its effect on postoperative cognitive dysfunction (POCD). The aim of our current work is to review the current body of literature. Methods. A systematic literature search in PubMed and EMBASE was performed to identify randomized controlled trials. Incidence of POCD, MMSE score, and laboratory indicators (IL-6, TNF-α, CRP, and S100β) were selected as outcomes. Results. Five RCTs involving 461 elderly patients that underwent surgical operations were identified. The meta-analysis suggested no statistical difference of incidence of POCD between ulinastatin and control groups on postoperative day 1; but ulinastatin could significantly decrease the incidence of POCD on postoperative day 3 and day 7 when compared with control treatment. Ulinastatin was effective in improving the MMSE score on day 1, day 3, and day 7 after operation. IL-6 and S100β concentrations were lower up to postoperative day 2. The incidences of postoperative complications in ulinastatin groups were lower than control. Conclusion. Ulinastatin administration was effective in treating early POCD (postoperative day 3 and day 7) and reducing IL-6 and S100β concentrations within two days after operations. Studies with larger-scale and rigorous design are urgently needed. PMID:27597957

  9. Effect of Ulinastatin in the Treatment of Postperative Cognitive Dysfunction: Review of Current Literature.

    PubMed

    Lv, Zheng-Tao; Huang, Jun-Ming; Zhang, Jin-Ming; Zhang, Jia-Ming; Guo, Jin-Feng; Chen, An-Min

    2016-01-01

    Background. Ulinastatin, identified as a urinary trypsin inhibitor, has been widely used in patients with inflammatory disorders. However, little is known about its effect on postoperative cognitive dysfunction (POCD). The aim of our current work is to review the current body of literature. Methods. A systematic literature search in PubMed and EMBASE was performed to identify randomized controlled trials. Incidence of POCD, MMSE score, and laboratory indicators (IL-6, TNF-α, CRP, and S100β) were selected as outcomes. Results. Five RCTs involving 461 elderly patients that underwent surgical operations were identified. The meta-analysis suggested no statistical difference of incidence of POCD between ulinastatin and control groups on postoperative day 1; but ulinastatin could significantly decrease the incidence of POCD on postoperative day 3 and day 7 when compared with control treatment. Ulinastatin was effective in improving the MMSE score on day 1, day 3, and day 7 after operation. IL-6 and S100β concentrations were lower up to postoperative day 2. The incidences of postoperative complications in ulinastatin groups were lower than control. Conclusion. Ulinastatin administration was effective in treating early POCD (postoperative day 3 and day 7) and reducing IL-6 and S100β concentrations within two days after operations. Studies with larger-scale and rigorous design are urgently needed. PMID:27597957

  10. Functional neuronal network activity differs with cognitive dysfunction in childhood-onset systemic lupus erythematosus

    PubMed Central

    2013-01-01

    Introduction Neuropsychiatric manifestations are common in childhood-onset systemic lupus erythematosus (cSLE) and often include neurocognitive dysfunction (NCD). Functional magnetic resonance imaging (fMRI) can measure brain activation during tasks that invoke domains of cognitive function impaired by cSLE. This study investigates specific changes in brain function attributable to NCD in cSLE that have potential to serve as imaging biomarkers. Methods Formal neuropsychological testing was done to measure cognitive ability and to identify NCD. Participants performed fMRI tasks probing three cognitive domains impacted by cSLE: visuoconstructional ability (VCA), working memory, and attention. Imaging data, collected on 3-Tesla scanners, included a high-resolution T1-weighted anatomic reference image followed by a T2*-weighted whole-brain echo planar image series for each fMRI task. Brain activation using blood oxygenation level-dependent contrast was compared between cSLE patients with NCD (NCD-group, n = 7) vs. without NCD (noNCD-group, n = 14) using voxel-wise and region of interest-based analyses. The relationship of brain activation during fMRI tasks and performance in formal neuropsychological testing was assessed. Results Greater brain activation was observed in the noNCD-group vs. NCD-group during VCA and working memory fMRI tasks. Conversely, compared to the noNCD-group, the NCD-group showed more brain activation during the attention fMRI task. In region of interest analysis, brain activity during VCA and working memory fMRI tasks was positively associated with the participants' neuropsychological test performance. In contrast, brain activation during the attention fMRI task was negatively correlated with neuropsychological test performance. While the NCD group performed worse than the noNCD group during VCA and working memory tasks, the attention task was performed equally well by both groups. Conclusions NCD in patients with cSLE is characterized by

  11. Age-related reduction in microcolumnar structure in area 46 of the rhesus monkey correlates with behavioral decline

    PubMed Central

    Cruz, Luis; Roe, Daniel L.; Urbanc, Brigita; Cabral, Howard; Stanley, H. E.; Rosene, Douglas L.

    2004-01-01

    Many age-related declines in cognitive function are attributed to the prefrontal cortex, area 46 being especially critical. Yet in normal aging, studies indicate that neurons are not lost in area 46, suggesting that impairments result from more subtle processes. One cortical feature that is functionally important, but that has not been examined in normal aging because of a lack of efficient quantitative methods, is the vertical arrangement of neurons into microcolumns, a fundamental computational unit of the cortex. By using a density-map method derived from condensed-matter physics, we quantified microcolumns in area 46 of seven young and seven aged rhesus monkeys that had been cognitively tested. This analysis demonstrated that there is no age-related reduction in total neuronal density or in microcolumn width, length, or periodicity. There was, however, a statistically significant decrease in the strength of microcolumns, indicating microcolumnar disorganization. This reduction in strength was significantly correlated with age-related cognitive decline on tests of spatial working memory and recognition memory independent of the effect of age. Modeling demonstrated that random neuron displacements of ≈30% of a neuronal diameter (<3 μm) produced the observed reduction in strength. Hence, it is possible that, with changes in dendrites and myelinated axons, subtle displacements of neurons occur that alter microcolumnar structure and correlate with age-induced dysfunction. Therefore, quantitative measurement of microcolumnar structure may provide a sensitive morphological method to assay microcolumnar function in aging and other conditions. PMID:15520373

  12. The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice.

    PubMed

    Kanouchi, Hiroaki; Kakimoto, Toshiaki; Nakano, Hideya; Suzuki, Masahiro; Nakai, Yuji; Shiozaki, Kazuhiro; Akikoka, Kohei; Otomaru, Konosuke; Nagano, Masanobu; Matsumoto, Mitsuharu

    2016-01-01

    Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, a solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence-accelerated P8 mouse. Senescence-accelerated P8 mice were fed 0.25% (w/w) concentrated Kurozu or 0.5% (w/w) Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect; however, the level of lipid peroxidation in the brain did not differ in senescence-accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. The suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons. PMID:26943920

  13. The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice

    PubMed Central

    Kanouchi, Hiroaki; Kakimoto, Toshiaki; Nakano, Hideya; Suzuki, Masahiro; Nakai, Yuji; Shiozaki, Kazuhiro; Akikoka, Kohei; Otomaru, Konosuke; Nagano, Masanobu; Matsumoto, Mitsuharu

    2016-01-01

    Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, a solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence-accelerated P8 mouse. Senescence-accelerated P8 mice were fed 0.25% (w/w) concentrated Kurozu or 0.5% (w/w) Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect; however, the level of lipid peroxidation in the brain did not differ in senescence-accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. The suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons. PMID:26943920

  14. Cognitive dysfunction and depression in adult kidney transplant recipients: baseline findings from the FAVORIT Ancillary Cognitive Trial (FACT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperhomocysteinemia and B-vitamin deficiency may be treatable risk factors for cognitive impairment and decline. Hyperhomocysteinemia, cognitive impairment and depression all are common in individuals with kidney disease, including kidney transplant recipient. Accordingly, we assessed the prevalenc...

  15. Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study.

    PubMed

    Hart, John; Kraut, Michael A; Womack, Kyle B; Strain, Jeremy; Didehbani, Nyaz; Bartz, Elizabeth; Conover, Heather; Mansinghani, Sethesh; Lu, Hanzhang; Cullum, C Munro

    2013-03-01

    OBJECTIVES To assess cognitive impairment and depression in aging former professional football (National Football League [NFL]) players and to identify neuroimaging correlates of these dysfunctions. DESIGN We compared former NFL players with cognitive impairment and depression, cognitively normal retired players who were not depressed, and matched healthy control subjects. SETTING Research center in the North Texas region of the United States. PATIENTS Cross-sectional sample of former NFL players with and without a history of concussion recruited from the North Texas region and age-, education-, and IQ-matched controls. Thirty-four retired NFL players (mean age, 61.8 years) underwent neurological and neuropsychological assessment. A subset of 26 players also underwent detailed neuroimaging; imaging data in this subset were compared with imaging data acquired in 26 healthy matched controls. MAIN OUTCOME MEASURES Neuropsychological measures, clinical diagnoses of depression, neuroimaging mea-sures of white matter pathology, and a measure of cerebral blood flow. RESULTS Of the 34 former NFL players, 20 were cognitively normal. Four were diagnosed as having a fixed cognitive deficit; 8, mild cognitive impairment; 2, dementia; and 8, depression. Of the subgroup in whom neuroimaging data were acquired, cognitively impaired participants showed the greatest deficits on tests of naming, word finding, and visual/verbal episodic memory. We found significant differences in white matter abnormalities in cognitively impaired and depressed retired players compared with their respective controls. Regional blood flow differences in the cognitively impaired group (left temporal pole, inferior parietal lobule, and superior temporal gyrus) corresponded to regions associated with impaired neurocognitive performance (problems with memory, naming, and word finding). CONCLUSIONS Cognitive deficits and depression appear to be more common in aging former NFL players compared with healthy

  16. Aging, frailty and age-related diseases.

    PubMed

    Fulop, T; Larbi, A; Witkowski, J M; McElhaney, J; Loeb, M; Mitnitski, A; Pawelec, G

    2010-10-01

    The concept of frailty as a medically distinct syndrome has evolved based on the clinical experience of geriatricians and is clinically well recognizable. Frailty is a nonspecific state of vulnerability, which reflects multisystem physiological change. These changes underlying frailty do not always achieve disease status, so some people, usually very elderly, are frail without a specific life threatening illness. Current thinking is that not only physical but also psychological, cognitive and social factors contribute to this syndrome and need to be taken into account in its definition and treatment. Together, these signs and symptoms seem to reflect a reduced functional reserve and consequent decrease in adaptation (resilience) to any sort of stressor and perhaps even in the absence of extrinsic stressors. The overall consequence is that frail elderly are at higher risk for accelerated physical and cognitive decline, disability and death. All these characteristics associated with frailty can easily be applied to the definition and characterization of the aging process per se and there is little consensus in the literature concerning the physiological/biological pathways associated with or determining frailty. It is probably true to say that a consensus view would implicate heightened chronic systemic inflammation as a major contributor to frailty. This review will focus on the relationship between aging, frailty and age-related diseases, and will highlight possible interventions to reduce the occurrence and effects of frailty in elderly people. PMID:20559726

  17. Age-Related Factors in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Twyford, Charles William

    The convergence of several lines of psycholinguistic and sociolinguistic research suggests possible explanations for age-related influences on language acquisition. These factors, which include cognitive development, sociocultural context, affective factors, and language input, can be helpful to language educators. By being alert to the cognitive…

  18. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection.

    PubMed

    Williamson, Lauren L; McKenney, Erin A; Holzknecht, Zoie E; Belliveau, Christine; Rawls, John F; Poulton, Susan; Parker, William; Bilbo, Staci D

    2016-01-01

    The incidence of autoimmune and inflammatory diseases has risen dramatically in post-industrial societies. "Biome depletion" - loss of commensal microbial and multicellular organisms such as helminths (intestinal worms) that profoundly modulate the immune system - may contribute to these increases. Hyperimmune-associated disorders also affect the brain, especially neurodevelopment, and increasing evidence links early-life infection to cognitive and neurodevelopmental disorders. We have demonstrated previously that rats infected with bacteria as newborns display life-long vulnerabilities to cognitive dysfunction, a vulnerability that is specifically linked to long-term hypersensitivity of microglial cell function, the resident immune cells of the brain. Here, we demonstrate that helminth colonization of pregnant dams attenuated the exaggerated brain cytokine response of their offspring to bacterial infection, and that combined with post-weaning colonization of offspring with helminths (consistent with their mothers treatment) completely prevented enduring microglial sensitization and cognitive dysfunction in adulthood. Importantly, helminths had no overt impact on adaptive immune cell subsets, whereas exaggerated innate inflammatory responses in splenic macrophages were prevented. Finally, helminths altered the effect of neonatal infection on the gut microbiome; neonatal infection with Escherichia coli caused a shift from genera within the Actinobacteria and Tenericutes phyla to genera in the Bacteroidetes phylum in rats not colonized with helminths, but helminths attenuated this effect. In sum, these data point toward an inter-relatedness of various components of the biome, and suggest potential mechanisms by which this helminth might exert therapeutic benefits in the treatment of neuroinflammatory and cognitive disorders.

  19. A cross-sectional study of functional disabilities and perceived cognitive dysfunction in patients with major depressive disorder in South Korea: The PERFORM-K study.

    PubMed

    Kim, Jae Min; Chalem, Ylana; di Nicola, Sylvia; Hong, Jin Pyo; Won, Seung Hee; Milea, Dominique

    2016-05-30

    PERFORM-K was a cross-sectional observational study that investigated functional disability, productivity and quality of life in MDD outpatients in South Korea, and the associations of these with depressive symptoms, perceived cognitive dysfunction and other factors. A total of 312 outpatients who started antidepressant monotherapy underwent a single study interview. Physicians and patients assessed depression severity. Patients also assessed: perceived cognitive dysfunction, functional disability, impaired productivity and quality of life. Patients had moderate to severe depression (MADRS mean total score: 28.9±7.3), and reported marked functional disability (SDS mean total score: 16.7±8.6), impaired productivity (WPAI mean overall work productivity loss: 52.4±31.8%), perceived cognitive dysfunction (PDQ-D mean total score: 29.9±18.6) and impaired quality of life (EQ-5D mean utility index score of 0.726±0.192). Greater functional disability and impairment in daily activities were associated with more severe depression and greater perceived cognitive dysfunction. Irrespective of depression severity, patients with more severe perceived cognitive dysfunction reported worse work-related productivity outcomes (higher presenteeism and greater overall work productivity loss). PERFORM-K confirms the impact of MDD on functional status and well-being in South Korean patients, and highlights the importance of recognising cognitive dysfunction in clinical practice. PMID:26908289

  20. Possible chemical initiators of cognitive dysfunction in phenylketonuria, Parkinson's disease and Alzheimer's disease.

    PubMed

    Soloway, Albert H; Soloway, Paul D; Warner, Victor D

    2013-10-01

    Though a great deal is known of the pathophysiology of phenylketonuria (PKU), Parkinson's disease (PD) and Alzheimer's disease (AD) very little is known regarding possible chemical species responsible for initiating the cascade of events that ultimately cause cognitive dysfunction. Can these be viewed as inborn errors in metabolism, occurring at various stages in the life cycle, analogous to adult onset diabetes? One major deficiency in understanding such conditions is the paucity of information regarding the total metabolic pathway for various amino acids that may be implicated in their causation. For example in PKU, its etiology was reported in 1934 and dietary restriction of phenylalanine proved effective for individuals with unsatisfactory metabolism of phenylalanine. Yet, current phenylalanine metabolism does not take into account fully the multiple biochemical pathways operating whose role is preventing burdensome accumulations of intermediates that can contribute to morbidity and toxicity. The same may apply for metabolism of tyrosine in PD and methionine in AD. Especially important, are the presence of labile and reactive chemical species which may be causative agents in protein alteration, misfolding and the creation of prions in neurodegenerative diseases, thereby preventing normal protein catabolism and excretion. Though genetic or epigenetic factors must be responsible, the question remains how are these translated into the chemical structures responsible for disease initiation? The purpose of this presentation is to explore potential labile metabolites in those biochemical pathways, which may be contributing factors. Finally it is worth noting, that drug development has been increasingly designed based upon targeting genetic deficiencies. The effectiveness of this approach for the treatment of these neurodegenerative illnesses will be determined in the future.

  1. Thermal Injury Lowers the Threshold for Radiation-Induced Neuroinflammation and Cognitive Dysfunction

    PubMed Central

    Cherry, Jonathan D.; Williams, Jacqueline P.; O’Banion, M. Kerry; Olschowka, John A.

    2013-01-01

    The consequences of radiation exposure alone are relatively well understood, but in the wake of events such as the World War II nuclear detonations and accidents such as Chernobyl, other critical factors have emerged that can substantially affect patient outcome. For example, ~70% of radiation victims from Hiroshima and Nagasaki received some sort of additional traumatic injury, the most common being thermal burn. Animal data has shown that the addition of thermal insult to radiation results in increased morbidity and mortality. To explore possible synergism between thermal injury and radiation on brain, C57BL/6J female mice were exposed to either 0 or 5 Gy whole-body gamma irradiation. Irradiation was immediately followed by a 10% total-body surface area full thickness thermal burn. Mice were sacrificed 6 h, 1 week or 6 month post-injury and brains and plasma were harvested for histology, mRNA analysis and cytokine ELISA. Plasma analysis revealed that combined injury synergistically upregulates IL-6 at acute time points. Additionally, at 6 h, combined injury resulted in a greater upregulation of the vascular marker, ICAM-1 and TNF-α mRNA. Enhanced activation of glial cells was also observed by CD68 and Iba1 immunohistochemistry at all time points. Additionally, doublecortin staining at 6 months showed reduced neurogenesis in all injury conditions. Finally, using a novel object recognition test, we observed that only mice with combined injury had significant learning and memory deficits. These results demonstrate that thermal injury lowers the threshold for radiation-induced neuroinflammation and long-term cognitive dysfunction. PMID:24059681

  2. Targeted Overexpression of Mitochondrial Catalase Prevents Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Tran, Katherine K.; Chmielewski, Nicole N.; Craver, Brianna M.; Martirosian, Vahan; Morganti, Josh M.; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M.; Nelson, Gregory A.; Allen, Antiño R.

    2015-01-01

    Abstract Aims: Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Results: Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Innovation: Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Conclusion: Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain. Antioxid. Redox Signal. 22, 78–91. PMID:24949841

  3. Parecoxib prevents early postoperative cognitive dysfunction in elderly patients undergoing total knee arthroplasty

    PubMed Central

    Zhu, Yang-Zi; Yao, Rui; Zhang, Zhe; Xu, Hui; Wang, Li-Wei

    2016-01-01

    Abstract Background: Trial design neuroinflammation and postoperative pain after surgery are increasingly reported in association with postoperative cognitive dysfunction (POCD). Parecoxib, a selective cyclooxygenase (COX)-2 inhibitor, is used for postoperative analgesia for its potent anti-inflammatory and analgesic effects. This study aimed to evaluate parecoxib's effects on POCD in elderly patients undergoing total knee arthroplasty. Methods: Around 134 elderly patients undergoing total knee arthroplasty were randomly divided into parecoxib (group P) and control (group C) groups, and treated with parecoxib sodium and saline, respectively, shortly after induction of general anesthesia and 12-h postsurgery, respectively. Perioperative plasma IL-1β, IL-6, TNF-α, and C-reactive protein (CRP) 1evels were measured. Postoperative pain was assessed following surgery. Neuropsychological tests were performed before surgery, and 1 week and 3 months postoperation. Results: POCD incidence in group P was significantly lower compared with that of group C at 1 week after surgery (16.7% vs 33.9%; P < 0.05); no significant difference was found between groups C and P at 3-month follow-up (9.7% vs 6.7%). Compared with group C values, visual analog pain scale (VAS) scores at 3, 6, and 12 hours after surgery were significantly lower in group P(P < 0.05). Plasma IL-1β, IL-6, and TNF-α levels were lower in group P than in group C after the operation (P < 0.05). No significant difference in the plasma CRP level was found between groups P and C. Conclusions: Parecoxib sodium decreases POCD incidence after total knee arthroplasty in elderly patients and may explain how this drug suppresses inflammation and acute postoperative pain caused by surgical trauma. PMID:27428192

  4. [Clinical course of recovery from cognitive dysfunction in a patient with anti-N-methyl-D-aspartate receptor encephalitis].

    PubMed

    Asai, Chikako; Morinaga, Akiyoshi; Yamamoto, Kumiko; Imamura, Toru

    2014-10-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is an autoimmune disorder, which occurs commonly in young women and is often associated with ovarian teratomas. We report the case of a patient with this disease, who exhibited cognitive deficits, and describe the clinical course of recovery from cognitive dysfunction. A 29-year-old right-handed woman suffered from chills and fever for 7 days prior to admission to hospital, and complained that she could not understand the content of TV programs. Following admission to hospital, she was found to have an ovarian teratoma and underwent oophorectomy. She was diagnosed with anti-NMDA receptor encephalitis based on the presence of antibodies in the serum and cerebrospinal fluid. She subsequently experienced phases with disturbance of consciousness and involuntary movement, and then moved into the gradual recovery phase 3 months after onset. Cerebral SPECT revealed a left-dominant decrease of blood flow in the prefrontal regions bilaterally. Neuropsychological examination 3 months after onset revealed frontal lobe syndrome comprising executive dysfunction, decreased spontaneity, and environmental dependency in addition to recent memory deficits. Approximately 6 months after onset, recent memory impairments and environmental dependency were resolved, and a gradual improvement in spontaneity and executive function was seen. One year after onset, the patient had regained independence and ability to self-care, and returned to her workplace. Our observations suggest that patients with anti-NMDA receptor encephalitis may recover from frontal lobe syndrome, including executive dysfunction and decreased spontaneity, slower than patients with other cognitive dysfunctions do. PMID:25296876

  5. Age-related atrial fibrosis.

    PubMed

    Gramley, Felix; Lorenzen, Johann; Knackstedt, Christian; Rana, Obaida R; Saygili, Erol; Frechen, Dirk; Stanzel, Sven; Pezzella, Francesco; Koellensperger, Eva; Weiss, Christian; Münzel, Thomas; Schauerte, Patrick

    2009-03-01

    Many age-related diseases are associated with, and may be promoted by, cardiac fibrosis. Transforming growth factor (TGF)-beta, hypoxia-induced factor (HIF), and the matrix metalloproteinase (MMP) system have been implicated in fibrogenesis. Thus, we investigated whether age is related to these systems and to atrial fibrosis. Right atrial appendages (RAA) obtained during heart surgery (n = 115) were grouped according to patients' age (<50 years, 51-60 years, 61-70 years, or >70 years). Echocardiographic ejection fractions (EF) and fibrosis using Sirius-red-stained histological sections were determined. TGF-beta was determined by quantitative RT-PCR and hypoxia-related factors [HIF1 alpha, the vascular endothelial growth factor (VEGF)-receptor, CD34 (a surrogate marker for microvessel density), the factor inhibiting HIF (FIH), and prolyl hydroxylase 3 (PHD 3)] were detected by immunostaining. MMP-2 and -9 activity were determined zymographically, and mRNA levels of their common tissue inhibitor TIMP-1 were determined by RT-PCR. Younger patients (<50 years) had significantly less fibrosis (10.1% +/- 4.4% vs 16.6% +/- 8.3%) than older individuals (>70 years). While HIF1 alpha, FIH, the VEGF-receptor, and CD34 were significantly elevated in the young, TGF-beta and PHD3 were suppressed in these patients. MMP-2 and -9 activity was found to be higher while TIMP-1 levels were lower in older patients. Statistical analysis proved age to be the only factor influencing fibrogenesis. With increasing age, RAAs develop significantly more fibrosis. An increase of fibrotic and decrease of hypoxic signalling and microvessel density, coupled with differential expression of MMPs and TIMP-1 favouring fibrosis may have helped promote atrial fibrogenesis. PMID:19234766

  6. Disruption of Performance in the 5-Choice Serial Reaction Time Task Induced by Administration of NMDA Receptor Antagonists: Relevance to Cognitive Dysfunction in Schizophrenia

    PubMed Central

    Amitai, Nurith; Markou, Athina

    2010-01-01

    Schizophrenia patients suffer from cognitive impairments that are not satisfactorily treated by currently available medications. Cognitive dysfunction in schizophrenia encompasses deficits in several cognitive modalities that can be differentially responsive to different medications and are likely to be mediated by different neurobiological substrates. Translational animal models of cognitive deficits with relevance to schizophrenia are critical for gaining insights into the mechanisms underlying these impairments and developing more effective treatments. The 5-choice serial reaction time task (5-CSRTT) is a cognitive task used in rodents that allows simultaneous assessment of several cognitive modalities, including attention, response inhibition, cognitive flexibility, and processing speed. Administration of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists disrupts multiple 5-CSRTT performance measures in a way that mirrors various cognitive deficits exhibited by schizophrenia patients. Some of these disruptions are partially attenuated by antipsychotic medications that exhibit partial effectiveness on cognitive dysfunction in schizophrenia, suggesting that the model has predictive validity. Examination of the effects of pharmacological manipulations on 5-CSRTT performance disruptions induced by NMDA antagonists have implicated a range of brain regions, neurotransmitter systems, and specific receptor subtypes in schizophrenia-like impairment of different cognitive modalities. Thus, disruption of 5-CSRTT performance by NMDA antagonists represents a valuable tool for exploring the neurobiological bases of cognitive dysfunction in schizophrenia. PMID:20488434

  7. PPARα agonist, fenofibrate, ameliorates age-related renal injury.

    PubMed

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Kim, Hyung Wook; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-08-01

    The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney. PMID:27130813

  8. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  9. Age-Related Changes in 1/f Neural Electrophysiological Noise.

    PubMed

    Voytek, Bradley; Kramer, Mark A; Case, John; Lepage, Kyle Q; Tempesta, Zechari R; Knight, Robert T; Gazzaley, Adam

    2015-09-23

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15-53 years) and scalp EEG data from healthy younger (20-30 years) and older (60-70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <-1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. Significance statement: Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise-induced deficits in

  10. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments

  11. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments.

  12. A Revised Hemodynamic Theory of Age-Related Macular Degeneration.

    PubMed

    Gelfand, Bradley D; Ambati, Jayakrishna

    2016-08-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  13. Regional Coherence Alterations Revealed by Resting-State fMRI in Post-Stroke Patients with Cognitive Dysfunction

    PubMed Central

    Peng, Cheng-Yu; Chen, Yu-Chen; Cui, Ying; Zhao, Deng-Ling; Jiao, Yun; Tang, Tian-Yu; Ju, Shenghong; Teng, Gao-Jun

    2016-01-01

    Objectives Post-stroke cognitive dysfunction greatly influences patients’ quality of life after stroke. However, its neurophysiological basis remains unknown. This study utilized resting-state functional magnetic resonance imaging (fMRI) to investigate the alterations in regional coherence in patients after subcortical stroke. Methods Resting-state fMRI measurements were acquired from 16 post-stroke patients with poor cognitive function (PSPC), 16 post-stroke patients with good cognitive function (PSGC) and 30 well-matched healthy controls (HC). Regional homogeneity (ReHo) was used to detect alterations in regional coherence. Abnormalities in regional coherence correlated with scores on neuropsychological scales. Results Compared to the HC and the PSGC, the PSPC showed remarkably decreased ReHo in the bilateral anterior cingulate cortex and the left posterior cingulate cortex/precuneus. ReHo in the bilateral anterior cingulate cortex positively correlated with the scores on the Symbol Digit Modalities Test (r = 0.399, P = 0.036) and the Complex Figure Test-delayed recall subtest (r = 0.397, P = 0.036) in all post-stroke patients. Moreover, ReHo in the left posterior cingulate cortex/precuneus positively correlated with the scores on the Forward Digit Span Test (r = 0.485, P = 0.009) in all post-stroke patients. Conclusions Aberrant regional coherence was observed in the anterior and posterior cingulate cortices in post-stroke patients with cognitive dysfunction. ReHo could represent a promising indicator of neurobiological deficiencies in post-stroke patients. PMID:27454170

  14. Cognitive and neural correlates of depression-like behaviour in socially defeated mice: an animal model of depression with cognitive dysfunction.

    PubMed

    Yu, Tao; Guo, Ming; Garza, Jacob; Rendon, Samantha; Sun, Xue-Li; Zhang, Wei; Lu, Xin-Yun

    2011-04-01

    Human depression is associated with cognitive deficits. It is critical to have valid animal models in order to investigate mechanisms and treatment strategies for these associated conditions. The goal of this study was to determine the association of cognitive dysfunction with depression-like behaviour in an animal model of depression and investigate the neural circuits underlying the behaviour. Mice that were exposed to social defeat for 14 d developed depression-like behaviour, i.e. anhedonia and social avoidance as indicated by reduced sucrose preference and decreased social interaction. The assessment of cognitive performance of defeated mice demonstrated impaired working memory in the T-maze continuous alternation task and enhanced fear memory in the contextual and cued fear-conditioning tests. In contrast, reference learning and memory in the Morris water maze test were intact in defeated mice. Neuronal activation following chronic social defeat was investigated by c-fosin-situ hybridization. Defeated mice exhibited preferential neural activity in the prefrontal cortex, cingulate cortex, hippocampal formation, septum, amygdala, and hypothalamic nuclei. Taken together, our results suggest that the chronic social defeat mouse model could serve as a valid animal model to study depression with cognitive impairments. The patterns of neuronal activation provide a neural basis for social defeat-induced changes in behaviour.

  15. Cognitive and neural correlates of depression-like behaviour in socially defeated mice: an animal model of depression with cognitive dysfunction

    PubMed Central

    Yu, Tao; Guo, Ming; Garza, Jacob; Rendon, Samantha; Sun, Xue-Li; Zhang, Wei; Lu, Xin-Yun

    2012-01-01

    Human depression is associated with cognitive deficits. It is critical to have valid animal models in order to investigate mechanisms and treatment strategies for these associated conditions. The goal of this study was to determine the association of cognitive dysfunction with depression-like behaviour in an animal model of depression and investigate the neural circuits underlying the behaviour. Mice that were exposed to social defeat for 14 d developed depression-like behaviour, i.e. anhedonia and social avoidance as indicated by reduced sucrose preference and decreased social interaction. The assessment of cognitive performance of defeated mice demonstrated impaired working memory in the T-maze continuous alternation task and enhanced fear memory in the contextual and cued fear-conditioning tests. In contrast, reference learning and memory in the Morris water maze test were intact in defeated mice. Neuronal activation following chronic social defeat was investigated by c-fos in-situ hybridization. Defeated mice exhibited preferential neural activity in the prefrontal cortex, cingulate cortex, hippocampal formation, septum, amygdala, and hypothalamic nuclei. Taken together, our results suggest that the chronic social defeat mouse model could serve as a valid animal model to study depression with cognitive impairments. The patterns of neuronal activation provide a neural basis for social defeat-induced changes in behaviour. PMID:20735879

  16. Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus.

    PubMed

    Wei, Penghui; Liu, Qingshen; Li, Dong; Zheng, Qiang; Zhou, Jinfeng; Li, Jianjun

    2015-09-14

    Although nicotine has been shown to improve cognitive function in various studies, the mechanisms underlying acute nicotine treatment-induced neuroprotection remain incompletely understood. In this study, we evaluated the effect of acute nicotine treatment on the cognitive impairment induced by lipopolysaccharide (LPS) and explored the underlying mechanism. We found that acute nicotine injection markedly attenuated LPS-elicited cognitive deficits and suppressed the strong LPS-induced release of IL-1β, IL-6, and TNF-α into serum and the dorsal hippocampus at 4 and 24h after LPS injection. Western blot analysis indicated a clear increase in the levels of cleaved caspase-3 in LPS-treated animals but not in nicotine- or saline-treated animals. Furthermore, nicotine administration led to a significant increase in BDNF mRNA expression at 4 and 24h and in BDNF protein expression at 24h after LPS injection in the dorsal hippocampus. Taken together, acute nicotine administration attenuated LPS-induced cognitive dysfunction, and this neuroprotective effect may be related to the up-regulation of BDNF and the inhibition of neuroinflammation and apoptosis-related proteins in the dorsal hippocampus. PMID:26259694

  17. Cognitive dysfunction and epigenetic alterations of the BDNF gene are induced by social isolation during early adolescence.

    PubMed

    Li, Man; Du, Wei; Shao, Feng; Wang, Weiwen

    2016-10-15

    Early life adversity, such as social isolation, causes a variety of changes to the development of cognitive abilities and the nervous system. Increasing evidence has shown that epigenetic modifications mediate gene-environment interactions throughout the lifespan. In this study, we investigated the effect of adolescent social isolation on cognitive behaviours and epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene. Male Sprague Dawley rats were randomly assigned to either group-reared or isolation-reared conditions during post-natal days (PNDs) 21-34. On PND 56, all rats underwent behavioural testing and were then sacrificed for biochemical testing. Adolescent social isolation induced impaired PPI. Regarding BDNF, the isolation-reared rats demonstrated increased BDNF mRNA levels, H3 acetylation at the BDNF gene and BDNF protein expression in the medial prefrontal cortex (mPFC). In contrast, the BDNF mRNA levels, H3 acetylation of the BDNF gene and BDNF protein expression were decreased in the hippocampus of the isolation-reared rats. The present study indicated that epigenetic regulation of BDNF may be one of the molecular mechanisms that mediated the cognitive dysfunction. Moreover, the interaction between the mPFC and hippocampus might play an important role in the regulation of cognitive behaviour.

  18. Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus.

    PubMed

    Wei, Penghui; Liu, Qingshen; Li, Dong; Zheng, Qiang; Zhou, Jinfeng; Li, Jianjun

    2015-09-14

    Although nicotine has been shown to improve cognitive function in various studies, the mechanisms underlying acute nicotine treatment-induced neuroprotection remain incompletely understood. In this study, we evaluated the effect of acute nicotine treatment on the cognitive impairment induced by lipopolysaccharide (LPS) and explored the underlying mechanism. We found that acute nicotine injection markedly attenuated LPS-elicited cognitive deficits and suppressed the strong LPS-induced release of IL-1β, IL-6, and TNF-α into serum and the dorsal hippocampus at 4 and 24h after LPS injection. Western blot analysis indicated a clear increase in the levels of cleaved caspase-3 in LPS-treated animals but not in nicotine- or saline-treated animals. Furthermore, nicotine administration led to a significant increase in BDNF mRNA expression at 4 and 24h and in BDNF protein expression at 24h after LPS injection in the dorsal hippocampus. Taken together, acute nicotine administration attenuated LPS-induced cognitive dysfunction, and this neuroprotective effect may be related to the up-regulation of BDNF and the inhibition of neuroinflammation and apoptosis-related proteins in the dorsal hippocampus.

  19. Cognitive dysfunction and epigenetic alterations of the BDNF gene are induced by social isolation during early adolescence.

    PubMed

    Li, Man; Du, Wei; Shao, Feng; Wang, Weiwen

    2016-10-15

    Early life adversity, such as social isolation, causes a variety of changes to the development of cognitive abilities and the nervous system. Increasing evidence has shown that epigenetic modifications mediate gene-environment interactions throughout the lifespan. In this study, we investigated the effect of adolescent social isolation on cognitive behaviours and epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene. Male Sprague Dawley rats were randomly assigned to either group-reared or isolation-reared conditions during post-natal days (PNDs) 21-34. On PND 56, all rats underwent behavioural testing and were then sacrificed for biochemical testing. Adolescent social isolation induced impaired PPI. Regarding BDNF, the isolation-reared rats demonstrated increased BDNF mRNA levels, H3 acetylation at the BDNF gene and BDNF protein expression in the medial prefrontal cortex (mPFC). In contrast, the BDNF mRNA levels, H3 acetylation of the BDNF gene and BDNF protein expression were decreased in the hippocampus of the isolation-reared rats. The present study indicated that epigenetic regulation of BDNF may be one of the molecular mechanisms that mediated the cognitive dysfunction. Moreover, the interaction between the mPFC and hippocampus might play an important role in the regulation of cognitive behaviour. PMID:27435421

  20. Pre-existing cognitive impairment and post-operative cognitive dysfunction: should we be talking the same language?

    PubMed

    Evered, Lisbeth; Silbert, Brendan; Scott, David A

    2016-07-01

    Changes in cognition are known to follow anesthesia and surgery in older individuals (Evered et al., 2011). Although survival per se was the prime outcome in the 19th and early 20th centuries for invasive procedures, a link was none-the-less observed with adverse cognitive outcomes as far back as 1887 (Savage, 1887). Historical reports of "insanity" or "weak mindedness" after anesthesia appeared within 40 years of the first anesthetic having been administered and anecdotal and retrospective reports have implicated anesthesia ever since. However, it was not until the 1970s that these observations received any sound scientific evaluation, when clinicians became aware of cognitive changes following cardiac surgery. It was assumed that the cardiopulmonary bypass (heart lung machine) must have been the main culprit because it was this factor which so greatly distinguished cardiac surgery from non-cardiac surgery (Shaw et al., 1987). This long held belief entered surgical folklore and was the basis for many publications endeavoring to identify particular aspects of the heart lung machine responsible for this cognitive decline.

  1. Pre-existing cognitive impairment and post-operative cognitive dysfunction: should we be talking the same language?

    PubMed

    Evered, Lisbeth; Silbert, Brendan; Scott, David A

    2016-07-01

    Changes in cognition are known to follow anesthesia and surgery in older individuals (Evered et al., 2011). Although survival per se was the prime outcome in the 19th and early 20th centuries for invasive procedures, a link was none-the-less observed with adverse cognitive outcomes as far back as 1887 (Savage, 1887). Historical reports of "insanity" or "weak mindedness" after anesthesia appeared within 40 years of the first anesthetic having been administered and anecdotal and retrospective reports have implicated anesthesia ever since. However, it was not until the 1970s that these observations received any sound scientific evaluation, when clinicians became aware of cognitive changes following cardiac surgery. It was assumed that the cardiopulmonary bypass (heart lung machine) must have been the main culprit because it was this factor which so greatly distinguished cardiac surgery from non-cardiac surgery (Shaw et al., 1987). This long held belief entered surgical folklore and was the basis for many publications endeavoring to identify particular aspects of the heart lung machine responsible for this cognitive decline. PMID:27145889

  2. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  3. Stem cell transplantation strategies for the restoration of cognitive dysfunction caused by cranial radiotherapy.

    PubMed

    Acharya, Munjal M; Roa, Dante E; Bosch, Omar; Lan, Mary L; Limoli, Charles L

    2011-10-18

    Radiotherapy often provides the only clinical recourse for those afflicted with primary or metastatic brain tumors. While beneficial, cranial irradiation can induce a progressive and debilitating decline in cognition that may, in part, be caused by the depletion of neural stem cells. Given the increased survival of patients diagnosed with brain cancer, quality of life in terms of cognitive health has become an increasing concern, especially in the absence of any satisfactory long-term treatments. To address this serious health concern we have used stem cell replacement as a strategy to combat radiation-induced cognitive decline. Our model utilizes athymic nude rats subjected to cranial irradiation. The ionizing radiation is delivered as either whole brain or as a highly focused beam to the hippocampus via linear accelerator (LINAC) based stereotaxic radiosurgery. Two days following irradiation, human neural stem cells (hNSCs) were stereotaxically transplanted into the hippocampus. Rats were then assessed for changes in cognition, grafted cell survival and for the expression of differentiation-specific markers 1 and 4-months after irradiation. Our cognitive testing paradigms have demonstrated that animals engrafted with hNSCs exhibit significant improvements in cognitive function. Unbiased stereology reveals significant survival (10-40%) of the engrafted cells at 1 and 4-months after transplantation, dependent on the amount and type of cells grafted. Engrafted cells migrate extensively, differentiate along glial and neuronal lineages, and express a range of immature and mature phenotypic markers. Our data demonstrate direct cognitive benefits derived from engrafted human stem cells, suggesting that this procedure may one day afford a promising strategy for the long-term functional restoration of cognition in individuals subjected to cranial radiotherapy. To promote the dissemination of the critical procedures necessary to replicate and extend our studies, we have

  4. Understanding and Remediating Social-Cognitive Dysfunctions in Patients with Serious Mental Illness Using Relational Frame Theory.

    PubMed

    Hendriks, Annemieke L; Barnes-Holmes, Yvonne; McEnteggart, Ciara; De Mey, Hubert R A; Janssen, Gwenny T L; Egger, Jos I M

    2016-01-01

    Impairments in social cognition and perspective-taking play an important role in the psychopathology and social functioning of individuals with social anxiety, autism, or schizophrenia-spectrum disorders, among other clinical presentations. Perspective-taking has mostly been studied using the concept of Theory of Mind (ToM), which describes the sequential development of these skills in young children, as well as clinical populations experiencing perspective-taking difficulties. Several studies mention positive results of ToM based training programs; however, the precise processes involved in the achievement of these improvements are difficult to determine. Relational Frame Theory (RFT) is a modern behavioral account of complex cognitive functions, and is argued to provide a more precise approach to the assessment and training of perspective-taking, among other relational skills. Results of RFT-based studies of perspective-taking in developmental and clinical settings are discussed. The development of training methods targeting perspective-taking deficits from an RFT point of view appears to provide promising applications for the enhancement of current treatments of people with social-cognitive dysfunctions. PMID:26903935

  5. Measuring illness insight in patients with alcohol-related cognitive dysfunction using the Q8 questionnaire: a validation study

    PubMed Central

    Walvoort, Serge JW; van der Heijden, Paul T; Kessels, Roy PC; Egger, Jos IM

    2016-01-01

    Aim Impaired illness insight may hamper treatment outcome in patients with alcohol-related cognitive deficits. In this study, a short questionnaire for the assessment of illness insight (eg, the Q8) was investigated in patients with Korsakoff’s syndrome (KS) and in alcohol use disorder (AUD) patients with mild neurocognitive deficits. Methods First, reliability coefficients were computed and internal structure was investigated. Then, comparisons were made between patients with KS and patients with AUD. Furthermore, correlations with the Dysexecutive Questionnaire (DEX) were investigated. Finally, Q8 total scores were correlated with neuropsychological tests for processing speed, memory, and executive function. Results Internal consistency of the Q8 was acceptable (ie, Cronbach’s α =0.73). The Q8 items represent one factor, and scores differ significantly between AUD and KS patients. The Q8 total score, related to the DEX discrepancy score and scores on neuropsychological tests as was hypothesized, indicates that a higher degree of illness insight is associated with a higher level of cognitive functioning. Conclusion The Q8 is a short, valid, and easy-to-administer questionnaire to reliably assess illness insight in patients with moderate-to-severe alcohol-related cognitive dysfunction. PMID:27445476

  6. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    PubMed Central

    Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-Mee, Wipawee; Ingkaninan, Kornkanok; Wittaya-Areekul, Sakchai

    2014-01-01

    To date, the effective preventive paradigm against mild cognitive impairment (MCI) is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv). At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism. PMID:24672632

  7. Mangifera indica fruit extract improves memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment.

    PubMed

    Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-Mee, Wipawee; Ingkaninan, Kornkanok; Wittaya-Areekul, Sakchai

    2014-01-01

    To date, the effective preventive paradigm against mild cognitive impairment (MCI) is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180-200 g, were orally given the extract at doses of 12.5, 50, and 200 mg · kg(-1) BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv). At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg · kg(-1) BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism.

  8. Understanding and Remediating Social-Cognitive Dysfunctions in Patients with Serious Mental Illness Using Relational Frame Theory

    PubMed Central

    Hendriks, Annemieke L.; Barnes-Holmes, Yvonne; McEnteggart, Ciara; De Mey, Hubert R. A.; Janssen, Gwenny T. L.; Egger, Jos I. M.

    2016-01-01

    Impairments in social cognition and perspective-taking play an important role in the psychopathology and social functioning of individuals with social anxiety, autism, or schizophrenia-spectrum disorders, among other clinical presentations. Perspective-taking has mostly been studied using the concept of Theory of Mind (ToM), which describes the sequential development of these skills in young children, as well as clinical populations experiencing perspective-taking difficulties. Several studies mention positive results of ToM based training programs; however, the precise processes involved in the achievement of these improvements are difficult to determine. Relational Frame Theory (RFT) is a modern behavioral account of complex cognitive functions, and is argued to provide a more precise approach to the assessment and training of perspective-taking, among other relational skills. Results of RFT-based studies of perspective-taking in developmental and clinical settings are discussed. The development of training methods targeting perspective-taking deficits from an RFT point of view appears to provide promising applications for the enhancement of current treatments of people with social-cognitive dysfunctions. PMID:26903935

  9. Understanding and Remediating Social-Cognitive Dysfunctions in Patients with Serious Mental Illness Using Relational Frame Theory.

    PubMed

    Hendriks, Annemieke L; Barnes-Holmes, Yvonne; McEnteggart, Ciara; De Mey, Hubert R A; Janssen, Gwenny T L; Egger, Jos I M

    2016-01-01

    Impairments in social cognition and perspective-taking play an important role in the psychopathology and social functioning of individuals with social anxiety, autism, or schizophrenia-spectrum disorders, among other clinical presentations. Perspective-taking has mostly been studied using the concept of Theory of Mind (ToM), which describes the sequential development of these skills in young children, as well as clinical populations experiencing perspective-taking difficulties. Several studies mention positive results of ToM based training programs; however, the precise processes involved in the achievement of these improvements are difficult to determine. Relational Frame Theory (RFT) is a modern behavioral account of complex cognitive functions, and is argued to provide a more precise approach to the assessment and training of perspective-taking, among other relational skills. Results of RFT-based studies of perspective-taking in developmental and clinical settings are discussed. The development of training methods targeting perspective-taking deficits from an RFT point of view appears to provide promising applications for the enhancement of current treatments of people with social-cognitive dysfunctions.

  10. Cognitive Dysfunction, Affective States, and Vulnerability to Nicotine Addiction: A Multifactorial Perspective

    PubMed Central

    Besson, Morgane; Forget, Benoît

    2016-01-01

    Although smoking prevalence has declined in recent years, certain subpopulations continue to smoke at disproportionately high rates and show resistance to cessation treatments. Individuals showing cognitive and affective impairments, including emotional distress and deficits in attention, memory, and inhibitory control, particularly in the context of psychiatric conditions, such as attention-deficit hyperactivity disorder, schizophrenia, and mood disorders, are at higher risk for tobacco addiction. Nicotine has been shown to improve cognitive and emotional processing in some conditions, including during tobacco abstinence. Self-medication of cognitive deficits or negative affect has been proposed to underlie high rates of tobacco smoking among people with psychiatric disorders. However, pre-existing cognitive and mood disorders may also influence the development and maintenance of nicotine dependence, by biasing nicotine-induced alterations in information processing and associative learning, decision-making, and inhibitory control. Here, we discuss the potential forms of contribution of cognitive and affective deficits to nicotine addiction-related processes, by reviewing major clinical and preclinical studies investigating either the procognitive and therapeutic action of nicotine or the putative primary role of cognitive and emotional impairments in addiction-like features. PMID:27708591

  11. Cognitive Dysfunction and Dementia in Primary Sjögren's Syndrome

    PubMed Central

    Blanc, Frederic; Longato, Nadine; Jung, Barbara; Kleitz, Catherine; Di Bitonto, Laure; Cretin, Benjamin; Collongues, Nicolas; Sordet, Christelle; Fleury, Marie; Poindron, Vincent; Gottenberg, Jacques-Eric; Anne, Olivier; Lipsker, Dan; Martin, Thierry; Sibilia, Jean; de Seze, Jérôme

    2013-01-01

    Background. Primary Sjögren's syndrome (PSS) is a frequent systemic autoimmune disease. In this study, we aimed to explore the cognitive impairment and the correlations with brain MRI. Methods. Twenty-five patients (mean age 55 ± 11.8 years, 21 females) with PSS were prospectively selected and tested with a French translation of the Brief Repeatable Battery for Neuropsychological Examination. The results were compared with the scores for 25 matched patients with multiple sclerosis (MS) and 25 controls. Brain lesions were assessed by brain MRI using the Wahlund classification. Results. Fifteen of the 25 PSS patients (60%) presented with cognitive disorders versus 19/25 MS patients (76%). Five patients had dementia in the PSS group. Speed of information processing, attention, immediate and long-term memory, and executive functions were frequently impaired. The mean duration of cognitive complaints was 5.6 ± 6.1 years, and the mean duration of PSS was 15.8 ± 14.0 years. A trend towards a correlation was found between the severity of cognitive impairment and the degree of white matter lesions (WML) (P = 0.03, rho = 0.43). Conclusion. Cognitive impairment—mild or dementia—exists in patients with PSS. Further MRI studies are needed to better understand the precise neural basis of cognitive impairment in PSS patients. PMID:24224097

  12. Experience-Based Mitigation of Age-Related Performance Declines: Evidence from Air Traffic Control

    ERIC Educational Resources Information Center

    Nunes, Ashley; Kramer, Arthur F.

    2009-01-01

    Previous research has found age-related deficits in a variety of cognitive processes. However, some studies have demonstrated age-related sparing on tasks where individuals have substantial experience, often attained over many decades. Here, the authors examined whether decades of experience in a fast-paced demanding profession, air traffic…

  13. Epilepsy beyond seizures: Predicting enduring cognitive dysfunction in genetic generalized epilepsies.

    PubMed

    Loughman, Amy; Seneviratne, Udaya; Bowden, Stephen C; D'Souza, Wendyl J

    2016-09-01

    Reduced cognitive functioning has been documented in the genetic generalized epilepsies (GGE). Among a number of hypothesized causal mechanisms, some evidence from other epilepsy syndromes suggests the impact of epileptiform discharges. This study investigates the relationship between cognitive function in GGE and burden of epileptiform discharges within a 24-hour EEG recording, controlling for variables relevant to cognitive function in epilepsy. As part of a larger prospective cohort study, 69 patients with EEG-confirmed GGE (11-58years) underwent 24-hour EEG and detailed neuropsychological assessment using the Woodcock Johnson III Tests. Ten-second pages of the EEG were marked manually page-by-page on longitudinal bipolar montage with 0.5 to 70Hz bandwidth by an experienced EEG reader. Multiple regression analyses were conducted. Epileptiform discharges were detected in 90% of patients. Less than 0.01% of electrophysiological events of two or more seconds were recognized by patients. Regression analysis demonstrated that the cumulative duration of epileptiform discharges over a 24-hour period predicted overall cognitive ability and memory function, accounting for 9.6% and 11.8% of adjusted variance, respectively. None of the epilepsy covariates included in multiple regression analysis added significantly to the model. Duration of epileptiform discharges negatively predicts overall cognitive ability and memory function, even after accounting for other known determinants of cognition. Prolonged epileptiform discharges are common and remain unreported by patients, raising important questions regarding the management of GGE syndromes and their associated comorbidities. Further research is required to investigate causal mechanisms if we are to improve cognitive outcomes in this common group of epilepsies. PMID:27544704

  14. Epilepsy beyond seizures: Predicting enduring cognitive dysfunction in genetic generalized epilepsies.

    PubMed

    Loughman, Amy; Seneviratne, Udaya; Bowden, Stephen C; D'Souza, Wendyl J

    2016-09-01

    Reduced cognitive functioning has been documented in the genetic generalized epilepsies (GGE). Among a number of hypothesized causal mechanisms, some evidence from other epilepsy syndromes suggests the impact of epileptiform discharges. This study investigates the relationship between cognitive function in GGE and burden of epileptiform discharges within a 24-hour EEG recording, controlling for variables relevant to cognitive function in epilepsy. As part of a larger prospective cohort study, 69 patients with EEG-confirmed GGE (11-58years) underwent 24-hour EEG and detailed neuropsychological assessment using the Woodcock Johnson III Tests. Ten-second pages of the EEG were marked manually page-by-page on longitudinal bipolar montage with 0.5 to 70Hz bandwidth by an experienced EEG reader. Multiple regression analyses were conducted. Epileptiform discharges were detected in 90% of patients. Less than 0.01% of electrophysiological events of two or more seconds were recognized by patients. Regression analysis demonstrated that the cumulative duration of epileptiform discharges over a 24-hour period predicted overall cognitive ability and memory function, accounting for 9.6% and 11.8% of adjusted variance, respectively. None of the epilepsy covariates included in multiple regression analysis added significantly to the model. Duration of epileptiform discharges negatively predicts overall cognitive ability and memory function, even after accounting for other known determinants of cognition. Prolonged epileptiform discharges are common and remain unreported by patients, raising important questions regarding the management of GGE syndromes and their associated comorbidities. Further research is required to investigate causal mechanisms if we are to improve cognitive outcomes in this common group of epilepsies.

  15. Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: advances, gaps, and needs in current research.

    PubMed

    Goschke, Thomas

    2014-01-01

    Disadvantageous decision-making and impaired volitional control over actions, thoughts, and emotions are characteristics of a wide range of mental disorders such as addiction, eating disorders, depression, and anxiety disorders and may reflect transdiagnostic core mechanisms and possibly vulnerability factors. Elucidating the underlying neurocognitive mechanisms is a precondition for moving from symptom-based to mechanism-based disorder classifications and ultimately mechanism-targeted interventions. However, despite substantial advances in basic research on decision-making and cognitive control, there are still profound gaps in our current understanding of dysfunctions of these processes in mental disorders. Central unresolved questions are: (i) to which degree such dysfunctions reflect transdiagnostic mechanisms or disorder-specific patterns of impairment; (ii) how phenotypical features of mental disorders relate to dysfunctional control parameter settings and aberrant interactions between large-scale brain systems involved in habit and reward-based learning, performance monitoring, emotion regulation, and cognitive control; (iii) whether cognitive control impairments are consequences or antecedent vulnerability factors of mental disorders; (iv) whether they reflect generalized competence impairments or context-specific performance failures; (v) whether not only impaired but also chronic over-control contributes to mental disorders. In the light of these gaps, needs for future research are: (i) an increased focus on basic cognitive-affective mechanisms underlying decision and control dysfunctions across disorders; (ii) longitudinal-prospective studies systematically incorporating theory-driven behavioural tasks and neuroimaging protocols to assess decision-making and control dysfunctions and aberrant interactions between underlying large-scale brain systems; (iii) use of latent-variable models of cognitive control rather than single tasks; (iv) increased focus on

  16. Effect of age and severity of cognitive dysfunction on spontaneous activity in pet dogs - part 2: social responsiveness.

    PubMed

    Rosado, B; González-Martínez, A; Pesini, P; García-Belenguer, S; Palacio, J; Villegas, A; Suárez, M-L; Santamarina, G; Sarasa, M

    2012-11-01

    Changes in social interactions with owners and other dogs are frequently observed in dogs with cognitive dysfunction syndrome (CDS). The aim of this work was to assess the effect of age and severity of CDS on social responsiveness. This is the second part of a 2-part report on spontaneous activity in pet dogs. A human interaction test and a mirror test were administered at baseline and 6 months later to assess social responses to humans and conspecifics, respectively, to four groups of privately-owned dogs: young (n=9), middle-aged (n=9), cognitively unimpaired aged (n=31), and cognitively impaired aged (n=36). The severity of cognitive impairment was considered in the last group and dogs were categorised as having either mild or severe CDS. The influence of the person and the mirror on locomotion and exploratory behaviour was also studied. Dogs were recorded in a testing room and the video recordings were subsequently analysed. Young dogs displayed more interactions involving physical contact with a person. Young and middle-aged dogs showed more vocalisations in response to social isolation. In contrast, aged animals spent more time in front of the mirror. Changes in social responsiveness associated with severe CDS included decreased response to social isolation and human interaction and increased time in front of the mirror, suggesting a deficit in habituation. Testing of spontaneous activity might help to characterise CDS in aged dogs, a condition increasingly diagnosed in veterinary clinics and a potentially useful natural model of Alzheimer's disease in humans. PMID:22578689

  17. Administration of NaHS Attenuates Footshock-Induced Pathologies and Emotional and Cognitive Dysfunction in Triple Transgenic Alzheimer's Mice.

    PubMed

    Huang, Hei-Jen; Chen, Shu-Ling; Hsieh-Li, Hsiu Mei

    2015-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuropsychiatric symptoms. Increasing evidence indicates that environmental risk factors in young adults may accelerate cognitive loss in AD and that Hydrogen Sulfide (H2S) may represent an innovative treatment to slow the progression of AD. Therefore, the aim of this study was to evaluate the effects of NaHS, an H2S donor, in a triple transgenic AD mouse model (3×Tg-AD) under footshock with situational reminders (SRs). Inescapable footshock with SRs induced anxiety and cognitive dysfunction as well as a decrease in the levels of plasma H2S and GSH and an increase in IL-6 levels in 3×Tg-AD mice. Under footshock with SR stimulus, amyloid deposition, tau protein hyperphosphorylation, and microgliosis were highly increased in the stress-responsive brain structures, including the hippocampus and amygdala, of the AD mice. Oxidative stress, inflammatory response, and β-site APP cleaving enzyme 1 (BACE1) levels were also increased, and the level of inactivated glycogen synthase kinase-3β (GSK3β) (pSer9) was decreased in the hippocampi of AD mice subjected to footshock with SRs. Furthermore, the numbers of cholinergic neurons in the medial septum/diagonal band of Broca (MS/DB) and noradrenergic neurons in the locus coeruleus (LC) were also decreased in the 3×Tg-AD mice under footshock with SRs. These biochemical hallmarks and pathological presentations were all alleviated by the semi-acute administration of NaHS in the AD mice. Together, these findings suggest that footshock with SRs induces the impairment of spatial cognition and emotion, which involve pathological changes in the peripheral and central systems, including the hippocampus, MS/DB, LC, and BLA, and that the administration of NaHS may be a candidate strategy to ameliorate the progression of neurodegeneration. PMID:26635562

  18. Cognitive and behaviour dysfunction of children with neurocysticercosis: a cross-sectional study.

    PubMed

    Prasad, Rajniti; Shambhavi; Mishra, Om P; Upadhyay, Shashi K; Singh, Tej B; Singh, Utpal Kant

    2014-10-01

    Eighty-three confirmed cases of neurocysticercosis diagnosed as per modified delBrutto criteria were enrolled in the study (Group-I) to observe cognitive and behavioural changes. Controls consisted of two groups: children with idiopathic generalized tonic-clonic seizure (Group-II) and normal children with non-specific cough (Group-III). Cases and controls were subjected to cognitive and behaviour assessment. There was significant difference in the intelligence quotient (IQ) of cases in domains of visual perception, immediate recall, analysis synthesis and reasoning, verbal ability, memory and spatial ability. In the age group of 6-18 years, cases had significantly more behaviour problems than control without seizure, in domains of anxious depressed, withdrawn depressed, somatic problems, social problems and rule-breaking behaviour. Neurocysticercosis causes decline in cognitive function and behaviours in older children, which should be recognized early for appropriate management and to avoid undue parental anxiety.

  19. Similarities and differences in memory deficits in patients with primary dementia and depression-related cognitive dysfunction.

    PubMed

    Hill, C D; Stoudemire, A; Morris, R; Martino-Saltzman, D; Markwalter, H R

    1993-01-01

    The authors examined differences between the verbal memory performance of older patients with major depression (MD) alone; major depression with reversible depression-related cognitive dysfunction (MD/DRCD); and primary dementia and major depression (DEM/MD). Patients were evaluated before antidepressant treatment and 6 and 15 months after treatment. Of the three groups, patients with MD alone acquired significantly more information on the California Verbal Learning Test and showed a more pronounced primacy effect. Patients with DEM/MD were more likely to commit errors of intrusion. Although older depressed patients with MD/DRCD may resemble patients with DEM/MD on some aspects of verbal memory performance, differences may be observed in the types of learning errors they commit. Diagnostic implications are discussed.

  20. Children with chronic lung diseases have cognitive dysfunction as assessed by event-related potential (auditory P300) and Stanford-Binet IQ (SB-IV) test.

    PubMed

    Kamel, Terez Boshra; Abd Elmonaem, Mahmoud Tarek; Khalil, Lobna Hamed; Goda, Mona Hamdy; Sanyelbhaa, Hossam; Ramzy, Mourad Alfy

    2016-10-01

    Chronic lung disease (CLD) in children represents a heterogeneous group of many clinico-pathological entities with risk of adverse impact of chronic or intermittent hypoxia. So far, few researchers have investigated the cognitive function in these children, and the role of auditory P300 in the assessment of their cognitive function has not been investigated yet. This study was designed to assess the cognitive functions among schoolchildren with different chronic pulmonary diseases using both auditory P300 and Stanford-Binet test. This cross-sectional study included 40 school-aged children who were suffering from chronic chest troubles other than asthma and 30 healthy children of similar age, gender and socioeconomic state as a control group. All subjects were evaluated through clinical examination, radiological evaluation and spirometry. Audiological evaluation included (basic otological examination, pure-tone, speech audiometry and immittancemetry). Cognitive function was assessed by auditory P300 and psychological evaluation using Stanford-Binet test (4th edition). Children with chronic lung diseases had significantly lower anthropometric measures compared to healthy controls. They had statistically significant lower IQ scores and delayed P300 latencies denoting lower cognitive abilities. Cognitive dysfunction correlated to severity of disease. P300 latencies were prolonged among hypoxic patients. Cognitive deficits in children with different chronic lung diseases were best detected using both Stanford-Binet test and auditory P300. P300 is an easy objective tool. P300 is affected early with hypoxia and could alarm subtle cognitive dysfunction. PMID:27075686

  1. Children with chronic lung diseases have cognitive dysfunction as assessed by event-related potential (auditory P300) and Stanford-Binet IQ (SB-IV) test.

    PubMed

    Kamel, Terez Boshra; Abd Elmonaem, Mahmoud Tarek; Khalil, Lobna Hamed; Goda, Mona Hamdy; Sanyelbhaa, Hossam; Ramzy, Mourad Alfy

    2016-10-01

    Chronic lung disease (CLD) in children represents a heterogeneous group of many clinico-pathological entities with risk of adverse impact of chronic or intermittent hypoxia. So far, few researchers have investigated the cognitive function in these children, and the role of auditory P300 in the assessment of their cognitive function has not been investigated yet. This study was designed to assess the cognitive functions among schoolchildren with different chronic pulmonary diseases using both auditory P300 and Stanford-Binet test. This cross-sectional study included 40 school-aged children who were suffering from chronic chest troubles other than asthma and 30 healthy children of similar age, gender and socioeconomic state as a control group. All subjects were evaluated through clinical examination, radiological evaluation and spirometry. Audiological evaluation included (basic otological examination, pure-tone, speech audiometry and immittancemetry). Cognitive function was assessed by auditory P300 and psychological evaluation using Stanford-Binet test (4th edition). Children with chronic lung diseases had significantly lower anthropometric measures compared to healthy controls. They had statistically significant lower IQ scores and delayed P300 latencies denoting lower cognitive abilities. Cognitive dysfunction correlated to severity of disease. P300 latencies were prolonged among hypoxic patients. Cognitive deficits in children with different chronic lung diseases were best detected using both Stanford-Binet test and auditory P300. P300 is an easy objective tool. P300 is affected early with hypoxia and could alarm subtle cognitive dysfunction.

  2. Antioxidant enzyme dysfunction in monocytes and CSF of Hispanic women with HIV-associated cognitive impairment

    PubMed Central

    Velázquez, Ixane; Plaud, Marinés; Wojna, Valerie; Skolasky, Richard; Laspiur, Juliana Pérez; Meléndez, Loyda M.

    2010-01-01

    HIV-associated cognitive neurological disorders (HAND) prevail in the antiretroviral therapy era. Proteomics analysis of CSF revealed expression of Cu/Zn superoxide dismutase (Cu/Zn SOD) in Hispanic women with cognitive impairment (CI). We tested the hypothesis that there is reduced capacity of antioxidant enzymes in CI by measures of expression and activity of Cu/Zn SOD, catalase, and Se-glutathione peroxidase in HAND. Our results showed that the function of these antioxidants was decreased in the CSF and monocytes of women with CI. These findings have important implications regarding their possible contribution to oxidative stress and in the diagnosis and therapy for HAND. PMID:19101040

  3. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  4. Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome.

    PubMed

    De Filippis, Bianca; Valenti, Daniela; Chiodi, Valentina; Ferrante, Antonella; de Bari, Lidia; Fiorentini, Carla; Domenici, Maria Rosaria; Ricceri, Laura; Vacca, Rosa Anna; Fabbri, Alessia; Laviola, Giovanni

    2015-06-01

    Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases.

  5. Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment.

    PubMed

    Phyu, Moe Pwint; Tangpong, Jitbanjong

    2014-08-01

    Lead poisoning is a common environmental toxicity and low level of lead exposure is responsible for neurobehavioral or intelligence defects. This study was designed to investigate the protective effect of a xanthone derivative of Garcinia mangostana against lead-induced acetycholinesterase (AChE) dysfunction and cognitive impairment in mice. ICR mice were exposed to lead acetate (Pb) in drinking water (1%) with or without xanthone co-administration (100 and 200mg/kgBW/day) for 38days. Xanthone possesses a high phenolic content, which is positive correlation with its antioxidant activity (R(2)=0.98). The IC50 of xanthone on scavenging free radical activities, hydroxyl radical, superoxide radical, hydrogen peroxide and nitric oxide in cell-free system were 0.48±0.08, 1.88±0.09, 2.20±0.03 and 0.98±0.40mg/mL, respectively. We found that Pb induced AChE dysfunction and memory deficit in a dose dependent manner, indicated by in vitro and in vivo studies. However, xanthone significantly restored AChE activity in the blood and brains of mice and prevented Pb-induced neurobehavioral defect indicators with Forced Swimming and Morris water maze tests. Xanthone treatment improved all indicators compared to the Pb-treated group. In conclusion, xanthone alleviates Pb-induced neurotoxicity, in part, by suppression of oxidative damage and reversing AChE activity with a reduction in learning deficit and memory loss.

  6. The Effects of a Cognitive Information Processing Career Intervention on the Dysfunctional Career Thoughts, Locus of Control, and Career Decision Self-Efficacy of Underprepared College Students

    ERIC Educational Resources Information Center

    Henderson, Kristina M.

    2009-01-01

    This study investigated the impact of a seven-session career intervention in a First Year Experience course on the dysfunctional career thoughts, locus of control, and career decision self-efficacy of underprepared college students. The career intervention was based on the cognitive information processing approach to career decision making…

  7. Metacognitive capacity predicts severity of trauma-related dysfunctional cognitions in adults with posttraumatic stress disorder.

    PubMed

    Davis, Louanne W; Leonhardt, Bethany L; Siegel, Alysia; Brustuen, Beth; Luedtke, Brandi; Vohs, Jennifer L; James, Alison V; Lysaker, Paul H

    2016-03-30

    Deficits in metacognition have been proposed as a barrier to adaptive responding to trauma. However, little is known about how different aspects of metacognitive capacity relate to responses to trauma and whether their potential link to such responses is independent of the overall level of psychopathology. To explore both issues, negative trauma-related cognitions about the self, the world, and self-blame, as measured by the Posttraumatic Cognitions Inventory (PTCI), were correlated with concurrent measures of depression, posttraumatic stress disorder symptoms, and two forms of metacognition; the Metacognitions questionnaire (MCQ-30), which focuses on specific thoughts, and the Metacognition Assessment Scale Abbreviated (MAS-A) which focuses on the degree to which persons can form complex representations of self and other. Participants were 51 veterans of the wars in Iraq and Afghanistan who had a PTSD diagnosis primarily involving a combat-related index trauma. Correlations revealed that being younger and more depressed were linked with greater levels of negative cognitions about self and the world. Lower levels of self-reflectivity on the MAS-A and higher levels of cognitive self-consciousness on the MCQ-30 were uniquely related to greater levels of self-blame even after controlling for age, level of depression, and PTSD. Implications for research and treatment are discussed.

  8. Cognitive Dysfunction Is Worse among Pediatric Patients with Bipolar Disorder Type I than Type II

    ERIC Educational Resources Information Center

    Schenkel, Lindsay S.; West, Amy E.; Jacobs, Rachel; Sweeney, John A.; Pavuluri, Mani N.

    2012-01-01

    Background: Impaired profiles of neurocognitive function have been consistently demonstrated among pediatric patients with bipolar disorder (BD), and may aid in the identification of endophenotypes across subtypes of the disorder. This study aims to determine phenotypic cognitive profiles of patients with BD Type I and II. Methods: Subjects (N =…

  9. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction.

    PubMed

    Liu, Mingchao; Li, Juan; Dai, Peng; Zhao, Fang; Zheng, Gang; Jing, Jinfei; Wang, Jiye; Luo, Wenjing; Chen, Jingyuan

    2015-01-01

    Chronic stress is considered to be a major risk factor in the development of psychopathological syndromes in humans. Cognitive impairments and long-term potentiation (LTP) impairments are increasingly recognized as major components of depression, anxiety disorders and other stress-related chronic psychological illnesses. It seems timely to systematically study the potentially underlying neurobiological mechanisms of altered cognitive and synaptic plasticity in the course of chronic stress. In the present study, a rat model of chronic unpredictable stress (CUS) induced a cognitive impairment in spatial memory in the Morris water maze (MWM) test and a hippocampal LTP impairment. CUS also induced hippocampal microglial activation and attenuated phosphorylation of glutamate receptor 1 (GluR1 or GluA1). Moreover, chronic treatment with the selective microglial activation blocker, minocycline (120 mg/kg per day), beginning 3 d before CUS treatment and continuing through the behavioral testing period, prevented the CUS-induced impairments of spatial memory and LTP induction. Additional studies showed that minocycline-induced inhibition of microglia activation was associated with increased phosphorylation of GluR1. These results suggest that hippocampal microglial activation modulates the level of GluR1 phosphorylation and might play a causal role in CUS-induced cognitive and LTP disturbances.

  10. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria

    PubMed Central

    Freeman, Brandi D.; Martins, Yuri C.; Akide-Ndunge, Oscar B.; Bruno, Fernando P.; Wang, Hua; Tanowitz, Herbert B.; Spray, David C.; Desruisseaux, Mahalia S.

    2016-01-01

    Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria. PMID:27031954

  11. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes.

    PubMed

    Chaussenot, Rémi; Edeline, Jean-Marc; Le Bec, Benoit; El Massioui, Nicole; Laroche, Serge; Vaillend, Cyrille

    2015-10-01

    Duchenne muscular dystrophy (DMD) is associated with language disabilities and deficits in learning and memory, leading to intellectual disability in a patient subpopulation. Recent studies suggest the presence of broader deficits affecting information processing, short-term memory and executive functions. While the absence of the full-length dystrophin (Dp427) is a common feature in all patients, variable mutation profiles may additionally alter distinct dystrophin-gene products encoded by separate promoters. However, the nature of the cognitive dysfunctions specifically associated with the loss of distinct brain dystrophins is unclear. Here we show that the loss of the full-length brain dystrophin in mdx mice does not modify the perception and sensorimotor gating of auditory inputs, as assessed using auditory brainstem recordings and prepulse inhibition of startle reflex. In contrast, both acquisition and long-term retention of cued and trace fear memories were impaired in mdx mice, suggesting alteration in a functional circuit including the amygdala. Spatial learning in the water maze revealed reduced path efficiency, suggesting qualitative alteration in mdx mice learning strategy. However, spatial working memory performance and cognitive flexibility challenged in various behavioral paradigms in water and radial-arm mazes were unimpaired. The full-length brain dystrophin therefore appears to play a role during acquisition of associative learning as well as in general processes involved in memory consolidation, but no overt involvement in working memory and/or executive functions could be demonstrated in spatial learning tasks. PMID:26190833

  12. Wogonin Attenuates Hippocampal Neuronal Loss and Cognitive Dysfunction in Trimethyltin-Intoxicated Rats

    PubMed Central

    Lee, Bombi; Sur, Bongjun; Cho, Seong-Guk; Yeom, Mijung; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2016-01-01

    We examined whether wogonin (WO) improved hippocampal neuronal activity, behavioral alterations and cognitive impairment, in rats induced by administration of trimethyltin (TMT), an organotin compound that is neurotoxic to these animals. The ability of WO to improve cognitive efficacy in the TMT-induced neurodegenerative rats was investigated using a passive avoidance test, and the Morris water maze test, and using immunohistochemistry to detect components of the acetylcholinergic system, brain-derived neurotrophic factor (BDNF), and cAMP-response element-binding protein (CREB) expression. Rats injected with TMT showed impairments in learning and memory and daily administration of WO improved memory function, and reduced aggressive behavior. Administration of WO significantly alleviated the TMT-induced loss of cholinergic immunoreactivity and restored the hippocampal expression levels of BDNF and CREB proteins and their encoding mRNAs to normal levels. These findings suggest that WO might be useful as a new therapy for treatment of various neurodegenerative diseases. PMID:27133262

  13. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  14. Relationship between depression and cognitive dysfunctions in Parkinson's disease without dementia.

    PubMed

    Santangelo, Gabriella; Vitale, Carmine; Trojano, Luigi; Longo, Katia; Cozzolino, Autilia; Grossi, Dario; Barone, Paolo

    2009-04-01

    To explore the relationship between depression and cognitive impairment in non-demented PD patients, we evaluated neurological and neuropsychological asset in 65 patients with a diagnosis of major depressive disorder (dPD) according to DSM-IV criteria and 60 patients without depression (nPD). Compared with nPD patients, dPD patients had significantly higher scores on behavioral rating scales and performed worse on the Frontal Assessment Battery (FAB), Semantic Fluency Task, Copying Task (CT), and Stroop Test. Three dPD subgroups were identified based on the first two DSM-IV criteria: patients fulfilling criterion 1 (depressed mood; group 1); patients fulfilling criterion 2 (apathy/anhedonia; group 2); patients fulfilling criteria 1 and 2 (group 3). Patients of group 2 scored significantly lower than patients of group 1 on the CT, FAB and phonological fluency task. Patients of groups 2 and 3 scored significantly lower than nPD patients on visuoconstructional and frontal tasks. Similar results were obtained in dPD patients stratified in four subgroups based on cut-off scores of the Apathy Evaluation Scale and the Snaith Hamilton Pleasure Scale. In summary, PD patients with concomitant apathy and anhedonia may show more severe cognitive impairments. Since such patients are diagnosed to be affected by depression according to clinical DSM-IV criteria, we suggest that DSM-IV criteria may not distinguish an affective from a cognitive disorder in PD.

  15. Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; You, Youbo; Tian, Jie

    2012-03-01

    Mild cognitive impairment (MCI) was recognized as the prodromal stage of Alzheimer's disease (AD). Recent researches have shown that cognitive and memory decline in AD patients is coupled with losses of small-world attributes. However, few studies pay attention to the characteristics of the whole brain networks in MCI patients. In the present study, we investigated the topological properties of the whole brain networks utilizing graph theoretical approaches in 16 MCI patients, compared with 18 age-matched healthy subjects as a control. Both MCI patients and normal controls showed small-world architectures, with large clustering coefficients and short characteristic path lengths. We detected significantly longer characteristic path length in MCI patients compared with normal controls at the low sparsity. The longer characteristic path lengths in MCI indicated disrupted information processing among distant brain regions. Compared with normal controls, MCI patients showed decreased nodal centrality in the brain areas of the angular gyrus, heschl gyrus, hippocampus and superior parietal gyrus, while increased nodal centrality in the calcarine, inferior occipital gyrus and superior frontal gyrus. These changes in nodal centrality suggested a widespread rewiring in MCI patients, which may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline. Our findings may be helpful for further understanding the pathological mechanisms of MCI.

  16. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy

    PubMed Central

    Drosatos, Konstantinos

    2016-01-01

    Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic equilibrium of the heart along with mitochondrial dysfunction and impaired β-adrenergic receptor signaling contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-activated receptor-α, β-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential therapeutic targets for cardiac aging. PMID:27558317

  17. Dysfunctional Freezing Responses to Approaching Stimuli in Persons with a Looming Cognitive Style for Physical Threats

    PubMed Central

    Riskind, John H.; Sagliano, Laura; Trojano, Luigi; Conson, Massimiliano

    2016-01-01

    Immobilizing freezing responses are associated with anxiety and may be etiologically related to several anxiety disorders. Although recent studies have sought to investigate the underlying mechanisms in freezing responses that are so problematic in many forms of anxiety, cognitive factors related to anxiety have not been investigated. This study was designed to investigate the potential moderating role of a well-documented cognitive vulnerability to anxiety, the Looming Cognitive Style (i.e., LCS; Riskind et al., 2000), which assesses the extent to which individuals tend to routinely interpret ambiguous threats (e.g., physical or social threats) in a biased manner as approaching. We assessed participants' Reaction Times (RTs) when they made judgments about images of animals that differed in threat valence (threat or neutral) and motion direction (approach or recede). As expected, LCS for concerns about the approach of physical dangers appeared to moderate freeze reactions. Individuals who were high on this LCS factor tended to generally exhibit a freeze-response (slower RTs) and this was independent of the threat valence or motion direction of the animals. These general freezing reactions were in stark contrast to those of individuals who were low on the LCS factor for concerns about the approach of physical dangers. These participants tended to exhibit more selective and functional freezing responses that occurred only to threatening animals with approach motion; they did not exhibit freezing to neutral stimuli or any stimuli with receding motion. These findings did not appear to be explicable by a general slowing of RTs for the participants with high LCS. Moreover, the LCS factor for concerns about social threats (such as rejection or embarrassment) was not related to differences in freezing; there was also no additional relationship of freezing to behavioral inhibition scores on the Behavioral Inhibition System and the Behavioral Activation System Scales (BIS

  18. Effects of ethanolic extract of Fumaria indica L. on rat cognitive dysfunctions

    PubMed Central

    Singh, Gireesh Kumar; Rai, Geeta; Chatterjee, Shyam Sunder; Kumar, Vikas

    2013-01-01

    Fumaria indica L. in Ayurveda is known as Parpat and traditionally used to calm the brain. Due to lack of scientific validation, 50% ethanolic extract of F. indica L. (FI) was evaluated for putative cognitive function modulating effects. Suspension of FI in 0.3% carboxymethyl cellulose (CMC) was orally administered to rats during the entire experimental period of 16 days at dose levels of 100, 200, and 400 mg/kg/day. Piracetam was used as standard nootropic. Behavioral models of learning and memory used were modified elevated plus-maze (M-EPM) and passive avoidance (PA) tests. Scopolamine (I mg/kg, s.c.), sodium nitrite (25 mg/kg, i.p.), and electroconvulsive shock (150 mA, 0.2 sec) were used to induce amnesia. Acetylcholinesterase (AChE) activity, muscarinic receptor density, oxidative status, and cytokine expressions [tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-10] were also assessed. Piracetam (500 mg/kg/day)-like memory-enhancing and anti-amnesic activity of the extract was observed. FI showed dose-dependent decrease in brain AChE activity and increase in muscarinic receptor density, and such was also the case for its observed beneficial effects on the brain antioxidative status. FI also inhibited the scopolamine-induced overexpression of the three tested cytokines observed in rat's brain. FI possesses nootropic-like beneficial effects on cognitive functions. PMID:24696581

  19. Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss

    PubMed Central

    Di, J.; Cohen, L. S.; Corbo, C. P.; Phillips, G. R.; El Idrissi, A.; Alonso, A. D.

    2016-01-01

    The hyperphosphorylated microtubule-associated protein tau is present in several neurodegenerative diseases, although the causal relationship remains elusive. Few mouse models used to study Alzheimer-like dementia target tau phosphorylation. We created an inducible pseudophosphorylated tau (Pathological Human Tau, PH-Tau) mouse model to study the effect of conformationally modified tau in vivo. Leaky expression resulted in two levels of PH-Tau: low basal level and higher upon induction (4% and 14% of the endogenous tau, respectively). Unexpectedly, low PH-Tau resulted in significant cognitive deficits, decrease in the number of synapses (seen by EM in the CA1 region), reduction of synaptic proteins, and localization to the nucleus. Induction of PH-Tau triggered neuronal death (60% in CA3), astrocytosis, and loss of the processes in CA1. These findings suggest, that phosphorylated tau is sufficient to induce neurodegeneration and that two different mechanisms can induce cognitive impairment depending on the levels of PH-Tau expression. PMID:26888634

  20. Comparing the effects of treatment with sildenafil and cognitive-behavioral therapy on treatment of sexual dysfunction in women: a randomized controlled clinical trial

    PubMed Central

    Omidi, Abdollah; Ahmadvand, Afshin; Najarzadegan, Mohammad Reza; Mehrzad, Fateme

    2016-01-01

    Background Sexual dysfunction in women is prevalent and common in women after menopause. Many attempts to treat patients with sexual dysfunction by cognitive-behavioral therapy (CBT) methods. But to the best of our knowledge, there has been no study that compared these two methods. Objective The aim of this study was to assess and compare the effects of sildenafil and cognitive-behavioral therapy on treatment of sexual dysfunction in women. Methods In this randomized, controlled, clinical trial, 86 women with arousal and orgasm dysfunction were surveyed. The patients were divided into two groups, i.e., sildenafil and CBT groups. The patients in the sildenafil group were treated by 50 mg of oral sildenafil one hour before intercourse, and the other group had weekly sessions of CBT for eight weeks. Sexual dysfunctions were evaluated by the Female Sexual Function Index (FSFI), a sexual satisfaction questionnaire, and the Enrich marital satisfaction scale. Results The mean age of the participants was 33.14 ± 7.34 years. The mean scores for female sexual function index, sexual satisfaction, and the Enrich marital satisfaction scale were increased in both groups during treatment (p < 0.001). It was found that cognitive-behavioral therapy compared to treatment with sildenafil increased all subscales, except arousal, orgasm, and lubrication. Conclusion Cognitive-behavioral therapy is more effective than treatment with sildenafil for improving female sexual function. Clinical trial registration The trial was registered at the Iranian Registry of Clinical Trials (http://www.irct.ir) with the IRCT ID: IRCT2014070318338N1. Funding The authors received no financial support for the research, authorship, and/or publication of this article. PMID:27382439

  1. Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment.

    PubMed

    Phyu, Moe Pwint; Tangpong, Jitbanjong

    2014-08-01

    Lead poisoning is a common environmental toxicity and low level of lead exposure is responsible for neurobehavioral or intelligence defects. This study was designed to investigate the protective effect of a xanthone derivative of Garcinia mangostana against lead-induced acetycholinesterase (AChE) dysfunction and cognitive impairment in mice. ICR mice were exposed to lead acetate (Pb) in drinking water (1%) with or without xanthone co-administration (100 and 200mg/kgBW/day) for 38days. Xanthone possesses a high phenolic content, which is positive correlation with its antioxidant activity (R(2)=0.98). The IC50 of xanthone on scavenging free radical activities, hydroxyl radical, superoxide radical, hydrogen peroxide and nitric oxide in cell-free system were 0.48±0.08, 1.88±0.09, 2.20±0.03 and 0.98±0.40mg/mL, respectively. We found that Pb induced AChE dysfunction and memory deficit in a dose dependent manner, indicated by in vitro and in vivo studies. However, xanthone significantly restored AChE activity in the blood and brains of mice and prevented Pb-induced neurobehavioral defect indicators with Forced Swimming and Morris water maze tests. Xanthone treatment improved all indicators compared to the Pb-treated group. In conclusion, xanthone alleviates Pb-induced neurotoxicity, in part, by suppression of oxidative damage and reversing AChE activity with a reduction in learning deficit and memory loss. PMID:24795231

  2. Chronic alcohol exposure is associated with decreased neurogenesis, aberrant integration of newborn neurons, and cognitive dysfunction in female mice

    PubMed Central

    Golub, Haleigh M.; Zhou, Qi-Gang; Zucker, Hannah; McMullen, Megan R.; Kokiko-Cochran, Olga Nicole; Ro, Eun Jeoung; Nagy, Laura E.; Suh, Hoonkyo

    2015-01-01

    Background Neurological deficits of alcohol use disorder (AUD) have been attributed to dysfunctions of specific brain structures. Studies of alcoholic patients and chronic alcohol exposure animal models consistently identify reduced hippocampal mass and cogntive dysfunctions as a key alcohol-induced brain adaptation. However, the precise substrate of chronic alcohol exposure that leads to structural and functional impairments of the hippocampus is largely unknown. Methods Using a calorie-matched alcohol feeding method, we tested whether chronic alcohol exposure targets neural stem cells and neurogenesis in the adult hippocampus. The effect of alcohol on proliferation of neural stem cells as well as cell fate determination and survival of newborn cells was evaluated via BrdU pulse and chase methods. A retrovirus-mediated single-cell labeling method was used to determine the effect of alcohol on the morphological development and circuitry incorporation of individual hippocampal newborn neurons. Finally, Novel Object Recognition and Y-maze tests were performed to examine whether disrupted neurogenesis is associated with hippocampus-dependent functional deficits in alcohol-fed mice. Results Chronic alcohol exposure reduced proliferation of neural stem cells and survival rate of newborn neurons; however, the fate determination of newborn cells remained unaltered. Moreover, the dendritic spine density of newborn neurons significantly decreased in alcohol-fed mice. Impaired spine formation indicates that alcohol interfered the synaptic connectivity of newborn neurons with excitatory neurons originating from a various areas of the brain. In the Novel Object Recognition test, alcohol-fed mice displayed deficits in the ability to discriminate the novel object. Conclusions Our study revealed that chronic alcohol exposure disrupted multiple steps of neurogenesis, including the production and development of newborn neurons. In addition, chronic alcohol exposure altered

  3. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  4. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  5. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  6. Sodium Tanshinone IIA Sulfonate Attenuates Scopolamine-Induced Cognitive Dysfunctions via Improving Cholinergic System

    PubMed Central

    Xu, Yi-Jun; Yang, Cong; Li, Lin; Hou, Bo-Nan; Chen, Hui-Fang; Wang, Qi

    2016-01-01

    Sodium Tanshinone IIA sulfonate (STS) is a derivative of Tanshinone IIA (Tan IIA). Tan IIA has been reported to possess neuroprotective effects against Alzheimer's disease (AD). However, whether STS possesses effect on AD remains unclear. This study aims to estimate whether STS could protect against scopolamine- (SCOP-) induced learning and memory deficit in Kunming mice. Morris water maze results showed that oral administration of STS (10 mg/kg and 20 mg/kg) and Donepezil shortened escape latency, increased crossing times of the original position of the platform, and increased the time spent in the target quadrant. STS decreased the activity of acetylcholinesterase (AChE) and increased the activity of choline acetyltransferase (ChAT) in the hippocampus and cortex of SCOP-treated mice. Oxidative stress results showed that STS increased the activity of superoxide dismutase (SOD) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in hippocampus and cortex. In addition, western blot was carried out to detect the expression of apoptosis related proteins (Bcl-2, Bax, and Caspase-3). STS upregulated the protein expression of Bcl-2 and downregulated the proteins expression of Bax and Caspase-3. These results indicated that STS might become a promising therapeutic candidate for attenuating AD-like pathological dysfunction. PMID:27556046

  7. Sodium Tanshinone IIA Sulfonate Attenuates Scopolamine-Induced Cognitive Dysfunctions via Improving Cholinergic System.

    PubMed

    Xu, Qing-Qing; Xu, Yi-Jun; Yang, Cong; Tang, Ying; Li, Lin; Cai, Hao-Bin; Hou, Bo-Nan; Chen, Hui-Fang; Wang, Qi; Shi, Xu-Guang; Zhang, Shi-Jie

    2016-01-01

    Sodium Tanshinone IIA sulfonate (STS) is a derivative of Tanshinone IIA (Tan IIA). Tan IIA has been reported to possess neuroprotective effects against Alzheimer's disease (AD). However, whether STS possesses effect on AD remains unclear. This study aims to estimate whether STS could protect against scopolamine- (SCOP-) induced learning and memory deficit in Kunming mice. Morris water maze results showed that oral administration of STS (10 mg/kg and 20 mg/kg) and Donepezil shortened escape latency, increased crossing times of the original position of the platform, and increased the time spent in the target quadrant. STS decreased the activity of acetylcholinesterase (AChE) and increased the activity of choline acetyltransferase (ChAT) in the hippocampus and cortex of SCOP-treated mice. Oxidative stress results showed that STS increased the activity of superoxide dismutase (SOD) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in hippocampus and cortex. In addition, western blot was carried out to detect the expression of apoptosis related proteins (Bcl-2, Bax, and Caspase-3). STS upregulated the protein expression of Bcl-2 and downregulated the proteins expression of Bax and Caspase-3. These results indicated that STS might become a promising therapeutic candidate for attenuating AD-like pathological dysfunction. PMID:27556046

  8. Cognitive Dysfunction in Children with Heart Disease: The Role of Anesthesia and Sedation.

    PubMed

    Char, Danton; Ramamoorthy, Chandra; Wise-Faberowski, Lisa

    2016-05-01

    As physicians and caregivers of children with congenital heart disease, we are aware of the increasing need for procedures requiring anesthesia. While these procedures may be ideal for medical and cardiac surgical management, the risks and benefits must be assessed carefully. There are well known risks of cardiovascular and respiratory complications from anesthesia and sedation and a potentially under-appreciated risk of neurocognitive dysfunction. Both animal and human studies support the detrimental effects of repeated anesthetic exposure on the developing brain. Although the studies in humans are less convincing of this risk, the Society of Pediatric Anesthesia jointly with SmartTots provided a consensus statement on the use of anesthetic and sedative drugs in infants and toddlers when speaking to families. (www.pedsanesthesia.org; http://smarttots.org/wp-content/uploads/2015/10/ConsensusStatementV910.5.2015.pdf). An excerpt of the statement is "Concerns regarding the unknown risk of anesthetic exposure to your child's brain development must be weighed against the potential harm associated with cancelling or delaying a needed procedure. Each child's care must be evaluated individually based on age, type, and urgency of the procedure and other health factors. This review provides a summary of the current evidence regarding anesthesia-induced neurotoxicity and the developing brain and its implications for children with congenital heart disease. PMID:27228360

  9. Lesion Load May Predict Long-Term Cognitive Dysfunction in Multiple Sclerosis Patients

    PubMed Central

    Lavorgna, Luigi; Messina, Silvia; Chisari, Clara Grazia; Ippolito, Domenico; Lanzillo, Roberta; Vacchiano, Veria; Realmuto, Sabrina; Valentino, Paola; Coniglio, Gabriella; Buccafusca, Maria; Paolicelli, Damiano; D’Ambrosio, Alessandro; Montella, Patrizia; Brescia Morra, Vincenzo; Savettieri, Giovanni; Alfano, Bruno; Gallo, Antonio; Simone, Isabella; Viterbo, Rosa; Zappia, Mario; Bonavita, Simona; Tedeschi, Gioacchino

    2015-01-01

    Background Magnetic Resonance Imaging (MRI) techniques provided evidences into the understanding of cognitive impairment (CIm) in Multiple Sclerosis (MS). Objectives To investigate the role of white matter (WM) and gray matter (GM) in predicting long-term CIm in a cohort of MS patients. Methods 303 out of 597 patients participating in a previous multicenter clinical-MRI study were enrolled (49.4% were lost at follow-up). The following MRI parameters, expressed as fraction (f) of intracranial volume, were evaluated: cerebrospinal fluid (CSF-f), WM-f, GM-f and abnormal WM (AWM-f), a measure of lesion load. Nine years later, cognitive status was assessed in 241 patients using the Symbol Digit Modalities Test (SDMT), the Semantically Related Word List Test (SRWL), the Modified Card Sorting Test (MCST), and the Paced Auditory Serial Addition Test (PASAT). In particular, being SRWL a memory test, both immediate recall and delayed recall were evaluated. MCST scoring was calculated based on the number of categories, number of perseverative and non-perseverative errors. Results AWM-f was predictive of an impaired performance 9 years ahead in SDMT (OR 1.49, CI 1.12–1.97 p = 0.006), PASAT (OR 1.43, CI 1.14–1.80 p = 0.002), SRWL-immediate recall (OR 1.72 CI 1.35–2.20 p<0.001), SRWL-delayed recall (OR 1.61 CI 1.28–2.03 p<0.001), MCST-category (OR 1.52, CI 1.2–1.9 p<0.001), MCST-perseverative error(OR 1.51 CI 1.2–1.9 p = 0.001), MCST-non perseverative error (OR 1.26 CI 1.02–1.55 p = 0.032). Conclusion In our large MS cohort, focal WM damage appeared to be the most relevant predictor of the long-term cognitive outcome. PMID:25816303

  10. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  11. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  12. Later developments: molecular keys to age-related memory impairment.

    PubMed

    Barad, Mark

    2003-01-01

    Age-related memory impairment, a cognitive decline not clearly related to any gross pathology, is progressive and widespread in the population, although not universal. While the mechanisms of learning and memory remain incompletely understood, the study of their molecular mechanisms is already yielding promising approaches toward therapy for such "normal" declines in the efficiency of learning. This review presents the rationale and results for two such approaches. One approach, partial inhibition of the type IV cAMP specific phosphodiesterase, appears to act indirectly. Although little evidence supports an age-related decline in this system, considerable evidence indicates that this approach can facilitate the transition from short-term to long-term memory and thus counterbalance defects in long-term memory, which may be due to other causes. A second approach, inhibition of l-type voltage gated calcium channels (LVGCCs) may be a specific corrective for a molecular pathology of aging, as substantial evidence indicates that an ongoing increase occurs throughout the lifespan in the density of these channels in hippocampal pyramidal cells, with a concomitant reduction in cellular excitability. Because LVGCCs are also crucial to extinction, a paradigm of inhibitory learning, age-related memory impairment may be an unfortunate side effect of a developmental process necessary to the maturation of the ability to suppress inappropriate behavior, an interpretation consistent with the antagonistic pleiotropy theory of aging.

  13. Cognitive dysfunction might be improved in association with recovered neuronal viability after intracranial meningioma resection.

    PubMed

    Koizumi, Hiroyasu; Ideguchi, Makoto; Iwanaga, Hideyuki; Shirao, Satoshi; Sadahiro, Hirokazu; Oka, Fumiaki; Suehiro, Eiichi; Yoneda, Hiroshi; Ishihara, Hideyuki; Nomura, Sadahiro; Suzuki, Michiyasu

    2014-07-29

    Intracranial meningiomas are the most common types of neoplasms that cause mental disorders. Although higher brain function can be restored and even improved in some patients after tumor resection, the mechanisms remain unclear. We investigated changes in the brains of patients after resection of an intracranial meningioma using (123)I-Iomazenil (IMZ)-single photon emission computed tomography (SPECT). Ten patients underwent IMZ-SPECT within 4 weeks before and 3 months after intracranial meningioma resection. Changes in IMZ accumulation in brain parenchyma were assessed as ratios of counts in the lesion-to-contralateral hemisphere (L/C ratios). Mean Mini-Mental State Examination scores before and after resection of 19.9±11.4 vs. 26.5±3.8, respectively (p=0.03) indicated that the cognitive function of these patients was significantly improved after tumor resection. The average L/C ratios calculated from image counts of IMZ were 0.92±0.05 and 0.98±0.02 before and after surgery, respectively. The L/C ratio of IMZ accumulation was significantly decreased after tumor resection (p=0.0003). In contrast, regional cerebral blood flow calculated from (123)I-Iodoamphetamine-SPECT images did not significantly differ after tumor resection. The recovered binding potential of IMZ in brain parenchyma surrounding the tumor bulk after resection indicates that the viability of central benzodiazepine receptors was reversibly depressed and recoverable after release from compression by the tumor. The recovered neuronal viability revealed by IMZ-SPECT might be responsible for the improved cognitive function after intracranial meningioma resection. PMID:24928615

  14. Caramiphen and scopolamine prevent soman-induced brain damage and cognitive dysfunction.

    PubMed

    Raveh, Lily; Weissman, Ben Avi; Cohen, Giora; Alkalay, David; Rabinovitz, Ishai; Sonego, Hagar; Brandeis, Rachel

    2002-05-01

    Exposure to soman, a toxic organophosphate nerve agent, causes severe adverse effects and long term changes in the peripheral and central nervous systems. The goal of this study was to evaluate the ability of prophylactic treatments to block the deleterious effects associated with soman poisoning. scopolamine, a classical anticholinergic agent, or caramiphen, an anticonvulsant anticholinergic drug with anti-glutamatergic properties, in conjunction with pyridostigmine, a reversible cholinesterase inhibitor, were administered prior to sbman (1 LD50). Both caramiphen and scopolamine dramatically attenuated the process of cell death as assessed by the binding of [3H]RoS-4864 to peripheral benzodiazepine receptors (omega3 sites) on microglia and astrocytes. In addition, caramiphen but not scopolamine, blocked the soman-evoked down-regulation of [3H]AMPA binding to forebrain membrane preparations. Moreover, cognitive tests utilizing the Morris water maze, examining learning and memory processes as well as reversal learning, demonstrated that caramiphen abolished the effects of soman intoxication on learning as early as the first trial day, while scopolamine exerted its effect commencing at the second day of training. Whereas the former drug completely prevented memory deficits, the latter exhibited partial protection. Both agents equally blocked the impairment of reversal learning. In addition, there is a significant correlation between behavioral parameters and [3H]RoS-4864 binding to forebrain membrane preparations of rats, which participated in these tests (r(21) = 0.66, P < 0.001; r(21) = 0.66, P < 0.001, -0.62, P < 0.002). These results demonstrate the beneficial use of drugs exhibiting both anti-cholinergic and anti-glutamatergic properties for the protection against changes in cognitive parameters caused by nerve agent poisoning. Moreover, agents such as caramiphen may eliminate the need for multiple drug therapy in organophosphate intoxications.

  15. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  16. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension.

  17. Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: A proteomic analysis.

    PubMed

    Li, Yang; Wang, Saiying; Ran, Ke; Hu, Zhonghua; Liu, Zhaoqian; Duan, Kaiming

    2015-08-01

    The aim of the present study was to investigate the differences in the expression of hippocampal proteins between normal control aged rats and aged rats with postoperative cognitive dysfunction (POCD). A total of 24 aged rats were randomly divided into a surgery group (n=12) and a control group (n=12). The rats in the surgery group were treated with 2 h isoflurane anesthesia and splenectomy, while the rats in the control group received 40% oxygen for 2 h without surgery. The cognitive functions of the two groups were examined using a Y-maze test. The protein expression profiles of the hippocampus of six aged rats (three rats with POCD and three from the normal control group) were assessed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. A total of three differential proteins were further confirmed between the POCD rats and normal rats using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression levels of 21 proteins in the rats with POCD were significantly different compared with the normal control rats. These proteins were functionally clustered to synaptic plasticity (three proteins), oxidative stress (four proteins), energy production (six proteins), neuroinflammation (three proteins) and glutamate metabolism (two proteins). In addition, three proteins (fatty acid binding protein 7, brain, glutamate dehydrogenase 1 and glutamine synthetase), associated with astrocytic function, were significantly different in the rats with POCD compared with those in the normal control (P<0.05). Similar changes in the mRNA expression levels of the three proteins in the hippocampi of POCD rats were also detected using RT-qPCR. Neuroinflammation, glutamate toxicity and oxidative stress were possibly involved in the pathological mechanism underlying POCD in aged rats. In addition, astrocytes may also be important in POCD in aged rats. PMID:25936412

  18. Effects of genistein on cognitive dysfunction and hippocampal synaptic plasticity impairment in an ovariectomized rat kainic acid model of seizure.

    PubMed

    Khodamoradi, Mehdi; Asadi-Shekaari, Majid; Esmaeili-Mahani, Saeed; Esmaeilpour, Khadije; Sheibani, Vahid

    2016-09-01

    The major objective of this study was to investigate the probable effects of genistein (one of the most important soy phytoestrogens-SPEs) on seizure-induced cognitive dysfunction, hippocampal early long-term potentiation (E-LTP) impairment and morphological damage to CA1 neurons in ovariectomized (OVX) rats. Three weeks after ovariectomy, cannulae were implanted over the left lateral ventricle. After a 7-day recovery period, animals were injected by genistein (0.5 or 5mg/kg) or vehicle during four consecutive days, each 24h. One h after the last treatment, kainic acid (KA) or vehicle was perfused into the left lateral ventricle to induce generalized tonic-clonic seizures. Finally, 7 days later, spatial learning and memory of animals were examined using the Morris water maze (MWM) task, hippocampal E-LTP was assessed using in-vivo field potential recordings and the morphology of hippocampal CA1 area was examined using Fluoro-Jade C staining. KA-induced generalized seizures resulted in spatial learning and memory impairment, E-LTP deficit and CA1 cell injury. Seizure-induced abnormalities improved partially only by the lower dose of genistein (0.5mg/kg). However, genistein at the higher dose (5mg/kg) did not have any beneficial effects. Also, genistein did not affect seizure activity. It is concluded that genistein may have partially preventive effects against seizure-induced cognitive impairment in OVX rats. Also, it seems that such effects of genistein are correlated with its beneficial effects on hippocampal synaptic plasticity and morphology. PMID:27235295

  19. Age-related changes to the production of linguistic prosody

    NASA Astrophysics Data System (ADS)

    Barnes, Daniel R.

    The production of speech prosody (the rhythm, pausing, and intonation associated with natural speech) is critical to effective communication. The current study investigated the impact of age-related changes to physiology and cognition in relation to the production of two types of linguistic prosody: lexical stress and the disambiguation of syntactically ambiguous utterances. Analyses of the acoustic correlates of stress: speech intensity (or sound-pressure level; SPL), fundamental frequency (F0), key word/phrase duration, and pause duration revealed that both young and older adults effectively use these acoustic features to signal linguistic prosody, although the relative weighting of cues differed by group. Differences in F0 were attributed to age-related physiological changes in the laryngeal subsystem, while group differences in duration measures were attributed to relative task complexity and the cognitive-linguistic load of these respective tasks. The current study provides normative acoustic data for older adults which informs interpretation of clinical findings as well as research pertaining to dysprosody as the result of disease processes.

  20. [Age-related cognitive impairment: conceptual changes and diagnostic strategies].

    PubMed

    Annoni, Jean-Marie; Chouiter, Leila; Démonet, Jean-François

    2016-04-20

    The actual field of dementia encompasses also the pre-symptomatic phase, which may evolve for decades. Early detection and appropriate diagnosis decrease patient's and family's anxiety, improve patient's global care and allow better legal patient's protection. General Practitioners have at hand several available tools to screen a neurocognitive disorder, with up to 80% of sensitivity and specificity, to complete their clinical evaluation. An accurate diagnosis requires then a complete medical, neurological neuropsychological and neuroradiological evaluation in a Memory Clinic. Other investigations, such as functional cerebral imagery and spinal tap can be critical in unusual situations. Despite mood improvement after diagnostic announcement, increased suicidal risk in the 3 first months should be screened. PMID:27276719

  1. Cognitive deficits in relation to personality type and hypothalamic-pituitary-adrenal (HPA) axis dysfunction in women with stress-related exhaustion.

    PubMed

    Sandström, Agneta; Peterson, Jonas; Sandström, Erik; Lundberg, Mattias; Nystrom, Inga-Lill Rhodin; Nyberg, Lars; Olsson, Tommy

    2011-02-01

    Exhaustion caused by long-term work-related stress may cause cognitive dysfunction. We explored factors that may link chronic stress and cognitive impairment. Personality, psychiatric screening, and behavior were assessed by self-reporting measures in 20 female patients (mean age 39.3 years; range 26-53) with a preliminary diagnosis of stress-related exhaustion and in 16 healthy matched controls. Cognitive performance was investigated with a detailed neuropsychological test battery. Cortisol axis function was assessed by urinary and saliva collections of cortisol, dexamethasone suppression, Synacthen response, and corticotropin-releasing hormone (CRH) tests. Proinflammatory cytokines were measured. Hippocampal volumes were estimated by magnetic resonance imaging. Multivariate and univariate statistical methods were used to explore putative differences between groups and factors linked to cognitive impairment. Cognitive function clearly differed between groups, with decreased attention and visuospatial memory in the patient group, suggesting frontal cortex/medial temporal cortex-network dysfunction. Increased harm avoidance and persistence was present among patients, with lowered self-directedness linked to lower quality of life, increased anxious and depressive tendencies, and experiences of psychosocial stress. Attention was decreased with concomitantly impaired visuospatial memory. The pituitary (adrenocorticotropic hormone, ACTH) response to CRH was decreased in patients, with an increased cortisol/ACTH response to CRH. However, cortisol production rates, diurnal or dexamethasone-suppressed saliva cortisol levels, and the cortisol response to Synacthen were unaltered. Hippocampal volumes did not differ between groups. These findings suggest that cognitive dysfunction in stress-related exhaustion is linked to distinct personality traits, low quality of life, and a decreased ACTH response to CRH. PMID:20964695

  2. Association between perioperative blood transfusion and early postoperative cognitive dysfunction in aged patients following total hip replacement surgery

    PubMed Central

    Zhu, Si-Hai; Ji, Mu-Huo; Gao, Da-Peng; Yang, Jian-Jun

    2014-01-01

    Introduction Accumulating evidence suggests that enhanced inflammatory responses contribute to the pathogenesis of postoperative cognitive dysfunction (POCD). Blood transfusion can trigger an enhancement of acute inflammatory responses. Therefore, we hypothesized that perioperative blood transfusion is associated with a higher risk of POCD in aged patients following total hip replacement surgery. Material and methods Patients older than 65 years undergoing elective total hip replacement surgery were enrolled from October 2011 to December 2012. Neurocognitive tests were evaluated at baseline and at 7 d after surgery by a Mini-Mental State Test. Multivariate logistic regression analysis was used to determine risk factors associated with POCD. Results Fifty-six patients (27.3%) developed POCD 7 d postoperatively. Patients who developed POCD were older, had a lower education level and preoperative hemoglobin concentration, had more blood loss, and had a lower body weight (p < 0.05). Patients with POCD were more likely to receive red blood cells (RBCs) transfusion (51.8% versus 31.5%; p < 0.05). A multivariable logistic regression model identified older age, lower education level, and perioperative blood transfusion of more than 3 units as independent risk factors for POCD 7 d postoperatively. Conclusion Our data suggested that perioperative blood transfusion of more than 3 units of RBCs is an independent risk factor for POCD in aged patients following total hip replacement surgery. PMID:24345210

  3. The role of self-awareness and cognitive dysfunction in Parkinson's disease with and without impulse-control disorder.

    PubMed

    Mack, Joel; Okai, David; Brown, Richard G; Askey-Jones, Sally; Chaudhuri, K Ray; Martin, Anne; Samuel, Michael; David, Anthony S

    2013-01-01

    The aim of this study was to investigate the clinical, neuropsychological, and self-awareness correlates of impulse-control disorder (ICD) in a group of 17 Parkinson's disease (PD) subjects with an active ICD and a comparison group of 17 PD subjects without ICD. Self-awareness was assessed with the Beck Cognitive Insight Scale and patient-caregiver discrepancy scores from ratings on the Dysexecutive Questionnaire and the Everyday Memory Questionnaire-Revised. Self-awareness was comparable or increased in those with ICD, versus those without, and measures of neuropsychological functioning did not differ between the two groups. Those with ICD had more motor complications of PD therapy and were more likely to be on an antidepressant than those without ICD, whereas dopaminergic medication profiles were comparable between the two groups. In this group, PD patients with current ICDs were aware of their impulsivity. Although executive dysfunction may contribute to ICD behavior, it is not a necessary component. The awareness of the inability to resist these motivated behaviors may be a source of increased depression.

  4. Possible role of metal ionophore against zinc induced cognitive dysfunction in D-galactose senescent mice.

    PubMed

    Bharti, Kanchan; Majeed, Abu Bakar Abdul; Prakash, Atish

    2016-06-01

    Metal ionophores are considered as potential anti-dementia agents, and some are currently undergoing clinical trials. Many metals are known to accumulate and distribute abnormally in the aging brain. Alterations in zinc metal homeostasis in the glutaminergic synapse could contribute to ageing and the pathophysiology of Alzheimer's disease (AD). The present study was designed to investigate the effect of metal ionophores on long term administration of zinc in D-galactose induced senescent mice. The ageing model was established by combined administration of zinc and D-galactose to mice for 6 weeks. A novel metal ionophore, PBT-2 was given daily to zinc-induced d-galactose senescent mice. The cognitive behaviour of mice was monitored using the Morris Water Maze. The anti-oxidant status and amyloidogenic activity in the ageing mouse was measured by determining mito-oxidative parameters and deposition of amyloid β (Aβ) in the brain. Systemic administration of both zinc and D-galactose significantly produced memory deficits, mito-oxidative damage, heightened acetylcholinesterase enzymatic activity and deposition of amyloid-β. Treatment with PBT-2 significantly improved behavioural deficits, biochemical profiles, cellular damage, and curbed the deposition of APP in zinc-induced senescent mice. These findings suggest that PBT-2, acting as a metal protein attenuating compound, may be helpful in the prevention of AD or alleviation of ageing. PMID:26923568

  5. Executive dysfunction and gray matter atrophy in amnestic mild cognitive impairment.

    PubMed

    Zheng, Dongming; Sun, Hongzan; Dong, Xiaoyu; Liu, Baiwei; Xu, Yongchuan; Chen, Sipan; Song, Lichun; Zhang, Hong; Wang, Xiaoming

    2014-03-01

    Recent studies have shown that impairment in executive function (EF) is common in patients with amnestic mild cognitive impairment (aMCI). However, the neuroanatomic basis of executive impairment in patients with aMCI remains unclear. In this study, multiple regression voxel-based morphometry analyses were used to examine the relationship between regional gray matter volumes and EF performance in 50 patients with aMCI and 48 healthy age-matched controls. The core EF components (response inhibition, working memory and task switching, based on the EF model of Miyake et al) were accessed with computerized tasks. Atrophic brain areas related to decreases in the three EF components in patients with aMCI were located in the frontal and temporal cortices. Within the frontal cortex, the brain region related to response inhibition was identified in the right inferior frontal gyrus. Brain regions related to working memory were located in the left anterior cingulate gyrus, left premotor cortex, and right inferior frontal gyrus, and brain regions related to task shifting were distributed in the bilateral frontal cortex. Atrophy in the right inferior frontal gyrus was most closely associated with a decrease in all three EF components in patients with aMCI. Our data, from the perspective of brain morphology, contribute to a better understanding of the role of these brain areas in the neural network of EF.

  6. Regulation of MET by FOXP2, genes implicated in higher cognitive dysfunction and autism risk.

    PubMed

    Mukamel, Zohar; Konopka, Genevieve; Wexler, Eric; Osborn, Gregory E; Dong, Hongmei; Bergman, Mica Y; Levitt, Pat; Geschwind, Daniel H

    2011-08-10

    Autism spectrum disorder (ASD) is a highly heritable, behaviorally defined, heterogeneous disorder of unknown pathogenesis. Several genetic risk genes have been identified, including the gene encoding the receptor tyrosine kinase MET, which regulates neuronal differentiation and growth. An ASD-associated polymorphism disrupts MET gene transcription, and there are reduced levels of MET protein expression in the mature temporal cortex of subjects with ASD. To address the possible neurodevelopmental contribution of MET to ASD pathogenesis, we examined the expression and transcriptional regulation of MET by a transcription factor, FOXP2, which is implicated in regulation of cognition and language, two functions altered in ASD. MET mRNA expression in the midgestation human fetal cerebral cortex is strikingly restricted, localized to portions of the temporal and occipital lobes. Within the cortical plate of the temporal lobe, the pattern of MET expression is highly complementary to the expression pattern of FOXP2, suggesting the latter may play a role in repression of gene expression. Consistent with this, MET and FOXP2 also are reciprocally expressed by differentiating normal human neuronal progenitor cells (NHNPs) in vitro, leading us to assess whether FOXP2 transcriptionally regulates MET. Indeed, FOXP2 binds directly to the 5' regulatory region of MET, and overexpression of FOXP2 results in transcriptional repression of MET. The expression of MET in restricted human neocortical regions, and its regulation in part by FOXP2, is consistent with genetic evidence for MET contributing to ASD risk.

  7. Effect of dexmedetomidine on early postoperative cognitive dysfunction and peri-operative inflammation in elderly patients undergoing laparoscopic cholecystectomy

    PubMed Central

    LI, YUHONG; HE, RUI; CHEN, SHUNFU; QU, YULIAN

    2015-01-01

    The use of intravenous dexmedetomidine during surgery has been shown to suppress inflammatory cytokines peri-operatively. It has also been demonstrated that dexmedetomidine may benefit cognitive function in elderly patients following surgery; however, it is not clear whether dexmedetomidine reduces postoperative cognitive dysfunction (POCD) via the suppression of inflammatory cytokines. The aim of the present study was to investigate the effects of dexmedetomidine on early POCD and inflammatory cytokines in elderly patients undergoing laparoscopic cholecystectomy (LC). The study comprised 120 elderly patients undergoing selective LC, who were randomly allocated to receive either dexmedetomidine intravenously (DEX group, n=60) or the same volume of normal saline (control group, n=60). Cognitive function was assessed by Mini-Mental State Examination (MMSE) scores 1 day prior to surgery, 6 h following surgery and postoperatively on days 1 and 2. Interleukin (IL)-1β, IL-6 and C-reactive protein (CRP) levels were also measured at these time-points. On the basis of whether the patients had POCD on the first day after surgery, patients were divided into a POCD group and a non-POCD group. Blood cytokine levels were compared between the patients with and without POCD. A total of 100 patients completed both pre- and postoperative MMSE tests. At 1 day following surgery, POCD occurred in 10/50 (20%) patients in the DEX group and in 21/50 (42%) patients in the control group (P=0.017). At 6 h following surgery, IL-1β, IL-6 and CRP levels showed significant increases (P<0.01) compared with the baseline levels in the two groups. Furthermore, in the control group, CRP levels showed a significant increase on day 1 (P<0.001) and day 2 (P=0.017) postoperatively. In the DEX group compared with the control group, IL-1β, IL-6 and CRP levels were markedly decreased at 6 h and 1 day after surgery (P<0.01). Concentrations of IL-1β, IL-6 and CRP were significantly higher in patients who

  8. Quantifying biomarkers of cognitive dysfunction and neuronal network hyperexcitability in mouse models of Alzheimer's disease: depletion of calcium-dependent proteins and inhibitory hippocampal remodeling.

    PubMed

    Palop, Jorge J; Mucke, Lennart; Roberson, Erik D

    2011-01-01

    High levels of Aβ impair neuronal function at least in part by disrupting normal synaptic transmission and causing dysfunction of neural networks. This network dysfunction includes abnormal synchronization of neuronal activity resulting in epileptiform activity. Over time, this aberrant network activity can lead to the depletion of calcium-dependent proteins, such as calbindin, Fos, and Arc, and compensatory inhibitory remodeling of hippocampal circuits, including GABAergic sprouting and ectopic expression of the inhibitory neuropeptide Y (NPY) in dentate granule cells. Here we present detailed protocols for detecting and quantifying these alterations in mouse models of Alzheimer's disease (AD) by immunohistochemistry. These methods are useful as surrogate measures for detecting chronic aberrant network activity in models of AD and epilepsy. In addition, since we have found that the severity of these changes relates to the degree of Aβ-dependent cognitive impairments, the protocols are useful for quantifying biomarkers of cognitive impairment in mouse models of AD.

  9. Immunology of age-related macular degeneration

    PubMed Central

    Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.

    2014-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979

  10. [Epidemiology of age related macular degeneration].

    PubMed

    Leveziel, N; Delcourt, C; Zerbib, J; Dollfus, H; Kaplan, J; Benlian, P; Coscas, G; Souied, E H; Soubrane, G

    2009-06-01

    Age-related macular degeneration (ARMD) is a multifactorial and polygenic disease and is the main cause of vision loss in developed countries. The environmental factors of ARMD can modify prevalence and incidence of this disease. This article is a review of the main environmental factors currently recognized as at risk or protective factor for ARMD. Modification of these factors is of crucial importance because it could delay the onset of exudative or atrophic forms of the disease. PMID:19515460

  11. Puerarin attenuates cognitive dysfunction and oxidative stress in vascular dementia rats induced by chronic ischemia

    PubMed Central

    Zhang, Jing; Guo, Wenshi; Tian, Buxian; Sun, Menghan; Li, Hui; Zhou, Lina; Liu, Xueping

    2015-01-01

    Objective: To explored the effects of puerarin on cognitive deficits and tissue oxidative stress and the underlying mechanisms. Methods: 6 to 8 week old male Wistar rats were adopted as experimental animals. Morris water maze (MWM) test was adopted to test the learning and memory function of rats. MDA, glutathione peroxidase and total thiol assessment was done to reflect the oxidative stress in the brain tissue. Cell Counting Kit-8 (CCK8) and flow cytometry (FCM) were performed to examine the cell viability and apoptosis rate. Reactive oxygen species (ROS) generation was determined by the 2’, 7’-dichlorofluorescein diacetate (DCFH-DA) assay. qPCR and Western blot (WB) were adopted to test the molecular function mechanisms of puerarin. Results: Our results indicated a protective effect of puerarin on vascular dementia. Administration of puerarin could improve the impaired learning and memory function. The levels of MDA were partially decreased by puerarin. The levels of glutathione peroxidase and total thiol were partially restored. Cell viability was improved in a dose-dependent pattern (P < 0.05). Cell apoptosis rate was reduced in a dose-dependent pattern (P < 0.05). Puerarin could scavenge ROS generation induced by pre-treatment of hydrogen peroxide. The results showed up-regulated levels of Nrf2, FoxO1, FoxO3 and FoxO4 (P < 0.05). Conclusion: Puerarin is protective on the vascular dementia by reducing oxidative stress and improving learning and memory functions. On the molecular level, Nrf2, FoxO1, FoxO3 and FoxO4 were up regulated by puerarin. PMID:26191159

  12. Age-related vascular stiffening: causes and consequences

    PubMed Central

    Kohn, Julie C.; Lampi, Marsha C.; Reinhart-King, Cynthia A.

    2015-01-01

    Arterial stiffening occurs with age and is closely associated with the progression of cardiovascular disease. Stiffening is most often studied at the level of the whole vessel because increased stiffness of the large arteries can impose increased strain on the heart leading to heart failure. Interestingly, however, recent evidence suggests that the impact of increased vessel stiffening extends beyond the tissue scale and can also have deleterious microscale effects on cellular function. Altered extracellular matrix (ECM) architecture has been recognized as a key component of the pre-atherogenic state. Here, the underlying causes of age-related vessel stiffening are discussed, focusing on age-related crosslinking of the ECM proteins as well as through increased matrix deposition. Methods to measure vessel stiffening at both the macro- and microscale are described, spanning from the pulse wave velocity measurements performed clinically to microscale measurements performed largely in research laboratories. Additionally, recent work investigating how arterial stiffness and the changes in the ECM associated with stiffening contributed to endothelial dysfunction will be reviewed. We will highlight how changes in ECM protein composition contribute to atherosclerosis in the vessel wall. Lastly, we will discuss very recent work that demonstrates endothelial cells (ECs) are mechano-sensitive to arterial stiffening, where changes in stiffness can directly impact EC health. Overall, recent studies suggest that stiffening is an important clinical target not only because of potential deleterious effects on the heart but also because it promotes cellular level dysfunction in the vessel wall, contributing to a pathological atherosclerotic state. PMID:25926844

  13. Age-related changes in the meibomian gland.

    PubMed

    Nien, Chyong Jy; Paugh, Jerry R; Massei, Salina; Wahlert, Andrew J; Kao, Winston W; Jester, James V

    2009-12-01

    The purpose of this study was to characterize the age-related changes of the mouse meibomian gland. Eyelids from adult C57Bl/6 mice at 2, 6, 12 and 24 months of age were stained with specific antibodies against peroxisome proliferator activated receptor gamma (PPARgamma) to identify differentiating meibocytes, Oil Red O (ORO) to identify lipid, Ki67 nuclear antigen to identify cycling cells, B-lymphocyte-induced maturation protein-1 (Blimp1) to identify potential stem cells and CD45 to identify immune cells. Meibomian glands from younger mice (2 and 6 months) showed cytoplasmic and perinuclear staining with anti-PPARgamma antibodies with abundant ORO staining of small, intracellular lipid droplets. Meibomian glands from older mice (12 and 24 months) showed only nuclear PPARgamma localization with less ORO staining and significantly reduced acinar tissue (p < 0.04). Acini of older mice also showed significantly reduced (p < 0.004) numbers of Ki67 stained nuclei. While Blimp1 appeared to diffusely stain the superficial ductal epithelium, isolated cells were occasionally stained within the meibomian gland duct and acini of older mice that also stained with CD45 antibodies, suggesting the presence of infiltrating plasmacytoid cells. These findings suggest that there is altered PPARgamma receptor signaling in older mice that may underlie changes in cell cycle entry/proliferation, lipid synthesis and gland atrophy during aging. These results are consistent with the hypothesis that mouse meibomian glands undergo age-related changes similar to those identified in humans and may be used as a model for age-related meibomian gland dysfunction.

  14. Gastrodin improves cognitive dysfunction and decreases oxidative stress in vascular dementia rats induced by chronic ischemia

    PubMed Central

    Li, Yang; Zhang, Zhenxing

    2015-01-01

    Objective: To study the potential protective effects of gastrodin on reducing tissue oxidative stress and attenuating cognitive deficits in vascular dementia induced by cerebral chronic hyperfusion. To explore the detailed molecular mechanisms. Methods: 6 to 8 week old male Wistar rats were adopted as experimental animals. Animals were divided into the following groups: Group 1 (sham group with no occlusion), Group 2 (control group with 2VO procedure), Group 3 (sham group with gastrodin administration), Group 4 (2VO group with gastrodin administration). Morris water maze (MWM) test was adopted to test the learning and memory function of rats within different groups. MDA, glutathione peroxidase and total thiol assessment was done to reflect the oxidative stress in the brain tissue. Cell counting kit-8 (CCK8) and flow cytometry (FCM) were performed to examine the cell viability and apoptosis rate of SH-SY5Y cells induced by hydrogen peroxide and rescued by gastrodin treatments. Reactive oxygen species (ROS) generation was determined by the 2’, 7’-dichlorofluorescein diacetate (DCFH-DA) assay. qPCR and Western blot (WB) were adopted to detect the molecular mechanisms related to the anti-apoptosis and ROS scavenging effects of gastrodin. Results: Our results indicated an obvious protective effect of gastrodin on vascular dementia induced brain ischemia. Administration of gastrodin could improve the impaired learning and memory function induced by 2VO procedure in rats. The levels of MDA were partially decreased by the administration of gastrodin. The levels of glutathione peroxidase and total thiol were partially restored by the administration of gastrodin. Cell viability was improved by gastrodin in a dose-dependent pattern on SH-SY5Y cells induced by hydrogen peroxide (P < 0.05). Cell apoptosis rate was reduced by gastrodin in a dose-dependent pattern on SH-SY5Y cells induced by hydrogen peroxide (P < 0.05). Gastrodin could scavenge ROS generation induced by pre

  15. Controlled processes account for age-related decrease in episodic memory.

    PubMed

    Vanderaspoilden, Valérie; Adam, Stéphane; der Linden, Martial Van; Morais, José

    2007-05-01

    A decrease in controlled processes has been proposed to be responsible for age-related episodic memory decline. We used the Process Dissociation Procedure, a method that attempts to estimate the contribution of controlled and automatic processes to cognitive performance, and entered both estimates in regression analyses. Results indicate that only controlled processes explained a great part of the age-related variance in a word recall task, especially when little environmental support was offered. PMID:16860766

  16. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  17. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System.

    PubMed

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-02-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere's disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  18. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    PubMed Central

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  19. Effects of pharmacological treatments on hippocampal NCAM1 and ERK2 expression in epileptic rats with cognitive dysfunction

    PubMed Central

    Kong, Qingxia; Min, Xia; Sun, Ran; Gao, Jianying; Liang, Ruqing; Li, Lei; Chu, Xu

    2016-01-01

    The present study aimed to investigate the effects of various pharmacological agents on the hippocampal expression of neural cell adhesion molecule 1 (NCAM1) and extracellular signal-regulated kinase 2 (ERK2) in epileptic rats with cognitive dysfunction. The experiments were conducted using 120 Wistar rats: 20 controls and 100 with pilocarpine-induced status epilepticus (SE). The SE rats were randomly assigned to 5 groups (n=20/group) that received daily treatments for 1 month with one of the following: (i) saline (no effect on epilepsy); (ii) carbamazepine (an anticonvulsant); (iii) oxcarbazepine (an anticonvulsant); (iv) aniracetam (a nootropic); or (v) donepezil (an acetylcholinesterase inhibitor). Spatial learning and memory were assessed using a Morris Water Maze (MWM). Hippocampal tissue was assessed for NCAM1 and ERK2 messenger RNA (mRNA) expression by reverse transcription polymerase chain reaction, and protein expression by immunochemistry. The results revealed that SE rats had significantly poorer MWM performances compared with controls (P<0.01). Performance in SE rats was improved with donepezil treatment (P<0.01), but declined with carbamazepine (P<0.01). Compared with controls, saline-treated SE rats exhibited increased hippocampal NCAM1 mRNA expression (P<0.01). Among SE rats, NCAM1 mRNA expression was highest in those treated with donepezil, followed by aniracetam-, saline-, oxcarbazepine- and carbamazepine-treated rats. Compared to controls, saline-treated SE rats exhibited decreased hippocampal ERK2 mRNA expression (P<0.01). Among SE rats, ERK2 mRNA expression was highest in those treated with donepezil, followed by aniracetam, saline, oxcarbazepine and carbamazepine. NCAM1 and ERK2 protein expression levels were parallel to those of the mRNA. In saline-treated SE rats, hippocampal ERK2 expression was decreased and NCAM1 expression was increased; thus, these two molecules may be involved in the impairment of spatial memory. Carbamazepine augmented

  20. Age related microsatellite instability in T cells from healthy individuals.

    PubMed

    Krichevsky, Svetlana; Pawelec, Graham; Gural, Alexander; Effros, Rita B; Globerson, Amiela; Yehuda, Dina Ben; Yehuda, Arie Ben

    2004-04-01

    Many immune functions decline with age and may jeopardize the elderly, as illustrated, for example by the significantly higher mortality rate from influenza in old age. Although innate and humoral immunity are affected by aging, it is the T cell compartment, which manifests most alterations. The mechanisms behind these alterations are still unclear, and several explanations have been offered including thymic involution and Telomere attrition leading to cell senescence. Age related accumulation of mutations has been documented and could serve as an additional mechanism of T cell dysfunction. One effective repair mechanism capable of rectifying errors in DNA replications is the mismatch repair (MMR) system. We previously reported a comparative examination of individual DNA samples from blood cells obtained at 10 year intervals from young and old subjects. We showed significantly higher rates of microsatellite instability (MSI), an indicator of MMR dysfunction in older subjects, compared to young. In the present study we confirm this result, using direct automated sequencing and in addition, we demonstrate that as CD8 lymphocytes from aged individuals, undergo repeated population doublings (PDs) in culture, they develop MSI. CD4 clones that also undergo repeated PDs in culture develop significant MSI as well. Elucidation of this previously unexplored facet of lymphocyte dynamics in relation to aging may help identify novel mechanisms of immunosenescence and pathways that could serve as targets for interventions to restore immune function.

  1. Cerebrospinal Fluid Amyloid β1-42, Tau, and Alpha-Synuclein Predict the Heterogeneous Progression of Cognitive Dysfunction in Parkinson’s Disease

    PubMed Central

    Kang, Ju-Hee

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disease with heterogeneous pathological and clinical features. Cognitive dysfunction, a frequent non-motor complication, is a risk factor for poor prognosis and shows inter-individual variation in its progression. Of the clinical studies performed to identify biomarkers of PD progression, the Parkinson’s Progression Markers Initiative (PPMI) study is the largest study that enrolled drug-naïve and very early stage PD patients. The baseline characteristics of the PPMI cohort were recently published. The diagnostic utility of cerebrospinal fluid (CSF) biomarkers, including alpha-synuclein (α-syn), total tau, phosphorylated tau at Thr181, and amyloid β1-42, was not satisfactory. However, the baseline data on CSF biomarkers in the PPMI study suggested that the measurement of the CSF biomarkers enables the prediction of future cognitive decline in PD patients, which was consistent with previous studies. To prove the hypothesis that the interaction between Alzheimer’s pathology and α-syn pathology is important to the progression of cognitive dysfunction in PD, longitudinal observational studies must be followed. In this review, the neuropathological nature of heterogeneous cognitive decline in PD is briefly discussed, followed by a summarized interpretation of baseline CSF biomarkers derived from the data in the PPMI study. The combination of clinical, biochemical, genetic and imaging biomarkers of PD constitutes a feasible strategy to predict the heterogeneous progression of PD. PMID:27240810

  2. Reversal in Cognition Impairments, Cholinergic Dysfunction, and Cerebral Oxidative Stress Through the Modulation of Ryanodine Receptors (RyRs) and Cysteinyl Leukotriene-1 (CysLT1) Receptors.

    PubMed

    Singh, Prabhat; Sharma, Bhupesh

    2016-01-01

    Chronic cerebral hypoperfusion (CCH) is a general pathophysiological condition occurring in vascular dementia (VaD) associated with negative impact on cognitive functions. Ryanodine as well as cysteinyl leukotriene-1 receptors (RyRs and CysLT1Rs) are extensively present in the central nervous system, where they participate in regulation of cognition, motivation, inflammation and neurodegeneration. The purpose of this study is to examine the role of ruthenium red; a selective RyR blocker as well as montelukast; a specific CysLT1 antagonist in CCH induced VaD in mice. Two vessel occlusion (2VO) or permanent ligation of bilateral common carotid arteries technique was used to induce CCH in mice. Animals with bilateral carotid arteries occlusion have revealed impaired learning and memory (Morris water maze), cholinergic dysfunction (increased acetylcholinesterase activity) as well as increased brain oxidative stress (reduction in brain superoxide dismutase, glutathione and catalase with an increase in thiobarbituric acid reactive substance level), with increased brain infarct size (2,3,5-triphenylterazolium chloride staining). While, administration of ruthenium red and montelukast considerably attenuated CCH induced cognitive impairments, cholinergic dysfunction, brain oxidative stress as well as brain damage. The results suggest that bilateral carotid arteries occlusion induced CCH has brought out VaD, which was attenuated by treatment with ruthenium red and montelukast. Therefore, modulation of RyRs as well as CysLT1 receptors may provide help in conditions involving CCH such as cognitive impairment and VaD. PMID:26500103

  3. Selective Serotonin-norepinephrine Re-uptake Inhibition Limits Renovas-cular-hypertension Induced Cognitive Impairment, Endothelial Dysfunction, and Oxidative Stress Injury.

    PubMed

    Singh, Prabhat; Sharma, Bhupesh

    2016-01-01

    Hypertension has been reported to induce cognitive decline and dementia of vascular origin. Serotonin- norepinephrine reuptake transporters take part in the control of inflammation, cognitive functions, motivational acts and deterioration of neurons. This study was carried out to examine the effect of venlafaxine; a specific serotonin-norepinephrine reuptake inhibitor (SNRI), in two-kidney-one-clip-2K1C (renovascular hypertension) provoked vascular dementia (VaD) in albino rats. 2K1C technique was performed to provoke renovascular-hypertension in adult male albino Wistar rats. Learning and memory were assessed by using the elevated plus maze and Morris water maze. Mean arterial blood pressure- MABP, as well as endothelial function, were assessed by means of BIOPAC system. Serum nitrosative stress (nitrite/ nitrate), aortic superoxide anion, brain oxidative stress, inflammation, cholinergic dysfunction and brain damage (2,3,5-triphenylterazolium chloride staining) were also assessed. 2K1C has increased MABP, endothelial dysfunction as well as learning and memory impairments. 2K1C method has increased serum nitrosative stress (reduced nitrite/nitrate level), oxidative stress (increased brain thiobarbituric acid reactive species and aortic superoxide anion content along with decreased levels of brain superoxide dismutase, glutathione, and catalase), brain inflammation (increased myeloperoxidase), cholinergic dysfunction (increased acetylcholinesterase activity) and brain damage. Treatment with venlafaxine considerably attenuated renovascular-hypertension induced cognition impairment, endothelial dysfunction, serum nitrosative stress, brain and aortic oxidative stress, cholinergic function, inflammation as well as cerebral damage. The finding of this study indicates that specific modulation of the serotonin-norepinephrine transporter perhaps regarded as potential interventions for the management of renovascular hypertension provoked VaD. PMID:26915517

  4. Age-related hair pigment loss.

    PubMed

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. PMID:26370651

  5. The Theory Behind the Age-Related Positivity Effect

    PubMed Central

    Reed, Andrew E.; Carstensen, Laura L.

    2012-01-01

    The “positivity effect” refers to an age-related trend that favors positive over negative stimuli in cognitive processing. Relative to their younger counterparts, older people attend to and remember more positive than negative information. Since the effect was initially identified and the conceptual basis articulated (Mather and Carstensen, 2005) scores of independent replications and related findings have appeared in the literature. Over the same period, a number of investigations have failed to observe age differences in the cognitive processing of emotional material. When findings are considered in theoretical context, a reliable pattern of evidence emerges that helps to refine conceptual tenets. In this article we articulate the operational definition and theoretical foundations of the positivity effect and review the empirical evidence based on studies of visual attention, memory, decision making, and neural activation. We conclude with a discussion of future research directions with emphasis on the conditions where a focus on positive information may benefit and/or impair cognitive performance in older people. PMID:23060825

  6. "Older is always better": Age-related differences in vocabulary scores across 16 years.

    PubMed

    Ben-David, Boaz M; Erel, Hadas; Goy, Huiwen; Schneider, Bruce A

    2015-12-01

    Cross-sectional studies of cognitive aging compare age groups at 1 time point. It is unclear from such studies whether age-related cognitive differences remain stable across time. We present a cross-sectional investigation of vocabulary scores of 2,000 younger and older adults collected across 16 years, using the same laboratory and protocol. We found a steady decrease with year of testing and an advantage for older adults. An additive relation between age group and year of testing implied that age-related differences in vocabulary are independent of changes over time, suggesting that younger and older adults are similarly affected by changes in word usage.

  7. Assessment of Cognitive Dysfunction Caused by Anticholinergic Burden in Japanese Alzheimer's Disease Patients, Using the Most Commonly Used Scales in Japan.

    PubMed

    Konishi, Kimiko; Hori, Koji; Hachisu, Mitsugu; Tomioka, Hiroi; Tani, Masayuki; Hosoi, Misa; Kitajima, Yuka; Inamoto, Atsuko; Iwanami, Akira

    2015-11-01

    Anticholinergic activity (AA) is generally thought to cause cognitive dysfunction, especially in Alzheimer's disease (AD), one of the neurocognitive disorders related to memory disturbances. Therefore, it is important to evaluate cognitive functions to determine whether they are associated with anticholinergic burden. In Japan, the most frequently used cognitive scale for evaluating cognitive functions is the revised version of Hasegawa's Dementia Rating Scale (HDS-R). However, the relationship between anticholinergic burden and cognitive functions has not been previously examined using the HDS-R. Therefore, here we used the HDS-R to evaluate the relationship between serum anticholinergic activity (SAA) and cognitive functions in 76 patients with AD, 26 of whom had positive SAA [SAA (+)] with a mean of 4.14 ± 2.70 nM. Total scores for orientations to time and place, registration, and recall were significantly lower in the SAA (+) group than in the SAA (-) group (P < 0.05), suggesting potential relationships between SAA and disorientations to time and place in current surroundings as well as memory disturbances. Thus, the disorientations to time and place might explain the clinical features of confusion in current surroundings caused by anticholinergic burden in AD. PMID:26785521

  8. [Early experience, stressful dysregulation of the hormonal axis and age-related vulnerability to neurodegenerative processus: a longitudinal study in the rat].

    PubMed

    Mayo, W; Vallée, V; Le Moal, M

    2001-04-01

    The deleterious effects of particular environmental situations have been suspected to augment the repercussions of cerebral injuries leading to increased vulnerability during ageing. The relationship between the hormones of the hypothalamo-pituitary-adrenal axis, mainly glucocorticosteroids, and cerebral structures like the hippocampus has been the subject of intense investigation in the recent years. Data suggest that long-term elevated blood levels of these hormones can induce neuronal alterations leading to cognitive dysfunction. This hypothesis has been tested with relevant animal models of normal/abnormal ageing. The models are based on the existence of considerable inter-individual differences in the degree of age-related cognitive impairments observed in rodents. Results show that long-term glucocorticosteroid exposure induces cerebral changes related to the action of these hormones on their central receptors. Experimental data are in accordance with clinical investigations suggesting that hormonal changes, and chronic life events, could be considered as a predictive factor of future cognitive dysfunction. PMID:11398011

  9. Mitochondrial Dysfunction Meets Senescence.

    PubMed

    Gallage, Suchira; Gil, Jesús

    2016-03-01

    Cellular senescence and mitochondrial dysfunction are hallmarks of ageing, but until now their relationship has not been clear. Recent work by Wiley et al. shows that mitochondrial defects can cause a distinct senescence phenotype termed MiDAS (mitochondrial dysfunction-associated senescence). MiDAS has a specific secretome that is able to drive some of the aging phenotypes. These findings suggest novel therapeutic opportunities for treating age-related pathologies. PMID:26874922

  10. Exploring age-related brain degeneration in meditation practitioners.

    PubMed

    Luders, Eileen

    2014-01-01

    A growing body of research suggests that meditation practices are associated with substantial psychological as well as physiological benefits. In searching for the biological mechanisms underlying the beneficial impact of meditation, studies have revealed practice-induced alterations of neurotransmitters, brain activity, and cognitive abilities, just to name a few. These findings not only imply a close link between meditation and brain structure, but also suggest possible modulating effects of meditation on age-related brain atrophy. Given that normal aging is associated with significant loss of brain tissue, meditation-induced growth and/or preservation might manifest as a seemingly reduced brain age in meditators (i.e., cerebral measures characteristic of younger brains). Surprisingly, there are only three published studies that have addressed the question of whether meditation diminishes age-related brain degeneration. This paper reviews these three studies with respect to the brain attributes studied, the analytical strategies applied, and the findings revealed. The review concludes with an elaborate discussion on the significance of existing studies, implications and directions for future studies, as well as the overall relevance of this field of research.

  11. Age-Related Deficits in Reality Monitoring of Action Memories

    PubMed Central

    McDaniel, Mark A.; Lyle, Keith B.; Butler, Karin M.; Dornburg, Courtney C.

    2008-01-01

    We describe three theoretical accounts of age-related increases in falsely remembering that imagined actions were performed (Thomas & Bulevich, 2006). To investigate these accounts and further explore age-related changes in reality monitoring of action memories, we used a new paradigm in which actions were (a) imagined-only (b) actually performed, or (c) both imagined and performed. Older adults were more likely than younger adults to misremember the source of imagined-only actions, with older adults’ more often specifying that the action was imagined and also that it was performed. For both age groups, as repetitions of the imagined-only events increased, illusions that the actions were only performed decreased. These patterns suggest that both older and younger adults utilize qualitative characteristics when making reality-monitoring judgments and that repeated imagination produces richer records of both sensory details and cognitive operations. However, sensory information derived from imagination appears to be more similar to that derived from performance for older than younger adults. PMID:18808253

  12. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  13. Age-Related Differences in Multiple Task Monitoring

    PubMed Central

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  14. The Role of Sensory Modality in Age-Related Distraction: A Critical Review and a Renewed View

    ERIC Educational Resources Information Center

    Guerreiro, Maria J. S.; Murphy, Dana R.; Van Gerven, Pascal W. M.

    2010-01-01

    Selective attention requires the ability to focus on relevant information and to ignore irrelevant information. The ability to inhibit irrelevant information has been proposed to be the main source of age-related cognitive change (e.g., Hasher & Zacks, 1988). Although age-related distraction by irrelevant information has been extensively…

  15. Ability of university-level education to prevent age-related decline in emotional intelligence

    PubMed Central

    Cabello, Rosario; Navarro Bravo, Beatriz; Latorre, José Miguel; Fernández-Berrocal, Pablo

    2014-01-01

    Numerous studies have suggested that educational history, as a proxy measure of active cognitive reserve, protects against age-related cognitive decline and risk of dementia. Whether educational history also protects against age-related decline in emotional intelligence (EI) is unclear. The present study examined ability EI in 310 healthy adults ranging in age from 18 to 76 years using the Mayer–Salovey–Caruso Emotional Intelligence Test (MSCEIT). We found that older people had lower scores than younger people for total EI and for the EI branches of perceiving, facilitating, and understanding emotions, whereas age was not associated with the EI branch of managing emotions. We also found that educational history protects against this age-related EI decline by mediating the relationship between age and EI. In particular, the EI scores of older adults with a university education were higher than those of older adults with primary or secondary education, and similar to those of younger adults of any education level. These findings suggest that the cognitive reserve hypothesis, which states that individual differences in cognitive processes as a function of lifetime intellectual activities explain differential susceptibility to functional impairment in the presence of age-related changes and brain pathology, applies also to EI, and that education can help preserve cognitive-emotional structures during aging. PMID:24653697

  16. [Treatment options for age-related infertility].

    PubMed

    Belaisch-Allart, Joëlle

    2010-06-20

    There has been a consistent trend towards delayed childbearing in most Western countries. Treatment options for age-related infertility includes controlled ovarian hyperstimulation with intrauterine insemination and in vitro fertilization (IVF). A sharp decline in pregnancy rate with advancing female age is noted with assisted reproductive technologies (ART) including IVF. Evaluation and treatment of infertility should not be delayed in women 35 years and older. No treatment other than oocyte donation has been shown to be effective for women over 40 and for those with compromised ovarian reserve, but its pratice is not easy in France hence the procreative tourism. As an increasing number of couples choose to postpone childbearing, they should be informed that maternal age is an important risk factor for failure to conceive. PMID:20623902

  17. [Epidemiology of age-related macular degeneration].

    PubMed

    Brandl, C; Stark, K J; Wintergerst, M; Heinemann, M; Heid, I M; Finger, R P

    2016-09-01

    Age-related macular degeneration (AMD) is the main cause of blindness in industrialized societies. Population-based epidemiological investigations generate important data on prevalence, incidence, risk factors, and future trends. This review summarizes the most important epidemiological studies on AMD with a focus on their transferability to Germany including existing evidence for the main risk factors for AMD development and progression. Future tasks, such as the standardization of grading systems and the use of recent retinal imaging technology in epidemiological studies are discussed. In Germany, epidemiological data on AMD are scarce. However, the need for epidemiological research in ophthalmology is currently being addressed by several recently started population-based studies. PMID:27541733

  18. Inflammation in age-related macular degeneration.

    PubMed

    Ozaki, Ema; Campbell, Matthew; Kiang, Anna-Sophia; Humphries, Marian; Doyle, Sarah L; Humphries, Peter

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness in elderly individuals in the developed world, affecting 30-50 million people worldwide. AMD primarily affects the macular region of the retina that is responsible for the majority of central, color and daytime vision. The presence of drusen, extracellular protein aggregates that accumulate under the retinal pigment epithelium (RPE), is a major pathological hallmark in the early stages of the disease. The end stage 'dry' and 'wet' forms of the disease culminate in vision loss and are characterized by focal degeneration of the RPE and cone photoreceptors, and choroidal neovascularization (CNV), respectively. Being a multifactorial and genetically heterogeneous disease, the pathophysiology of AMD remains unclear, yet, there is ample evidence supporting immunological and inflammatory processes. Here, we review the recent literature implicating some of these immune processes in human AMD and in animal models. PMID:24664703

  19. Medical bioremediation of age-related diseases

    PubMed Central

    Mathieu, Jacques M; Schloendorn, John; Rittmann, Bruce E; Alvarez, Pedro JJ

    2009-01-01

    Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods. PMID:19358742

  20. Age-related macular degeneration: current treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: Although important progress has been made in understanding age-related macular degeneration (AMD), management of the disease continues to be a challenge. AMD research has led to a widening of available treatment options and improved prognostic perspectives. This essay reviews these treatment options. Design: Interpretative essay. Methods: Literature review and interpretation. Results: Current treatments to preserve vision in patients with non-exudative AMD include antioxidant vitamins and mineral supplementations. Exudative AMD is currently most often treated monthly with anti-VEGF intravitreal injections. However, investigators are beginning to experiment with combination therapy and surgical approaches in an attempt to limit the number of treatment and reduce the financial burden on the health care system. Conclusion: By better understanding the basis and pathogenesis of AMD, newer therapies will continue to be developed that target specific pathways in patients with AMD, with the hoped for outcome of better management of the disease and improved visual acuity. PMID:19668560

  1. Divergent Thinking and Age-Related Changes

    ERIC Educational Resources Information Center

    Palmiero, Massimiliano; Di Giacomo, Dina; Passafiume, Domenico

    2014-01-01

    Aging can affect cognition in different ways. The extent to which aging affects divergent thinking is unclear. In this study, younger and older adults were compared at the performance on the Torrance Test of Creative Thinking in visual and verbal form. Results showed that older adults can think divergently as younger participants, although they…

  2. The Potential of Chitosan and Its Derivatives in Prevention and Treatment of Age-Related Diseases

    PubMed Central

    Kerch, Garry

    2015-01-01

    Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed. PMID:25871293

  3. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases.

    PubMed

    Kerch, Garry

    2015-04-01

    Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed.

  4. TLR4 elimination prevents synaptic and myelin alterations and long-term cognitive dysfunctions in adolescent mice with intermittent ethanol treatment.

    PubMed

    Montesinos, Jorge; Pascual, María; Pla, Antoni; Maldonado, Concepción; Rodríguez-Arias, Marta; Miñarro, Jose; Guerri, Consuelo

    2015-03-01

    The adolescent brain undergoes important dynamic and plastic cell changes, including overproduction of axons and synapses, followed by rapid pruning along with ongoing axon myelination. These developmental changes make the adolescent brain particularly vulnerable to neurotoxic and behavioral effects of alcohol. Although the mechanisms of these effects are largely unknown, we demonstrated that ethanol by activating innate immune receptors toll-like receptor 4 (TLR4), induces neuroinflammation and brain damage in adult mice. The present study aims to evaluate whether intermittent ethanol treatment in adolescence promotes TLR4-dependent pro-inflammatory processes, leading to myelin and synaptic dysfunctions, and long-term cognitive impairments. Using wild-type (WT) and TLR4-deficient (TLR4-KO) adolescent mice treated intermittently with ethanol (3.0g/kg) for 2weeks, we show that binge-like ethanol treatment activates TLR4 signaling pathways (MAPK, NFκB) leading to the up-regulation of cytokines and pro-inflammatory mediators (COX-2, iNOS, HMGB1), impairing synaptic and myelin protein levels and causing ultrastructural alterations. These changes were associated with long-lasting cognitive dysfunctions in young adult mice, as demonstrated with the object recognition, passive avoidance and olfactory behavior tests. Notably, elimination of TLR4 receptors prevented neuroinflammation along with synaptic and myelin derangements, as well as long-term cognitive alterations. These results support the role of the neuroimmune response and TLR4 signaling in the neurotoxic and behavioral effects of ethanol in adolescence.

  5. Persistent neuronal apoptosis and synaptic loss induced by multiple but not single exposure of propofol contribute to long-term cognitive dysfunction in neonatal rats.

    PubMed

    Chen, Bo; Deng, Xiaoyuan; Wang, Bin; Liu, Hongliang

    2016-01-01

    Propofol can induce acute neuronal apoptosis or long-term cognitive dysfunction when exposed at early age in rodents, but it is unclear how the neurotoxicity including neuronal apoptosis and synaptic loss will change in a dynamic manner with brain development after multiple or single exposure of propofol, and the role of neuronal apoptosis and synaptic loss in propofol-induced long-term cognitive impairment needs to be elucidated. In this study, we investigated dynamic changes of neuronal apoptosis, neuronal density, synaptic density in hippocampal CA1 region and the prelimbic cortex (PrL), and long-term cognitive function after multiple or single exposure of propofol in neonatal rats. Results showed that single exposure of propofol only induced great neuronal apoptosis and deficit at postnatal day 9(P9); while multiple exposures of propofol could induce significant neuronal apoptosis, neuronal deficit and synaptic loss at P9, P14, P21, or P35 compared with intact, and spatial learning and memory impairment from P36 to P41. Results suggest that single exposure of propofol only induces transient neuronal apoptosis and deficit, while multiple exposures of propofol induce persistent neuronal apoptosis, neuronal deficit, synaptic loss, and long-term cognitive impairment. Furthermore, persistent neuronal deficit and disturbances in synapse formation but not transient neuronal apoptosis may contribute to long-term cognitive impairment. PMID:27665772

  6. Controlled randomized clinical trial of spirituality integrated psychotherapy, cognitive-behavioral therapy and medication intervention on depressive symptoms and dysfunctional attitudes in patients with dysthymic disorder

    PubMed Central

    Ebrahimi, Amrollah; Neshatdoost, Hamid Taher; Mousavi, Seyed Ghafur; Asadollahi, Ghorban Ali; Nasiri, Hamid

    2013-01-01

    Background: Due to the controversy over efficacy of cognitive-behavioral therapy for chronic depression, recently, there has been an increasingly tendency toward therapeutic methods based on the cultural and spiritual approaches. The aim of this research was to compare efficacy of spiritual integrated psychotherapy (SIPT) and cognitive-behavioral therapy (CBT) on the intensity of depression symptoms and dysfunctional attitudes of patients with dysthymic disorder. Materials and Methods: This study had a mixed qualitative and quantitative design. In the first phase, SIPT model was prepared and, in the second phase, a double-blind random clinical trial was performed. Sixty-two patients with dysthymic disorder were selected from several centers include Nour and Alzahra Medical Center, Counseling Centers of Isfahan University of Medical Sciences and Goldis in Isfahan. The participants were randomly assigned to three experimental groups and one control group. The first group received 8 sessions treatment of SIPT, second groups also had 8 sessions of cognitive-behavioral therapy, which was specific to dysthymic disorder and third group were under antidepressant treatment. Beck depression inventory and dysfunctional attitudes scale were used to evaluate all the participants in four measurement stages. The data were analyzed using MANCOVA repeated measure method. Results: The results revealed that SIPT had more efficacy than medication based on both scales (P < 0.01); however, it was not different from CBT. SIPT was more effective on the modification of dysfunctional attitudes compared with CBT and medication (P < 0.05). Conclusion: These findings supported the efficacy of psychotherapy enriched with cultural capacities and religious teachings. PMID:24516853

  7. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  8. Physics of Age Related Macular Degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    2009-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer's disease, and Parkinson's disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. In this talk I will discuss a model of non-equilibrium cluster growth that we have developed for studying the formation and growth of lipofuscin in AMD [K.I. Mazzitello, C.M. Arizmendi, Fereydoon Family, H. E. Grossniklaus, Physical Review E (2009)]. I will also present an overview of our theoretical and computational efforts in modeling some other aspects of the physics of AMD, including CNV and the breakdown of Bruch's membrane [Ongoing collaboration with Abbas Shirinifard and James A. Glazier, Biocomplexity Institute and Department of Physics, Indiana University, Y. Jiang, Los Alamos, and Hans E. Grossniklaus, Department of Ophthalmology, Emory University].

  9. Mechanisms of age-related macular degeneration

    PubMed Central

    Ambati, Jayakrishna; Fowler, Benjamin J.

    2012-01-01

    Age-related macular degeneration (AMD), a progressive condition that is untreatable in up to 90% of patients, is a leading cause of blindness in the elderly worldwide. The two forms of AMD, wet and dry, are classified based on the presence or absence of blood vessels that have disruptively invaded the retina, respectively. A detailed understanding of the molecular mechanisms underlying wet AMD has led to several robust FDA-approved therapies. In contrast, there are not any approved treatments for dry AMD. In this review, we provide insight into the critical effector pathways that mediate each form of disease. The interplay of immune and vascular systems for wet AMD, and the proliferating interest in hunting for gene variants to explain AMD pathogenesis, are placed in the context of the latest clinical and experimental data. Emerging models of dry AMD pathogenesis are presented, with a focus on DICER1 deficit and the toxic accumulation of retinal debris. A recurring theme that spans most aspects of AMD pathogenesis is defective immune modulation in the classically immune-privileged ocular haven. Interestingly, the latest advances in AMD research highlight common molecular disease pathways with other common neurodegenerations. Finally, the therapeutic potential of intervening at known mechanisms of AMD pathogenesis is discussed. PMID:22794258

  10. Age related degradation in operating nuclear plants

    SciTech Connect

    Hermann, R.A.; Davis, J.A.; Banic, M.J.

    1995-12-01

    The aging issues being addressed for today`s operating commercial nuclear power plants encompass a wide spectrum of components, complexities, and reasons for concern. Issues include such things as the intergranular stress corrosion cracking (IGSCC) of boiling water reactor (BWR) internals, the degradation of pressurized water reactor (PWR) Alloy 600 components by primary water stress corrosion cracking (PWSCC) to those associated with significant portions of piping systems, such as service water systems. a discussion of the regulatory activity and action associated with the above issues is provided. Proactive NRC/Industry programs for inspection and repair or replacement of affected components are essential for continued operation of these nuclear reactors. These programs are also essential as licensees consider license extensions for their facilities. These plants are licensed for 40 years and can be granted an extension for an additional 20 years of operation if all of the NRC rules and regulations are met. Proper handling of potential age related problems will be a key consideration in the granting of a license extension.

  11. Statistical physics of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer disease and Parkinson disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin in the aging RPE. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the RPE the larger ones become fixed and grow by aggregation.

  12. Nutritional interventions protect against age-related deficits in behavior: from animals to humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on motor and cognitive tasks. Similar changes in behavior occur in humans with age, and the development of methods to retard or reverse these age-related neuronal and behavioral deficits could increase healthy aging and decrease health care costs. In the present s...

  13. Does Duloxetine Improve Cognitive Function Independently of Its Antidepressant Effect in Patients with Major Depressive Disorder and Subjective Reports of Cognitive Dysfunction?

    PubMed Central

    Greer, Tracy L.; Sunderajan, Prabha; Grannemann, Bruce D.; Kurian, Benji T.; Trivedi, Madhukar H.

    2014-01-01

    Introduction. Cognitive deficits are commonly reported by patients with major depressive disorder (MDD). Duloxetine, a dual serotonin/noradrenaline reuptake inhibitor, may improve cognitive deficits in MDD. It is unclear if cognitive improvements occur independently of antidepressant effects with standard antidepressant medications. Methods. Thirty participants with MDD who endorsed cognitive deficits at screening received 12-week duloxetine treatment. Twenty-one participants completed treatment and baseline and posttreatment cognitive testing. The Cambridge Neuropsychological Test Automated Battery was used to assess the following cognitive domains: attention, visual memory, executive function/set shifting and working memory, executive function/spatial planning, decision making and response control, and verbal learning and memory. Results. Completers showed significant cognitive improvements across several domains on tasks assessing psychomotor function and mental processing speed, with additional improvements in visual and verbal learning and memory, and affective decision making and response control. Overall significance tests for executive function tasks were also significant, although individual tasks were not, perhaps due to the small sample size. Most notably, cognitive improvements were observed independently of symptom reduction on all domains except verbal learning and memory. Conclusions. Patients reporting baseline cognitive deficits achieved cognitive improvements with duloxetine treatment, most of which were independent of symptomatic improvement. This trial is registered with NCT00933439. PMID:24563781

  14. Diabetes augments cognitive dysfunction in chronic cerebral hypoperfusion by increasing neuronal cell death: implication of cilostazol for diabetes mellitus-induced dementia.

    PubMed

    Kwon, Kyoung Ja; Lee, Eun Joo; Kim, Min Kyeong; Kim, Soo Young; Kim, Jung Nam; Kim, Jin Ok; Kim, Hee-Jin; Kim, Hahn Young; Han, Jung-Soo; Shin, Chan Young; Han, Seol-Heui

    2015-01-01

    Many patients with diabetes are at increased risk of cognitive dysfunction and dementia. Diabetes mellitus is a vascular risk factor that may increase the risk of dementia through its associations with vascular dementia. We tested whether cognitive impairment could be exacerbated in combined injury using a rat model of chronic cerebral hypoperfusion with diabetes. We also determined whether a potent inhibitor of type III phosphodiesterase could prevent the cognitive decline caused by this combined injury. We used Otsuka Long-Evans Tokushima Fatty (OLETF) rats as a model of type II diabetes (T2DM) and Long-Evans Tokushima Otsuka (LETO) rats as a control. Chronic cerebral hypoperfusion was modeled by permanent bilateral common carotid artery occlusion (BCCAO). At 24weeks, the non-diabetic and T2DM rats were randomly assigned into groups for the following experiments: analysis I (1) sham non-diabetic rats (n=8); (2) hypoperfused non-diabetic rats (n=9); (3) sham T2DM rats (n=8); (4) hypoperfused T2DM rats (n=9); analysis II- (1) sham T2DM rats without treatment (n=8); (2) cilostazol-treated T2DM rats (n=8); (3) hypoperfused T2DM rats (n=9); and (4) hypoperfused T2DM rats and cilostazol treatment (n=9). The rats were orally administered cilostazol (50mg/kg) or vehicle once a day for 2weeks after 24weeks. Rats performed Morris water maze tasks, and neuronal cell death and neuroinflammation were investigated via Western blots and histological investigation. Spatial memory impairment was exacerbated synergistically in the hypoperfused T2DM group compared with the hypoperfused non-diabetic group and sham T2DBM group (P<0.05). Compared with the control group, neuronal cell death was increased in the hippocampus of the hypoperfused T2DM group. Cilostazol, a PDE-3 inhibitor, improved the memory impairments through inhibition of neuronal cell death, activation of CREB phosphorylation and BDNF expression in the hypoperfused T2DM group. Our experimental results support the

  15. GENETICS OF HUMAN AGE RELATED DISORDERS.

    PubMed

    Srivastava, I; Thukral, N; Hasija, Y

    2015-01-01

    Aging is an inevitable biological phenomenon. The incidence of age related disorders (ARDs) such as cardiovascular diseases, cancer, arthritis, dementia, osteoporosis, diabetes, neurodegenerative diseases increase rapidly with aging. ARDs are becoming a key social and economic trouble for the world's elderly population (above 60 years), which is expected to reach 2 billion by 2050. Advancement in understanding of genetic associations, particularly through genome wide association studies (GWAS), has revealed a substantial contribution of genes to human aging and ARDs. In this review, we have focused on the recent understanding of the extent to which genetic predisposition may influence the aging process. Further analysis of the genetic association studies through pathway analysis several genes associated with multiple ARDs have been highlighted such as apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), cadherin 13 (CDH13), CDK5 regulatory subunit associated protein 1 (CDKAL-1), methylenetetrahydrofolate reductase (MTHFR), disrupted in schizophrenia 1 (DISC1), nitric oxide synthase 3 (NOS3), paraoxonase 1 (PON1), indicating that these genes could play a pivotal role in ARD causation. These genes were found to be significantly enriched in Jak-STAT signalling pathway, asthma and allograft rejection. Further, interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), estrogen receptor1 (ESR1), transforming growth factor, beta 1(TGFB1) and calmodulin 1 (CALM1) were found to be highly interconnected in network analysis. We believe that extensive research on the presence of common genetic variants among various ARDs may facilitate scientists to understand the biology behind ARDs causation. PMID:26856084

  16. Understanding Age-Related Changes in Skeletal Muscle Metabolism: Differences Between Females and Males.

    PubMed

    Gheller, Brandon J F; Riddle, Emily S; Lem, Melinda R; Thalacker-Mercer, Anna E

    2016-07-17

    Skeletal muscle is the largest metabolic organ system in the human body. As such, metabolic dysfunction occurring in skeletal muscle impacts whole-body nutrient homeostasis. Macronutrient metabolism changes within the skeletal muscle with aging, and these changes are associated in part with age-related skeletal muscle remodeling. Moreover, age-related changes in skeletal muscle metabolism are affected differentially between males and females and are likely driven by changes in sex hormones. Intrinsic and extrinsic factors impact observed age-related changes and sex-related differences in skeletal muscle metabolism. Despite some support for sex-specific differences in skeletal muscle metabolism with aging, more research is necessary to identify underlying differences in mechanisms. Understanding sex-specific aging skeletal muscle will assist with the development of therapies to attenuate adverse metabolic and functional outcomes.

  17. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy

    PubMed Central

    Sakellariou, Giorgos K.; Pearson, Timothy; Lightfoot, Adam P.; Nye, Gareth A.; Wells, Nicola; Giakoumaki, Ifigeneia I.; Vasilaki, Aphrodite; Griffiths, Richard D.; Jackson, Malcolm J.; McArdle, Anne

    2016-01-01

    Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging. PMID:27681159

  18. Age-related carbonyl stress and erythrocyte membrane protein carbonylation.

    PubMed

    Li, Guolin; Liu, Li; Hu, Hui; Zhao, Qiong; Xie, Fuxia; Chen, Keke; Liu, Shenglin; Chen, Yaqin; Shi, Wang; Yin, Dazhong

    2010-01-01

    Reactive carbonyl species (RCS) have been widely used as indicators of oxidative stress. However, the associations of carbonyl stress with aging process and biochemical alteration of erythrocyte are still poorly understood. Fresh blood samples in vacutainer tubes containing sodium heparinate were obtained from 874 volunteers who were divided into young, adult and old groups based on their age. Plasma RCS and thiols concentrations between different age groups and erythrocyte membrane protein carbonylation in the adult group were detected within 24h of the blood sampling. Results showed that the plasma thiols concentration decreased gradually during aging process, and the p-values between all three groups are less than 0.05. The plasma RCS concentration in different age groups showed a nonlinear association with age. The levels in the young group were slightly higher than the adult group (not significant) and lower than the old group (p < 0.01). The protein carbonylation of erythrocyte membrane was positively correlated with plasma RCS concentration (p < 0.01), but not plasma thiols concentration. We conclude that higher levels of RCS, not lower levels of thiols, in plasma are a direct risk factor for the protein carbonylation of erythrocyte membrane. Owing to the decrease of thiols levels and increase of RCS levels during aging process, a shift from RCS-related redox allostasis to carbonyl stress would contribute to age-related biological dysfunction and even aging process.

  19. Adiponectin deficiency exacerbates age-related hearing impairment.

    PubMed

    Tanigawa, T; Shibata, R; Ouchi, N; Kondo, K; Ishii, M; Katahira, N; Kambara, T; Inoue, Y; Takahashi, R; Ikeda, N; Kihara, S; Ueda, H; Murohara, T

    2014-04-24

    Obesity-related disorders are closely associated with the development of age-related hearing impairment (ARHI). Adiponectin (APN) exerts protective effects against obesity-related conditions including endothelial dysfunction and atherosclerosis. Here, we investigated the impact of APN on ARHI. APN-knockout (APN-KO) mice developed exacerbation of hearing impairment, particularly in the high frequency range, compared with wild-type (WT) mice. Supplementation with APN prevented the hearing impairment in APN-KO mice. At 2 months of age, the cochlear blood flow and capillary density of the stria vascularis (SV) were significantly reduced in APN-KO mice as compared with WT mice. APN-KO mice also showed a significant increase in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells in the organ of Corti in the cochlea at 2 months of age. At the age of 6 months, hair cells were lost at the organ of Corti in APN-KO mice. In cultured auditory HEI-OC1 cells, APN reduced apoptotic activity under hypoxic conditions. Clinically, plasma APN levels were significantly lower in humans with ARHI. Multiple logistic regression analysis identified APN as a significant and independent predictor of ARHI. Our observations indicate that APN has an important role in preventing ARHI.

  20. Age-related forgetting in locomotor adaptation

    PubMed Central

    Malone, Laura A.; Bastian, Amy J.

    2016-01-01

    The healthy aging process affects the ability to learn and remember new facts and tasks. Prior work has shown that motor learning can be adversely affected by non-motor deficits, such as time. Here we investigated how age, and a dual task influence the learning and forgetting of a new walking pattern. We studied healthy younger (<30 yo) and older adults (>50 yo) as they alternated between 5-minute bouts of split-belt treadmill walking and resting. Older subjects learned a new walking pattern at the same rate as younger subjects, but forgot some of the new pattern during the rest breaks. We tested if forgetting was due to reliance on a cognitive strategy that was not fully engaged after rest breaks. When older subjects performed a dual cognitive task to reduce strategic control of split-belt walking, their adaptation rate slowed, but they still forgot much of the new pattern during the rest breaks. Our results demonstrate that the healthy aging process weakens motor memories during rest breaks and that this phenomenon cannot be explained solely by reliance on a conscious strategy in older adults. PMID:26589520

  1. Executive Dysfunction

    PubMed Central

    Rabinovici, Gil D.; Stephens, Melanie L.; Possin, Katherine L.

    2015-01-01

    Purpose of Review: Executive functions represent a constellation of cognitive abilities that drive goal-oriented behavior and are critical to the ability to adapt to an ever-changing world. This article provides a clinically oriented approach to classifying, localizing, diagnosing, and treating disorders of executive function, which are pervasive in clinical practice. Recent Findings: Executive functions can be split into four distinct components: working memory, inhibition, set shifting, and fluency. These components may be differentially affected in individual patients and act together to guide higher-order cognitive constructs such as planning and organization. Specific bedside and neuropsychological tests can be applied to evaluate components of executive function. While dysexecutive syndromes were first described in patients with frontal lesions, intact executive functioning relies on distributed neural networks that include not only the prefrontal cortex, but also the parietal cortex, basal ganglia, thalamus, and cerebellum. Executive dysfunction arises from injury to any of these regions, their white matter connections, or neurotransmitter systems. Dysexecutive symptoms therefore occur in most neurodegenerative diseases and in many other neurologic, psychiatric, and systemic illnesses. Management approaches are patient specific and should focus on treatment of the underlying cause in parallel with maximizing patient function and safety via occupational therapy and rehabilitation. Summary: Executive dysfunction is extremely common in patients with neurologic disorders. Diagnosis and treatment hinge on familiarity with the clinical components and neuroanatomic correlates of these complex, high-order cognitive processes. PMID:26039846

  2. Protective effects of testosterone on cognitive dysfunction in Alzheimer's disease model rats induced by oligomeric beta amyloid peptide 1-42.

    PubMed

    Huo, Dong-Sheng; Sun, Jian-Fang; Zhang, Baifeng; Yan, Xu-Sheng; Wang, He; Jia, Jian-Xin; Yang, Zhan-Jun

    2016-01-01

    Cognitive dysfunction is known to be influenced by circulating sex steroidal hormones. The aim of this study was to examine the protective effect and possible protective mechanism of testosterone (T) on cognitive performance in male rats induced by intrahippocampal injections of beta amyloid 1-42 oligomers (Aβ1-42). Treatment with T as evidenced by the Morris water maze (MWM) test significantly shortened escape latency and reduced path length to reach the platform compared to the control (C). During probe trials, the T group displayed a significantly greater percent of time in the target quadrant and improved the number of platform crossings compared with C, flutamide (F), an antiandrogen, and a combined F and T group. Flutamide markedly inhibited the influence of T on cognitive performance. Following Nissl staining, the number of intact pyramidal cells was significantly elevated in the T group, and the effect of T was blocked by F. Immunohistochemisty and Western blot analysis showed that the protein expression level of Aβ 1-42 was markedly decreased and expression levels of synaptophysin (SYN) significantly increased with T, while F inhibited all T-mediated effects. Our data suggest that the influence of T on cognitive performance was mediated via androgen receptors (AR) to remove beta amyloid, which leads to enhanced synaptic plasticity. PMID:27599231

  3. Association of Age Related Macular Degeneration and Age Related Hearing Impairment

    PubMed Central

    Ghasemi, Hassan; Pourakbari, Malihe Shahidi; Entezari, Morteza; Yarmohammadi, Mohammad Ebrahim

    2016-01-01

    Purpose: To evaluate the association between age-related macular degeneration (ARMD) and sensory neural hearing impairment (SHI). Methods: In this case-control study, hearing status of 46 consecutive patients with ARMD were compared with 46 age-matched cases without clinical ARMD as a control group. In all patients, retinal involvements were confirmed by clinical examination, fluorescein angiography (FA) and optical coherence tomography (OCT). All participants were examined with an otoscope and underwent audiological tests including pure tone audiometry (PTA), speech reception threshold (SRT), speech discrimination score (SDS), tympanometry, reflex tests and auditory brainstem response (ABR). Results: A significant (P = 0.009) association was present between ARMD, especially with exudative and choroidal neovascularization (CNV) components, and age-related hearing impairment primarily involving high frequencies. Patients had higher SRT and lower SDS against anticipated presbycusis than control subjects. Similar results were detected in exudative, CNV and scar patterns supporting an association between late ARMD with SRT and SDS abnormalities. ABR showed significantly prolonged wave I and IV latency times in ARMD (P = 0.034 and 0.022, respectively). Average latency periods for wave I in geographic atrophy (GA) and CNV, and that for wave IV in drusen patterns of ARMD were significantly higher than controls (P = 0.030, 0.007 and 0.050, respectively). Conclusion: The association between ARMD and age-related SHI may be attributed to common anatomical components such as melanin in these two sensory organs. PMID:27195086

  4. Genetic Ablation of Calcium-independent Phospholipase A2γ Leads to Alterations in Hippocampal Cardiolipin Content and Molecular Species Distribution, Mitochondrial Degeneration, Autophagy, and Cognitive Dysfunction*

    PubMed Central

    Mancuso, David J.; Kotzbauer, Paul; Wozniak, David F.; Sims, Harold F.; Jenkins, Christopher M.; Guan, Shaoping; Han, Xianlin; Yang, Kui; Sun, Gang; Malik, Ibrahim; Conyers, Sara; Green, Karen G.; Schmidt, Robert E.; Gross, Richard W.

    2009-01-01

    Genetic ablation of calcium-independent phospholipase A2γ (iPLA2γ) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun lipidomics demonstrated multiple alterations in hippocampal lipid metabolism in iPLA2γ−/− mice including: 1) a markedly elevated hippocampal cardiolipin content with an altered molecular species composition characterized by a shift to shorter chain length molecular species; 2) alterations in both choline and ethanolamine glycerophospholipids, including a decreased plasmenylethanolamine content; 3) increased oxidized phosphatidylethanolamine molecular species; and 4) an increased content of ceramides. Electron microscopic examination demonstrated the presence of enlarged heteromorphic lamellar structures undergoing degeneration accompanied by the presence of ubiquitin positive spheroid inclusion bodies. Purification of these enlarged heteromorphic lamellar structures by buoyant density centrifugation and subsequent SDS-PAGE and proteomics identified them as degenerating mitochondria. Collectively, these results identify the obligatory role of iPLA2γ in neuronal mitochondrial lipid metabolism and membrane structure demonstrating that iPLA2γ loss of function results in a mitochondrial neurodegenerative disorder characterized by degenerating mitochondria, autophagy, and cognitive dysfunction. PMID:19840936

  5. Age-Related Changes in the Misinformation Effect.

    ERIC Educational Resources Information Center

    Sutherland, Rachel; Hayne, Harlene

    2001-01-01

    Two experiments examined relation between age-related changes in retention and age-related changes in the misinformation effect. Found large age-related retention differences when participants were interviewed immediately and after 1 day, but after 6 weeks, differences were minimal. Exposure to misleading information increased commission errors.…

  6. Abnormal differentiation of newborn granule cells in age-related working memory impairments.

    PubMed

    Nyffeler, Myriel; Yee, Benjamin K; Feldon, Joram; Knuesel, Irene

    2010-11-01

    Age-related declines in spatial memory have been linked to abnormal functional properties and connectivity of newborn granule cells. However, the relationship between adult neurogenesis, aging, and cognitive performance seems more complex than previously anticipated, likely due to the difficulty of disentangling alterations related to training as such and those associated with cognitive performance. Here, we investigated how different aspects of adult neurogenesis might be related to training, age and cognitive performance amongst aged subjects by comparing behaviourally naïve and tested rats of 3, 6, 24mo of age. We separated aged rats into learning-impaired and -unimpaired groups based on their performance in the Morris water maze to investigate neurogenesis-related morphological and neurochemical changes. We report an age-related decline in cell proliferation and maturation independent of cognitive performance and testing. We confirm an age-related altered differentiation of newborn neurons which was particularly prominent in learning-impaired rats. This was associated with an abnormally prolonged expression of the early progenitor marker Nestin, potentially also affecting maturation, survival/integration of newborn neurons into existing neuronal networks, which might underlie the individual differences in cognitive performance during aging.

  7. Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan.

    PubMed

    Spiegel, Amy M; Sewal, Angila S; Rapp, Peter R

    2014-10-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review neuroepigenetic research as it relates to cognitive aging, focusing specifically on memory function mediated by the hippocampal system. Recent work that differentiates epigenetic contributions to chronological aging from influences on mindspan, or the preservation of normal cognitive abilities across the lifespan, is also highlighted. Together, current evidence indicates that while age-related memory impairment is associated with dysfunction in the coordinated regulation of chromatin modification, animal models that show individual differences in cognitive outcome underscore the enormous mechanistic complexity that surrounds epigenetic dynamics in the aged hippocampus.

  8. Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan

    PubMed Central

    Spiegel, Amy M.; Sewal, Angila S.

    2014-01-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene–environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review neuroepigenetic research as it relates to cognitive aging, focusing specifically on memory function mediated by the hippocampal system. Recent work that differentiates epigenetic contributions to chronological aging from influences on mindspan, or the preservation of normal cognitive abilities across the lifespan, is also highlighted. Together, current evidence indicates that while age-related memory impairment is associated with dysfunction in the coordinated regulation of chromatin modification, animal models that show individual differences in cognitive outcome underscore the enormous mechanistic complexity that surrounds epigenetic dynamics in the aged hippocampus. PMID:25227252

  9. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision.