Science.gov

Sample records for age-related endothelial dysfunction

  1. Age-related acceleration of endothelial dysfunction and subclinical atherosclerosis in subjects with coronary artery lesions after Kawasaki disease.

    PubMed

    Noto, Nobutaka; Okada, Tomoo; Karasawa, Kensuke; Ayusawa, Mamoru; Sumitomo, Naokata; Harada, Kensuke; Mugishima, Hideo

    2009-04-01

    The objective of this study was to test the hypothesis that accelerated endothelial dysfunction and the development of premature atherosclerosis are associated with age in subjects with coronary artery lesions after Kawasaki disease (KD). A case-control study was performed at a university hospital that included 35 post-KD subjects across a wide age range (range, 8-42 years) without traditional cardiovascular risk factors and 35 age- and sex-matched healthy control subjects (Cont). Flow-mediated dilatation (FMD) of the brachial artery-induced by reactive hyperemia, intima media thickness (IMT), and elastic modulus (Ep) of the common carotid artery were compared between KD and Cont subjects assessed against age. KD subjects had slightly higher levels of body mass index, lipid profile, and HbA1c than Cont subjects, but the differences were not significant. The mean IMT (p < 0.001), age-adjusted percentage normal IMT (%N IMT; p < 0.0001), and Ep (p < 0.001) were significantly higher in KD than Cont subjects, and the peak FMD% (p < 0.01) was significantly lower in KD than Cont subjects. There were significant correlations between FMD% and age (r = -0.51 p < 0.0001), IMT and age (r = 0.68, p < 0.001), and Ep and age (r = 0.58, p < 0.01) in KD but not Cont subjects. When the difference in FMD% between KD and matched Cont subjects (DeltaFMD%) was plotted against age, no significant relationship was found, although significant correlations between DeltaIMT and age (r = 0.52, p < 0.01) as well as between DeltaEp and age (r = 0.46, p < 0.05) were observed. When we defined values that were +2.0 SD over the mean control values (i.e., %N IMT >or= 120% and/or Ep >or= 50 kPa) as markers of subclinical atherosclerosis, 15 subjects met the criteria. Subjects over the age of 22 years were more likely to have (OR = 16.54, p = 0.0001) subclinical atherosclerosis in this cohort. Our results suggest that endothelial dysfunction and the development of premature atherosclerosis were

  2. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB.

    PubMed

    Walker, Ashley E; Kaplon, Rachelle E; Pierce, Gary L; Nowlan, Molly J; Seals, Douglas R

    2014-12-01

    Habitual aerobic exercise prevents age-related impairments in endothelium-dependent dilation (EDD). We have hypothesized that the pro-inflammatory transcription factor nuclear factor κB (NF-κB) impairs EDD with sedentary aging, and habitual aerobic exercise prevents this age-related suppression of EDD by NF-κB. To test this hypothesis, we have inhibited NF-κB signalling via oral salsalate administration in healthy older aerobic exercise-trained adults (OT, n=14, 58 ± 2 years), older non-exercising adults (ON, n=16, 61 ± 1 years) and young non-exercising controls (YN, n=8, 23 ± 1 years). Salsalate reduced endothelial cell expression of NF-κB p65 by ~25% in ON (P<0.05) but did not significantly change expression in OT or YN (P>0.05). EDD, assessed by brachial artery flow-mediated dilation (FMD), was improved by salsalate in ON (4.0 ± 0.7% compared with 6.8 ± 0.7%, placebo compared with salsalate, P<0.001) but did not change with salsalate in OT or YN (OT: 7.2 ± 0.7% compared with 7.7 ± 0.6%; YN: 7.6 ± 0.9% compared with 8.1 ± 0.8%; placebo compared with salsalate, P>0.05). Endothelium-independent dilation was not affected by salsalate in any group (P>0.05). In ON, vitamin C infusion improved FMD by ~30% during placebo (P<0.001) but had no affect during salsalate (P>0.05). In OT and YN, vitamin C infusion did not affect FMD during either placebo or salsalate (P>0.05). Salsalate reduced endothelial cell nitrotyrosine content by ~25% and NADPH oxidase p47phox expression by ~30% in ON (P<0.05) but had no effect in OT or YN (P>0.05). Our results suggest that endothelial NF-κB signalling is associated with oxidative stress-related impairment of EDD in healthy non-exercising but not aerobically exercising older adults. This may be a key mechanism by which regular aerobic exercise preserves endothelial function and reduces cardiovascular risk with aging.

  3. eNOS-uncoupling in age-related erectile dysfunction.

    PubMed

    Johnson, J M; Bivalacqua, T J; Lagoda, G A; Burnett, A L; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH(4)) on erectile function in the aged rats. Male Fischer 344 'young' (4-month-old) and 'aged' (19-month-old) rats were treated with a BH(4) precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  4. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  5. Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction

    PubMed Central

    Durik, Matej; Kavousi, Maryam; van der Pluijm, Ingrid; Isaacs, Aaron; Cheng, Caroline; Verdonk, Koen; Loot, Annemarieke E.; Oeseburg, Hisko; Musterd-Bhaggoe, Usha; Leijten, Frank; van Veghel, Richard; de Vries, Rene; Rudez, Goran; Brandt, Renata; Ridwan, Yanto R.; van Deel, Elza D.; de Boer, Martine; Tempel, Dennie; Fleming, Ingrid; Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Uitterlinden, Andre G.; Hofman, Albert; Duckers, Henricus J.; van Duijn, Cornelia M.; Oostra, Ben A.; Witteman, Jacqueline C.M.; Duncker, Dirk J.; Danser, A.H. Jan; Hoeijmakers, Jan H.; Roks, Anton J.M.

    2012-01-01

    Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease. PMID:22705887

  6. Endothelial dysfunction: a comprehensive appraisal

    PubMed Central

    Esper, Ricardo J; Nordaby, Roberto A; Vilariño, Jorge O; Paragano, Antonio; Cacharrón, José L; Machado, Rogelio A

    2006-01-01

    The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the vasodilatation produced by drugs that

  7. Endothelial Dysfunction in Type 2 Diabetes Mellitus.

    PubMed

    Dhananjayan, R; Koundinya, K S Srivani; Malati, T; Kutala, Vijay Kumar

    2016-10-01

    Endothelial dysfunction is an imbalance in the production of vasodilator factors and when this balance is disrupted, it predisposes the vasculature towards pro-thrombotic and pro-atherogenic effects. This results in vasoconstriction, leukocyte adherence, platelet activation, mitogenesis, pro-oxidation, impaired coagulation and nitric oxide production, vascular inflammation, atherosclerosis and thrombosis. Endothelial dysfunction is focussed as it is a potential contributor to the pathogenesis of vascular disease in diabetes mellitus. Under physiological conditions, there is a balanced release of endothelial-derived relaxing and contracting factors, but this delicate balance is altered in diabetes mellitus and atherosclerosis, thereby contributing to further progression of vascular and end-organ damage. This review focuses on endothelial dysfunction in atherosclerosis, insulin resistance, metabolic syndrome, oxidative stress associated with diabetes mellitus, markers and genetics that are implicated in endothelial dysfunction.

  8. Endothelial Dysfunction in Type 2 Diabetes Mellitus.

    PubMed

    Dhananjayan, R; Koundinya, K S Srivani; Malati, T; Kutala, Vijay Kumar

    2016-10-01

    Endothelial dysfunction is an imbalance in the production of vasodilator factors and when this balance is disrupted, it predisposes the vasculature towards pro-thrombotic and pro-atherogenic effects. This results in vasoconstriction, leukocyte adherence, platelet activation, mitogenesis, pro-oxidation, impaired coagulation and nitric oxide production, vascular inflammation, atherosclerosis and thrombosis. Endothelial dysfunction is focussed as it is a potential contributor to the pathogenesis of vascular disease in diabetes mellitus. Under physiological conditions, there is a balanced release of endothelial-derived relaxing and contracting factors, but this delicate balance is altered in diabetes mellitus and atherosclerosis, thereby contributing to further progression of vascular and end-organ damage. This review focuses on endothelial dysfunction in atherosclerosis, insulin resistance, metabolic syndrome, oxidative stress associated with diabetes mellitus, markers and genetics that are implicated in endothelial dysfunction. PMID:27605734

  9. Vascular endothelial dysfunction and pharmacological treatment

    PubMed Central

    Su, Jin Bo

    2015-01-01

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smoking, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide (NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease. PMID:26635921

  10. Vascular endothelial dysfunction and pharmacological treatment.

    PubMed

    Su, Jin Bo

    2015-11-26

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smoking, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide (NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease. PMID:26635921

  11. Role of Lipotoxicity in Endothelial Dysfunction

    PubMed Central

    Kim, Jeong-a; Montagnani, Monica; Chandrasekran, Sruti; Quon, Michael J.

    2014-01-01

    SUMMARY Lipotoxicity, caused in large part by overnutrition, directly leads to endothelial dysfunction. Excess lipids in both the circulation and at the tissue level contribute to endothelial dysfunction that underlies much of the pathophysiology of both metabolic disease, including obesity and diabetes and their CV complications. Direct lipotoxic effects on other organs as well as secondary insults from endothelial dysfunction synergize to cause substantial morbidity and mortality. Lifestyle interventions, including reduced calorie intake, diet, and exercise as well as a variety of pharmacologic interventions targeting various mechanisms underlying lipotoxicity in vascular endothelium significantly modify metabolic and CV risk. PMID:22999242

  12. Renal Endothelial Dysfunction in Diabetic Nephropathy

    PubMed Central

    Cheng, Huifang; Harris, Raymond C.

    2015-01-01

    Endothelial dysfunction has been posited to play an important role in the pathogenesis of diabetic nephropathy (DN). Due to the heterogeneity of endothelial cells (ECs), it is difficult to generalize about endothelial responses to diabetic stimuli. At present, there are limited techniques fordirectly measuring EC function in vivo, so diagnosis of endothelial disorders still largely depends on indirect assessment of mediators arising from EC injury. In the kidney microcirculation, both afferent and efferent arteries, arterioles and glomerular endothelial cells (GEnC) have all been implicated as targets of diabetic injury. Both hyperglycemia per se, as well as the metabolic consequences of glucose dysregulation, are thought to lead to endothelial cell dysfunction. In this regard, endothelial nitric oxide synthase (eNOS) plays a central role in EC dysfunction. Impaired eNOS activity can occur at numerous levels, including enzyme uncoupling, post-translational modifications, internalization and decreased expression. Reduced nitric oxide (NO) bioavailability exacerbates oxidative stress, further promoting endothelial dysfunction and injury. The injured ECs may then function as active signal transducers of metabolic, hemodynamic and inflammatory factors that modify the function and morphology of the vessel wall and interact with adjacent cells, which may activate a cascade of inflammatory and proliferative and profibrotic responses in progressive DN. Both pharmacological approaches and potential regenerative therapies hold promise for restoration of impaired endothelial cells in diabetic nephropathy. PMID:24720460

  13. Soluble endoglin, hypercholesterolemia and endothelial dysfunction.

    PubMed

    Rathouska, Jana; Jezkova, Katerina; Nemeckova, Ivana; Nachtigal, Petr

    2015-12-01

    A soluble form of endoglin (sEng) is known to be an extracellular domain of the full-length membrane endoglin, which is elevated during various pathological conditions related to vascular endothelium. In the current review, we tried to summarize a possible role of soluble endoglin in cardiovascular pathologies, focusing on its relation to endothelial dysfunction and cholesterol levels. We discussed sEng as a proposed biomarker of cardiovascular disease progression, cardiovascular disease treatment and endothelial dysfunction. We also addressed a potential interaction of sEng with TGF-β/eNOS or BMP-9 signaling. We suggest soluble endoglin levels to be monitored, because they reflect the progression/treatment efficacy of cardiovascular diseases related to endothelial dysfunction and hypercholesterolemia. A possible role of soluble endoglin as an inducer of endothelial dysfunction however remains to be elucidated. PMID:26520890

  14. Senescence-Induced Oxidative Stress Causes Endothelial Dysfunction.

    PubMed

    Bhayadia, Raj; Schmidt, Bernhard M W; Melk, Anette; Hömme, Meike

    2016-02-01

    Age is a risk factor for cardiovascular disease, suggesting a causal relationship between age-related changes and vascular damage. Endothelial dysfunction is an early pathophysiological hallmark in the development of cardiovascular disease. Senescence, the cellular equivalent of aging, was proposed to be involved in endothelial dysfunction, but functional data showing a causal relationship are missing.Endothelium-dependent vasodilation was measured in aortic rings ex vivo. We investigated aortas from aged C57Bl/6 mice (24-28 months), in which p16 (INK4a) and p19 (ARF) expression, markers of stress-induced senescence, were significantly induced compared to young controls (4-6 months). To reflect telomere shortening in human aging, we investigated aortas from telomerase deficient (Terc(-/-)) mice of generation 3 (G3). Endothelium-dependent vasodilation in aged wildtype and in Terc(-/-) G3 mice was impaired. A combination of the superoxide dismutase mimetic 1-Oxyl-2,2,6, 6-tetramethyl-4-hydroxypiperidine (TEMPOL) and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin significantly improved endothelium-dependent vasodilation in aged wildtype and Terc(-/-) G3 mice compared to untreated controls. We show that both, aging and senescence induced by telomere shortening, cause endothelial dysfunction that can be restored by antioxidants, indicating a role for oxidative stress. The observation that cellular senescence is a direct signalling event leading to endothelial dysfunction holds the potential to develop new targets for the prevention of cardiovascular disease.

  15. Increased Age-Related Cardiac Dysfunction in Bradykinin B2 Receptor-Deficient Mice.

    PubMed

    Feng, Wenjing; Xu, Xizhen; Zhao, Gang; Zhao, Junjie; Dong, Ruolan; Ma, Ben; Zhang, Yanjun; Long, Guangwen; Wang, Dao Wen; Tu, Ling

    2016-02-01

    Experimental evidence indicates that the kinin peptide binds to bradykinin B2 receptor (B2R) to trigger various beneficial effects on the cardiovascular system. However, the effects and underlying mechanisms of B2R in cardiac aging remain unknown. A significant age-dependent decrease in B2R expression in the myocardium was observed in C57BL/6J mice. Echocardiographic measurements showed that aging caused a significant cardiac dysfunction in C57BL/6J mice, and importantly B2R deficiency augmented this dysfunction in aging mice. The deficiency of B2R expression in the aging heart repressed p53-pGC-1α-induced mitochondria renewal, increased reactive oxygen species production, and destroyed mitochondrial ultrastructure. Age-related decrease or lack of B2R increased oxidative stress, macrophage infiltration, and inflammatory cytokine expression and compromised antioxidant enzyme expression. Moreover, the inflammatory signals were mainly mediated by the activation of p38 MAPK, JNK, and subsequent translocation of nuclear factor-kappa B to the nucleus. In summary, our data provide evidence that B2R deficiency contributes to the aging-induced cardiac dysfunction, which is likely mediated by increased mitochondrial dysfunction, oxidative stress, and inflammation. This study indicates that preventing the loss of cardioprotective B2R expression may be a novel approach for the prevention and treatment of age-related cardiac dysfunction.

  16. Red ginseng delays age-related hearing and vestibular dysfunction in C57BL/6 mice.

    PubMed

    Tian, Chunjie; Kim, Yeon Ju; Lim, Hye Jin; Kim, Young Sun; Park, Hun Yi; Choung, Yun-Hoon

    2014-09-01

    Since Korean red ginseng (KRG) has been proven to protect against gentamicin-induced vestibular and hearing dysfunction, the effects of KRG on age-related inner ear disorder in C57BL/6 mice were investigated. While age-related hearing loss was detected at the age of 6months (32kHz) and 9months (16kHz) in the control group, it was significantly delayed (p<0.05) in the 150mg/kg KRG-treated group. Vestibular dysfunction was observed in the tail-hanging and swimming tests, with significantly different severity scores and swimming times detected between the control and 150mg/kg KRG-treated group at the age of 12months (p<0.05). Mice treated with 500mg/kg KRG exhibited irritability and aggravated inner ear dysfunction. Histological observation supported the findings of hearing and vestibular function defects. In conclusion, C57BL/6 mice showed early-onset hearing loss and progressive vestibular dysfunction with aging, which were delayed by treatment with 150mg/kg KRG. However, 500mg/kg KRG treatment may induce aggressive behavior. PMID:24952098

  17. Chronic Inflammatory Diseases and Endothelial Dysfunction

    PubMed Central

    Castellon, Xavier; Bogdanova, Vera

    2016-01-01

    Chronic inflammatory diseases are associated with increases in cardiovascular diseases (CVD) and subclinical atherosclerosis as well as early-stage endothelial dysfunction screening using the FMD method (Flow Mediated Dilation). This phenomenon, referred to as accelerated pathological remodeling of arterial wall, could be attributed to traditional risk factors associated with atherosclerosis. Several new non-invasive techniques have been used to study arterial wall’s structural and functional alterations. These techniques (based of Radio Frequency, RF) allow for an assessment of artery age through calculations of intima-media thickness (RF- QIMT), pulse wave rate (RF- QAS) and endothelial dysfunction degree (FMD). The inflammatory and autoimmune diseases should now be considered as new cardiovascular risk factors, result of the major consequences of oxidative stress and RAS (Renin Angiotensin System) imbalance associated with the deleterious effect of known risk factors that lead to the alteration of the arterial wall. Inflammation plays a key role in all stages of the formation of vascular lesions maintained and exacerbated by the risk factors. The consequence of chronic inflammation is endothelial dysfunction that sets in and we can define it as an integrated marker of the damage to arterial walls by classic risk factors. The atherosclerosis, which develops among these patients, is the main cause for cardiovascular morbi-mortality and uncontrolled chronic biological inflammation, which quickly favors endothelial dysfunction. These inflammatory and autoimmune diseases should now be considered as new cardiovascular risk factors. PMID:26815098

  18. Endothelial progenitor cell dysfunction in rheumatic disease.

    PubMed

    Westerweel, Peter E; Verhaar, Marianne C

    2009-06-01

    Rheumatic disease is characterized by inflammation and endothelial dysfunction, which contribute to accelerated atherosclerosis. Circulating endothelial progenitor cells (EPCs) can restore dysfunctional endothelium and thereby protect against atherosclerotic vascular disease. The number and function of EPCs are, however, affected in rheumatic diseases such as psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, and antineutrophil cytoplasmic autoantibody-associated vasculitis. rheumatic disease is often characterized by decreased numbers, and impaired function, of EPCs, although numbers of these cells might increase during the initial years of systemic sclerosis. Pioneering studies show that EPC dysfunction might be improved with pharmacological treatment. How best to restore EPC function, and whether achieving this aim can prevent long-term cardiovascular complications in rheumatic disease, remain to be established.

  19. [Cytokines, endothelial dysfunction, and insulin resistance].

    PubMed

    de Carvalho, Maria Helena C; Colaço, André Luiz; Fortes, Zuleica Bruno

    2006-04-01

    Endothelial dysfunction is associated with several vascular conditions as atherosclerosis, hypertension, hyperlipidemia and diabetes mellitus. In all these conditions insulin resistance (IR) is present. Cytokines are low molecular weight proteins with several endocrine and metabolic functions that participate of inflammation and immune response. Several of these cytokines are independent risk factors for cerebrovascular and coronary artery disease. The major sources of cytokines (adipokines) are the visceral and subcutaneous adipose tissues. Thus, increased adipose tissue mass is associated with alteration in adipokine production as over expression of tumor necrosis factor alpha, interleukin 6, plasminogen activator inhibitor 1, and under expression of adiponectin in adipocite tissue. The pro-inflammatory status associated with these changes provides a potential link between IR and endothelial dysfunction, the early stage in the atherosclerotic process, in obese individuals, and type 2 diabetic patients. Reduction of adipose tissue mass through weight reduction in association with exercise reduces TNF-alpha, IL-6, and PAI-1, increases adiponectin, and is associated with improved insulin sensitivity and endothelial function. This review will focus on the evidence for regulation of endothelial function by insulin and the adypokines such as adyponectin, leptin, resistin, IL-6 and TNF-alpha. Interaction between insulin signaling and adypokines will be discussed, as well as the concept that aberrant adypokine secretion in IR and/or obesity impairs endothelial function and contributes further to reduce insulin sensitivity.

  20. The female athlete triad and endothelial dysfunction.

    PubMed

    Lanser, Erica M; Zach, Karie N; Hoch, Anne Z

    2011-05-01

    A tremendous increase in the number of female athletes of all ages and abilities has occurred in the past 35 years. In general, sports and athletic competition produce healthier and happier women. However, explosion in participation has revealed clear gender-specific injuries and medical conditions unique to the female athlete. This article focuses on the latest advances in our knowledge of the female athlete triad and the relationship between athletic-associated amenorrhea and endothelial dysfunction. Treatment of vascular dysfunction with folic acid is also discussed. PMID:21570034

  1. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction.

    PubMed

    Guan, Lili; Feng, Haiyan; Gong, Dezheng; Zhao, Xu; Cai, Li; Wu, Qiong; Yuan, Bo; Yang, Mei; Zhao, Jie; Zou, Yuan

    2013-12-01

    Insulin resistance (IR) increases with age and plays a key role in the pathogenesis of type 2 diabetes mellitus. Oxidative stress and mitochondrial dysfunction are supposed to be major factors leading to age-related IR. Genipin, an extract from Gardenia jasminoides Ellis fruit, has been reported to stimulate insulin secretion in pancreatic islet cells by regulating mitochondrial function. In this study, we first investigated the effects of genipin on insulin sensitivity and the potential mitochondrial mechanisms in the liver of aging rats. The rats were randomly assigned to receive intraperitoneal injections of either 25mg/kg genipin or vehicle once daily for 12days. The aging rats showed hyperinsulinemia and hyperlipidemia, and insulin resistance as examined by the decreased glucose decay constant rate during insulin tolerance test (kITT). The hepatic tissues showed steatosis and reduced glycogen content. Hepatic malondialdehyde level and mitochondrial reactive oxygen species (ROS) were higher, and levels of mitochondrial membrane potential (MMP) and ATP were lower as compared with the normal control rats. Administration of genipin ameliorated systemic and hepatic insulin resistance, alleviated hyperinsulinemia, hyperglyceridemia and hepatic steatosis, relieved hepatic oxidative stress and mitochondrial dysfunction in aging rats. Furthermore, genipin not only improved insulin sensitivity by promoting insulin-stimulated glucose consumption and glycogen synthesis, inhibited cellular ROS overproduction and alleviated the reduction of levels of MMP and ATP, but also reversed oxidative stress-associated JNK hyperactivation and reduced Akt phosphorylation in palmitate-treated L02 hepatocytes. In conclusion, genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. PMID:24041487

  2. Age-related changes in endothelial permeability and distribution volume of albumin in rat aorta.

    PubMed

    Belmin, J; Corman, B; Merval, R; Tedgui, A

    1993-03-01

    Age-related changes in macromolecular transport across the arterial wall were investigated in 10-, 20-, and 30-mo-old WAG/Rij rats. Animals were injected with 125I- and 131I-labeled albumin, 90 and 5 min before they were killed, respectively. The transmural distribution of relative concentration of tracers in the aortic wall was obtained using en face serial sectioning technique. The apparent endothelial permeability to albumin calculated from the distribution of 5-min 131I-labeled albumin concentrations was significantly enhanced in 20- and 30-mo-old rats compared with 10-mo-old rats. The apparent distribution volume of albumin within the media, estimated as the mean medial 125I-labeled albumin concentration, was not significantly changed in 20-mo-old rats but was significantly decreased in the 30-mo-old animals. These age-related changes in the macromolecular transport suggest that the entry of plasma macromolecules in the aged arterial wall might be enhanced, whereas the efflux through the media may be impeded, possibly contributing to their trapping in the subendothelium. PMID:8456970

  3. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    PubMed

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy. PMID:26377633

  4. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    PubMed

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy.

  5. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction

    PubMed Central

    Mikhed, Yuliya; Daiber, Andreas; Steven, Sebastian

    2015-01-01

    The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan. PMID:26184181

  6. Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD).

    PubMed

    Parfitt, Geraint J; Xie, Yilu; Geyfman, Mikhail; Brown, Donald J; Jester, James V

    2013-11-01

    Meibomian gland dysfunction (MGD) is frequent with aging and is the primary cause of dry eye disease, the most prevalent ocular complaint. We used a novel 3-D reconstruction technique, immunofluorescent computed tomography (ICT), to characterize meibomian gland keratinization and cell proliferation in a mouse model of age-related meibomian gland dysfunction (ARMGD). To visualize the changes associated with ARMGD, 5-month and 2-year old mouse eyelids were 3-D reconstructed by ICT using antibodies to cytokeratin (CK) 1, 5 and 6 and the proliferation marker Ki67. We quantified total gland, ductal and lipid volume from the reconstructions, observing a dramatic decrease in old glands. In young glands, proliferative ductules suggest a potential site of acinar progenitors that were found to be largely absent in aged, atrophic glands. In the aged mouse, we observed an anterior migration of the mucocutaneous junction (MCJ) and an absence of hyper-keratinization with meibomian gland atrophy. Thus, we propose that changes in the MCJ and glandular atrophy through a loss of meibocyte progenitors are most likely responsible for ARMGD and not ductal hyper-keratinization and gland obstruction.

  7. Absence of ductal hyper-keratinization in Mouse age-related meibomian gland dysfunction (ARMGD)

    PubMed Central

    Parfitt, Geraint J.; Xie, Yilu; Geyfman, Mikhail; Brown, Donald J.; Jester, James V.

    2013-01-01

    Meibomian gland dysfunction (MGD) is frequent with aging and is the primary cause of dry eye disease, the most prevalent ocular complaint. We used a novel 3-D reconstruction technique, immunofluorescent computed tomography (ICT), to characterize meibomian gland keratinization and cell proliferation in a mouse model of age-related meibomian gland dysfunction (ARMGD). To visualize the changes associated with ARMGD, 5-month and 2-year old mouse eyelids were 3-D reconstructed by ICT using antibodies to cytokeratin (CK) 1, 5 and 6 and the proliferation marker Ki67. We quantified total gland, ductal and lipid volume from the reconstructions, observing a dramatic decrease in old glands. In young glands, proliferative ductules suggest a potential site of acinar progenitors that were found to be largely absent in aged, atrophic glands. In the aged mouse, we observed an anterior migration of the mucocutaneous junction (MCJ) and an absence of hyper-keratinization with meibomian gland atrophy. Thus, we propose that changes in the MCJ and glandular atrophy through a loss of meibocyte progenitors are most likely responsible for ARMGD and not ductal hyper-keratinization and gland obstruction. PMID:24259272

  8. The role of H2S bioavailability in endothelial dysfunction

    PubMed Central

    Wang, Rui; Szabo, Csaba; Ichinose, Fumito; Ahmed, Asif; Whiteman, Matthew; Papapetropoulos, Andreas

    2015-01-01

    Endothelial dysfunction reflects pathophysiological changes in the phenotype and functions of endothelial cells that result from and/or contribute to a plethora of cardiovascular diseases. Here we review the role of hydrogen sulfide (H2S) in the pathogenesis of endothelial dysfunction, one of the fastest advanced and hottest research topics. Conventionally treated as an environment pollutant, H2S is also produced in endothelial cells and participates in the fine regulation of endothelial integrity and functions. Disturbed H2S bioavailability has been suggested to be a novel indicator of the progress and prognosis of endothelial dysfunction. Endothelial dysfunction appears to exhibit in different forms in different pathologies but therapeutics aimed at remedying the altered H2S bioavailability may benefit all. PMID:26071118

  9. [Hypertension, endothelial dysfunction and cardiovascular risk].

    PubMed

    Nitenberg, A

    2006-10-01

    Increased blood pressure induces functional and structural changes of the vascular endothelium. Depression of endothelium-dependant vasodilatation is an early manifestation of endothelial dysfunction due to hypertension. It can be demonstrated by pharmacological or physiological tests. Decreased availability of nitric oxide (NO) is a major determinant of the depression of vasodilatation. It may be caused by a reduction in the activity of NO-endothelial synthase (NOSe) related to: 1) a deficit in substrate (L-arginine), 2) an inhibition by asymmetrical dimethylarginine, 3) a deficit in the cofactor tetrahydrobiopterin (BH4). However, the increase in oxidative stress, a producer of superoxide radicals which combine with NO to form peroxynitrates (ONOO-), is the determining factor. It is related to activation of membranous NAD(P)H oxidases initiated by the stimulation of activating mecanosensors of protein C kinase. The message is amplified by oxidation of BH4 which transforms the NOSe into a producer of superoxide radicals. A cascade of auto-amplification loops leading to atherosclerosis and its complications is then triggered. The superoxide radicals and the peroxynitrates oxidise the LDL-cholesterol. They activate the nuclear factor-kappaB which controls the genes stimulating the expression of many proteins: angiotensinogen and AT1 receptors which stimulate the sympathetic system, receptors of oxidised LDL, adhesion and migration factors (ICAM-1, VCAM-1, E-selectin and MCP-1), pro-inflammatory cytokins (interleukines and TNF-alpha), growth factors (MAP kinases), plasminogen activator inhibitor 1. The monocytes and smooth muscle cells produce metalloproteinases and pro-inflammatory cytokins which destabilise the atheromatous plaque and favourise vascular remodelling. Inshort, the endothelial dysfunction due to hypertension plays a role in a complex physiopathological process and is a marker of future cardiovascular events.

  10. Current status of vascular endothelial growth factor inhibition in age-related macular degeneration.

    PubMed

    Mousa, Shaker A; Mousa, Shaymaa S

    2010-06-01

    Angiogenesis, the process by which new vessels are created from pre-existing vasculature, has become the subject of intense research in recent years. Increased rates of angiogenesis are associated with several disease states, including cancer, age-related macular degeneration (AMD), psoriasis, rheumatoid arthritis, and diabetic retinopathy. Vascular endothelial growth factor (VEGF) is an important modulator of angiogenesis, and has been implicated in the pathology of a number of conditions, including AMD, diabetic retinopathy, and cancer. AMD is a progressive disease of the macula and the third major cause of blindness worldwide. If not treated appropriately, AMD can progress to involve both eyes. Until recently, the treatment options for AMD have been limited, with photodynamic therapy (PDT) the mainstay of treatment. Although PDT is effective at slowing disease progression, it rarely results in improved vision. Several therapies have been or are now being developed for neovascular AMD, with the goal of inhibiting VEGF. These VEGF inhibitors include the RNA aptamer pegaptanib, partial and full-length antibodies ranibizumab and bevacizumab, the VEGF receptor decoy aflibercept, small interfering RNA-based therapies bevasiranib and AGN 211745, sirolimus, and tyrosine kinase inhibitors, including vatalanib, pazopanib, TG 100801, TG 101095, AG 013958, and AL 39324. At present, established therapies have met with great success in reducing the vision loss associated with neovascular AMD, whereas those still under investigation offer the potential for further advances. In AMD patients, these therapies slow the rate of vision loss and in some cases increase visual acuity. Although VEGF-inhibitor therapies are a milestone in the treatment of these disease states, several concerns need to be addressed before their impact can be fully realized. PMID:20210371

  11. Arsenic, reactive oxygen, and endothelial dysfunction.

    PubMed

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health.

  12. Arsenic, reactive oxygen, and endothelial dysfunction.

    PubMed

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health. PMID:25788710

  13. Endothelial dysfunction as a potential contributor in diabetic nephropathy

    PubMed Central

    Nakagawa, Takahiko; Tanabe, Katsuyuki; Croker, Byron P.; Johnson, Richard J.; Grant, Maria B.; Kosugi, Tomoki; Li, Qiuhong

    2013-01-01

    The mechanisms that drive the development of diabetic nephropathy remain undetermined. Only 30–40% of patients with diabetes mellitus develop overt nephropathy, which suggests that other contributing factors besides the diabetic state are required for the progression of diabetic nephropathy. Endothelial dysfunction is associated with human diabetic nephropathy and retinopathy, and advanced diabetic glomerulopathy often exhibits thrombotic microangiopathy, including glomerular capillary microaneurysms and mesangiolysis, which are typical manifestations of endothelial dysfunction in the glomerulus. Likewise, diabetic mice with severe endothelial dysfunction owing to deficiency of endothelial nitric oxide synthase develop progressive nephropathy and retinopathy similar to the advanced lesions observed in humans with diabetes mellitus. Additionally, inhibitors of the renin–angiotensin system fail to be renoprotective in some individuals with diabetic nephropathy (due in part to aldosterone breakthrough) and in some mouse models of the disease. In this Review, we discuss the clinical and experimental evidence that supports a role for endothelial nitric oxide deficiency and subsequent endothelial dysfunction in the progression of diabetic nephropathy and retinopathy. If endothelial dysfunction is the key factor required for diabetic nephropathy, then agents that improve endothelial function or raise intraglomerular nitric oxide level could be beneficial in the treatment of diabetic nephropathy. PMID:21045790

  14. Endothelial dysfunction and angiogenesis in autosomal dominant polycystic kidney disease.

    PubMed

    Fick-Brosnahan, Godela M

    2013-02-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially lethal hereditary disease. The hall mark of the disease is the development of innumerable cysts in kidneys and liver. However, a vascular phenotype including the early occurrence of hypertension, abnormalities in renal blood flow, intracranial and aortic aneurysms, spontaneous coronary and cervicocephalic artery dissections, and dolichoectasias of intracranial arteries is also part of the spectrum of ADPKD. While endothelial dysfunction occurs early in ADPKD and precedes the onset of hypertension, the pathogenesis of endothelial dysfunction has not been extensively studied. Development of endothelial dysfunction in ADPKD (as in other conditions characterized by endothelial dysfunction) has been linked to oxidative stress and vascular inflammation. Vascular dysfunction with increased contraction and decreased relaxation causes downstream tissue ischemia, a potent stimulus for angiogenesis. Evidence of angiogenesis on the surface of renal cysts has been documented in human ADPKD. In addition, high levels of angiogenic growth factors including vascular endothelial growth factor have been reported in cyst fluid and in the circulation of patients with ADPKD. In the following chapter we summarize recent studies examining the role and pathogenesis of endothelial dysfunction and neoangiogenesis in ADPKD. PMID:23971642

  15. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review

    PubMed Central

    Quaranta, Nicola; De Ceglie, Vincenzo; D’Elia, Alessandra

    2016-01-01

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence. PMID:27588164

  16. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review.

    PubMed

    Quaranta, Nicola; De Ceglie, Vincenzo; D'Elia, Alessandra

    2016-04-20

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence.

  17. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review.

    PubMed

    Quaranta, Nicola; De Ceglie, Vincenzo; D'Elia, Alessandra

    2016-04-20

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence. PMID:27588164

  18. Diesel exhaust particles and endothelial cells dysfunction: An update.

    PubMed

    Lawal, A O; Davids, L M; Marnewick, J L

    2016-04-01

    Epidemiological studies have shown a consistent positive correlation between exposure to particulate matter (PM) and increased mortality largely due to increased rates of cardiovascular morbidity and mortality. Diesel exhaust particles (DEPs) are major constituents of atmospheric PM and have been shown to cause disruption of the endothelial cell monolayer integrity, thereby affecting organ functions. Endothelial cells are very active metabolic components of biological tissue that performs a number of important physiological functions. Therefore, anything that compromises the integrity and functions of the endothelium will lead to organ dysfunction and disease. This review focuses on scientific evidence that link DEP exposure to endothelial cell dysfunction in various pathophysiological conditions affecting the cardiovascular system. The various mechanisms involved in the DEP-induced endothelial cell dysfunction are also addressed together with the preventive and therapeutic approaches to overcoming these challenges.

  19. The role of inflammatory cytokines in endothelial dysfunction

    PubMed Central

    Zhang, C.

    2009-01-01

    Clinical and experimental data support a link between endothelial dysfunction and inflammation. Inflammatory cytokines are important protagonists in formation of atherosclerotic plaque, eliciting effects throughout the atherosclerotic vessel. Importantly, the development of atherosclerotic lesions, regardless of the risk factor, e.g., diabetes, hypertension, obesity, is characterized by disruption in normal function of the endothelial cells. Endothelial cells, which line the internal lumen of the vasculature, are part of a complex system that regulates vasodilation and vasoconstriction, growth of vascular smooth muscle cells, inflammation, and hemostasis, maintaining a proper blood supply to tissues and regulating inflammation and coagulation. Current concepts suggest that the earliest event in atherogenesis is endothelial dysfunction, manifested by deficiencies in the production of nitric oxide (NO) and prostacyclin. The focus of this review is to summarize recent evidence showing the effects of inflammation on vascular dysfunction in ischemic-heart disease, which may prompt new directions for targeting inflammation in future therapies. PMID:18600364

  20. Treating Coronary Disease and the Impact of Endothelial Dysfunction

    PubMed Central

    Matsuzawa, Yasushi; Guddeti, Raviteja R.; Kwon, Taek-Geun; Lerman, Lilach O.; Lerman, Amir

    2014-01-01

    Ischemic heart disease is the leading cause of morbidity and mortality throughout the world. Many clinical trials have suggested that lifestyle and pharmacologic interventions are effective in attenuating atherosclerotic disease progression and events development. However, an individualized approach with careful consideration to comprehensive vascular health is necessary to perform successful intervention strategies. Endothelial dysfunction plays a pivotal role in the early stage of atherosclerosis and is also associated with plaque progression and occurrence of atherosclerotic complications. The assessment of endothelial function provides us with important information about individual patient risk, progress and vulnerability of disease, and guidance of therapy. Thus, the application of endothelial function assessment might enable clinicians to innovate ideal individualized medicine. In this review, we summarize the current knowledge on the impact of pharmacological therapies for atherosclerotic cardiovascular disease on endothelial dysfunction, and argue for the utility of non-invasive assessment of endothelial function aiming at individualized medicine. PMID:25459974

  1. Mechanisms of endothelial dysfunction in obstructive sleep apnea.

    PubMed

    Atkeson, Amy; Jelic, Sanja

    2008-01-01

    Endothelial activation and inflammation are important mediators of accelerated atherogenesis and consequent increased cardiovascular morbidity in obstructive sleep apnea (OSA). Repetitive episodes of hypoxia/reoxygenation associated with transient cessation of breathing during sleep in OSA resemble ischemia/reperfusion injury and may be the main culprit underlying endothelial dysfunction in OSA. Additional factors such as repetitive arousals resulting in sleep fragmentation and deprivation and individual genetic susceptibility to vascular manifestations of OSA contribute to impaired endothelial function in OSA. The present review focuses on possible mechanisms that underlie endothelial activation and inflammation in OSA.

  2. Eldecalcitol prevents endothelial dysfunction in postmenopausal osteoporosis model rats.

    PubMed

    Serizawa, Kenichi; Yogo, Kenji; Tashiro, Yoshihito; Takeda, Satoshi; Kawasaki, Ryohei; Aizawa, Ken; Endo, Koichi

    2016-02-01

    Postmenopausal women have high incidence of cardiovascular events as estrogen deficiency can cause endothelial dysfunction. Vitamin D is reported to be beneficial on endothelial function, but it remains controversial whether vitamin D is effective for endothelial dysfunction under the treatment for osteoporosis in postmenopausal women. The aim of this study was to evaluate the endothelial protective effect of eldecalcitol (ELD) in ovariectomized (OVX) rats. ELD (20  ng/kg) was orally administrated five times a week for 4 weeks from 1 day after surgery. After that, flow-mediated dilation (FMD) as an indicator of endothelial function was measured by high-resolution ultrasound in the femoral artery of living rats. ELD ameliorated the reduction of FMD in OVX rats. ELD inhibited the increase in NOX4, nitrotyrosine, and p65 and the decrease in dimer/monomer ratio of nitric oxide synthase in OVX rat femoral arteries. ELD also prevented the decrease in peroxisome proliferator-activated receptor gamma (PPARγ) in femoral arteries and cultured endothelial cells. Although PPARγ is known to inhibit osteoblastogenesis, ELD understandably increased bone mineral density of OVX rats without increase in PPARγ in bone marrow. These results suggest that ELD prevented the deterioration of endothelial function under condition of preventing bone loss in OVX rats. This endothelial protective effect of ELD might be exerted through improvement of endothelial nitric oxide synthase uncoupling, which is mediated by an antioxidative effect through normalization of vascular PPARγ/NF-κB signaling.

  3. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    PubMed

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function/dysfunction

  4. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia.

    PubMed

    Possomato-Vieira, J S; Khalil, R A

    2016-01-01

    Preeclampsia is a pregnancy-related disorder characterized by hypertension and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral, and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension, and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic, and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines, and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103

  5. MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction

    PubMed Central

    Silambarasan, Maskomani; Tan, Jun Rong; Karolina, Dwi Setyowati; Armugam, Arunmozhiarasi; Kaur, Charanjit; Jeyaseelan, Kandiah

    2016-01-01

    Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose) and at various time intervals (6, 12, 24 and 48 h). miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a) to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis. PMID:27070575

  6. MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction.

    PubMed

    Silambarasan, Maskomani; Tan, Jun Rong; Karolina, Dwi Setyowati; Armugam, Arunmozhiarasi; Kaur, Charanjit; Jeyaseelan, Kandiah

    2016-01-01

    Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose) and at various time intervals (6, 12, 24 and 48 h). miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a) to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis. PMID:27070575

  7. Endothelial dysfunction and tendinopathy: how far have we come?

    PubMed

    Papalia, R; Moro, L; Franceschi, F; Albo, E; D'Adamio, S; Di Martino, A; Vadalà, G; Faldini, C; Denaro, V

    2013-12-01

    Symptomatic tendon tears are one of the most important causes of pain and joint dysfunction. Among the intrinsic causes, vascularization recently gained a major role. Endothelial function is indeed a key factor, as well as vascular tone and thrombotic factors, in the regulation of vascular homeostasis and the composition of vascular wall. In this review, we studied systematically whether there is a relationship between endothelial dysfunction and tendinopathy. A literature search was performed using the isolated or combined keywords endothelial dysfunction and tendon,' 'nitric oxide (NO) and tendinopathy,' and 'endothelial dysfunction in tendon healing.' We identified 21 published studies. Of the selected studies, 9 were in vivo studies, 2 focusing on animals and 7 on humans, while 12 reported about in vitro evaluations, where 7 were carried out on humans and 5 on animals. The evidence about a direct relationship between tendinopathy and endothelial dysfunction is still poor. As recent studies have shown, there is no significant improvement in clinical and functional assessments after treatment with NO in patients suffering from tendinopathy in different locations. No significant differences were identified in the outcomes reported for experiment group when compared with controls treated with conventional surgical procedures or rehabilitation programs. Nitric oxide could be a marker to quantify the response of the endothelium to mechanical stress or hypoxia indicating the final balance between vasodilatating and vasoconstricting factors and their effects, but more ad stronger evidence is still needed to fully support this practice. PMID:23907599

  8. Assessment of Endothelial Dysfunction in Childhood Obesity and Clinical Use

    PubMed Central

    Hoymans, Vicky Y.; Van Craenenbroeck, Amaryllis H.; Vissers, Dirk K.; Vrints, Christiaan J.; Conraads, Viviane M.

    2013-01-01

    The association of obesity with noncommunicable diseases, such as cardiovascular complications and diabetes, is considered a major threat to the management of health care worldwide. Epidemiological findings show that childhood obesity is rapidly rising in Western society, as well as in developing countries. This pandemic is not without consequences and can affect the risk of future cardiovascular disease in these children. Childhood obesity is associated with endothelial dysfunction, the first yet still reversible step towards atherosclerosis. Advanced research techniques have added further insight on how childhood obesity and associated comorbidities lead to endothelial dysfunction. Techniques used to measure endothelial function were further brought to perfection, and novel biomarkers, including endothelial progenitor cells, were discovered. The aim of this paper is to provide a critical overview on both in vivo as well as in vitro markers for endothelial integrity. Additionally, an in-depth description of the mechanisms that disrupt the delicate balance between endothelial damage and repair will be given. Finally, the effects of lifestyle interventions and pharmacotherapy on endothelial dysfunction will be reviewed. PMID:23691262

  9. Age-related motor dysfunction and neuropathology in a transgenic mouse model of multiple system atrophy.

    PubMed

    Fernagut, P O; Meissner, W G; Biran, M; Fantin, M; Bassil, F; Franconi, J M; Tison, F

    2014-03-01

    Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by a progressive degeneration of the striatonigral, olivo-ponto-cerebellar, and autonomic systems. Glial cytoplasmic inclusions (GCIs) containing alpha-synuclein represent the hallmark of MSA and are recapitulated in mice expressing alpha-synuclein in oligodendrocytes. To assess if oligodendroglial expression of human wild-type alpha-synuclein in mice (proteolipid promoter, PLP-SYN) could be associated with age-related deficits, PLP-SYN and wild-type mice were assessed for motor function, brain morphometry, striatal levels of dopamine and metabolites, dopaminergic loss, and distribution of GCIs. PLP-SYN displayed age-related impairments on a beam-traversing task. MRI revealed a significantly smaller brain volume in PLP-SYN mice at 12 months, which further decreased at 18 months together with increased volume of ventricles and cortical atrophy. The distribution of GCIs was reminiscent of MSA with a high burden in the basal ganglia. Mild dopaminergic cell loss was associated with decreased dopamine turnover at 18 months. These data indicate that PLP-SYN mice may recapitulate some of the progressive features of MSA and deliver endpoints for the evaluation of therapeutic strategies.

  10. Endothelial dysfunction in inflammatory bowel diseases: Pathogenesis, assessment and implications

    PubMed Central

    Cibor, Dorota; Domagala-Rodacka, Renata; Rodacki, Tomasz; Jurczyszyn, Artur; Mach, Tomasz; Owczarek, Danuta

    2016-01-01

    Endothelial dysfunction is considered one of the etiological factors of inflammatory bowel disease (IBD). An inflammatory process leads to functional and structural changes in the vascular endothelium. An increase of leukocyte adhesiveness and leukocyte diapedesis, as well as an increased vascular smooth muscle tone and procoagulant activity is observed. Structural changes of the vascular endothelium comprise as well capillary and venule remodeling and proliferation of endothelial cells. Hypoxia in the inflammatory area stimulates angiogenesis by up-regulation of vascular endothelial growth factor, fibroblast growth factor and tumor necrosis factor-α. Inflammatory mediators also alter the lymphatic vessel function and impair lymph flow, exacerbating tissue edema and accumulation of dead cells and bacteria. The endothelial dysfunction might be diagnosed by the use of two main methods: physical and biochemical. Physical methods are based on the assessment of large arteries vasodilatation in response to an increased flow and receptors stimulation. Flow-mediated vasodilatation (FMD) is the method that is the most widely used; however, it is less sensitive in detecting early changes of the endothelium function. Most of the studies demonstrated a decrease of FMD in IBD patients but no changes in the carotic intima-media thickness. Biochemical methods of detecting the endothelial dysfunction are based on the assessment of the synthesis of compounds produced both by the normal and damaged endothelium. The endothelial dysfunction is considered an initial step in the pathogenesis of atherosclerosis in the general population. In IBD patients, the risk of cardiovascular diseases is controversial. Large, prospective studies are needed to establish the role of particular medications or dietary elements in the endothelial dysfunction as well to determine the real risk of cardiovascular diseases. PMID:26811647

  11. Prefrontal Cortical GABAergic Dysfunction Contributes to Age-Related Working Memory Impairment

    PubMed Central

    Bañuelos, Cristina; Beas, B. Sofia; McQuail, Joseph A.; Gilbert, Ryan J.; Frazier, Charles J.; Setlow, Barry

    2014-01-01

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions. PMID:24599447

  12. Age-Related Impairments in Object-Place Associations Are Not Due to Hippocampal Dysfunction

    PubMed Central

    Hernandez, Abigail R.; Maurer, Andrew P.; Reasor, Jordan E.; Turner, Sean M.; Barthle, Sarah E.; Johnson, Sarah A.; Burke, Sara N.

    2016-01-01

    Age-associated cognitive decline can reduce an individual’s quality of life. As no single neurobiological deficit can account for the wide spectrum of behavioral impairments observed in old age, it is critical to develop an understanding of how interactions between different brain regions change over the life span. The performance of young and aged animals on behaviors that require the hippocampus and cortical regions to interact, however, has not been well characterized. Specifically, the ability to link a spatial location with specific features of a stimulus, such as object identity, relies on the hippocampus, perirhinal and prefrontal cortices. Although aging is associated with dysfunction in each of these brain regions, behavioral measures of functional change within the hippocampus, perirhinal and prefrontal cortices in individual animals are often not correlated. Thus, how dysfunction of a single brain region within this circuit, such as the hippocampus, impacts behaviors that require communication with the perirhinal and prefrontal cortices remains unknown. To address this question, young and aged rats were tested on the interregion dependent object-place paired association task, as well as a hippocampal-dependent test of spatial reference memory. This particular cohort of aged rats did not show deficits on the hippocampal-dependent task, but were significantly impaired at acquiring object-place associations relative to young. These data suggest that behaviors requiring functional connectivity across different regions of the memory network may be particularly sensitive to aging, and can be used to develop models that will clarify the impact of systems-level dysfunction in the elderly. PMID:26413723

  13. Thy-1 Regulates VEGF-Mediated Choroidal Endothelial Cell Activation and Migration: Implications in Neovascular Age-Related Macular Degeneration

    PubMed Central

    Wang, Haibo; Han, Xiaokun; Kunz, Eric; Hartnett, M. Elizabeth

    2016-01-01

    Purpose This study addresses the hypothesis that age-related stresses upregulate Thy-1 in choroidal endothelial cells (CECs) and contribute to CEC activation and migration, processes important in choroidal neovascularization (CNV). Methods Measurements were made of Thy-1 protein (Western blot) in CECs and Thy-1 mRNA (real time quantitative PCR) in CECs treated with VEGF, CCL11, or PBS or in RPE/choroids from young or old donors or lasered or nonlasered mice. Immunolabeled Thy-1 in ocular sections was compared from young versus old human donor eyes or those with or without neovascular AMD or from lasered versus nonlasered mice. Choroidal endothelial cells transfected with Thy-1 or control siRNA or pretreated with Thy-1 blocking peptide or control were stimulated with VEGF or 7-ketocholesterol (7-KC). Choroidal endothelial cell migration, proliferation, cytoskeletal stress fibers, Rac1 activation, and phosphorylated VEGF receptor 2 (VEGFR2), integrin β3, and Src were measured. Statistics were performed using ANOVA. Results Thy-1 was expressed in retinal ganglion cells and in vascular endothelial-cadherin–labeled choroid and localized to human or mouse laser-induced CNV lesions. Thy-1 protein and mRNA were significantly increased in CECs treated with VEGF or CCL11 and in RPE/choroids from aged versus young donor eyes or from lasered mice versus nonlasered controls. Knockdown or inhibition of Thy-1 in CECs significantly reduced VEGF-induced CEC migration and proliferation, stress fiber formation and VEGFR2, Src, integrin β3 and Rac1 activation, and 7-KC–induced Rac1 and Src activation. Conclusions Thy-1 in CECs regulates VEGF-induced CEC activation and migration and links extracellular 7-KC to intracellular signaling. Future studies elucidating Thy-1 mechanisms in neovascular AMD are warranted. PMID:27768790

  14. Endothelial dysfunction correlates with decompression bubbles in rats.

    PubMed

    Zhang, Kun; Wang, Dong; Jiang, Zhongxin; Ning, Xiaowei; Buzzacott, Peter; Xu, Weigang

    2016-09-12

    Previous studies have documented that decompression led to endothelial dysfunction with controversial results. This study aimed to clarify the relationship between endothelial dysfunction, bubble formation and decompression rate. Rats were subjected to simulated air dives with one of four decompression rates: one slow and three rapid. Bubble formation was detected ultrasonically following decompression for two hours, before measurement of endothelial related indices. Bubbles were found in only rapid-decompressed rats and the amount correlated with decompression rate with significant variability. Serum levels of ET-1, 6-keto-PGF1α, ICAM-1, VCAM-1 and MDA, lung Wet/Dry weight ratio and histological score increased, serum NO decreased following rapid decompression. Endothelial-dependent vasodilatation to Ach was reduced in pulmonary artery rings among rapid-decompressed rats. Near all the above changes correlated significantly with bubble amounts. The results suggest that bubbles may be the causative agent of decompression-induced endothelial damage and bubble amount is of clinical significance in assessing decompression stress. Furthermore, serum levels of ET-1 and MDA may serve as sensitive biomarkers with the capacity to indicate endothelial dysfunction and decompression stress following dives.

  15. Endothelial dysfunction correlates with decompression bubbles in rats.

    PubMed

    Zhang, Kun; Wang, Dong; Jiang, Zhongxin; Ning, Xiaowei; Buzzacott, Peter; Xu, Weigang

    2016-01-01

    Previous studies have documented that decompression led to endothelial dysfunction with controversial results. This study aimed to clarify the relationship between endothelial dysfunction, bubble formation and decompression rate. Rats were subjected to simulated air dives with one of four decompression rates: one slow and three rapid. Bubble formation was detected ultrasonically following decompression for two hours, before measurement of endothelial related indices. Bubbles were found in only rapid-decompressed rats and the amount correlated with decompression rate with significant variability. Serum levels of ET-1, 6-keto-PGF1α, ICAM-1, VCAM-1 and MDA, lung Wet/Dry weight ratio and histological score increased, serum NO decreased following rapid decompression. Endothelial-dependent vasodilatation to Ach was reduced in pulmonary artery rings among rapid-decompressed rats. Near all the above changes correlated significantly with bubble amounts. The results suggest that bubbles may be the causative agent of decompression-induced endothelial damage and bubble amount is of clinical significance in assessing decompression stress. Furthermore, serum levels of ET-1 and MDA may serve as sensitive biomarkers with the capacity to indicate endothelial dysfunction and decompression stress following dives. PMID:27615160

  16. Endothelial dysfunction correlates with decompression bubbles in rats

    PubMed Central

    Zhang, Kun; Wang, Dong; Jiang, Zhongxin; Ning, Xiaowei; Buzzacott, Peter; Xu, Weigang

    2016-01-01

    Previous studies have documented that decompression led to endothelial dysfunction with controversial results. This study aimed to clarify the relationship between endothelial dysfunction, bubble formation and decompression rate. Rats were subjected to simulated air dives with one of four decompression rates: one slow and three rapid. Bubble formation was detected ultrasonically following decompression for two hours, before measurement of endothelial related indices. Bubbles were found in only rapid-decompressed rats and the amount correlated with decompression rate with significant variability. Serum levels of ET-1, 6-keto-PGF1α, ICAM-1, VCAM-1 and MDA, lung Wet/Dry weight ratio and histological score increased, serum NO decreased following rapid decompression. Endothelial-dependent vasodilatation to Ach was reduced in pulmonary artery rings among rapid-decompressed rats. Near all the above changes correlated significantly with bubble amounts. The results suggest that bubbles may be the causative agent of decompression–induced endothelial damage and bubble amount is of clinical significance in assessing decompression stress. Furthermore, serum levels of ET-1 and MDA may serve as sensitive biomarkers with the capacity to indicate endothelial dysfunction and decompression stress following dives. PMID:27615160

  17. Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection.

    PubMed

    Matamales, Miriam; Skrbis, Zala; Hatch, Robert J; Balleine, Bernard W; Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-04-20

    For goal-directed action to remain adaptive, new strategies are required to accommodate environmental changes, a process for which parafascicular thalamic modulation of cholinergic interneurons in the striatum (PF-to-CIN) appears critical. In the elderly, however, previously acquired experience frequently interferes with new learning, yet the source of this effect has remained unexplored. Here, combining sophisticated behavioral designs, cell-specific manipulation, and extensive neuronal imaging, we investigated the involvement of the PF-to-CIN pathway in this process. We found functional alterations of this circuit in aged mice that were consistent with their incapacity to update initial goal-directed learning, resulting in faulty activation of projection neurons in the striatum. Toxicogenetic ablation of CINs in young mice reproduced these behavioral and neuronal defects, suggesting that age-related deficits in PF-to-CIN function reduce the ability of older individuals to resolve conflict between actions, likely contributing to impairments in adaptive goal-directed action and executive control in aging. VIDEO ABSTRACT. PMID:27100198

  18. Modulation of endothelial cell phenotype by physical activity: impact on obesity-related endothelial dysfunction.

    PubMed

    Bender, Shawn B; Laughlin, M Harold

    2015-07-01

    Increased levels of physical activity are associated with reduced cardiovascular disease (CVD) risk and mortality in obesity and diabetes. Available evidence suggests that local factors, including local hemodynamics, account for a significant portion of this CVD protection, and numerous studies have interrogated the therapeutic benefit of physical activity/exercise training in CVD. Less well established is whether basal differences in endothelial cell phenotype between/among vasculatures related to muscle recruitment patterns during activity may account for reports of nonuniform development of endothelial dysfunction in obesity. This is the focus of this review. We highlight recent work exploring the vulnerability of two distinct vasculatures with established differences in endothelial cell phenotype. Specifically, based largely on dramatic differences in underlying hemodynamics, arteries perfusing soleus muscle (slow-twitch muscle fibers) and those perfusing gastrocnemius muscle (fast-twitch muscle fibers) in the rat exhibit an exercise training-like versus an untrained endothelial cell phenotype, respectively. In the context of obesity, therefore, arteries to soleus muscle exhibit protection from endothelial dysfunction compared with vulnerable arteries to gastrocnemius muscle. This disparate vulnerability is consistent with numerous animal and human studies, demonstrating increased skeletal muscle blood flow heterogeneity in obesity coincident with reduced muscle function and exercise intolerance. Mechanistically, we highlight emerging areas of inquiry exploring novel aspects of hemodynamic-sensitive signaling in endothelial cells and the time course of physical activity-associated endothelial adaptations. Lastly, further exploration needs to consider the impact of endothelial heterogeneity on the development of endothelial dysfunction because endothelial dysfunction independently predicts CVD events.

  19. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  20. Endothelial Dysfunction and Amyloid-β-Induced Neurovascular Alterations.

    PubMed

    Koizumi, Kenzo; Wang, Gang; Park, Laibaik

    2016-03-01

    Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the non-selective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca(2+) overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781

  1. Circulating endothelial cells: a new biomarker of endothelial dysfunction in hematological diseases.

    PubMed

    Gendron, Nicolas; Smadja, David M

    2016-08-01

    The endothelium and its integrity are in the center of numerous cardiovascular, pulmonary and tumoral diseases. Several studies identified different circulating cellular sub-populations, which allow a noninvasive exploration of endothelial dysfunction. Furthermore, angiogenesis plays a major role in the biology of benign and malignant hematologic diseases. Among these biomarkers, circulating endothelial cells could be considered as a marker of endothelial injury and/or endothelial activation as well as vascular remodeling, whereas circulating endothelial progenitor cells would be only involved in the vascular regeneration. In the future, the quantification of circulating endothelial cells in many diseases could be a noninvasive biomarker used in diagnosis, prognostic and therapeutic follow-up of lung vasculopathy and/or residual disease of hematological malignancies.

  2. The role of H2S bioavailability in endothelial dysfunction.

    PubMed

    Wang, Rui; Szabo, Csaba; Ichinose, Fumito; Ahmed, Asif; Whiteman, Matthew; Papapetropoulos, Andreas

    2015-09-01

    Endothelial dysfunction (EDF) reflects pathophysiological changes in the phenotype and functions of endothelial cells that result from and/or contribute to a plethora of cardiovascular diseases. We review the role of hydrogen sulfide (H2S) in the pathogenesis of EDF, one of the fastest advancing research topics. Conventionally treated as an environment pollutant, H2S is also produced in endothelial cells and participates in the fine regulation of endothelial integrity and functions. Disturbed H2S bioavailability has been suggested to be a novel indicator of EDF progress and prognosis. EDF manifests in different forms in multiple pathologies, but therapeutics aimed at remedying altered H2S bioavailability may benefit all. PMID:26071118

  3. Modest Visceral Fat Gain Causes Endothelial Dysfunction In Healthy Humans

    PubMed Central

    Romero-Corral, Abel; Sert-Kuniyoshi, Fatima H.; Sierra-Johnson, Justo; Orban, Marek; Gami, Apoor; Davison, Diane; Singh, Prachi; Pusalavidyasagar, Snigdha; Huyber, Christine; Votruba, Susanne; Lopez-Jimenez, Francisco; Jensen, Michael D.; Somers, Virend K.

    2014-01-01

    Objective This study sought to determine the impact of fat gain and its distribution on endothelial function in lean healthy humans. Background Endothelial dysfunction has been identified as an independent predictor of cardiovascular events. Whether fat gain impairs endothelial function is unknown. Methods A randomized controlled study to assess the effects of fat gain on endothelial function. We recruited 43 normal weight healthy volunteers (mean age 29 years; 18 women). Subjects were assigned to gain weight (approximately 4 kg) (n=35) or to maintain weight (n=8). Endothelial function (brachial artery flow mediated dilation -FMD) was measured at baseline, after fat gain (8 weeks) and after weight loss (16 weeks) for fat-gainers and at baseline and follow-up (8 weeks) for weight-maintainers. Body composition was measured by DXA and abdominal CT scans. Results After an average weight gain of 4.1 kg, fat-gainers significantly increased their total, visceral and subcutaneous fat. Blood pressure and overnight polysomnography did not change after fat gain or loss. FMD remained unchanged in weight-maintainers. FMD decreased in fat-gainers (9.1 ± 3% vs. 7.8 ± 3.2%, p =0.003), but recovered to baseline when subjects shed the gained weight. There was a significant correlation between the decrease in FMD and the increase in visceral fat gain (rho = −0.42, p=0.004), but not with subcutaneous fat gain (rho = −0.22, p=0.15). Conclusions In normal weight healthy young subjects, modest fat gain results in impaired endothelial function, even in the absence of changes in blood pressure. Endothelial function recovers after weight loss. Increased visceral rather than subcutaneous fat predicts endothelial dysfunction. PMID:20705223

  4. Microvesicles: potential markers and mediators of endothelial dysfunction

    PubMed Central

    Liu, Ming-Lin; Williams, Kevin Jon

    2016-01-01

    Purpose of review Microvesicles (MVs, also known as microparticles) are small membranous structures that are released from platelets and cells upon activation or during apoptosis. Microvesicles have been found in blood, urine, synovial fluid, extracellular spaces of solid organs, atherosclerotic plaques, tumors, and elsewhere. Here, we focus on new clinical and basic work that implicates MVs as markers and mediators of endothelial dysfunction and hence novel contributors to cardiovascular and other diseases. Recent findings Advances in the detection of MVs and the use of cell type-specific markers to determine their origin have allowed studies that associated plasma concentrations of specific MVs with major types of endothelial dysfunction – namely, inappropriate or maladaptive vascular tone, leukocyte recruitment, and thrombosis. Recent investigations have highlighted microvesicular transport of key biologically active molecules besides tissue factor, such as ligands for pattern-recognition receptors, elements of the inflammasome, and morphogens. Microvesicles generated from human cells under different pathologic circumstances, e.g., during cholesterol loading or exposure to endotoxin, carry different subsets of these molecules and thereby alter endothelial function through several distinct, well-characterized molecular pathways. Summary Clinical and basic studies indicate that MVs may be novel markers and mediators of endothelial dysfunction. This work has advanced our understanding of the development of cardiovascular and other diseases. Opportunites and obstacles to clinical applications are discussed. PMID:22248645

  5. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress

    PubMed Central

    Vairappan, Balasubramaniyan

    2015-01-01

    This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases. PMID:25848469

  6. Cell-based approach for treatment of corneal endothelial dysfunction.

    PubMed

    Okumura, Naoki; Kinoshita, Shigeru; Koizumi, Noriko

    2014-11-01

    Decompensation of the corneal endothelium causes severe visual impairments that lead to blindness. Although corneal transplantation is a well-known effective therapy for corneal endothelial dysfunction, many patients are not afforded that therapeutic opportunity owing to the worldwide shortage of donor corneas. Thus, a tissue engineering-based therapy for treating corneal endothelial dysfunction is highly anticipated. Obstacles associated with the development of tissue engineering therapy include in vitro culture of corneal endothelial cells (CECs) and the techniques used to transplant those cells. Limited proliferation ability, cellular senescence, and fibroblastic transformation during culture are all problems associated with the cultivation of CECs. In addition, transplantation of cultured CECs is technically difficult because the corneal endothelium is composed of a fragile monolayer sheet of cells located at the posterior cornea. In this review article, we present our recent findings using a novel cell culture protocol and show that modulation of CEC adhesion properties through a Rho-kinase inhibitor enables transplantation of CECs in the form of a cell suspension without the use of a carrier. Finally, we provide an update on the clinical application status of a cell-based therapy for treating corneal endothelial dysfunction.

  7. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice

    PubMed Central

    Xu, Suowen; Yin, Meimei; Koroleva, Marina; Mastrangelo, Michael A.; Zhang, Wenbo; Bai, Peter; Little, Peter J.; Jin, Zheng Gen

    2016-01-01

    SIRT6 is an important member of sirtuin family that represses inflammation, aging and DNA damage, three of which are causing factors for endothelial dysfunction. SIRT6 expression is decreased in atherosclerotic lesions from ApoE−/− mice and human patients. However, the role of SIRT6 in regulating vascular endothelial function and atherosclerosis is not well understood. Here we show that SIRT6 protects against endothelial dysfunction and atherosclerosis. Global and endothelium-specific SIRT6 knockout mice exhibited impaired endothelium-dependent vasorelaxation. Moreover, SIRT6+/− haploinsufficient mice fed a high-fat diet (HFD) also displayed impaired endothelium-dependent vasorelaxation. Importantly, SIRT6+/−;ApoE−/− mice after HFD feeding exhibited exacerbated atherosclerotic lesion development, concurrent with increased expression of the proinflammatory cytokine VCAM-1. Loss- and gain-of-SIRT6 function studies in cultured human endothelial cells (ECs) showed that SIRT6 attenuated monocyte adhesion to ECs. RNA-sequencing profiling revealed that SIRT6 overexpression decreased the expression of multiple atherosclerosis-related genes, including proatherogenic gene TNFSF4 (tumor necrosis factor superfamily member 4). Chromatin immunoprecipitation assays showed that SIRT6 decreased TNFSF4 gene expression by binding to and deacetylating H3K9 at TNFSF4 gene promoter. Collectively, these findings demonstrate that SIRT6 play a pivotal role in maintaining endothelial function and increased SIRT6 activity could be a new therapeutic strategy to combat atherosclerotic disease. PMID:27249230

  8. Denture-Related Stomatitis Is Associated with Endothelial Dysfunction

    PubMed Central

    Osmenda, Grzegorz; Nowakowski, Daniel; Wilk, Grzegorz; Maciąg, Anna; Mikołajczyk, Tomasz; Sagan, Agnieszka; Filip, Magdalena; Dróżdż, Mirosław; Guzik, Tomasz J.

    2014-01-01

    Oral inflammation, such as periodontitis, can lead to endothelial dysfunction, accelerated atherosclerosis, and vascular dysfunction. The relationship between vascular dysfunction and other common forms of oral infections such as denture-related stomatitis (DRS) is unknown. Similar risk factors predispose to both conditions including smoking, diabetes, age, and obesity. Accordingly, we aimed to investigate endothelial function and major vascular disease risk factors in 44 consecutive patients with dentures with clinical and microbiological features of DRS (n = 20) and without DRS (n = 24). While there was a tendency for higher occurrence of diabetes and smoking, groups did not differ significantly in respect to major vascular disease risk factors. Groups did not differ in main ambulatory blood pressure, total cholesterol, or even CRP. Importantly, flow mediated dilatation (FMD) was significantly lower in DRS than in non-DRS subjects, while nitroglycerin induced vasorelaxation (NMD) or intima-media thickness (IMT) was similar. Interestingly, while triglyceride levels were normal in both groups, they were higher in DRS subjects, although they did not correlate with either FMD or NMD. Conclusions. Denture related stomatitis is associated with endothelial dysfunction in elderly patients with dentures. This is in part related to the fact that diabetes and smoking increase risk of both DRS and cardiovascular disease. PMID:25045683

  9. Raman microscopy as a novel tool to detect endothelial dysfunction.

    PubMed

    Baranska, Malgorzata; Kaczor, Agnieszka; Malek, Kamilla; Jaworska, Aleksandra; Majzner, Katarzyna; Staniszewska-Slezak, Emilia; Pacia, Marta Z; Zajac, Grzegorz; Dybas, Jakub; Wiercigroch, Ewelina

    2015-08-01

    Raman microscopy, a label-free method with high spatial resolution, shows growing potential in various fields of medical diagnostics. Several proof-of-concept studies related to the application of Raman microscopy to detect endothelial dysfunction are summarized in this work. Both ex vivo measurements of the tissues in the murine models of endothelial pathologies, as well as in vitro investigations of the cell cultures in the context of cellular transport, drug action and inflammation processes are discussed. The future directions in application of Raman spectroscopy-based methods in such studies are also described. PMID:26321275

  10. Age-Related Differences in Cigarette Smoke Extract-Induced H2O2 Production by Lung Endothelial Cells

    PubMed Central

    Downs, Charles A.; Montgomery, David W.; Merkle, Carrie J.

    2011-01-01

    Cigarette smoke causes oxidative stress in the lung resulting in injury and disease. The purpose of this study was to determine if there were age-related differences in cigarette smoke extract (CSE)-induced production of reactive species in single and co-cultures of alveolar epithelial type I (AT I) cells and microvascular endothelial cells harvested from the lungs (MVECLs) of neonatal, young and old male Fischer 344 rats. Cultures of AT I cells and MVECLs grown separately (single culture) and together (co-culture) were exposed to CSE (1, 10, 50, 100%). Cultures were assayed for the production of intracellular reactive oxygen species (ROS), hydroxyl radical (OH·), peroxynitrite (ONOO−), nitric oxide (NO) and extracellular hydrogen peroxide (H2O2). Single and co-cultures of AT I cells and MVECLs from all three ages produced minimal intracellular ROS in response to CSE. All ages of MVECLs produced H2O2 in response to CSE, but young MVECLs produced significantly less H2O2 compared to neonatal and old MVECLs. Interestingly, when grown as a co-culture with age-matched AT I cells, neonatal and old MVECLs demonstrated ~50% reduction in H2O2 production in response to CSE. However, H2O2 production in young MVECLs grown as a co-culture with young AT I cells did not change with CSE exposure. To begin investigating for a potential mechanism to explain the reduction in H2O2 production in the co-cultures, we evaluated single and co-cultures for extracellular total antioxidant capacity. We also performed gene expression profiling specific to oxidant and anti-oxidant pathways. The total antioxidant capacity of the AT I cell supernatant was ~5 times greater than that of the MVECLs, and when grown as a co-culture and exposed to CSE (≥ 10%), the total antioxidant capacity of the supernatant was reduced by ~50 %. There were no age-related differences in total antioxidant capacity of the cell supernatants. Gene expression profiling found eight genes to be significantly up

  11. Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells

    PubMed Central

    Whitmore, S. Scott; Braun, Terry A.; Skeie, Jessica M.; Haas, Christine M.; Sohn, Elliott H.; Stone, Edwin M.; Scheetz, Todd E.

    2013-01-01

    Purpose Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. Methods Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. Results Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = –2.61; raw p value=0.0008). Conclusions GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker

  12. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels. PMID:26571019

  13. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  14. Relationship between endothelial dysfunction and microalbuminuria in familial Mediterranean fever

    PubMed Central

    Güneş, Hakan; Kıvrak, Tarık; Tatlısu, Mustafa; Kaya, Hakkı; Yılmaz, Mehmet Birhan

    2016-01-01

    Objective The aim of our study is to investigate the relationship between microalbuminuria and flow-mediated dilatation in familial Mediterranean fever (FMF) patients. Material and Methods In our study, there were two groups consisting of 54 patients who were out of the attack period (43 of whom had no microalbuminuria and 11 of whom had microalbuminuria) and 40 healthy controls (M/F: 12/28). Results There was no statistically difference between patient and control groups’age (25.06±8.07, 22.89±6.00 years, respectively). Flow-mediated dilatation (FMD) percentages were significantly different between the three groups (p=0.01). It was observed that there was a correlation between microalbuminuria and FMD percentage. Conclusion Endothelial dysfunction and renal damage occurred as a result of low-grade chronic inflammation. Microalbuminuria, which is the indicator of renal damage and endothelial dysfunction, and FMD show that endothelial functions can be used in the following of early detection of renal damage and endothelial functions in FMF patients.

  15. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    PubMed Central

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  16. Reversibility of endothelial dysfunction in diabetes: role of polyphenols.

    PubMed

    Suganya, N; Bhakkiyalakshmi, E; Sarada, D V L; Ramkumar, K M

    2016-07-01

    The endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis. PMID:27264638

  17. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    SciTech Connect

    Lin, Ming-Chung; Chen, Chia-Ling; Yang, Tsan-Tzu; Choi, Pui-Ching; Hsing, Chung-Hsi; Lin, Chiou-Feng

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  18. Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction.

    PubMed

    Wang, Ting; Green, Linden A; Gupta, Samir K; Kim, Chul; Wang, Liang; Almodovar, Sharilyn; Flores, Sonia C; Prudovsky, Igor A; Jolicoeur, Paul; Liu, Ziyue; Clauss, Matthias

    2014-01-01

    With effective antiretroviral therapy (ART), cardiovascular diseases (CVD) are emerging as a major cause of morbidity and death in the aging HIV-infected population. To address whether HIV-Nef, a viral protein produced in infected cells even when virus production is halted by ART, can lead to endothelial activation and dysfunction, we tested Nef protein transfer to and activity in endothelial cells. We demonstrated that Nef is essential for major endothelial cell activating effects of HIV-infected Jurkat cells when in direct contact with the endothelium. In addition, we found that Nef protein in endothelial cells is sufficient to cause apoptosis, ROS generation and release of monocyte attractant protein-1 (MCP-1). The Nef protein-dependent endothelial activating effects can be best explained by our observation that Nef protein rapidly transfers from either HIV-infected or Nef-transfected Jurkat cells to endothelial cells between these two cell types. These results are of in vivo relevance as we demonstrated that Nef protein induces GFP transfer from T cells to endothelium in CD4.Nef.GFP transgenic mice and Nef is present in chimeric SIV-infected macaques. Analyzing the signal transduction effects of Nef in endothelial cells, we found that Nef-induced apoptosis is mediated through ROS-dependent mechanisms, while MCP-1 production is NF-kB dependent. Together, these data indicate that inhibition of Nef-associated pathways may be promising new therapeutic targets for reducing the risk for cardiovascular disease in the HIV-infected population.

  19. Endothelial dysfunction in patients with sudden sensorineural hearing loss

    PubMed Central

    Berjis, Nezamoddin; Moeinimehr, Maryam; Hashemi, Seyyed Mostafa; Hashemi, Seyyed Mohammad; Bakhtiari, Elham Khosravi; Nasiri, Safoura

    2016-01-01

    Background: Endothelial dysfunction probably has a role in the etiology of sudden sensorineural hearing loss (SSNHL). The aim of this study was determining of the relationship between endothelial dysfunction and SSNHL. Materials and Methods: In a case–control study, 30 patients with SSNHL and 30 otherwise healthy age and sex-matched controls were studied. Demographic data gathered included age, gender, family history of SSNHL, and history of smoking, cardiovascular disease, hypertension, diabetes, and dyslipidemia. Laboratory data included measurement of hemoglobin, fasting blood sugar (FBS) and lipid profile. Endothelial function was assessed by measuring flow-mediated dilation (FMD). Results: The two groups were the same in age (47.9 ± 9.3 and 48.1 ± 9.6 years, P = 0.946) with female/male ratio of 1:1 in both groups. Diabetes and dyslipidemia were more frequent in patients than controls (20% vs. 0%, P = 0.024). Brachial artery diameter was greater in patients than controls before (4.24 ± 0.39 vs. 3.84 ± 0.23 mm, P < 0.001) and after ischemia (4.51 ± 0.43 vs. 4.28 ± 0.27 mm, P = 0.020), but FMD was lower in patients than controls (6.21 ± 3.0 vs. 11.52 ± 2.30%, P < 0.001). Binary logistic regression analysis showed that FMD was associated with SSNHL independent from FBS and lipid profile (odds ratio [95% confidence interval] =0.439 [0.260–0.740], P = 0.002). Conclusion: Endothelial dysfunction, among other cardiovascular risk factors, is associated with SSNHL. This association is independent from other cardiovascular risk factors including diabetes and dyslipidemia. PMID:26955626

  20. Hypothyroidism Is Associated With Coronary Endothelial Dysfunction in Women

    PubMed Central

    Sara, Jaskanwal D; Zhang, Ming; Gharib, Hossein; Lerman, Lilach O; Lerman, Amir

    2015-01-01

    Background Hypothyroidism is associated with an increased risk of coronary artery disease, beyond that which can be explained by its association with conventional cardiovascular risk factors. Coronary endothelial dysfunction precedes atherosclerosis, has been linked to adverse cardiovascular events, and may account for some of the increased risk in patients with hypothyroidism. The aim of this study was to determine whether there is an association between epicardial and microvascular coronary endothelial dysfunction and hypothyroidism. Methods and Results In 1388 patients (mean age 50.5 [12.3] years, 34% male) presenting with stable chest pain to Mayo Clinic, Rochester, MN for diagnostic coronary angiography, and who were found to have nonobstructive coronary artery disease (<40% stenosis), we invasively assessed coronary artery endothelial-dependent microvascular and epicardial function by evaluating changes in coronary blood flow (% Δ CBF Ach) and diameter (% Δ CAD Ach), respectively, in response to intracoronary infusions of acetylcholine. Patients were divided into 2 groups: hypothyroidism, defined as a documented history of hypothyroidism or a thyroid-stimulating hormone (TSH) >10.0 mU/mL, n=188, and euthyroidism, defined as an absence of a history of hypothyroidism in the clinical record and/or 0.3endothelial dysfunction, even after adjusting for confounders, and may explain some of the increased risk of cardiovascular disease in these patients. PMID:26224049

  1. Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice.

    PubMed

    Gamez-Mendez, Ana María; Vargas-Robles, Hilda; Ríos, Amelia; Escalante, Bruno

    2015-01-01

    Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine in isolated hearts from obese mice showed increased vasoconstriction and reduced vasodilation responses compared with control mice. Vascular nitric oxide assessed in situ with DAF-2 DA showed diminished levels in coronary arteries from obese mice in both basal and acetylcholine-stimulated conditions. Also, released prostacyclin was decreased in heart perfusates from obese mice, along with plasma tetrahydrobiopterin level and endothelium nitric oxide synthase dimer/monomer ratio. Obesity increased thromboxane A2 synthesis and oxidative stress evaluated by superoxide and peroxynitrite levels, compared with control mice. Obese mice treated with apocynin, a NADPH oxidase inhibitor, reversed all parameters to normal levels. These results suggest that after 8 weeks on a high-fat diet, the increase in oxidative stress lead to imbalance in vasoactive substances and consequently to endothelial dysfunction in coronary arteries.

  2. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    PubMed

    McCarthy, Cathal; Kenny, Louise C

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  3. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia

    PubMed Central

    McCarthy, Cathal; Kenny, Louise C.

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  4. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease

    PubMed Central

    Goveia, Jermaine; Stapor, Peter; Carmeliet, Peter

    2014-01-01

    The endothelium is the orchestral conductor of blood vessel function. Pathological blood vessel formation (a process termed pathological angiogenesis) or the inability of endothelial cells (ECs) to perform their physiological function (a condition known as EC dysfunction) are defining features of various diseases. Therapeutic intervention to inhibit aberrant angiogenesis or ameliorate EC dysfunction could be beneficial in diseases such as cancer and cardiovascular disease, respectively, but current strategies have limited efficacy. Based on recent findings that pathological angiogenesis and EC dysfunction are accompanied by EC-specific metabolic alterations, targeting EC metabolism is emerging as a novel therapeutic strategy. Here, we review recent progress in our understanding of how EC metabolism is altered in disease and discuss potential metabolic targets and strategies to reverse EC dysfunction and inhibit pathological angiogenesis. PMID:25063693

  5. Analysis of vascular endothelial dysfunction genes and related pathways in obesity through systematic bioinformatics.

    PubMed

    Zhang, Hui; Wang, Jing; Sun, Ling; Xu, Qiuqin; Hou, Miao; Ding, Yueyue; Huang, Jie; Chen, Ye; Cao, Lei; Zhang, Jianmin; Qian, Weiguo; Lv, Haitao

    2015-01-01

    Obesity has become an increasingly serious health problem and popular research topic. It is associated with many diseases, especially cardiovascular disease (CVD)-related endothelial dysfunction. This study analyzed genes related to endothelial dysfunction and obesity and then summarized their most significant signaling pathways. Genes related to vascular endothelial dysfunction and obesity were extracted from a PubMed database, and analyzed by STRING, DAVID, and Gene-Go Meta-Core software. 142 genes associated with obesity were found to play a role in endothelial dysfunction in PubMed. A significant pathway (Angiotensin system maturation in protein folding and maturation) associated with obesity and endothelial dysfunction was explored. The genes and the pathway explored may play an important role in obesity. Further studies about preventing vascular endothelial dysfunction obesity should be conducted through targeting these loci and pathways.

  6. The role of BMPs in endothelial cell function and dysfunction.

    PubMed

    Dyer, Laura A; Pi, Xinchun; Patterson, Cam

    2014-09-01

    The bone morphogenetic protein (BMP) family of proteins has a multitude of roles throughout the body. In embryonic development, BMPs promote endothelial specification and subsequent venous differentiation. The BMP pathway also plays important roles in the adult vascular endothelium, promoting angiogenesis and mediating shear and oxidative stress. The canonical BMP pathway functions through the Smad transcription factors; however, other intracellular signaling cascades can be activated, and receptor complexes beyond the traditional type I and type II receptors add additional layers of regulation. Dysregulated BMP signaling has been linked to vascular diseases including pulmonary hypertension and atherosclerosis. This review addresses recent advances in the roles of BMP signaling in the endothelium and how BMPs affect endothelial dysfunction and human disease. PMID:24908616

  7. Blood flow and arterial endothelial dysfunction: Mechanisms and implications

    NASA Astrophysics Data System (ADS)

    Barakat, Abdul I.

    2013-06-01

    The arterial endothelium exquisitely regulates vascular function, and endothelial dysfunction plays a critical role in the development of atherosclerosis. Atherosclerotic lesions develop preferentially at arterial branches and bifurcations where the blood flow is disturbed. Understanding the basis for this observation requires elucidating the effects of blood flow on the endothelial cell (EC) function. The goal of this review is: (1) to describe our current understanding of the relationships between arterial blood flow and atherosclerosis, (2) to present the wide array of flow-induced biological responses in ECs, and (3) to discuss the mechanisms by which ECs sense, transmit, and transduce flow-derived mechanical forces. We conclude by presenting some future perspectives in the highly interdisciplinary field of EC mechanotransduction.

  8. Experimental Sleep Restriction Causes Endothelial Dysfunction in Healthy Humans

    PubMed Central

    Calvin, Andrew D.; Covassin, Naima; Kremers, Walter K.; Adachi, Taro; Macedo, Paula; Albuquerque, Felipe N.; Bukartyk, Jan; Davison, Diane E.; Levine, James A.; Singh, Prachi; Wang, Shihan; Somers, Virend K.

    2014-01-01

    Background Epidemiologic evidence suggests a link between short sleep duration and cardiovascular risk, although the nature of any relationship and mechanisms remain unclear. Short sleep duration has also been linked to an increase in cardiovascular events. Endothelial dysfunction has itself been implicated as a mediator of heightened cardiovascular risk. We sought to determine the effect of 8 days/8 nights of partial sleep restriction on endothelial function in healthy humans. Methods and Results Sixteen healthy volunteers underwent a randomized study of usual sleep versus sleep restriction of two‐thirds normal sleep time for 8 days/8 nights in a hospital‐based clinical research unit. The main outcome was endothelial function measured by flow‐mediated brachial artery vasodilatation (FMD). Those randomized to sleep restriction slept 5.1 hours/night during the experimental period compared with 6.9 hours/night in the control group. Sleep restriction was associated with significant impairment in FMD (8.6±4.6% during the initial pre‐randomization acclimation phase versus 5.2±3.4% during the randomized experimental phase, P=0.01) whereas no change was seen in the control group (5.0±3.0 during the acclimation phase versus 6.73±2.9% during the experimental phase, P=0.10) for a between‐groups difference of −4.40% (95% CI −7.00 to −1.81%, P=0.003). No change was seen in non‐flow mediated vasodilatation (NFMD) in either group. Conclusion In healthy individuals, moderate sleep restriction causes endothelial dysfunction. Clinical Trial Registration URL: ClinicalTrials.gov. Unique identifier: NCT01334788. PMID:25424573

  9. Descemet stripping and endothelial keratoplasty in endothelial dysfunctions: Three-month results in 75 eyes

    PubMed Central

    2008-01-01

    Purpose: To analyze the results of Descemet stripping and endothelial keratoplasty (DSEK) in the first consecutive 75 cases. Materials and Methods: Prospective, non-randomized, non-comparative interventional case series. Seventy- five eyes of 75 patients with endothelial dysfunctions of different etiology, scheduled for DSEK, were included in this study. Healthy donor cornea with a cell count of >2000 cells/sq mm was considered for transplantation in each case. Indications, operative problems and postoperative complications were noted. Best corrected visual acuity (BCVA), refractive and keratometric astigmatism, central corneal thickness (CCT) and endothelial cell density (ECD) were analyzed for each patient after a minimum follow-up of three months. Results: Main indication was pseudophakic corneal edema and bullous keratopathy in 53 (70.7%) eyes. Seventeen (22.7%) cases had moderate to severe Fuchs′ dystrophy with various grades of cataract; and DSEK was combined with manual small-incision cataract surgery (MSICS) with posterior chamber intraocular lens (PCIOL) in those cases. After three months, BCVA was 20/60 or better in 62 (82.7%) cases. Mean refractive and keratometric astigmatism were 1.10 ± 0.55 diopter cylinder (DCyl) and 1.24 ± 0.92 DCyl. The CCT and ECD were 670.8 ± 0.32 µm and 1485.6 ± 168.6/sq mm respectively. The mean endothelial cell loss after three months was 26.8 ± 4.24% (range: 13.3-38.4%). Dislocation of donor lenticule occurred in six (8.0%) eyes. Graft failure occurred in one case. Conclusions: Descemet stripping and endothelial keratoplasty is a safe and effective procedure in patients with endothelial dysfunctions with encouraging surgical and visual outcomes. It can be safely combined with MSICS with PCIOL in patients with moderate to severe Fuchs′ dystrophy with cataract. PMID:18579987

  10. ADMA Levels Correlate with Proteinuria, Secondary Amyloidosis, and Endothelial Dysfunction

    PubMed Central

    Yilmaz, Mahmut Ilker; Sonmez, Alper; Saglam, Mutlu; Qureshi, Abdul R.; Carrero, Juan Jesus; Caglar, Kayser; Eyileten, Tayfun; Cakir, Erdinc; Oguz, Yusuf; Vural, Abdulgaffar; Yenicesu, Mujdat; Lindholm, Bengt; Stenvinkel, Peter; Axelsson, Jonas

    2008-01-01

    Asymmetric dimethyl-arginine (ADMA), a residue of the proteolysis of arginine-methylated proteins, is a potent inhibitor of nitric oxide synthesis. The increased protein turnover that accompanies proteinuric secondary amyloidosis may increase circulating levels of ADMA, and this may contribute to endothelial dysfunction. We performed a cross-sectional study of 121 nondiabetic proteinuric patients with normal GFR (including 39 patients with nephrotic-range proteinuria and secondary amyloidosis) and 50 age-, sex-, and BMI–matched healthy controls. The proteinuric patients had higher levels of serum ADMA, symmetric dimethyl-arginine (SDMA), high-sensitivity C-reactive protein (hsCRP), and insulin resistance (homeostasis model assessment index) than controls. Compared with controls, brachial artery flow-mediated dilatation (FMD), serum L-Arginine, and the L-Arginine/ADMA ratio were significantly lower among proteinuric patients, suggesting greater endothelial dysfunction. When patients with secondary amyloidosis were compared with patients with glomerulonephritis who had similar levels of proteinuria, those with amyloidosis had higher ADMA and SDMA levels and lower L-Arginine/ADMA ratios and FMD measurements (P < 0.001 for all). Finally, even after adjusting for confounders, ADMA level correlated with both proteinuria and the presence of secondary amyloidosis, and was an independent predictor of FMD. We propose that ADMA synthesis may be increased in chronic kidney disease, especially in secondary amyloidosis, and this may explain part of the mechanism by which proteinuria increases cardiovascular morbidity and mortality. PMID:18199801

  11. Exercise training reverses endothelial dysfunction in nonalcoholic fatty liver disease.

    PubMed

    Pugh, Christopher J A; Spring, Victoria S; Kemp, Graham J; Richardson, Paul; Shojaee-Moradie, Fariba; Umpleby, A Margot; Green, Daniel J; Cable, N Timothy; Jones, Helen; Cuthbertson, Daniel J

    2014-11-01

    Nonalcoholic fatty liver disease (NAFLD) is an independent risk factor for cardiovascular disease (CVD). Endothelial dysfunction is an early manifestation of atherosclerosis and an important prognostic marker for future cardiovascular events. The aim of this study was twofold: to examine 1) the association between liver fat, visceral adipose tissue (VAT), and endothelial dysfunction in obese NAFLD patients and 2) the impact of supervised exercise training on this vascular defect. Brachial artery endothelial function was assessed by flow-mediated dilatation (FMD) in 34 obese NAFLD patients and 20 obese controls of similar age and cardiorespiratory fitness [peak oxygen uptake (V̇o2 peak)] (48 ± 2 vs. 47 ± 2 yr; 27 ± 1 vs. 26 ± 2 ml·kg−1·min−1−1). Magnetic resonance imaging and spectroscopy quantified abdominal and liver fat, respectively. Twenty-one NAFLD patients completed either 16 wk of supervised moderate-intensity exercise training (n = 13) or conventional care (n = 8). Differences between NAFLD and controls were compared using independent t-tests and effects of interventions by analysis of covariance. NAFLD patients had higher liver fat [11.6% (95% CI = 7.4, 18.1), P < 0.0005] and VAT [1.6 liters (95% CI = 1.2, 2.0), P < 0.0001] than controls and exhibited impaired FMD compared with controls [−3.6% (95% CI = −4.9, −2.2), P < 0.0001]. FMD was inversely correlated with VAT (r = −0.54, P = 0.001) in NAFLD, although the impairment in FMD remained following covariate adjustment for VAT [3.1% (95% CI = 1.8, 4.5), P < 0.001]. Exercise training, but not conventional care, significantly improved V̇o2 peak [9.1 ml·kg−1·min−1 (95% CI = 4.1, 14.1); P = 0.001] and FMD [3.6% (95% CI = 1.6, 5.7), P = 0.002]. Endothelial dysfunction in NAFLD cannot be fully explained by excess VAT but can be reversed with exercise training; this has potential implications for the primary prevention of CVD in NAFLD.

  12. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches.

    PubMed

    Park, Kyoung-Ha; Park, Woo Jung

    2015-09-01

    Atherosclerosis is a chronic progressive vascular disease. It starts early in life, has a long asymptomatic phase, and a progression accelerated by various cardiovascular risk factors. The endothelium is an active inner layer of the blood vessel. It generates many factors that regulate vascular tone, the adhesion of circulating blood cells, smooth muscle proliferation, and inflammation, which are the key mechanisms of atherosclerosis and can contribute to the development of cardiovascular events. There is growing evidence that functional impairment of the endothelium is one of the first recognizable signs of development of atherosclerosis and is present long before the occurrence of atherosclerotic cardiovascular disease. Therefore, understanding the endothelium's central role provides not only insights into pathophysiology, but also a possible clinical opportunity to detect early disease, stratify cardiovascular risk, and assess response to treatments. In the present review, we will discuss the clinical implications of endothelial function as well as the therapeutic issues for endothelial dysfunction in cardiovascular disease as primary and secondary endothelial therapy.

  13. Haemodynamical variables versus endothelial hormones in hypertensive and type 2 diabetic patients with endothelial dysfunction.

    PubMed

    Fouillioux, Christian; Contreras, Freddy; Lares, Mary; Magaldi, Luis; Velasco, Manuel; La Mayda, Claudia; Pacheco, Betsy; Rojas, Joselyn; Chacín, Maricarmen; Cano, Raquel; Gotera, Daniela; Bermúdez, Valmore

    2010-01-01

    Leptin is a 167 aminoacid peptidic hormone secreted by adipose tissue. It works mainly in the hypothalamus at thirst signal, but given its closed connections with inflammatory and endothelial systems, also has been postulated that it may exert a regulatory control over blood pressure (BP), interacting with nitric oxide (NO) and C reactive protein (CRP). The cold pressor test (CPT) is a simple test that indirectly determines endothelial dysfunction. In this work, biochemical indicators (CRP, leptin, and NO) and hemodynamic indicators (systolic and diastolic BP) were performed and evaluated in hypertensive, type 2 diabetic, and control subjects during a single CPT for assessment of endothelial dysfunction. A total of 43 subjects, males and females aged 25 to 60 years and divided in three groups, 15 healthy volunteers, 13 hypertensive patients, and 15 patients with type 2 diabetes, were included in the study. A complete clinical history was obtained from each subject, and a complete physical examination, including an electrocardiogram was carried out. During the assay of 30 minutes, 0.9% saline was infused intravenously. CPT was performed to assess the cardiovascular reactivity at minute 15. The cardiovascular variables (systolic and diastolic BP) were measured in minute 0, 16, and 30. In addition, serum variables were obtained at the beginning and at the end of the experiment, and statistical analysis was performed. CPT caused in all subjects a significant increase of BP and pulse. There were no significant differences to CPR and leptin in any group, although we observed significant differences for NO (P < 0.05). Sensitivity and specificity for all biochemical variables resulted in nonsignificant statistical or clinical importance as markers of endothelial dysfunction; however, a positive association was found when leptin and NO were evaluated together (sensitivity: 0.2; specificity. 0.8). CRP, leptin, and NO did not shown any direct and significant association with

  14. Involvement of Rho-kinase in experimental vascular endothelial dysfunction.

    PubMed

    Shah, Dhvanit I; Singh, Manjeet

    2006-02-01

    The present study has been designed to investigate the effect of fasudil (Rho-kinase inhibitor) in diabetes mellitus (DM) and hyperhomocyteinemia (HHcy) induced vascular endothelial dysfunction (VED). Streptozotocin (55 mg kg(-1), i.v., once only) and methionine (1.7% w/w, p.o., daily for 4 weeks) were administered to rats to produce DM (serum glucose >140 mg dl(-1)) and HHcy (serum homocysteine >10 microM) respectively. VED was assessed using isolated aortic ring, electron microscopy of thoracic aorta, and serum concentration of nitrite/nitrate. Serum thiobarbituric acid reactive substances (TBARS) concentration was estimated to assess oxidative stress. Atorvastatin has been employed in the present study as standard agent to improve vascular endothelial dysfunction. Fasudil (15 mg kg(-1) and 30 mg kg(-1), p.o., daily) and atorvastatin (30 mg kg(-1), p.o., daily) treatments significantly attenuated increase in serum glucose and homocysteine but their concentrations remained markedly higher than sham control value. Fasudil and atorvastatin treatments markedly prevented DM and HHcy-induced (i) attenuation of acetylcholine induced endothelium-dependent relaxation, (ii) impairment of vascular endothelial lining, (iii) decrease in serum nitrite/nitrate concentration, and (iv) increase in serum TBARS. It may be concluded that fasudil prevented DM and HHcy-induced VED partially by decreasing serum glucose and homocysteine concentration due to inhibition of Rho-kinase. Moreover, inhibition of Rho-kinase by fasudil and consequent prevention of oxidative stress may have directly improved VED in diabetic and hyperhomocysteinemic rats. The Rho-kinase appears to be a pivotal target site involved in DM and HHcy-induced VED. PMID:16444602

  15. Development of novel arginase inhibitors for therapy of endothelial dysfunction.

    PubMed

    Steppan, Jochen; Nyhan, Daniel; Berkowitz, Dan E

    2013-09-17

    Endothelial dysfunction and resulting vascular pathology have been identified as an early hallmark of multiple diseases, including diabetes mellitus. One of the major contributors to endothelial dysfunction is a decrease in nitric oxide (NO) bioavailability, impaired NO signaling, and an increase in the amount of reactive oxygen species (ROS). In the endothelium NO is produced by endothelial nitric oxide synthase (eNOS), for which l-arginine is a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes l-arginine, thereby directly competing with eNOS for their common substrate and constraining its bioavailability for eNOS, thereby compromising NO production. Arginase expression and activity is upregulated in many cardiovascular diseases including ischemia reperfusion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since the 1990s, specific arginase inhibitors such as N-hydroxy-guanidinium or N-hydroxy-nor-l-arginine, and boronic acid derivatives, such as, 2(S)-amino-6-boronohexanoic acid, and S-(2-boronoethyl)-l-cysteine, that can bridge the binuclear manganese cluster of arginase have been developed. These highly potent and specific inhibitors can now be used to probe arginase function and thereby modulate the redox milieu of the cell by changing the balance between NO and ROS. Inspired by this success, drug discovery programs have recently led to the identification of α-α-disubstituted amino acid based arginase inhibitors [such as (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid], that are currently under early investigation as therapeutics. Finally, some investigators concentrate on identification of plant derived compounds with arginase inhibitory capability, such as piceatannol-3'-O-β-d-glucopyranoside (PG). All of these synthesized or naturally derived small molecules may represent novel therapeutics for vascular disease particularly that associated with diabetes.

  16. Development of Novel Arginase Inhibitors for Therapy of Endothelial Dysfunction

    PubMed Central

    Steppan, Jochen; Nyhan, Daniel; Berkowitz, Dan E.

    2013-01-01

    Endothelial dysfunction and resulting vascular pathology have been identified as an early hallmark of multiple diseases, including diabetes mellitus. One of the major contributors to endothelial dysfunction is a decrease in nitric oxide (NO) bioavailability, impaired NO signaling, and an increase in the amount of reactive oxygen species (ROS). In the endothelium NO is produced by endothelial nitric oxide synthase (eNOS), for which l-arginine is a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes l-arginine, thereby directly competing with eNOS for their common substrate and constraining its bioavailability for eNOS, thereby compromising NO production. Arginase expression and activity is upregulated in many cardiovascular diseases including ischemia reperfusion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since the 1990s, specific arginase inhibitors such as N-hydroxy-guanidinium or N-hydroxy-nor-l-arginine, and boronic acid derivatives, such as, 2(S)-amino-6-boronohexanoic acid, and S-(2-boronoethyl)-l-cysteine, that can bridge the binuclear manganese cluster of arginase have been developed. These highly potent and specific inhibitors can now be used to probe arginase function and thereby modulate the redox milieu of the cell by changing the balance between NO and ROS. Inspired by this success, drug discovery programs have recently led to the identification of α–α-disubstituted amino acid based arginase inhibitors [such as (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid], that are currently under early investigation as therapeutics. Finally, some investigators concentrate on identification of plant derived compounds with arginase inhibitory capability, such as piceatannol-3′-O-β-d-glucopyranoside (PG). All of these synthesized or naturally derived small molecules may represent novel therapeutics for vascular disease particularly that associated with diabetes. PMID:24062745

  17. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells.

    PubMed

    Headley, Colwyn A; DiSilvestro, David; Bryant, Kelsey E; Hemann, Craig; Chen, Chun-An; Das, Amlan; Ziouzenkova, Ouliana; Durand, Grégory; Villamena, Frederick A

    2016-03-15

    Hyperglycemia has been implicated in the development of endothelial dysfunction through heightened ROS production. Since nitrones reverse endothelial nitric oxide synthase (eNOS) dysfunction, increase antioxidant enzyme activity, and suppress pro-apoptotic signaling pathway and mitochondrial dysfunction from ROS-induced toxicity, the objective of this study was to determine whether nitrone spin traps DMPO, PBN and PBN-LA were effective at duplicating these effects and improving glucose uptake in an in vitro model of hyperglycemia-induced dysfunction using bovine aortic endothelial cells (BAEC). BAEC were cultured in DMEM medium with low (5.5mM glucose, LG) or high glucose (50mM, HG) for 14 days to model in vivo hyperglycemia as experienced in humans with metabolic disease. Improvements in cell viability, intracellular oxidative stress, NO and tetrahydrobiopterin (BH4)​ levels, mitochondrial membrane potential, glucose transport, and activity of antioxidant enzymes were measured from single treatment of BAEC with nitrones for 24h after hyperglycemia. Chronic hyperglycemia significantly increased intracellular ROS by 50%, decreased cell viability by 25%, reduced NO bioavailability by 50%, and decreased (BH4) levels by 15% thereby decreasing NO production. Intracellular glucose transport and superoxide dismutase (SOD) activity were also decreased by 50% and 25% respectively. Nitrone (PBN and DMPO, 50 μM) treatment of BAEC grown in hyperglycemic conditions resulted in the normalization of outcome measures except for SOD and catalase activities. Our findings demonstrate that the nitrones reverse the deleterious effects of hyperglycemia in BAEC. We believe that in vivo testing of these nitrone compounds in models of cardiometabolic disease is warranted.

  18. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells.

    PubMed

    Headley, Colwyn A; DiSilvestro, David; Bryant, Kelsey E; Hemann, Craig; Chen, Chun-An; Das, Amlan; Ziouzenkova, Ouliana; Durand, Grégory; Villamena, Frederick A

    2016-03-15

    Hyperglycemia has been implicated in the development of endothelial dysfunction through heightened ROS production. Since nitrones reverse endothelial nitric oxide synthase (eNOS) dysfunction, increase antioxidant enzyme activity, and suppress pro-apoptotic signaling pathway and mitochondrial dysfunction from ROS-induced toxicity, the objective of this study was to determine whether nitrone spin traps DMPO, PBN and PBN-LA were effective at duplicating these effects and improving glucose uptake in an in vitro model of hyperglycemia-induced dysfunction using bovine aortic endothelial cells (BAEC). BAEC were cultured in DMEM medium with low (5.5mM glucose, LG) or high glucose (50mM, HG) for 14 days to model in vivo hyperglycemia as experienced in humans with metabolic disease. Improvements in cell viability, intracellular oxidative stress, NO and tetrahydrobiopterin (BH4)​ levels, mitochondrial membrane potential, glucose transport, and activity of antioxidant enzymes were measured from single treatment of BAEC with nitrones for 24h after hyperglycemia. Chronic hyperglycemia significantly increased intracellular ROS by 50%, decreased cell viability by 25%, reduced NO bioavailability by 50%, and decreased (BH4) levels by 15% thereby decreasing NO production. Intracellular glucose transport and superoxide dismutase (SOD) activity were also decreased by 50% and 25% respectively. Nitrone (PBN and DMPO, 50 μM) treatment of BAEC grown in hyperglycemic conditions resulted in the normalization of outcome measures except for SOD and catalase activities. Our findings demonstrate that the nitrones reverse the deleterious effects of hyperglycemia in BAEC. We believe that in vivo testing of these nitrone compounds in models of cardiometabolic disease is warranted. PMID:26774452

  19. Endothelial dysfunction impairs vascular neurotransmission in tail arteries.

    PubMed

    Sousa, Joana B; Fresco, Paula; Diniz, Carmen

    2015-01-01

    The present study intends to clarify if endothelium dysfunction impairs vascular sympathetic neurotransmission. Electrically-evoked tritium overflow (100 pulses/5 Hz) was evaluated in arteries (intact and denuded) or exhibiting some degree of endothelium dysfunction (spontaneously hypertensive arteries), pre-incubated with [(3)H]-noradrenaline in the presence of enzymes (nitric oxide synthase (NOS); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; xanthine oxidase; cyclooxygenase; adenosine kinase) inhibitors and a nucleoside transporter inhibitor. Inhibition of endothelial nitric oxide synthase with L-NIO dihydrochloride reduced tritium overflow in intact arteries whereas inhibition of neuronal nitric oxide synthase with Nω-Propyl-L-arginine hydrochloride was devoid of effect showing that only endothelial nitric oxide synthase is involved in vascular sympathetic neuromodulation. Inhibition of enzymes involved in reactive oxygen species or prostaglandins production with apocynin and allopurinol or indomethacin, respectively, failed to alter tritium overflow. A facilitation or reduction of tritium overflow was observed in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or of 5-iodotubericidin, respectively, but only in intact arteries. These effects can be ascribed to a tonic inhibitory effect mediated by A1 receptors. In denuded and hypertensive arteries, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) reduced tritium overflow, suggesting the occurrence of a tonic activation of A2A receptors. When endogenous adenosine bioavailability was increased by the nucleoside transporter inhibitor, S-(4-Nitrobenzyl)-6-thioinosine, tritium overflow increased in intact, denuded and hypertensive arteries. Among the endothelium-derived substances studied that could alter vascular sympathetic transmission only adenosine/adenosine receptor mediated mechanisms were clearly impaired by endothelium injury/dysfunction.

  20. Endothelial dysfunction impairs vascular neurotransmission in tail arteries.

    PubMed

    Sousa, Joana B; Fresco, Paula; Diniz, Carmen

    2015-01-01

    The present study intends to clarify if endothelium dysfunction impairs vascular sympathetic neurotransmission. Electrically-evoked tritium overflow (100 pulses/5 Hz) was evaluated in arteries (intact and denuded) or exhibiting some degree of endothelium dysfunction (spontaneously hypertensive arteries), pre-incubated with [(3)H]-noradrenaline in the presence of enzymes (nitric oxide synthase (NOS); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; xanthine oxidase; cyclooxygenase; adenosine kinase) inhibitors and a nucleoside transporter inhibitor. Inhibition of endothelial nitric oxide synthase with L-NIO dihydrochloride reduced tritium overflow in intact arteries whereas inhibition of neuronal nitric oxide synthase with Nω-Propyl-L-arginine hydrochloride was devoid of effect showing that only endothelial nitric oxide synthase is involved in vascular sympathetic neuromodulation. Inhibition of enzymes involved in reactive oxygen species or prostaglandins production with apocynin and allopurinol or indomethacin, respectively, failed to alter tritium overflow. A facilitation or reduction of tritium overflow was observed in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or of 5-iodotubericidin, respectively, but only in intact arteries. These effects can be ascribed to a tonic inhibitory effect mediated by A1 receptors. In denuded and hypertensive arteries, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) reduced tritium overflow, suggesting the occurrence of a tonic activation of A2A receptors. When endogenous adenosine bioavailability was increased by the nucleoside transporter inhibitor, S-(4-Nitrobenzyl)-6-thioinosine, tritium overflow increased in intact, denuded and hypertensive arteries. Among the endothelium-derived substances studied that could alter vascular sympathetic transmission only adenosine/adenosine receptor mediated mechanisms were clearly impaired by endothelium injury/dysfunction

  1. Mechanistic link between erectile dysfunction and systemic endothelial dysfunction in type 2 diabetic rats.

    PubMed

    Musicki, B; Hannan, J L; Lagoda, G; Bivalacqua, T J; Burnett, A L

    2016-09-01

    Men with type 2 diabetes mellitus (T2DM) and erectile dysfunction (ED) have greater risk of cardiovascular events than T2DM men without ED, suggesting ED as a predictor of cardiovascular events in diabetic men. However, molecular mechanisms underlying endothelial dysfunction in the diabetic penis explaining these clinical observations are not known. We evaluated whether the temporal relationship between ED and endothelial dysfunction in the systemic vasculature in T2DM involves earlier redox imbalance and endothelial nitric oxidase synthase (eNOS) dysfunction in the penis than in the systemic vasculature, such as the carotid artery. Rats were rendered T2DM by high-fat diet for 2 weeks, followed by an injection with low-dose streptozotocin. After 3 weeks, erectile function (intracavernosal pressure) was measured and penes and carotid arteries were collected for molecular analyses of eNOS uncoupling, protein S-glutathionylation, oxidative stress (4-hydroxy-2-nonenal, 4-HNE), protein expression of NADPH oxidase subunit gp91(phox) , endothelium-dependent vasodilation in the carotid artery, and non-adrenergic, non-cholinergic (NANC)-mediated cavernosal relaxation. Erectile response to electrical stimulation of the cavernous nerve and NANC-mediated cavernosal relaxation was decreased (p < 0.05), while relaxation of the carotid artery to acetylcholine was not impaired in T2DM rats. eNOS monomerization, protein expressions of 4-HNE and gp91(phox) , and protein S-glutathionylation, were increased (p < 0.05) in the penis, but not in the carotid artery, of T2DM compared to non-diabetic rats. In conclusion, redox imbalance, increased oxidative stress by NADPH oxidase, and eNOS uncoupling, occur early in T2DM in the penis, but not in the carotid artery. These molecular changes contribute to T2DM ED, while vascular function in the systemic vasculature remains preserved.

  2. Mechanistic link between erectile dysfunction and systemic endothelial dysfunction in type 2 diabetic rats.

    PubMed

    Musicki, B; Hannan, J L; Lagoda, G; Bivalacqua, T J; Burnett, A L

    2016-09-01

    Men with type 2 diabetes mellitus (T2DM) and erectile dysfunction (ED) have greater risk of cardiovascular events than T2DM men without ED, suggesting ED as a predictor of cardiovascular events in diabetic men. However, molecular mechanisms underlying endothelial dysfunction in the diabetic penis explaining these clinical observations are not known. We evaluated whether the temporal relationship between ED and endothelial dysfunction in the systemic vasculature in T2DM involves earlier redox imbalance and endothelial nitric oxidase synthase (eNOS) dysfunction in the penis than in the systemic vasculature, such as the carotid artery. Rats were rendered T2DM by high-fat diet for 2 weeks, followed by an injection with low-dose streptozotocin. After 3 weeks, erectile function (intracavernosal pressure) was measured and penes and carotid arteries were collected for molecular analyses of eNOS uncoupling, protein S-glutathionylation, oxidative stress (4-hydroxy-2-nonenal, 4-HNE), protein expression of NADPH oxidase subunit gp91(phox) , endothelium-dependent vasodilation in the carotid artery, and non-adrenergic, non-cholinergic (NANC)-mediated cavernosal relaxation. Erectile response to electrical stimulation of the cavernous nerve and NANC-mediated cavernosal relaxation was decreased (p < 0.05), while relaxation of the carotid artery to acetylcholine was not impaired in T2DM rats. eNOS monomerization, protein expressions of 4-HNE and gp91(phox) , and protein S-glutathionylation, were increased (p < 0.05) in the penis, but not in the carotid artery, of T2DM compared to non-diabetic rats. In conclusion, redox imbalance, increased oxidative stress by NADPH oxidase, and eNOS uncoupling, occur early in T2DM in the penis, but not in the carotid artery. These molecular changes contribute to T2DM ED, while vascular function in the systemic vasculature remains preserved. PMID:27153512

  3. Endothelial cell dysfunction in viral hemorrhage and edema

    PubMed Central

    Mackow, Erich R.; Gorbunova, Elena E.; Gavrilovskaya, Irina N.

    2015-01-01

    The endothelium maintains a vascular barrier by controlling platelet and immune cell interactions, capillary tone and interendothelial cell (EC) adherence. Here we suggest common elements in play during viral infection of the endothelium that alter normal EC functions and contribute to lethal hemorrhagic or edematous diseases. In viral reservoir hosts, infection of capillaries and lymphatic vessels may direct immunotolerance without disease, but in the absence of these cognate interactions they direct the delayed onset of human disease characterized by thrombocytopenia and vascular leakage in a severe endothelial dysfunction syndrome. Here we present insight into EC controls of hemostasis, immune response and capillary permeability that are altered by viral infection of the endothelium. PMID:25601858

  4. Endothelial dysfunction and preeclampsia: role of oxidative stress

    PubMed Central

    Sánchez-Aranguren, Lissette C.; Prada, Carlos E.; Riaño-Medina, Carlos E.; Lopez, Marcos

    2014-01-01

    Preeclampsia (PE) is an often fatal pathology characterized by hypertension and proteinuria at the 20th week of gestation that affects 5–10% of the pregnancies. The problem is particularly important in developing countries in where the incidence of hypertensive disorders of pregnancy is higher and maternal mortality rates are 20 times higher than those reported in developed countries. Risk factors for the development of PE include obesity, insulin resistance and hyperlipidemia that stimulate inflammatory cytokine release and oxidative stress leading to endothelial dysfunction (ED). However, how all these clinical manifestations concur to develop PE is still not very well understood. The related poor trophoblast invasion and uteroplacental artery remodeling described in PE, increases reactive oxygen species (ROS), hypoxia and ED. Here we aim to review current literature from research showing the interplay between oxidative stress, ED and PE to the outcomes of current clinical trials aiming to prevent PE with antioxidant supplementation. PMID:25346691

  5. Simvastatin prevents inflammation-induced aortic stiffening and endothelial dysfunction

    PubMed Central

    Wallace, Sharon M L; Mäki-Petäjä, Kaisa M; Cheriyan, Joseph; Davidson, Edward H; Cherry, Lynne; McEniery, Carmel M; Sattar, Naveed; Wilkinson, Ian B; Kharbanda, Rajesh K

    2010-01-01

    AIMS The aim of this study was to determine whether simvastatin would protect against inflammation-induced aortic stiffening and endothelial dysfunction. METHODS Aortic pulse wave velocity (aPWV) and flow-mediated dilatation (FMD) were assessed three times, at baseline, after a 14 day administration of simvastatin or placebo and 8 h after Salmonella typhi vaccination in 50 healthy subjects. RESULTS Following vaccination there was a significant increase in aPWV in the placebo group (5.80 ± 0.87 vs. 6.21 ± 0.97 m s−1, 95% CI 0.19, 0.62, P = 0.002) but not the simvastatin group (5.68 ± 0.73 vs. 5.72 ± 0.74 m s−1, 95% CI −0.19, 0.27, P = 0.9; P = 0.016 for comparison). Whereas FMD response was reduced in the placebo group (6.77 ± 4.10 vs. 5.27 ± 2.88%, 95% CI −2.49, −0.52, P = 0.02) but not in the simvastatin group (7.07 ± 4.37 vs. 7.17 ± 9.94%, 95% CI −1.1, 1.3. P = 0.9, P < 0.001 for comparison). There was no difference in the systemic inflammatory response between groups following vaccination. However, there was a significant reduction in serum apolipoprotein A-I (Apo A-I) in the placebo, but not in the simvastatin, group. CONCLUSIONS Simvastatin prevents vaccination-induced aortic stiffening and endothelial dysfunction. This protective mechanism may be due to preservation of the Apo A-I lipid fraction, rather than pleiotropic anti-inflammatory effects of statins. PMID:21175435

  6. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.

    PubMed

    Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze

    2014-08-01

    Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging.

  7. Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins

    PubMed Central

    2011-01-01

    Cardiovascular disease (CVD) risk in type 2 diabetes (T2DM) is only partially reduced by intensive glycemic control. Diabetic dyslipidemia is suggested to be an additional important contributor to CVD risk in T2DM. Multiple lipid lowering medications effectively reduce fasting LDL cholesterol and triglycerides concentrations and several of them routinely reduce CVD risk. However, in contemporary Western societies the vasculature is commonly exposed to prolonged postprandial hyperlipidemia. Metabolism of these postprandial carbohydrates and lipids yields multiple proatherogenic products. Even a transient increase in these factors may worsen vascular function and induces impaired endothelial dependent vasodilatation, a predictor of atherosclerosis and future cardiovascular events. There is a recent increased appreciation for the role of gut-derived incretin hormones in controlling the postprandial metabolic milieu. Incretin-based medications have been developed and are now used to control postprandial hyperglycemia in T2DM. Recent data indicate that these medications may also have profound effects on postprandial lipid metabolism and may favorably influence several cardiovascular functions. This review discusses (1) the postprandial state with special emphasis on postprandial lipid metabolism and its role in endothelial dysfunction and cardiovascular risk, (2) the ability of incretins to modulate postprandial hyperlipidemia and (3) the potential of incretin-based therapeutic strategies to improve vascular function and reduce CVD risk. PMID:21736746

  8. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations.

    PubMed

    Wiggers, Giulia Alessandra; Furieri, Lorena Barros; Briones, Ana María; Avendaño, María Soledad; Peçanha, Franck Maciel; Vassallo, Dalton Valentim; Salaices, Mercedes; Alonso, María Jesús

    2016-03-01

    Mercury (Hg) has many harmful vascular effects by increasing oxidative stress, inflammation and vascular/endothelial dysfunction, all of which may contribute to cerebrovascular diseases development. We aimed to explore the effects of chronic low-mercury concentration on vascular function in cerebral arteries and the mechanisms involved. Basilar arteries from control (vehicle-saline solution, im) and mercury chloride (HgCl2)-treated rats for 30 days (first dose 4.6μg/kg, subsequent dose 0.07μg/kg/day, im, to cover daily loss) were used. Vascular reactivity, protein expression, nitric oxide (NO) levels and superoxide anion (O2(-)) production were analyzed. HgCl2 exposure increased serotonin contraction and reduced the endothelium-dependent vasodilatation to bradykinin. After NO synthase inhibition, serotonin responses were enhanced more in control than in mercury-treated rats while bradykinin-induced relaxation was abolished. NO levels were greater in control than Hg-treated rats. Tiron and indomethacin reduced vasoconstriction and increased the bradykinin-induced relaxation only in HgCl2-treated rats. Vascular O2(-) production was greater in mercury-treated when compared to control rats. Protein expressions of endothelial NO synthase, copper/zinc (Cu/Zn), Manganese (Mn) and extracellular-superoxide dismutases were similar in cerebral arteries from both groups. Results suggest that Hg treatment increases cerebrovascular reactivity by reducing endothelial negative modulation and NO bioavailability; this effect seems to be dependent on increased reactive oxygen species and prostanoids generation. These findings show, for the first time, that brain vasculature are also affected by chronic mercury exposure and offer further evidence that even at small concentration, HgCl2 is hazardous and might be an environmental risk factor accounting for cerebral vasospasm development. PMID:26945730

  9. Interrelationship of Multiple Endothelial Dysfunction Biomarkers with Chronic Kidney Disease

    PubMed Central

    Chen, Jing; Hamm, L. Lee; Mohler, Emile R.; Hudaihed, Alhakam; Arora, Robin; Chen, Chung-Shiuan; Liu, Yanxi; Browne, Grace; Mills, Katherine T.; Kleinpeter, Myra A.; Simon, Eric E.; Rifai, Nader; Klag, Michael J.; He, Jiang

    2015-01-01

    The interrelationship of multiple endothelial biomarkers and chronic kidney disease (CKD) has not been well studied. We measured asymmetric dimethylarginine (ADMA), L-arginine, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin), von Willebrand factor (vWF), flow-mediated dilation (FMD), and nitroglycerin-induced dilation (NID) in 201 patients with CKD and 201 community-based controls without CKD. Multivariable analyses were used to examine the interrelationship of endothelial biomarkers with CKD. The multivariable-adjusted medians (interquartile ranges) were 0.54 (0.40, 0.75) in patients with CKD vs. 0.25 (0.22, 0.27) μmol /L in controls without CKD (p<0.0001 for group difference) for ADMA; 67.0 (49.6, 86.7) vs. 31.0 (27.7, 34.2) μmol/L (p<0.0001) for L-arginine; 230.0 (171.6, 278.6) vs. 223.9 (178.0, 270.6) ng/mL (p=0.55) for sICAM-1; 981.7 (782.6, 1216.8) vs. 633.2 (507.8, 764.3) ng/mL (p<0.0001) for sVCAM-1; 47.9 (35.0, 62.5) vs. 37.0 (28.9, 48.0) ng/mL (p=0.01) for sE-selectin; 1320 (1044, 1664) vs. 1083 (756, 1359) mU/mL (p=0.008) for vWF; 5.74 (3.29, 8.72) vs. 8.80 (6.50, 11.39)% (p=0.01) for FMD; and 15.2 (13.5, 16.9) vs. 19.1 (17.2, 21.0)% (p=0.0002) for NID, respectively. In addition, the severity of CKD was positively associated with ADMA, L-arginine, sVCAM-1, sE-selectin, and vWF and inversely associated with FMD and NID. Furthermore, FMD and NID were significantly and inversely correlated with ADMA, L-arginine, sVCAM-1, sE-selectin, and vWF. In conclusion, these data indicate that multiple dysfunctions of the endothelium were present among patients with CKD. Interventional studies are warranted to test the effects of treatment of endothelial dysfunction on CKD. PMID:26132137

  10. Interrelationship of Multiple Endothelial Dysfunction Biomarkers with Chronic Kidney Disease.

    PubMed

    Chen, Jing; Hamm, L Lee; Mohler, Emile R; Hudaihed, Alhakam; Arora, Robin; Chen, Chung-Shiuan; Liu, Yanxi; Browne, Grace; Mills, Katherine T; Kleinpeter, Myra A; Simon, Eric E; Rifai, Nader; Klag, Michael J; He, Jiang

    2015-01-01

    The interrelationship of multiple endothelial biomarkers and chronic kidney disease (CKD) has not been well studied. We measured asymmetric dimethylarginine (ADMA), L-arginine, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin), von Willebrand factor (vWF), flow-mediated dilation (FMD), and nitroglycerin-induced dilation (NID) in 201 patients with CKD and 201 community-based controls without CKD. Multivariable analyses were used to examine the interrelationship of endothelial biomarkers with CKD. The multivariable-adjusted medians (interquartile ranges) were 0.54 (0.40, 0.75) in patients with CKD vs. 0.25 (0.22, 0.27) μmol /L in controls without CKD (p<0.0001 for group difference) for ADMA; 67.0 (49.6, 86.7) vs. 31.0 (27.7, 34.2) μmol/L (p<0.0001) for L-arginine; 230.0 (171.6, 278.6) vs. 223.9 (178.0, 270.6) ng/mL (p=0.55) for sICAM-1; 981.7 (782.6, 1216.8) vs. 633.2 (507.8, 764.3) ng/mL (p<0.0001) for sVCAM-1; 47.9 (35.0, 62.5) vs. 37.0 (28.9, 48.0) ng/mL (p=0.01) for sE-selectin; 1320 (1044, 1664) vs. 1083 (756, 1359) mU/mL (p=0.008) for vWF; 5.74 (3.29, 8.72) vs. 8.80 (6.50, 11.39)% (p=0.01) for FMD; and 15.2 (13.5, 16.9) vs. 19.1 (17.2, 21.0)% (p=0.0002) for NID, respectively. In addition, the severity of CKD was positively associated with ADMA, L-arginine, sVCAM-1, sE-selectin, and vWF and inversely associated with FMD and NID. Furthermore, FMD and NID were significantly and inversely correlated with ADMA, L-arginine, sVCAM-1, sE-selectin, and vWF. In conclusion, these data indicate that multiple dysfunctions of the endothelium were present among patients with CKD. Interventional studies are warranted to test the effects of treatment of endothelial dysfunction on CKD. PMID:26132137

  11. Endothelial cell markers reflecting endothelial cell dysfunction in patients with mixed connective tissue disease

    PubMed Central

    2010-01-01

    Introduction The aim of the present study was to investigate the association between cardiovascular risk factors and endothelial dysfunction in patients with mixed connective tissue disease (MCTD) and to determine which biomarkers are associated with atherosclerotic complications, such as cardiovascular disease. Methods Fifty MCTD patients and 38 healthy age-matched and sex-matched controls were enrolled in this study. In order to describe endothelial dysfunction, we assessed flow-mediated dilation (FMD), nitrate-mediated dilation (NMD) and carotid artery intima-media thickness (IMT). We investigated FMD of the brachial artery after reactive hyperemia and NMD after sublingual nitroglycerin administration, while the IMT of the common carotid artery was determined by ultrasound. Anti-U1 ribonucleoprotein (anti-U1RNP) antibodies, anti-cardiolipin (anti-CL) antibodies, anti-endothelial cell antibody (AECA) and endothelial cell markers, such as soluble thrombomodulin (TM) and von Willebrand factor antigen (vWFAg), were assessed. Results The endothelium-dependent vasodilation (FMD) was significantly impaired in patients with MCTD, as compared with controls (%FMD: 4.7 ± 4.2% vs. 8.7 ± 5.0%; P < 0.001), while the percentage NMD did not differ (%NMD: 14.3 ± 6.6% vs. 17.1 ± 6.7%; P = 0.073). Mean carotid IMT values were higher in patients than in controls (IMT: MCTD, 0.64 ± 0.13 mm vs. controls, 0.53 ± 0.14 mm; P < 0.001). FMD negatively correlated with disease duration, the levels of apolipoprotein A1, the paraoxonase-1 activity, and systolic blood pressure in MCTD patients. The percentage FMD was significantly lower in MCTD patients with cardiovascular diseases (CVD), than in those without CVD (%FMD: 3.5 ± 2.9 vs. 5.8 ± 4.8, P < 0.0002), while percentage NMD did not differ between patients with and without CVDs. Serum levels of autoantibodies (anti-U1RNP, AECA and anti-CL) were significantly higher in MCTD patients and differed between MCTD patients with and

  12. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation.

    PubMed

    Kodali, Maheedhar; Parihar, Vipan K; Hattiangady, Bharathi; Mishra, Vikas; Shuai, Bing; Shetty, Ashok K

    2015-01-28

    Greatly waned neurogenesis, diminished microvasculature, astrocyte hypertrophy and activated microglia are among the most conspicuous structural changes in the aged hippocampus. Because these alterations can contribute to age-related memory and mood impairments, strategies efficacious for mitigating these changes may preserve cognitive and mood function in old age. Resveratrol, a phytoalexin found in the skin of red grapes having angiogenic and antiinflammatory properties, appears ideal for easing these age-related changes. Hence, we examined the efficacy of resveratrol for counteracting age-related memory and mood impairments and the associated detrimental changes in the hippocampus. Two groups of male F344 rats in late middle-age having similar learning and memory abilities were chosen and treated with resveratrol or vehicle for four weeks. Analyses at ~25 months of age uncovered improved learning, memory and mood function in resveratrol-treated animals but impairments in vehicle-treated animals. Resveratrol-treated animals also displayed increased net neurogenesis and microvasculature, and diminished astrocyte hypertrophy and microglial activation in the hippocampus. These results provide novel evidence that resveratrol treatment in late middle age is efficacious for improving memory and mood function in old age. Modulation of the hippocampus plasticity and suppression of chronic low-level inflammation appear to underlie the functional benefits mediated by resveratrol.

  13. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes.

    PubMed

    Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio Mv; Wainstein, Marco V; Boff, Winston; Puñales, Marcia

    2015-06-10

    Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717

  14. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes

    PubMed Central

    Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio MV; Wainstein, Marco V; Boff, Winston; Puñales, Marcia

    2015-01-01

    Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717

  15. Dietary nitrite prevents hypercholesterolemic microvascular inflammation and reverses endothelial dysfunction.

    PubMed

    Stokes, Karen Y; Dugas, Tammy R; Tang, Yaoping; Garg, Harsha; Guidry, Eric; Bryan, Nathan S

    2009-05-01

    The nitrite anion is an endogenous product of mammalian nitric oxide (NO) metabolism, a key intermediate in the nitrogen cycle in plants, and a constituent of many foods. Research over the past 6 years has revealed surprising biological and cytoprotective activity of this anion. Hypercholesterolemia causes a proinflammatory phenotype in the microcirculation. This phenotype appears to result from a decline in NO bioavailability that results from a reduction in NO biosynthesis, inactivation of NO by superoxide, or both. Since nitrite has been shown to be potently cytoprotective and restore NO biochemical homeostasis, we investigated if supplemental nitrite could attenuate microvascular inflammation caused by a high cholesterol diet. C57Bl/6J mice were fed either a normal diet or a high cholesterol diet for 3 wk to induce microvascular inflammation. Mice on the high cholesterol diet received either nitrite-free drinking water or supplemental nitrite at 33 or 99 mg/l ad libitum in their drinking water. The results from this investigation reveal that mice fed a cholesterol-enriched diet exhibited significantly elevated leukocyte adhesion to and emigration through the venular endothelium as well as impaired endothelium-dependent relaxation in arterioles. Administration of nitrite in the drinking water inhibited the leukocyte adhesion and emigration and prevented the arteriolar dysfunction. This was associated with sparing of reduced tetrahydrobiopterin and decreased levels of C-reactive protein. These data reveal novel anti-inflammatory properties of nitrite and implicate the use of nitrite as a new natural therapy for microvascular inflammation and endothelial dysfunction associated with hypercholesterolemia.

  16. Early endothelial dysfunction as a marker of vasculogenic erectile dysfunction in young habitual cannabis users.

    PubMed

    Aversa, A; Rossi, F; Francomano, D; Bruzziches, R; Bertone, C; Santiemma, V; Spera, G

    2008-01-01

    Aim of the study was to evaluate whether endothelial dysfunction is a marker of erectile dysfunction (ED) in recreational drug abuse. Sixty-four non-consecutive men complaining of ED from at least 3 months were included. All patients underwent detailed history about recreational drug abuse and were then submitted to dynamic penile duplex ultrasound (PDU). According to pharmaco-stimulated peak systolic velocity (PSV) cutoff at 35 cm s(-1), patients were divided into two groups: organic (O; n=30) and non-organic (NO; n=34) ED. All subjects and 7 healthy age-matched subjects as controls, underwent veno-occlusive plethysmography (VOP) for the evaluation of endothelium-dependent dilatation of brachial arteries. Blood pressure, total and free testosterone, prolactin, estradiol, low-density lipoprotein and high-density lipoprotein cholesterol were also evaluated; patients were classified with regard to insulin resistance through the HOMA-IR index. Cannabis smoking was more frequent in O-ED vs NO-ED (78% vs 3%, P<0.001) in the absence of any concomitant risk factor or comorbidity for ED. VOP studies revealed impaired endothelium-dependent vasodilatation in O-ED but not in NO-ED and controls (12+/-6 vs 32+/-4 and 34+/-5 ml min(-1), respectively; P=0.003). Overall patients showed a direct relationship between HOMA-IR and PSV (r(2)=0.47, P<0.0001), which was maintained in men with organic ED (r(2)=0.62, P<0.0001). In cannabis consumers, a direct relationship between HOMA-IR and VOP was also found (r(2)=0.74, P<0.0001). Receiver-operating characteristic (ROC) curve analysis revealed that VOP values below 17.22 ml min(-1) were suggestive for vasculogenic ED. We conclude that early endothelial damage may be induced by chronic cannabis use (and endocannabinoid system activation); insulin resistance may be the hallmark of early endothelial dysfunction and may concur to determine vascular ED in the absence of obesity. Further studies are warranted to establish a direct relationship

  17. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction

    PubMed Central

    Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto

    2015-01-01

    Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction

  18. Nitric Oxide, Oxidative Stress, and p66Shc Interplay in Diabetic Endothelial Dysfunction

    PubMed Central

    Greco, Simona; Capogrossi, Maurizio C.; Gaetano, Carlo

    2014-01-01

    Increased oxidative stress and reduced nitric oxide (NO) bioavailability play a causal role in endothelial cell dysfunction occurring in the vasculature of diabetic patients. In this review, we summarized the molecular mechanisms underpinning diabetic endothelial and vascular dysfunction. In particular, we focused our attention on the complex interplay existing among NO, reactive oxygen species (ROS), and one crucial regulator of intracellular ROS production, p66Shc protein. PMID:24734227

  19. microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira

    2013-01-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154

  20. Therapeutic Approach in the Improvement of Endothelial Dysfunction: The Current State of the Art

    PubMed Central

    Radenković, Miroslav; Stojanović, Marko; Potpara, Tatjana; Prostran, Milica

    2013-01-01

    The endothelium has a central role in the regulation of blood flow through continuous modulation of vascular tone. This is primarily accomplished by balanced release of endothelial relaxing and contractile factors. The healthy endothelial cells are essential for maintenance of vascular homeostasis involving antioxidant, anti-inflammatory, pro-fibrinolytic, anti-adhesive, or anticoagulant effects. Oppositely, endothelial dysfunction is primarily characterized by impaired regulation of vascular tone as a result of reduced endothelial nitric oxide (NO) synthase activity, lack of cofactors for NO synthesis, attenuated NO release, or increased NO degradation. So far, the pharmacological approach in improving/reversal of endothelial dysfunction was shown to be beneficial in clinical trials that have investigated actions of different cardiovascular drugs. The aim of this paper was to summarize some of the latest clinical findings related to therapeutic possibilities for improving endothelial dysfunction in different pathological conditions. In the majority of presented clinical investigations, the assessment of improvement or reversal of endothelial dysfunction was performed through the flow-mediated dilatation measurement, and in some of those endothelial progenitor cells' count was used for the same purpose. Still, given the fast and continuous development of this field, the evidence acquisition included the MEDLINE data base screening and the selection of articles published between 2010 and 2012. PMID:23509696

  1. Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders.

    PubMed

    Schatten, Heide; Sun, Qing-Yuan

    2015-07-01

    The effects of oocyte aging on meiotic spindle dynamics have been well recognised, but the mechanisms underlying the effects are not well understood. In this paper we review the role of centrosomes and the microtubule cytoskeleton in meiotic spindle formation and maintenance, and the impact of oocyte aging on spindle integrity resulting in centrosome and microtubule dysfunctions that are associated with aneuploidy. Loss of spindle integrity includes dispersion of proteins from the centrosome core structure and loss of attachment of microtubules to centrosomes and kinetochores, which will result in abnormal chromosome separation. The inability of centrosomal proteins to accurately associate with the centrosome structure may be the result of destabilisation of the core structure itself or of microtubule destabilisation at the centrosome-facing microtubule areas that are acetylated in fresh oocytes but may not be acetylated in aging oocytes. Microtubule destabilisation prevents accurate motor-driven transport of centrosomal proteins along microtubules to form and maintain a functional centrosome. Other factors to form and maintain the MII spindle include signal transductions that affect microtubule dynamics and stability. Understanding the mechanisms underlying centrosome and microtubule dysfunctions during oocyte aging will allow diagnosis and analysis of oocyte quality and abnormalities as important aspects for targeted treatment of aging oocytes to extend or restore viability and developmental capacity. New therapeutic approaches will allow improvements in reproductive success rates in IVF clinics, as well as improvements in reproductive success rates in farm animals. This review is focused on: (1) centrosome and microtubule dynamics in fresh and aging oocytes; (2) regulation of centrosome and/or microtubule dynamics and function; and (3) possible treatments to extend the oocyte's reproductive capacity and viability span. PMID:25903261

  2. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer's disease

    PubMed Central

    2011-01-01

    Alzheimer's disease (AD) is an age-related disorder characterized by progressive cognitive decline and dementia. Alzheimer's disease is an increasingly prevalent disease with 5.3 million people in the United States currently affected. This number is a 10 percent increase from previous estimates and is projected to sharply increase to 8 million by 2030; it is the sixth-leading cause of death. In the United States the direct and indirect costs of Alzheimer's and other dementias to Medicare, Medicaid and businesses amount to more than $172 billion each year. Despite intense research efforts, effective disease-modifying therapies for this devastating disease remain elusive. At present, the few agents that are FDA-approved for the treatment of AD have demonstrated only modest effects in modifying clinical symptoms for relatively short periods and none has shown a clear effect on disease progression. New therapeutic approaches are desperately needed. Although the idea that vascular defects are present in AD and may be important in disease pathogenesis was suggested over 25 years ago, little work has focused on an active role for cerebrovascular mechanisms in the pathogenesis of AD. Nevertheless, increasing literature supports a vascular-neuronal axis in AD as shared risk factors for both AD and atherosclerotic cardiovascular disease implicate vascular mechanisms in the development and/or progression of AD. Also, chronic inflammation is closely associated with cardiovascular disease, as well as a broad spectrum of neurodegenerative diseases of aging including AD. In this review we summarize data regarding, cardiovascular risk factors and vascular abnormalities, neuro- and vascular-inflammation, and brain endothelial dysfunction in AD. We conclude that the endothelial interface, a highly synthetic bioreactor that produces a large number of soluble factors, is functionally altered in AD and contributes to a noxious CNS milieu by releasing inflammatory and neurotoxic species

  3. Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update.

    PubMed

    Davel, A P; Wenceslau, C F; Akamine, E H; Xavier, F E; Couto, G K; Oliveira, H T; Rossoni, L V

    2011-09-01

    The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of β-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.

  4. Left Atrial Volume and Pulmonary Artery Diameter Are Noninvasive Measures of Age-Related Diastolic Dysfunction in Mice.

    PubMed

    Medrano, Guillermo; Hermosillo-Rodriguez, Jesus; Pham, Thuy; Granillo, Alejandro; Hartley, Craig J; Reddy, Anilkumar; Osuna, Patricia Mejia; Entman, Mark L; Taffet, George E

    2016-09-01

    Impaired cardiac diastolic function occurs with aging in many species and may be difficult to measure noninvasively. In humans, left atrial (LA) volume is a robust measure of chronic diastolic function as the LA is exposed to increased left ventricular filling pressures. We hypothesized that LA volume would be a useful indicator of diastolic function in aging mice. Further, we asked whether pressures were propagated backwards affecting pulmonary arteries (PAs) and right ventricle (RV). We measured LA, PA, and RV infundibulum dimensions with echocardiography and used mouse-specific Doppler systems and pressure catheters for noninvasive and invasive measures. As C57BL/6 mice aged from 3 to 29-31 months, LA volume almost tripled. LA volume increases correlated with traditional diastolic function measures. Within groups of 14- and 31-month-old mice, LA volume correlated with diastolic function measured invasively. In serial studies, mice evaluated at 20 and 24 months showed monotonic increases in LA volume; other parameters changed less predictably. PA diameters, larger in 30-month-old mice than 6-month-old mice, correlated with LA volumes. Noninvasive LA volume and PA diameter assessments are useful and state independent measures of diastolic function in mice, correlating with other measures of diastolic dysfunction in aging. Furthermore, serial measurements over 4 months demonstrated consistent increases in LA volume suitable for longitudinal cardiac aging studies.

  5. Left Atrial Volume and Pulmonary Artery Diameter Are Noninvasive Measures of Age-Related Diastolic Dysfunction in Mice.

    PubMed

    Medrano, Guillermo; Hermosillo-Rodriguez, Jesus; Pham, Thuy; Granillo, Alejandro; Hartley, Craig J; Reddy, Anilkumar; Osuna, Patricia Mejia; Entman, Mark L; Taffet, George E

    2016-09-01

    Impaired cardiac diastolic function occurs with aging in many species and may be difficult to measure noninvasively. In humans, left atrial (LA) volume is a robust measure of chronic diastolic function as the LA is exposed to increased left ventricular filling pressures. We hypothesized that LA volume would be a useful indicator of diastolic function in aging mice. Further, we asked whether pressures were propagated backwards affecting pulmonary arteries (PAs) and right ventricle (RV). We measured LA, PA, and RV infundibulum dimensions with echocardiography and used mouse-specific Doppler systems and pressure catheters for noninvasive and invasive measures. As C57BL/6 mice aged from 3 to 29-31 months, LA volume almost tripled. LA volume increases correlated with traditional diastolic function measures. Within groups of 14- and 31-month-old mice, LA volume correlated with diastolic function measured invasively. In serial studies, mice evaluated at 20 and 24 months showed monotonic increases in LA volume; other parameters changed less predictably. PA diameters, larger in 30-month-old mice than 6-month-old mice, correlated with LA volumes. Noninvasive LA volume and PA diameter assessments are useful and state independent measures of diastolic function in mice, correlating with other measures of diastolic dysfunction in aging. Furthermore, serial measurements over 4 months demonstrated consistent increases in LA volume suitable for longitudinal cardiac aging studies. PMID:26511013

  6. Dysfunctional endothelial progenitor cells in cardiovascular diseases: role of NADPH oxidase.

    PubMed

    Peng, Jun; Liu, Bin; Ma, Qi-Lin; Luo, Xiu-Ju

    2015-01-01

    Endothelial progenitor cells (EPCs) play a critical role in maintenance of the endothelial integrity and vascular homeostasis, as well as in neovascularization. Dysfunctional EPCs are believed to contribute to the endothelial dysfunction and are closely related to the development of various cardiovascular diseases, such as hypertension, hyperlipidemia, and stroke. However, the underlying mechanisms of EPC dysfunction are complicated and remain largely elusive. Recent studies have demonstrated that reactive oxygen species (ROS) are key factors that involve in modulation of stem and progenitor cell function under various physiologic and pathologic conditions. It has been shown that NADPH oxidase (NOX)-derived ROS are the major sources of ROS in cardiovascular system. Accumulating evidence suggests that NOX-mediated oxidative stress can modulate EPC bioactivities, such as mobilization, migration, and neovascularization, and that inhibition of NOX has been shown to improve EPC functions. This review summarized recent progress in the studies on the correlation between NOX-mediated EPC dysfunction and cardiovascular diseases.

  7. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    EPA Science Inventory

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  8. Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence?

    PubMed

    Bernatova, Iveta

    2014-01-01

    Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP). The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide) and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (pre)hypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.

  9. Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall inflammation?

    PubMed

    Ribeiro, Fernando; Alves, Alberto Jorge; Duarte, José Alberto; Oliveira, José

    2010-06-11

    There is an increasing evidence that endothelial dysfunction and vascular wall inflammation are present in all stages of atherosclerosis. Atherosclerosis does not have to necessarily progress to an acute clinical event. Several therapeutic strategies exist, such as exercise training, which mitigates endothelial dysfunction and inflammation. Exercise training consistently improves the nitric oxide bioavailability, and the number of endothelial progenitor cells, and also diminishes the level of inflammatory markers, namely pro-inflammatory cytokines and C-reactive protein. However, the mechanisms by which exercise improves endothelial function in coronary artery disease patients are not fully clarified. Several mechanisms have been proposed to explain the positive effect of exercise on the disease progression. They include the decrease in cytokine production by the adipose tissue, skeletal muscles, endothelial cells, and blood mononuclear cells, and also, the increase in the bioavailability of nitric oxide, antioxidant defences, and regenerative capacity of endothelium. This study aims to provide a critical review of the literature linking exercise, inflammation, and endothelial dysfunction in coronary artery patients, and to discuss the potential mechanisms behind the exercise-training improvement of endothelial function and inflammatory status.

  10. Relationship between asymmetric dimethylarginine and endothelial dysfunction in patients with rheumatoid arthritis

    PubMed Central

    Şentürk, Taşkın; Yılmaz, Nergiz; Sargın, Gökhan; Köseoğlu, Kutsi; Yenisey, Çiğdem

    2016-01-01

    Objective In rheumatoid arthritis (RA), endothelial dysfunction caused by the inflammatory process increases the risk of cardiovascular disease. Asymmetric Dimethylarginine (ADMA) leads to vascular dysfunction, whereas atherosclerosis and increased ADMA is associated with cardiovascular disease risk factors. Flow-mediated Dilation (FMD) is a radiological method to demonstrate endothelial dysfunction. In the present study, we assessed the availability of ADMA as a marker for endothelial dysfunction in RA patients. ADMA can be used as a simple and cheaper method for the determination of endothelial dysfunction. Material and Methods Forty patients (1 male, 39 female) diagnosed with RA according to the classification criteria and 29 healthy volunteers (2 males, 27 females) were included in this study. ADMA was studied by enzyme-linked immunosorbent assay (ELISA). Chi-square, Fisher’s exact test, Mann–Whitney U test, and Spearman’s correlation tests were used for analytical analysis, and p<0.05 was considered as the level of statistical significance. Results In our study, ADMA levels were significantly higher in RA patients. The ADMA level was inversely correlated with FMD. Although high levels of both C-reactive protein and ADMA were detected in patients with high disease activity, there was no statistically significant difference between these parameters (p=0.18). There were statistically significant negative correlations between FMD and age and disease duration (p=0.01, p=0.01). However, there were no statistically significant correlations with erythrocyte sedimentation rate, rheumatoid factor, and disease activity score (p=0.68). In RA patients, there was a statistically significant positive correlation between disease duration and ADMA, whereas a negative correlation was found between FMD and ADMA (p<0.05). Conclusion Our results support the hypothesis that ADMA may be used in the assessment of endothelial dysfunction in patients with RA. It will be cost

  11. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders

    PubMed Central

    Mazur, G.

    2016-01-01

    Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes. PMID:27413253

  12. Role for Tetrahydrobiopterin in the Fetoplacental Endothelial Dysfunction in Maternal Supraphysiological Hypercholesterolemia

    PubMed Central

    Leiva, Andrea; Fuenzalida, Bárbara; Toledo, Fernando; Salomón, Carlos; Gutiérrez, Jaime; Sanhueza, Carlos; Pardo, Fabián

    2016-01-01

    Maternal physiological hypercholesterolemia occurs during pregnancy, ensuring normal fetal development. In some cases, the maternal plasma cholesterol level increases to above this physiological range, leading to maternal supraphysiological hypercholesterolemia (MSPH). This condition results in endothelial dysfunction and atherosclerosis in the fetal and placental vasculature. The fetal and placental endothelial dysfunction is related to alterations in the L-arginine/nitric oxide (NO) pathway and the arginase/urea pathway and results in reduced NO production. The level of tetrahydrobiopterin (BH4), a cofactor for endothelial NO synthase (eNOS), is reduced in nonpregnant women who have hypercholesterolemia, which favors the generation of the superoxide anion rather than NO (from eNOS), causing endothelial dysfunction. However, it is unknown whether MSPH is associated with changes in the level or metabolism of BH4; as a result, eNOS function is not well understood. This review summarizes the available information on the potential link between MSPH and BH4 in causing human fetoplacental vascular endothelial dysfunction, which may be crucial for understanding the deleterious effects of MSPH on fetal growth and development. PMID:26697136

  13. Long-Term Visual Outcomes for a Treat and Extend Anti-Vascular Endothelial Growth Factor Regimen in Eyes with Neovascular Age-Related Macular Degeneration

    PubMed Central

    Mrejen, Sarah; Jung, Jesse J.; Chen, Christine; Patel, Samir N.; Gallego-Pinazo, Roberto; Yannuzzi, Nicolas; Xu, Luna; Marsiglia, Marcela; Boddu, Sucharita; Freund, K. Bailey

    2015-01-01

    With the advent of anti-vascular endothelial growth factor (VEGF) therapy, clinicians are now focused on various treatment strategies to better control neovascular age-related macular degeneration (NVAMD), a leading cause of irreversible blindness. Herein, we retrospectively reviewed consecutive patients with treatment-naïve NVAMD initially classified based on fluorescein angiography (FA) alone or with an anatomic classification utilizing both FA and optical coherence tomography (OCT) and correlated long-term visual outcomes of these patients treated with an anti-VEGF Treat-and-Extend Regimen (TER) with baseline characteristics including neovascular phenotype. Overall, 185 patients (210 eyes) were followed over an average of 3.5 years (range 1–6.6) with a retention rate of 62.9%, and visual acuity significantly improved with a TER that required a mean number of 8.3 (±1.6) (± standard deviation) intravitreal anti-VEGF injections/year (range 4–13). The number of injections and the anatomic classification were independent predictors of visual acuity at 6 months, 1, 2, 3 and 4 years. Patients with Type 1 neovascularization had better visual outcomes and received more injections than the other neovascular subtypes. There were no serious adverse events. A TER provided sustained long-term visual gains. Eyes with Type 1 neovascularization had better visual outcomes than those with other neovascular subtypes. PMID:26239682

  14. Long-Term Visual Outcomes for a Treat and Extend Anti-Vascular Endothelial Growth Factor Regimen in Eyes with Neovascular Age-Related Macular Degeneration.

    PubMed

    Mrejen, Sarah; Jung, Jesse J; Chen, Christine; Patel, Samir N; Gallego-Pinazo, Roberto; Yannuzzi, Nicolas; Xu, Luna; Marsiglia, Marcela; Boddu, Sucharita; Freund, K Bailey

    2015-01-01

    With the advent of anti-vascular endothelial growth factor (VEGF) therapy, clinicians are now focused on various treatment strategies to better control neovascular age-related macular degeneration (NVAMD), a leading cause of irreversible blindness. Herein, we retrospectively reviewed consecutive patients with treatment-naïve NVAMD initially classified based on fluorescein angiography (FA) alone or with an anatomic classification utilizing both FA and optical coherence tomography (OCT) and correlated long-term visual outcomes of these patients treated with an anti-VEGF Treat-and-Extend Regimen (TER) with baseline characteristics including neovascular phenotype. Overall, 185 patients (210 eyes) were followed over an average of 3.5 years (range 1-6.6) with a retention rate of 62.9%, and visual acuity significantly improved with a TER that required a mean number of 8.3 (±1.6) (± standard deviation) intravitreal anti-VEGF injections/year (range 4-13). The number of injections and the anatomic classification were independent predictors of visual acuity at 6 months, 1, 2, 3 and 4 years. Patients with Type 1 neovascularization had better visual outcomes and received more injections than the other neovascular subtypes. There were no serious adverse events. A TER provided sustained long-term visual gains. Eyes with Type 1 neovascularization had better visual outcomes than those with other neovascular subtypes. PMID:26239682

  15. Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction

    PubMed Central

    Chen, Xiuping; Andresen1, Bradley T.; Hill, Michael; Zhang, Jing; Booth, Frank; Zhang, Cuihua

    2010-01-01

    Endothelial cell injury and dysfunction are the major triggers of pathophysiological processes leading to cardiovascular disease. Endothelial dysfunction (ED) has been implicated in atherosclerosis, hypertension, coronary artery disease, vascular complications of diabetes, chronic renal failure, insulin resistance and hypercholesterolemia. Although now recognized as a class of physiological second messengers, reactive oxygen species (ROS) are important mediators in cellular injury, specifically, as a factor in endothelial cell damage. Uncontrolled ROS production and/or decreased antioxidant activity results in a deleterious state referred to as ‘oxidative stress’. A candidate factor in causing ROS production in endothelial cells is tumor necrosis factor alpha (TNF-α), a pleiotropic inflammatory cytokine. TNF-α has been shown to both be secreted by endothelial cells and to induce intracellular ROS formation. These observations provide a potential mechanism by which TNF-α may activate and injure endothelial cells resulting in ED. In this review, we focus on the relationship between intracellular ROS formation and ED in endothelial cells or blood vessels exposed to TNF-α to provide insight into the role of this important cytokine in cardiovascular disease. PMID:20559453

  16. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis

    SciTech Connect

    Jiang Bo; Hebert, Valeria Y.; Li, Yuchi; Mathis, J. Michael; Alexander, J. Steven; Dugas, Tammy R.

    2007-10-01

    Numerous reports now indicate that HIV patients administered long-term antiretroviral therapy (ART) are at a greater risk for developing cardiovascular diseases. Endothelial dysfunction is an initiating event in atherogenesis and may contribute to HIV-associated atherosclerosis. We previously reported that ART induces direct endothelial dysfunction in rodents. In vitro treatment of human umbilical vein endothelial cells (HUVEC) with ART indicated endothelial mitochondrial dysfunction and a significant increase in the production of reactive oxygen species (ROS). In this study, we determined whether ART-induced endothelial dysfunction is mediated via mitochondria-derived ROS and whether this mitochondrial injury culminates in endothelial cell apoptosis. Two major components of ART combination therapy, a nucleoside reverse transcriptase inhibitor and a protease inhibitor, were tested, using AZT and indinavir as representatives for each. Microscopy utilizing fluorescent indicators of ROS and mitochondria demonstrated the mitochondrial localization of ART-induced ROS. MnTBAP, a cell-permeable metalloporphyrin antioxidant, abolished ART-induced ROS production. As a final step in confirming the mitochondrial origin of the ART-induced ROS, HUVEC were transduced with a cytosolic- compared to a mitochondria-targeted catalase. Transduction with the mitochondria-targeted catalase was more effective than cytoplasmic catalase in inhibiting the ROS and 8-isoprostane (8-iso-PGF{sub 2{alpha}}) produced after treatment with either AZT or indinavir. However, both mitochondrial and cytoplasmic catalase attenuated ROS and 8-iso-PGF{sub 2{alpha}} production induced by the combination treatment, suggesting that in this case, the formation of cytoplasmic ROS may also occur, and thus, that the mechanism of toxicity in the combination treatment group may be different compared to treatment with AZT or indinavir alone. Finally, to determine whether ART-induced mitochondrial dysfunction and

  17. Associations of Macro- and Microvascular Endothelial Dysfunction With Subclinical Ventricular Dysfunction in End-Stage Renal Disease.

    PubMed

    Dubin, Ruth F; Guajardo, Isabella; Ayer, Amrita; Mills, Claire; Donovan, Catherine; Beussink, Lauren; Scherzer, Rebecca; Ganz, Peter; Shah, Sanjiv J

    2016-10-01

    Patients with end-stage renal disease (ESRD) suffer high rates of heart failure and cardiovascular mortality, and we lack a thorough understanding of what, if any, modifiable factors contribute to cardiac dysfunction in these high-risk patients. To evaluate endothelial function as a potentially modifiable cause of cardiac dysfunction in ESRD, we investigated cross-sectional associations of macro- and microvascular dysfunction with left and right ventricular dysfunction in a well-controlled ESRD cohort. We performed comprehensive echocardiography, including tissue Doppler imaging and speckle-tracking echocardiography of the left and right ventricle, in 149 ESRD patients enrolled in an ongoing prospective, observational study. Of these participants, 123 also underwent endothelium-dependent flow-mediated dilation of the brachial artery (macrovascular function). Microvascular function was measured as the velocity time integral of hyperemic blood flow after cuff deflation. Impaired flow-mediated dilation was associated with higher left ventricular mass, independently of age and blood pressure: per 2-fold lower flow-mediated dilation, left ventricular mass was 4.1% higher (95% confidence interval, 0.49-7.7; P=0.03). After adjustment for demographics, blood pressure, comorbidities, and medications, a 2-fold lower velocity time integral was associated with 9.5% higher E/e' ratio (95% confidence interval, 1.0-16; P=0.03) and 6.7% lower absolute right ventricular longitudinal strain (95% confidence interval, 2.0-12; P=0.003). Endothelial dysfunction is a major correlate of cardiac dysfunction in ESRD, particularly diastolic and right ventricular dysfunction, in patients whose volume status is well controlled. Future investigations are needed to determine whether therapies targeting the vascular endothelium could improve cardiac outcomes in ESRD. PMID:27550915

  18. Associations of Macro- and Microvascular Endothelial Dysfunction With Subclinical Ventricular Dysfunction in End-Stage Renal Disease.

    PubMed

    Dubin, Ruth F; Guajardo, Isabella; Ayer, Amrita; Mills, Claire; Donovan, Catherine; Beussink, Lauren; Scherzer, Rebecca; Ganz, Peter; Shah, Sanjiv J

    2016-10-01

    Patients with end-stage renal disease (ESRD) suffer high rates of heart failure and cardiovascular mortality, and we lack a thorough understanding of what, if any, modifiable factors contribute to cardiac dysfunction in these high-risk patients. To evaluate endothelial function as a potentially modifiable cause of cardiac dysfunction in ESRD, we investigated cross-sectional associations of macro- and microvascular dysfunction with left and right ventricular dysfunction in a well-controlled ESRD cohort. We performed comprehensive echocardiography, including tissue Doppler imaging and speckle-tracking echocardiography of the left and right ventricle, in 149 ESRD patients enrolled in an ongoing prospective, observational study. Of these participants, 123 also underwent endothelium-dependent flow-mediated dilation of the brachial artery (macrovascular function). Microvascular function was measured as the velocity time integral of hyperemic blood flow after cuff deflation. Impaired flow-mediated dilation was associated with higher left ventricular mass, independently of age and blood pressure: per 2-fold lower flow-mediated dilation, left ventricular mass was 4.1% higher (95% confidence interval, 0.49-7.7; P=0.03). After adjustment for demographics, blood pressure, comorbidities, and medications, a 2-fold lower velocity time integral was associated with 9.5% higher E/e' ratio (95% confidence interval, 1.0-16; P=0.03) and 6.7% lower absolute right ventricular longitudinal strain (95% confidence interval, 2.0-12; P=0.003). Endothelial dysfunction is a major correlate of cardiac dysfunction in ESRD, particularly diastolic and right ventricular dysfunction, in patients whose volume status is well controlled. Future investigations are needed to determine whether therapies targeting the vascular endothelium could improve cardiac outcomes in ESRD.

  19. Impact of Corneal Endothelial Dysfunctions on Intraocular Oxygen Levels in Human Eyes

    PubMed Central

    Huang, Andrew J. W.; Shui, Ying-Bo; Han, Yu-Ping; Bai, Fang; Siegfried, Carla J.; Beebe, David C.

    2015-01-01

    Purpose We studied the implications of corneal endothelial dysfunctions on oxidative stress in the anterior segment via in vivo measurements of oxygen partial pressure (pO2) in the anterior chamber (AC) of human eyes. Methods We recruited 51 patients undergoing cataract surgery and/or endothelial keratoplasty (EK). Endothelial cell density (ECD; n = 33) and central corneal thickness (CCT; n = 41) were measured on patients with relatively clear corneas. Before surgery, an oxygen sensor was introduced into the AC via a peripheral corneal paracentesis. In all patients, seven measurements of pO2 were obtained by positioning the flexible tip near the endothelium at the central cornea, at four cardinal subendothelial locations near the midperipheral cornea, and in the mid-AC and AC angle. In patients with pseudophakia or eyes undergoing cataract surgery, pO2 also was measured near the lens surface and in the posterior chamber. Results Consistent with our previous reports, a steep oxygen gradient was noted in the anterior segment of normal controls (n = 24). In patients with endothelial dysfunctions (n = 27), there was a significant increase of pO2 at all five subendothelial locations without a significant increase of pO2 in the AC angle. By regression analyses, subendothelial pO2 correlated inversely with ECD and positively with CCT in patients with endothelial dysfunctions. Conclusions This study demonstrates an even steeper intraocular oxygen gradient in eyes with corneal endothelial dysfunctions. It suggests that the reduced oxygen consumption in corneal endothelial cells may increase oxidative stress in the AC and the existence of an alternative aqueous inflow pathway that maintains a relatively low and constant pO2 at the AC angle. PMID:26447982

  20. Palmitoyl acyltransferase DHHC21 mediates endothelial dysfunction in systemic inflammatory response syndrome

    PubMed Central

    Beard, Richard S.; Yang, Xiaoyuan; Meegan, Jamie E.; Overstreet, Jonathan W.; Yang, Clement G.Y.; Elliott, John A.; Reynolds, Jason J.; Cha, Byeong J.; Pivetti, Christopher D.; Mitchell, David A.; Wu, Mack H.; Deschenes, Robert J.; Yuan, Sarah Y.

    2016-01-01

    Endothelial dysfunction is a hallmark of systemic inflammatory response underlying multiple organ failure. Here we report a novel function of DHHC-containing palmitoyl acyltransferases (PATs) in mediating endothelial inflammation. Pharmacological inhibition of PATs attenuates barrier leakage and leucocyte adhesion induced by endothelial junction hyperpermeability and ICAM-1 expression during inflammation. Among 11 DHHCs detected in vascular endothelium, DHHC21 is required for barrier response. Mice with DHHC21 function deficiency (Zdhhc21dep/dep) exhibit marked resistance to injury, characterized by reduced plasma leakage, decreased leucocyte adhesion and ameliorated lung pathology, culminating in improved survival. Endothelial cells from Zdhhc21dep/dep display blunted barrier dysfunction and leucocyte adhesion, whereas leucocytes from these mice did not show altered adhesiveness. Furthermore, inflammation enhances PLCβ1 palmitoylation and signalling activity, effects significantly reduced in Zdhhc21dep/dep and rescued by DHHC21 overexpression. Likewise, overexpression of wild-type, not mutant, PLCβ1 augments barrier dysfunction. Altogether, these data suggest the involvement of DHHC21-mediated PLCβ1 palmitoylation in endothelial inflammation. PMID:27653213

  1. Methionine cycle kinetics and arginine supplementation in endothelial dysfunction of ESRD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the effect of arginine supplementation on metabolic pathways involved in endothelial dysfunction of end stage renal disease (ESRD), we conducted a study on 11 ESRD patients age 49+/-16; wt 93+/-26 kg receiving an adequate protein and energy intake for 1 week, followed by a primed, con...

  2. Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction.

    PubMed

    Panwar, Hariom; Jain, Deepika; Khan, Saba; Pathak, Neelam; Raghuram, Gorantla V; Bhargava, Arpit; Banerjee, Smita; Mishra, Pradyumna K

    2013-01-01

    Mechanistic investigations coupled with epidemiology, case-control, cohort and observational studies have increasingly linked isocyanate exposure (both chronic and acute) with pulmonary morbidity and mortality. Though ascribed for impairment in endothelial cell function, molecular mechanisms of these significant adverse pulmonary outcomes remains poorly understood. As preliminary studies conducted in past have failed to demonstrate a cause-effect relationship between isocyanate toxicity and compromised pulmonary endothelial cell function, we hypothesized that direct exposure to isocyanate may disrupt endothelial structural lining, resulting in cellular damage. Based on this premise, we comprehensively evaluated the molecular repercussions of methyl isocyanate (MIC) exposure on human pulmonary arterial endothelial cells (HPAE-26). We examined MIC-induced mitochondrial oxidative stress, pro-inflammatory cytokine response, oxidative DNA damage response and apoptotic index. Our results demonstrate that exposure to MIC, augment mitochondrial reactive oxygen species production, depletion in antioxidant defense enzymes, elevated pro-inflammatory cytokine response and induced endothelial cell apoptosis via affecting the balance of mitochondrial-nuclear cross talk. We herein delineate the first and direct molecular cascade of isocyanate-induced pulmonary endothelial cell dysfunction. The results of our study might portray a connective link between associated respiratory morbidities with isocyanate exposure, and indeed facilitate to discern the exposure-phenotype relationship in observed deficits of pulmonary endothelial cell function. Further, understanding of inter- and intra-cellular signaling pathways involved in isocyanate-induced endothelial damage would not only aid in biomarker identification but also provide potential new avenues to target specific therapeutic interventions.

  3. HIV-1 infection, microenvironment and endothelial cell dysfunction.

    PubMed

    Mazzuca, Pietro; Caruso, Arnaldo; Caccuri, Francesca

    2016-09-01

    HIV-1 promotes a generalized immune activation that involves the main targets of HIV-1 infection but also cells that are not sensitive to viral infection. ECs display major dysfunctions in HIV+ patients during long-standing viral infection that persist even in the current cART era, in which new-generation drugs have reduced dysmetabolic side effects and successfully impeded viral replication. In vivo studies have failed to demonstrate the presence of replicating virus in ECs suggesting that a direct role of the virus is unlikely, and implying that the mechanism accounting for vascular dysfunction may rely on the indirect action of molecules released in the microenvironment by HIV-1-infected cells. This article reviews the current understanding of how HIV-1 infection can contribute to vascular dysfunction. In particular, we discuss the emerging role played by different HIV-1 proteins in driving inflammation and EC dysregulation, and highlight the need to target them for therapeutic benefit. PMID:27602413

  4. Change of retinal pigment epithelial atrophy after anti-vascular endothelial growth factor treatment in exudative age-related macular degeneration

    PubMed Central

    Kim, Moosang; Kim, Eung Suk; Seo, Kyung Hoon; Yu, Seung-Young; Kwak, Hyung-Woo

    2016-01-01

    Purpose: The study aimed to investigate the quantitative changes of retinal pigment epithelial (RPE) atrophy during a 24-month follow-up period of anti-vascular endothelial growth factor (VEGF) for exudative age-related macular degeneration (AMD). Materials and Methods: This is a retrospective study. Sixty-five eyes of 62 consecutive patients with naïve exudative AMD who had received treatment with anti-VEGF therapy and followed for more 24 months were enrolled. All patients received three initial monthly injections of anti-VEGF (ranibizumab or bevacizumab), followed by pro re nata or treat-and-extend protocol. Color fundus image, optical coherence tomography, and fundus autofluorescence were evaluated for RPE atrophy. Multiple regression analysis was performed to investigate the predictive factors found during univariate analysis to identify an association with increased RPE atrophic areas. Results: The mean number of anti-VEGF treatments was 9.18. RPE atrophic area was 1.293 ± 1.298 mm2 at baseline and enlarged to 2.394 ± 1.940 mm2 after 24 months, which differed significantly (P = 0.001). Multiple regression analysis revealed that larger areas of RPE atrophy at month 4 and larger numbers of anti-VEGF treatments were associated with increased RPE atrophic areas. Conclusions: RPE atrophy progresses in eyes with exudative AMD during anti-VEGF treatment. Larger areas of RPE atrophy at month 4 and larger numbers of anti-VEGF injections were associated with an increased risk of progression of RPE atrophy the following treatment. These findings may be useful to clinicians using intravitreal anti-VEGF for the treatment of exudative AMD, both for selecting an appropriate treatment plan and for predicting the progression of RPE atrophy. PMID:27488150

  5. A Clear Cell Renal Cell Carcinoma Inhibiting the Response to Intravitreal Antivascular Endothelial Growth Factor Therapy in Wet Age-Related Macular Disease

    PubMed Central

    Falcão, Manuel S.; Vinagre, João; Soares, Paula; Lopes, José Manuel; Brandão, Elisete; Carneiro, Ângela M.

    2012-01-01

    Purpose Wet age-related macular degeneration (AMD) is an ocular disorder that can be successfully treated with intravitreal antivascular endothelial growth factor (VEGF) therapy. We report a case of incomplete response to intravitreal therapy associated with a clear cell renal cell carcinoma (ccRCC). Methods A 72-year-old male with wet AMD responded poorly to intravitreal bevacizumab and ranibizumab injections. The removal of a ccRCC led to the spontaneous stabilization of the choroidal neovascular lesion. The renal carcinoma was examined for Von Hippel-Lindau (VHL) gene alterations. Immunohistochemical profiling of the hypoxia-inducible factor (HIF) pathway addressing the marker HIF-1α and its downstream targets VEGF, glucose transporter 1 and carbonic anhydrase IX was performed. Results Genotyping of the ccRCC revealed the presence of a truncating VHL mutation (p.E134fs*25). Immunohistochemistry displayed HIF pathway target activation and VEGF expression in the ccRCC tumour cells. Following tumour removal, the neovascular lesion remained stable for 6 months without any further anti-VEGF therapy. Conclusion The somatic VHL mutation correlates with persistent high levels of HIF-1α pathway targets and VEGF expression in the ccRCC. We postulate that this increased VEGF in the tumour and subsequently in the plasma levels could have caused the incomplete response to intravitreal anti-VEGF therapy. Stabilization of the wet AMD following tumour removal indicates that the angiogenic secreting tumour (ccRCC) abrogates the response to VEGF inhibitor therapy. Thus, in cases of poor response to intravitreal anti-VEGF therapy, systemic evaluation including plasma levels of VEGF and/or systemic screening for VEGF-producing tumours should be considered. PMID:23341823

  6. Endocardial Endothelial Dysfunction Progressively Disrupts Initially Anti then Pro-Thrombotic Pathways in Heart Failure Mice

    PubMed Central

    Schoner, Amanda; Tyrrell, Christina; Wu, Melinda; Gelow, Jill M.; Hayes, Alicia A.; Lindner, Jonathan R.; Thornburg, Kent L.; Hasan, Wohaib

    2015-01-01

    Objective An experimental model of endocardial thrombosis has not been developed and endocardial endothelial dysfunction in heart failure (HF) is understudied. We sought to determine whether disruption of the endothelial anti-coagulant activated protein C (APC) pathway in CREBA133 HF mice promotes endocardial thrombosis in the acute decompensated phase of the disease, and whether alterations in von Willebrand factor (vWF) secretion from HF endocardium reduces thrombus formation as HF stabilizes. Approach and results Echocardiography was used to follow HF development and to detect endocardial thrombi in CREBA133 mice. Endocardial thrombi incidence was confirmed with immunohistochemistry and histology. In early and acute decompensated phases of HF, CREBA133 mice had the highest incidence of endocardial thrombi and these mice also had a shorter tail-bleeding index consistent with a pro-thrombotic milieu. Both APC generation, and expression of receptors that promote APC function (thrombomodulin, endothelial protein C receptor, protein S), were suppressed in the endocardium of acute decompensated HF mice. However, in stable compensated HF mice, an attenuation occurred for vWF protein content and secretion from endocardial endothelial cells, vWF-dependent platelet agglutination (by ristocetin), and thrombin generation on the endocardial surface. Conclusions CREBA133 mice develop HF and endocardial endothelial dysfunction. Attenuation of the anti-coagulant APC pathway promotes endocardial thrombosis in early and acute decompensated phases of HF. However, in stable compensated HF mice, disruptions in endothelial vWF expression and extrusion may actually reduce the incidence of endocardial thrombosis. PMID:26565707

  7. Vascular endothelial dysfunction and nutritional compounds in early type 1 diabetes.

    PubMed

    Hoffman, Robert P

    2014-05-01

    Cardiovascular disease is the major cause of death in patients with type 1 diabetes. Vascular endothelial dysfunction is an early pathophysiological precursor of cardiovascular disease. There is extensive evidence that hyperglycemia causes acute perturbations in endothelial function likely due to increases in oxidative damage. Interestingly, oscillating hyperglycemia may cause more damage than persistent hyperglycemia. Many, but not all, studies indicate that vascular endothelial dysfunction occurs early in the course of type 1 diabetes and is present even in adolescents. Ascorbic acid has been shown to diminish the acute effects of hyperglycemia on endothelial function in type 1 diabetes and in conjunction with euglycemia to restore endothelial function to normal values in adults with well-controlled diabetes. In vitro and in vivo animal evidence suggests potential benefit from two other small molecule antioxidants, nicotinamide and taurine. Early studies suggested that folate supplementation may improve endothelial function in adolescents with type 1 diabetes but this has not been confirmed by more recent studies. Epidemiological evidence suggests a possible role for vitamin D therapy although intervention studies in type 2 diabetes have yielded varying results and have not been done in type 1 diabetes. Further exploration of these and other compounds is clearly appropriate if we are to reduce cardiovascular risk in type 1 diabetes.

  8. Endothelial and Microcirculatory Function and Dysfunction in Sepsis.

    PubMed

    Colbert, James F; Schmidt, Eric P

    2016-06-01

    The microcirculation is a series of arterioles, capillaries, and venules that performs essential functions of oxygen and nutrient delivery, customized to the unique physiologic needs of the supplied organ. The homeostatic microcirculatory response to infection can become harmful if overactive and/or dysregulated. Pathologic microcirculatory dysfunction can be directly visualized by intravital microscopy or indirectly measured via detection of circulating biomarkers. Although several treatments have been shown to protect the microcirculation during sepsis, they have not improved patient outcomes when applied indiscriminately. Future outcomes-oriented studies are needed to test sepsis therapeutics when personalized to a patient's microcirculatory dysfunction. PMID:27229643

  9. Endothelial Mineralocorticoid Receptor Deletion Prevents Diet-Induced Cardiac Diastolic Dysfunction in Females.

    PubMed

    Jia, Guanghong; Habibi, Javad; DeMarco, Vincent G; Martinez-Lemus, Luis A; Ma, Lixin; Whaley-Connell, Adam T; Aroor, Annayya R; Domeier, Timothy L; Zhu, Yi; Meininger, Gerald A; Barrett Mueller, Katelee; Jaffe, Iris Z; Sowers, James R

    2015-12-01

    Overnutrition and insulin resistance are especially prominent risk factors for the development of cardiac diastolic dysfunction in females. We recently reported that consumption of a Western diet (WD) containing excess fat (46%), sucrose (17.5%), and high fructose corn syrup (17.5%) for 16 weeks resulted in cardiac diastolic dysfunction and aortic stiffening in young female mice and that these abnormalities were prevented by mineralocorticoid receptor blockade. Herein, we extend those studies by testing whether WD-induced diastolic dysfunction and factors contributing to diastolic impairment, such as cardiac fibrosis, hypertrophy, inflammation, and impaired insulin signaling, are modulated by excess endothelial cell mineralocorticoid receptor signaling. Four-week-old female endothelial cell mineralocorticoid receptor knockout and wild-type mice were fed mouse chow or WD for 4 months. WD feeding resulted in prolonged relaxation time, impaired diastolic septal wall motion, and increased left ventricular filling pressure indicative of diastolic dysfunction. This occurred in concert with myocardial interstitial fibrosis and cardiomyocyte hypertrophy that were associated with enhanced profibrotic (transforming growth factor β1/Smad) and progrowth (S6 kinase-1) signaling, as well as myocardial oxidative stress and a proinflammatory immune response. WD also induced cardiomyocyte stiffening, assessed ex vivo using atomic force microscopy. Conversely, endothelial cell mineralocorticoid receptor deficiency prevented WD-induced diastolic dysfunction, profibrotic, and progrowth signaling, in conjunction with reductions in macrophage proinflammatory polarization and improvements in insulin metabolic signaling. Therefore, our findings indicate that increased endothelial cell mineralocorticoid receptor signaling associated with consumption of a WD plays a key role in the activation of cardiac profibrotic, inflammatory, and growth pathways that lead to diastolic dysfunction in

  10. Erectile dysfunction precedes coronary artery endothelial dysfunction in rats fed a high-fat, high-sucrose, Western pattern diet.

    PubMed

    La Favor, Justin D; Anderson, Ethan J; Hickner, Robert C; Wingard, Christopher J

    2013-03-01

    Introduction.  It is suggested that erectile dysfunction (ED) may be an early risk factor for cardiovascular disease. Aim.  The goal of this study was to determine whether development of ED precedes the onset of coronary artery endothelial dysfunction in response to a Western diet (WD), thereby establishing whether the WD differentially impacts the endothelium in a time-dependent manner. Additionally, a goal was to determine if diet-induced ED is reversible with intracavernosal sepiapterin treatment. Methods.  Male Sprague-Dawley rats were fed a WD for 4, 8, or 12 weeks, or a control diet for 8 weeks. Erectile function was evaluated by measuring the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to electrical field stimulation of the cavernosal nerve near the major pelvic ganglion, in the absence and presence of sepiapterin. Coronary artery endothelial function was evaluated ex vivo with cumulative doses of acetylcholine (ACh) applied to segments of the left anterior descending coronary artery preconstricted with serotonin. Main Outcome Measures.  Erectile function was assessed as the ICP response to electrical field stimulation (EFS), normalized to MAP. Coronary artery endothelial function was assessed as the effective concentration producing 50% of a maximal response (EC50 ) of the ACh response. Results.  The ICP/MAP response to EFS was significantly attenuated following both 8 and 12 weeks of the WD compared with the control diet (P < 0.05). Sepiapterin treatment augmented the ICP/MAP response in all WD groups (P < 0.05). The coronary artery EC50 of the ACh response was not different from control following 4 or 8 weeks but was significantly elevated following 12 weeks of the WD (P < 0.01). Conclusions.  These data suggest that erectile function is reduced prior to coronary artery endothelial function in response to the WD. Improvement of erectile function with sepiapterin in WD rats indicates that nitric oxide

  11. Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction.

    PubMed

    Fisch, Adam S; Yerges-Armstrong, Laura M; Backman, Joshua D; Wang, Hong; Donnelly, Patrick; Ryan, Kathleen A; Parihar, Ankita; Pavlovich, Mary A; Mitchell, Braxton D; O'Connell, Jeffrey R; Herzog, William; Harman, Christopher R; Wren, Jonathan D; Lewis, Joshua P

    2015-01-01

    Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease. PMID:26406321

  12. High glucose causes dysfunction of the human glomerular endothelial glycocalyx.

    PubMed

    Singh, A; Fridén, V; Dasgupta, I; Foster, R R; Welsh, G I; Tooke, J E; Haraldsson, B; Mathieson, P W; Satchell, S C

    2011-01-01

    The endothelial glycocalyx is a gel-like layer which covers the luminal side of blood vessels. The glomerular endothelial cell (GEnC) glycocalyx is composed of proteoglycan core proteins, glycosaminoglycan (GAG) chains, and sialoglycoproteins and has been shown to contribute to the selective sieving action of the glomerular capillary wall. Damage to the systemic endothelial glycocalyx has recently been associated with the onset of albuminuria in diabetics. In this study, we analyze the effects of high glucose on the biochemical structure of the GEnC glycocalyx and quantify functional changes in its protein-restrictive action. We used conditionally immortalized human GEnC. Proteoglycans were analyzed by Western blotting and indirect immunofluorescence. Biosynthesis of GAG was analyzed by radiolabeling and quantified by anion exchange chromatography. FITC-albumin was used to analyze macromolecular passage across GEnC monolayers using an established in vitro model. We observed a marked reduction in the biosynthesis of GAG by the GEnC under high-glucose conditions. Further analysis confirmed specific reduction in heparan sulfate GAG. Expression of proteoglycan core proteins remained unchanged. There was also a significant increase in the passage of albumin across GEnC monolayers under high-glucose conditions without affecting interendothelial junctions. These results reproduce changes in GEnC barrier properties caused by enzymatic removal of heparan sulfate from the GEnC glycocalyx. They provide direct evidence of high glucose-induced alterations in the GEnC glycocalyx and demonstrate changes to its function as a protein-restrictive layer, thus implicating glycocalyx damage in the pathogenesis of proteinuria in diabetes.

  13. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  14. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  15. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    PubMed Central

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  16. Effects of Huang Qi Decoction on Endothelial Dysfunction Induced by Homocysteine

    PubMed Central

    Wang, Li

    2016-01-01

    Vascular endothelial dysfunction can be induced by homocysteine (Hcy) through promoted oxidative stress. Huang Qi decoction (HQD) is a traditional Chinese medical formula and its components possess antioxidant effect. The study herein was therefore designed to investigate the effects of HQD at different dosage on endothelial dysfunction induced by Hcy. Tempol and apocynin were used to investigate whether antioxidant mechanisms were involved. Endothelium-dependent relaxation of rat aortas was investigated by isometric tension recordings. Reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs) was determined by DHE staining. The assessment related to oxidative stress and NO bioavailability was performed by assay kits and western blot. In isometric tension experiment, HQD at the dose of 30 or 100 μg/mL, tempol, or apocynin prevented impaired endothelium-dependent relaxation in isolated aortas elicited by Hcy. In cellular experiments, substantial enhancement in NADPH oxidase and ROS generation and reduction in NO bioavailability triggered by Hcy were reversed by pretreatment of HQD at the dose of 100 μg/mL, tempol, or apocynin. The results proved that HQD at an appropriate dosage presented favorable effects on endothelial dysfunction initiated by Hcy through antioxidant mechanisms. HQD can act as a potent prescription for the treatment of endothelium related vascular complications. PMID:27725840

  17. Salidroside improves homocysteine-induced endothelial dysfunction by reducing oxidative stress.

    PubMed

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  18. Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia

    PubMed Central

    Ducat, Aurélien; Doridot, Ludivine; Calicchio, Rosamaria; Méhats, Celine; Vilotte, Jean-Luc; Castille, Johann; Barbaux, Sandrine; Couderc, Betty; Jacques, Sébastien; Letourneur, Franck; Buffat, Christophe; Le Grand, Fabien; Laissue, Paul; Miralles, Francisco; Vaiman, Daniel

    2016-01-01

    Preeclampsia is a disease of pregnancy involving systemic endothelial dysfunction. However, cardiovascular consequences of preeclampsia are difficult to analyze in humans. The objective of the present study is to evaluate the cardiovascular dysfunction induced by preeclampsia by examining the endothelium of mice suffering of severe preeclampsia induced by STOX1 overexpression. Using Next Generation Sequencing on endothelial cells of mice carrying either transgenic or control embryos, we discovered significant alterations of gene networks involved in inflammation, cell cycle, and cardiac hypertrophy. In addition, the heart of the preeclamptic mice revealed cardiac hypertrophy associated with histological anomalies. Bioinformatics comparison of the networks of modified genes in the endothelial cells of the preeclamptic mice and HUVECs exposed to plasma from preeclamptic women identified striking similarities. The cardiovascular alterations in the pregnant mice are comparable to those endured by the cardiovascular system of preeclamptic women. The STOX1 mice could help to better understand the endothelial dysfunction in the context of preeclampsia, and guide the search for efficient therapies able to protect the maternal endothelium during the disease and its aftermath. PMID:26758611

  19. Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load.

    PubMed

    Walsh, Lauren K; Restaino, Robert M; Neuringer, Martha; Manrique, Camila; Padilla, Jaume

    2016-11-01

    Postprandial hyperglycaemia leads to a transient impairment in endothelial function; however, the mechanisms remain largely unknown. Previous work in cell culture models demonstrate that high glucose results in endoplasmic reticulum (ER) stress and, in animal studies, ER stress has been implicated as a cause of endothelial dysfunction. In the present study, we tested the hypothesis that acute oral administration of tauroursodeoxycholic acid (TUDCA, 1500 mg), a chemical chaperone known to alleviate ER stress, would prevent hyperglycaemia-induced endothelial dysfunction. In 12 young healthy subjects (seven men, five women), brachial artery flow-mediated dilation (FMD) was assessed at baseline, and at 60 and 120 min after an oral glucose challenge. Subjects were tested on two separate visits in a single-blind randomized cross-over design: after oral ingestion of TUDCA or placebo capsules. FMD was reduced from baseline during hyperglycaemia under the placebo condition (-32% at 60 min and -28% at 120 min post oral glucose load; P<0.05 from baseline) but not under the TUDCA condition (-4% at 60 min and +0.3% at 120 min post oral glucose load; P>0.05 from baseline). Postprandial plasma glucose and insulin were not altered by TUDCA ingestion. Plasma oxidative stress markers 3-nitrotyrosine and thiobarbituric acid reactive substance (TBARS) remained unaltered throughout the oral glucose challenge in both conditions. These results suggest that hyperglycaemia-induced endothelial dysfunction can be mitigated by oral administration of TUDCA, thus supporting the hypothesis that ER stress may contribute to endothelial dysfunction during postprandial hyperglycaemia.

  20. ox-LDL induces endothelial dysfunction by promoting Arp2/3 complex expression.

    PubMed

    Tang, Yao; Zhao, Jianting; Shen, Liming; Jin, Yiqi; Zhang, Zhixuan; Xu, Guoxiong; Huang, Xianchen

    2016-06-24

    Oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury including cytoskeleton reorganization, which is closely related to actin-related protein 2/3 (Arp2/3) complex. The aim of this study was to investigate the role of Arp2/3 complex in ox-LDL-induced endothelial dysfunction. In this study, we found that Arp2 and Arp3 expression was increased under atherosclerotic conditions both in ApoE-/- mice and in ox-LDL-stimulated human coronary artery endothelial cells (HCAECs). Arp2/3 complex inhibitor CK666 significantly reduced ox-LDL-induced ROS generation and cytoskeleton reorganization, and increased NO release in HCAECs. Pretreatment with LOX-1- but not CD36-blocking antibody markedly decreased ox-LDL-induced Arp2 and Arp3 expression. Moreover, Rac-1 siRNA remarkably suppressed ox-LDL-stimulated Arp2 and Arp3 expression. Additionally, CK666 reduced endothelial nitric oxide synthase (eNOS) expression and atherosclerotic lesions in ApoE-/- mice. Collectively, ox-LDL induces endothelial dysfunction by activating LOX-1/Rac-1 signaling and upregulating Arp2/3 complex expression. PMID:27181356

  1. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction.

    PubMed

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2015-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients.

  2. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction

    PubMed Central

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2015-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients. PMID:25678749

  3. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation

    PubMed Central

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong

    2016-01-01

    Purpose Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Materials and Methods Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. Results SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. NG-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. Conclusion These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions. PMID:27593859

  4. Effect of rosuvastatin on hyperuricemic rats and the protective effect on endothelial dysfunction.

    PubMed

    Xilifu, Dilidaer; Abudula, Abulizi; Rehemu, Nijiati; Zhao, Long; Zhou, Xinrong; Zhang, Xiangyang

    2014-12-01

    Endothelial dysfunction plays a key role in the development of cardiovascular diseases, renal injuries and hypertension induced by hyperuricemia. Therapies targeting uric acid (UA) may be beneficial in cardiovascular diseases. In the present study, the effect of rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, was investigated to determine whether rosuvastatin improves endothelial dysfunction via the endothelial nitric oxide (NO) pathway and delays the pathogenesis of endothelial dysfunction in hyperuricemic rats. A total of 72 Sprague-Dawley rats (age, 8 weeks) were randomly divided into six groups (12 rats per group), including the control, model, 2.5 mg/kg/day rosuvastatin, 5 mg/kg/day rosuvastatin, 10 mg/kg/day rosuvastatin and 53.57 mg/kg/day allopurinol groups. The model, rosuvastatin and allopurinol rats were subjected to hyperuricemia, induced by the administration of yeast extract powder (21 g/kg/day) and oxonic acid potassium salt (200 mg/kg/day). The hyperuricemic rats were treated with 2.5, 5.0 or 10.0 mg/kg/day rosuvastatin orally for six weeks, while rats treated with allopurinol (53.57 mg/kg/day) were used as a positive control. The serum levels of NO and the gene expression levels of endothelial NO synthase in the aortic tissue increased, whereas the serum levels of UA, endothelin-1 and angiotensin II decreased in the hyperuricemic rats treated with rosuvastatin, particularly at a high rosuvastatin dose (10 mg/kg/day). In addition, the curative effect of the 10 mg/kg/day rosuvastatin group was evidently higher compared with the allopurinol group. Therefore, rosuvastatin may be a novel drug candidate for the treatment of hyperuricemia due to its endothelial protective properties.

  5. Febuxostat, a novel xanthine oxidoreductase inhibitor, improves hypertension and endothelial dysfunction in spontaneously hypertensive rats.

    PubMed

    Shirakura, Takashi; Nomura, Johji; Matsui, Chieko; Kobayashi, Tsunefumi; Tamura, Mizuho; Masuzaki, Hiroaki

    2016-08-01

    Xanthine oxidase (XO) is an enzyme responsible for the production of uric acid. XO produces considerable amount of oxidative stress throughout the body. To date, however, its pathophysiologic role in hypertension and endothelial dysfunction still remains controversial. To explore the possible involvement of XO-derived oxidative stress in the pathophysiology of vascular dysfunction, by use of a selective XO inhibitor, febuxostat, we investigated the impact of pharmacological inhibition of XO on hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats (SHRs). Sixteen-week-old SHR and normotensive Wistar-Kyoto (WKY) rats were treated with tap water (control) or water containing febuxostat (3 mg/kg/day) for 6 weeks. Systolic blood pressure (SBP) in febuxostat-treated SHR (220 ± 3 mmHg) was significantly (P < 0.05) decreased compared with the control SHR (236 ± 4 mmHg) while SBP in febuxostat-treated WKY was constant. Acetylcholine-induced endothelium-dependent relaxation in aortas from febuxostat-treated SHR was significantly (P < 0.05) improved compared with the control SHR, whereas relaxation in response to sodium nitroprusside was not changed. Vascular XO activity and tissue nitrotyrosine level, a representative indicator of local oxidative stress, were considerably elevated in the control SHR compared with the control WKY, and this increment was abolished by febuxostat. Our results suggest that exaggerated XO activity and resultant increase in oxidative stress in this experimental model contribute to the hypertension and endothelial dysfunction, thereby supporting a notion that pharmacological inhibition of XO is valuable not only for hyperuricemia but also for treating hypertension and related endothelial dysfunction in human clinics.

  6. Mercury Exposure and Endothelial Dysfunction: An Interplay Between Nitric Oxide and Oxidative Stress.

    PubMed

    Omanwar, Swati; Fahim, M

    2015-01-01

    Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.

  7. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Wassall, Cynthia D.

    % increase in ROS generation; this implies that higher ROS concentrations in sliced tissue indicate extraneous ROS generation not associated with the ROS stimulus of interest. We also investigated the role of ROS in chronic flow overload (CFO). Elevation of shear stress that increases production of vascular ROS has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. ROS production increased threefold in response to CFO. The endothelium dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. The present data implicate NADPH oxidase produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO. In further work, a swine right ventricular hypertrophy (RVH) model induced by pulmonary artery (PA) banding was used to study right coronary artery (RCA) endothelial function and ROS level. Endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone. Finally, although hypertension-induced vascular stiffness and dysfunction are well established in patients and animal models, we hypothesize that stretch or distension due to hypertension and outward expansion is the cause of endothelial dysfunction mediated by angiotensin II type 1 (AT1) receptor in coronary arteries. The expression and activation of AT1 receptor and the production of ROS were up regulated and endothelial function deteriorated in the RCA. The acute inhibition of AT1 receptor and NADPH oxidase partially restored the endothelial

  8. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.

    PubMed

    Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H

    2015-11-01

    Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes.

  9. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis.

    PubMed

    Zhu, Mo-Tao; Wang, Bing; Wang, Yun; Yuan, Lan; Wang, Hua-Jian; Wang, Meng; Ouyang, Hong; Chai, Zhi-Fang; Feng, Wei-Yue; Zhao, Yu-Liang

    2011-06-10

    More recently, the correlation between exposure to nanoparticles and cardiovascular diseases is of particular concern in nanotoxicology related fields. Nanoparticle-triggered endothelial dysfunction is hypothesized to be a dominant mechanism in the development of the diseases. To test this hypothesis, iron oxide nanoparticles (Fe₂O₃ and Fe₃O₄), as two widely used nanomaterials and the main metallic components in particulate matter, were selected to assess their potential risks on human endothelial system. The direct effects of iron oxide nanoparticles on human aortic endothelial cells (HAECs) and the possible effects mediated by monocyte (U937 cells) phagocytosis and activation were investigated. In the study, HAECs and U937 cells were exposed to 2, 20, 100 μg/mL of 22-nm-Fe₂O₃ and 43-nm-Fe₃O₄ particles. Our results indicate that cytoplasmic vacuolation, mitochondrial swelling and cell death were induced in HAEC. A significant increase in nitric oxide (NO) production was induced which coincided with the elevation of nitric oxide synthase (NOS) activity in HAECs. Adhesion of monocytes to the HAECs was significantly enhanced as a consequence of the up-regulation of intracellular cell adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) expression, all of which are considered as early steps of atheroscelerosis. Phagocytosis and dissolution of nanoparticles by monocytes were found to simultaneously provoke oxidative stress and mediate severe endothelial toxicity. We conclude that intravascular iron oxide nanoparticles may induce endothelial system inflammation and dysfunction by three ways: (1) nanoparticles may escape from phagocytosis that interact directly with the endothelial monolayer; (2) nanoparticles are phagocytized by monocytes and then dissolved, thus impact the endothelial cells as free iron ions; or (3) nanoparticles are phagocytized by monocytes to provoke oxidative stress responses.

  10. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities.

    PubMed

    Aman, Jurjan; Weijers, Ester M; van Nieuw Amerongen, Geerten P; Malik, Asrar B; van Hinsbergh, Victor W M

    2016-08-01

    Despite considerable progress in the understanding of endothelial barrier regulation and the identification of approaches that have the potential to improve endothelial barrier function, no drug- or stem cell-based therapy is presently available to reverse the widespread vascular leak that is observed in acute respiratory distress syndrome (ARDS) and sepsis. The translational gap suggests a need to develop experimental approaches and tools that better mimic the complex environment of the microcirculation in which the vascular leak develops. Recent studies have identified several elements of this microenvironment. Among these are composition and stiffness of the extracellular matrix, fluid shear stress, interaction of endothelial cells (ECs) with pericytes, oxygen tension, and the combination of toxic and mechanic injurious stimuli. Development of novel cell culture techniques that integrate these elements would allow in-depth analysis of EC biology that closely approaches the (patho)physiological conditions in situ. In parallel, techniques to isolate organ-specific ECs, to define EC heterogeneity in its full complexity, and to culture patient-derived ECs from inducible pluripotent stem cells or endothelial progenitor cells are likely to advance the understanding of ARDS and lead to development of therapeutics. This review 1) summarizes the advantages and pitfalls of EC cultures to study vascular leak in ARDS, 2) provides an overview of elements of the microvascular environment that can directly affect endothelial barrier function, and 3) discusses alternative methods to bridge the gap between basic research and clinical application with the intent of improving the translational value of present EC culture approaches. PMID:27343194

  11. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing

    PubMed Central

    Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.

    2012-01-01

    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498

  12. Endothelial Dysfunction and Blood Viscosity Inpatients with Unstable Angina in Different Periods of a Solar Activity

    NASA Astrophysics Data System (ADS)

    Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.

    The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.

  13. Is lactate the new panacea for endothelial dysfunction?

    PubMed

    Nalos, Marek; Tang, Benjamin M; Nanan, Ralph

    2014-01-01

    Fluid resuscitation in the critically ill is a hot topic. The current strategy of rapid and adequate resuscitation in shock followed by conservative fluid administration is often difficult to achieve with standard crystalloid solutions. Research into alternative intravenous fluids tailored to individual patient needs is required. In the previous issue of Critical Care, Somasetia and colleagues compare the effects of hypertonic sodium lactate with the World Health Organization-recommended strategy of Ringer's lactate resuscitation in children with severe Dengue, a viral infection for which causal treatment and vaccination are not available. The results not only suggest unimpaired lactate metabolism during shock in children but document improvement in endothelial barrier function, limited coagulopathy, and avoidance of fluid overload with hypertonic sodium lactate. Their study invites several important questions to be answered. Is hypertonicity or lactate per se important for the beneficial effects? Are the metabolic or anti-inflammatory effects responsible? Is the raised lactate in shock an adaptive response? Should reduction in lactate levels be the goal of resuscitation? These questions may trigger further research into the role of lactate and lactate-based intravenous fluids in resuscitation of the critically ill. PMID:25672811

  14. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus.

    PubMed

    Kahlenberg, J Michelle; Thacker, Seth G; Berthier, Celine C; Cohen, Clemens D; Kretzler, Matthias; Kaplan, Mariana J

    2011-12-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with heterogeneous manifestations including severe organ damage and vascular dysfunction leading to premature atherosclerosis. IFN-α has been proposed to have an important role in the development of lupus and lupus-related cardiovascular disease, partly by repression of IL-1 pathways leading to impairments in vascular repair induced by endothelial progenitor cells (EPCs) and circulating angiogenic cells (CACs). Counterintuitively, SLE patients also display transcriptional upregulation of the IL-1β/IL-18 processing machinery, the inflammasome. To understand this dichotomy and its impact on SLE-related cardiovascular disease, we examined cultures of human and murine control or lupus EPC/CACs to determine the role of the inflammasome in endothelial differentiation. We show that caspase-1 inhibition improves dysfunctional SLE EPC/CAC differentiation into mature endothelial cells and blocks IFN-α-mediated repression of this differentiation, implicating inflammasome activation as a crucial downstream pathway leading to aberrant vasculogenesis. Furthermore, serum IL-18 levels are elevated in SLE and correlate with EPC/CAC dysfunction. Exogenous IL-18 inhibits endothelial differentiation in control EPC/CACs and neutralization of IL-18 in SLE EPC/CAC cultures restores their capacity to differentiate into mature endothelial cells, supporting a deleterious effect of IL-18 on vascular repair in vivo. Upregulation of the inflammasome machinery was operational in vivo, as evidenced by gene array analysis of lupus nephritis biopsies. Thus, the effects of IFN-α are complex and contribute to an elevated risk of cardiovascular disease by suppression of IL-1β pathways and by upregulation of the inflammasome machinery and potentiation of IL-18 activation.

  15. The Krebs Cycle and Mitochondrial Mass Are Early Victims of Endothelial Dysfunction

    PubMed Central

    Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Ciszar, Anna; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S.

    2009-01-01

    Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of NG-monomethyl-l-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward “metabolic hypoxia” through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction. PMID

  16. Role of asymmetrical dimethylarginine in inflammation-induced endothelial dysfunction in human atherosclerosis.

    PubMed

    Antoniades, Charalambos; Demosthenous, Michael; Tousoulis, Dimitris; Antonopoulos, Alexios S; Vlachopoulos, Charalambos; Toutouza, Marina; Marinou, Kyriakoula; Bakogiannis, Constantinos; Mavragani, Kleio; Lazaros, George; Koumallos, Nikolaos; Triantafyllou, Costas; Lymperiadis, Dimitris; Koutsilieris, Michael; Stefanadis, Christodoulos

    2011-07-01

    We explored the role of asymmetrical dimethylarginine (ADMA) as a cause of endothelial dysfunction induced by systemic inflammation. In vitro data suggest that ADMA bioavailability is regulated by proinflammatory stimuli, but it is unclear whether ADMA is a link between inflammation and endothelial dysfunction in humans. In study 1 we recruited 351 patients with coronary artery disease (CAD) and 87 healthy controls. In study 2 we recruited 69 CAD, 69 healthy, and 10 patients with rheumatoid arthritis, whereas in study 3, 22 healthy and 70 CAD subjects were randomly assigned to Salmonella typhii vaccination (n=11 healthy and n=60 CAD) or placebo (n=11 healthy and n=10 CAD). Circulating interleukin 6/ADMA and flow-mediated dilation (FMD) were measured at 0 and 8 hours. In study 1, ADMA was inversely correlated with FMD in healthy individuals and CAD patients (P<0.0001 for both). However, interleukin 6 was inversely correlated with FMD (P<0.0001) in healthy subjects but not in CAD patients. The positive correlation between ADMA and interleukin 6 was stronger in healthy (r=0.515; P<0.0001) compared with CAD (r=0.289; P=0.0001) subjects. In study 2, both patients with rheumatoid arthritis and CAD had higher interleukin 6 (P<0.0001) and ADMA (P=0.004) but lower FMD (P=0.001) versus healthy subjects. In study 3, vaccination increased interleukin 6 in healthy (P<0.001) and CAD (P<0.001) subjects. FMD was reduced in healthy subjects (P<0.05), but its reduction in CAD was borderline. Vaccination increased ADMA only in healthy subjects (P<0.001). Systemic, low-grade inflammation leads to increased ADMA that may induce endothelial dysfunction. This study demonstrated that ADMA may be a link between inflammation and endothelial dysfunction in humans.

  17. There's life in the old dog yet: vitamin C as a therapeutic option in endothelial dysfunction.

    PubMed

    Rodemeister, Sandra; Biesalski, Hans K

    2014-01-01

    The use of vitamin C against different diseases has been controversially and emotionally discussed since Linus Pauling published his cancer studies. In vitro and animal studies showed promising results and explained the impact of vitamin C, particularly in cases with endothelial dysfunction. Indeed, studies (reviewed in this issue of Critical Care by Oudemans-van Straaten and colleagues) using high-dose vitamin C and the parenteral route of application seem to be more successful than oral vitamin C delivery. PMID:25184406

  18. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach.

    PubMed

    Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Csiszar, Anna; Ciszar, Anna; Krasnikov, Boris; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S

    2009-01-01

    Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.

  19. Endothelial dysfunction as assessed with magnetic resonance imaging - A major determinant in chronic heart failure.

    PubMed

    Kovačić, Slavica; Plazonić, Željko; Batinac, Tanja; Miletić, Damir; Ružić, Alen

    2016-05-01

    Chronic heart failure (CHF) is a clinical syndrome resulting from interaction of different structure and functional disturbances leading to decreased heart ability to ensure adequate supply of oxygenized blood to tissues and ensure adequate metabolic needs in the cases of normal or increased afterload. Endothelial dysfunction (ED) is a pathological condition characterized by general imbalance of all major endothelial mechanisms with key role in development and progression of atherosclerotic disease. ED has been associated with most cardiovascular risk factors. There is increasing interest in assessing endothelial function non-invasively, leading to development and evaluation of new diagnostic methods. We suggest that MRI is safe and reliable test that offers important advantages over ultrasound for the detection of ED and monitoring of the expected therapeutic effect. We believe that ED plays a pivotal role in chronic heart failure development and progression, regardless of its etiology, and that MRI should be introduced as a "gold standard" in diagnostic procedure and treatment.

  20. Impact of diabetic serum on endothelial cells: An in-vitro-analysis of endothelial dysfunction in diabetes mellitus type 2

    SciTech Connect

    Muenzel, Daniela; Lehle, Karla Haubner, Frank; Schmid, Christof; Birnbaum, Dietrich E.; Preuner, Juergen G.

    2007-10-19

    Diabetic endothelial dysfunction was characterized by altered levels of adhesion molecules and cytokines. Aim of our study was to evaluate the effects of diabetic serum on cell-growth and proinflammatory markers in human saphenous vein endothelial cells (HSVEC) from diabetic and non-diabetic patients. Diabetic serum showed (1) complementary proliferative activity for non-diabetic and diabetic HSVEC, (2) unchanged surface expression of adhesion molecules, and (3) elevated levels of sICAM-1 in HSVEC of all donors. The concentration of sVCAM-1 was increased only in diabetic cells. The proinflammatory state of diabetic HSVEC characterized by increased levels of cytokines was compensated. We concluded that even under normoglycemic conditions the serum itself contains critical factors leading to abnormal regulation of inflammation in diabetics. We introduced an in vitro model of diabetes representing the endothelial situation at the beginning of diabetes (non-diabetic cells/diabetic serum) as well as the diabetic chronic state (diabetic cells/diabetic serum)

  1. Protective effect of sitagliptin and rosuvastatin combination on vascular endothelial dysfunction in type-2 diabetes.

    PubMed

    Nade, Vandana S; Kawale, L A; Patel, K M

    2015-01-01

    The present investigation aimed to evaluate the protective effects of sitagliptin, glimepiride, rosuvastatin and their combinations on oxidative stress and endothelial dysfunction in the aortic tissues in fructose-fed type-2 diabetic rats. Sitagliptin (20 mg/kg, p.o.), glimepiride (2 mg/kg, p.o.), rosuvastatin (5 mg/kg, p.o.) and their combinations were administered for 6 w after induction of diabetes by fructose (66%, w/v solution, p.o. for 8 w) in wistar rats. The effects were examined on body weight, serum glucose, triglyceride, cholesterol, blood pressure, heart rate, nitric oxide and antioxidant defensive enzymes. After completion of treatment schedule, the blood pressure was determined by invasive method and vascular reactivity was tested with adrenaline, noradrenaline and phenylephrine. Endothelial dysfunction was determined by acetylcholine and sodium nitroprusside-induced vasorelaxation studies on isolated rat aortas. Long term treatments significantly decreased body weight gain, serum glucose, triglyceride and cholesterol levels; normalize the heart rate, and blood pressure in fructose fed rats. The treatments significantly improved vascular reactivity to catecholamines with reduction in elevated blood pressure in type-2 diabetic rats. The significant improvement in the relaxant response to acetylcholine and sodium nitroprusside was obtained on isolated aortas. All the treatments were effective in restoring defensive antioxidant enzymes. Sitagliptin and rosuvastatin were able to reverse endothelial dysfunction in type-2 diabetes, but better ameliorating potential was found when used in combination. PMID:25767324

  2. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress.

    PubMed

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3'-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  3. Endothelial Dysfunction: The Role of SREBP-Induced NLRP3 Inflammasome in Atherosclerosis

    PubMed Central

    Chen, Zhen; Martin, Marcy; Li, Zhao; Shyy, John Y-J.

    2014-01-01

    Purpose of review Great effort has been devoted to elucidate the molecular mechanisms by which inflammasome in macrophages contributes to atherosclerosis. Inflammasome in vascular endothelial cells (ECs) and its causal relationship with endothelial dysfunction in atherosclerosis are less understood. Here we review recent studies of inflammasome and its activation in ECs, and highlight such endothelial inflammatory response in atherosclerosis. Recent findings Inflammasomes are critical effectors in innate immunity, and their activation in macrophages and the arterial wall contributes to atherogenesis. Sterol regulatory element-binding protein 2 (SREBP2), a master regulator in cholesterol biosynthesis, can be activated in a non-canonical manner, which leads to activation of the inflammasome NOD-like receptor family pyrin domain-containing protein (NLRP) in macrophages and ECs. Results from in vitro and in vivo models suggest that SREBP2 is a key molecule in aggravating pro-inflammatory responses in ECs, and promoting atherosclerosis. Summary The SREBP-induced NLRP inflammasome and its instigation of innate immunity is an important contributor to atherosclerosis. Elucidating the underlying mechanisms will expand our understanding of endothelial dysfunction and its dynamic interaction with vascular inflammation. Furthermore, targeting SREBP-inflammasome pathways can be a therapeutic strategy for attenuating atherosclerosis. PMID:25188917

  4. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction.

    PubMed

    Wolf, Matthew B; Baynes, John W

    2006-02-01

    The anticancer drug doxorubicin (DOX) is toxic to target cells, but also causes endothelial dysfunction and edema, secondary to oxidative stress in the vascular wall. Thus, the mechanism of action of this drug may involve chemotoxicity to both cancer cells and to the endothelium. Indeed, we found that the permeability of monolayers of bovine pulmonary artery endothelial cells (BPAEC) to albumin was increased by approximately 10-fold above control, following 24-h exposure to clinically relevant concentrations of DOX (up to 1 microM). DOX also caused >4-fold increases in lactate dehydrogenase leakage and large decreases in ATP and reduced glutathione (GSH) in BPAECs, which paralleled the increases in endothelial permeability. A large part of the ATP loss could be attributed to DOX-induced hydrogen peroxide production which inhibited key thiol-enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PDH). Depletion of reduced nicotinamide adenine dinucleotide phosphate (NADPH) appeared to be a major factor leading to DOX-induced GSH depletion. At low concentrations, the sulfhydryl reagent, iodoacetate (IA), inhibited GAPDH, caused a decrease in ATP and increased permeability, without inhibiting G6PDH or decreasing GSH. These results, coupled with those of previous work on a related quinone, menadione, suggest that depletion of either GSH or ATP may lead independently to endothelial dysfunction during chemotherapy, contributing to the cardiotoxicity and other systemic side-effects of the drug.

  5. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress

    PubMed Central

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3’-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  6. Pulmonary artery endothelial cell dysfunction and decreased populations of highly proliferative endothelial cells in experimental congenital diaphragmatic hernia

    PubMed Central

    Seedorf, Gregory J.; Abman, Steven H.; Nozik-Grayck, Eva; Partrick, David A.; Gien, Jason

    2013-01-01

    Decreased lung vascular growth and pulmonary hypertension contribute to poor outcomes in congenital diaphragmatic hernia (CDH). Mechanisms that impair angiogenesis in CDH are poorly understood. We hypothesize that decreased vessel growth in CDH is caused by pulmonary artery endothelial cell (PAEC) dysfunction with loss of a highly proliferative population of PAECs (HP-PAEC). PAECs were harvested from near-term fetal sheep that underwent surgical disruption of the diaphragm at 60–70 days gestational age. Highly proliferative potential was measured via single cell assay. PAEC function was assessed by assays of growth and tube formation and response to known proangiogenic stimuli, vascular endothelial growth factor (VEGF), and nitric oxide (NO). Western blot analysis was used to measure content of angiogenic proteins, and superoxide production was assessed. By single cell assay, the proportion of HP-PAEC with growth of >1,000 cells was markedly reduced in the CDH PAEC, from 29% (controls) to 1% (CDH) (P < 0.0001). Compared with controls, CDH PAEC growth and tube formation were decreased by 31% (P = 0.012) and 54% (P < 0.001), respectively. VEGF and NO treatments increased CDH PAEC growth and tube formation. VEGF and VEGF-R2 proteins were increased in CDH PAEC; however, eNOS and extracellular superoxide dismutase proteins were decreased by 29 and 88%, respectively. We conclude that surgically induced CDH in fetal sheep causes endothelial dysfunction and marked reduction of the HP-PAEC population. We speculate that this CDH PAEC phenotype contributes to impaired vascular growth in CDH. PMID:24124189

  7. [Non-pharmacologic therapy of age-related macular degeneration, based on the etiopathogenesis of the disease].

    PubMed

    Fischer, Tamás

    2015-07-12

    It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction.

  8. Measures of endothelial dysfunction predict response to cardiac resynchronisation therapy

    PubMed Central

    Warriner, David R; Lawford, Patricia; Sheridan, Paul J

    2016-01-01

    Objectives Cardiac resynchronisation therapy (CRT) improves morbidity and mortality in heart failure (HF). Impaired endothelial function, as measured by flow-mediated dilation (FMD) is associated with increased morbidity and mortality in HF and may help to differentiate responders from non-responders. Methods 19 patients were recruited, comprising 94% men, mean age 69±8 years, New York Heart Association functional classes II–IV, QRSd 161±21 ms and mean left ventricular ejection fraction 26±8%. Markers of response and FMD were measured at baseline, 6 and 12 months following CRT. Results 14 patients were responders to CRT. Responders had significant improvements in VO2 (12.6±1.7 to 14.7±1.5 mL/kg/min, p<0.05), quality of life score (44.4±22.9–24.1±21.3, p<0.01), left ventricular end diastolic volume (201.5±72.5 mL–121.3±72.0 mL, p<0.01) and 6-min walk distance (374.0±112.8 m at baseline to 418.1±105.3 m, p<0.05). Baseline FMD in responders was 2.9±1.9% and 7.4±3.73% in non-responders (p<0.05). Conclusions Response to CRT at 6 and 12 months is predicted by baseline FMD. This study confirms that FMD identifies responders to CRT, due to endothelium-dependent mechanisms alone. PMID:27335654

  9. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Wassall, Cynthia D.

    % increase in ROS generation; this implies that higher ROS concentrations in sliced tissue indicate extraneous ROS generation not associated with the ROS stimulus of interest. We also investigated the role of ROS in chronic flow overload (CFO). Elevation of shear stress that increases production of vascular ROS has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. ROS production increased threefold in response to CFO. The endothelium dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. The present data implicate NADPH oxidase produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO. In further work, a swine right ventricular hypertrophy (RVH) model induced by pulmonary artery (PA) banding was used to study right coronary artery (RCA) endothelial function and ROS level. Endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone. Finally, although hypertension-induced vascular stiffness and dysfunction are well established in patients and animal models, we hypothesize that stretch or distension due to hypertension and outward expansion is the cause of endothelial dysfunction mediated by angiotensin II type 1 (AT1) receptor in coronary arteries. The expression and activation of AT1 receptor and the production of ROS were up regulated and endothelial function deteriorated in the RCA. The acute inhibition of AT1 receptor and NADPH oxidase partially restored the endothelial

  10. Cardiovascular risk reduction by reversing endothelial dysfunction: ARBs, ACE inhibitors, or both? Expectations from the ONTARGET Trial Programme.

    PubMed

    Ruilope, Luis Miguel; Redón, Josep; Schmieder, Roland

    2007-01-01

    Endothelial dysfunction is the initial pathophysiological step in a progression of vascular damage that leads to overt cardiovascular and chronic kidney disease. Angiotensin II, the primary agent of the renin-angiotensin system (RAS), has a central role in endothelial dysfunction. Therefore, RAS blockade with an angiotensin receptor blocker (ARB) and/or angiotensin-converting enzyme (ACE) inhibitor provides a rational approach to reverse endothelial dysfunction, reduce microalbuminuria, and, thus, improves cardiovascular and renal prognosis. ARBs and ACE inhibitors act at different points in the RAS pathway and recent evidence suggests that there are differences regarding their effects on endothelial dysfunction. In addition to blood pressure lowering, studies have shown that ARBs reduce target-organ damage, including improvements in endothelial dysfunction, arterial stiffness, the progression of renal dysfunction in patients with type 2 diabetes, proteinuria, and left ventricular hypertrophy. The ONgoing Telmisartan Alone in combination with Ramipril Global Endpoint Trial (ONTARGET) Programme is expected to provide the ultimate evidence of whether improved endothelial function translates into reduced cardiovascular and renal events in high-risk patients, and to assess possible differential outcomes with telmisartan, the ACE inhibitor ramipril, or a combination of both (dual RAS blockade). Completion of ONTARGET is expected in 2008.

  11. Association of hypertension with coexistence of abnormal metabolism and inflammation and endothelial dysfunction.

    PubMed

    Zhang, Mingzhi; Wang, Guiyan; Wang, Aili; Tong, Weijun; Zhang, Yonghong

    2013-06-01

    To explore association of hypertension with coexistence of inflammation and endothelial dysfunction and abnormal metabolism, a community-based study was conducted among Mongolian people in China. Demographic characteristics and lifestyle risk factors were investigated, blood pressure, body weight and waist circumference were measured, fasting blood samples were obtained to measure blood lipids, fasting plasma glucose and the biomarkers of inflammation and endothelial dysfunction, C-reactive protein (CRP), soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble E-selectin (sE-selectin) and angiotensin II. Rates of abnormal metabolism, elevated CRP, elevated sICAM-1, elevated sE-selectin and elevated angiotensin II as well as coexistence of abnormal metabolism with the elevated biomarkers were all higher in hypertensives than these in normotensives (all p < 0.01). Compared with subjects with normal metabolism and without any elevated biomarker, multivariate adjusted odds ratio (95% confidence interval) of hypertension associated with abnormal metabolism, elevated CRP, elevated sICAM-1, elevated sE-selectin, elevated angiotensin II, coexistences of abnormal metabolism with elevated CRP, elevated sICAM-1,elevated sE-selectin and elevated angiotensin II were 2.209 (1.594-3.062), 2.820 (1.992-3.992), 2.370 (1.665-3.374), 1.893 (1.331-2.691), 2.545 (1.793-3.612), 2.990 (2.102-4.252), 2.551 (1.775-3.667), 2.223 (1.544-3.220), 3.135 (2.185-4.519), respectively. In conclusion, this study indicated that inflammation and endothelial dysfunction was associated with hypertension and abnormal metabolism, and individuals with co-existence of abnormal metabolism with inflammation and endothelial dysfunction had higher risk of prevalent hypertension among Mongolian population. This study suggests that further study on treatment for hypertension patients with coexistence of abnormal metabolism with inflammation and endothelial dysfunction should be conducted in the near

  12. 15-Lipoxygenase-1 Is Involved in the Effects of Atorvastatin on Endothelial Dysfunction

    PubMed Central

    Chang, Guanglei

    2016-01-01

    Statins exert pleiotropic effects on endothelial cells in addition to lowering cholesterol. 15-Lipoxygenase-1 (ALOX15) has been implicated in vascular inflammation and disease. The relationship between atorvastatin and ALOX15 was investigated using a rat carotid artery balloon-injury model. Hematoxylin and eosin (HE) staining showed that ALOX15 overexpression increased the thickness of the intima-media (IMT). Immunohistochemistry and western blotting showed that atorvastatin increased the expression of cellular adhesion molecules (CAMs) but decreased the expression of endothelial nitric oxide synthase (eNOS); these effects of atorvastatin were blocked by ALOX15 overexpression. In human umbilical venous endothelial cells (HUVECs), silencing of ALOX15 enhanced the effects of atorvastatin on endothelial function. Expression levels of CAMs and Akt/eNOS/NO under oxidized low-density lipoprotein (ox-LDL) stimulation were modulated by ALOX15 inhibitor and ALOX15 small interfering RNA (siRNA). Atorvastatin abolished the activation of nuclear factor-kappa B (NF-κB) induced by ox-LDL. Exposure to ox-LDL induced upregulation of ALOX15 in HUVECs, but this effect was partially abolished by atorvastatin or the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). These results demonstrate that regulation of ALOX15 expression might be involved in the effects of atorvastatin on endothelial dysfunction. PMID:27594770

  13. 15-Lipoxygenase-1 Is Involved in the Effects of Atorvastatin on Endothelial Dysfunction.

    PubMed

    Zhang, Peng; Xing, Xin; Hu, Chunxiao; Yu, Hui; Dong, Qian; Chang, Guanglei; Qin, Shu; Liu, Jian; Zhang, Dongying

    2016-01-01

    Statins exert pleiotropic effects on endothelial cells in addition to lowering cholesterol. 15-Lipoxygenase-1 (ALOX15) has been implicated in vascular inflammation and disease. The relationship between atorvastatin and ALOX15 was investigated using a rat carotid artery balloon-injury model. Hematoxylin and eosin (HE) staining showed that ALOX15 overexpression increased the thickness of the intima-media (IMT). Immunohistochemistry and western blotting showed that atorvastatin increased the expression of cellular adhesion molecules (CAMs) but decreased the expression of endothelial nitric oxide synthase (eNOS); these effects of atorvastatin were blocked by ALOX15 overexpression. In human umbilical venous endothelial cells (HUVECs), silencing of ALOX15 enhanced the effects of atorvastatin on endothelial function. Expression levels of CAMs and Akt/eNOS/NO under oxidized low-density lipoprotein (ox-LDL) stimulation were modulated by ALOX15 inhibitor and ALOX15 small interfering RNA (siRNA). Atorvastatin abolished the activation of nuclear factor-kappa B (NF-κB) induced by ox-LDL. Exposure to ox-LDL induced upregulation of ALOX15 in HUVECs, but this effect was partially abolished by atorvastatin or the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). These results demonstrate that regulation of ALOX15 expression might be involved in the effects of atorvastatin on endothelial dysfunction. PMID:27594770

  14. Endothelial Dysfunction and Altered Coagulation As Mediators of Thromboembolism in Behçet Disease.

    PubMed

    Butta, Nora V; Fernández-Bello, Ihosvany; López-Longo, Francisco J; Jiménez-Yuste, Víctor

    2015-09-01

    Behçet disease (BD) is a rare multisystem, inflammatory disease of unknown etiology with vascular involvement and associated thrombogenicity. This review aims to describe the involvement of various mediators in endothelial cell damage and in the hypercoagulable state of BD. The scenario of the chronic inflammation present in BD shows an increased oxidative condition that contributes to endothelial cell damage and induces platelet, leukocyte, and endothelial cell activation through the release of proinflammatory cytokines and chemokines. These factors, together with the increased levels of homocysteine observed in BD patients, induce the endothelial cell expression of adhesion molecules (VCAM-1 and ICAM-1) and tissue factor; the release of cytokines, soluble CD40L (sCD40L), matrix metalloproteinase-9, and blood coagulation factor V; the inhibition of fibrinolysis; the disruption of nitric oxide metabolism; and the increase in platelet reactivity and lipid peroxidation. Endothelial cell dysfunction leads to a prothrombotic and antifibrinolytic phenotype in BD patients. Increased levels of homocysteine, fibrinogen, and plasminogen activator inhibitor type 1 seem to be involved in the procoagulant condition of this pathology that has been verified by end-point tests as well as by global coagulation tests.

  15. RNA Sequencing Analysis Detection of a Novel Pathway of Endothelial Dysfunction in Pulmonary Arterial Hypertension

    PubMed Central

    Rhodes, Christopher J.; Im, Hogune; Cao, Aiqin; Hennigs, Jan K.; Wang, Lingli; Sa, Silin; Chen, Pin-I; Nickel, Nils P.; Miyagawa, Kazuya; Hopper, Rachel K.; Tojais, Nancy F.; Li, Caiyun G.; Gu, Mingxia; Spiekerkoetter, Edda; Xian, Zhaoying; Chen, Rui; Zhao, Mingming; Kaschwich, Mark; del Rosario, Patricia A.; Bernstein, Daniel; Zamanian, Roham T.; Wu, Joseph C.; Snyder, Michael P.

    2015-01-01

    Rationale: Pulmonary arterial hypertension is characterized by endothelial dysregulation, but global changes in gene expression have not been related to perturbations in function. Objectives: RNA sequencing was used to discriminate changes in transcriptomes of endothelial cells cultured from lungs of patients with idiopathic pulmonary arterial hypertension versus control subjects and to assess the functional significance of major differentially expressed transcripts. Methods: The endothelial transcriptomes from the lungs of seven control subjects and six patients with idiopathic pulmonary arterial hypertension were analyzed. Differentially expressed genes were related to bone morphogenetic protein type 2 receptor (BMPR2) signaling. Those down-regulated were assessed for function in cultured cells and in a transgenic mouse. Measurements and Main Results: Fold differences in 10 genes were significant (P < 0.05), four increased and six decreased in patients versus control subjects. No patient was mutant for BMPR2. However, knockdown of BMPR2 by siRNA in control pulmonary arterial endothelial cells recapitulated 6 of 10 patient-related gene changes, including decreased collagen IV (COL4A1, COL4A2) and ephrinA1 (EFNA1). Reduction of BMPR2-regulated transcripts was related to decreased β-catenin. Reducing COL4A1, COL4A2, and EFNA1 by siRNA inhibited pulmonary endothelial adhesion, migration, and tube formation. In mice null for the EFNA1 receptor, EphA2, versus control animals, vascular endothelial growth factor receptor blockade and hypoxia caused more severe pulmonary hypertension, judged by elevated right ventricular systolic pressure, right ventricular hypertrophy, and loss of small arteries. Conclusions: The novel relationship between BMPR2 dysfunction and reduced expression of endothelial COL4 and EFNA1 may underlie vulnerability to injury in pulmonary arterial hypertension. PMID:26030479

  16. Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation

    PubMed Central

    Gomolak, Jessica R.; Didion, Sean P.

    2014-01-01

    Angiotensin II (Ang II) is associated with vascular hypertrophy, endothelial dysfunction and activation of a number of inflammatory molecules, however the linear events involved in the development of hypertension and endothelial dysfunction produced in response to Ang II are not well defined. The goal of this study was to examine the dose- and temporal-dependent development of endothelial dysfunction in response to Ang II. Blood pressure and responses of carotid arteries were examined in control (C57Bl/6) mice and in mice infused with 50, 100, 200, 400, or 1000 ng/kg/min Ang II for either 14 or 28 Days. Infusion of Ang II was associated with graded and marked increases in systolic blood pressure and plasma Ang II concentrations. While low doses of Ang II (i.e., 50 and 100 ng/kg/min) had little to no effect on blood pressure or endothelial function, high doses of Ang II (e.g., 1000 ng/kg/min) were associated with large increases in arterial pressure and marked impairment of endothelial function. In contrast, intermediate doses of Ang II (200 and 400 ng/kg/min) while initially having no effect on systolic blood pressure were associated with significant increases in pressure over time. Despite increasing blood pressure, 200 ng/kg/min had no effect on endothelial function, whereas 400 ng/kg/min produced modest impairment on Day 14 and marked impairment of endothelial function on Day 28. The degree of endothelial dysfunction produced by 400 and 1000 ng/kg/min Ang II was reflective of parallel increases in plasma IL-6 levels and vascular macrophage content, suggesting that increases in arterial blood pressure precede the development of endothelial dysfunction. These findings are important as they demonstrate that along with increases in arterial pressure that increases in IL-6 and vascular macrophage accumulation correlate with the impairment of endothelial function produced by Ang II. PMID:25400581

  17. Subclinical Inflammation and Endothelial Dysfunction in Young Patients with Diabetes: A Study from United Arab Emirates

    PubMed Central

    Aburawi, Elhadi H.; AlKaabi, Juma; Zoubeidi, Taoufik; Shehab, Abdullah; Lessan, Nader; Al Essa, Awad; Yasin, Javed; Saadi, Hussain; Souid, Abdul-Kader

    2016-01-01

    Background The impact of obesity and dyslipidemia on cardiovascular health in adolescents and young adults with diabetes is incompletely understood. This study evaluated the effects of these co-morbidities on markers of inflammation and endothelial dysfunction in young patients with the disease. Methods The study investigated sets of inflammatory, endothelial, and adipocyte biomarkers in 79 patients with type 1 diabetes, 55 patients with type 2 diabetes, and 47 controls. Results Mean (±SD) age was 20±6 y (median = 17, range = 12–31). Patients with diabetes had higher levels of cytoadhesive molecules (sICAM-1 and sVCAM-1, p<0.001), adiponectin (p<0.001), and haptoglobin (p = 0.023). Their heart rate variability assessment revealed lower standard deviation of beat-to-beat intervals and lower total power (p≤0.019), reflecting autonomous nervous dysfunction. Hemoglobin A1c >8.0% (estimated average blood glucose >10 mmol/L) was associated with higher adiponectin (p<0.001) and obesity was associated with lower adiponectin (p<0.001); thus, obesity damped the effect of hyperglycemia on adiponectin. Obesity was associated with higher sICAM-1 (p≤0.015), tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hs-CRP), p<0.001. Similarly, high-density lipoprotein (HDL) <1.02 mmol/L was associated with higher sICAM-1, TNFα, IL-6, and hsCRP (p≤0.009) and lower adiponectin (p<0.001). Adiponectin correlated negatively with the inflammatory biomarkers in patients with diabetes. Conclusion Subclinical inflammation and endothelial dysfunction are common among young patients with diabetes. Poor diabetes control is associated with higher adiponectin. Obesity and dyslipidemia are associated with lower adiponectin and higher inflammatory and endothelial biomarkers. Intuitively, these predictors of cardiovascular disease are amenable to proper glycemic control, nutritional choices, and regular exercise. PMID:27459718

  18. ENDOTHELIAL DYSFUNCTION IN PATIENTS WITH CHRONIC OBSRTRUCTIVE PULMONARY DISEASE WITH CONCOMITANT HYPERTENSION.

    PubMed

    Kapustnik, V; Istomina, О

    2016-07-01

    In recent years, special attention is paid to comorbid conditions in the clinic of internal diseases. There actively explored the role of endothelial dysfunction as a single unit in the pathological formation of chronic obstructive pulmonary disease (COPD) associated with hypertension. The study involved 145 patients who were carried out the final level of metabolites of nitric oxide (NO2, NO3), S-nitrosothiols, endothelial and inducible NO-synthase. All patients were divided into 3 groups: the first group included 55 patients (35 men and 20 women) who had been diagnosed with COPD with concomitant hypertension - the core group. The average age for this group was 57,6 years (46±68). The comparison group consisted of 45 patients (34 men and 11 women) with isolated course of COPD. The average age for second group was 53,3 years (40±67). The control group consisted of 45 healthy volunteers - 25 men and 20 women. Results of the study of the endothelial dysfunction revealed dynamic change in serum nitrate, nitrite, S-nitrosothiols and activity of eNOS and iNOS as the group of patients with COPD with associated hyperttension and the group of patients with isolated COPD. Informative and prognostic indicators relatively severity of diseases in patients with significant comorbidity may be considered high levels of iNOS and S-nitrosothiols, which indicates the voltage of the functional activity of endogenous antioxidant defense mechanisms in this cohort of persons. The findings suggest that the progression of endothelial dysfunction in comorbidity, which may lead to the current aggravation of diseases and vascular disorders in these patients. PMID:27661272

  19. Chronic Sleep Fragmentation Induces Endothelial Dysfunction and Structural Vascular Changes in Mice

    PubMed Central

    Carreras, Alba; Zhang, Shelley X.; Peris, Eduard; Qiao, Zhuanhong; Gileles-Hillel, Alex; Li, Richard C.; Wang, Yang; Gozal, David

    2014-01-01

    Study Objectives: Sleep fragmentation (SF) is a common occurrence and constitutes a major characteristic of obstructive sleep apnea (OSA). SF has been implicated in multiple OSA-related morbidities, but it is unclear whether SF underlies any of the cardiovascular morbidities of OSA. We hypothesized that long-term SF exposures may lead to endothelial dysfunction and altered vessel wall structure. Methods and Results: Adult male C57BL/6J mice were fed normal chow and exposed to daylight SF or control sleep (CTL) for 20 weeks. Telemetric blood pressure and endothelial function were assessed weekly using a modified laser-Doppler hyperemic test. Atherosclerotic plaques, elastic fiber disruption, lumen area, wall thickness, foam cells, and macrophage recruitment, as well as expression of senescence-associated markers were examined in excised aortas. Increased latencies to reach baseline perfusion levels during the post-occlusive period emerged in SF mice with increased systemic BP values starting at 8 weeks of SF and persisting thereafter. No obvious atherosclerotic plaques emerged, but marked elastic fiber disruption and fiber disorganization were apparent in SF-exposed mice, along with increases in the number of foam cells and macrophages in the aorta wall. Senescence markers showed reduced TERT and cyclin A and increased p16INK4a expression, with higher IL-6 plasma levels in SF-exposed mice. Conclusions: Long-term sleep fragmentation induces vascular endothelial dysfunction and mild blood pressure increases. Sleep fragmentation also leads to morphologic vessel changes characterized by elastic fiber disruption and disorganization, increased recruitment of inflammatory cells, and altered expression of senescence markers, thereby supporting a role for sleep fragmentation in the cardiovascular morbidity of OSA. Citation: Carreras A, Zhang SX, Peris E, Qiao Z, Gileles-Hillel A, Li RC, Wang Y, Gozal D. Chronic sleep fragmentation induces endothelial dysfunction and

  20. Subclinical vascular endothelial dysfunctions and myocardial changes with type 1 diabetes mellitus in children and adolescents.

    PubMed

    Eltayeb, Azza A; Ahmad, Faisal-Alkhateeb; Sayed, Douaa M; Osama, Amany M

    2014-08-01

    Vascular endothelial dysfunction, accelerated thickening of arterial intima, and changes in ventricular functions contribute to increased cardiovascular morbidity in type 1 diabetes mellitus (T1DM). This study aimed to investigate the functional-structural changes in the arteries and myocardium together with affection of highly sensitive C-reactive protein (hsCRP), circulating endothelial cells (CECs), and vitamin C levels in children with T1DM. Also, to test the association with early atherosclerotic changes. The study included 30 children with a diagnosis of T1DM and 30 healthy subjects matched by sex, age, and body mass index. Serum lipids, HbA1c, hsCRP, vitamin C, and CECs were detected. Corrected QT interval (QTc), cardiac dimensions, and left ventricular (LV) functions were assessed using conventional echocardiography. Noninvasive ultrasound was used to measure brachial artery flow-mediated dilation (FMD) responses and carotid intima-media thickness (IMT). The QTc interval was significantly higher in the diabetic patients than in the control subjects (P < 0.001). The findings showed LV diastolic dysfunction as reflected by significantly lower early peak flow velocity, decreased E/A ratio, increased early filling deceleration time (DcT), and prolonged isovolumic relaxation time (IVRT) (P < 0.001 for each). The children with diabetes had a significantly lower FMD response, increased IMT, lower vitamin C level, higher hsCRP, and higher CEC compared with the control subjects (P < 0.001 for each). A positive correlation between CEC and HbA1c was found (P = 0.004). An alteration in myocardial function and endothelial dysfunction may begin early with the association of early atherosclerotic changes. These changes are accelerated when glycemic control is poor. The authors recommend early and close observation of children with diabetes for any alterations in cardiac and vascular endothelial function. Vitamin C supplementation may reduce the risk of complications.

  1. Acute effect of rheopheresis on peripheral endothelial dysfunction in patients suffering from sudden hearing loss.

    PubMed

    Balletshofer, Bernd M; Stock, Jan; Rittig, Kilian; Lehn-Stefan, Angela; Braun, Norbert; Burkart, Frank; Plontke, Stefan; Klingel, Reinhard; Häring, Hans-Ulrich

    2005-10-01

    Single low density lipoprotein (LDL) fibrinogen apheresis has shown beneficial effects in the treatment of patients with sudden sensorineural hearing loss (SSHL). Pathophysiologically, a microcirculatory disorder of the inner ear, probably caused by disturbed endothelial function, is discussed as a final common pathway of a variety of SSHL etiologies. Thus, we carried out a prospective pilot study on the efficacy of Rheopheresis on vascular function in these patients, embedded into an ongoing randomized controlled multicenter trial investigating the efficacy of Rheopheresis for the treatment of SSHL. Potential modulation of systemic endothelial dysfunction by Rheopheresis was examined by measuring flow-associated vasodilatation of the brachial artery (according to the criteria of the American College of Cardiology) in a small group of patients suffering from SSHL (N=6, 5m/1f, mean age 56+/-11 years) within the last 3 days. At baseline, five of the six patients with acute hearing loss showed endothelial dysfunction as evidenced by diminished flow-mediated vasodilatation (FMD<5%). After a single Rheopheresis treatment, flow-mediated vasodilatation improved significantly (from 3.9+/-3.6% to 7.2+/-2.4%, P=0.05, mean+/-SD, two-sided paired T-test). This was paralleled by a reduction in fibrinogen (364+/-216 mg/dL to 142+/-96 mg/dL, P=0.03), total cholesterol (228+/-23 to 98+/-10, P<0.0001) and LDL cholesterol levels (153+/-8 mg/dL to 83+/-23 mg/dL, P<0.01). Based on this case series we conclude that single Rheopheresis treatment might have an acute beneficial effect on endothelial dysfunction in patients suffering from SSHL.

  2. [Endothelial dysfunction and nonspecific immune reactions in development and progression of osteoarthrosis in women engaged into manual work].

    PubMed

    Maliutina, N N; Nevzorova, M S

    2015-01-01

    The article considers mechanisms of development and progression of osteoarthrosis as an occupationally conditioned disease in women of manual work. Women working in physical overstrain conditions are under occupational risk with dysfunction of many body systems. The authors set a hypothesis on association of endothelial dysfunction markers dysbalance and structural remodelling of cartilage matrix as a proof of degenerative changes. PMID:26596115

  3. Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice

    PubMed Central

    Huby, Anne-Cecile; Otvos, Laszlo; Belin de Chantemèle, Eric J.

    2016-01-01

    Obesity is a major risk factor for cardiovascular disease in males and females. Whether obesity triggers cardiovascular disease via similar mechanisms in both the sexes is, however, unknown. In males, the adipokine leptin highly contributes to obesity-related cardiovascular disease by increasing sympathetic activity. Females secrete 3× to 4× more leptin than males, but do not exhibit high sympathetic tone with obesity. Nevertheless, females show inappropriately high aldosterone levels that positively correlate with adiposity and blood pressure (BP). We hypothesized that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in females. Leptin control of the cardiovascular function was analyzed in female mice sensitized to leptin via the deletion of protein tyrosine phosphatase 1b (knockout) and in agouti yellow obese hyperleptinemic mice (Ay). Hypersensitivity to leptin (wild-type, 115±2; protein tyrosine phosphatase 1b knockout, 124±2 mm Hg; P<0.05) and obesity elevated BP (a/a, 113±1; Ay, 128±7 mm Hg; P<0.05) and impaired endothelial function. Chronic leptin receptor antagonism restored BP and endothelial function in protein tyrosine phosphatase 1b knockout and Ay mice. Hypersensitivity to leptin and obesity reduced BP response to ganglionic blockade in both strains and plasma catecholamine levels in protein tyrosine phosphatase 1b knockout mice. Hypersensitivity to leptin and obesity significantly increased plasma aldosterone levels and adrenal CYP11B2 expression. Chronic leptin receptor antagonism reduced aldosterone levels. Furthermore, chronic leptin and mineralocorticoid receptor blockade reduced BP and improved endothelial function in both leptin-sensitized and obese hyperleptinemic female mice. Together, these data demonstrate that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in female mice and suggest that obesity leads to cardiovascular disease via sex

  4. Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice.

    PubMed

    Huby, Anne-Cécile; Otvos, Laszlo; Belin de Chantemèle, Eric J

    2016-05-01

    Obesity is a major risk factor for cardiovascular disease in males and females. Whether obesity triggers cardiovascular disease via similar mechanisms in both the sexes is, however, unknown. In males, the adipokine leptin highly contributes to obesity-related cardiovascular disease by increasing sympathetic activity. Females secrete 3× to 4× more leptin than males, but do not exhibit high sympathetic tone with obesity. Nevertheless, females show inappropriately high aldosterone levels that positively correlate with adiposity and blood pressure (BP). We hypothesized that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in females. Leptin control of the cardiovascular function was analyzed in female mice sensitized to leptin via the deletion of protein tyrosine phosphatase 1b (knockout) and in agouti yellow obese hyperleptinemic mice (Ay). Hypersensitivity to leptin (wild-type, 115 ± 2; protein tyrosine phosphatase 1b knockout, 124 ± 2 mm Hg; P<0.05) and obesity elevated BP (a/a, 113 ± 1; Ay, 128 ± 7 mm Hg; P<0.05) and impaired endothelial function. Chronic leptin receptor antagonism restored BP and endothelial function in protein tyrosine phosphatase 1b knockout and Ay mice. Hypersensitivity to leptin and obesity reduced BP response to ganglionic blockade in both strains and plasma catecholamine levels in protein tyrosine phosphatase 1b knockout mice. Hypersensitivity to leptin and obesity significantly increased plasma aldosterone levels and adrenal CYP11B2 expression. Chronic leptin receptor antagonism reduced aldosterone levels. Furthermore, chronic leptin and mineralocorticoid receptor blockade reduced BP and improved endothelial function in both leptin-sensitized and obese hyperleptinemic female mice. Together, these data demonstrate that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in female mice and suggest that obesity leads to cardiovascular disease via sex

  5. Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Gitawati, Retno; Tjitra, Emiliana; Kenangalem, Enny; McNeil, Yvette R; Darcy, Christabelle J; Granger, Donald L; Weinberg, J Brice; Lopansri, Bert K; Price, Ric N; Duffull, Stephen B; Celermajer, David S; Anstey, Nicholas M

    2007-10-29

    Severe falciparum malaria (SM) is associated with tissue ischemia related to cytoadherence of parasitized erythrocytes to microvascular endothelium and reduced levels of NO and its precursor, l-arginine. Endothelial function has not been characterized in SM but can be improved by l-arginine in cardiovascular disease. In an observational study in Indonesia, we measured endothelial function using reactive hyperemia-peripheral arterial tonometry (RH-PAT) in 51 adults with SM, 48 patients with moderately severe falciparum malaria (MSM), and 48 controls. The mean RH-PAT index was lower in SM (1.41; 95% confidence interval [CI] = 1.33-1.47) than in MSM (1.82; 95% CI = 1.7-2.02) and controls (1.93; 95% CI = 1.8-2.06; P < 0.0001). Endothelial dysfunction was associated with elevated blood lactate and measures of hemolysis. Exhaled NO was also lower in SM relative to MSM and controls. In an ascending dose study of intravenous l-arginine in 30 more patients with MSM, l-arginine increased the RH-PAT index by 19% (95% CI = 6-34; P = 0.006) and exhaled NO by 55% (95% CI = 32-73; P < 0.0001) without important side effects. Hypoargininemia and hemolysis likely reduce NO bioavailability. Endothelial dysfunction in malaria is nearly universal in severe disease, is reversible with l-arginine, and likely contributes to its pathogenesis. Clinical trials in SM of adjunctive agents to improve endothelial NO bioavailability, including l-arginine, are warranted.

  6. A simplified approach to assessing penile endothelial function in young individuals at risk of erectile dysfunction.

    PubMed

    Wu, Hsien-Tsai; Lee, Chun-Ho; Chen, Chin-Jung; Tsai, I-Ting; Sun, Cheuk-Kwan

    2012-01-01

    Erectile dysfunction (ED) reflects a risk for systemic cardiovascular diseases by virtue of a common etiology of vascular endothelial dysfunction, which is increasingly reported to affect young adults. On the basis of physiological phenomenon of reactive hyperemia (RH), systemic and penile endothelial functions in healthy young adults were compared with the use of digital data on arterial waveforms before and after RH induction. Between July 2009 and March 2011, 32 young adult volunteers with normal erectile functions were recruited. Questionnaires on medical histories and sexual functions and blood samples for testosterone and biochemical analyses were obtained. Dilatation index (DI) and penile arterial waveform amplitude (PAWA) ratios for assessing systemic and penile endothelial function were acquired with an air pressure sensing system on the arm and a penile arterial waveform analyzing system on the penis, respectively. A total cholesterol/high-density lipoprotein (TC/HDL) ratio greater than 4.1 was used to define high risk for ED. Remarkable positive correlation was noted between DI and PAWA ratio (r = .640, P < .001). DI showed significant positive associations with serum testosterone (P = .012) and serum HDL level, whereas it showed negative correlations with total triglyceride and glycosylated hemoglobulin levels, body weight, waist circumference, body mass index, and diastolic blood pressure. Similarly, the PAWA ratio showed significant positive correlations with serum testosterone (P < .001) and HDL levels, but negative associations with body weight, waist circumference, and body mass index. Both DI and PAWA ratio successfully identified participants at high risk for ED (eg, TC/HDL ratio > 4.1; P < .05). Our results demonstrated that penile endothelial function can be assessed by evaluating systemic endothelial function in young healthy adults for early identification of risk for ED.

  7. Cardiogenic shock and coronary endothelial dysfunction predict cardiac allograft vasculopathy after heart transplantation.

    PubMed

    Lopez-Fernandez, Silvia; Manito-Lorite, Nicolas; Gómez-Hospital, Joan Antoni; Roca, Josep; Fontanillas, Carles; Melgares-Moreno, Rafael; Azpitarte-Almagro, José; Cequier-Fillat, Angel

    2014-12-01

    Cardiac allograft vasculopathy remains one of the major causes of death post-heart transplantation. Its etiology is multifactorial and prevention is challenging. The aim of this study was to prospectively determine factors related to cardiac allograft vasculopathy after heart transplantation. This research was planned on 179 patients submitted to heart transplant. Performance of an early coronary angiography with endothelial function evaluation was scheduled at three-month post-transplant. Patients underwent a second coronary angiography after five-yr follow-up. At the 5- ± 2-yr follow-up, 43% of the patients had developed cardiac allograft vasculopathy (severe in 26% of them). Three independent predictors of cardiac allograft vasculopathy were identified: cardiogenic shock at the time of the transplant operation (OR: 6.49; 95% CI: 1.86-22.7, p = 0.003); early coronary endothelial dysfunction (OR: 3.9; 95% CI: 1.49-10.2, p = 0.006), and older donor age (OR: 1.05; 95% CI: 1.00-1.10, p = 0.044). Besides early endothelial coronary dysfunction and older donor age, a new predictor for development of cardiac allograft vasculopathy was identified: cardiogenic shock at the time of transplantation. In these high-risk patient subgroups, preventive measures (treatment of cardiovascular risk factors, use of novel immunosuppressive agents such as mTOR inhibitors) should be earlier and much more aggressive.

  8. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy.

    PubMed

    Zhang, Lu; Wang, XueQin; Miao, YiMing; Chen, ZhiQiang; Qiang, PengFei; Cui, LiuQing; Jing, Hongjuan; Guo, YuQi

    2016-03-01

    Despite the considerable use of magnetic ferroferric oxide nanoparticles (Fe3O4NPs) worldwide, their safety is still an important topic of debate. In the present study, we detected the toxicity and biological behavior of bare-Fe3O4NPs (B-Fe3O4NPs) on human umbilical vascular endothelial cells (HUVECs). Our results showed that B-Fe3O4NPs did not induce cell death within 24h even at concentrations up to 400 μg/ml. The level of nitric oxide (NO) and the activity of endothelial NO synthase (eNOS) were decreased after exposure to B-Fe3O4NPs, whereas the levels of proinflammatory cytokines were elevated. Importantly, B-Fe3O4NPs increased the accumulation of autophagosomes and LC3-II in HUVECs through both autophagy induction and the blockade of autophagy flux. The levels of Beclin 1 and VPS34, but not phosphorylated mTOR, were increased in the B-Fe3O4NP-treated HUVECs. Suppression of autophagy induction or stimulation of autophagy flux, at least partially, attenuated the B-Fe3O4NP-induced HUVEC dysfunction. Additionally, enhanced autophagic activity might be linked to the B-Fe3O4NP-induced production of proinflammatory cytokines. Taken together, these results demonstrated that B-Fe3O4NPs disturb the process of autophagy in HUVECs, and eventually lead to endothelial dysfunction and inflammation.

  9. Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity

    PubMed Central

    Sibille, E; Su, J; Leman, S; Le Guisquet, AM; Ibarguen-Vargas, Y; Joeyen-Waldorf, J; Glorioso, C; Tseng, GC; Pezzone, M; Hen, R; Belzung, C

    2008-01-01

    Normal aging of the brain differs from pathological conditions and is associated with increased risk for psychiatric and neurological disorders. In addition to its role in the etiology and treatment of mood disorders, altered serotonin (5-HT) signaling is considered a contributing factor to aging; however, no causative role has been identified in aging. We hypothesized that a deregulation of the 5-HT system would reveal its contribution to age-related processes and investigated behavioral and molecular changes throughout adult life in mice lacking the regulatory presynaptic 5-HT1B receptor (5-HT1BR), a candidate gene for 5-HT-mediated age-related functions. We show that the lack of 5-HT1BR (Htr1bKO mice) induced an early age-related motor decline and resulted in decreased longevity. Analysis of life-long transcriptome changes revealed an early and global shift of the gene expression signature of aging in the brain of Htr1bKO mice. Moreover, molecular changes reached an apparent maximum effect at 18-months in Htr1bKO mice, corresponding to the onset of early death in that group. A comparative analysis with our previous characterization of aging in the human brain revealed a phylogenetic conservation of age-effect from mice to humans, and confirmed the early onset of molecular aging in Htr1bKO mice. Potential mechanisms appear independent of known central mechanisms (Bdnf, inflammation), but may include interactions with previously identified age-related systems (IGF-1, sirtuins). In summary, our findings suggest that the onset of age-related events can be influenced by altered 5-HT function, thus identifying 5-HT as a modulator of brain aging, and suggesting age-related consequences to chronic manipulation of 5-HT. PMID:17420766

  10. [Physical activity and endothelial dysfunction in type 2 diabetic patients: the role of nitric oxide and oxidative stress].

    PubMed

    Brinkmann, Christian; Schwinger, Robert H G; Brixius, Klara

    2011-06-01

    Type 2 diabetic patients have an increased level of systemic free radicals, which severely restrict the bioavailability of endothelium-derived nitric oxide (NO) and thus contribute to the development of an endothelial dysfunction. This review analyses the influence of physical training on molecular development mechanisms of the endothelial dysfunction and determines the significance of regular physical exercise for the endothelial function in type 2 diabetic patients. Systematic training reinforces the endogenic antioxidative capacity and results in a reduction in oxidative stress. Training - also combined with a change in diet - furthermore reduces hyperglycaemic blood sugar levels, thus curbing a major source of free radicals in diabetes. Moreover, physical exercise enhances vascular NO synthesis through an increased availability/activity of endothelial NO synthases (eNOS). Endurance, as well as resistance training with submaximal intensity or a combination of both forms of training is suitable to effectively improve the endothelial function in type 2 diabetic patients in the long term. PMID:21360292

  11. Size and composition effects of household particles on inflammation and endothelial dysfunction of human coronary artery endothelial cells

    NASA Astrophysics Data System (ADS)

    Lin, Lian-Yu; Liu, I.-Jung; Chuang, Hsiao-Chi; Lin, Hui-Yi; Chuang, Kai-Jen

    2013-10-01

    People spend generally 90 percent of their time indoors, yet toxicity of household particles has not been thoroughly investigated before. The objective of this study is to examine particle size and components effects of household particles on human coronary artery endothelial cells (HCAEC). We used two micro-orifice uniform deposit impactors to collect 60 sets of indoor particulate matters (PM) from 30 houses in Taipei, Taiwan. Polycyclic aromatic hydrocarbons (PAHs) effects of household particles were determined by high-resolution gas chromatograph/high-resolution mass spectrometer, respectively. HCAEC were exposed to household particles extracts in three size ranges: PM0.1 (diameters less than 0.1 μm), PM1.0-0.1 (diameters between 1.0 and 0.1 μm), and PM10-1.0 (diameters between 10 and 1.0 μm) at 50 μg mL-1 for 4 h, and interleukin-6 (IL-6), endothelin-1 (ET-1), and nitric oxide (NO) concentrations in the medium were measured. We found that household PM1.0-0.1 was associated with increased IL-6 and ET-1 production and decreased NO synthesis. Naphthalene of PM1.0-0.1 was highly correlated with IL-6 and ET-1 production and NO reduction. We concluded that size and compositions of household particles were both important factors on inflammation and endothelial dysfunction in HCAEC.

  12. High fat diet exacerbates vascular endothelial dysfunction in rats exposed to continuous hypobaric hypoxia.

    PubMed

    Zhao, Yan-Xia; Tang, Feng; Ga, Qin; Wuren, Tana; Wang, Ya-Ping; Rondina, Matthew T; Ge, Ri-Li

    2015-02-13

    Independently, a high fat diet and hypoxia are associated with vascular endothelial dysfunction (VED) and often occur concurrently in patients. Nevertheless, the effects of a high fat diet on vascular endothelial function combined with hypoxia, a situation occurring with increasing frequency in many parts of the world, remain largely unknown. We investigated the effects of a high fat diet on vascular endothelial function in rats exposed to continuous hypoxia for 4 weeks. Seventy two male Sprague-Dawley rats were randomly divided into 3 groups: a hypoxia group fed regular chow, a combined hypoxia and high fat diet (HFD) group, and for comparison, rats maintained in normoxia, regular chow conditions were set as baseline (BL) group. The experimental data of BL group were obtained at beginning of hypoxia given in the other groups. Continuous hypoxia was induced in a hypobaric chamber maintained at an altitude of 5000 m. Compared to hypoxic conditions alone, hypoxia plus a HFD prevented adaptive changes in plasma nitric oxide (NOx) levels and caused earlier and more severe changes in aortic endothelial structures. Functionally, hypoxia plus a HFD resulted in impaired endothelium-dependent vasorelaxation responses to acetylcholine and altered the bioavailability of the nitric oxide synthase (NOS) substrate L-Arginine. At the molecular level, hypoxia plus a HFD blunted increases in endothelial NOS (eNOS) mRNA and protein in aortic endothelial tissue. Taken together, our findings demonstrate that in the setting of hypoxia, a high fat diet leads to earlier and more severe VED than hypoxia alone. These data have important implications for populations residing at high-altitude, as dietary patterns shift towards increased fat intake. PMID:25603049

  13. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation.

    PubMed

    Aizawa, Ken; Takahari, Youko; Higashijima, Naoko; Serizawa, Kenichi; Yogo, Kenji; Ishizuka, Nobuhiko; Endo, Koichi; Fukuyama, Naoto; Hirano, Katsuya; Ishida, Hideyuki

    2015-03-01

    Sirolimus (SRL) is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS) play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC), an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs), SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22(phox) mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  14. Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through tumor necrosis factor-α

    PubMed Central

    Ma, Shuangtao; Zhu, Xiang-Yang; Eirin, Alfonso; Woollard, John R.; Jordan, Kyra L.; Tang, Hui; Lerman, Amir; Lerman, Lilach O.

    2015-01-01

    Purpose Perirenal fat is associated with poor blood pressure control and chronic kidney disease, but the underlying mechanisms remain elusive. We tested the hypothesis that perirenal fat impairs renal arterial endothelial function in pigs with obesity-metabolic derangements (ObM). Material and Methods Fourteen domestic pigs were studied after 16 weeks of a high-fat/high-fructose diet (ObM) or standard chow (Lean). Renal blood flow (RBF), glomerular filtration rate (GFR), and visceral fat volumes were studied in-vivo with CT. Renal arterial endothelial function was also studied ex-vivo in the organ bath. Results ObM pigs demonstrated increased body weight, blood pressure, cholesterol, and intra-abdominal fat compared to lean pigs, and perirenal fat volume was significantly larger. RBF and GFR were markedly elevated, while urinary protein level was preserved. Ex-vivo acetylcholine-induced endothelium-dependent vasodilation of renal artery rings was substantially impaired in ObM compared to Lean. Endothelial function was further blunted in both ObM and Lean arterial rings by incubation with perirenal fat harvested from ObM, but not from Lean pigs, and was restored by inhibition of tumor necrosis factor (TNF)-α. ObM perirenal fat also showed increased pro-inflammatory macrophage infiltration and TNF-α expression. Conclusions ObM perirenal fat directly causes renal artery endothelial dysfunction, partly mediated by TNF-α. PMID:26417644

  15. Superimposed coagulopathic conditions in cirrhosis: infection and endogenous heparinoids, renal failure, and endothelial dysfunction.

    PubMed

    Smalberg, Jasper H; Leebeek, Frank W G

    2009-02-01

    In this article, the authors discuss three pathophysiologic mechanisms that influence the coagulation system in patients who have liver disease. First, bacterial infections may play an important role in the cause of variceal bleeding in patients who have liver cirrhosis, affecting coagulation through multiple pathways. One of the pathways through which this occurs is dependent on endogenous heparinoids, on which the authors focus in this article. Secondly, the authors discuss renal failure, a condition that is frequently encountered in patients who have liver cirrhosis. Finally, they review dysfunction of the endothelial system. The role of markers of endothelial function in cirrhotic patients, such as von Willebrand factor and endothelin-1, is discussed. PMID:19150307

  16. Diabetes Causes Bone Marrow Endothelial Barrier Dysfunction by Activation of the RhoA–Rho-Associated Kinase Signaling Pathway

    PubMed Central

    Mangialardi, Giuseppe; Katare, Rajesh; Oikawa, Atsuhiko; Meloni, Marco; Reni, Carlotta; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Objective Diabetes mellitus causes bone marrow (BM) microangiopathy. This study aimed to investigate the mechanisms responsible for BM endothelial dysfunction in diabetes mellitus. Methods and Results The analysis of differentially expressed transcripts in BM endothelial cells (BMECs) from type-1 diabetic and nondiabetic mice showed an effect of diabetes mellitus on signaling pathways controlling cell death, migration, and cytoskeletal rearrangement. Type-1 diabetic-BMECs displayed high reactive oxygen species levels, increased expression and activity of RhoA and its associated protein kinases Rho-associated kinase 1/Rho-associated kinase 2, and reduced Akt phosphorylation/activity. Likewise, diabetes mellitus impaired Akt-related BMEC functions, such as migration, network formation, and angiocrine factor-releasing activity, and increased vascular permeability. Moreover, high glucose disrupted BMEC contacts through Src tyrosine kinase phosphorylation of vascular endothelial cadherin. These alterations were prevented by constitutively active Akt (myristoylated Akt), Rho-associated kinase inhibitor Y-27632, and Src inhibitors. Insulin replacement restored BMEC abundance, as assessed by flow cytometry analysis of the endothelial marker MECA32, and endothelial barrier function in BM of type-1 diabetic mice. Conclusion Redox-dependent activation of RhoA/Rho-associated kinase and Src/vascular endothelial cadherin signaling pathways, together with Akt inactivation, contribute to endothelial dysfunction in diabetic BM. Metabolic control is crucial for maintenance of endothelial cell homeostasis and endothelial barrier function in BM of diabetic mice. PMID:23307872

  17. To ED or not to ED--is erectile dysfunction in obstructive sleep apnea related to endothelial dysfunction?

    PubMed

    Hoyos, Camilla M; Melehan, Kerri L; Phillips, Craig L; Grunstein, Ronald R; Liu, Peter Y

    2015-04-01

    Both obstructive sleep apnea (OSA) and erectile dysfunction (ErectD) are highly prevalent and largely under diagnosed medical conditions. These disorders often co-exist, with about half of the male OSA population having ErectD and vice versa. OSA is strongly associated with an increased risk of cardiovascular mortality while ErectD has been proposed as a phenotypic marker of cardiovascular disease. This implies that the two conditions may be linked by a common pathophysiological mechanism. In this review we provide evidence supporting the hypothesis that endothelial dysfunction (EndoD) may be the common pathophysiological mechanism linking OSA with both ErectD and cardiovascular complications. EndoD is one of the earliest markers of cardiovascular disease and substantial evidence suggests that OSA independently causes EndoD. There is also strong evidence that causally links EndoD with organic ErectD. Further research should be directed at determining the value of simultaneously assessing both ErectD and OSA in patients presenting with symptoms of either condition. In both ErectD and OSA clinics, identifying both conditions could improve overall cardiovascular risk stratification whilst treatment of OSA could reduce both ErectD and cardiovascular risk.

  18. Steatosis Grade is the Most Important Risk Factor for Development of Endothelial Dysfunction in NAFLD

    PubMed Central

    Sapmaz, Ferdane; Uzman, Metin; Basyigit, Sebahat; Ozkan, Selcuk; Yavuz, Bunyamin; Yeniova, Abdullah; Kefeli, Ayse; Asilturk, Zeliha; Nazligül, Yasar

    2016-01-01

    Abstract It is shown that there are strong associations between nonalcoholic fatty liver disease (NAFLD) and endothelial dysfunction. The aim of our study was to reveal whether steatosis or fibrosis score is more important in the development of endothelial dysfunction in patients with NAFLD in a prospective manner. This cross-sectional study included 266 subjects. These subjects were divided into 2 groups depending on presence of hepatosteatosis sonographically. Patients with hepatosteatosis were also divided into 3 subgroups depending on degree of steatosis: grade 1, 2, and 3. In all patients, Aspartate aminotransferase-to-Platelet Ratio Index and Fibrosis-4 (FIB4) scores were calculated. In addition, flow-mediated dilatation (FMD) measurements were recorded. There was NAFLD in 176 (66.2%) of 266 patients included. There were no significant differences in sex and age distributions between patients with NAFLD (group 1) and controls without NAFLD (group 2) (P = 0.05). Mean Aspartate aminotransferase-to-Platelet Ratio Index score was significantly higher in group 1 compared with the control group (P = 0.001), whereas no significant difference was detected regarding FIB4 scores between groups (P = 0.4). Mean FMD value was found to be significantly lower in group 1 (P = 0.008). Patients with grade 3 hepatosteatosis had significantly lower FMD values than those with grade 1 steatosis and controls (P = 0.001). In univariate and multivariate analyses in group 1, no significant difference was detected regarding mean FMD measurements (P = 0.03). Again, no significant difference was detected in mean FMD measurement between FIB4 subgroups among patients with NAFLD and the whole study group (P = 0.09). The endothelial dysfunction is associated with steatosis in patients with NAFLD. PMID:27057890

  19. Low-dose doxazosin improved aortic stiffness and endothelial dysfunction as measured by noninvasive evaluation.

    PubMed

    Komai, Norio; Ohishi, Mitsuru; Moriguchi, Atsushi; Yanagitani, Yoshihiro; Jinno, Toyohisa; Matsumoto, Keiko; Katsuya, Tomohiro; Rakugi, Hiromi; Higaki, Jitsuo; Ogihara, Toshio

    2002-01-01

    Evaluation of atherosclerosis is important in the treatment of hypertension. To evaluate the preventive effects of a small amount of alpha-blockade, arterial and endothelial dysfunction were measured by noninvasive tests, i.e., pulse wave velocity, acceleration plethysmography and strain-gauge plethysmography, in patients with essential hypertension. Fifteen patients (65+/-3 years old) with essential hypertension (WHO stage I or II) were analyzed in this study. We performed noninvasive evaluations to measure aortic stiffness and endothelial dysfunction, in addition to measuring blood pressure, cholesterol profile, and levels of cells adhesion molecules and nitric oxide before and 6 and 12 months after the start of doxazosin treatment (1.0 mg/day). Blood pressure and heart rate did not significantly change during treatment. The pulse wave velocity index was significantly reduced both at 6 (7.72+/-0.23 m/s; p<0.05) and 12 (7.34+/-0.26 m/s; p<0.05) months after the start of treatment compared to the pretreatment level that at baseline. There was also a significant improvement in b/a after 12 months (-0.46+/-0.04; p<0.05) and in d/a after 6 months (-0.38+/-0.03; p<0.05) and 12 months (-0.39+/-0.03; p=0.05) compared to the pretreatment values. Moreover, reactive hyperemia evaluated by strain-gauge plethysmography after 6 months (1.34+/-0.11; p<0.05) and 12 months (1.49+/-0.16; p<0.05) was significantly improved compared to that before treatment, and NOx was significantly increased after 12 months (89.7+/-15.7 micromol/l; p<0.005). These data suggest that a low dose of doxazosin may play an important role in improving arterial stiffness and endothelial dysfunction without changing cardiac hemodynamics.

  20. Association of obesity and biomarkers of inflammation and endothelial dysfunction in adults in Inner Mongolia, China

    PubMed Central

    Thompson, Angela M.; Zhang, Yonghong; Tong, Weijun; Xu, Tan; Chen, Jing; Zhao, Li; Kelly, Tanika N.; Chen, Chung-Shiuan; Bazzano, Lydia A.; He, Jiang

    2015-01-01

    Background Recent studies suggest that central obesity is an important predictor of cardiovascular disease (CVD) in addition to overall obesity. Both inflammation and endothelial dysfunction are associated with increased risk of CVD. We examined the association between body mass index (BMI) and waist circumference (WC) with plasma concentrations of biomarkers of inflammation and endothelial dysfunction. Methods We conducted a cross-sectional study of 2589 lean, moderately active participants aged 20 years and older in Inner Mongolia, China. Overnight fasting blood samples were obtained to measure the biomarkers including C-reactive protein (CRP), soluble inter-cellular adhesion molecule-1 (sICAM-1), soluble E-selectin (sE-selectin), and angiotensin II. Height, body weight, and WC were measured by trained staff and BMI was calculated (kg/m2). Results In univariate analysis, CRP, sICAM-1, and sE-selectin were all significantly higher among individuals with a higher BMI and WC. In multivariate analysis, each standard deviation (SD) increase in WC (9.6 cm) was associated with about 46% higher risk (odds ratio [OR] 1.46, 95% confidence interval [CI] 1.21–1.76) of elevated CRP but a 1 SD increase in BMI (3.5 kg/m2) was not associated with the risk of elevated CRP (OR 0.96, 95% CI 0.80–1.16). However, each SD increase in BMI was associated with about 30% higher risk of having elevated E-selectin (OR 1.30, 95% CI 1.08–1.55). Conclusions WC is a stronger predictor of inflammation while BMI is a stronger predictor for endothelial dysfunction. These results suggest measuring both BMI and WC will help to assess the risk of CVD in the Chinese population. PMID:20439121

  1. Candidate Genes for Respiratory Disease Associated with Markers of Inflammation and Endothelial Dysfunction in Elderly Men

    PubMed Central

    Wilker, Elissa H.; Alexeeff, Stacey E.; Poon, Audrey; Litonjua, Augusto A.; Sparrow, David; Vokonas, Pantel S.; Mittleman, Murray A.; Schwartz, Joel

    2010-01-01

    Background Inflammation and endothelial dysfunction are important risk factors for cardiovascular disease (CVD). We hypothesized that candidate genes selected for a study of asthma and chronic obstructive pulmonary disorder (COPD) are associated with markers of systemic inflammation and endothelial dysfunction in an aging population. Methods Plasma levels of circulating C-reactive protein (CRP), fibrinogen, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were obtained from 679 elderly male participants in the Normative Aging Study. Blood samples were analyzed for 202 SNPs in 25 candidate genes and included both haplotype tagSNPs and functional SNPs based on literature review. Data were stratified into discovery and replication cohorts for 2-stage analysis. In the discovery cohort, the relationship between biomarker level and genotype was analyzed using linear mixed effects with random intercepts for each subject and models were adjusted for age and BMI. A positive outcome in the discovery cohort was defined as a p-value <0.1 for the SNP. SNPs that met this criterion were analyzed in the replication cohort and confirmed for those which met a criterion of significance (p<0.025). Results In our analyses, SNPs in the CRHR1, ITPR2, and VDR genes met criteria of significant effects. Conclusions Our results suggest that genes thought to play a role in the pathogenesis of asthma and COPD may influence levels of serum markers of inflammation and endothelial dysfunction via novel SNP associations which have not previously been associated with cardiovascular disease. PMID:19409562

  2. GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.

    PubMed

    Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng

    2016-02-01

    The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. PMID:26785611

  3. Diosgenin regulates adipokine expression in perivascular adipose tissue and ameliorates endothelial dysfunction via regulation of AMPK.

    PubMed

    Chen, Yan; Xu, Xiaoshan; Zhang, Yuanyuan; Liu, Kang; Huang, Fang; Liu, Baolin; Kou, Junping

    2016-01-01

    Perivascular adipose tissue (PVAT) has been recognized as an active contributor to vascular function due to its paracrine effects on cells contained within vascular wall. The present study was designed to investigate the effect of diosgenin on adipokine expression in PVAT with emphasis on the regulation of endothelial function. Palmitic acid (PA) stimulation induced inflammation and dysregulation of adipokine expression in PVAT. Diosgenin treatment inhibited IKKβ phosphorylation and downregulated mRNA expressions of proinflammatory cytokines/proteins including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein (MCP-1), and inducible nitric oxide synthase (iNOS), while reduced gene expressions for adiponectin, PPARγ, and arginase 1 (Arg-1) were reversed by diosgenin treatment. Diosgenin enhanced AMPK phosphorylation under basal and inflammatory conditions in PVAT, whereas knockdown of AMPK by SiRNA diminished its modulatory effect, indicating that diosgenin inhibited inflammation in an AMPK-dependent manner. We prepared conditioned medium from PA-stimulated PVAT to induce endothelial dysfunction and found that pre-treatment of PVAT with diosgenin effectively restored the loss of ACh-induced vasodilation and increased eNOS phosphorylation in rat aorta. High-fat diet feeding in rats induced inflammation in PVAT and the impairment of endothelium-dependent vasodilation, whereas these alterations were prevented by oral administration of diosgenin at doses of 20 and 40 mg/kg. In conclusion, the obtained data showed that diosgenin ameliorated inflammation-associated adipokine dysregulation, and thereby prevented endothelial dysfunction. Our findings would shed a novel insight into the potential mechanism by which diosgenin protected endothelial function against inflammatory insult. PMID:26277096

  4. Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction.

    PubMed

    Bao, Jun-Xiang; Chang, Hui; Lv, Yong-Gang; Yu, Jin-Wen; Bai, Yun-Gang; Liu, Huan; Cai, Yue; Wang, Ling; Ma, Jin; Chang, Yao-Ming

    2012-01-01

    Lysosomal exocytosis and fusion to cellular membrane is critical in the oxidative stress formation of endothelium under apoptotic stimulus. We investigated the role therein of it in hyperglycaemia-induced endothelial dysfunction. The lysosome-membrane fusion was shown by the expression of lamp1, the lysosomal membrane marker, on cellular membrane and the transportation of lysosomal symbolic enzymes into cultural medium. We also examined the ceramide production, lipid rafts (LRs) clustering, colocalization of gp91(phox), a NADPH oxidase subunit (NOX) to LRs clusters, superoxide (O₂·⁻) formation and nitric oxide (NO) content in human umbilical vein endothelial cells (HUVEC) and the endothelium-dependent NO-mediated vasodilation in isolated rat aorta. As compared to normal glucose (5.6 mmol/l, Ctrl) incubation, high glucose (22 mmol/l, HG) exposure facilitated the lysosome-membrane fusion in HUVEC shown by significantly increased quantity of lamp1 protein on cellular membrane and enhanced activity of lysosomal symbolized enzymes in cultural medium. HG incubation also elicited ceramide generation, LRs clustering and gp91(phox) colocalization to LRs clusters which were proved to mediate the HG induced O₂·⁻ formation and NO depletion in HUVEC. Functionally, the endothelium-dependent NO-mediated vasodilation in aorta was blunted substantially after HG incubation. Moreover, the HG-induced effect including ceramide production, LRs clustering, gp91(phox) colocalization to LRs clusters, O₂·⁻ formation and endothelial dysfunction could be blocked significantly by the inhibition of lysosome-membrane fusion. We propose that hyperglycaemia-induced endothelial impairment is closely related to the lysosome-membrane fusion and the following LRs clustering, LRs-NOX platforms formation and O₂·⁻ production. PMID:22253932

  5. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.

  6. Mechanisms of Endothelial Dysfunction in Resistance Arteries from Patients with End-Stage Renal Disease

    PubMed Central

    Luksha, Leanid; Stenvinkel, Peter; Hammarqvist, Folke; Carrero, Juan Jesús; Davidge, Sandra T.; Kublickiene, Karolina

    2012-01-01

    The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD) patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS), prerequisites for myoendothelial gap junctions (MEGJ), and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA) suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications. PMID:22563439

  7. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway. PMID:27449753

  8. Salt Sensitivity and Hypertension: A Paradigm Shift from Kidney Malfunction to Vascular Endothelial Dysfunction

    PubMed Central

    Choi, Hoon Young; Park, Hyeong Cheon

    2015-01-01

    Hypertension is a complex trait determined by both genetic and environmental factors and is a major public health problem due to its high prevalence and concomitant increase in the risk for cardiovascular disease. With the recent large increase of dietary salt intake in most developed countries, the prevalence of hypertension increases tremendously which is about 30% of the world population. There is substantial evidence that suggests some people can effectively excrete high dietary salt intake without an increase in arterial BP, and another people cannot excrete effectively without an increase in arterial BP. Salt sensitivity of BP refers to the BP responses for changes in dietary salt intake to produce meaningful BP increases or decreases. The underlying mechanisms that promote salt sensitivity are complex and range from genetic to environmental influences. The phenotype of salt sensitivity is therefore heterogeneous with multiple mechanisms that potentially link high salt intake to increases in blood pressure. Moreover, excess salt intake has functional and pathological effects on the vasculature that are independent of blood pressure. Epidemiologic data demonstrate the role of high dietary salt intake in mediating cardiovascular and renal morbidity and mortality. Almost five decades ago, Guyton and Coleman proposed that whenever arterial pressure is elevated, pressure natriuresis enhances the excretion of sodium and water until blood volume is reduced sufficiently to return arterial pressure to control values. According to this hypothesis, hypertension can develop only when something impairs the excretory ability of sodium in the kidney. However, recent studies suggest that nonosmotic salt accumulation in the skin interstitium and the endothelial dysfunction which might be caused by the deterioration of vascular endothelial glycocalyx layer (EGL) and the epithelial sodium channel on the endothelial luminal surface (EnNaC) also play an important role in

  9. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  10. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.

    PubMed

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  11. c-Abl mediated tyrosine phosphorylation of paxillin regulates LPS-induced endothelial dysfunction and lung injury

    PubMed Central

    Usatyuk, Peter V.; Lele, Abhishek; Harijith, Anantha; Gregorio, Carol C.; Garcia, Joe G. N.; Salgia, Ravi; Natarajan, Viswanathan

    2015-01-01

    Paxillin is phosphorylated at multiple residues; however, the role of tyrosine phosphorylation of paxillin in endothelial barrier dysfunction and acute lung injury (ALI) remains unclear. We used siRNA and site-specific nonphosphorylable mutants of paxillin to abrogate the function of paxillin to determine its role in lung endothelial permeability and ALI. In vitro, lipopolysaccharide (LPS) challenge of human lung microvascular endothelial cells (HLMVECs) resulted in enhanced tyrosine phosphorylation of paxillin at Y31 and Y118 with no significant change in Y181 and significant barrier dysfunction. Knockdown of paxillin with siRNA attenuated LPS-induced endothelial barrier dysfunction and destabilization of VE-cadherin. LPS-induced paxillin phosphorylation at Y31 and Y118 was mediated by c-Abl tyrosine kinase, but not by Src and focal adhesion kinase. c-Abl siRNA significantly reduced LPS-induced endothelial barrier dysfunction. Transfection of HLMVECs with paxillin Y31F, Y118F, and Y31/118F double mutants mitigated LPS-induced barrier dysfunction and VE-cadherin destabilization. In vivo, the c-Abl inhibitor AG957 attenuated LPS-induced pulmonary permeability in mice. Together, these results suggest that c-Abl mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates LPS-mediated pulmonary vascular permeability and injury. PMID:25795725

  12. Altered Nrf2 Signaling Mediates Hypoglycemia-Induced Blood–Brain Barrier Endothelial Dysfunction In Vitro

    PubMed Central

    Sajja, Ravi K.; Green, Kayla N.; Cucullo, Luca

    2015-01-01

    increased Siah2-driven proteasomal degradation mediates hypoglycemia-evoked endothelial dysfunction and loss of BBB integrity. Overall, this study suggests that sustained activation of endothelial Nrf2 signaling could have therapeutic potential to prevent hypoglycemia-induced cerebrovascular dysfunction. PMID:25807533

  13. Elevated biomarkers of endothelial dysfunction/activation at ICU admission are associated with sepsis development.

    PubMed

    Vassiliou, Alice G; Mastora, Zafeiria; Orfanos, Stylianos E; Jahaj, Edison; Maniatis, Nikolaos A; Koutsoukou, Antonia; Armaganidis, Apostolos; Kotanidou, Anastasia

    2014-10-01

    Widespread endothelial activation and dysfunction often precede clinical sepsis. Several endothelium-related molecules have been investigated as potential biomarkers for early diagnosis and/or prognosis of sepsis, providing different results depending on study designs. Such factors include endothelial adhesion molecules like E- and P-selectin, and the intercellular adhesion molecule-1, vascular endothelial cadherin, growth factors such as Angiopoietin-1 and -2 and vascular endothelial growth factor, as well as von Willebrand factor antigen. We sought to investigate whether circulating biomarkers of endothelial activation/dysfunction measured at ICU admission are associated with subsequent sepsis development. Eighty-nine critically-ill patients admitted to a general ICU who met no sepsis criteria were studied. Plasma or serum levels of the above-mentioned endothelium-derived molecules were measured during the first 24h post ICU; acute physiology and chronic health evaluation (APACHE) II and sequential organ failure assessment (SOFA) scores, age, sex, diagnostic category, and circulating procalcitonin (PCT) and C-reactive protein (CRP) levels were additionally measured or recorded. Forty-five patients subsequently became septic and 44 did not. Soluble (s) E- and P-selectin levels, circulating PCT, SOFA score and diagnostic category were significantly different between the two groups. Multiple logistic regression analysis associated elevated sE- and sP-selectin levels and SOFA with an increased risk of developing sepsis, while multiple Cox regression analysis identified sE- and sP-selectin levels as the only parameters related to sepsis appearance with time [RR=1.026, 95%CI=1.008-1.045, p=0.005; RR=1.005 (by 10 units), 95%CI=1.000-1.010, p=0.034, respectively]. When trauma patients were independently analyzed, multiple Cox regression analysis revealed sE-selectin to be the only molecule associated with sepsis development with time (RR=1.041, 95%CI: 1.019-1.065; p<0

  14. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria.

    PubMed

    Barber, Bridget E; William, Timothy; Grigg, Matthew J; Parameswaran, Uma; Piera, Kim A; Price, Ric N; Yeo, Tsin W; Anstey, Nicholas M

    2015-01-01

    Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden

  15. Albuminuria Is Associated with Endothelial Dysfunction and Elevated Plasma Endothelin-1 in Sickle Cell Anemia

    PubMed Central

    Derebail, Vimal K.; Caughey, Melissa; Elsherif, Laila; Shen, Jessica H.; Jones, Susan K.; Maitra, Poulami; Pollock, David M.; Cai, Jianwen; Archer, David R.; Hinderliter, Alan L.

    2016-01-01

    Background The pathogenesis of albuminuria in SCD remains incompletely understood. We evaluated the association of albuminuria with measures of endothelial function, and explored associations of both albuminuria and measures of endothelial function with selected biological variables (vascular endothelial growth factor [VEGF], endothelin-1 [ET-1], soluble fms-like tyrosine kinase-1 [sFLT-1], soluble vascular cell adhesion molecule-1 [soluble VCAM-1] and plasma hemoglobin). Methods Spot urine measurements for albumin-creatinine ratio (UACR) and 24-hour urine protein were obtained. Endothelial function was assessed using brachial artery ultrasound with measurements of flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NTMD) and hyperemic velocity. Results Twenty three subjects with varying degrees of albuminuria were evaluated. UACR was significantly correlated with FMD (ρ = -0.45, p = 0.031). In univariate analysis, UACR was correlated with VEGF (ρ = -0.49; 95% CI: -0.75 –-0.1, p = 0.015), plasma hemoglobin (ρ = 0.50; 95% CI: 0.11–0.75, p = 0.013) and ET-1 (ρ = 0.40; 95% CI: -0.03–0.69, p = 0.06). Multivariable analysis showed significant associations of ET-1 (estimate: 455.1 [SE: 198.3], p = 0.02), VEGF (estimate: -1.1 [SE: 0.53], p = 0.04) and sFLT-1 (estimate: -1.14 [SE: 0.49], p = 0.02) with UACR. Only ET-1 (estimate: -8.03 [SE: 3.87], p = 0.04) was significantly associated with FMD in multivariable analyses. Finally, UACR was correlated with both 24-hour urine protein (ρ = 0.90, p < 0.0001) and urine aliquots for albumin-creatinine ratio obtained from the 24-hour urine collection (ρ = 0.97, p < 0.0001). Conclusion This study provides more definitive evidence for the association of albuminuria with endothelial dysfunction in SCD. Elevated circulating levels of ET-1 may contribute to SCD-related glomerulopathy by mediating endothelial dysfunction. PMID:27669006

  16. Preclinical pulmonary capillary endothelial dysfunction is present in brain dead subjects.

    PubMed

    Glynos, Constantinos; Athanasiou, Chariclea; Kotanidou, Anastasia; Korovesi, Ioanna; Kaziani, Katerina; Livaditi, Olga; Dimopoulou, Ioanna; Maniatis, Nikolaos A; Tsangaris, Iraklis; Roussos, Charis; Armaganidis, Apostolos; Orfanos, Stylianos E

    2013-04-01

    Pulmonary endothelium is a major metabolic organ affecting pulmonary and systemic vascular homeostasis. Brain death (BD)-induced physiologic and metabolic derangements in donors' lungs, in the absence of overt lung pathology, may cause pulmonary dysfunction and compromise post-transplant graft function. To explore the impact of BD on pulmonary endothelium, we estimated pulmonary capillary endothelium-bound (PCEB)-angiotensin converting enzyme (ACE) activity, a direct and quantifiable index of pulmonary endothelial function, in eight brain-dead patients and ten brain-injured mechanically ventilated controls. No subject suffered from acute lung injury or any other overt lung pathology. Applying indicator-dilution type techniques, we measured single-pass transpulmonary percent metabolism (%M) and hydrolysis (v) of the synthetic, biologically inactive, and highly specific for ACE substrate (3)H-benzoyl-Phe-Ala-Pro, under first order reaction conditions, and calculated lung functional capillary surface area (FCSA). Substrate %M (35 ± 6.8%) and v (0.49 ± 0.13) in BD patients were decreased as compared to controls (55.9 ± 4.9, P = 0.033 and 0.9 ± 0.15, P = 0.033, respectively), denoting decreased pulmonary endothelial enzyme activity at the capillary level; FCSA, a reflection of endothelial enzyme activity per vascular bed, was also decreased (BD patients: 1,563 ± 562 mL/min vs 4,235 ± 559 in controls; P = 0.003). We conclude that BD is associated with subtle pulmonary endothelial injury, expressed by decreased PCEB-ACE activity. The applied indicator-dilution type technique provides direct and quantifiable indices of pulmonary endothelial function at the bedside that may reveal the existence of preclinical lung pathology in potential lung donors. PMID:24015344

  17. Preclinical pulmonary capillary endothelial dysfunction is present in brain dead subjects

    PubMed Central

    Glynos, Constantinos; Athanasiou, Chariclea; Kotanidou, Anastasia; Korovesi, Ioanna; Kaziani, Katerina; Livaditi, Olga; Dimopoulou, Ioanna; Maniatis, Nikolaos A.; Tsangaris, Iraklis; Roussos, Charis; Armaganidis, Apostolos; Orfanos, Stylianos E.

    2013-01-01

    Pulmonary endothelium is a major metabolic organ affecting pulmonary and systemic vascular homeostasis. Brain death (BD)-induced physiologic and metabolic derangements in donors’ lungs, in the absence of overt lung pathology, may cause pulmonary dysfunction and compromise post-transplant graft function. To explore the impact of BD on pulmonary endothelium, we estimated pulmonary capillary endothelium-bound (PCEB)-angiotensin converting enzyme (ACE) activity, a direct and quantifiable index of pulmonary endothelial function, in eight brain-dead patients and ten brain-injured mechanically ventilated controls. No subject suffered from acute lung injury or any other overt lung pathology. Applying indicator-dilution type techniques, we measured single-pass transpulmonary percent metabolism (%M) and hydrolysis (v) of the synthetic, biologically inactive, and highly specific for ACE substrate 3H-benzoyl-Phe-Ala-Pro, under first order reaction conditions, and calculated lung functional capillary surface area (FCSA). Substrate %M (35 ± 6.8%) and v (0.49 ± 0.13) in BD patients were decreased as compared to controls (55.9 ± 4.9, P = 0.033 and 0.9 ± 0.15, P = 0.033, respectively), denoting decreased pulmonary endothelial enzyme activity at the capillary level; FCSA, a reflection of endothelial enzyme activity per vascular bed, was also decreased (BD patients: 1,563 ± 562 mL/min vs 4,235 ± 559 in controls; P = 0.003). We conclude that BD is associated with subtle pulmonary endothelial injury, expressed by decreased PCEB-ACE activity. The applied indicator-dilution type technique provides direct and quantifiable indices of pulmonary endothelial function at the bedside that may reveal the existence of preclinical lung pathology in potential lung donors. PMID:24015344

  18. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats

    PubMed Central

    Kim, Jae Hyung; Bugaj, Lukasz J.; Oh, Young Jun; Bivalacqua, Trinity J.; Ryoo, Sungwoo; Soucy, Kevin G.; Santhanam, Lakshmi; Webb, Alanah; Camara, Andre; Sikka, Gautam; Nyhan, Daniel; Shoukas, Artin A.; Ilies, Monica; Christianson, David W.; Champion, Hunter C.

    2009-01-01

    There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2−) production than young. Acute inhibition of both NOS, with NG-nitro-l-arginine methyl ester, and arginase, with 2(S)-amino- 6-boronohexanoic acid (ABH), significantly reduced O2− production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692–702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2− production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness. PMID:19661445

  19. The Subcellular Compartmentalization of Arginine Metabolizing Enzymes and Their Role in Endothelial Dysfunction

    PubMed Central

    Chen, Feng; Lucas, Rudolf; Fulton, David

    2013-01-01

    The endothelial production of nitric oxide (NO) mediates endothelium-dependent vasorelaxation and restrains vascular inflammation, smooth muscle cell proliferation, and platelet aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and promotes the development of cardiovascular disease. In endothelial cells, NO is generated by endothelial nitric oxide synthase (eNOS) through the conversion of its substrate, l-arginine to l-citrulline. Reduced access to l-arginine has been proposed as a major mechanism underlying reduced eNOS activity and NO production in cardiovascular disease. The arginases (Arg1 and Arg2) metabolize l-arginine to generate l-ornithine and urea and increased expression of arginase has been proposed as a mechanism of reduced eNOS activity secondary to the depletion of l-arginine. Indeed, supplemental l-arginine and suppression of arginase activity has been shown to improve endothelium-dependent relaxation and ameliorate cardiovascular disease. However, this simple relationship is complicated by observations that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. Accordingly, the subcellular compartmentalization of intracellular l-arginine into poorly interchangeable pools has been proposed to allow for the local depletion of pools or pockets of l-arginine. In agreement with this, there is considerable evidence supporting the importance of the subcellular localization of l-arginine metabolizing enzymes. In endothelial cells in vitro and in vivo, eNOS is found in discrete intracellular locations and the capacity to generate NO is heavily influenced by its localization inside the cell. Arg1 and Arg2 also reside in different subcellular environments and are thought to differentially influence endothelial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling enzyme, arginosuccinate lyase, co-localize with eNOS and facilitate NO release. Herein, we

  20. Endothelial and Non-Endothelial Coronary Blood Flow Reserve and Left Ventricular Dysfunction in Systemic Hypertension

    PubMed Central

    Rocha, Aloísio Marchi; Salemi, Vera Maria Cury; Neto, Pedro Alves Lemos; Matsumoto, Afonso Yoshikiro; Pereira, Valéria Fontenelle Angelim; Fernandes, Fábio; Nastari, Luciano; Mady, Charles

    2009-01-01

    OBJECTIVES: We evaluated the impairment of endothelium-dependent and endothelium-independent coronary blood flow reserve after administration of intracoronary acetylcholine and adenosine, and its association with hypertensive cardiac disease. INTRODUCTION: Coronary blood flow reserve reduction has been proposed as a mechanism for the progression of compensated left ventricular hypertrophy to ventricular dysfunction. METHODS: Eighteen hypertensive patients with normal epicardial coronary arteries on angiography were divided into two groups according to left ventricular fractional shortening (FS). Group 1 (FS ≥0.25): n=8, FS=0.29 ± 0.03; Group 2 (FS <0.25): n=10, FS= 0.17 ± 0.03. RESULTS: Baseline coronary blood flow was similar in both groups (Group 1: 80.15 ± 26.41 mL/min, Group 2: 100.09 ± 21.51 mL/min, p=NS). In response to adenosine, coronary blood flow increased to 265.1 ± 100.2 mL/min in Group 1 and to 300.8 ± 113.6 mL/min (p <0.05) in Group 2. Endothelium-independent coronary blood flow reserve was similar in both groups (Group 1: 3.31 ± 0.68 and Group 2: 2.97 ± 0.80, p=NS). In response to acetylcholine, coronary blood flow increased to 156.08 ± 36.79 mL/min in Group 1 and to 177.8 ± 83.6 mL/min in Group 2 (p <0.05). Endothelium-dependent coronary blood flow reserve was similar in the two groups (Group 1: 2.08 ± 0.74 and group Group 2: 1.76 ± 0.61, p=NS). Peak acetylcholine/peak adenosine coronary blood flow response (Group 1: 0.65 ± 0.27 and Group 2: 0.60 ± 0.17) and minimal coronary vascular resistance (Group 1: 0.48 ± 0.21 mmHg/mL/min and Group 2: 0.34 ± 0.12 mmHg/mL/min) were similar in both groups (p= NS). Casual diastolic blood pressure and end-systolic left ventricular stress were independently associated with FS. CONCLUSIONS: In our hypertensive patients, endothelium-dependent and endothelium-independent coronary blood flow reserve vasodilator administrations had similar effects in patients with either normal or decreased left

  1. Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults.

    PubMed

    Ochiai, Ryuji; Sugiura, Yoko; Otsuka, Kazuhiro; Katsuragi, Yoshihisa; Hashiguchi, Teruto

    2015-05-01

    To reveal the effect of coffee bean polyphenols (CBPs) on blood vessels, this study aimed to investigate the effect of CBPs on acute postprandial endothelial dysfunction. Thirteen healthy non-diabetic men (mean age, 44.9 ± 1.4 years) consumed a test beverage (active: containing CBPs, placebo: no CBPs) before a 554-kcal test meal containing 14 g of protein, 30 g of fat and 58 g of carbohydrates. Then, a crossover analysis was performed to investigate the time-dependent changes in flow-mediated dilation (FMD) in the brachial artery. In the active group, the postprandial impairment of FMD was significantly improved, the two-hour postprandial nitric oxide metabolite levels were significantly increased and the six-hour postprandial urinary 8-epi-prostaglandin F2α levels were significantly reduced compared to the placebo group. The test meal increased the levels of blood glucose, insulin and triglycerides in both groups with no significant intergroup differences. These findings indicate that CBPs intake ameliorates postprandial endothelial dysfunction in healthy men.

  2. Effect of cholesterol lowering treatment on plasma markers of endothelial dysfunction in chronic kidney disease.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Mangoni, Arduino A; Sotgiu, Elisabetta; Ena, Sara; Satta, Andrea E; Carru, Ciriaco

    2016-09-10

    The elevated cardiovascular morbidity and mortality in chronic kidney disease (CKD) is linked with endothelial dysfunction secondary to the pro-inflammatory and pro-oxidative state typical of this pathology. In consideration of the well-known pleiotropic effect of statins, we investigated the effect of cholesterol lowering treatment on endothelial dysfunction markers (MED), asymmetric dimethylarginine (ADMA), vascular cell (VCAM) and intercellular (ICAM) adhesion molecule. Plasma MED concentrations, inflammation and oxidative stress indices [Kynurenine/Tryptophan (Kyn/Trp) ratio, malondialdehyde (MDA) and allantoin/uric acid (All/UA) ratio] were measured in 30 CKD patients randomized to three cholesterol lowering regimens for 12 months (simvastatin 40mg/day, ezetimibe/simvastatin 10/20mg/day, or ezetimibe/simvastatin 10/40mg/day). Treatment significantly reduced ADMA concentrations in all patients [0.694μmol/L (0.606-0.761) at baseline vs. 0.622μmol/L (0.563-0.681) after treatment, p<0.001]. ADMA reduction was paralleled by a significant decrease of MDA, All/AU ratio and Kyn/Trp ratio, but not VCAM and ICAM plasma concentrations. Cholesterol lowering treatment was associated with a significant reduction in plasma ADMA concentrations in CKD patients. This might be mediated by reduced oxidative stress and inflammation.

  3. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction

    PubMed Central

    Okumura, Naoki; Sakamoto, Yuji; Fujii, Keita; Kitano, Junji; Nakano, Shinichiro; Tsujimoto, Yuki; Nakamura, Shin-ichiro; Ueno, Morio; Hagiya, Michio; Hamuro, Junji; Matsuyama, Akifumi; Suzuki, Shingo; Shiina, Takashi; Kinoshita, Shigeru; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency; consequently, its dysfunction causes severe vision loss. Tissue engineering-based therapy, as an alternative to conventional donor corneal transplantation, is anticipated to provide a less invasive and more effective therapeutic modality. We conducted a preclinical study for cell-based therapy in a primate model and demonstrated regeneration of the corneal endothelium following injection of cultured monkey corneal endothelial cells (MCECs) or human CECs (HCECs), in combination with a Rho kinase (ROCK) inhibitor, Y-27632, into the anterior chamber. We also evaluated the safety and efficacy of Good Manufacturing Practice (GMP)-grade HCECs, similar to those planned for use as transplant material for human patients in a clinical trial, and we showed that the corneal endothelium was regenerated without adverse effect. We also showed that CEC engraftment is impaired by limited substrate adhesion, which is due to actomyosin contraction induced by dissociation-induced activation of ROCK/MLC signaling. Inclusion of a ROCK inhibitor improves efficiency of engraftment of CECs and enables cell-based therapy for treating corneal endothelial dysfunction as a clinically relevant therapy. PMID:27189516

  4. Endothelial dysfunction in young healthy men is associated with aspirin resistance.

    PubMed

    Doroszko, Adrian; Szahidewicz-Krupska, Ewa; Janus, Agnieszka; Jakubowski, Maciej; Turek, Aleksandra; Ilnicka, Paulina; Szuba, Andrzej; Mazur, Grzegorz; Derkacz, Arkadiusz

    2015-01-01

    The aim of this study was to investigate the relation between endothelial dysfunction and aspirin response in a young healthy population (102 men aged 18-40). Initial concentrations of the NO pathway metabolites (ADMA, l-arginine, SDMA), cardiovascular risk markers, oxidative stress markers (MDA, thiol index), sICAM1, sVCAM1, PAI-1, sE-selectin, sP-selectin, VEGF, thromboxane B2, 6-keto-PGF1α and arachidonate-induced platelet aggregation (to separate aspirin resistant from sensitive group) were measured. Flow-mediated-vasodilation (FMD) was measured before and after intravenous infusion of 16.0 g of l-arginine. Measurements were repeated following aspirin administration (75 mg/24 h) for 4 days. Both groups were homogenous regarding demographic and biochemical characteristics reflecting cardiovascular risk. Aspirin resistant subjects were characterized by lower baseline FMD and higher FMD following aspirin and l-arginine treatment, as compared to aspirin sensitive control. MDA and nitrotyrosine were greater, whereas thiol index was lower in aspirin resistant men. The sICAM1, sVCAM1, PAI-1, sE-selectin, sP-selectin and VEGF levels were similar in the analyzed groups. Thromboxane in aspirin resistant subjects was greater both at baseline and following aspirin therapy. However, a significant decrease following aspirin treatment was present in both groups. Aspirin resistance in young men is associated with endothelial dysfunction, which could be due to oxidative stress resulting from lipid peroxidation. PMID:25697550

  5. Organic nitrates: update on mechanisms underlying vasodilation, tolerance and endothelial dysfunction.

    PubMed

    Münzel, Thomas; Steven, Sebastian; Daiber, Andreas

    2014-12-01

    Given acutely, organic nitrates, such as nitroglycerin (GTN), isosorbide mono- and dinitrates (ISMN, ISDN), and pentaerythrityl tetranitrate (PETN), have potent vasodilator and anti-ischemic effects in patients with acute coronary syndromes, acute and chronic congestive heart failure and arterial hypertension. During long-term treatment, however, side effects such as nitrate tolerance and endothelial dysfunction occur, and therapeutic efficacy of these drugs rapidly vanishes. Recent experimental and clinical studies have revealed that organic nitrates per se are not just nitric oxide (NO) donors, but rather a quite heterogeneous group of drugs considerably differing for mechanisms underlying vasodilation and the development of endothelial dysfunction and tolerance. Based on this, we propose that the term nitrate tolerance should be avoided and more specifically the terms of GTN, ISMN and ISDN tolerance should be used. The present review summarizes preclinical and clinical data concerning organic nitrates. Here we also emphasize the consequences of chronic nitrate therapy on the supersensitivity of the vasculature to vasoconstriction and on the increased autocrine expression of endothelin. We believe that these so far rather neglected and underestimated side effects of chronic therapy with at least GTN and ISMN are clinically important.

  6. Citreoviridin Enhances Atherogenesis in Hypercholesterolemic ApoE-Deficient Mice via Upregulating Inflammation and Endothelial Dysfunction

    PubMed Central

    Guo, Qing; Sun, Tao; Li, Cheng; Liu, Jian-Bao; Li, Qun-Wei; Jiang, Bao-Fa

    2015-01-01

    Vascular endothelial dysfunction and inflammatory response are early events during initiation and progression of atherosclerosis. In vitro studies have described that CIT markedly upregulates expressions of ICAM-1 and VCAM-1 of endothelial cells, which result from NF-κB activation induced by CIT. In order to determine whether it plays a role in atherogenesis in vivo, we conducted the study to investigate the effects of CIT on atherosclerotic plaque development and inflammatory response in apolipoprotein E deficient (apoE-/-) mice. Five-week-old apoE-/- mice were fed high-fat diets and treated with CIT for 15 weeks, followed by assay of atherosclerotic lesions. Nitric oxide (NO), vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) were detected in serum. Levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), VEGF, and ET-1 in plaque areas of artery walls were examined. NF-κB p65 expression and NF-κB activation in aorta also were assessed. CIT treatment significantly augmented atherosclerotic plaques and increased expressions of ICAM-1, VCAM-1, VEGF and ET-1 in aorta. Mechanistic studies showed that activation of NF-κB was significantly elevated by CIT treatment, indicating the effect of CIT on atherosclerosis may be regulated by activation of NF-κB. PMID:25933220

  7. Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome.

    PubMed

    Yang, Weng-Lang; Sharma, Archna; Wang, Zhimin; Li, Zhigang; Fan, Jie; Wang, Ping

    2016-01-01

    Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern (DAMP) molecule which stimulates proinflammatory cytokine release in hemorrhage and sepsis. Under these medical conditions, disruption of endothelial homeostasis and barrier integrity, typically induced by proinflammatory cytokines, is an important factor contributing to morbidity and mortality. However, the role of CIRP in causing endothelial dysfunction has not been investigated. In this study, we show that intravenous injection of recombinant murine CIRP (rmCIRP) in C57BL/6 mice causes lung injury, evidenced by vascular leakage, edema, increased leukocyte infiltration and cytokine production in the lung tissue. The CIRP-induced lung damage is accompanied with endothelial cell (EC) activation marked by upregulation of cell-surface adhesion molecules E-selectin and ICAM-1. Using in vitro primary mouse lung vascular ECs (MLVECs), we demonstrate that rmCIRP treatment directly increases the ICAM-1 protein expression and activates NAD(P)H oxidase in MLVECs. Importantly, CIRP stimulates the assembly and activation of Nlrp3 inflammasome in MLVECs accompanied with caspase-1 activation, IL-1β release and induction of proinflammatory cell death pyroptosis. Finally, our study demonstrates CIRP-induced EC pyroptosis in the lungs of C57BL/6 mice for the first time. Taken together, the released CIRP in shock can directly activate ECs and induce EC pyroptosis to cause lung injury. PMID:27217302

  8. Oxidative stress contributes to endothelial dysfunction in mouse models of hereditary hemorrhagic telangiectasia.

    PubMed

    Jerkic, Mirjana; Sotov, Valentin; Letarte, Michelle

    2012-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase (ALK1; HHT2) genes, coding for transforming growth factor-β (TGF-β) superfamily receptors. We demonstrated previously that endoglin and ALK1 interact with endothelial NO synthase (eNOS) and affect its activation. Endothelial cells deficient in endoglin or ALK1 proteins show eNOS uncoupling, reduced NO, and increased reactive oxygen species (ROS) production. In this study, we measured NO and H(2)O(2) levels in several organs of adult Eng and Alk1 heterozygous mice, to ascertain whether decreased NO and increased ROS production is a generalized manifestation of HHT. A significant reduction in NO and increase in ROS production were found in several organs, known to be affected in patients. ROS overproduction in mutant mice was attributed to eNOS, as it was L-NAME inhibitable. Mitochondrial ROS contribution, blocked by antimycin, was highest in liver while NADPH oxidase, inhibited by apocynin, was a major source of ROS in the other tissues. However, there was no difference in antimycin- and apocynin-inhibitable ROS production between mutant and control mice. Our results indicate that eNOS-derived ROS contributes to endothelial dysfunction and likely predisposes to disease manifestations in several organs of HHT patients. PMID:23320130

  9. Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome

    PubMed Central

    Yang, Weng-Lang; Sharma, Archna; Wang, Zhimin; Li, Zhigang; Fan, Jie; Wang, Ping

    2016-01-01

    Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern (DAMP) molecule which stimulates proinflammatory cytokine release in hemorrhage and sepsis. Under these medical conditions, disruption of endothelial homeostasis and barrier integrity, typically induced by proinflammatory cytokines, is an important factor contributing to morbidity and mortality. However, the role of CIRP in causing endothelial dysfunction has not been investigated. In this study, we show that intravenous injection of recombinant murine CIRP (rmCIRP) in C57BL/6 mice causes lung injury, evidenced by vascular leakage, edema, increased leukocyte infiltration and cytokine production in the lung tissue. The CIRP-induced lung damage is accompanied with endothelial cell (EC) activation marked by upregulation of cell-surface adhesion molecules E-selectin and ICAM-1. Using in vitro primary mouse lung vascular ECs (MLVECs), we demonstrate that rmCIRP treatment directly increases the ICAM-1 protein expression and activates NAD(P)H oxidase in MLVECs. Importantly, CIRP stimulates the assembly and activation of Nlrp3 inflammasome in MLVECs accompanied with caspase-1 activation, IL-1β release and induction of proinflammatory cell death pyroptosis. Finally, our study demonstrates CIRP-induced EC pyroptosis in the lungs of C57BL/6 mice for the first time. Taken together, the released CIRP in shock can directly activate ECs and induce EC pyroptosis to cause lung injury. PMID:27217302

  10. Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments.

    PubMed

    Vesterdal, Lise K; Mikkelsen, Lone; Folkmann, Janne K; Sheykhzade, Majid; Cao, Yi; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2012-10-01

    Exposure to small size particulates is regarded as a risk factor for cardiovascular disease. We investigated effects of exposure to nanosized carbon black (CB) in human umbilical vein endothelial cells (HUVECs) and segments of arteries from rodents. The CB exposure was associated with increased surface expression of intercellular cell adhesion molecule 1 (ICAM-1) and vascular adhesion molecule 1 (VCAM-1) in HUVECs at 100μg/ml. CB exposure was also associated with increased reactive oxygen species production and damage to the cell membranes in the form of increased lactate dehydrogenase leakage, whereas it did not alter the mitochondrial enzyme activity (WST-1) or the nitric oxide level in HUVECs. Incubation of aorta segments with 10μg/ml of CB increased the endothelial-dependent vasorelaxation, induced by acetylcholine, and shifted the endothelium-independent vasorelaxation, induced by sodium nitroprusside, towards a decreased sensitivity. In mesenteric arteries, the exposure to 10μg/ml was associated with a reduced pressure-diameter relationship. Incubation with 100μg/ml CB significantly decreased both acetylcholine and sodium nitroprusside responses as well as decreased the receptor-dependent vasoconstriction caused by phenylephrine. In conclusion, nanosized CB exposure activates endothelial cells and generates oxidative stress, which is associated with vasomotor dysfunction.

  11. Endothelial dysfunction following prolonged sitting is mediated by a reduction in shear stress.

    PubMed

    Restaino, Robert M; Walsh, Lauren K; Morishima, Takuma; Vranish, Jennifer R; Martinez-Lemus, Luis A; Fadel, Paul J; Padilla, Jaume

    2016-03-01

    We and others have recently reported that prolonged sitting impairs endothelial function in the leg vasculature; however, the mechanism(s) remain unknown. Herein, we tested the hypothesis that a sustained reduction in flow-induced shear stress is the underlying mechanism by which sitting induces leg endothelial dysfunction. Specifically, we examined whether preventing the reduction in shear stress during sitting would abolish the detrimental effects of sitting on popliteal artery endothelial function. In 10 young healthy men, bilateral measurements of popliteal artery flow-mediated dilation were performed before and after a 3-h sitting period during which one foot was submerged in 42°C water (i.e., heated) to increase blood flow and thus shear stress, whereas the contralateral leg remained dry and served as internal control (i.e., nonheated). During sitting, popliteal artery mean shear rate was reduced in the nonheated leg (pre-sit, 42.9 ± 4.5 s(-1); and 3-h sit, 23.6 ± 3.3 s(-1); P < 0.05) but not in the heated leg (pre-sit, 38.9 ± 3.4 s(-1); and 3-h sit, 63.9 ± 16.9 s(-1); P > 0.05). Popliteal artery flow-mediated dilation was impaired after 3 h of sitting in the nonheated leg (pre-sit, 7.1 ± 1.4% vs. post-sit, 2.8 ± 0.9%; P < 0.05) but not in the heated leg (pre-sit: 7.3 ± 1.5% vs. post-sit, 10.9 ± 1.8%; P > 0.05). Collectively, these data suggest that preventing the reduction of flow-induced shear stress during prolonged sitting with local heating abolishes the impairment in popliteal artery endothelial function. Thus these findings are consistent with the hypothesis that sitting-induced leg endothelial dysfunction is mediated by a reduction in shear stress. PMID:26747508

  12. Intake of heat-expanded amaranth grain reverses endothelial dysfunction in hypercholesterolemic rabbits.

    PubMed

    Caselato-Sousa, Valeria Maria; Ozaki, Michiko Regina; de Almeida, Eros Antonio; Amaya-Farfan, Jaime

    2014-12-01

    This study reports the new functional property of amaranth grain against diet-induced endothelial dysfunction in rabbits. Twenty-seven New Zealand rabbits were fed either a standard diet (SD/G1) or a hypercholesterolemic diet (Hichol) for 28 days. On day 29, the Hichol group was subdivided into four groups and begun receiving the following diets for 21 days: G2: SD + amaranth, G3: Hichol + amaranth, G4: SD alone, and G5: Hichol alone, while G1 continued to receive SD for 21 days. Amaranth intake restored endothelial function (G2, G3) to nearly normal during the 21-day recovery besides substantially lowering total and LDL blood cholesterol levels. This effect was not seen by simply correcting the diet (G4). Upon continuance of Hichol, however, amaranth supplementation did show some contribution to the cholesterol-lowering effect (G4 vs. G3). On day 49, feeding Hichol without the help of amaranth, harm was further magnified by lowering HDL-cholesterol (G5). Fecal cholesterol was found increased in groups that ingested amaranth (G2, G3), but no significant impact from either supplementation or diet reversal was found in fecal bile acids. Amaranth supplementation granted some protection against tissue cholesterol (G5) and tissue peroxidation (G3). It is concluded that even in concurrence with a hypercholesterolemic diet, intake of heat-expanded amaranth can revert an associated endothelial dysfunction besides incrementing fecal cholesterol excretion and lowering blood and tissue cholesterol oxidation in dyslipidemic rabbits. These results supported the notion of a lipid peroxidation process occurring with high cholesterol intakes. PMID:25347416

  13. Intake of heat-expanded amaranth grain reverses endothelial dysfunction in hypercholesterolemic rabbits.

    PubMed

    Caselato-Sousa, Valeria Maria; Ozaki, Michiko Regina; de Almeida, Eros Antonio; Amaya-Farfan, Jaime

    2014-12-01

    This study reports the new functional property of amaranth grain against diet-induced endothelial dysfunction in rabbits. Twenty-seven New Zealand rabbits were fed either a standard diet (SD/G1) or a hypercholesterolemic diet (Hichol) for 28 days. On day 29, the Hichol group was subdivided into four groups and begun receiving the following diets for 21 days: G2: SD + amaranth, G3: Hichol + amaranth, G4: SD alone, and G5: Hichol alone, while G1 continued to receive SD for 21 days. Amaranth intake restored endothelial function (G2, G3) to nearly normal during the 21-day recovery besides substantially lowering total and LDL blood cholesterol levels. This effect was not seen by simply correcting the diet (G4). Upon continuance of Hichol, however, amaranth supplementation did show some contribution to the cholesterol-lowering effect (G4 vs. G3). On day 49, feeding Hichol without the help of amaranth, harm was further magnified by lowering HDL-cholesterol (G5). Fecal cholesterol was found increased in groups that ingested amaranth (G2, G3), but no significant impact from either supplementation or diet reversal was found in fecal bile acids. Amaranth supplementation granted some protection against tissue cholesterol (G5) and tissue peroxidation (G3). It is concluded that even in concurrence with a hypercholesterolemic diet, intake of heat-expanded amaranth can revert an associated endothelial dysfunction besides incrementing fecal cholesterol excretion and lowering blood and tissue cholesterol oxidation in dyslipidemic rabbits. These results supported the notion of a lipid peroxidation process occurring with high cholesterol intakes.

  14. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels

    NASA Technical Reports Server (NTRS)

    Berkowitz, Dan E.; White, Ron; Li, Dechun; Minhas, Khalid M.; Cernetich, Amy; Kim, Soonyul; Burke, Sean; Shoukas, Artin A.; Nyhan, Daniel; Champion, Hunter C.; Hare, Joshua M.

    2003-01-01

    BACKGROUND: Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS: Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, P<0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-L-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P<0.05 and P<0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60+/-6% versus 39+/-6%, P<0.05). In addition, BEC restored depressed L-arginine (10(-4) mol/L)-dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. CONCLUSIONS: These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular L-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.

  15. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction.

    PubMed

    Talib, Jihan; Kwan, Jair; Suryo Rahmanto, Aldwin; Witting, Paul K; Davies, Michael J

    2014-01-01

    Smokers have an elevated risk of cardiovascular disease but the origin(s) of this increased risk are incompletely defined. Considerable evidence supports an accumulation of the oxidant-generating enzyme MPO (myeloperoxidase) in the inflamed artery wall, and smokers have high levels of SCN(-), a preferred MPO substrate, with this resulting in HOSCN (hypothiocyanous acid) formation. We hypothesized that this thiol-specific oxidant may target the Zn(2+)-thiol cluster of eNOS (endothelial nitric oxide synthase), resulting in enzyme dysfunction and reduced formation of the critical signalling molecule NO•. Decreased NO• bioavailability is an early and critical event in atherogenesis, and HOSCN-mediated damage to eNOS may contribute to smoking-associated disease. In the present study it is shown that exposure of isolated eNOS to HOSCN or MPO/H2O2/SCN(-) decreased active dimeric eNOS levels, and increased inactive monomer and Zn(2+) release, compared with controls, HOCl (hypochlorous acid)- or MPO/H2O2/Cl(-)-treated samples. eNOS activity was increasingly compromised by MPO/H2O2/Cl(-) with increasing SCN(-) concentrations. Exposure of HCAEC (human coronary artery endothelial cell) lysates to pre-formed HOSCN, or MPO/H2O2/Cl(-) with increasing SCN(-), increased eNOS monomerization and Zn(2+) release, and decreased activity. Intact HCAECs exposed to HOCl and HOSCN had decreased eNOS activity and NO2(-)/NO3(-) formation (products of NO• decomposition), and increased free Zn(2+). Exposure of isolated rat aortic rings to HOSCN resulted in thiol loss, and decreased eNOS activity and cGMP levels. Overall these data indicate that high SCN(-) levels, as seen in smokers, can increase HOSCN formation and enhance eNOS dysfunction in human endothelial cells, with this potentially contributing to increased atherogenesis in smokers. PMID:24112082

  16. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  17. Muscle endothelial-dependent microvascular dysfunction in adulthood due to early postnatal overnutrition.

    PubMed

    Leite, Richard Diego; Kraemer-Aguiar, Luiz Guilherme; Boa, Beatriz Costa da Silva; Cyrino, Fatima Z G A; Nivoit, Pierre; Bouskela, Eliete

    2012-07-01

    The aims of our study were to investigate effects of postnatal overnutrition, obtained by restricting the number of pups per litter, on microcirculatory reactivity, fat depots, its total percentage and lipid profile. Microvascular reactivity was evaluated in the cremaster muscle of 24 hamsters divided into four groups, with 6 animals in each one: normal (NL) and restricted (RL) litter groups, both at 6th and 21st weeks of age. The NL group had 8-9 pups and the RL 3 pups per litter and to avoid the litter effect, only one animal was used per litter. The results have shown that the RL group had higher velocity of weight, body mass and fat gain compared to the NL one at weeks 6 and 21. Significant differences were also observed on urogenital fat depot, total cholesterol and low density lipoprotein between groups. At the lowest concentration of Ach, the RL group showed smaller arteriolar dilatation at the 21st than at the 6th week [5(3-13) vs 19(8-40)%, p<0.01] while the NL one did not show any difference within the group. The highest concentration of Ach at the 21th week pointed to endothelial-dependent microvascular dysfunction in RL compared to NL [3(8-26) vs. 13(8-26)%, p<0.05]. Endothelial-independent microvascular reactivity was similar between groups. Our data suggest that postnatal overnutrition is associated to muscle endothelial-dependent microvascular dysfunction, greater body mass and total percentage of fat and impaired the lipid profile. In conclusion, the imprinting promoted by this experimental model of obesity was able to influence microvascular reactivity later in life.

  18. Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats

    PubMed Central

    Zhong, Mei-Fang; Shen, Wei-Li; Wang, Jian; Yang, Jie; Yuan, Wen-Jun; He, Jin; Wu, Ping-Ping; Wang, Yuan; Zhang, Lan; Higashino, Hideaki; Chen, Hong

    2011-01-01

    Abstract Although both diabetes and hypertension are risk factors for cardiovascular disease, the role of hyperglycaemia per se in endothelial dysfunction is controversial. This study was designed to examine whether hyperglycaemia, or streptozotocin-induced diabetes, could aggravate endothelial dysfunction in stroke-prone spontaneously hypertensive rats (SHRSP). Hyperglycaemia was induced by streptozotocin in 2-month-old SHRSP and age-matched normotensive Wistar–Kyoto (WKY) rats. The aorta was isolated 8 weeks after induction of hyperglycaemia to record its function and to examine its morphology with transmission electron microscopy. Endothelial/inducible nitric oxide synthase (eNOS/iNOS) and inducible/constitutive haem oxygenase (HO-1/HO-2) levels were determined with Western blotting. Aortic endothelial function and production of reactive oxygen species and nitric oxide were assayed after incubation in vitro in hyperglycaemic, hyperosmolar solution. Streptozotocin-induced diabetes of 8 weeks duration did not result in endothelial dysfunction in normotensive WKY rats. In contrast, hyperglycaemic WKY rats showed significantly enhanced endothelium-dependent vasodilatation, which was abrogated by simultaneous blocking of NOS and HO. The enhanced vasodilatation was associated with elevation of vascular eNOS and HO-1. Significant endothelial dysfunction and massive macrophage–monocyte infiltration were found in SHRSP aorta (the ratio of the number of macrophages to endothelial cells in the intima, expressed as a percentage, was 20.9 ± 2.8% in SHRSP versus 1.9 ± 0.5% in WKY rats, P < 0.01), which was attenuated significantly in hyperglycaemic SHRSP (11.3 ± 1.6%, P < 0.01 versus SHRSP). Acute hyperglycaemia (10 min) aggravated endothelial dysfunction in SHRSP, with a marked increase in intracellular reactive oxygen species and NO production. Sustained in vitro incubation in hyperglycaemic/hyperosmolar conditions (addition of an extra 50 mmol L−1 of glucose or

  19. Neither Proteinuria Nor Albuminuria Is Associated With Endothelial Dysfunction in HIV-Infected Patients Without Diabetes or Hypertension

    PubMed Central

    Shen, Changyu; Mather, Kieren J.; Agarwal, Rajiv; Dubé, Michael P.

    2011-01-01

    It is unknown whether systemic endothelial dysfunction underlies the association between nephropathy and cardiovascular disease (CVD) in persons infected with human immunodeficiency virus (HIV). Spot urine protein to creatinine ratio, spot urine albumin to creatinine ratio, creatinine clearance, estimated glomerular filtration rate, and flow-mediated dilation (FMD) of the brachial artery were evaluated in 123 study participants infected with HIV (58 receiving antiretroviral therapy [ART] and 65 not receiving ART) with no history of diabetes or hypertension. None of the renal markers, modeled as either continuous or categorical variables, correlated with FMD. Contrary to expectations, endothelial dysfunction may not be the link between nephropathy and CVD in HIV. PMID:22013226

  20. Telomere G-tail Length is a Promising Biomarker Related to White Matter Lesions and Endothelial Dysfunction in Patients With Cardiovascular Risk: A Cross-sectional Study☆

    PubMed Central

    Nezu, Tomohisa; Hosomi, Naohisa; Takahashi, Tetsuya; Anno, Kumiko; Aoki, Shiro; Shimamoto, Akira; Maruyama, Hirofumi; Hayashi, Tomonori; Matsumoto, Masayasu; Tahara, Hidetoshi

    2015-01-01

    Background The telomeric 3′-overhang (G-tail) length is essential for the biological effects of telomere dysfunction in vitro, but the association of length with aging and cardiovascular risk is unclear in humans. We investigated the association between the telomere G-tail length of leukocytes and cardiovascular risk, age-related white matter changes (ARWMCs), and endothelial function. Methods Patients with a history of cerebrovascular disease and comorbidity were enrolled (n = 102; 69 males and 33 females, 70.1 ± 9.2 years). Total telomere and telomere G-tail lengths were measured using a hybridization protection assay. Endothelial function was evaluated by ultrasound assessment of brachial flow-mediated dilation (FMD). Findings Shortened telomere G-tail length was associated with age and Framingham risk score (P = 0.018 and P = 0.012). In addition, telomere G-tail length was positively correlated with FMD values (P = 0.031) and negatively with the severity of ARWMCs (P = 0.002). On multivariate regression analysis, telomere G-tail length was independently associated with FMD values (P = 0.022) and the severity of ARWMCs (P = 0.033), whereas total telomere length was not associated with these indicators. Interpretation Telomere G-tail length is associated with age and vascular risk factors, and might be superior to total telomere length as a marker of endothelial dysfunction and ARWMC severity. PMID:26425704

  1. Angiostatic Factors in the Pulmonary Endarterectomy Material from Chronic Thromboembolic Pulmonary Hypertension Patients Cause Endothelial Dysfunction

    PubMed Central

    Zabini, Diana; Nagaraj, Chandran; Stacher, Elvira; Lang, Irene M.; Nierlich, Patrick; Klepetko, Walter; Heinemann, Akos; Olschewski, Horst; Bálint, Zoltán; Olschewski, Andrea

    2012-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease with persistent thrombotic occlusion or stenosis of the large pulmonary arteries resulting in pulmonary hypertension. Surgical removal of the neointimal layer of these vessels together with the non-resolved thrombus consisting of organized collagen-rich fibrotic areas with partly recanalized regions is the treatment of choice (pulmonary endarterectomy, PEA). The present study investigates endothelial cells isolated from such material as well as factors present in the surgical PEA material, which may contribute to impairment of recanalization and thrombus non-resolution. We observed muscularized vessels and non-muscularized vessels in the PEA material. The isolated endothelial cells from the PEA material showed significantly different calcium homeostasis as compared to pulmonary artery endothelial cells (hPAECs) from normal controls. In the supernatant (ELISA) as well as on the tissue level (histochemical staining) of the PEA material, platelet factor 4 (PF4), collagen type I and interferon-gamma-inducible 10 kD protein (IP-10) were detected. CXCR3, the receptor for PF4 and IP-10, was particularly elevated in the distal parts of the PEA material as compared to human control lung (RT-PCR). PF4, collagen type I and IP-10 caused significant changes in calcium homeostasis and affected the cell proliferation, migration and vessel formation in hPAECs. The presence of angiostatic factors like PF4, collagen type I and IP-10, as recovered from the surgical PEA material from CTEPH patients, may lead to changes in calcium homeostasis and endothelial dysfunction. PMID:22916307

  2. Elevated circulating levels and tissue expression of pentraxin 3 in uremia: a reflection of endothelial dysfunction.

    PubMed

    Witasp, Anna; Rydén, Mikael; Carrero, Juan Jesús; Qureshi, Abdul Rashid; Nordfors, Louise; Näslund, Erik; Hammarqvist, Folke; Arefin, Samsul; Kublickiene, Karolina; Stenvinkel, Peter

    2013-01-01

    Elevated systemic pentraxin 3 (PTX3) levels appear to be a powerful marker of inflammatory status and a superior outcome predictor in patients with chronic kidney disease (CKD). As previous data imply that PTX3 is involved in vascular pathology and that adipose tissue mass may influence circulating PTX3 levels, we aimed to study the importance of adipose tissue expression of PTX3 in the uremic milieu and its relation to endothelial dysfunction parameters. Plasma PTX3 and abdominal subcutaneous adipose tissue (SAT) PTX3 mRNA levels were quantified in 56 stage 5 CKD patients (median age 57 [range 25-75] years, 30 males) and 40 age and gender matched controls (median age 58 [range 20-79] years, 27 males). Associations between PTX3 measures and an extensive panel of clinical parameters, including surrogate markers of endothelial function, were assessed. Functional ex vivo studies on endothelial status and immunohistochemical staining for PTX3 were conducted in resistance subcutaneous arteries isolated from SAT. SAT PTX3 mRNA expression correlated with plasma PTX3 concentrations (rho = 0.54, p = 0.0001) and was increased (3.7 [0.4-70.3] vs. 1.2 [0.2-49.3] RQ, p = 0.02) in CKD patients with cardiovascular disease (CVD), but was not significantly different between patients and controls. The association to CVD was lost after adjustments. SAT PTX3 mRNA levels were independently correlated to asymmetric dimethylarginine and basal resistance artery tone developed after inhibition with nitric oxide synthase and cyclooxygenase (rho = -0.58, p = 0.002). Apparent positive PTX3 immunoreactivity was observed in both patient and control arteries. In conclusion, fat PTX3 mRNA levels are associated with measures of endothelial cell function in patients with CKD. PTX3 may be involved in adipose tissue-orchestrated mechanisms that are restricted to the uremic milieu and modify inflammation and vascular complications in CKD patients.

  3. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    PubMed Central

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  4. Mitochondrial APE1/Ref-1 suppressed protein kinase C-induced mitochondrial dysfunction in mouse endothelial cells.

    PubMed

    Joo, Hee Kyoung; Lee, Yu Ran; Park, Myoung Soo; Choi, Sunga; Park, Kyoungsook; Lee, Sang Ki; Kim, Cuk-Seong; Park, Jin Bong; Jeon, Byeong Hwa

    2014-07-01

    Protein kinase C (PKC) induces mitochondrial dysfunction, which is an important pathological factor in cardiovascular diseases. The role of apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) on PKC-induced mitochondrial dysfunction has not been variously investigated. In this study, phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, induced mitochondrial hyperpolarization and reactive oxygen species generation and also increased mitochondrial translocation of APE1/Ref-1. APE1/Ref-1 overexpression suppressed PMA-induced mitochondrial dysfunction. In contrast, gene silencing of APE1/Ref-1 increased the sensitivity of mitochondrial dysfunction. Moreover, mitochondrial targeting sequence (MTS)-fused APE1/Ref-1 more effectively suppressed PMA-induced mitochondrial dysfunctions. These results suggest that mitochondrial APE1/Ref-1 is contributed to the protective role to protein kinase C-induced mitochondrial dysfunction in endothelial cells.

  5. Retrospectively gated MRI for in vivo assessment of endothelium-dependent vasodilatation and endothelial permeability in murine models of endothelial dysfunction.

    PubMed

    Bar, Anna; Skórka, Tomasz; Jasiński, Krzysztof; Sternak, Magdalena; Bartel, Żaneta; Tyrankiewicz, Urszula; Chlopicki, Stefan

    2016-08-01

    Endothelial dysfunction is linked to impaired endothelial-dependent vasodilatation and permeability changes. Here, we quantify both of these phenomena associated with endothelial dysfunction by MRI in vivo in mice. Endothelial function was evaluated in the brachiocephalic artery (BCA) and left carotid artery (LCA) in ApoE/LDLR(-/-) and high-fat diet (HFD)-fed mice as compared with control mice (C57BL/6J). The 3D IntraGate® FLASH sequence was used for evaluation of changes in vessels' cross-sectional area (CSA) and volume following acetylcholine (Ach) administration. Evaluation of endothelial permeability after administration of contrast agent (Galbumin, BioPAL) was based on the variable flip angle method for the assessment of parameters based on the relaxation time (T1 ) value. In order to confirm the involvement of nitric oxide (NO) in response to Ach, L-NAME-treated mice were also analyzed. To confirm that endothelial permeability changes accompany the impairment of Ach-dependent vasodilatation, permeability changes were analyzed in isolated, perfused carotid artery. In C57BL/6J mice, Ach-induced vasodilatation led to an approximately 25% increase in CSA in both vessels, which was temporarily dissociated from the effect of Ach on heart rate. In ApoE/LDLR(-/-) or HFD-fed mice Ach induced a paradoxical vasoconstriction that amounted to approximately 30% and 50% decreases in CSA of BCA and LCA respectively. In ApoE/LDLR(-/-) and HFD-fed mice endothelial permeability in BCA was also increased (fall in T1 by about 25%). In L-NAME-treated mice Ach-induced vasodilatation in BCA was lost. In isolated, perfused artery from ApoE/LDLR(-/-) mice endothelial permeability was increased. MRI-based assessment of endothelium-dependent vasodilatation induced by Ach and endothelial permeability using a retrospectively self-gated 3D gradient-echo sequence (IntraGate® FLASH) enables the reliable detection of systemic endothelial dysfunction in mice and provides an important tool

  6. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    SciTech Connect

    Sharma, Bhupesh Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  7. Phospholipase D signaling mediates reactive oxygen species-induced lung endothelial barrier dysfunction.

    PubMed

    Usatyuk, Peter V; Kotha, Sainath R; Parinandi, Narasimham L; Natarajan, Viswanathan

    2013-01-01

    Reactive oxygen species (ROS) have emerged as critical players in the pathophysiology of pulmonary disorders and diseases. Earlier, we have demonstrated that ROS stimulate lung endothelial cell (EC) phospholipase D (PLD) that generates phosphatidic acid (PA), a second messenger involved in signal transduction. In the current study, we investigated the role of PLD signaling in the ROS-induced lung vascular EC barrier dysfunction. Our results demonstrated that hydrogen peroxide (H2O2), a typical physiological ROS, induced PLD activation and altered the barrier function in bovine pulmonary artery ECs (BPAECs). 1-Butanol, the quencher of PLD, generated PA leading to the formation of physiologically inactive phosphatidyl butanol but not its biologically inactive analog, 2-butanol, blocked the H2O2-mediated barrier dysfunction. Furthermore, cell permeable C2 ceramide, an inhibitor of PLD but not the C2 dihydroceramide, attenuated the H2O2-induced PLD activation and enhancement of paracellular permeability of Evans blue conjugated albumin across the BPAEC monolayers. In addition, transfection of BPAECs with adenoviral constructs of hPLD1 and mPLD2 mutants attenuated the H2O2-induced barrier dysfunction, cytoskeletal reorganization and distribution of focal adhesion proteins. For the first time, this study demonstrated that the PLD-generated intracellular bioactive lipid signal mediator, PA, played a critical role in the ROS-induced barrier dysfunction in lung vascular ECs. This study also underscores the importance of PLD signaling in vascular leak and associated tissue injury in the etiology of lung diseases among critically ill patients encountering oxygen toxicity and excess ROS production during ventilator-assisted breathing.

  8. Protection against vascular endothelial dysfunction by polyphenols in sea buckthorn berries in rats with hyperlipidemia.

    PubMed

    Yang, Fang; Suo, Yourui; Chen, Dongli; Tong, Li

    2016-07-19

    Chronic hyperlipemia increases the incidence of vascular endothelial dysfunction and can even induce cardiovascular disease. Sea buckthorn contains a host of bioactives such as flavonoids and polyphenols that can prevent the development of cardiovascular disease. The current study isolated active ingredients, polyphenols, from sea buckthorn berries (SVP) and orally administered SVP at a dose of 7-28 mg/kg. This treatment significantly reduced serum lipids, it enhanced the activity of antioxidant enzymes, and it decreased the level of serum TNF-α and IL-6. SVP also alleviate vascular impairment by decreasing the expression of eNOS, ICAM-1, and LOX-1 mRNA and proteins in aortas of rats with hyperlipidemia. Based on these findings, SVP has antioxidant action and it protects endothelium. PMID:27237219

  9. Coenzyme Q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction.

    PubMed

    Yang, Yan-Kun; Wang, Lin-Ping; Chen, Lei; Yao, Xiu-Ping; Yang, Kun-Qi; Gao, Ling-Gen; Zhou, Xian-Liang

    2015-10-23

    Advancing age is a major risk factor for the development of cardiovascular diseases. The aetiology of several cardiovascular disorders is thought to involve impaired mitochondrial function and oxidative stress. Coenzyme Q10 (CoQ10) acts as both an antioxidant and as an electron acceptor at the level of the mitochondria. Furthermore, in cardiac patients, plasma CoQ10 has been found to be an independent predictor of mortality. Based on the fundamental role of CoQ10 in mitochondrial bioenergetics and its well-acknowledged antioxidant properties, several clinical trials evaluating CoQ10 have been undertaken in cardiovascular disorders of ageing including chronic heart failure, hypertension, and endothelial dysfunction. CoQ10 as a therapy appears to be safe and well tolerated.

  10. Age related vascular endothelial function following lifelong sedentariness: positive impact of cardiovascular conditioning without further improvement following low frequency high intensity interval training

    PubMed Central

    Grace, Fergal M.; Herbert, Peter; Ratcliffe, John W.; New, Karl J.; Baker, Julien S.; Sculthorpe, Nicholas F.

    2015-01-01

    Abstract Aging is associated with diffuse impairments in vascular endothelial function and traditional aerobic exercise is known to ameliorate these changes. High intensity interval training (HIIT) is effective at improving vascular function in aging men with existing disease, but its effectiveness remains to be demonstrated in otherwise healthy sedentary aging. However, the frequency of commonly used HIIT protocols may be poorly tolerated in older cohorts. Therefore, the present study investigated the effectiveness of lower frequency HIIT (LfHIIT) on vascular function in a cohort of lifelong sedentary (SED; n =22, age 62.7 ± 5.2 years) men compared with a positive control group of lifelong exercisers (LEX; n = 17, age 61.1 ± 5.4 years). The study consisted of three assessment phases; enrolment to the study (Phase A), following 6 weeks of conditioning exercise in SED (Phase B) and following 6 weeks of low frequency HIIT in both SED and LEX (LfHIIT; Phase C). Conditioning exercise improved FMD in SED (3.4 ± 1.5% to 4.9 ± 1.1%; P <0.01) such that the difference between groups on enrolment (3.4 ± 1.5% vs. 5.3 ± 1.4%; P <0.01) was abrogated. This was maintained but not further improved following LfHIIT in SED whilst FMD remained unaffected by LfHIIT in LEX. In conclusion, LfHIIT is effective at maintaining improvements in vascular function achieved during conditioning exercise in SED. LfHIIT is a well‐tolerated and effective exercise mode for reducing cardiovascular risk and maintaining but does not improve vascular function beyond that achieved by conditioning exercise in aging men, irrespective of fitness level. PMID:25626864

  11. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    SciTech Connect

    Gebhard, Catherine; Staehli, Barbara E.; Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine; Matter, Christian M.; Hassa, Paul O.; Hottiger, Michael O.; Malinski, Tadeusz; Luescher, Thomas F.; and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  12. Markers of Endothelial Dysfunction, Coagulation and Tissue Fibrosis Independently Predict Venous Thromboembolism in HIV

    PubMed Central

    MUSSELWHITE, Laura W.; SHEIKH, Virginia; NORTON, Thomas D.; RUPERT, Adam; PORTER, Brian O.; PENZAK, Scott R.; SKINNER, Jeff; MICAN, JoAnn M.; HADIGAN, Colleen; SERETI, Irini

    2015-01-01

    Objective HIV infection is associated with coagulation abnormalities and significantly increased risk of venous thrombosis. It has been shown that higher plasma levels of coagulation and inflammatory biomarkers predicted mortality in HIV. We investigated the relationship between venous thrombosis and HIV-related characteristics, traditional risk factors of hypercoagulability and pre-event levels of biomarkers. Design A retrospective case-control study of 23 HIV-infected individuals who experienced an incident venous thromboembolic (VTE) event while enrolled in National Institutes of Health studies from 1995–2010 and 69 age and sex-matched HIV-infected individuals without known VTE. Methods Biomarkers of inflammation, endothelial dysfunction, coagulation, tissue fibrosis, and cytomegalovirus (CMV) reactivation were assessed by ELISA-based assays and PCR using plasma obtained prior to the event. Results VTE events were related to nadir CD4 count, lifetime history of multiple opportunistic infections, CMV disease, CMV viremia, immunological AIDS, active infection and provocation (i.e. recent hospitalization, surgery or trauma). VTE events were independently associated with increased plasma levels of P-selectin, P=0.002; D-dimer, P=0.01; and hyaluronic acid, P=0.009 in a multivariate analysis. No significant differences in antiretroviral or interleukin 2 exposures, plasma HIV viremia, or other traditional risk factors were observed. Conclusion Severe immunodeficiency, active infection and provocation are associated with venous thromboembolic disease in HIV. Biomarkers of endothelial dysfunction, coagulation and tissue fibrosis may help identify HIV-infected patients at elevated risk of VTE. PMID:21412059

  13. Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke

    PubMed Central

    Conklin, Daniel J.; Haberzettl, Petra; Prough, Russell A.; Bhatnagar, Aruni

    2009-01-01

    Exposure to tobacco smoke impairs endothelium-dependent arterial dilation. Reactive constituents of cigarette smoke are metabolized and detoxified by glutathione-S-transferases (GSTs). Although polymorphisms in GST genes are associated with the risk of cancer in smokers, the role of these enzymes in regulating the cardiovascular effects of smoking has not been studied. The P isoform of GST (GSTP), which catalyzes the conjugation of electrophilic molecules in cigarette smoke such as acrolein, was expressed in high abundance in the mouse lung and aorta. Exposure to tobacco smoke for 3 days (5 h/day) decreased total plasma protein. These changes were exaggerated in GSTP−/− mice. Aortic rings isolated from tobacco smoke-exposed GSTP−/− mice showed greater attenuation of ACh-evoked relaxation than those from GSTP+/+ mice. The lung, plasma, and aorta of mice exposed to tobacco smoke or acrolein (for 5 h) accumulated more acrolein-adducted proteins than those tissues of mice exposed to air, indicating that exposure to tobacco smoke results in the systemic delivery of acrolein. Relative to GSTP+/+ mice, modification of some proteins by acrolein was increased in the aorta of GSTP−/− mice. Aortic rings prepared from GSTP−/− mice that inhaled acrolein (1 ppm, 5 h/day for 3 days) or those exposed to acrolein in an organ bath showed diminished ACh-induced arterial relaxation more strongly than GSTP+/+ mice. Acrolein-induced endothelial dysfunction was prevented by pretreatment of the aorta with N-acetylcysteine. These results indicate that GSTP protects against the endothelial dysfunction induced by tobacco smoke exposure and that this protection may be related to the detoxification of acrolein or other related cigarette smoke constituents. PMID:19270193

  14. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits

    PubMed Central

    Suddek, Ghada M

    2016-01-01

    The aim of the present work was to explore possible protective effects of sulforaphane (SFN) against atherosclerosis development and endothelial dysfunction in hypercholesterolemic rabbits. Rabbits were assigned to three groups of five: group I fed normal chow diet for four weeks, group II fed 1% high cholesterol diet (HCD) and group III fed HCD + SFN (0.25 mg/kg/day). Blood samples were collected for measurement of serum triglycerides (TGs), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), lactate dehydrogenase (LDH) and C-reactive protein (CRP). Aortic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and total nitrite/nitrate (NOx) were measured. Vascular reactivity and intima/media (I/M) ratio were analyzed. Nuclear factor-kappa B (NF-κB) activation in aortic endothelial cells was identified immunohistochemically. HCD induced significant increases in serum TGs, TC, LDL-C, LDH, and CRP, and aortic MDA and SOD. Moreover, HCD caused significant reductions in serum HDL-C, aortic GSH and NOx. SFN administration significantly decreased HCD-induced elevations in serum TC, LDL-C, CRP, and LDH. while significantly increased HDL-C and GSH levels and normalized aortic SOD and NOx. Additionally, SFN significantly improved rabbit aortic endothelium-dependent relaxation to acetylcholine. Moreover, SFN significantly reduced the elevation in I/M ratio. This effect was confirmed by aortic histopathologic examination. The expression of NF-κB in aortic tissue showed a marked reduction upon treatment with SFN. In conclusion, this study reveals that SFN has the ability to ameliorate HCD-induced atherosclerotic lesions progression and vascular dysfunction, possibly via its lipid-lowering and antioxidant effects and suppression of NF-κB-mediated inflammation. PMID:26490346

  15. Hyperhomocysteinaemia in rats is associated with erectile dysfunction by impairing endothelial nitric oxide synthase activity.

    PubMed

    Jiang, Weijun; Xiong, Lei; Bin Yang; Li, Weiwei; Zhang, Jing; Zhou, Qing; Wu, Qiuyue; Li, Tianfu; Zhang, Cui; Zhang, Mingchao; Xia, Xinyi

    2016-05-25

    To investigate the effect of hyperhomocysteinaemia (HHCy) on penile erectile function in a rat model, a methionine-rich diet was used in which erectile function, the reproductive system, and nitric oxide synthase were characterized. The intracavernous pressure, apomorphine experiments, measurement of oxidative stress, hematoxylin and eosin staining, immunohistochemistry analysis, reverse transcription-polymerase chain reactions and measurement of endothelial nitric oxide synthase activity were utilized. Our results showed that erections in the middle-dose, high-dose, and interference (INF) groups were significantly lower than the control (P < 0.05). INF group, being fed with vitamins B and folic acid, demonstrated markedly improved penile erections compared with the middle-dose group (P < 0.05). HHCy-induced eNOS and phospho-eNOS protein expression was reduced and the antioxidant effect was markedly impaired. The data of the present data provide evidence that HHCy is a vascular risk factor for erectile dysfunction by impairing cavernosa endothelial nitric oxide synthase activity. Intake of vitamins B can alleviate this abnormality.

  16. CRITICAL ROLE OF LIPID RAFT REDOX SIGNALING PLATFORMS IN ENDOSTATIN-INDUCED CORONARY ENDOTHELIAL DYSFUNCTION

    PubMed Central

    Jin, Si; Zhang, Yang; Yi, Fan; Li, Pin-Lan

    2009-01-01

    Objective Endostatin (EST) was found to initiate a redox signaling cascade associated with activation of NADPH oxidase in endothelial cells (ECs). The present study tested whether EST stimulate clustering of ceramide-enriched lipid rafts (LR), which assembles and activates NADPH oxidase to form redox signaling platforms. Methods and Results Using confocal microscopy, we first demonstrated a co-localization of LR clusters with NADPH oxidase subunits, gp91phox and p47phox in the ECs membrane upon EST stimulation. Immunoblot analysis of floated detergent-resistant membrane fractions found that in LR fractions NADPH oxidase subunits gp91phox and p47phox are enriched and that the activity of this enzyme increased dramatically, as measured by electron spin resonance (ESR) spectrometry. This EST-increased LR platform formation was shown to be attenuated by inhibition or RNA interference of acid sphingomyelinase (A-SMase). Functionally, EST pretreatment significantly impaired bradykinin or A23187-induced vasodilation in isolated small coronary arteries, which could be partially reversed by LR disruptors. Conclusions The early injury effect of EST on the vascular endothelium is associated with the formation of redox signaling platforms via lipid raft clustering. Besides its proapototic effects, EST is also able to induce endothelial dysfunction. This early-stage action of EST is associated with LR clustering and consequent assembling and activation of NADPH oxidase. PMID:18162606

  17. TWIST1 Integrates Endothelial Responses to Flow in Vascular Dysfunction and Atherosclerosis

    PubMed Central

    Mahmoud, Marwa M.; Kim, Hyejeong Rosemary; Xing, Rouyu; Hsiao, Sarah; Mammoto, Akiko; Chen, Jing; Serbanovic-Canic, Jovana; Feng, Shuang; Bowden, Neil P.; Maguire, Richard; Ariaans, Markus; Francis, Sheila E.; Weinberg, Peter D.; van der Heiden, Kim; Jones, Elizabeth A.; Chico, Timothy J.A.; Ridger, Victoria

    2016-01-01

    Rationale: Blood flow–induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. Objective: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. Methods and Results: The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. Conclusions: TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development. PMID:27245171

  18. Hyperhomocysteinaemia in rats is associated with erectile dysfunction by impairing endothelial nitric oxide synthase activity

    PubMed Central

    Jiang, Weijun; Xiong, Lei; Bin Yang; Li, Weiwei; Zhang, Jing; Zhou, Qing; Wu, Qiuyue; Li, Tianfu; Zhang, Cui; Zhang, Mingchao; Xia, Xinyi

    2016-01-01

    To investigate the effect of hyperhomocysteinaemia (HHCy) on penile erectile function in a rat model, a methionine-rich diet was used in which erectile function, the reproductive system, and nitric oxide synthase were characterized. The intracavernous pressure, apomorphine experiments, measurement of oxidative stress, hematoxylin and eosin staining, immunohistochemistry analysis, reverse transcription-polymerase chain reactions and measurement of endothelial nitric oxide synthase activity were utilized. Our results showed that erections in the middle-dose, high-dose, and interference (INF) groups were significantly lower than the control (P < 0.05). INF group, being fed with vitamins B and folic acid, demonstrated markedly improved penile erections compared with the middle-dose group (P < 0.05). HHCy-induced eNOS and phospho-eNOS protein expression was reduced and the antioxidant effect was markedly impaired. The data of the present data provide evidence that HHCy is a vascular risk factor for erectile dysfunction by impairing cavernosa endothelial nitric oxide synthase activity. Intake of vitamins B can alleviate this abnormality. PMID:27221552

  19. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction.

    PubMed

    Wolf, Matthew B; Baynes, John W

    2007-02-01

    We investigated the ability of cadmium and mercury ions to cause endothelial dysfunction in bovine pulmonary artery endothelial cell monolayers. Exposure of monolayers for 48 h to metal concentrations greater than 3-5 microM produced profound cytotoxicity (increased lactate dehydrogenase leakage), a permeability barrier failure, depletion of glutathione and ATP and almost complete inhibition of the activity of key thiol enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In contrast, metal concentrations less than 1-2 microM induced increases in glutathione and thiol-enzyme activities with minimal changes in LDH leakage, barrier function and ATP content. At shorter incubation times (24 h or less), high concentrations of cadmium caused glutathione induction rather than depletion. Thus, oxidative stress and cytotoxicity induced by lower concentrations of the metal ions stimulate compensatory responses, including increased synthesis of glutathione, which presumably preserved the activity of key thiol enzymes, however these responses were not sustainable at higher metal ion concentrations. We conclude, while high concentrations of heavy metals are cytotoxic, lower concentration induce a compensatory protective response, which may explain threshold effects in metal-ion toxicity.

  20. Erythropoietin prevents endothelial dysfunction in GTP-cyclohydrolase I-deficient hph1 mice.

    PubMed

    dʼUscio, Livius V; Santhanam, Anantha V R; Katusic, Zvonimir S

    2014-12-01

    : In this study, we used the mutant hph1 mouse model, which has deficiency in GTP-cyclohydrolase I (GTPCH I) activity, to test the hypothesis that erythropoietin (EPO) protects aortic wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and tetrahydrobiopterin (BH4) levels were reduced in hph1 mice, whereas 7,8-dihydrobiopterin (7,8-BH2) levels were significantly increased. Furthermore, BH4 deficiency caused increased production of superoxide anion and hydrogen peroxide in the aorta thus resulting in impairment of endothelium-dependent relaxations to acetylcholine. Treatment of hph1 mice with recombinant human EPO (1000 U/kg, subcutaneously for 3 days) significantly decreased superoxide anion production by eNOS and improved BH4 to 7,8-BH2 ratio in aortas. EPO also significantly decreased production of hydrogen peroxide and improved endothelium-dependent relaxations in aortas of hph1 mice. In addition, EPO treatment increased protein expressions of copper-/zinc-superoxide dismutase, manganese-superoxide dismutase, and catalase in the aorta of hph1 mice. Our findings demonstrate that treatment with EPO prevented oxidative stress and endothelial dysfunction caused by eNOS uncoupling. Increased vascular expressions of antioxidants seem to be an important molecular mechanism underlying vascular protection by EPO during chronic BH4 deficiency.

  1. Serum YKL-40: a potential biomarker for psoriasis or endothelial dysfunction in psoriasis?

    PubMed

    Erfan, Gamze; Guzel, Savas; Alpsoy, Seref; Rifaioglu, Emine N; Kaya, Sule; Kucukyalcın, Volkan; Topcu, Birol; Kulac, Mustafa

    2015-02-01

    Psoriasis is a disease that can contribute to a risk of atherosclerosis. In several studies, impaired endothelial dysfunction (ED) is correlated with psoriasis. Serum YKL-40 is a new inflammatory biomarker of vascular damage, like ED and cardiovascular diseases. The aim of the study was to compare relevance of serum YKL-40 levels in psoriasis patients and healthy subjects according to ED diagnosis and identifiable cardiovascular risk factors. Sixty (31 female, 29 male) patients with plaque psoriasis, and 30 (18 female, 12 male) healthy controls were selected according to whether they had at least one or no identifiable risk factors for cardiovascular disease. All subjects were evaluated ultrasonographically for endothelial function and diagnosed as with or without ED and all groups compared for serum YKL-40 levels. YKL-40 levels of psoriatic patients with ED were higher than healthy controls with ED (P = <0.05). There were no statistical differences in between subjects without ED. YKL-40 levels of patients over age of 40 were higher than younger ones (P < 0.05). But in healthy controls, there were no differences. In comparison of cardiovascular risk-positive (RP) patients and RP healthy subjects, YKL-40 levels were higher in RP patients (P = <0.05). The elevation of plasma YKL-40 in psoriasis can be associated not only with inflammation of the disease, but also with ED. YKL-40 can be used as a marker for predicting and preventing cardiovascular diseases in RP psoriatic patients with age above 40.

  2. Boldine Ameliorates Vascular Oxidative Stress and Endothelial Dysfunction: Therapeutic Implication for Hypertension and Diabetes

    PubMed Central

    Lau, Yeh Siiang; Ling, Wei Chih; Murugan, Dharmani

    2015-01-01

    Abstract: Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, are a rich source of antioxidants. Boldine [(S)-2,9-dihydroxy-1,10-dimethoxy-aporphine], an aporphine alkaloid, is a potent antioxidant found in the leaves and bark of the Chilean boldo tree. Boldine has been extensively reported as a potent “natural” antioxidant and possesses several health-promoting properties like anti-inflammatory, antitumor promoting, antidiabetic, and cytoprotective. Boldine exhibited significant endothelial protective effect in animal models of hypertension and diabetes mellitus. In isolated thoracic aorta of spontaneously hypertensive rats, streptozotocin-induced diabetic rats, and db/db mice, repeated treatment of boldine significantly improved the attenuated acetylcholine-induced endothelium-dependent relaxations. The endothelial protective role of boldine correlated with increased nitric oxide levels and reduction of vascular reactive oxygen species via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase subunits, p47phox and nicotinamide adenine dinucleotide phosphate oxidase 2, and angiotensin II–induced bone morphogenetic protein-4 oxidative stress cascade with downregulation of angiotensin II type 1 receptor and bone morphogenetic protein-4 expression. Taken together, it seems that boldine may exert protective effects on the endothelium via several mechanisms, including protecting nitric oxide from degradation by reactive oxygen species as in oxidative stress–related diseases. The present review supports a complimentary therapeutic role of the phytochemical, boldine, against endothelial dysfunctions associated with hypertension and diabetes mellitus by interfering with the oxidative stress–mediated signaling pathway. PMID:25469805

  3. Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction.

    PubMed

    Podtaev, Sergey; Stepanov, Rodion; Smirnova, Elena; Loran, Evgenia

    2015-01-01

    Skin microvessels have proven to be a model to investigate the mechanisms of vascular disease; in particular, endothelial dysfunction. To analyze skin blood flow, high-resolution thermometry can be used because low-amplitude skin temperature oscillations are caused by changes in the tone of skin vessels. The aim of our study was to test the possibilities of wavelet analysis of skin temperature (WAST) for the diagnosis of impaired regulation of microvascular tone in patients with type 2 diabetes. A local heating functional test was used for the assessment of microvascular tone regulation. A control group consisted of healthy male and female volunteers (n=5 each), aged 39.1±5.3years. A group of patients with type 2 diabetes comprised thirteen people, seven men and six women, aged 36 to 51years old (43.2±3.4years). The diagnosis of diabetes was made according to the criteria of the World Health Organization (WHO). The mean disease duration was 7.36±0.88years. Skin temperature oscillations, reflecting intrinsic myogenic activity (0.05-0.14Hz), neurogenic factors (0.02-0.05Hz) and endothelial activity (0.0095-0.02Hz) increase greatly during local heating for healthy subjects. In the group of patients with type 2 diabetes, no statistically significant differences in the amplitudes in the endothelial range were observed. Relative changes in the oscillation amplitudes in patients with type 2 diabetes were markedly lower compared to the control group. The latter indicates that the WAST method enables assessment of the state of vascular tone and the effects of mechanisms responsible for regulation of blood flow in the microvasculature.

  4. Spironolactone Prevents Endothelial Nitric Oxide Synthase Uncoupling and Vascular Dysfunction Induced by β-Adrenergic Overstimulation

    PubMed Central

    Victorio, Jamaira A.; Clerici, Stefano P.; Palacios, Roberto; Alonso, María J.; Vassallo, Dalton V.; Jaffe, Iris Z.; Rossoni, Luciana V.

    2016-01-01

    Sustained stimulation of β-adrenoceptors (β-ARs) and activation of renin–angiotensin–aldosterone system are common features of cardiovascular diseases with rising sympathetic activation, including essential hypertension, myocardial infarction, and heart failure. In this study, we investigated the role of AT1 receptor and mineralocorticoid receptor (MR) in the vascular alterations caused by β-AR overstimulation. β-AR overstimulation with associated cardiac hypertrophy and increased vasoconstrictor response to phenylephrine in aorta were modeled in rats by 7-day isoproterenol treatment. The increased vasoconstrictor response to phenylephrine in this model was blunted by the MR antagonist spironolactone, but not by the AT1 receptor antagonist losartan, despite the blunting of cardiac hypertrophy with both drugs. Spironolactone, but not losartan, restored NO bioavailability in association with lower endothelial nitric oxide synthase–derived superoxide production, increased endothelial nitric oxide synthase dimerization, and aortic HSP90 upregulation. MR genomic and nongenomic functions were activated in aortas from isoproterenol-treated rats. Isoproterenol did not modify plasma levels of MR ligands aldosterone and corticosterone but rather increased perivascular adipose tissue–derived corticosterone in association with increased expression of 11β-hydroxysteroid dehydrogenase type 1. The anticontractile effect of aortic perivascular adipose tissue was impaired by β-AR overstimulation and restored by MR blockade. These results suggest that activation of vascular MR signaling contributes to the vascular dysfunction induced by β-AR overstimulation associated with endothelial nitric oxide synthase uncoupling. These findings reveal an additional explanation for the protective effects of MR antagonists in cardiovascular disorders with sympathetic activation. PMID:27432866

  5. Antioxidants, endothelial dysfunction, and DCS: in vitro and in vivo study.

    PubMed

    Wang, Qiong; Mazur, Aleksandra; Guerrero, François; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marc; Theron, Michaël

    2015-12-15

    Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity. PMID:26472863

  6. Local renin-angiotensin system mediates endothelial dilator dysfunction in aging arteries.

    PubMed

    Flavahan, Sheila; Chang, Fumin; Flavahan, Nicholas A

    2016-09-01

    Aging impairs endothelium-dependent NO-mediated dilatation, which results from increased production of reactive oxygen species (ROS). The local generation of angiotensin II (ANG II) is increased in aging arteries and contributes to inflammatory and fibrotic activity of smooth muscle cells and arterial wall remodeling. Although prolonged in vivo ANG II inhibition improves the impaired endothelial dilatation of aging arteries, it is unclear whether this reflects inhibition of intravascular or systemic ANG II systems. Experiments were therefore performed on isolated tail arteries from young (3-4 mo) and old (22-24 mo) F344 rats to determine if a local renin-angiotensin system contributes to the endothelial dilator dysfunction of aging. Aging impaired dilatation to the endothelial agonist acetylcholine but did not influence responses to a nitric oxide (NO) donor (DEA NONOate). Dilatation to acetylcholine was greatly reduced by NO synthase inhibition [nitro-l-arginine methyl ester (l-NAME)] in young and old arteries. In isolated arteries, acute inhibition of angiotensin-converting enzyme (ACE) (perindoprilat), renin (aliskiren), or AT1 receptors (valsartan, losartan) did not influence dilatation to acetylcholine in young arteries but increased responses in old arteries. After ANG II inhibition, the dilator response to acetylcholine was similar in young and old arteries. ROS activity, which was increased in endothelium of aging arteries, was also reduced by inhibiting ANG II (perindoprilat, losartan). Renin expression was increased by 5.6 fold and immunofluorescent levels of ANG II were confirmed to be increased in aging compared with young arteries. Exogenous ANG II inhibited acetylcholine-induced dilatation. Therefore, aging-induced impairment of endothelium-dependent dilatation in aging is caused by a local intravascular renin-angiotensin system.

  7. Antioxidants, endothelial dysfunction, and DCS: in vitro and in vivo study.

    PubMed

    Wang, Qiong; Mazur, Aleksandra; Guerrero, François; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marc; Theron, Michaël

    2015-12-15

    Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity.

  8. Endothelial dysfunction enhances vasoconstriction due to scavenging of nitric oxide by a hemoglobin-based oxygen carrier

    PubMed Central

    Yu, Binglan; Shahid, Mohd; Egorina, Elena M.; Sovershaev, Mikhail A.; Raher, Michael J.; Lei, Chong; Wu, Mei X.; Bloch, Kenneth D.; Zapol, Warren M.

    2010-01-01

    Background At present, there is no safe and effective hemoglobin-based oxygen carrier (HBOC) to substitute for red blood cell transfusion. It is uncertain whether a deficiency of endothelial nitric oxide bioavailability (endothelial dysfunction) prevents or augments the HBOC-induced vasoconstriction. Methods Hemodynamic effects of infusion of PolyHeme (1.08 g hemoglobin/kg, Northfield Laboratories, Evanston, IL) or murine tetrameric hemoglobin (0.48 g hemoglobin/kg) were determined in awake healthy lambs, awake mice and anesthetized mice. In vitro, a cumulative dose-tension response was obtained by sequential addition of PolyHeme or tetrameric hemoglobin to phenylephrine-precontracted murine aortic rings. Results Infusion of PolyHeme did not cause systemic hypertension in awake lambs, but produced acute systemic and pulmonary vasoconstriction. Infusion of PolyHeme did not cause systemic hypertension in healthy wild-type mice, but induced severe systemic vasoconstriction in mice with endothelial dysfunction (either db/db mice or high-fat fed wild-type mice for 4–6 weeks). The db/db mice were more sensitive to systemic vasoconstriction than wild-type mice after the infusion of either tetrameric hemoglobin or PolyHeme. Murine aortic ring studies confirmed that db/db mice have an impaired response to an endothelial-dependent vasodilator and an enhanced vasoconstrictor response to a HBOC. Conclusions Reduction of low molecular weight hemoglobin concentrations to less than 1% is insufficient to abrogate the vasoconstrictor effects of HBOC infusion in healthy awake sheep or in mice with reduced vascular nitric oxide levels associated with endothelial dysfunction. These findings suggest that testing HBOCs in animals with endothelial dysfunction can provide a more sensitive indication of their potential vasoconstrictor effects. PMID:20179495

  9. Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Morales Arraez, Dalia; Marcelino Reyes, Raquel; Abrante, Beatriz; Diaz-Flores, Felicitas; Salido, Eduardo; Quintero, Enrique; Hernández-Guerra, Manuel

    2016-01-01

    Introduction Metabolic syndrome induces endothelial dysfunction, a surrogate marker of cardiovascular disease. In parallel, metabolic syndrome is frequently associated with non-alcoholic fatty liver disease (NAFLD), which may progress to cirrhosis. The aim of the present study was to evaluate intrahepatic endothelial dysfunction related to cyclooxygenase end products and oxidative stress as possible mechanisms involved in the pathophysiology of NAFLD. Materials and Methods Sprague-Dawley rats were fed standard diet (control-diet, CD) or high-fat-diet (HFD) for 6 weeks. Metabolic syndrome was assessed by recording arterial pressure, lipids, glycemia and rat body weight. Splanchnic hemodynamics were measured, and endothelial dysfunction was evaluated using concentration-effect curves to acetylcholine. Response was assessed with either vehicle, L-NG-Nitroarginine (L-NNA), indomethacin, tempol, or a thromboxane receptor antagonist, SQ 29548. We quantified inflammation, fibrosis, oxidative stress, nitric oxide (NO) bioavailability and thromboxane B2 levels. Results HFD rats exhibited metabolic syndrome together with the presence of NAFLD. Compared to control-diet livers, HFD livers showed increased hepatic vascular resistance unrelated to inflammation or fibrosis, but with decreased NO activity and increased oxidative stress. Endothelial dysfunction was observed in HFD livers compared with CD rats and improved after cyclooxygenase inhibition or tempol pre-incubation. However, pre-incubation with SQ 29548 did not modify acetylcholine response. Conclusions Our study provides evidence that endothelial dysfunction at an early stage of NAFLD is associated with reduced NO bioavailability together with increased cyclooxygenase end products and oxidative stress, which suggests that both pathways are involved in the pathophysiology and may be worth exploring as therapeutic targets to prevent progression of the disease. PMID:27227672

  10. Exercise prevents Western diet-associated erectile dysfunction and coronary artery endothelial dysfunction: response to acute apocynin and sepiapterin treatment.

    PubMed

    La Favor, Justin D; Anderson, Ethan J; Dawkins, Jillian T; Hickner, Robert C; Wingard, Christopher J

    2013-08-15

    The aim of this study was to investigate aerobic exercise training as a means to prevent erectile dysfunction (ED) and coronary artery disease (CAD) development associated with inactivity and diet-induced obesity. Male Sprague-Dawley rats were fed a Western diet (WD) or a control diet (CD) for 12 wk. Subgroups within each diet remained sedentary (Sed) or participated in aerobic interval treadmill running throughout the dietary intervention. Erectile function was evaluated under anesthesia by measuring the mean arterial pressure and intracavernosal pressure in response to electrical field stimulation of the cavernosal nerve, in the absence or presence of either apocynin, an NADPH oxidase inhibitor, or sepiapterin, a tetrahydrobiopterin precursor. Coronary artery endothelial function (CAEF) was evaluated ex vivo with cumulative doses of ACh applied to preconstricted segments of the left anterior descending coronary artery. CAEF was assessed in the absence or presence of apocynin or sepiapterin. Erectile function (P < 0.0001) and CAEF (P < 0.001) were attenuated in WD-Sed. Exercise preserved erectile function (P < 0.0001) and CAEF (P < 0.05) within the WD. Erectile function (P < 0.01) and CAEF (P < 0.05) were augmented by apocynin only in WD-Sed, while sepiapterin (P < 0.05) only augmented erectile function in WD-Sed. These data demonstrate that a chronic WD induces impairment in erectile function and CAEF that are commonly partially reversible by apocynin, whereas sepiapterin treatment exerted differential functional effects between the two vascular beds. Furthermore, exercise training may be a practical means of preventing diet-induced ED and CAD development.

  11. HMG-CoA Reductase Inhibitor Improves Endothelial Dysfunction in Spontaneous Hypertensive Rats Via Down-regulation of Caveolin-1 and Activation of Endothelial Nitric Oxide Synthase

    PubMed Central

    Suh, Jung-Won; Chang, Hyuk-Jae; Cho, Young-Seok; Youn, Tae-Jin; Chae, In-Ho; Kim, Kwang-Il; Kim, Cheol-Ho; Kim, Hyo-soo; Oh, Buyng-Hee; Park, Young-Bae

    2010-01-01

    Hypertension is associated with endothelial dysfunction and increased cardiovascular risk. Caveolin-1 regulates nitric oxide (NO) signaling by modulating endothelial nitric oxide synthase (eNOS). The purpose of this study was to examine whether HMG-CoA reductase inhibitor improves impaired endothelial function of the aorta in spontaneous hypertensive rat (SHR) and to determine the underlying mechanisms involved. Eight-week-old male SHR were assigned to either a control group (CON, n=11) or a rosuvastatin group (ROS, n=12), rosuvastatin (10 mg/kg/day) administered for eight weeks. Abdominal aortic rings were prepared and responses to acetylcholine (10-9-10-4 M) were determined in vitro. To evaluate the potential role of NO and caveolin-1, we examined the plasma activity of NOx, eNOS, phosphorylated-eNOS and expression of caveolin-1. The relaxation in response to acetylcholine was significantly enhanced in ROS compared to CON. Expression of eNOS RNA was unchanged, whereas NOx level and phosphorylated-eNOS at serine-1177 was increased accompanied with depressed level of caveolin-1 in ROS. We conclude that 3-Hydroxy-3-methylglutaryl Coenzyme-A (HMG-CoA) reductase inhibitor can improve impaired endothelial dysfunction in SHR, and its underlying mechanisms are associated with increased NO production. Furthermore, HMG-CoA reductase inhibitor can activate the eNOS by phosphorylation related to decreased caveolin-1 abundance. These results imply the therapeutic strategies for the high blood pressure-associated endothelial dysfunction through modifying caveolin status. PMID:20052342

  12. EFFECT OF AT1 RECEPTOR BLOCKADE ON INTERMITTENT HYPOXIA-INDUCED ENDOTHELIAL DYSFUNCTION

    PubMed Central

    Marcus, Noah J.; Philippi, Nathan R.; Bird, Cynthia E.; Li, Yu-Long; Schultz, Harold D.; Morgan, Barbara J.

    2012-01-01

    Chronic intermittent hypoxia (CIH) raises arterial pressure, impairs vasodilator responsiveness, and increases circulating angiotensin II (Ang II); however, the role of Ang II in CIH-induced vascular dysfunction is unknown. Rats were exposed to CIH or room air (NORM), and a subset of these animals was treated with losartan (Los) during the exposure period. After 28 days, vasodilatory responses to acetylcholine or nitroprusside were measured in isolated gracilis arteries. Superoxide levels and Ang II receptor protein expression were measured in saphenous arteries. After 28 days, arterial pressure was increased and acetylcholine-induced vasodilation was blunted in CIH vs. NORM, and this was prevented by Los. Responses to nitroprusside and superoxide levels did not differ between CIH and NORM. Expression of AT2R was decreased and the AT1R:AT2R ratio was increased in CIH vs. NORM, but this was unaffected by Los. These results indicate that the blood pressure elevation and endothelial dysfunction associated with CIH is dependent, at least in part, on RAS signaling. PMID:22728949

  13. Elevated Circulating Levels and Tissue Expression of Pentraxin 3 in Uremia: A Reflection of Endothelial Dysfunction

    PubMed Central

    Witasp, Anna; Rydén, Mikael; Carrero, Juan Jesús; Qureshi, Abdul Rashid; Nordfors, Louise; Näslund, Erik; Hammarqvist, Folke; Arefin, Samsul; Kublickiene, Karolina; Stenvinkel, Peter

    2013-01-01

    Elevated systemic pentraxin 3 (PTX3) levels appear to be a powerful marker of inflammatory status and a superior outcome predictor in patients with chronic kidney disease (CKD). As previous data imply that PTX3 is involved in vascular pathology and that adipose tissue mass may influence circulating PTX3 levels, we aimed to study the importance of adipose tissue expression of PTX3 in the uremic milieu and its relation to endothelial dysfunction parameters. Plasma PTX3 and abdominal subcutaneous adipose tissue (SAT) PTX3 mRNA levels were quantified in 56 stage 5 CKD patients (median age 57 [range 25–75] years, 30 males) and 40 age and gender matched controls (median age 58 [range 20–79] years, 27 males). Associations between PTX3 measures and an extensive panel of clinical parameters, including surrogate markers of endothelial function, were assessed. Functional ex vivo studies on endothelial status and immunohistochemical staining for PTX3 were conducted in resistance subcutaneous arteries isolated from SAT. SAT PTX3 mRNA expression correlated with plasma PTX3 concentrations (rho = 0.54, p = 0.0001) and was increased (3.7 [0.4–70.3] vs. 1.2 [0.2–49.3] RQ, p = 0.02) in CKD patients with cardiovascular disease (CVD), but was not significantly different between patients and controls. The association to CVD was lost after adjustments. SAT PTX3 mRNA levels were independently correlated to asymmetric dimethylarginine and basal resistance artery tone developed after inhibition with nitric oxide synthase and cyclooxygenase (rho = −0.58, p = 0.002). Apparent positive PTX3 immunoreactivity was observed in both patient and control arteries. In conclusion, fat PTX3 mRNA levels are associated with measures of endothelial cell function in patients with CKD. PTX3 may be involved in adipose tissue-orchestrated mechanisms that are restricted to the uremic milieu and modify inflammation and vascular complications in CKD patients. PMID:23658833

  14. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes.

    PubMed

    Grutzmacher, Cathy; Park, SunYoung; Zhao, Yun; Morrison, Margaret E; Sheibani, Nader; Sorenson, Christine M

    2013-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease and is a major risk factor for cardiovascular disease. In the United States, microvascular complications during diabetic nephropathy contribute to high morbidity and mortality rates. However, the cell-autonomous impact of diabetes on kidney endothelial cell function requires further investigation. Male Akita/+ [autosomal dominant mutation in the insulin II gene (Ins2)] mice reproducibly develop diabetes by 4 wk of age. Here, we examined the impact a short duration of diabetes had on kidney endothelial cell function. Kidney endothelial cells were prepared from nondiabetic and diabetic mice (4 wk of diabetes) to delineate the early changes in endothelial cell function. Kidney endothelial cells from Akita/+ mice following 4 wk of diabetes demonstrated aberrant expression of extracellular matrix proteins including decreased osteopontin and increased fibronectin expression which correlated with increased α5-integrin expression. These changes were associated with the attenuation of migration and capillary morphogenesis. Kidney endothelial cells from Akita/+ mice had decreased VEGF levels but increased levels of endothelial nitric oxide synthase(eNOS) and NO, suggesting uncoupling of VEGF-mediated NO production. Knocking down eNOS expression in Akita/+ kidney endothelial cells increased VEGF expression, endothelial cell migration, and capillary morphogenesis. Furthermore, attenuation of sprouting angiogenesis of aortas from Akita/+ mice with 8 wk of diabetes was restored in the presence of the antioxidant N-acetylcysteine. These studies demonstrate that aberrant endothelial cell function with a short duration of diabetes may set the stage for vascular dysfunction and rarefaction at later stages of diabetes.

  15. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.

    PubMed

    Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L

    2015-09-15

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.

  16. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus.

    PubMed

    Reynolds, John A; Haque, Sahena; Williamson, Kate; Ray, David W; Alexander, M Yvonne; Bruce, Ian N

    2016-01-01

    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk. PMID:26930567

  17. Effect of ruthenium red, a ryanodine receptor antagonist in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats.

    PubMed

    Jain, Swati; Sharma, Bhupesh

    2016-10-01

    Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia by experimental diabetes. This study investigates the efficacy of a ruthenium red, a ryanodine receptor antagonist and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of ruthenium red and pioglitazone has significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that ruthenium red, a ryanodine receptor antagonist and pioglitazone, a PPAR-γ agonist may be considered as potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent vascular dementia. Ryanodine receptor may be explored further for their possible benefits in vascular dementia. PMID:27262216

  18. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus.

    PubMed

    Reynolds, John A; Haque, Sahena; Williamson, Kate; Ray, David W; Alexander, M Yvonne; Bruce, Ian N

    2016-03-01

    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk.

  19. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus

    PubMed Central

    Reynolds, John A.; Haque, Sahena; Williamson, Kate; Ray, David W.; Alexander, M. Yvonne; Bruce, Ian N.

    2016-01-01

    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk. PMID:26930567

  20. Inhibition of endocytosis exacerbates TNF-α-induced endothelial dysfunction via enhanced JNK and p38 activation.

    PubMed

    Choi, Hyehun; Nguyen, Hong N; Lamb, Fred S

    2014-04-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine that causes endothelial dysfunction. Endocytosis of TNF-α receptors (TNFR) precedes endosomal reactive oxygen species (ROS) production, which is required for NF-κB activation in vascular smooth muscle cells. It is unknown how endocytosis of TNFRs impacts signaling in endothelial cells. We hypothesized that TNF-α-induced endothelial dysfunction is induced by both endosomal and cell surface events, including NF-κB and mitogen-activated protein kinases (MAPKs) activation, and endocytosis of the TNFR modifies signaling. Mesenteric artery segments from C57BL/6 mice were treated with TNF-α (10 ng/ml) for 22 h in tissue culture, with or without signaling inhibitors (dynasore for endocytosis, SP600125 for JNK, SB203580 for p38, U0126 for ERK), and vascular function was assessed. Endothelium-dependent relaxation to acetylcholine (ACh) was impaired by TNF-α, and dynasore exacerbated this, whereas JNK or p38 inhibition prevented these effects. In cultured endothelial cells from murine mesenteric arteries, dynasore potentiated JNK and p38 but not ERK phosphorylation and promoted cell death. NF-κB activation by TNF-α was decreased by dynasore. JNK inhibition dramatically increased both the magnitude and duration of TNF-α-induced NF-κB activation and potentiated intercellular adhesion molecule-1 (ICAM-1) activation. Dynasore still inhibited NF-κB activation in the presence of SP600125. Thus TNF-α-induced endothelial dysfunction is both JNK and p38 dependent. Endocytosis modulates the balance of NF-κB and MAPK signaling, and inhibition of NF-κB activation by JNK limits this pro-proliferative signal, which may contribute to endothelial cell death in response to TNF-α.

  1. Toll-Like Receptor 4 Mediates Endothelial Cell Activation Through NF-κB but Is Not Associated with Endothelial Dysfunction in Patients with Rheumatoid Arthritis

    PubMed Central

    Menghini, Rossella; Campia, Umberto; Tesauro, Manfredi; Marino, Arianna; Rovella, Valentina; Rodia, Giuseppe; Schinzari, Francesca; Tolusso, Barbara; di Daniele, Nicola; Federici, Massimo; Zoli, Angelo; Ferraccioli, Gianfranco; Cardillo, Carmine

    2014-01-01

    Objective To investigate the effects of TLR4 antagonism on human endothelial cells activation and cytokine expression, and whether the Asp299Gly TLR4 polymorphism is associated with better endothelial function in patients with rheumatoid arthritis (RA). Methods Human aortic endothelial cells (HAECs) were treated with lipopolysaccharide (LPS), OxPAPC, and free fatty acids (FFA) at baseline and after incubation with the TLR4 antagonist eritoran (E5564). Cytokine expression was assessed by quantitative real-time PCR. In vivo endothelial function was assessed as brachial artery flow-mediated dilation (FMD) in RA patients with the wild type gene (aa) and with the Asp299Gly TLR4 polymorphic variant (ag). Results In HAEC, TLR4 antagonism with eritoran inhibited LPS-induced mRNA expression of IL-6, IL-8, TNFα, CCL-2, VCAM and ICAM (P<0.05 for all) and inhibited Ox-PAPC-induced mRNA expression of IL-8 (P<0.05) and IL-6, albeit not to a statistically significant level (p = 0.07). In contrast, eritoran did not affect FFA-induced mRNA expression of IL-6 (P>0.05). In 30 patients with RA (15 with the ag allele) undergoing measurement of FMD, no differences in FMD and plasma levels of IL-6, IL-8, VCAM, and ICAM were found between the aa and the ag phenotype (P>0.05 for all). Conclusions TLR4 signaling in endothelial cells may be triggered by LPS and oxidized phospholipids, leading to endothelial activation and inflammation, which are inhibited by eritoran. Our in vivo investigation, however, does not support an association between the Asp299Gly TLR4 polymorphism and improved endothelium-dependent vasodilator function in patients with RA. Further study is needed to better understand the potential role of TLR4 on endothelial dysfunction in this and other patient populations. PMID:24918924

  2. Long-term dietary extra-virgin olive oil rich in polyphenols reverses age-related dysfunctions in motor coordination and contextual memory in mice: role of oxidative stress.

    PubMed

    Pitozzi, Vanessa; Jacomelli, Michela; Catelan, Dolores; Servili, Maurizio; Taticchi, Agnese; Biggeri, Annibale; Dolara, Piero; Giovannelli, Lisa

    2012-12-01

    The aim of this study was to evaluate the effects of olive oil phenols on brain aging in mice and to verify whether the antioxidant and antiinflammatory activities of these polyphenols were involved. C57Bl/6J mice were fed from middle age to senescence with extra-virgin olive oil (10% wt/wt dry diet) rich in phenols (total polyphenol dose/day, 6 mg/kg). Behavioral tests were employed to assess cognitive, motor, and emotional behavior after 6 or 12 months of treatment. Parameters of oxidative status and inflammation were measured in different brain areas at the same times and evaluated for correlation with behavioral changes. The treatment with olive oil phenols improved contextual memory in the step-down test to levels similar to young animals and prevented the age-related impairment in motor coordination in the rotarod test. This motor effect was correlated with reduced lipid peroxidation in the cerebellum (p<0.05), whereas the memory effect did not correlate with oxidation or inflammation parameters. In conclusion, this work points out that natural polyphenols contained in extra-virgin olive oil can improve some age-related dysfunctions by differentially affecting different brain areas. Such a modulation can be obtained with an olive oil intake that is normal in the Mediterranean area, provided that the oil has a sufficiently high content of polyphenols.

  3. Fenofibrate attenuates nicotine-induced vascular endothelial dysfunction in the rat.

    PubMed

    Chakkarwar, Vishal Arvind

    2011-01-01

    The study has been designed to investigate the effect of fenofibrate on nicotine-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg/kg/day, i.p., 4 weeks) was administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy of thoracic aorta. The expression of mRNA for p22phox and eNOS was assessed by using reverse transcriptase-polymerase chain reaction. Serum thiobarbituric acid reactive substances concentration (TBARS) and aortic superoxide anion concentration were estimated to assess oxidative stress. Moreover, the serum lipid profile was assessed by estimating serum cholesterol, triglycerides and high density lipoprotein. The administration of nicotine induces VED by increased oxidative stress, altered lipid profile and impaired the integrity of vascular endothelium as assessed in terms of decrease in expression of mRNA for endothelial nitric oxide synthase (eNOS), impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine produced oxidative stress, assessed in terms of increase in serum TBARS and aortic superoxide anion generation and increase in expression of mRNA for p22phox. Nicotine altered the lipid profile by increasing the serum cholesterol, triglycerides and decreasing the high density lipoprotein. However, treatment with fenofibrate (32 mg/kg, p.o.) markedly prevented nicotine-induced VED by decreasing oxidative stress and improving integrity of vascular endothelium, normalising the altered lipid profile, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic

  4. Diesel exhaust particles induce endothelial dysfunction in apoE{sup -/-} mice

    SciTech Connect

    Hansen, Christian S.; Sheykhzade, Majid; Moller, Peter; Folkmann, Janne Kjaergaard; Amtorp, Ole; Jonassen, Thomas; Loft, Steffen . E-mail: s.loft@pubhealth.ku.dk

    2007-02-15

    Background: Particulate air pollution can aggravate cardiovascular disease by mechanisms suggested to involve translocation of particles to the bloodstream and impairment of endothelial function, possibly dependent on present atherosclerosis. Aim: We investigated the effects of exposure to diesel exhaust particles (DEP) in vivo and ex vivo on vasomotor functions in aorta from apoE{sup -/-} mice with slight atherosclerosis and from normal apoE{sup +/+} mice. Methods: DEP 0, 0.5 or 5 mg/kg bodyweight in saline was administered i.p. The mice were sacrificed 1 h later and aorta ring segments were mounted on wire myographs. Segments from unexposed mice were also incubated ex vivo with 0, 10 and 100 {mu}g DEP/ml before measurement of vasomotor functions. Results: Exposure to 0.5 mg/kg DEP in vivo caused a decrease in the endothelium-dependent acetylcholine elicited vasorelaxation in apoE{sup -/-} mice, whereas the response was enhanced in apoE{sup +/+} mice. No significant change was observed after administration of 5 mg/kg DEP. In vivo DEP exposure did not affect constriction induced by K{sup +} or phenylephrine. In vitro exposure to 100 {mu}g DEP/ml enhanced acetylcholine-induced relaxation and attenuated phenylephrine-induced constriction. Vasodilation induced by sodium nitroprusside was not affected by any DEP exposure. Conclusion: Exposure to DEP has acute effect on vascular functions. Endothelial dysfunction possibly due to decreased NO production as suggested by decreased acetylcholine-induced vasorelaxation and unchanged sodium nitroprusside response can be induced by DEP in vivo only in vessels of mice with some atherosclerosis.

  5. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    PubMed Central

    2011-01-01

    Background Methamphetamine (METH), an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB) function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB) to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM) increased the expression of glucose transporter protein-1 (GLUT1) in primary human brain endothelial cell (hBEC, main component of BBB) without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB) aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity. PMID:21426580

  6. Acute and Chronic Hyperglycemia Elicit JIP1/JNK-Mediated Endothelial Vasodilator Dysfunction of Retinal Arterioles

    PubMed Central

    Hein, Travis W.; Xu, Wenjuan; Xu, Xin; Kuo, Lih

    2016-01-01

    Purpose Hyperglycemia, a hallmark of diabetes mellitus, is associated with retinal inflammation and impairment of endothelium-dependent nitric oxide (NO)–mediated dilation of retinal arterioles. However, molecular mechanisms involved in this diminished endothelial vasodilator function remain unclear. We examined whether inflammatory stress-activated kinases, c-Jun N-terminal kinase (JNK) and p38, contribute to retinal arteriolar dysfunction during exposure to acute and chronic hyperglycemia. Methods Retinal arterioles were isolated from streptozocin-induced diabetic pigs (2 weeks; chronic hyperglycemia, 471 ± 23 mg/dL) or age-matched control pigs (euglycemia, 79 ± 5 mg/dL), and then cannulated and pressurized for vasoreactivity study. For acute hyperglycemia study, vessels from nondiabetic pigs were exposed intraluminally to high glucose (25 mM ≈ 450 mg/dL) for 2 hours, and normal glucose (5 mM ≈ 90 mg/dL) served as the control. Results Endothelium-dependent vasodilation to bradykinin was reduced in a similar manner after exposure to acute or chronic hyperglycemia. Administration of NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) nearly abolished vasodilations either in control (euglycemia and normal glucose) or hyperglycemic (acute and chronic) vessels. Treatment of either acute or chronic hyperglycemic vessels with JNK inhibitor SP600125 or JNK-interacting protein-1 (JIP1) inhibitor BI-78D3, but not p38 inhibitor SB203580, preserved bradykinin-induced dilation in an L-NAME–sensitive manner. By contrast, endothelium-independent vasodilation to sodium nitroprusside was unaffected by acute or chronic hyperglycemia. Conclusions Activation of JIP1/JNK signaling in retinal arterioles during exposure to acute or chronic hyperglycemia leads to selective impairment of endothelium-dependent NO-mediated dilation. Therapeutic targeting of the vascular JNK pathway may improve retinal endothelial vasodilator function during early diabetes. PMID

  7. Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease.

    PubMed

    Villanova, Nicola; Moscatiello, Simona; Ramilli, Stefano; Bugianesi, Elisabetta; Magalotti, Donatella; Vanni, Ester; Zoli, Marco; Marchesini, Giulio

    2005-08-01

    Nonalcoholic fatty liver disease (NAFLD) is consistently associated with features of the metabolic syndrome, a condition carrying a high risk of cardiovascular events. We measured the vasodilatory response of the brachial artery in response to ischemia (a test of endothelial function) (FMV) as well as cardiovascular risk profile in 52 NAFLD cases and 28 age- and sex-matched controls. The 10-year risk of coronary events was calculated according to the Framingham equation and the scores derived from the PROCAM study and NCEP-ATPIII proposals. FMV was 6.33% +/- 5.93% in NAFLD versus 12.22% +/- 5.05% in controls (P < .0001), and higher in pure fatty liver (9.93%) compared with nonalcoholic steatohepatitis (4.94%) (P = .010). No differences were observed in flow-independent vasodilation (response to sublingual nitroglycerin). Percent FMV was negatively associated with insulin resistance (homeostasis model assessment) in the whole population (r = -0.243; P = .030). In logistic regression analysis, NAFLD was associated with a percent FMV in the lower tertile (OR, 6.7; 95% CI, 1.26-36.1), after adjustment for age, sex, body mass index, and insulin resistance. Among NAFLD patients, low FMV was associated with nonalcoholic steatohepatitis (adjusted OR, 6.8; 95% CI, 1.2-40.2). The 10-year probability of cardiovascular events was moderately increased in NAFLD, and particularly in nonalcoholic steatohepatitis. In conclusion, our study provides evidence of endothelial dysfunction and increased risk of cardiovascular events in NAFLD. The risk of advanced liver disease is well recognized in NAFLD patients, but the large majority of cases might experience cardiovascular disease in the long term, indirectly limiting the burden of liver failure. PMID:15981216

  8. Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction.

    PubMed

    Zhao, Xiangmin; Zhang, Wei; Xing, Dongqi; Li, Peng; Fu, Jinyan; Gong, Kaizheng; Hage, Fadi G; Oparil, Suzanne; Chen, Yiu-Fai

    2013-08-15

    The endothelium is a dynamic component of the cardiovascular system that plays an important role in health and disease. This study tested the hypothesis that targeted delivery of endothelial cells (ECs) overexpressing neutrophil membrane IL-8 receptors IL8RA and IL8RB reduces acute myocardial infarction (MI)-induced left ventricular (LV) remodeling and dysfunction and increases neovascularization in the area at risk surrounding the infarcted tissue. MI was created by ligating the left anterior descending coronary artery in 12-wk-old male Sprague-Dawley rats. Four groups of rats were studied: group 1: sham-operated rats without MI or EC transfusion; group 2: MI rats with intravenous vehicle; group 3: MI rats with transfused ECs transduced with empty adenoviral vector (Null-EC); and group 4: MI rats with transfused ECs overexpressing IL8RA/RB (1.5 × 10⁶ cells post-MI). Two weeks after MI, LV function was assessed by echocardiography; infarct size was assessed by triphenyltetrazolium chloride (live tissue) and picrosirus red (collagen) staining, and capillary density and neutrophil infiltration in the area at risk were measured by CD31 and MPO immunohistochemical staining, respectively. When compared with the MI + vehicle and MI-Null-EC groups, transfusion of IL8RA/RB-ECs decreased neutrophil infiltration and pro-inflammatory cytokine expression and increased capillary density in the area at risk, decreased infarct size, and reduced MI-induced LV dysfunction. These findings provide proof of principle that targeted delivery of ECs is effective in repairing injured cardiac tissue. Targeted delivery of ECs to infarcted hearts provides a potential novel strategy for the treatment of acute MI in humans.

  9. Serum from Diesel Exhaust-Exposed Rats with Cardiac Dysfunction Alters Aortic Endothelial Cell Function In Vitro: Circulating Mediators as Causative Factors?

    EPA Science Inventory

    Although circulating inflammatory mediators are strongly associated with adverse cardiovascular outcomes triggered by inhaled air pollution, direct cause-effect linkage has not been established. Given that endothelial toxicity often precedes and precipitates cardiac dysfunction, ...

  10. Pathogenesis of endothelial cell dysfunction in chronic kidney disease: a retrospective and what the future may hold

    PubMed Central

    Goligorsky, Michael S.

    2015-01-01

    Cardiovascular complications dominate the landscape of chronic kidney diseases (CKD). Endothelial cell dysfunction (ECD) is a well-known culprit of cardiovascular morbidity and it develops in CKD with remarkable frequency. This brief overview of ECD in CKD scans two decades of studies performed in my laboratory, from genetic analyses to proteomic and metabolomics screens. I provide a detailed description of findings related to the premature senescence of endothelial cells, cell transition from the endothelial to mesenchymal phenotype, and stages of development of ECD. Clinical utility of some of these findings is illustrated with data on laser-Doppler flowmetry and imaging in patients with CKD. Some currently available and emerging therapeutic options for the management of ECD are briefly presented. PMID:26484026

  11. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    PubMed

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction.

  12. Natakalim Ameliorates Isoproterenol-Induced Chronic Heart Failure by Protecting against Endothelial Dysfunction.

    PubMed

    Zhong, Mingli; Zhou, Hongmin; Long, Chaoliang; Zhang, Yanfang; Cui, Wenyu; Zhang, Hao; Wang, Hai

    2016-01-01

    The pharmacological effects and underlying mechanisms of natakalim, a novel SUR2B/Kir6.1-KATP channel opener, against chronic heart failure induced by isoproterenol in rats were investigated. Male Wistar rats were administered isoproterenol subcutaneously (85 mg/kg, 7 days) to induce chronic heart failure and were then treated with natakalim or saline for 6 weeks. Their blood pressure, heart rates and cardiac functions were measured using an 8-channel physiological recorder. Sophisticated technologies such as histological analysis, ELISA, radioimmunoassay, immunohistochemistry, real-time PCR and western blotting were employed for analysis. Natakalim (1, 3, 9 mg/kg/day, orally) or saline was administered for 6 weeks orally via a gastric tube to rats that had been injected with isoproterenol. Natakalim remarkably inhibited changes in left ventricular hemodynamic parameters and decreased the heart mass index, the left ventricular weight index, right ventricular weight index and lung weight index. Histological examination demonstrated no significant hypertrophy or fibrosis in the hearts of the natakalim-treated rats. Mechanistically, natakalim attenuates the elevation of plasma nitric oxide (NO) level and inducible NO synthase in cardiac tissue induced by isoproterenol. Additionally, natakalim inhibits the endothelin signaling system by decreasing both the content of endothelin-1 in the plasma and the protein levels of cardiac endothelin receptors A and B. Moreover, natakalim could augment the plasma prostacyclin concentration. In conclusion, our study provides evidence that natakalim effectively ameliorates isoproterenol-induced chronic heart failure in rats by protecting against endothelial dysfunction. PMID:27174236

  13. Interactions between inflammation, oxidative stress, and endothelial dysfunction in end-stage renal disease.

    PubMed

    Stenvinkel, Peter

    2003-04-01

    Despite a rapid improvement in dialysis technology during the last 20 years, the mortality rate is still very high in patients with end-stage renal disease (ESRD), and the death rate is comparable with that of many cancer patients with metastases. The main cause of mortality in ESRD is cardiovascular disease (CVD), and cardiac mortality for dialysis patients aged 45 years or younger is more than 100-fold greater than in the general population. The high cardiovascular mortality rate suggests that ESRD patients are subjected to a process of accelerated atherogenesis. Because factors proven to contribute to atherosclerosis in the general population, such as dyslipidemia, smoking, diabetes mellitus, and hypertension are highly prevalent in ESRD patients, it is reasonable to assume that such risk factors also apply to these patients. However, as it has been shown that the high cardiovascular risk in ESRD is incompletely accounted for by traditional risk factors, it may be speculated that nontraditional risk factors, seemingly more difficult to reconcile, also contribute. Among several putative nontraditional risk factors, chronic inflammation has attracted a lot of interest recently because it seems to be associated to both increased vascular oxidative stress and endothelial dysfunction, both of which are important predictors of cardiovascular events in nonrenal patient groups.

  14. [Evaluation of haemostasis and endothelial dysfunction characteristics in patient with community-acquired pneumonia].

    PubMed

    Bedilo, N V; Vorob'eva, N A; Ismaĭlova, N V; Veshchagina, N A; Nasonov, I Ia; Malugin, Iu Iu

    2014-01-01

    The article deals with a study of hemostasis (D-dimer soluble fibrin-monomer complex, time fibrin self-assemblance, antitrombin III, fibrinogen), endothelial dysfunction (f. Willebrand and activity of plasminogen activators inhibitor type 1) and CRP in 61 patients with CAP in the day of admission and before discharge from hospital 17 patients had a severe pneumonia, 6 people died. The levels of all markers (except AT-3) were increased on admission and were reduced before discharge, but within the normal range to include only FW, CRP and time fibrin self-assemblance. DD, CRP and PAI-1 were dependent on the severity of the CAP, severity of SIRS and extent of the inflammatory process. The risk of severe pneumonia increased with the level of D-dimer in the onset of the disease more than 2.0 mkg mL(-1) (OR = 21.8, 95% CI: 3.09-154.8), with the results of TP-test less than 0.5 (RR = 2.68, 95% CI: 1.23-5.84), with CRP greater than 200 mg l(-1) (OR = 4.6, 95% CI: 1.87-11.45) and PAI-1 activity more than 30 U l(-1) (OR = 2.05, 95% CI: 0.88-4.74). Rg-CAP outcomes best reflect the level of DD, measured prior to discharge patients.

  15. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice.

    PubMed

    Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin

    2016-08-01

    The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. PMID:27316781

  16. Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice.

    PubMed

    Chauhan, S D; Seggara, G; Vo, P A; Macallister, R J; Hobbs, A J; Ahluwalia, A

    2003-04-01

    Endothelial dysfunction is a characteristic of, and may be pathogenic in, inflammatory cardiovascular diseases, including sepsis. The mechanism underlying inflammation-induced endothelial dysfunction may be related to the expression and activity of inducible nitric oxide synthase (iNOS). This possibility was investigated in isolated resistance (mesenteric) and conduit (aorta) arteries taken from lipopolysaccharide (LPS)-treated (12.5 mg/kg i.v.) or saline-treated iNOS knockout (KO) and wild-type (WT) mice. LPS pretreatment (for 15 h, but not 4 h) profoundly suppressed responses to acetylcholine (ACh) and significantly reduced sensitivity to the NO donor spermine-NONOate (SPER-NO) in aorta and mesenteric arteries of WT mice. This effect was temporally associated with iNOS protein expression in both conduit and resistance arteries and with a 10-fold increase in plasma NOx levels. In contrast, no elevation of plasma NOx was observed in LPS-treated iNOS KO animals, and arteries dissected from these animals did not express iNOS or display hyporeactivity to ACh or SPER-NO. The mechanism underlying this phenomenon may be suppression of eNOS expression, as observed in arteries of WT animals, that was absent in arteries of iNOS KO animals. These results clearly demonstrate that iNOS induction plays an integral role in mediation of the endothelial dysfunction associated with sepsis in both resistance and conduit arteries.

  17. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis].

    PubMed

    Fischer, Tamás

    2015-03-01

    The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.

  18. Sphingosine-1-phosphate receptor 2 mediates endothelial cells dysfunction by PI3K-Akt pathway under high glucose condition.

    PubMed

    Liu, Weihua; Liu, Bin; Liu, Shaojun; Zhang, Jingzhi; Lin, Shuangfeng

    2016-04-01

    Endothelial dysfunction is believed the early stage of development of diabetic cardiovascular complications. Sphingosine-1-phosphate (S1P) regulates various biological activities by binding to sphingosine-1-phosphate receptors (S1PRs) including S1PR1-S1PR5. In the present study, the role of S1P receptors in S1P-induced human coronary artery endothelial cells (HCAECs) dysfunction under high glucose condition was investigated and the underlying mechanism was explored. S1PR1-S1PR5 mRNA levels were detected by quantitative Real-time PCR. NO level and polymorphonuclear neutrophils (PMN)-endothelial cells adhesion were measured by nitrate reductase and myeloperoxidase colorimetric method, respectively. Protein levels of endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1(ICAM-1), phosphatidylinositol 3-kinase (PI3K) and Akt were measured by Western blot analysis. S1PR2 were found the predominant S1P receptor expressed in HCAECs exposed to high glucose. NO level and eNOS activity were remarkably decreased, while PMN adhesion, VCAM-1 and ICAM-1 protein levels were increased significantly by S1P treatment in HCAECs exposed to high glucose and normal glucose. Blockage of S1PR2 with specific antagonist JTE-013 and small interfering RNA (siRNA) resulted in enhanced NO level and eNOS activity as well as decreased PMN adhesion, reduced protein levels of VCAM-1 and ICAM-1 induced by S1P. Furthermore, Phosphor-PI3K and phosphor-Akt level were markedly increased by S1PR2 blockade in S1P-treated cells exposed to high glucose, which were suppressed by PI3K inhibitor wortmannin. In conclusion, S1P/S1PR2 mediated endothelial dysfunction partly by inhibiting PI3K/Akt signaling pathway under high glucose condition. S1PR2 blockage could ameliorate endothelial dysfunction which might provide a potential therapeutic strategy for diabetic vascular complications. PMID:26921757

  19. Vitamin K{sub 1} (phylloquinone) induces vascular endothelial dysfunction: Role of oxidative stress

    SciTech Connect

    Tirapelli, Carlos R.; De Andrade, Claudia R.; Lieberman, Marcel; Laurindo, Francisco R.; De Souza, Heraldo P.; Oliveira, Ana M. de . E-mail: amolive@usp.br

    2006-05-15

    We aimed to investigate the mechanisms underlying the vascular effects induced by phylloquinone (Vitamin K{sub 1}; VK{sub 1}). Vascular reactivity experiments, using standard muscle bath procedures, showed that VK{sub 1} (5 and 50 {mu}M) enhances the contractile response of endothelium-intact, but not denuded, rat carotid rings to phenylephrine. Similarly, maximal contraction induced by phenylephrine was enhanced in the presence of the nitric oxide (NO) synthase inhibitor N {sup G}-nitro-L-arginine methyl ester (L-NAME). The combination of L-NAME and VK{sub 1} did not produce any further additional effect. Pre-incubation of intact-rings with VK{sub 1} reduced both acetylcholine- and bradykinin-induced relaxation. VK{sub 1} induced an increment in tension on carotid rings submaximally pre-contracted with phenylephrine. VK{sub 1}-induced increment in tension was completely abolished by endothelial removal or incubation of intact rings with L-NAME and L-NNA. Conversely, 7-nitroindazole, 1400 W, or indomethacin did not affect VK{sub 1}-induced contraction. Moreover, VK{sub 1} reduced L-arginine-induced relaxation in endothelium-intact rings. Lucigenin-amplified chemiluminescence assays showed that VK{sub 1} induced an increase in the level of superoxide anions in endothelium-intact but not denuded rings. Measurement of nitrite and nitrate generation showed that VK{sub 1} did not alter nitrate formation but strongly inhibited the generation of nitrite. Finally, the superoxide anions scavenger tiron prevented the endothelial vasomotor dysfunction caused by VK{sub 1} on phenyleprine-induced contraction and acetylcholine or bradykinin-induced relaxation. In conclusion, our data show that VK{sub 1} disrupts the vasomotor function of rat carotid. Our results suggest that VK{sub 1}-induced oxidative stress through production of superoxide anion is interfering with the NO pathway, which in turn is responsible for the altered vascular reactivity induced by VK{sub 1}.

  20. Circulating endothelial progenitor cells in type 1 diabetic patients with erectile dysfunction.

    PubMed

    Maiorino, Maria Ida; Bellastella, Giuseppe; Petrizzo, Michela; Della Volpe, Elisabetta; Orlando, Rosanna; Giugliano, Dario; Esposito, Katherine

    2015-06-01

    Circulating endothelial progenitor cells (EPCs) are bone marrow-derived stem cells able to migrate to sites of damaged endothelium and differentiate into endothelial cells, thereby contributing to vascular repair. Recent studies demonstrated a reduction of EPCs in patients with diabetes mellitus or erectile dysfunction (ED). The aim of this study was to evaluate the circulating levels of different EPCs phenotypes and their relation with testosterone levels in young type 1 diabetic patients with ED. We studied 118 consecutively type 1 diabetic patients and 60 age-matched healthy controls. Erectile function was assessed by completing the International Index of Erectile Function (IIEF-5) and EPCs levels by flow cytometry. Testosterone concentrations were evaluated in all the study population. We identified 38 diabetic patients with ED (Group 1) and 80 patients without ED (Group 2). CD34+KDR+CD133+ cells were significantly lower in patients in Group 1 as compared with those in Group 2 [median and interquartile range, n/10(6) events, 12 (6-16) vs. 18 (13-22), P < 0.001)]. In all participants in the study, there was a significant correlation between circulating CD34+KDR+CD133+ cells and testosterone levels (r = 0.410, P < 0.001), which was highest in Group 1, intermediate in Group 2, and lowest in Group 3 (controls). There was a significant correlation between IIEF-5 score and both CD34+KDR+ (r = 0.459, P = 0.003) and CD34+KDR+CD133+ (r = 0.316, P = 0.050) cells among patients of Group 1, as well as between testosterone levels and most of the EPCs phenotypes. Finally, multivariate regression analysis identified levels of circulating CD34+KDR+ cells as an independent risk factor for ED (β-coefficient 0.348, P = 0.007). In conclusion, type 1 diabetic patients with ED show reduced levels of CD34+KDR+CD133+ cells, whose number correlates with IIEF. Further studies are needed to fully understand the exact mechanisms by which testosterone regulates vascular homeostasis. PMID

  1. The leading role of microtubules in endothelial barrier dysfunction: disassembly of peripheral microtubules leaves behind the cytoskeletal reorganization.

    PubMed

    Alieva, Irina B; Zemskov, Evgeny A; Smurova, Ksenija M; Kaverina, Irina N; Verin, Alexander D

    2013-10-01

    Disturbance of the endothelial barrier is characterized by dramatic cytoskeleton reorganization, activation of actomyosin contraction and, finally, leads to intercellular gap formation. Here we demonstrate that the edemagenic agent, thrombin, causes a rapid increase in the human pulmonary artery endothelial cell (EC) barrier permeability accompanied by fast decreasing in the peripheral microtubules quantity and reorganization of the microtubule system in the internal cytoplasm of the EC within 5 min of the treatment. The actin stress-fibers formation occurs gradually and the maximal effect is observed relatively later, 30 min of the thrombin treatment. Thus, microtubules reaction develops faster than the reorganization of the actin filaments system responsible for the subsequent changes of the cell shape during barrier dysfunction development. Direct microtubules depolymerization by nocodazole initiates the cascade of barrier dysfunction reactions. Nocodazole-induced barrier disruption is connected directly with the degree of peripheral microtubules depolymerization. Short-term loss of endothelial barrier function occurs at the minimal destruction of peripheral microtubules, when actin filament system is still intact. Specifically, we demonstrate that the EC microtubule dynamics examined by time-lapse imaging of EB3-GFP comets movement has changed under these conditions: microtubule plus ends growth rate significantly decreased near the cell periphery. The microtubules, apparently, are the first target in the circuit of reactions leading to the pulmonary EC barrier compromise. Our results show that dynamic microtubules play an essential role in the barrier function in vitro; peripheral microtubules depolymerization is necessary and sufficient condition for initiation of endothelial barrier dysfunction. PMID:23606375

  2. Generation and Feasibility Assessment of a New Vehicle for Cell-Based Therapy for Treating Corneal Endothelial Dysfunction.

    PubMed

    Okumura, Naoki; Kakutani, Kazuya; Inoue, Ryota; Matsumoto, Daiki; Shimada, Tomoki; Nakahara, Makiko; Kiyanagi, Yumiko; Itoh, Takehiro; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency by its pump and barrier functions; consequently, its decompensation due to any pathological reason causes severe vision loss due to corneal haziness. Corneal transplantation is the only therapeutic choice for treating corneal endothelial dysfunction, but associated problems, such as a shortages of donor corneas, the difficulty of the surgical procedure, and graft failure, still need to be resolved. Regenerative medicine is attractive to researchers as a means of providing innovative therapies for corneal endothelial dysfunction, as it now does for other diseases. We previously demonstrated the successful regeneration of corneal endothelium in animal models by injecting cultured corneal endothelial cells (CECs) in combination with a Rho kinase (ROCK) inhibitor. The purpose of the present study was to optimize the vehicle for clinical use in cell-based therapy. Our screening of cell culture media revealed that RELAR medium promoted CEC adhesion. We then modified RELAR medium by removing hormones, growth factors, and potentially toxic materials to generate a cell therapy vehicle (CTV) composed of amino acid, salts, glucose, and vitamins. Injection of CECs in CTV enabled efficient engraftment and regeneration of the corneal endothelium in the rabbit corneal endothelial dysfunction model, with restoration of a transparent cornea. The CECs retained >85% viability after a 24 hour preservation as a cell suspension in CTV at 4°C and maintained their potency to regenerate the corneal endothelium in vivo. The vehicle developed here is clinically applicable for cell-based therapy aimed at treating the corneal endothelium. Our strategy involves the generation of vehicle from a culture medium appropriate for a given cell type by removing materials that are not favorable for clinical use. PMID:27355373

  3. Combination therapy with losartan and L-carnitine protects against endothelial dysfunction of streptozotocin-induced diabetic rats.

    PubMed

    Sleem, Mostafa; Taye, Ashraf; El-Moselhy, Mohamed A; Mangoura, Safwat A

    2014-12-01

    Endothelial dysfunction is a critical factor during the initiation of diabetic cardiovascular complications and angiotensin II appears to play a pivotal role in this setting. The present study aimed to investigate whether the combination therapy with losartan and the nutritional supplement, L-carnitine can provide an additional protection against diabetes-associated endothelial dysfunction and elucidate the possible mechanism(s) underlying this effect. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) (60 mg/kg) in rat. Effects of losartan (20 mg/kg, orally, 3 months) and L-carnitine (200 mg/kg, orally, 3 months) on tumor necrosis factor (TNF)-α, oxidative stress parameters, endothelial nitric oxide synthase expression (eNOS), and vascular function were evaluated. Our results showed a marked increase in aortic superoxide anion (O2(-)) production and serum malondialdehyde (MDA) level alongside attenuating antioxidant enzyme capacities in diabetic rats. This was associated with a significant increase in anigiotensin II type 1 receptor gene expression and TNF-α serum level of diabetic rats alongside reducing aortic eNOS gene expression and nitric oxide (NO) bioavailability. The single or combined administration of losartan and L-carnitine significantly inhibited these changes. Additionally, the vascular endothelium-dependent relaxation with acetylcholine (ACh) in aortic diabetic rat was significantly ameliorated by the single and combined administration of losartan or L-carnitine. Noteworthy, the combination therapy exhibited a more profound response over the monotherapy. Collectively, our results demonstrate that the combined therapy of losartan and L-carnitine affords additive beneficial effects against diabetes-associated endothelial dysfunction, possibly via normalizing the dysregulated eNOS and reducing the inflammation and oxidative stress in diabetic rats.

  4. Generation and Feasibility Assessment of a New Vehicle for Cell-Based Therapy for Treating Corneal Endothelial Dysfunction

    PubMed Central

    Okumura, Naoki; Kakutani, Kazuya; Inoue, Ryota; Matsumoto, Daiki; Shimada, Tomoki; Nakahara, Makiko; Kiyanagi, Yumiko; Itoh, Takehiro; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency by its pump and barrier functions; consequently, its decompensation due to any pathological reason causes severe vision loss due to corneal haziness. Corneal transplantation is the only therapeutic choice for treating corneal endothelial dysfunction, but associated problems, such as a shortages of donor corneas, the difficulty of the surgical procedure, and graft failure, still need to be resolved. Regenerative medicine is attractive to researchers as a means of providing innovative therapies for corneal endothelial dysfunction, as it now does for other diseases. We previously demonstrated the successful regeneration of corneal endothelium in animal models by injecting cultured corneal endothelial cells (CECs) in combination with a Rho kinase (ROCK) inhibitor. The purpose of the present study was to optimize the vehicle for clinical use in cell-based therapy. Our screening of cell culture media revealed that RELAR medium promoted CEC adhesion. We then modified RELAR medium by removing hormones, growth factors, and potentially toxic materials to generate a cell therapy vehicle (CTV) composed of amino acid, salts, glucose, and vitamins. Injection of CECs in CTV enabled efficient engraftment and regeneration of the corneal endothelium in the rabbit corneal endothelial dysfunction model, with restoration of a transparent cornea. The CECs retained >85% viability after a 24 hour preservation as a cell suspension in CTV at 4°C and maintained their potency to regenerate the corneal endothelium in vivo. The vehicle developed here is clinically applicable for cell-based therapy aimed at treating the corneal endothelium. Our strategy involves the generation of vehicle from a culture medium appropriate for a given cell type by removing materials that are not favorable for clinical use. PMID:27355373

  5. Age-related vascular stiffening: causes and consequences

    PubMed Central

    Kohn, Julie C.; Lampi, Marsha C.; Reinhart-King, Cynthia A.

    2015-01-01

    Arterial stiffening occurs with age and is closely associated with the progression of cardiovascular disease. Stiffening is most often studied at the level of the whole vessel because increased stiffness of the large arteries can impose increased strain on the heart leading to heart failure. Interestingly, however, recent evidence suggests that the impact of increased vessel stiffening extends beyond the tissue scale and can also have deleterious microscale effects on cellular function. Altered extracellular matrix (ECM) architecture has been recognized as a key component of the pre-atherogenic state. Here, the underlying causes of age-related vessel stiffening are discussed, focusing on age-related crosslinking of the ECM proteins as well as through increased matrix deposition. Methods to measure vessel stiffening at both the macro- and microscale are described, spanning from the pulse wave velocity measurements performed clinically to microscale measurements performed largely in research laboratories. Additionally, recent work investigating how arterial stiffness and the changes in the ECM associated with stiffening contributed to endothelial dysfunction will be reviewed. We will highlight how changes in ECM protein composition contribute to atherosclerosis in the vessel wall. Lastly, we will discuss very recent work that demonstrates endothelial cells (ECs) are mechano-sensitive to arterial stiffening, where changes in stiffness can directly impact EC health. Overall, recent studies suggest that stiffening is an important clinical target not only because of potential deleterious effects on the heart but also because it promotes cellular level dysfunction in the vessel wall, contributing to a pathological atherosclerotic state. PMID:25926844

  6. Adipokines and their Relation to Endothelial Dysfunction in Patients with Chronic Kidney Disease

    PubMed Central

    Ambarkar, Madhusudan; Gouroju, Sivakrishna; Manohar, Suchitra M; Bitla, Aparna R; Yajamanam, Naresh; Vishnubhotla, Sivakumar

    2016-01-01

    Introduction Chronic Kidney Disease (CKD) patients are at high risk of cardiovascular diseases (CVDs). Reduced nitric oxide (NO) bioavailability is a key element in connecting kidney disease to endothelial dysfunction (ED) and cardiovascular (CV) complications. Further, inflammation is implicated in ED in CKD. Besides these, adipose tissue factors were thought to have a role in inflammation and ED in CKD. Aim It is proposed to evaluate the concentration changes of adipokines, inflammatory and ED markers in CKD patients compared to healthy controls. Further, to assess the associations between adipokines, inflammation and ED in CKD patients. Materials and Methods A total of 120 CKD patients were included and classified into 3 groups based on Glomerular filtration rate (GFR). Group I (n=40) patients had a GFR between 60-119 ml/min/1.73m2 (stage I, II), group II (n=40) had 15-59 ml/min/1.73m2 (stage III, IV) and group III (n=40) had <15 ml/min/1.73m2 (stage V). Forty healthy subjects served as controls. Adiponectin, Leptin, Interleukin-10 (IL-10), Interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) were estimated by ELISA. High sensitivity C-reactive protein (hsCRP) was estimated by immunoturbidimetry and NO by Griess method. Statistical Analysis Mann-Whitney U test was used to compare the difference in variables between controls and CKD patients. One-way ANOVA Kruskalwallis test was used for comparison of variables between groups in CKD patients. Spearman’s rank correlation was used to explore the associations between variables. Simple univariate linear regression analysis was used to predict the value of variable from another variable. Results A significant increase in leptin, IL-6, TNF-α, IL-6/IL-10 ratio, hsCRP and decrease in adiponectin, IL-10, NO was observed in CKD patients compared to controls (p<0.05). In CKD patients, adiponectin, leptin, IL-6, IL-6/IL-10 ratio, TNF-α were significantly increased and IL-10 levels were decreased from group I to group

  7. Glutathionylation Mediates Angiotensin II–Induced eNOS Uncoupling, Amplifying NADPH Oxidase‐Dependent Endothelial Dysfunction

    PubMed Central

    Galougahi, Keyvan Karimi; Liu, Chia‐Chi; Gentile, Carmine; Kok, Cindy; Nunez, Andrea; Garcia, Alvaro; Fry, Natasha A. S.; Davies, Michael J.; Hawkins, Clare L.; Rasmussen, Helge H.; Figtree, Gemma A.

    2014-01-01

    Background Glutathionylation of endothelial nitric oxide synthase (eNOS) “uncouples” the enzyme, switching its function from nitric oxide (NO) to O2•− generation. We examined whether this reversible redox modification plays a role in angiotensin II (Ang II)‐induced endothelial dysfunction. Methods and Results Ang II increased eNOS glutathionylation in cultured human umbilical vein endothelial cells (HUVECs), rabbit aorta, and human arteries in vitro. This was associated with decreased NO bioavailability and eNOS activity as well as increased O2•− generation. Ang II‐induced decrease in eNOS activity was mediated by glutathionylation, as shown by restoration of function by glutaredoxin‐1. Moreover, Ang II‐induced increase in O2•− and decrease in NO were abolished in HUVECs transiently transfected, with mutant eNOS rendered resistant to glutathionylation. Ang II effects were nicotinamide adenine dinucleotide phosphate (NADPH) oxidase dependent because preincubation with gp 91ds‐tat, an inhibitor of NADPH oxidase, abolished the increase in eNOS glutathionylation and loss of eNOS activity. Functional significance of glutathionylation in intact vessels was supported by Ang II‐induced impairment of endothelium‐dependent vasorelaxation that was abolished by the disulfide reducing agent, dithiothreitol. Furthermore, attenuation of Ang II signaling in vivo by administration of an angiotensin converting enzyme (ACE) inhibitor reduced eNOS glutathionylation, increased NO, diminished O2•−, improved endothelium‐dependent vasorelaxation and reduced blood pressure. Conclusions Uncoupling of eNOS by glutathionylation is a key mediator of Ang II‐induced endothelial dysfunction, and its reversal is a mechanism for cardiovascular protection by ACE inhibition. We suggest that Ang II‐induced O2•− generation in endothelial cells, although dependent on NADPH oxidase, is amplified by glutathionylation‐dependent eNOS uncoupling. PMID:24755153

  8. HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.

    PubMed

    Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E

    2011-10-01

    Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.

  9. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats.

    PubMed

    Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores

    2015-07-01

    Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS.

  10. Effect of rosiglitazone in sodium arsenite-induced experimental vascular endothelial dysfunction.

    PubMed

    Kaur, Tajpreet; Goel, Rajesh Kumar; Balakumar, Pitchai

    2010-04-01

    The present study has been designed to investigate the effect of rosiglitazone, a peroxisome proliferator activated receptor gamma agonist in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. The rats were administered sodium arsenite (1.5 mg/kg/day, i.p., 2 weeks) to induce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum nitrite/nitrate concentration. Further, the integrity of the aortic endothelium was assessed histologically using haematoxylin-eosin staining. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances, aortic reactive oxygen species and reduced form of glutathione. The administration of sodium arsenite produced VED by impairing acetylcholine-induced endothelium dependent relaxation, diminishing the integrity of vascular endothelium and decreasing the serum nitrite/nitrate concentration. In addition, sodium arsenite was noted to produce oxidative stress as it increased serum thiobarbituric acid reactive substances and aortic reactive oxygen species and consequently decreased glutathione. Treatment with rosiglitazone (3 mg/kg/day, p.o., 2 weeks and 5 mg/kg/day, p.o., 2 weeks) significantly prevented sodium arsenite-induced VED by enhancing acetylcholine-induced endothelium dependent relaxation, improving the integrity of vascular endothelium, increasing the nitrite/nitrate concentration and decreasing the oxidative stress. However, the vascular protective effect of rosiglitazone was markedly abolished by co-administration of nitric oxide synthase inhibitor, N-Omega-Nitro-L-Arginine Methyl Ester (L-NAME) (25 mg/kg/day, i.p., 2 weeks). Thus, it may be concluded that rosiglitazone reduces oxidative stress, activates eNOS and enhances the generation of nitric oxide to prevent sodium arsenite-induced VED in rats. PMID:20422371

  11. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    PubMed

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED. PMID:18951979

  12. Nigella sativa seed decreases endothelial dysfunction in streptozotocin-induced diabetic rat aorta

    PubMed Central

    Abbasnezhad, Abbasali; Niazmand, Saeed; Mahmoudabady, Maryam; Soukhtanloo, Mohammad; Rezaee, Seyed Abdolrahim; Mousavi, Seyed Mojtaba

    2016-01-01

    Objective: Diabetes is an important risk factor for cardiovascular events. The great percent of morbidity in patients with diabetes is due to endothelial dysfunction. The present study investigated the effects of hydroalcholic extract of Nigella sativa (N. sativa) on contractile and dilatation response of isolated aorta in streptozotocin (STZ)-induced diabetic rat. Materials and Methods: Rats were divided into six experimental groups (control, untreated STZ-diabetic, and N. sativa hydroalcholic extract or metformin-treated diabetic rats). Treated rats received N. sativa extract (100, 200, and 400 mg/kg) or metformin (300 mg/kg) by gavage, daily for 6 weeks. Isolated rat thoracic rings were mounted in an organ bath system then contractile and dilatation responses induced by phenylephrine (PE), acetylcholine (ACh), potassium chloride (KCl), and sodium nitroprusside (SNP) were evaluated in different situations. Results: The lower concentrations of N. sativa seed extract (DE 100 and DE 200) and metformin significantly reduced the contractile responses to higher concentrations of PE (10-6 - 10-5 M) compared to diabetic group (p<0.05 to p<0.01). The relaxation response to Ach 10-8 M, was increased in DE 200 and metformin groups compared to diabetic group (p<0.05). The relaxation responses to Ach 10-7 - 10-5 M were significantly higher in all treated groups compared to diabetic group (p<0.05 to p<0.001). Conclusion: Chronic administration of N. sativa seed extract has a significant hypoglycemic effect and improves aortic reactivity to vasoconstrictor and vasodilator agents in STZ-induced diabetic rats. PMID:27247923

  13. AST-120 Improves Microvascular Endothelial Dysfunction in End-Stage Renal Disease Patients Receiving Hemodialysis

    PubMed Central

    Ryu, Jung-Hwa; Yu, Mina; Lee, Sihna; Ryu, Dong-Ryeol; Kim, Seung-Jung; Kang, Duk-Hee

    2016-01-01

    Purpose Endothelial dysfunction (ED) is a pivotal phenomenon in the development of cardiovascular disease (CVD) in patients receiving hemodialysis (HD). Indoxyl sulfate (IS) is a known uremic toxin that induces ED in patients with chronic kidney disease. The aim of this study was to investigate whether AST-120, an absorbent of IS, improves microvascular or macrovascular ED in HD patients. Materials and Methods We conducted a prospective, case-controlled trial. Fourteen patients each were enrolled in respective AST-120 and control groups. The subjects in the AST-120 group were treated with AST-120 (6 g/day) for 6 months. Microvascular function was assessed by laser Doppler flowmetry using iontophoresis of acetylcholine (Ach) and sodium nitroprusside (SNP) at baseline and again at 3 and 6 months. Carotid arterial intima-media thickness (cIMT) and flow-mediated vasodilation were measured at baseline and 6 months. The Wilcoxon rank test was used to compare values before and after AST-120 treatment. Results Ach-induced iontophoresis (endothelium-dependent response) was dramatically ameliorated at 3 months and 6 months in the AST-120 group. SNP-induced response showed delayed improvement only at 6 months in the AST-120 group. The IS level was decreased at 3 months in the AST-120 group, but remained stable thereafter. cIMT was significantly reduced after AST-120 treatment. No significant complications in patients taking AST-120 were reported. Conclusion AST-120 ameliorated microvascular ED and cIMT in HD patients. A randomized study including a larger population will be required to establish a definitive role of AST-120 as a preventive medication for CVD in HD patients. PMID:27189289

  14. Prolactin Levels, Endothelial Dysfunction, and the Risk of Cardiovascular Events and Mortality in Patients with CKD

    PubMed Central

    Carrero, Juan Jesús; Kyriazis, John; Sonmez, Alper; Tzanakis, Ioannis; Qureshi, Abdul Rashid; Stenvinkel, Peter; Saglam, Mutlu; Stylianou, Kostas; Yaman, Halil; Taslipinar, Abdullah; Vural, Abdulgaffar; Gok, Mahmut; Yenicesu, Mujdat; Daphnis, Eugene; Yilmaz, Mahmut Ilker

    2012-01-01

    Summary Background and objectives Both prolactin clearance and production are altered in CKD. In nonrenal populations, emerging evidence suggests that prolactin participates in the atherosclerotic process. Given the elevated cardiovascular risk of CKD, this study examined links between prolactinemia, vascular derangements, and outcomes. Design, setting, participants, & measurements This observational study was conducted in two cohorts: one with 457 nondialyzed CKD patients (mean age 52±12 years; 229 men) with measurements of flow-mediated dilation (FMD) and carotid intima-media thickness and one with 173 hemodialysis patients (65±12 years; 111 men) with measurements of pulse wave velocity (PWV). Patients were followed for cardiovascular events (n=146, nondialyzed cohort) or death (n=79, hemodialysis cohort). Results Prolactin levels increased along with reduced kidney function. Prolactin significantly and independently contributed to explain the variance of both FMD (in nondialyzed patients) and PWV (in hemodialysis patients), but not intima-media thickness. In Cox analyses, the risk of cardiovascular events in nondialyzed patients increased by 27% (hazard ratio [HR], 1.27; 95% confidence interval [95% CI], 1.17–1.38) for each 10 ng/ml increment of prolactin. Similarly, the risk for all-cause and cardiovascular mortality in hemodialysis patients increased by 12% (HR, 1.12; 95% CI, 1.06–1.17) and 15% (HR, 1.15; 95% CI, 1.08–1.21), respectively. This was true after multivariate adjustment for confounders and after adjustment within the purported causal pathway (FMD or PWV). Conclusions Prolactin levels directly associated with endothelial dysfunction/stiffness and with increased risk of cardiovascular events and mortality in two independent cohorts of CKD patients. PMID:22193237

  15. Tetramethylpyrazine Protects against Hydrogen Peroxide-Provoked Endothelial Dysfunction in Isolated Rat Aortic Rings: Implications for Antioxidant Therapy of Vascular Diseases.

    PubMed

    Ni, Xiaojia; Wong, Siu Ling; Wong, Chi Ming; Lau, Chi Wai; Shi, Xiaogeng; Cai, Yefeng; Huang, Yu

    2014-01-01

    Background and Objectives. Oxidative stress can initiate endothelial dysfunction and atherosclerosis. This study evaluated whether tetramethylpyrazine (TMP), the predominant active ingredient in Rhizoma Ligustici Wallichii (chuanxiong), prevents endothelial dysfunction in a rat model of oxidative stress. Methods. Isolated rat aortic rings were pretreated with various drugs before the induction of endothelial dysfunction by hydrogen peroxide (H2O2). Changes in isometric tension were then measured in acetylcholine- (ACh-) relaxed rings. Endothelial nitric oxide synthase (eNOS) expression was evaluated in the rings by Western blotting, and superoxide anion (O2 (∙-)) content was assessed in primary rat aortic endothelial cells by dihydroethidium- (DHE-) mediated fluorescence microscopy. Results. ACh-induced endothelium-dependent relaxation (EDR) was disrupted by H2O2 in endothelium-intact aortic rings. H2O2-impaired relaxation was ameliorated by acute pretreatment with low concentrations of TMP, as well as by pretreatment with catalase and the NADPH oxidase inhibitors, apocynin and diphenyleneiodonium (DPI). TMP, apocynin, and DPI also reduced O2 (∙-) accumulation in endothelial cells,but TMP failed to alter eNOS expression in aortic rings incubated with H2O2. Conclusions. TMP safeguards against oxidative stress-induced endothelial dysfunction, suggesting that the agent might find therapeutic utility in the management of vascular diseases. However, TMP's role in inhibiting NADPH oxidase and its vascular-protective mechanism of action requires further investigation. PMID:25258643

  16. Salvianolic acid A protects against vascular endothelial dysfunction in high-fat diet fed and streptozotocin-induced diabetic rats.

    PubMed

    Yang, Xiu-Ying; Qiang, Gui-Fen; Zhang, Li; Zhu, Xiao-Ming; Wang, Shou-Bao; Sun, Lan; Yang, Hai-Guang; Du, Guan-Hua

    2011-10-01

    Salvianolic acid A (SalA) is one of the main active ingredients of Salvia miltiorrhizae. The objective of this study was to evaluate the effect of SalA on the diabetic vascular endothelial dysfunction (VED). The rats were given a high-fat and high-sucrose diet for 1 month followed by intraperitoneal injection of streptozotocin (30 mg/kg). The diabetic rats were treated with SalA (1 mg/kg, 90% purity) orally for 10 weeks after modeling, and were given a high-fat diet. Contractile and relaxant responses of aorta rings as well as the serum indications were measured. Our results indicated that SalA treatment decreased the level of serum Von Willebrand factor and ameliorated acetylcholine-induced relaxation and KCl-induced contraction in aorta rings of the diabetic rats. SalA treatment also reduced the serum malondialdehyde, the content of aortic advanced glycation end products (AGEs), and the nitric oxide synthase (NOS) activity as well as the expression of endothelial NOS protein in the rat aorta. Exposure of EA.hy926 cells to AGEs decreased the cell viability and changed the cell morphology, whereas SalA had protective effect on AGEs-induced cellular vitality. Our data suggested that SalA could protect against vascular VED in diabetes, which might attribute to its suppressive effect on oxidative stress and AGEs-induced endothelial dysfunction. PMID:21972802

  17. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    PubMed

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  18. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    PubMed

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro. PMID:26722472

  19. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    PubMed

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  20. [Endothelial dysfunction: role in the maternal syndrome of preeclampsia and long-term consequences for the cardiovascular system].

    PubMed

    Calicchio, R; Buffat, C; Vaiman, D; Miralles, F

    2013-06-01

    Preeclampsia is a pregnancy disorder being a leading cause of maternal and fetal mortality and morbidity. It is a complex multisystem disease characterized by hypertension and proteinuria. In preeclampsia the placenta releases factors into the maternal circulation which cause a systemic endothelial dysfunction. Here, we review data demonstrating the central role played by the endothelium in the development of the maternal syndrome of preeclampsia. We present also original data showing how circulating factors present in the plasma of preeclamptic women can alter the transcriptome of endothelial cells. The expression of genes involved in essential functions such as vasoregulation, oxidative stress, apoptosis and cell proliferation show differential expression when endothelial cells are exposed to preeclamptic or normal pregnancy plasma. We conclude by discussing the growing evidences that the alterations of the endothelium during preeclampsia are linked to an increased risk of cardiovascular diseases latter on life. Therefore, a better understanding of the modifications undergone by the endothelial cells during preeclampsia is essential to develop new therapeutic approaches to both, manage preeclampsia and to prevent the long-term sequelae of the disease on women cardiovascular system.

  1. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5

    PubMed Central

    Huang, Li-Yun; Stuart, Christine; Takeda, Kazuyo; D’Agnillo, Felice; Golding, Basil

    2016-01-01

    Viral infections are often accompanied by pulmonary microvascular leakage and vascular endothelial dysfunction via mechanisms that are not completely defined. Here, we investigated the effect of the Toll-like receptor 3 (TLR3) ligand polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA (dsRNA) commonly used to simulate viral infections, on the barrier function and tight junction integrity of primary human lung microvascular endothelial cells. Poly(I:C) stimulated IL-6, IL-8, TNFα, and IFNβ production in conjunction with the activation of NF-κB and IRF3 confirming the Poly(I:C)-responsiveness of these cells. Poly(I:C) increased endothelial monolayer permeability with a corresponding dose- and time-dependent decrease in the expression of claudin-5, a transmembrane tight junction protein and reduction of CLDN5 mRNA levels. Immunofluorescence experiments revealed disappearance of membrane-associated claudin-5 and co-localization of cytoplasmic claudin-5 with lysosomal-associated membrane protein 1. Chloroquine and Bay11-7082, inhibitors of TLR3 and NF-κB signaling, respectively, protected against the loss of claudin-5. Together, these findings provide new insight on how dsRNA-activated signaling pathways may disrupt vascular endothelial function and contribute to vascular leakage pathologies. PMID:27504984

  2. The NRF2 knockout rat: a new animal model to study endothelial dysfunction, oxidant stress, and microvascular rarefaction.

    PubMed

    Priestley, Jessica R C; Kautenburg, Katie E; Casati, Marc C; Endres, Bradley T; Geurts, Aron M; Lombard, Julian H

    2016-02-15

    Nuclear factor (erythroid-derived 2)-like-2 (NRF2) is a master antioxidant and cell protective transcription factor that upregulates antioxidant defenses. In this study we developed a strain of Nrf2 null mutant rats to evaluate the role of reduced NRF2-regulated antioxidant defenses in contributing to endothelial dysfunction and impaired angiogenic responses during salt-induced ANG II suppression. Nrf2(-/-) mutant rats were developed using transcription activator-like effector nuclease technology in the Sprague-Dawley genetic background, and exhibited a 41-bp deletion that included the start codon for Nrf2 and an absence of immunohistochemically detectable NRF2 protein. Expression of mRNA for the NRF2-regulated indicator enzymes heme oxygenase-1, catalase, superoxide dismutase 1, superoxide dismutase 2, and glutathione reductase was significantly lower in livers of Nrf2(-/-) mutant rats fed high salt (HS; 4% NaCl) for 2 wk compared with wild-type controls. Endothelium-dependent dilation to acetylcholine was similar in isolated middle cerebral arteries (MCA) of Nrf2(-/-) mutant rats and wild-type littermates fed low-salt (0.4% NaCl) diet, and was eliminated by short-term (3 days) HS diet in both strains. Low-dose ANG II infusion (100 ng/kg sc) reversed salt-induced endothelial dysfunction in MCA and prevented microvessel rarefaction in wild-type rats fed HS diet, but not in Nrf2(-/-) mutant rats. The results of this study indicate that suppression of NRF2 antioxidant defenses plays an essential role in the development of salt-induced oxidant stress, endothelial dysfunction, and microvessel rarefaction in normotensive rats and emphasize the potential therapeutic benefits of directly upregulating NRF2-mediated antioxidant defenses to ameliorate vascular oxidant stress in humans. PMID:26637559

  3. Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1.

    PubMed

    Sun, Yan; Li, Jia; Xiao, Na; Wang, Meng; Kou, Junping; Qi, Lianwen; Huang, Fang; Liu, Baolin; Liu, Kang

    2014-11-01

    Adipose and endothelial dysfunction is tightly associated with cardiovascular diseases in obesity and insulin resistance. Because perivascular adipose tissue (PVAT) surrounds vessels directly and influences vessel functions through paracrine effect, and AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) show similarities in modulation of metabolic pathway, we hypothesized that activation of AMPK and SIRT1 in PVAT might regulate the endothelial function in pathological settings. Thus, in this study, we focused on the regulation of AMPK and SIRT1 activities implicated in adipocytokine expression and endothelial homeostasis under inflammatory conditions by using salicylate, metformin, AICA riboside (AICAR) and resveratrol as AMPK activating agents. We prepared conditioned medium (CM) by stimulating PVAT with palmitic acid (PA) and observed the effects of AMPK activating agents on adipocytokine expression and vessel vasodilation in rats. Moreover, we explored the effects of resveratrol and metformin in fructose-fed rats. We observed that PA stimulation induced inflammation and dysregulation of adipocytokine expression accompanied with reduced AMPK activity and SIRT1 abundance in PVAT. AMPK activating agents inhibited NF-κB p65 phosphorylation and suppressed gene expression of pro-inflammatory adipocytokines, and upregulated adiponectin and PPARγ expression in PVAT in an AMPK/SIRT1-interdependent manner. Meanwhile, CM stimulation impaired endothelium-dependent vasodilation in response to acetylcholine (ACh). Pretreatment of CM with AMPK-activating agents enhanced eNOS phosphorylation in the aorta and restored the loss of endothelium-dependent vasodilation, whereas this action was abolished by co-treatment with AMPK inhibitor compound C or SIRT1 inhibitor nicotinamide. Long-term fructose-feeding in rats induced dysregulation of adipocytokine expression in PVAT and the loss of endothelium-dependent vasodilation, whereas these alterations were reversed by oral

  4. Nitric oxide: a key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2.

    PubMed

    Hamed, Saher; Brenner, Benjamin; Roguin, Ariel

    2011-07-01

    Diabetes mellitus type-2 (DM-2) contributes to atherogenesis by inducing endothelial cell injury and dysfunction. Endothelial progenitor cells (EPCs) are essential to blood vessel formation, can differentiate into mature endothelial cells, and promote the repair of damaged endothelium. In DM-2, the circulating EPC count is low and their functionality is impaired. The mechanisms that underlie this reduced count and impaired functionality are poorly understood. Nitric oxide (NO) is a short-lived signalling molecule that is produced by vascular endothelial cells and participates in the maintenance of vascular tone. NO is also known to participate in other physiological processes, such as cell survival, proliferation, and migration. The bioavailability of NO is reduced in EPCs from DM-2 patients. Interestingly, an inverse relationship exists between the reduction in NO bioavailability in EPCs and the patient's plasma glucose and glycated haemoglobin levels. In addition, NO bioavailability in EPCs correlates with plasma oxidized low-density lipoprotein levels in DM-2. Although this reduction in NO bioavailability could be attributed to oxidative stress in DM-2 patients, it also may be due to impairment of one or more members of the protein signalling cascades that are responsible for NO production. The stimulation of NO production or its signalling cascades in EPCs may increase their numbers and improve their function, thus attenuating endothelium damage, independent of the vasodilatory effects of NO. This review summarizes the metabolic alterations that underlie the molecular mechanisms that may be responsible for EPC decrease and dysfunction in DM-2 with emphasis on the involvement of the NO system.

  5. Circulating cell-free mitochondrial DNA as the probable inducer of early endothelial dysfunction in the prediabetic patient.

    PubMed

    Alvarado-Vásquez, Noé

    2015-09-01

    Recent evidence has shown that 346million people in the world have diabetes mellitus (DM); this number will increase to 439million by 2030. In addition, current data indicate an increase in DM cases in the population between 40 and 59years of age. Diabetes is associated with the development of micro- and macro-vascular complications, derived from chronic hyperglycemia on the endothelium. Some reports demonstrate that people in a prediabetic state have a major risk of developing early endothelial dysfunction (ED). Today, it is accepted that individuals considered as prediabetic patients are in a pro-inflammatory state associated with endothelial and mitochondrial dysfunction. It is important to mention that impaired mitochondrial functionality has been linked to endothelial apoptosis and release of mitochondrial DNA (mtDNA) in patients with sepsis, cardiac disease, or atherosclerosis. This free mtDNA could promote ED, as well as other side effects on the vascular system through the activation of the toll-like receptor 9 (TLR9). TLR9 is expressed in different cell types (e.g., T or B lymphocytes, mastocytes, and epithelial and endothelial cells). It is localized intracellularly and recognizes non-methylated dinucleotides of viral, bacterial, and mitochondrial DNA. Recently, it has been reported that TLR9 is associated with the pathogenesis of lupus erythematosus, rheumatoid arthritis, and autoimmune diabetes. In this work, it is hypothesized that the increase in the levels of circulating mtDNA is the trigger of early ED in the prediabetic patient, and later on in the older patient with diabetes, through activation of the TLR9 present in the endothelium. PMID:26026597

  6. Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction.

    PubMed

    Toral, Marta; Romero, Miguel; Jiménez, Rosario; Mahmoud, Ayman Moawad; Barroso, Emma; Gómez-Guzmán, Manuel; Sánchez, Manuel; Cogolludo, Ángel; García-Redondo, Ana B; Briones, Ana M; Vázquez-Carrera, Manuel; Pérez-Vizcaíno, Francisco; Duarte, Juan

    2015-11-01

    Fatty acids cause endothelial dysfunction involving increased ROS (reactive oxygen species) and reduced NO (nitric oxide) bioavailability. We show that in MAECs (mouse aortic endothelial cells), the PPARβ/δ (peroxisome- proliferator-activated receptor β/δ) agonist GW0742 prevented the decreased A23187-stimulated NO production, phosphorylation of eNOS (endothelial nitric oxide synthase) at Ser1177 and increased intracellular ROS levels caused by exposure to palmitate in vitro. The impaired endothelium-dependent relaxation to acetylcholine in mouse aorta induced by palmitate was restored by GW0742. In vivo, GW0742 treatment prevented the reduced aortic relaxation, phosphorylation of eNOS at Ser1177, and increased ROS production and NADPH oxidase in mice fed on a high-fat diet. The PPARβ/δ antagonist GSK0660 abolished all of these protective effects induced by GW0742. This agonist enhanced the expression of CPT (carnitine palmitoyltransferase)-1. The effects of GW0742 on acetylcholine- induced relaxation in aorta and on NO and ROS production in MAECs exposed to palmitate were abolished by the CPT-1 inhibitor etomoxir or by siRNA targeting CPT-1. GW0742 also inhibited the increase in DAG (diacylglycerol), PKCα/βII (protein kinase Cα/βII) activation, and phosphorylation of eNOS at Thr495 induced by palmitate in MAECs, which were abolished by etomoxir. In conclusion, PPARβ/δ activation restored the lipid-induced endothelial dysfunction by up-regulation of CPT-1, thus reducing DAG accumulation and the subsequent PKC-mediated ROS production and eNOS inhibition.

  7. Hyperandrogenism and Insulin Resistance, Not Changes in Body Weight, Mediate the Development of Endothelial Dysfunction in a Female Rat Model of Polycystic Ovary Syndrome (PCOS).

    PubMed

    Hurliman, Amanda; Keller Brown, Jennifer; Maille, Nicole; Mandala, Maurizio; Casson, Peter; Osol, George

    2015-11-01

    This study was designed to differentiate the contributions of hyperandrogenism, insulin resistance (IR), and body weight to the development of endothelial dysfunction in polycystic ovary syndrome and determine the effectiveness of insulin sensitization and antiandrogenic therapy after the establishment of vascular and metabolic dysfunction using a rat model of polycystic ovary syndrome. We hypothesized that the observed endothelial dysfunction was a direct steroidal effect, as opposed to changes in insulin sensitivity or body weight. Prepubertal female rats were randomized to the implantation of a pellet containing DHT or sham procedure. In phase 1, DHT-exposed animals were randomized to pair feeding to prevent weight gain or metformin, an insulin-sensitizing agent, from 5 to 14 weeks. In phase 2, DHT-exposed animals were randomized to treatment with metformin or flutamide, a nonsteroidal androgen receptor blocker from 12 to 16 weeks. Endothelial function was assessed by the vasodilatory response of preconstricted arteries to acetylcholine. Serum steroid levels were analyzed in phase 1 animals. Fasting blood glucose and plasma insulin were analyzed and homeostasis model assessment index calculated in all animals. Our data confirm the presence of endothelial dysfunction as well as increased body weight, hypertension, hyperinsulinemia, and greater IR among DHT-treated animals. Even when normal weight was maintained through pair feeding, endothelial dysfunction, hyperinsulinemia, and IR still developed. Furthermore, despite weight gain, treatment with metformin and flutamide improved insulin sensitivity and blood pressure and restored normal endothelial function. Therefore, the observed endothelial dysfunction is most likely a direct result of hyperandrogenism-induced reductions in insulin sensitivity, as opposed to weight gain.

  8. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    PubMed Central

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  9. Coronary Endothelial Dysfunction Induced by Nucleotide Oligomerization Domain-Like Receptor Protein with Pyrin Domain Containing 3 Inflammasome Activation During Hypercholesterolemia: Beyond Inflammation

    PubMed Central

    Li, Xiang; Pitzer, Ashley L.; Chen, Yang; Wang, Lei

    2015-01-01

    Abstract Aims: This study hypothesized that activation of endothelial nucleotide oligomerization domain-like receptor protein with pyrin domain containing 3 (Nlrp3) inflammasomes directly produces endothelial dysfunction during hypercholesterolemia, which is distinct from its canonical roles in inflammation. Results: Acute hypercholesterolemia in mice was induced by intraperitoneal administration of poloxamer 407 (0.5 g/kg) for 24 h. Endothelial dysfunction was assessed by evaluating endothelium-dependent vasodilation in isolated, perfused, and pressurized coronary arteries in response to bradykinin (10−10–10−6 M) and acetylcholine (10−9–10−5 M). Impaired endothelium-dependent vasodilation was observed in Nlrp3+/+ mice with acute hypercholesterolemia, which was markedly ameliorated in Nlrp3−/− mice. Treatment of mice with inhibitors for caspase-1 or high mobility group box 1 (HMGB1) significantly restored endothelium-dependent vasodilation in Nlrp3+/+ mice with acute hypercholesterolemia. Confocal microscopic analysis demonstrated that hypercholesterolemia markedly increased caspase-1 activity and HMGB1 expression in coronary arterial endothelium of Nlrp3+/+ mice, which was absent in Nlrp3-deficient mice. Further, recombinant HMGB1 directly induced endothelial dysfunction in normal Nlrp3+/+ coronary arteries. In vitro, Nlrp3 inflammasome formation and its activity were instigated in cultured endothelial cells by cholesterol crystal, a danger factor associated with hypercholesterolemia. Moreover, cholesterol crystals directly induced endothelial dysfunction in coronary arteries from Nlrp3+/+ mice, which was attenuated in Nlrp3−/− arteries. Such cholesterol crystal-induced impairment was associated with enhanced superoxide production, downregulation of endothelial nitric oxide synthase activity, and pyroptosis. Innovation and Conclusion: Our data provide the first evidence that activation of endothelial Nlrp3 inflammasome directly impairs

  10. Serelaxin (recombinant human relaxin-2) prevents high glucose-induced endothelial dysfunction by ameliorating prostacyclin production in the mouse aorta.

    PubMed

    Ng, Hooi Hooi; Leo, Chen Huei; Parry, Laura J

    2016-05-01

    Diabetes-induced endothelial dysfunction is a critical initiating factor in the development of cardiovascular complications. Treatment with relaxin improves tumour necrosis factor α-induced endothelial dysfunction by enhancing endothelial nitric oxide synthase (eNOS) activity and restoring superoxide dismutase 1 protein in rat aortic rings ex vivo. It is, therefore, possible that relaxin treatment could alleviate endothelial dysfunction in diabetes. This study aimed to test the hypothesis that serelaxin (recombinant human relaxin-2) prevents high glucose-induced vascular dysfunction in the mouse aorta. Abdominal aortae were isolated from C57BL/6 male mice and incubated in M199 media for 3days with either normal glucose (5.5mM) or high glucose (30mM), and co-incubated with placebo (20mM sodium acetate) or 10nM serelaxin at 37°C in 5% CO2. Vascular function was analysed using wire-myography. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh) (pEC50; normal glucose=7.66±0.10 vs high glucose=7.29±0.10, n=11-12, P<0.05) and the contraction induced by NOS inhibitor, L-NAME (200μM) (normal glucose=59.9±8.3% vs high glucose=38.7±4.3%, n=6, P<0.05), but had no effect on the endothelium-independent agonist, sodium nitroprusside (SNP)-mediated relaxation. Treatment with serelaxin restored endothelial function (pEC50; 7.83±0.11, n=11) but not NO availability. The presence of the cyclooxygenase (COX) inhibitor, indomethacin (1μM) (pEC50; control=7.29±0.10 vs indo=7.74±0.18, n=6-12, P<0.05) and a superoxide dismutase mimetic, tempol (10μM) (pEC50; control=7.29±0.10 vs tempol=7.82±0.05, n=6-12, P<0.01) significantly improved sensitivity to ACh in high glucose treated aortae, but had no effect in serelaxin treated aortae. This suggests that high glucose incubation alters the superoxide and COX-sensitive pathway, which was normalized by co-incubation with serelaxin. Neither high glucose incubation nor serelaxin

  11. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Duan, Junchao; Yu, Yongbo; Yu, Yang; Li, Yang; Wang, Ji; Geng, Weijia; Jiang, Lizhen; Li, Qiuling; Zhou, Xianqing; Sun, Zhiwei

    2014-01-01

    Although nanoparticles have a great potential for biomedical applications, there is still a lack of a correlative safety evaluation on the cardiovascular system. This study is aimed to clarify the biological behavior and influence of silica nanoparticles (Nano-SiO2) on endothelial cell function. The results showed that the Nano-SiO2 were internalized into endothelial cells in a dose-dependent manner. Monodansylcadaverine staining, autophagic ultrastructural observation, and LC3-I/LC3-II conversion were employed to verify autophagy activation induced by Nano-SiO2, and the whole autophagic process was also observed in endothelial cells. In addition, the level of nitric oxide (NO), the activities of NO synthase (NOS) and endothelial (e)NOS were significantly decreased in a dose-dependent way, while the activity of inducible (i)NOS was markedly increased. The expression of C-reactive protein, as well as the production of proinflammatory cytokines (tumor necrosis factor α, interleukin [IL]-1β, and IL-6) were significantly elevated. Moreover, Nano-SiO2 had an inhibitory effect on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Our findings demonstrated that Nano-SiO2 could disturb the NO/NOS system, induce inflammatory response, activate autophagy, and eventually lead to endothelial dysfunction via the PI3K/Akt/mTOR pathway. This indicates that exposure to Nano-SiO2 is a potential risk factor for cardiovascular diseases.

  12. Additive Effect of Non-Alcoholic Fatty Liver Disease on Metabolic Syndrome-Related Endothelial Dysfunction in Hypertensive Patients.

    PubMed

    Perticone, Maria; Cimellaro, Antonio; Maio, Raffaele; Caroleo, Benedetto; Sciacqua, Angela; Sesti, Giorgio; Perticone, Francesco

    2016-01-01

    Metabolic syndrome (MS) is characterized by an increased risk of incident diabetes and cardiovascular (CV) events, identifying insulin resistance (IR) and endothelial dysfunction as key elements. Moreover, non-alcoholic fatty liver disease (NAFLD) is bidirectionally linked with MS as a consequence of metabolic and inflammatory abnormalities. We addressed the question if the evolution in NAFLD might worsen endothelium-dependent vasodilating response in MS hypertensives. We recruited 272 Caucasian newly-diagnosed never-treated hypertensive outpatients divided into three groups according to the presence/absence of MS alone or in combination with NAFLD. MS and NAFLD were defined according to the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII) and non-invasive fatty liver index, respectively. We determined IR by using the homeostasis model assessment (HOMA) index. Vascular function, as forearm blood flow (FBF), was determined through strain-gauge plethysmography after intra-arterial infusion of acetylcholine (ACh) and sodium nitroprusside. MS+NAFLD+ group showed worse metabolic, inflammatory and vascular profiles compared with MS-NAFLD- and MS+NAFLD-. HOMA resulted in being the strongest predictor of FBF both in the MS+NAFLD- and in the MS+NAFLD+ groups, accounting for 20.5% and 33.2% of its variation, respectively. In conclusion, we demonstrated that MS+NAFLD+ hypertensives show a worse endothelium-dependent vasodilation compared with MS+NAFLD-, allowing for consideration of NAFLD as an early marker of endothelial dysfunction in hypertensives. PMID:27023537

  13. Inflammation, Endothelial Dysfunction and Increased Left Ventricular Mass in Chronic Kidney Disease (CKD) Patients: A Longitudinal Study

    PubMed Central

    Dounousi, Evangelia; Jager, Kitty J.; Papagianni, Aikaterini; Pappas, Konstantinos; Siamopoulos, Kostas C.; Zoccali, Carmine; Tsakiris, Dimitrios

    2015-01-01

    Introduction Within this longitudinal study we investigated the association of inflammation markers C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) and endothelial dysfunction markers intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) with left ventricular mass indexed for height2·71 (LVMI) in hypertensive predialysis CKD patients. Material and Methods From 2004 to 2005, 182 incident consecutive adult patients from the outpatient CKD clinics of two hospitals in Greece with CKD and hypertension or using antihypertensive medication, were included. Of these, 107 patients underwent CRP (mg/l) and LVMI (g/height2·71) measurements annually for three years. Results In the longitudinal analyses, using linear mixed modeling, a higher IL-6 (ß = 1.9 (95%ci:0.38;3.5), inflammation score based on CRP, IL-6 and TNF-α (ß = 5.0 (95%ci:0.72; 9.4) and VCAM-1 (ß = 0.01 (95%ci:0.005;0.02) were associated with higher LVMI. These models were adjusted for age, gender and primary renal disease, and for confounders that on top changed the beta with ≥10%, i.e. diuretic use (for IL-6 and inflammation score). Conclusion The results suggest that in predialysis CKD patients, inflammation as well as endothelial dysfunction may play an important role towards the increase in LVMI. PMID:26398099

  14. NOVEL ATYPICAL PKC INHIBITORS PREVENT VASCULAR ENDOTHELIAL GROWTH FACTOR-INDUCED BLOOD-RETINAL BARRIER DYSFUNCTION

    PubMed Central

    Titchenell, Paul M.; Lin, Cheng-Mao; Keil, Jason M.; Sundstrom, Jeffrey M.; Smith, Charles D.; Antonetti, David A.

    2013-01-01

    SYNOPSIS Pro-inflammatory cytokines and growth factors such as vascular endothelial growth factor (VEGF) contribute to the loss of the blood-retinal barrier (BRB) and subsequent macular edema in various retinal pathologies. VEGF signaling requires conventional PKC (PKCβ) activity; however, PKCβ inhibition only partially prevents VEGF-induced endothelial permeability and does not affect pro-inflammatory cytokine-induced permeability suggesting the involvement of alternative signaling pathways. Here, we provide evidence for the involvement of atypical protein kinase C (aPKC) signaling in VEGF-induced endothelial permeability and identify a novel class of inhibitors of aPKC that prevent BRB breakdown in vivo. Genetic and pharmacological manipulations of aPKC isoforms were used to assess their contribution to endothelial permeability in culture. A chemical library was screened using an in vitro kinase assay to identify novel small molecule inhibitors and further medicinal chemistry was performed to delineate a novel pharmacophore. We demonstrate that aPKC isoforms are both sufficient and required for VEGF-induced endothelial permeability. Furthermore, these specific, potent, non-competitive, small molecule inhibitors prevented VEGF-induced tight junction internalization and retinal endothelial permeability in response to VEGF in both primary culture and in rodent retina. These data suggest that aPKC inhibition with 2-amino-4-phenyl-thiophene derivatives may be developed to preserve the BRB in retinal diseases such as diabetic retinopathy or uveitis and the blood-brain barrier (BBB) in the presence of brain tumors. PMID:22721706

  15. Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast Smad3 linker phosphorylation in the mouse obstructed kidney.

    PubMed

    Sun, Yu Bo Yang; Qu, Xinli; Li, Xueling; Nikolic-Paterson, David J; Li, Jinhua

    2013-01-01

    Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast

  16. Vascular hypercontractility and endothelial dysfunction before development of atherosclerosis in moderate dyslipidemia: role for nitric oxide and interleukin-6

    PubMed Central

    Cavieres, Vanessa; Valdes, Karla; Moreno, Brayan; Moore-Carrasco, Rodrigo; Gonzalez, Daniel R

    2014-01-01

    Atherosclerosis is a chronic disease that affects peripheral arteries and the aorta. Several inflammatory processes are required until the production of an atheroma. Before the atheroma appears, endothelial dysfunction is a key event. We hypothesized that endothelial dysfunction occurs in a mouse model of mild dyslipidemia, the mouse deficient in apolipoprotein E (apoE+/-). Using aortic rings preparation, we found that apoE+/- mice showed increased developed tension in response to KCl 60 mM when using a range a pre-loads from 0.5 to 2.0 grams (p = 0.038). Next, we tested the vasorelaxant capacity of apoE+/- aortas (pre-contracted with phenylephrine) in response to acetylcholine, an endothelium-dependent vasodilator. ApoE+/- aortas showed diminished vasorelaxation in a range of Ach concentrations (p = 0.0032). Next we assessed the levels of plasma NO metabolites, nitrite plus nitrate. These were significantly reduced, along with a significant decrease of the endothelial nitric oxide synthase in ApoE+/- mice. When we analyzed the morphology of the aortas in apoE+/- mice, these showed no signs of atheroma. In addition, we analyzed the levels of inflammatory cytokines, TNF-alpha, MCP-1 and interleukin 6 (Il-6). While TNF-alpha was similar in both groups, (18.3 ± 2 pg/mL in wild type vs. 17.5 ± 2 pg/mL in apoE+/-), MCP-1 was increased in ApoE deficient mice (71.5 ± 0.8 pg/mL in wild type vs. 85.1 ± 7.4 pg/mL in ApoE+/- mice, p = 0.006), along with IL-6 (24.7 ± 1.7 pg/ml in wild type vs. 47.1 ± 12.5 in ApoE mice, p = 0.0055). These results suggest that mild dyslipidemia produces a pro-inflammatory state, associated with diminished NOS and NO production, which produces endothelial dysfunction. PMID:25360389

  17. Relationship of Inflammation and Endothelial Dysfunction with Risks to Cardiovascular Disease among People in Inner Mongolia of China*

    PubMed Central

    Peng, Hao; Han, Shu Hai; Liu, Hai Ying; Chandni, Vasisht; Cai, Xiao Qing; Zhang, Yong Hong

    2015-01-01

    Objective To explore the relationship of inflammation and endothelial dysfunction with risks to cardiovascular disease (CVD). Methods Blood pressure, body weight, body height, waist circumference and lifestyle risk factors were measured and studied among 2589 participants in Inner Mongolia of China, and biomarkers of inflammation and endothelial dysfunction including high-sensitivity C-reactive protein (hsCRP), soluble inter-cellular adhesion molecule-1 (sICAM-1), soluble E-selectin (sE-selectin), and angiotensin II were investigated. Results Subjects with metabolic risk factors for CVD had higher levels of hsCRP, sE-selectin and sICAM-1 than those without such risk factors (all P<0.05). Levels of all biomarkers positively and significantly increased with aggregation of the metabolic risk factors among the subjects (all P for trend <0.001). Data from the multivariate analysis showed that participants with high levels of hsCRP [odds ratio (OR): 1.96, 95% confidence interval (CI): 1.52–2.53], sE-selectin (OR: 1.35, 95% CI: 1.05–1.72), and angiotensin II (OR: 1.81, 95% CI: 1.40–2.33) were more likely to develop hypertension; participants with high levels of hsCRP (OR: 2.33, 95% CI: 1.85–2.94), sE-selectin (OR: 1.24, 95% CI: 1.00–1.54), and sICAM-1 (OR: 1.70, 95% CI: 1.30–2.22) were more likely to develop dyslipidemia, and those with high levels of hsCRP (OR: 2.95, 95% CI: 2.27–3.83) and sICAM-1(OR: 2.80, 95% CI: 2.06–3.80) were more likely to develop hyperglycemia. Conclusion Biomarkers of inflammation and endothelial dysfunction were separately associated with relevant metabolic risk factors for CVD. And appropriate measures should be taken to control inflammation and improve endothelial function among individuals with different metabolic risk factors for CVD. PMID:24215873

  18. Chemical structures of 4-oxo-flavonoids in relation to inhibition of oxidized low-density lipoprotein (LDL)-induced vascular endothelial dysfunction.

    PubMed

    Yi, Long; Jin, Xin; Chen, Chun-Ye; Fu, Yu-Jie; Zhang, Ting; Chang, Hui; Zhou, Yong; Zhu, Jun-Dong; Zhang, Qian-Yong; Mi, Man-Tian

    2011-01-01

    Vascular endothelial dysfunction induced by oxidative stress has been demonstrated to be the initiation step of atherosclerosis (AS), and flavonoids may play an important role in AS prevention and therapy. Twenty-three flavonoids categorized into flavones, flavonols, isoflavones, and flavanones, all with 4-oxo-pyronenucleus, were examined for what structural characteristics are required for the inhibitory effects on endothelial dysfunction induced by oxidized low-density lipoprotein (oxLDL). Human vascular endothelial cells EA.hy926 were pretreated with different 4-oxo-flavonoids for 2 hs, and then exposed to oxLDL for another 24 hs. Cell viability and the level of malondialdehyde (MDA), nitric oxide (NO) and soluble intercellular adhesion molecule-1 (sICAM-1) were measured, respectively. Then, correlation analysis and paired comparison were used to analyze the structure-activity relationships. Significant correlations were observed between the number of -OH moieties in total or in B-ring and the inhibitory effectson endothelial dysfunction. Furthermore, 3',4'-ortho-dihydroxyl on B-ring, 3-hydroxyl on C-ring and 2,3-double bondwere correlated closely to the inhibitory effects of flavonolson cell viability decrease and lipid peroxidation. 5,7-meta-dihydroxyl group on A-ring was crucial for the anti-inflammatory effects of flavones and isoflavones in endothelial cells. Moreover, the substituted position of B-ring on C3 rather than C2 was important for NO release. Additionally, hydroxylation at C6 position significantly attenuated the inhibitory effects of 4-oxo-flavonoids on endothelial dysfunction. Our findings indicated that the effective agents in inhibiting endothelial dysfunction include myricetin, quercetin, luteolin, apigenin, genistein and daidzein. Our work might provide some evidence for AS prevention and a strategy for the design of novel AS preventive agents.

  19. Pretreatment with β-Boswellic Acid Improves Blood Stasis Induced Endothelial Dysfunction: Role of eNOS Activation.

    PubMed

    Wang, Mingming; Chen, Minchun; Ding, Yi; Zhu, Zhihui; Zhang, Yikai; Wei, Peifeng; Wang, Jingwen; Qiao, Yi; Li, Liang; Li, Yuwen; Wen, Aidong

    2015-01-01

    Vascular endothelial cells play an important role in modulating anti-thrombus and maintaining the natural function of vascular by secreting many active substances. β-boswellic acid (β-BA) is an active triterpenoid compound from the extract of boswellia serrate. In this study, it is demonstrated that β-BA ameliorates plasma coagulation parameters, protects endothelium from blood stasis induced injury and prevents blood stasis induced impairment of endothelium-dependent vasodilatation. Moreover, it is found that β-BA significantly increases nitric oxide (NO) and cyclic guanosine 3', 5'-monophosphate (cGMP) levels in carotid aortas of blood stasis rats. To stimulate blood stasis-like conditions in vitro, human umbilical vein endothelial cells (HUVECs) were exposed to transient oxygen and glucose deprivation (OGD). Treatment of β-BA significantly increased intracellular NO level. Western blot and immunofluorescence as well as immunohistochemistry reveal that β-BA increases phosphorylation of enzyme nitric oxide synthase (eNOS) at Ser1177. In addition, β-BA mediated endothelium-dependent vasodilatation can be markedly blocked by eNOS inhibitor L-NAME in blood stasis rats. In OGD treated HUEVCs, the protective effect of β-BA is attenuated by knockdown of eNOS. In conclusion, the above findings provide convincing evidence for the protective effects of β-BA on blood stasis induced endothelial dysfunction by eNOS signaling pathway. PMID:26482008

  20. Pretreatment with β-Boswellic Acid Improves Blood Stasis Induced Endothelial Dysfunction: Role of eNOS Activation

    PubMed Central

    Wang, Mingming; Chen, Minchun; Ding, Yi; Zhu, Zhihui; Zhang, Yikai; Wei, Peifeng; Wang, Jingwen; Qiao, Yi; Li, Liang; Li, Yuwen; Wen, Aidong

    2015-01-01

    Vascular endothelial cells play an important role in modulating anti-thrombus and maintaining the natural function of vascular by secreting many active substances. β-boswellic acid (β-BA) is an active triterpenoid compound from the extract of boswellia serrate. In this study, it is demonstrated that β-BA ameliorates plasma coagulation parameters, protects endothelium from blood stasis induced injury and prevents blood stasis induced impairment of endothelium-dependent vasodilatation. Moreover, it is found that β-BA significantly increases nitric oxide (NO) and cyclic guanosine 3’, 5’-monophosphate (cGMP) levels in carotid aortas of blood stasis rats. To stimulate blood stasis-like conditions in vitro, human umbilical vein endothelial cells (HUVECs) were exposed to transient oxygen and glucose deprivation (OGD). Treatment of β-BA significantly increased intracellular NO level. Western blot and immunofluorescence as well as immunohistochemistry reveal that β-BA increases phosphorylation of enzyme nitric oxide synthase (eNOS) at Ser1177. In addition, β-BA mediated endothelium-dependent vasodilatation can be markedly blocked by eNOS inhibitor L-NAME in blood stasis rats. In OGD treated HUEVCs, the protective effect of β-BA is attenuated by knockdown of eNOS. In conclusion, the above findings provide convincing evidence for the protective effects of β-BA on blood stasis induced endothelial dysfunction by eNOS signaling pathway. PMID:26482008

  1. Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats.

    PubMed

    Wang, Zhuo; Li, Ai-Ying; Guo, Qiu-Hong; Zhang, Jian-Ping; An, Qi; Guo, Ya-jing; Chu, Li; Weiss, J Woodrow; Ji, En-Sheng

    2013-01-01

    Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.

  2. Radiation-induced endothelial dysfunction and fibrosis in rat lung: modification by the angiotensin converting enzyme inhibitor CL242817

    SciTech Connect

    Ward, W.F.; Molteni, A.; Ts'ao, C.H.

    1989-02-01

    The purpose of this study was to evaluate the angiotensin converting enzyme (ACE) inhibitor CL242817 as a modifier of radiation-induced pulmonary endothelial dysfunction and pulmonary fibrosis in rats sacrificed 2 months after a single dose of 60Co gamma rays (0-30 Gy) to the right hemithorax. CL242817 was administered in the feed continuously after irradiation at a regimen of 60 mg/kg/day. Pulmonary endothelial function was monitored by lung ACE activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. Pulmonary fibrosis was evaluated by lung hydroxyproline (HP) content. Lung ACE and PLA activities decreased with increasing radiation dose, and cotreatment with CL242817 significantly ameliorated both responses. CL242817 dose-reduction factors (DRF) were 1.3-1.5 for ACE and PLA activity. Lung PGI2 and TXA2 production increased with increasing radiation dose, and CL242817 almost completely prevented both radiation responses. The slope of the radiation dose-response curves in the CL242817-treated rats was essentially zero, precluding calculation of DRF values for PGI2 and TXA2 production. Lung HP content also increased with increasing radiation dose, and CL242817 significantly attenuated this response (DRF = 1.5). These data suggest that the ability of ACE inhibitors to ameliorate radiation-induced pulmonary endothelial dysfunction is not unique to captopril, rather it is a therapeutic action shared by other members of this class of compounds. These data also provide the first evidence that ACE inhibitors exhibit antifibrotic activity in irradiated rat lung.

  3. Novel Links between the Long Pentraxin 3, Endothelial Dysfunction, and Albuminuria in Early and Advanced Chronic Kidney Disease

    PubMed Central

    Suliman, Mohamed E.; Yilmaz, Mahmut I.; Carrero, Juan J.; Qureshi, Abdul Rashid; Saglam, Mutlu; Ipcioglu, Osman M.; Yenicesu, Mujdat; Tong, Mengli; Heimbürger, Olof; Barany, Peter; Alvestrand, Anders; Lindholm, Bengt; Stenvinkel, Peter

    2008-01-01

    Background and objectives: Albuminuria and inflammation predict cardiovascular events. Pentraxin 3, an inflammatory mediator produced by, among others, endothelial cells, may have a role in atherogenesis. Design, setting, participants, & measurements: In 207 Swedish patients with stage 5 chronic kidney disease and 79 Turkish patients with type 2 diabetes and proteinuria and normal renal function, whether serum pentraxin 3 levels are associated with albuminuria and endothelial dysfunction was studied. Results: Patients with stage 5 chronic kidney disease and a high degree of albuminuria more often had diabetes and higher levels of pentraxin 3, vascular cellular adhesion molecule-1, and blood pressure. Moreover, pentraxin 3 was independently associated with 24-h urinary albumin excretion. In patients with type 2 diabetes, pentraxin 3 was significantly higher than in control subjects. Patients with type 2 diabetes and more proteinuria had higher pentraxin 3, C-reactive protein, glycosylated hemoglobin, insulin, and homeostasis model assessment index as well as lower flow-mediated dilation and serum albumin. Pentraxin 3 was positively correlated with C-reactive protein, homeostasis model assessment index, and carotid intima-media thickness and negatively with flow-mediated dilation. Pentraxin 3 and glomerular filtration rate were independently associated with 24-h urinary protein excretion. Only pentraxin 3 and proteinuria were significantly and independently associated with flow-mediated dilation. Conclusions: In two different renal cohorts, one of stage 5 chronic kidney disease and one of type 2 diabetes and normal renal function, pentraxin 3 was independently associated with proteinuria. Moreover, both pentraxin 3 and proteinuria were associated with endothelial dysfunction in patients with type 2 diabetes. PMID:18417746

  4. Is HIV-1 infection associated with endothelial dysfunction in a population of African ancestry in South Africa?

    PubMed

    Fourie, C; van Rooyen, J; Pieters, M; Conradie, K; Hoekstra, T; Schutte, A

    2011-01-01

    The chronic infection status suffered by HIV-infected individuals promotes chronic arterial inflammation and injury, which leads to dysfunction of the endothelium, atherosclerosis and thrombosis. Although HIV-1 subtype C is prevalent in South Africa and accounts for almost a third of the infections worldwide, this subtype differs genetically from HIV-1 subtype B on which the majority of studies have been done. The objective of this study was to assess whether newly identified, never-treated, HIV-1-infected South African participants showed signs of endothelial dysfunction, accelerated atherosclerosis and increased blood coagulation. We compared 300 newly diagnosed (never antiretroviraltreated) HIV-infected participants to 300 age-, gender-, body mass index- and locality-matched uninfected controls. Levels of high-density lipoprotein cholesterol (HDL-C), triglycerides, interleukin-6 (IL-6), C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), fibrinogen and plasminogen activator inhibitor-1 (PAI-1), and carotid radialis pulse wave velocity (cr-PWV) were determined. The HIV-infected participants showed lower HDL-C and higher IL-6, CRP, ICAM-1 and VCAM-1 levels compared to the uninfected controls. No differences in fibrinogen and PAI-1 levels were detected. A continuous positive trend of increasing age with cr-PWV was detected in the HIV-infected group. Our findings suggest inflammatory injury of the endothelium, pointing to endothelial dysfunction of never-treated HIV-1-infected South Africans of African ancestry. Although no indication of a prothrombotic state could be detected, there was an indication of accelerated vascular aging and probable early atherosclerosis in the older HIV-infected participants. PMID:21713302

  5. Protective effects of ursolic acid against hepatotoxicity and endothelial dysfunction in mice with chronic high choline diet consumption.

    PubMed

    Li, Dongyu; Ren, Daoyuan; Luo, Yiyang; Yang, Xingbin

    2016-10-25

    This study was designed to investigate the preventive effect of ursolic acid (UA), a plant-based pentacyclic triterpenoid carboxyl acid, against vascular endothelial damage and liver oxidative injury in the mice fed with 3% dietary high choline (HC) water. Mice fed 3% HC water for 8 weeks significantly displayed liver oxidative stress and vascular endothelial dysfunction (p < 0.01). Furthermore, continuous administration of UA at 400 and 800 mg/kg bw in HC-fed mice could significantly inhibit the HC-induced elevation of serum total cholesterol, total triglyceride, low density lipoprotein-cholesterol, endothelin 1 and thromboxane A2 levels as well as alanine aminotransferase and aspartate aminotransferase activities, while the HC-induced decline of serum high density lipoprotein-cholesterol, endothelial nitric oxide synthase, nitric oxide and prostaglandin I2 levels could be markedly elevated following the treatment (p < 0.05, p < 0.01). UA at 400 and 800 mg/kg bw also increased the hepatic total superoxide dismutase and glutathione peroxidase activities and decreased hepatic malonaldehyde and non-esterified fatty acid levels, relative to HC-treated mice (p < 0.05, p < 0.01). Moreover, the conventional haematoxylin and eosin staining observation of the liver and vascular tissues suggested that UA exerted a significant protective role against HC diet-induced endothelial damage and liver injury in mice. This is the first report showing high intake of dietary choline can induce liver damage and UA has the potential preventive effect against vascular and liver injury in HC-fed mice. PMID:27567547

  6. Vitamin D Prevents Endothelial Progenitor Cell Dysfunction Induced by Sera from Women with Preeclampsia or Conditioned Media from Hypoxic Placenta

    PubMed Central

    Myerski, Ashley C.; von Kaisenberg, Constantin S.; Grundmann, Magdalena; Hubel, Carl A.; von Versen-Höynck, Frauke

    2014-01-01

    Context Placenta-derived circulating factors contribute to the maternal endothelial dysfunction underlying preeclampsia. Endothelial colony forming cells (ECFC), a sub-population of endothelial progenitor cells (EPCs), are thought to be involved in vasculogenesis and endothelial repair. Low vitamin D concentrations are associated with an increased risk for preeclampsia. Objective We hypothesized that the function of human fetal ECFCs in culture would be suppressed by exposure to preeclampsia-related factors–preeclampsia serum or hypoxic placental conditioned medium– in a fashion reversed by vitamin D. Design, Setting, Patients ECFCs were isolated from cord blood of uncomplicated pregnancies and expanded in culture. Uncomplicated pregnancy villous placenta in explant culture were exposed to either 2% (hypoxic), 8% (normoxic) or 21% (hyperoxic) O2 for 48 h, after which the conditioned media (CM) was collected. Outcome Measures ECFC tubule formation (Matrigel assay) and migration were examined in the presence of either maternal serum from preeclampsia cases or uncomplicated pregnancy controls, or pooled CM, in the presence or absence of 1,25(OH)2 vitamin D3. Results 1,25(OH)2 vitamin D3 reversed the adverse effects of preeclampsia serum or CM from hypoxic placenta on ECFCs capillary-tube formation and migration. Silencing of VDR expression by VDR siRNA, VDR blockade, or VEGF pathway blockade reduced ECFC functional abilities. Effects of VDR or VEGF blockade were partially prevented by vitamin D. Conclusion Vitamin D promotes the capillary-like tubule formation and migration of ECFCs in culture, minimizing the negative effects of exposure to preeclampsia-related factors. Further evaluation of the role of vitamin D in ECFC regulation and preeclampsia is warranted. PMID:24887145

  7. Protective effects of ursolic acid against hepatotoxicity and endothelial dysfunction in mice with chronic high choline diet consumption.

    PubMed

    Li, Dongyu; Ren, Daoyuan; Luo, Yiyang; Yang, Xingbin

    2016-10-25

    This study was designed to investigate the preventive effect of ursolic acid (UA), a plant-based pentacyclic triterpenoid carboxyl acid, against vascular endothelial damage and liver oxidative injury in the mice fed with 3% dietary high choline (HC) water. Mice fed 3% HC water for 8 weeks significantly displayed liver oxidative stress and vascular endothelial dysfunction (p < 0.01). Furthermore, continuous administration of UA at 400 and 800 mg/kg bw in HC-fed mice could significantly inhibit the HC-induced elevation of serum total cholesterol, total triglyceride, low density lipoprotein-cholesterol, endothelin 1 and thromboxane A2 levels as well as alanine aminotransferase and aspartate aminotransferase activities, while the HC-induced decline of serum high density lipoprotein-cholesterol, endothelial nitric oxide synthase, nitric oxide and prostaglandin I2 levels could be markedly elevated following the treatment (p < 0.05, p < 0.01). UA at 400 and 800 mg/kg bw also increased the hepatic total superoxide dismutase and glutathione peroxidase activities and decreased hepatic malonaldehyde and non-esterified fatty acid levels, relative to HC-treated mice (p < 0.05, p < 0.01). Moreover, the conventional haematoxylin and eosin staining observation of the liver and vascular tissues suggested that UA exerted a significant protective role against HC diet-induced endothelial damage and liver injury in mice. This is the first report showing high intake of dietary choline can induce liver damage and UA has the potential preventive effect against vascular and liver injury in HC-fed mice.

  8. Pharmacological neutropenia prevents endothelial dysfunction but not smooth muscle functions impairment induced by middle cerebral artery occlusion

    PubMed Central

    Pétrault, Olivier; Ouk, Thavarak; Gautier, Sophie; Laprais, Maud; Gelé, Patrick; Bastide, Michèle; Bordet, Régis

    2005-01-01

    The polymorphonuclear neutrophils (PMN) activation and mobilization observed in acute cerebral infarction contribute to the brain tissue damage, but PMN could also be involved in postischemic functional injury of ischemied blood vessel. This study was undertaken to investigate whether pharmacological neutropenia could modify the postischemic endothelial dysfunction in comparison to smooth muscle whose impairment is likely more related to reperfusion and oxidative stress. A cerebral ischemia–reperfusion by endoluminal occlusion of right middle cerebral artery (MCA) was performed 4 days after intravenous administration of vinblastine or 12 h after RP-3 anti-rat neutrophils monoclonal antibody (mAb RP-3) injection into the peritoneal cavity, on male Wistar rats with 1-h ischemia then followed by 24-h reperfusion period. Brain infarct volume was measured by histomorphometric analysis and vascular endothelial and smooth muscle reactivity of MCA was analysed using Halpern myograph. Neutropenia induced a neuroprotective effect as demonstrated by a significant decrease of brain infarct size. In parallel to neuroprotection, neutropenia prevented postischemic impairment of endothelium-dependent relaxing response to acetylcholine. In contrast, smooth muscle functional alterations were not prevented by neutropenia. Ischemia–reperfusion-induced myogenic tone impairment remained unchanged in vinblastine and mAb RP-3-treated rats. Postischemic Kir2.x-dependent relaxation impairment was not prevented in neutropenic conditions. The fully relaxation of smooth muscle response to sodium nitroprusside was similar in all groups. Our results evidenced the dissociate prevention of pharmacologically induced neutropenia on postischemic vascular endothelial and smooth muscle impairment. The selective endothelial protection by neutropenia is parallel to a neuroprotective effect suggesting a possible relationship between the two phenomena. PMID:15700030

  9. Angiotensin 1-7 Protects against Angiotensin II-Induced Endoplasmic Reticulum Stress and Endothelial Dysfunction via Mas Receptor

    PubMed Central

    Murugan, Dharmani; Lau, Yeh Siang; Lau, Wai Chi; Mustafa, Mohd Rais; Huang, Yu

    2015-01-01

    Angiotensin 1–7 (Ang 1–7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1–7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1–7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1–7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1–7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1–7. In addition, Ang 1–7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1–7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function. PMID:26709511

  10. Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by dietary polyphenols in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenols possess anti-oxidant and anti-inflammatory properties. Oxidative stress (OS) and inflammation have been implicated in the pathogenesis of cytotoxic brain edema in cerebral ischemia. In addition, OS and pro-inflammatory cytokines also damage the endothelial cells and the neurovascular uni...

  11. Urine albumin to creatinine ratio: A marker of early endothelial dysfunction in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The urine albumin-to-creatinine ratio (UACR) is a useful predictor of cardiovascular (CV) events in adults. Its relationship to vascular function in children is not clear. We investigated whether UACR was related to insulin resistance and endothelial function, a marker of subclinical atherosclerosis...

  12. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility.

    PubMed

    García Ponce, Alexander; Citalán Madrid, Alí F; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-06-30

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity.

  13. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility

    PubMed Central

    García Ponce, Alexander; Citalán Madrid, Alí F.; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-01-01

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity. PMID:27357373

  14. Cytokine release and endothelial dysfunction: a perfect storm in orbivirus pathogenesis.

    PubMed

    Howerth, Elizabeth W

    2015-01-01

    Although bluetongue viruses (BTV) and epizootic haemorrhagic disease viruses (EHDV) are closely related, there are differences in susceptibility to these viruses both between and within a species. White‑tailed deer are susceptible to disease by both BTV and EHDV, sheep are susceptible to BTV, but resistant to EHDV, and cattle can be infected with both viruses but disease is usually subclinical. Host genetics probably play a role in the disease outcome, but cytokine and endothelial responses are likely to determine if subclinical or clinical disease develops. Dendritic macrophages deliver virus to lymph nodes following the bite of an infected Culicoides. The virus then disseminates to many organs replicating in mononuclear phagocytes and endothelium. Initially, an interferon‑1 response probably determines if the disease develops. Replication in mononuclear cells and endothelium results in the release of cytokines and vasoactive mediators, and may result in endothelial cell death leading to the clinical features of fever, hyperaemia, exudation of fluid, and haemorrhage. Disease outcome may also be linked to virus binding Toll‑like receptor‑3 and upregulation of endothelial surface receptors potentiating cytokine release and allowing transmigration of inflammatory cells, respectively. Despite a wealth of information, host genetics involved in resistance to BTV and EHDV and how variations in cytokines and endothelial responses determine clinical outcome still need further elucidation. PMID:26741244

  15. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility.

    PubMed

    García Ponce, Alexander; Citalán Madrid, Alí F; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-01-01

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity. PMID:27357373

  16. Reduction of obesity, as induced by leptin, reverses endothelial dysfunction in obese (Lep(ob)) mice

    NASA Technical Reports Server (NTRS)

    Winters, B.; Mo, Z.; Brooks-Asplund, E.; Kim, S.; Shoukas, A.; Li, D.; Nyhan, D.; Berkowitz, D. E.

    2000-01-01

    Obesity is a major health care problem and is associated with significant cardiovascular morbidity. Leptin, a neuroendocrine hormone released by adipose tissue, is important in modulating obesity by signaling satiety and increasing metabolism. Moreover, leptin receptors are expressed on vascular endothelial cells (ECs) and mediate angiogenesis. We hypothesized that leptin may also play an important role in vasoregulation. We investigated vasoregulatory mechanisms in the leptin-deficient obese (ob/ob) mouse model and determined the influence of leptin replacement on endothelial-dependent vasorelaxant responses. The direct effect of leptin on EC nitric oxide (NO) production was also tested by using 4, 5-diaminofluorescein-2 diacetate staining and measurement of nitrate and nitrite concentrations. Vasoconstrictor responses to phenylephrine, norepinephrine, and U-46619 were markedly enhanced in aortic rings from ob/ob mice and were modulated by NO synthase inhibition. Vasorelaxant responses to ACh were markedly attenuated in mesenteric microvessels from ob/ob mice. Leptin replacement resulted in significant weight loss and reversal of the impaired endothelial-dependent vasorelaxant responses observed in ob/ob mice. Preincubation of ECs with leptin enhanced the release of NO production. Thus leptin-deficient ob/ob mice demonstrate marked abnormalities in vasoregulation, including impaired endothelial-dependent vasodilation, which is reversed by leptin replacement. These findings may be partially explained by the direct effect of leptin on endothelial NO production. These vascular abnormalities are similar to those observed in obese, diabetic, leptin-resistant humans. The ob/ob mouse may, therefore, be an excellent new model for the study of the cardiovascular effects of obesity.

  17. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. PMID:26667415

  18. Reduction in visceral adiposity is highly related to improvement in vascular endothelial dysfunction among obese women: an assessment of endothelial function by radial artery pulse wave analysis.

    PubMed

    Park, Si-Hoon; Shim, Kyung-Won

    2005-08-31

    Because obesity is frequently complicated by other cardiovascular risk factors, the impact of a reduction in visceral adiposity on vascular endothelial dysfunction (VED) in obese patients is difficult to determine. In the present study, we evaluated the impact of a reduction in visceral adiposity on VED in obese women. Thirty-six premenopausal obese women (BMI >/= 25 kg/m2) without complications were enrolled in the study. VED was evaluated by determining the augmentation index (AIx) from radial artery pulse waves obtained by applanation tonometry. Changes in AIx in response to nitroglycerin- induced endothelium-independent vasodilatation (DeltaAIx-NTG) and in response to salbutamol administration (DeltaAIx-Salb) were determined before and after weight reduction. After a 12-week weight reduction program, the average weight loss was 7.96 +/- 3.47 kg, with losses of 21.88 +/- 20.39 cm2 in visceral fat areas (p < 0.001). Pulse wave analysis combined with provocative pharmacological testing demonstrated preserved endothelium-independent vasodilation in healthy premenopausal obese women (DeltaAIx-NTG: 31.36 +/- 9.80% before weight reduction vs. 28.25 +/- 11.21% after weight reduction, p > 0.1) and an improvement in endothelial-dependent vasodilation following weight reduction (DeltaAIx-Salb: 10.03 +/- 6.49% before weight reduction vs. 19.33 +/- 9.28% after reduction, p < 0.001). A reduction in visceral adipose tissue was found to be most significantly related to an increase in DeltaAIx-Salb (beta=-0.57, p < 0.001). A reduction in visceral adiposity was significantly related to an improvement in VED. This finding suggests that reduction of visceral adiposity may be as important as the control of other major risk factors in the prevention of atherosclerosis in obese women. PMID:16127776

  19. Age-related atrial fibrosis.

    PubMed

    Gramley, Felix; Lorenzen, Johann; Knackstedt, Christian; Rana, Obaida R; Saygili, Erol; Frechen, Dirk; Stanzel, Sven; Pezzella, Francesco; Koellensperger, Eva; Weiss, Christian; Münzel, Thomas; Schauerte, Patrick

    2009-03-01

    Many age-related diseases are associated with, and may be promoted by, cardiac fibrosis. Transforming growth factor (TGF)-beta, hypoxia-induced factor (HIF), and the matrix metalloproteinase (MMP) system have been implicated in fibrogenesis. Thus, we investigated whether age is related to these systems and to atrial fibrosis. Right atrial appendages (RAA) obtained during heart surgery (n = 115) were grouped according to patients' age (<50 years, 51-60 years, 61-70 years, or >70 years). Echocardiographic ejection fractions (EF) and fibrosis using Sirius-red-stained histological sections were determined. TGF-beta was determined by quantitative RT-PCR and hypoxia-related factors [HIF1 alpha, the vascular endothelial growth factor (VEGF)-receptor, CD34 (a surrogate marker for microvessel density), the factor inhibiting HIF (FIH), and prolyl hydroxylase 3 (PHD 3)] were detected by immunostaining. MMP-2 and -9 activity were determined zymographically, and mRNA levels of their common tissue inhibitor TIMP-1 were determined by RT-PCR. Younger patients (<50 years) had significantly less fibrosis (10.1% +/- 4.4% vs 16.6% +/- 8.3%) than older individuals (>70 years). While HIF1 alpha, FIH, the VEGF-receptor, and CD34 were significantly elevated in the young, TGF-beta and PHD3 were suppressed in these patients. MMP-2 and -9 activity was found to be higher while TIMP-1 levels were lower in older patients. Statistical analysis proved age to be the only factor influencing fibrogenesis. With increasing age, RAAs develop significantly more fibrosis. An increase of fibrotic and decrease of hypoxic signalling and microvessel density, coupled with differential expression of MMPs and TIMP-1 favouring fibrosis may have helped promote atrial fibrogenesis. PMID:19234766

  20. Endovascular treatment of chronic cerebro spinal venous insufficiency in patients with multiple sclerosis modifies circulating markers of endothelial dysfunction and coagulation activation: a prospective study.

    PubMed

    Napolitano, Mariasanta; Bruno, Aldo; Mastrangelo, Diego; De Vizia, Marcella; Bernardo, Benedetto; Rosa, Buonagura; De Lucia, Domenico

    2014-10-01

    We performed a monocentric observational prospective study to evaluate coagulation activation and endothelial dysfunction parameters in patients with multiple sclerosis undergoing endovascular treatment for cerebro-spinal-venous insufficiency. Between February 2011 and July 2012, 144 endovascular procedures in 110 patients with multiple sclerosis and chronical cerebro-spinal venous insufficiency were performed and they were prospectively analyzed. Each patient was included in the study according to previously published criteria, assessed by the investigators before enrollment. Endothelial dysfunction and coagulation activation parameters were determined before the procedure and during follow-up at 1, 3, 6, 9, 12, 15 and 18 months after treatment, respectively. After the endovascular procedure, patients were treated with standard therapies, with the addition of mesoglycan. Fifty-five percent of patients experienced a favorable outcome of multiple sclerosis within 1 month after treatment, 25% regressed in the following 3 months, 24.9% did not experience any benefit. In only 0.1% patients, acute recurrence was observed and it was treated with high-dose immunosuppressive therapy. No major complications were observed. Coagulation activation and endothelial dysfunction parameters were shown to be reduced at 1 month and stable up to 12-month follow-up, and they were furthermore associated with a good clinical outcome. Endovascular procedures performed by a qualified staff are well tolerated; they can be associated with other currently adopted treatments. Correlations between inflammation, coagulation activation and neurodegenerative disorders are here supported by the observed variations in plasma levels of markers of coagulation activation and endothelial dysfunction.

  1. [The role of oxidative metabolism disturbance in the development of NO-related endothelial dysfunction during chronic hearth failure].

    PubMed

    Goishvili, N; Kakauridze, N; Sanikidze, T

    2005-05-01

    The aim of the work was to establish the oxidative metabolism changes and NO data in Chronic Hearth Failure (HF). 52 patients were included in the investigation, among them 37 patients with CHD and chronic HF (II-IV functional class by NIHA) and 17 without it (control group). For revealing of organism redox-status (ceruloplasmine, Fe3+-transfferine, Mn2+, methemoglobine) the blood paramagnetic centers was studied by electron paramagnetic resonance method. For revealing of blood free NO, the diethyldithiocarbamat (SIGMA) was used. In chronic HF the oxidative process intensification and organism compensate reaction reduction with low Fe3+-transferine levels, increased Mn2++, methaemoglobin and inactivation of erythrocytes membranes adrenergic receptors were revealed. In chronic HF the accumulation of reactive oxygen levels provoke NO transformation in peroxynitrote with following decreases of blood free NO and develop the endothelial dysfunction.

  2. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    PubMed Central

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  3. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress.

    PubMed

    Daiber, Andreas; Münzel, Thomas

    2015-10-10

    Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.

  4. Preeclampsia Is Associated with Increased Central Aortic Pressure, Elastic Arteries Stiffness and Wave Reflections, and Resting and Recruitable Endothelial Dysfunction

    PubMed Central

    Torrado, Juan; Farro, Ignacio; Zócalo, Yanina; Farro, Federico; Sosa, Claudio; Scasso, Santiago; Alonso, Justo; Bia, Daniel

    2015-01-01

    Introduction. An altered endothelial function (EF) could be associated with preeclampsia (PE). However, more specific and complementary analyses are required to confirm this topic. Flow-mediated dilation (FMD), low-flow-mediated constriction (L-FMC), and hyperemic-related changes in carotid-radial pulse wave velocity (PWVcr) offer complementary information about “recruitability” of EF. Objectives. To evaluate, in healthy and hypertensive pregnant women (with and without PE), central arterial parameters in conjunction with “basal and recruitable” EF. Methods. Nonhypertensive (HP) and hypertensive pregnant women (gestational hypertension, GH; preeclampsia, PE) were included. Aortic blood pressure (BP), wave reflection parameters (AIx@75), aortic pulse wave velocity (PWVcf) and PWVcr, and brachial and common carotid stiffness and intima-media thickness were measured. Brachial FMD and L-FMC and hyperemic-related change in PWVcr were measured. Results. Aortic BP and AIx@75 were elevated in PE. PE showed stiffer elastic but not muscular arteries. After cuff deflation, PWVcr decreased in HP, while GH showed a blunted PWVcr response and PE showed a tendency to increase. Maximal FMD and L-FMC were observed in HP followed by GH; PE did not reach significant arterial constriction. Conclusion. Aortic BP and wave reflections as well as elastic arteries stiffness are increased in PE. PE showed both “resting and recruitable” endothelial dysfunctions. PMID:26351578

  5. Preeclampsia Is Associated with Increased Central Aortic Pressure, Elastic Arteries Stiffness and Wave Reflections, and Resting and Recruitable Endothelial Dysfunction.

    PubMed

    Torrado, Juan; Farro, Ignacio; Zócalo, Yanina; Farro, Federico; Sosa, Claudio; Scasso, Santiago; Alonso, Justo; Bia, Daniel

    2015-01-01

    Introduction. An altered endothelial function (EF) could be associated with preeclampsia (PE). However, more specific and complementary analyses are required to confirm this topic. Flow-mediated dilation (FMD), low-flow-mediated constriction (L-FMC), and hyperemic-related changes in carotid-radial pulse wave velocity (PWVcr) offer complementary information about "recruitability" of EF. Objectives. To evaluate, in healthy and hypertensive pregnant women (with and without PE), central arterial parameters in conjunction with "basal and recruitable" EF. Methods. Nonhypertensive (HP) and hypertensive pregnant women (gestational hypertension, GH; preeclampsia, PE) were included. Aortic blood pressure (BP), wave reflection parameters (AIx@75), aortic pulse wave velocity (PWVcf) and PWVcr, and brachial and common carotid stiffness and intima-media thickness were measured. Brachial FMD and L-FMC and hyperemic-related change in PWVcr were measured. Results. Aortic BP and AIx@75 were elevated in PE. PE showed stiffer elastic but not muscular arteries. After cuff deflation, PWVcr decreased in HP, while GH showed a blunted PWVcr response and PE showed a tendency to increase. Maximal FMD and L-FMC were observed in HP followed by GH; PE did not reach significant arterial constriction. Conclusion. Aortic BP and wave reflections as well as elastic arteries stiffness are increased in PE. PE showed both "resting and recruitable" endothelial dysfunctions.

  6. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

    PubMed Central

    2016-01-01

    Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs. PMID:27382348

  7. Endothelial dysfunction of rat coronary arteries after exposure to low concentrations of mercury is dependent on reactive oxygen species

    PubMed Central

    Furieri, Lorena B; Galán, María; Avendaño, María S; García-Redondo, Ana B; Aguado, Andrea; Martínez, Sonia; Cachofeiro, Victoria; Bartolomé, M Visitación; Alonso, María J; Vassallo, Dalton V; Salaices, Mercedes

    2011-01-01

    BACKGROUND AND PURPOSE Exposure to mercury is known to increase cardiovascular risk but the underlying mechanisms are not well explored. We analysed whether chronic exposure to low mercury doses affects endothelial modulation of the coronary circulation. EXPERIMENTAL APPROACH Left coronary arteries and hearts from Wistar rats treated with either HgCl2 (first dose 4.6 µg·kg−1, subsequent doses 0.07 µg·kg−1 day−1, 30 days) or vehicle were used. Endothelial cells from pig coronary arteries incubated with HgCl2 were also used. KEY RESULTS Mercury treatment increased 5-HT-induced vasoconstriction but reduced acetylcholine-induced vasodilatation. It also reduced nitric oxide (NO) production and the effects of NO synthase inhibition with L-NAME (100 µmol·L−1) on 5-HT and acetylcholine responses. Superoxide anion production and mRNA levels of NOX-1 and NOX-4 were all increased. The superoxide anion scavenger tiron (1 mmol·L−1) reduced 5-HT responses and increased acetylcholine responses only in vessels from mercury-treated rats. In isolated hearts from mercury-treated rats, coronary perfusion and diastolic pressure were unchanged, but developed isovolumetric systolic pressure was reduced. In these hearts, L-NAME increased coronary perfusion pressure and diastolic pressure while it further reduced developed systolic pressure. CONCLUSIONS AND IMPLICATIONS Chronic exposure to low doses of mercury promotes endothelial dysfunction of coronary arteries, as shown by decreased NO bioavailability induced by increased oxidative stress. These effects on coronary function increase resistance to flow, which under overload conditions might cause ventricular contraction and relaxation impairment. These findings provide further evidence that mercury, even at low doses, could be an environmental risk factor for cardiovascular disease. PMID:21232032

  8. Endothelial barrier dysfunction in diabetic conduit arteries: a novel method to quantify filtration

    PubMed Central

    Lu, Xiao; Huxley, Virginia H.

    2013-01-01

    The endothelial barrier plays an important role in atherosclerosis, hyperglycemia, and hypercholesterolemia. In the present study, an accurate, reproducible, and user-friendly method was used to further understand endothelial barrier function of conduit arteries. An isovolumic method was used to measure the hydraulic conductivity (Lp) of the intact vessel wall and medial-adventitial layer. Normal arterial segments with diameters from 0.2 to 5.5 mm were used to validate the method, and femoral arteries of diabetic rats were studied as an example of pathological specimens. Various arterial segments confirmed that the volume flux of water per unit surface area was linearly related to intraluminal pressure, as confirmed in microvessels. Lp of the intact wall varied from 3.5 to 22.1 × 10−7 cm·s−1·cmH2O−1 over the pressure range of 7–180 mmHg. Over the same pressure range, Lp of the endothelial barrier changed from 4.4 to 25.1 × 10−7 cm·s−1·cmH2O−1. During perfusion with albumin-free solution, Lp of rat femoral arteries increased from 6.1 to 13.2 × 10−7 cm·s−1·cmH2O−1 over the pressure range of 10–180 mmHg. Hyperglycemia increased Lp of the femoral artery in diabetic rats from 2.9 to 5.5 × 10−7 cm·s−1·cmH2O−1 over the pressure range of 20–135 mmHg. In conclusion, the Lp of a conduit artery can be accurately and reproducibly measured using a novel isovolumic method, which in diabetic rats is hyperpermeable. This is likely due to disruption of the endothelial glycocalyx. PMID:23220330

  9. Radiation-induced pulmonary endothelial dysfunction and hydroxyproline accumulation in four strains of mice

    SciTech Connect

    Ward, W.F.; Sharplin, J.; Franko, A.J.; Hinz, J.M. )

    1989-10-01

    C57BL mice exposed to 14 Gy of whole-thorax irradiation develop significant histologic lung fibrosis within 52 weeks, whereas CBA and C3H mice do not exhibit substantial fibrosis during this time. The purpose of the present study was to determine whether this strain-dependent difference in radiation histopathology is associated with genetic differences in pulmonary endothelial metabolic activity or in endothelial radioresponsiveness. C57BL/6J, C57BL/10J, CBA/J, and C3H/HeJ mice were sacrificed 12 weeks after exposure to 0 or 14 Gy of 300-kV X rays to the whole thorax. Lung angiotensin converting enzyme (ACE) activity and plasminogen activator (PLA) activity were measured as indices of pulmonary endothelial function; and lung hydroxyproline (HP) content served as an index of pulmonary fibrosis. Lung ACE and PLA activities in sham-irradiated C57BL/6J and CB57BL/10J mice were only half as high as those in sham-irradiated CBA/J and C3H/HeJ mice. Exposure to 14 Gy of X rays produced a slight but nonsignificant reduction in lung ACE and PLA activity in the C57BL strains, and a significant reduction in the CBA/J and C3H/HeJ mice. Even after 14 Gy, however, lung ACE and PLA activities in CBA/J and C3H/HeJ mice were higher than those in sham-irradiated C57BL/6J and C57BL/10J mice. Lung HP content in all four strains increased significantly after irradiation, but this increase was accompanied by an increase in lung wet weight. As a result, HP concentration (per milligram wet weight) remained constant or increased slightly in both C57BL strains and actually decreased in the CBA/J and C3H/HeJ mice. These data demonstrate significant genetic differences in both intrinsic pulmonary endothelial enzyme activity and endothelial radioresponsiveness among the four strains of mice.

  10. Chronic treatment with angiotensin-(1-7) improves renal endothelial dysfunction in apolipoproteinE-deficient mice

    PubMed Central

    Stegbauer, J; Potthoff, SA; Quack, I; Mergia, E; Clasen, T; Friedrich, S; Vonend, O; Woznowski, M; Königshausen, E; Sellin, L; Rump, LC

    2011-01-01

    BACKGROUND AND PURPOSE ApolipoproteinE-deficient [apoE (−/−)] mice, a model of human atherosclerosis, develop endothelial dysfunction caused by decreased levels of nitric oxide (NO). The endogenous peptide, angiotensin-(1-7) [Ang-(1-7)], acting through its specific GPCR, the Mas receptor, has endothelium-dependent vasodilator properties. Here we have investigated if chronic treatment with Ang-(1-7) improved endothelial dysfunction in apoE (−/−) mice. EXPERIMENTAL APPROACH ApoE (−/−) mice fed on a lipid-rich Western diet were divided into three groups and treated via osmotic minipumps with either saline, Ang-(1-7) (82 µg·kg−1·h−1) or the same dose of Ang-(1-7) together with D-Ala-Ang-(1-7) (125 µg·kg−1·h−1) for 6 weeks. Renal vascular function was assessed in isolated perfused kidneys. KEY RESULTS Ang-(1-7)-treated apoE (−/−) mice showed improved renal endothelium-dependent vasorelaxation induced by carbachol and increased renal basal cGMP production, compared with untreated apoE (−/−) mice. Tempol, a reactive oxygen species (ROS) scavenger, improved endothelium-dependent vasorelaxation in kidneys of saline-treated apoE (−/−) mice whereas no effect was observed in Ang-(1-7)-treated mice. Chronic treatment with D-Ala-Ang-(1-7), a specific Mas receptor antagonist, abolished the beneficial effects of Ang-(1-7) on endothelium-dependent vasorelaxation. Renal endothelium-independent vasorelaxation showed no differences between treated and untreated mice. ROS production and expression levels of the NAD(P)H oxidase subunits gp91phox and p47phox were reduced in isolated preglomerular arterioles of Ang-(1-7)-treated mice, compared with untreated mice, whereas eNOS expression was increased. CONCLUSION AND IMPLICATIONS Chronic infusion of Ang-(1-7) improved renal endothelial function via Mas receptors, in an experimental model of human cardiovascular disease, by increasing levels of endogenous NO. PMID:21371005

  11. Tranilast alleviates endothelial dysfunctions and insulin resistance via preserving glutathione peroxidase 1 in rats fed a high-fat emulsion.

    PubMed

    Yang, Xuan; Feng, Lei; Li, Changjiang; Li, Yu

    2014-01-01

    We investigated the effects of treatment with tranilast on vascular and metabolic dysfunction induced by a high-fat emulsion intragastric administration. Wistar rats were randomized to receive water or high-fat emulsion with or without tranilast treatment (400 mg/kg per day) for 4 weeks. Insulin sensitivity was determined with a hyperinsulinemic-euglycemic clamp experiment and short insulin tolerance test. Vascular reactivity was evaluated using aortic rings in organ chambers. Glutathione peroxidase 1 (GPX1) expressions, eNOS phosphorylation and activity, MCP-1, H2O2 formation, and NO production were determined in vascular or soleus tissues. Tranilast treatment was found to prevent alterations in vascular reactivity and insulin sensitivity and to prevent increases in plasma glucose and insulin noted in the high-fat emulsion-treated rats. These were associated with increased antioxidant enzyme GPX1 expression, eNOS phosphorylation and activity, and NO production, but reductions in H2O2 accumulation. Moreover, tranilast preserved GPX1 expression in palmitic acid (PA)-treated endothelial cells with a consequent decreased ROS formation and increased eNOS phosphorylation and NO production. Therefore, oxidative stress induced by a relatively short-term high-fat diet could cause the early development of vascular and metabolic abnormalities in rats, and tranilast has a beneficial effect in vascular dysfunctions and insulin resistance via preserving GPX1 and alleviating oxidative stress. PMID:24389817

  12. Myeloid-derived suppressor cells are involved in lysosomal acid lipase deficiency-induced endothelial cell dysfunctions.

    PubMed

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2014-08-15

    The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal(-/-)) mice. We found that Ly6G(+) cells transmigrated more efficiently across lal(-/-) ECs than wild-type (lal(+/+)) ECs, which were associated with increased levels of PECAM-1 and MCP-1 in lal(-/-) ECs. In addition, lal(-/-) ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal(-/-) ECs also suppressed T cell proliferation in vitro. Interestingly, lal(-/-) Ly6G(+) cells promoted in vivo angiogenesis (including a tumor model), EC tube formation, and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal(-/-) ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G(+) cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species. Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL deficiency-related diseases. PMID:25000979

  13. Silencing of PKC-α, TRPC1 or NF-κB expression attenuates cisplatin-induced ICAM-1 expression and endothelial dysfunction.

    PubMed

    Bodiga, Vijaya Lakshmi; Kudle, Madhukar Rao; Bodiga, Sreedhar

    2015-11-01

    Platinum-based chemotherapy has been associated with increased long-term cardiovascular events. Also noteworthy is the accumulating awareness of early vascular toxicity occurring at the time of chemotherapy or immediately thereafter. The objective of the study was to delineate the molecular mechanisms associated with the early vascular toxicity and test the molecular silencing approach towards attenuating the endothelial dysfunction during platinum-based chemotherapy. Human umbilical vein endothelial cells (HUVECs) were treated with varying concentrations of cisplatin (1.0-10.0μg/ml) or vehicle control (0.1% dimethyl sulfoxide) for monitoring the changes in Intercellular adhesion molecule-1 (ICAM-1) mRNA and protein expression viz. a viz. altered activation of protein kinase C (PKC) isoforms, transient receptor potential channel (TRPC) 1 expression, Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB), Store Operated Ca(2+) Entry (SOCE) in cisplatin-induced endothelial permeability and adherence of the activated endothelial cells to human monocyte-like U937 cells. Silencing of either PKC-α, TRPC1 or p65 subunit of NF-κB, all resulted in significant alleviation of cisplatin-induced endothelial dysfunction. At concentrations ≥8μg/ml, cisplatin induced a significant increase in the expression of ICAM-1 mRNA as well as protein. This was mediated by changes in PKC-α membrane translocation, NF-κB activation, increased expression as well as phosphorylation of TRPC1 and enhanced SOCE, leading to hyperpermeability and leakage of albumin. Increased adherence of U937 monocytes to cisplatin-activated endothelial cells was evident. Cisplatin challenge activates PKC-α, which in turn phosphorylated TRPC1 resulting in enhanced Ca(2+) entry. Increased Ca(2+) flux is required for activation of NF-κB and ICAM-1 expression. Enhanced ICAM-1 expression promotes monocyte binding to endothelial cells and increased endothelial hyperpermeability. PMID:26300057

  14. LXR agonism improves TNF-α-induced endothelial dysfunction in the absence of its cholesterol-modulating effects.

    PubMed

    Spillmann, Frank; Van Linthout, Sophie; Miteva, Kapka; Lorenz, Mario; Stangl, Verena; Schultheiss, Heinz-Peter; Tschöpe, Carsten

    2014-01-01

    Stimulation of the liver X receptor (LXR) is associated with anti-inflammatory and vascular-protective effects under hyperlipemic conditions. We examined whether LXR stimulation influences TNF-α-induced endothelial dysfunction under normolipemic conditions. Endothelium-dependent vasorelaxation of aortic rings was determined in an organ water bath. Human umbilical vein endothelial cells (HUVEC) were exposed to TNF-α (10 ng/ml) in the presence or absence of 5 μM of the LXR agonist T0901317 or GW3965 and changes in TNF-α-induced endothelial cell apoptosis, inflammation, oxidative stress, and NO metabolism were analyzed. T0901317 improved TNF-α-impaired endothelium-dependent relaxation of aortic rings in response to acetylcholine. T0901317 decreased the TNF-α-induced apoptosis and inflammation as indicated by a decrease in caspase 3/7 activity, VCAM-1 mRNA expression and subsequent mononuclear cell adhesion. Furthermore, T0901317 reduced the expression of the oxidative stress markers: AT1R, NOX4, and p22phox and normalized the TNF-α-induced NOX activity to basal levels. In line with the reduced AT1R expression, T0901317 impaired the Ang II responsiveness. T0901317 influenced NO metabolism as indicated by a decrease in TNF-α-upregulated arginase activity, a reversal of TNF-α-induced downregulation of argininosuccinate synthase mRNA expression and eNOS expression to basal levels and a raise in NO production. Furthermore, T0901317 decreased the TNF-α-induced superoxide and nitrotyrosine production, but did not upregulate the TNF-α-downregulated eNOS dimer/monomer ratio. Silencing of LXRβ, but not of LXRα, abrogated the anti-apoptotic effects of T0901317. We conclude that LXR agonism improves TNF-α-impaired endothelial function via its anti-apoptotic, anti-inflammatory, and anti-oxidative properties and its capacity to restore TNF-α-impaired NO bioavailability independent of its cholesterol-modulating effects.

  15. Argan (Argania spinosa) oil lowers blood pressure and improves endothelial dysfunction in spontaneously hypertensive rats.

    PubMed

    Berrougui, Hicham; Alvarez de Sotomayor, Maria; Pérez-Guerrero, Concepción; Ettaib, Abdelkader; Hmamouchi, Mohamed; Marhuenda, Elisa; Herrera, Maria Dolores

    2004-12-01

    Traditionally hand-pressed argan oil, obtained from Argania spinosa seeds, is eaten raw in south-west Morocco; its rich composition of tocopherols, MUFA and PUFA make a study of its actions on risk factors for CVD, such as hypertension, interesting. The effects of 7 weeks of treatment with argan oil (10 ml/kg) on the blood pressure and endothelial function of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats were investigated. Systolic blood pressure and heart rate were measured every week by the tail-cuff method and endothelial function was assessed by carbachol (10(-8) to 10(-4) M)-induced relaxations of aortic rings and small mesenteric arteries pre-contracted with phenylephrine. Argan-oil administration reduced the mean blood pressure of SHR after the fifth week of treatment (P<0.05) and increased (P<0.01) the endothelial responses of arteries from SHR. The NO synthase inhibitor, L-N-omega-nitroarginine (3 x 10(-5) M) revealed a greater participation of NO in the relaxant effect after the treatment. When cyclooxygenase (COX) was blocked with indomethacin (10(-5) M), an involvement of COX products in the endothelium-dependent response was characterized. Enzyme immunoassay of thromboxane B2 showed a significant decrease (P<0.05) in the release of thromboxane A2 in both aorta and small mesenteric artery after argan-oil treatment of SHR. Experiments in the presence of the thromboxane A2-prostaglandin H2 receptor antagonist ICI 192,605 (10(-5) M) confirmed this result. Results after incubation with the antioxidants superoxide dismutase and catalase suggested that a decreased oxidative stress might contribute to explain the beneficial effects of argan-oil treatment. PMID:15613254

  16. Argan (Argania spinosa) oil lowers blood pressure and improves endothelial dysfunction in spontaneously hypertensive rats.

    PubMed

    Berrougui, Hicham; Alvarez de Sotomayor, Maria; Pérez-Guerrero, Concepción; Ettaib, Abdelkader; Hmamouchi, Mohamed; Marhuenda, Elisa; Herrera, Maria Dolores

    2004-12-01

    Traditionally hand-pressed argan oil, obtained from Argania spinosa seeds, is eaten raw in south-west Morocco; its rich composition of tocopherols, MUFA and PUFA make a study of its actions on risk factors for CVD, such as hypertension, interesting. The effects of 7 weeks of treatment with argan oil (10 ml/kg) on the blood pressure and endothelial function of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats were investigated. Systolic blood pressure and heart rate were measured every week by the tail-cuff method and endothelial function was assessed by carbachol (10(-8) to 10(-4) M)-induced relaxations of aortic rings and small mesenteric arteries pre-contracted with phenylephrine. Argan-oil administration reduced the mean blood pressure of SHR after the fifth week of treatment (P<0.05) and increased (P<0.01) the endothelial responses of arteries from SHR. The NO synthase inhibitor, L-N-omega-nitroarginine (3 x 10(-5) M) revealed a greater participation of NO in the relaxant effect after the treatment. When cyclooxygenase (COX) was blocked with indomethacin (10(-5) M), an involvement of COX products in the endothelium-dependent response was characterized. Enzyme immunoassay of thromboxane B2 showed a significant decrease (P<0.05) in the release of thromboxane A2 in both aorta and small mesenteric artery after argan-oil treatment of SHR. Experiments in the presence of the thromboxane A2-prostaglandin H2 receptor antagonist ICI 192,605 (10(-5) M) confirmed this result. Results after incubation with the antioxidants superoxide dismutase and catalase suggested that a decreased oxidative stress might contribute to explain the beneficial effects of argan-oil treatment.

  17. Aromatherapy alleviates endothelial dysfunction of medical staff after night-shift work: preliminary observations.

    PubMed

    Shimada, Kenei; Fukuda, Shota; Maeda, Kumiko; Kawasaki, Toshihiro; Kono, Yasushi; Jissho, Satoshi; Taguchi, Haruyuki; Yoshiyama, Minoru; Yoshikawa, Junichi

    2011-02-01

    Night-shift work causes mental stress and lifestyle changes, and is recognized as a risk of cardiovascular diseases associated with impaired endothelial function. Aromatherapy is becoming popular as a complementary therapy that is beneficial for mental relaxation. The purpose of this study was to investigate the effect of aromatherapy on the endothelial function of medical staff after night-shift work. This study consisted of 19 healthy medical personnel (19 men, mean age 32 ± 7 years), including 11 physicians and 8 technicians. Aromatherapy was performed for 30 min by inhalation of the essential oil of lavender. Flow-mediated dilation (FMD) of the brachial artery was measured three times in each subject: on a regular workday, and after night-shift work before and immediately after aromatherapy. A control study was performed to assess the effect of a 30-min rest without aromatherapy. The mean value of sleep time during night-shift work was 3.3 ± 1.3 h. FMD after night-shift work was lower than on a regular workday (10.4 ± 1.8 vs. 12.5 ± 1.7%, P<0.001), which improved after aromatherapy (11.8 ± 2.5%, P=0.02 vs. before aromatherapy). FMD was stable in the control study (10.1 ± 1.9 vs. 10.1 ± 2.2%, P=0.9). This study demonstrated that night-shift work impaired endothelial function in medical staff, an effect that was alleviated by short-term aromatherapy.

  18. Cellular and molecular biology of aging endothelial cells.

    PubMed

    Donato, Anthony J; Morgan, R Garrett; Walker, Ashley E; Lesniewski, Lisa A

    2015-12-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage has been shown to trigger cell senescence via the p53/p21 pathway and result in increased inflammatory signaling in arteries from older adults. This review will discuss the current state

  19. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1

    PubMed Central

    Storniolo, Carolina Emilia; Roselló-Catafau, Joan; Pintó, Xavier; Mitjavila, María Teresa; Moreno, Juan José

    2014-01-01

    Epidemiological and clinical studies have reported that olive oil reduces the incidence of cardiovascular disease. However, the mechanisms involved in this beneficial effect have not been delineated. The endothelium plays an important role in blood pressure regulation through the release of potent vasodilator and vasoconstrictor agents such as nitric oxide (NO) and endothelin-1 (ET-1), respectively, events that are disrupted in type 2 diabetes. Extra virgin olive oil contains polyphenols, compounds that exert a biological action on endothelial function. This study analyzes the effects of olive oil polyphenols on endothelial dysfunction using an in vitro model that simulates the conditions of type 2 diabetes. Our findings show that high glucose and linoleic and oleic acids decrease endothelial NO synthase phosphorylation, and consequently intracellular NO levels, and increase ET-1 synthesis by ECV304 cells. These effects may be related to the stimulation of reactive oxygen species production in these experimental conditions. Hydroxytyrosol and the polyphenol extract from extra virgin olive oil partially reversed the above events. Moreover, we observed that high glucose and free fatty acids reduced NO and increased ET-1 levels induced by acetylcholine through the modulation of intracellular calcium concentrations and endothelial NO synthase phosphorylation, events also reverted by hydroxytyrosol and polyphenol extract. Thus, our results suggest a protective effect of olive oil polyphenols on endothelial dysfunction induced by hyperglycemia and free fatty acids. PMID:25460732

  20. Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans

    PubMed Central

    Sands, Michelle; Burciu, Camelia; D’Souza, Karen M.; Raravikar, Kalyani; Liu, James; Truran, Seth; Franco, Daniel A.; Schwartz, Eric A.; Schwenke, Dawn C.; D’Alessio, David; Migrino, Raymond Q.; Reaven, Peter D.

    2015-01-01

    GLP-1 receptor (GLP-1R) agonists may improve endothelial function (EF) via metabolic improvement and direct vascular action. The current study determined the effect of GLP-1R agonist exenatide on postprandial EF in type 2 diabetes and the mechanisms underlying GLP-1R agonist–mediated vasodilation. Two crossover studies were conducted: 36 participants with type 2 diabetes received subcutaneous exenatide or placebo for 11 days and EF, and glucose and lipid responses to breakfast and lunch were determined; and 32 participants with impaired glucose tolerance (IGT) or diet-controlled type 2 diabetes had EF measured before and after intravenous exenatide, with or without the GLP-1R antagonist exendin-9. Mechanisms of GLP-1R agonist action were studied ex vivo on human subcutaneous adipose tissue arterioles and endothelial cells. Subcutaneous exenatide increased postprandial EF independent of reductions in plasma glucose and triglycerides. Intravenous exenatide increased fasting EF, and exendin-9 abolished this effect. Exenatide elicited eNOS activation and NO production in endothelial cells, and induced dose-dependent vasorelaxation and reduced high-glucose or lipid-induced endothelial dysfunction in arterioles ex vivo. These effects were reduced with AMPK inhibition. In conclusion, exenatide augmented postprandial EF in subjects with diabetes and prevented high-glucose and lipid-induced endothelial dysfunction in human arterioles. These effects were largely direct, via GLP-1R and AMPK activation. PMID:25720388

  1. Tyrosine Nitration of PA700 Activates the 26S Proteasome to Induce Endothelial Dysfunction in Mice With Angiotensin II–Induced Hypertension

    PubMed Central

    Xu, Jian; Wang, Shuangxi; Wu, Yong; Song, Ping; Zou, Ming-Hui

    2010-01-01

    The ubiquitin-proteasome system has been implicated in oxidative stress–induced endothelial dysfunction in cardiovascular diseases. However, the mechanism by which oxidative stress alters the ubiquitin-proteasome system is poorly defined. The present study was conducted to determine whether oxidative modifications of PA700, a 26S proteasome regulatory subunit, contributes to angiotensin II (Ang II)–induced endothelial dysfunction. Exposure of human umbilical vein endothelial cells to low concentrations of Ang II, but not vehicle, for 6 hours significantly decreased the levels of tetrahydro-L-biopterin (BH4), an essential cofactor of endothelial NO synthase, which was accompanied by a decrease in GTP cyclohydrolase I, the rate-limiting enzyme for de novo BH4 synthesis. In addition, Ang II increased both tyrosine nitration of PA700 and the 26S proteasome activity, which were paralleled by increased coimmunoprecipitation of PA700 and the 20S proteasome. Genetic inhibition of NAD(P)H oxidase or administration of uric acid (a peroxynitrite scavenger) or NG-nitro-L-arginine methyl ester (nonselective NO synthase inhibitor) significantly attenuated Ang II–induced PA700 nitration, 26S proteasome activation, and reduction of GTP cyclohydrolase I and BH4. Finally, Ang II infusion in mice decreased the levels of both BH4 and GTP cyclohydrolase I and impaired endothelial-dependent relaxation in isolated aortas, and all of these effects were prevented by the administration of MG132, a potent inhibitor for 26S proteasome. We conclude that Ang II increases tyrosine nitration of PA700 resulting in accelerated GTP cyclohydrolase I degradation, BH4 deficiency, and consequent endothelial dysfunction in hypertension. PMID:19597039

  2. FTY720 prevents progression of renal fibrosis by inhibiting renal microvasculature endothelial dysfunction in a rat model of chronic kidney disease.

    PubMed

    Ni, Haifeng; Chen, Junfeng; Pan, Mingming; Zhang, Minghui; Zhang, Jiandong; Chen, Pingsheng; Liu, Bicheng

    2013-12-01

    Recent studies have shown that chronic endothelial dysfunction can impair multiple aspects of renal physiology and, in turn, contribute to renal fibrosis. Sphingosine 1-phosphate (S1P) has been highlighted as an endothelial barrier-stabilizing mediator. The aim of our study was to investigate the effect of FTY720, an S1P analog, on the progression of renal fibrosis by inhibiting renal microvasculature endothelial dysfunction in a rat model of chronic kidney disease. Thirty male Sprague-Dawley rats were used in this study. Seven days after surgery, we placed the animals into three groups: sham surgery; 5/6 nephrectomized (Nx) rats; and 5/6Nx + FTY720 (1 mg/kg/day). All of the animals were sacrificed 12 weeks after surgery. We obtained and analyzed blood and kidney tissue samples from all of the groups. Glomerular capillary density and peritubular capillary (PTC) density were determined by CD31 immunostaining. The expression of transforming growth factor beta 1 (TGF-β1), collagen IV, fibronectin, endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were analyzed by immunohistochemistry, reverse transcription-polymerase chain reaction and western blotting. The 5/6Nx group exhibited increased blood urea nitrogen and serum creatinine, visible renal histological changes, pro-fibrotic molecule (TGF-β1) and production of extracellular matrix proteins such as collagen IV and fibronectin and decreased glomerular and PTC density, compared to the sham controls (P < 0.01). We observed that treatment with FTY720 reduced these abnormalities. Furthermore, the level of NO, the expression levels of eNOS and VEGF were downregulated in the kidney tissue in 5/6Nx rats, FTY720 treatment significantly attenuated this decrease. FTY720 prevents the progression of renal fibrosis by inhibiting renal microvasculature endothelial dysfunction in a rat model of chronic kidney disease.

  3. Anticipatory Role of High Density Lipoprotein and Endothelial Dysfunction: An Overview

    PubMed Central

    Eren, Esin; Yılmaz, Necat; Aydin, Ozgur; Ellidağ, Hamit Y

    2014-01-01

    High Density Lipoprotein (HDL) has been witnessed to possess a range of different functions that contribute to its atheroprotective effects. These functions are: the promotion of macrophage cholesterol efflux, reverse cholesterol transport, anti-inflammatory, anti-thrombotic, anti-apoptotic, pro-fibrinolytic and anti-oxidative functions. Paraoxonase 1 (PON1) is an HDL associated enzyme esterase/homocysteinethiolactonase that contributes to the anti-oxidant and anti-atherosclerotic capabilities of HDL. PON1 is directly involved in the etiopathogenesis of atherosclerosis through the modulation of nitric oxide (NO) bioavailability. The aim of this review is to summarize the role of HDL on endothelial homeostasis, and also to describe the recently characterized molecular pathways involved. PMID:25598849

  4. Effects of Complementary Creatine Monohydrate and Physical Training on Inflammatory and Endothelial Dysfunction Markers Among Heart Failure Patients

    PubMed Central

    Hemati, Farajollah; Rahmani, Asghar; Asadollahi, Khairollah; Soleimannejad, Koroush; Khalighi, Zahra

    2016-01-01

    Background: Previous studies have reported endothelial dysfunction and inflammatory cytokine in heart failure patients (HF). Objectives: The purpose of this study was to determine the effects of creatine monohydrate and exercise on inflammatory and endothelial dysfunction markers among HF patients. Patients and Methods: One hundred patients were prospectively randomized into two groups: Intervention group which received 5 grams/day creatine monohydrate and exercised for 8 weeks; and control group which did not receive any interventions. Interleukine-6 (IL-6), high sensitivity C reactive protein (hs-CRP), P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) were measured at the start and end of the study for both groups. Results: In total, 100 patients including 50 controls and 50 intervention group (54% male, mean EF of 34.2 ± 10.5% and 52% male, mean EF of 35.6 ± 12.7%, respectively) were analyzed. The serum levels of hs-CRP and IL-6 increased at the end of the study in the control group compared to the baseline, (7.5 ± 1.5 mg/L vs. 6.9 ± 1.3 mg/L, P < 0.05 and 3.0 ± 0.75 ng/L vs. 2.55 ± 0.9 ng/L, P < 0.05, respectively). However, compared to the baseline, the level of both markers decreased at the end of the study in the intervention group (6.3 ± 1.6 mg/L vs.7.5 ± 1.5 mg/L, P < 0.05 and 2.1 ± 0.8 ng/L vs.2.5 ± 0.5 ng/L, P < 0.05). Also, P-selectin and ICAM-1 levels increased at the end of study (56.9 ± 1.8 ng/L vs. 51.9 ± 1.5 ng/L, P < 0.05 and 368.1 ± 25.4 µg/L vs. 353.1 ± 10.4 µg/L, P < 0.05 respectively). Inversely, the levels of these markers decreased in the intervention group, at the end of study (49.7 ± 1.9 ng/l vs. 51.4 ± 2.1 ng/l, P < 0.05 and 342.7 ± 16.5 µg/l vs. 350.4 ± 14.7 µg/l, P < 0.05, respectively). VCAM-1 level was not decreased significantly at the end of the study in the intervention group (570.5 ± 78.4 µg/L vs. 575.3 ± 86.5 µg/L, P > 0.05). Conclusions: Combination

  5. Hydrogen Sulfide Improves Endothelial Dysfunction via Downregulating BMP4/COX-2 Pathway in Rats with Hypertension

    PubMed Central

    2016-01-01

    Aims. We object to elucidate that protective effect of H2S on endothelium is mediated by downregulating BMP4 (bone morphogenetic protein 4)/cyclooxygenase- (COX-) 2 pathway in rats with hypertension. Methods and Results. The hypertensive rat model induced by two-kidney one-clip (2K1C) model was used. Exogenous NaHS administration (56 μmol/kg/day, intraperitoneally once a day) reduced mean arterial pressure (MAP) of 2K1C rats from 199.9 ± 3.312 mmHg to 159.4 ± 5.434 mmHg, while NaHS did not affect the blood pressure in the Sham rats and ameliorated endothelium-dependent contractions (EDCs) of renal artery in 2K1C rats. 2K1C reduced CSE level twofold, decreased plasma levels of H2S about 6-fold, increased BMP4, Nox2, and Nox4 levels 2-fold and increased markers of oxidative stress MDA and nitrotyrosine 1.5-fold, upregulated the expression of phosphorylation-p38 MAPK 2-fold, and increased protein levels of COX-2 1.5-fold, which were abolished by NaHS treatment. Conclusions. Our results demonstrate that H2S prevents activation of BMP4/COX-2 pathway in hypertension, which may be involved in the ameliorative effect of H2S on endothelial impairment. These results throw light on endothelial protective effect of H2S and provide new target for prevention and therapy of hypertension.

  6. A select review reporting the quality of studies measuring endothelial dysfunction in randomised diet intervention trials.

    PubMed

    Costello, Rebecca B; Lentino, Cynthia V; Saldanha, Leila; Engler, Marguerite M; Engler, Mary B; Srinivas, Pothur; Sempos, Christopher T

    2015-01-14

    A quality assessment of the primary studies reported in the literature carried out using select dietary ingredients (DI) purported to affect vascular endothelial function was conducted through a systematic PubMed search from January 2000 to August 2012. A total of seventy randomised controlled trials with defined DI (folic acid (fifteen), n-3 fatty acids (twenty), cocoa (fifteen) and isoflavones (twenty)) and standardised measures of vascular endothelial function were evaluated. Jadad scores, quality scoring parameters for DI and flow-mediated dilation (FMD) methodology used were ascertained. A total of 3959 randomised subjects, mean age 51 (se 0·21) years (range 9-79 years), were represented in the dataset. The mean Jadad scores did not differ statistically among the DI studies, with the majority of the studies being of good quality. Higher DI quality scores were achieved by studies using the botanical ingredients cocoa and isoflavones than by those using the nutrient ingredients folic acid and n-3 fatty acids. The mean DI quality scores were 4·13 (se 0·34), 5·20 (se 0·47), 6·13 (se 0·41) and 6·00 (se 0·59) for the folic acid, n-3 fatty acid, cocoa and isoflavone intervention studies, respectively (and significantly different). The mean Corretti FMD scores were 7·27 (se 0·56), 7·46 (se 0·79), 6·29 (se 0·61) and 7·11 (se 0·56) for the folic acid, n-3 fatty acid, cocoa and isoflavone intervention studies, respectively (NS). FMD studies failed to adequately describe the equipment used and more than half failed to provide an adequate description of the procedures used for vascular image acquisition and measurement. DI can be utilised for dietary intervention studies; however, the methodology should be clearly reported using the guidelines for assessment for both DI and FMD.

  7. Hydrogen Sulfide Improves Endothelial Dysfunction via Downregulating BMP4/COX-2 Pathway in Rats with Hypertension.

    PubMed

    Xiao, Lin; Dong, Jing-Hui; Jin, Sheng; Xue, Hong-Mei; Guo, Qi; Teng, Xu; Wu, Yu-Ming

    2016-01-01

    Aims. We object to elucidate that protective effect of H2S on endothelium is mediated by downregulating BMP4 (bone morphogenetic protein 4)/cyclooxygenase- (COX-) 2 pathway in rats with hypertension. Methods and Results. The hypertensive rat model induced by two-kidney one-clip (2K1C) model was used. Exogenous NaHS administration (56 μmol/kg/day, intraperitoneally once a day) reduced mean arterial pressure (MAP) of 2K1C rats from 199.9 ± 3.312 mmHg to 159.4 ± 5.434 mmHg, while NaHS did not affect the blood pressure in the Sham rats and ameliorated endothelium-dependent contractions (EDCs) of renal artery in 2K1C rats. 2K1C reduced CSE level twofold, decreased plasma levels of H2S about 6-fold, increased BMP4, Nox2, and Nox4 levels 2-fold and increased markers of oxidative stress MDA and nitrotyrosine 1.5-fold, upregulated the expression of phosphorylation-p38 MAPK 2-fold, and increased protein levels of COX-2 1.5-fold, which were abolished by NaHS treatment. Conclusions. Our results demonstrate that H2S prevents activation of BMP4/COX-2 pathway in hypertension, which may be involved in the ameliorative effect of H2S on endothelial impairment. These results throw light on endothelial protective effect of H2S and provide new target for prevention and therapy of hypertension. PMID:27642495

  8. Hydrogen Sulfide Improves Endothelial Dysfunction via Downregulating BMP4/COX-2 Pathway in Rats with Hypertension

    PubMed Central

    2016-01-01

    Aims. We object to elucidate that protective effect of H2S on endothelium is mediated by downregulating BMP4 (bone morphogenetic protein 4)/cyclooxygenase- (COX-) 2 pathway in rats with hypertension. Methods and Results. The hypertensive rat model induced by two-kidney one-clip (2K1C) model was used. Exogenous NaHS administration (56 μmol/kg/day, intraperitoneally once a day) reduced mean arterial pressure (MAP) of 2K1C rats from 199.9 ± 3.312 mmHg to 159.4 ± 5.434 mmHg, while NaHS did not affect the blood pressure in the Sham rats and ameliorated endothelium-dependent contractions (EDCs) of renal artery in 2K1C rats. 2K1C reduced CSE level twofold, decreased plasma levels of H2S about 6-fold, increased BMP4, Nox2, and Nox4 levels 2-fold and increased markers of oxidative stress MDA and nitrotyrosine 1.5-fold, upregulated the expression of phosphorylation-p38 MAPK 2-fold, and increased protein levels of COX-2 1.5-fold, which were abolished by NaHS treatment. Conclusions. Our results demonstrate that H2S prevents activation of BMP4/COX-2 pathway in hypertension, which may be involved in the ameliorative effect of H2S on endothelial impairment. These results throw light on endothelial protective effect of H2S and provide new target for prevention and therapy of hypertension. PMID:27642495

  9. Adiponectin deficiency exacerbates age-related hearing impairment.

    PubMed

    Tanigawa, T; Shibata, R; Ouchi, N; Kondo, K; Ishii, M; Katahira, N; Kambara, T; Inoue, Y; Takahashi, R; Ikeda, N; Kihara, S; Ueda, H; Murohara, T

    2014-04-24

    Obesity-related disorders are closely associated with the development of age-related hearing impairment (ARHI). Adiponectin (APN) exerts protective effects against obesity-related conditions including endothelial dysfunction and atherosclerosis. Here, we investigated the impact of APN on ARHI. APN-knockout (APN-KO) mice developed exacerbation of hearing impairment, particularly in the high frequency range, compared with wild-type (WT) mice. Supplementation with APN prevented the hearing impairment in APN-KO mice. At 2 months of age, the cochlear blood flow and capillary density of the stria vascularis (SV) were significantly reduced in APN-KO mice as compared with WT mice. APN-KO mice also showed a significant increase in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells in the organ of Corti in the cochlea at 2 months of age. At the age of 6 months, hair cells were lost at the organ of Corti in APN-KO mice. In cultured auditory HEI-OC1 cells, APN reduced apoptotic activity under hypoxic conditions. Clinically, plasma APN levels were significantly lower in humans with ARHI. Multiple logistic regression analysis identified APN as a significant and independent predictor of ARHI. Our observations indicate that APN has an important role in preventing ARHI.

  10. Chronic selective serotonin reuptake inhibition modulates endothelial dysfunction and oxidative state in rat chronic mild stress model of depression.

    PubMed

    Matchkov, Vladimir V; Kravtsova, Violetta V; Wiborg, Ove; Aalkjaer, Christian; Bouzinova, Elena V

    2015-10-15

    Major depression is known to be associated with cardiovascular abnormalities, and oxidative stress has been suggested to play a role. We tested the hypothesis that antidepressant treatment reduces oxidative stress and endothelial dysfunctions in the chronic mild stress (CMS) model of depression in rats. Rats with >30% reduction in sucrose intake after 4 wk of CMS were defined in the study as CMS-susceptible and compared with unstressed controls. Sixteen CMS-susceptible and eight unstressed rats were treated during weeks 5 to 8 of the CMS protocol with escitalopram. Escitalopram-treated rats with >20% recovery in the sucrose consumption during the last 2 wk of treatment were defined as escitalopram responders. Rats that did not reach these criteria were defined as escitalopram nonresponders. In the open field test, escitalopram responders demonstrated anxiolytic effect of treatment. In mesenteric small arteries, escitalopram affected neither NO nor cyclooxygenase-1 (COX-1)-mediated vasodilation. Escitalopram potentiated endothelium-dependent hyperpolarization-like response, which was suppressed in the vehicle-treated CMS-susceptible rats and reduced COX-2-dependent relaxation, which was elevated in the vehicle-treated CMS-susceptible rats. Escitalopram did not affect blood pressure and heart rate, which were elevated in the vehicle-treated CMS-susceptible rats. Oxidative stress markers were changed in association with CMS in liver, heart, and brain. Escitalopram normalized oxidative stress markers in the majority of tissues. This study demonstrates that the antidepressant effect of escitalopram is associated with partial improvement of endothelial function in small arteries affecting COX-2 and endothelium-dependent hyperpolarization-like pathways. PMID:26269522

  11. Taurine Supplementation Reduces Blood Pressure and Prevents Endothelial Dysfunction and Oxidative Stress in Post-Weaning Protein-Restricted Rats

    PubMed Central

    Maia, Aline R.; Batista, Thiago M.; Victorio, Jamaira A.; Clerici, Stefano P.; Delbin, Maria A.; Carneiro, Everardo M.; Davel, Ana P.

    2014-01-01

    Introduction Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Methods and Results Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Conclusion Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was

  12. B7-H1 shapes T-cell–mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity

    PubMed Central

    Klotz, Luisa; Kuzmanov, Ivan; Hucke, Stephanie; Gross, Catharina C.; Posevitz, Vilmos; Dreykluft, Angela; Schulte-Mecklenbeck, Andreas; Janoschka, Claudia; Lindner, Maren; Herold, Martin; Schwab, Nicholas; Ludwig-Portugall, Isis; Kurts, Christian; Meuth, Sven G.; Kuhlmann, Tanja; Wiendl, Heinz

    2016-01-01

    Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood–brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4+ T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity. PMID:27671636

  13. Mechanisms of endothelial dysfunction after ionized radiation: selective impairment of the nitric oxide component of endothelium-dependent vasodilation

    PubMed Central

    Soloviev, Anatoly I; Tishkin, Sergey M; Parshikov, Alexander V; Ivanova, Irina V; Goncharov, Eugene V; Gurney, Alison M

    2003-01-01

    Gamma radiation impairs vascular function, leading to the depression of endothelium-dependent vasodilatation. Loss of the nitric oxide (NO) pathway has been implicated, but little is known about radiation effects on other endothelial mediators. This study investigated the mechanisms of endothelial dysfunction in rabbits subjected to whole-body irradiation from a cobalt60 source. The endothelium-dependent relaxation of rabbit aorta evoked by acetylcholine (ACh) or A23187 was impaired in a dose-dependent manner by irradiation at 2 Gy or above. Inhibition was evident 9 days post-irradiation and persisted over the 30 day experimental period. Endothelium-independent responses to glyceryl trinitrate (GTN), sodium nitroprusside (SNP) and 3-morpholino-sydnonimine (SIN-1) were suppressed over a similar dose range at 7–9 days post-irradiation, but recovered fully by 30 days post-irradiation. In healthy vessels, ACh-induced relaxation was inhibited by L-Nω-nitroarginine (L-NA; 3×10−4 M) and charybdotoxin (10−8 M) plus apamin (10−6 M) but resistant to indomethacin, indicating the involvement of NO and endothelium-derived hyperpolarizing factor (EDHF). Supporting this, ACh caused smooth muscle hyperpolarization that was reduced by L-NA and charybdotoxin plus apamin. In irradiated vessels, responses to ACh were insensitive to L-NA but abolished by charybdotoxin plus apamin, indicating selective loss of NO-mediated relaxation. In animals treated shortly after irradiation with the antioxidant, α-tocopherol acetate, the NO-dependent relaxation was restored without effect on the EDHF-dependent component. The results imply that radiation selectively impairs the NO pathway as a consequence of oxidative stress, while EDHF is able to maintain endothelium-dependent relaxation at a reduced level. PMID:12642385

  14. Endothelial and vascular dysfunctions and insulin resistance in rats fed a high-fat, high-sucrose diet.

    PubMed

    Bourgoin, Frédéric; Bachelard, Hélène; Badeau, Mylène; Mélançon, Sébastien; Pitre, Maryse; Larivière, Richard; Nadeau, André

    2008-09-01

    This study was designed to examine the effects of a high-fat, high-sucrose (HFHS) diet on vascular and metabolic actions of insulin. Male rats were randomized to receive an HFHS or regular chow diet for 4 wk. In a first series of experiments, the rats had pulsed Doppler flow probes and intravascular catheters implanted to measure blood pressure, heart rate, and regional blood flows. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine skeletal muscle glucose transport activity and to determine in vitro vascular reactivity, endothelial nitric oxide synthase (eNOS) protein expression in muscle and vascular tissues and endothelin content, nitrotyrosine formation, and NAD(P)H oxidase protein expression in vascular tissues. The HFHS-fed rats displayed insulin resistance, hyperinsulinemia, hypertriglyceridemia, hyperlipidemia, elevated blood pressure, and impaired insulin-mediated renal and skeletal muscle vasodilator responses. A reduction in endothelium-dependent vasorelaxation, accompanied by a decreased eNOS protein expression in muscles and blood vessel endothelium, and increased vascular endothelin-1 protein content were also noted in HFHS-fed rats compared with control rats. Furthermore, the HFHS diet induced a reduced insulin-stimulated glucose transport activity in muscles and increased levels of NAD(P)H oxidase protein and nitrotyrosine formation in vascular tissues. These findings support the importance of eNOS protein in linking metabolic and vascular disease and indicate the ability of a Westernized diet to induce endothelial dysfunction and to alter metabolic and vascular homeostasis.

  15. Association of inflammation and endothelial dysfunction with metabolic syndrome, prediabetes and diabetes in adults from Inner Mongolia, China

    PubMed Central

    2011-01-01

    Background We examined the association of biomarkers of inflammation and endothelial dysfunction with diabetes and metabolic syndrome (MetS) in persons from Inner Mongolia. Methods A cross-sectional study was conducted among 2,536 people aged 20 years and older from Inner Mongolia, China. Overnight fasting blood samples were obtained to measure plasma concentrations of high sensitivity C-reactive protein (hsCRP), soluble inter-cellular adhesion molecule-1 (sICAM-1), sE-selectin, angiotensin II, high density lipoprotein cholesterol, triglycerides, and blood glucose. Waist circumference and blood pressure were measured by trained staff. MetS was defined according to the modified ATP III definition for Asians. Elevated level of the biomarker was defined as values in the upper tertile of the distribution. Participants were categorized into one of four groups based on the presence or absence of metabolic and glycemic abnormalities: 1) free of prediabetes, diabetes and MetS (reference group), 2) prediabetes or diabetes only, 3) MetS without prediabetes or diabetes, and 4) MetS plus prediabetes or diabetes. The multivariable models are adjusted for age, gender, smoking, drinking, family history of hypertension, and body mass index. Results Among study participants, 18.5% had prediabetes, 3.6% had diabetes, and 27.4% of the entire study population had 3 or more components of the MetS. Elevated hsCRP was associated with an increased odds of prediabetes or diabetes only, MetS without prediabetes or diabetes, and MetS plus prediabetes or diabetes with multivariable adjusted odds ratios (95% confidence intervals) of 2.3 (1.7-3.1), 3.0 (2.4-3.8), and 5.8 (4.5-7.5), respectively. Elevated sICAM-1 was associated with increased odds (95% CI) of prediabetes or diabetes only (2.1, 1.6-2.9) and MetS plus prediabetes or diabetes (4.2, 3.2-5.3) but was not associated with MetS alone. Elevated sE-selectin was associated with a modestly increased risk of MetS (OR 1.7, 95% CI 1

  16. Advanced glycation of the Arg-Gly-Asp (RGD) tripeptide motif modulates retinal microvascular endothelial cell dysfunction

    PubMed Central

    McDonald, Denise M.; Coleman, Gary; Bhatwadekar, Ashay; Gardiner, Tom A.

    2009-01-01

    impair the function of retinal capillary endothelium and their reparative potential in response to diabetes-related insults. Arginine-specific modifications alter vital endothelial cell interactions with the substrate. This phenomenon could play an important role in dysfunction and nonperfusion of retinal capillaries during diabetes. PMID:19668595

  17. Oxidized phospholipids protect against lung injury and endothelial barrier dysfunction caused by heat-inactivated Staphylococcus aureus.

    PubMed

    Meliton, Angelo Y; Meng, Fanyong; Tian, Yufeng; Sarich, Nicolene; Mutlu, Gokhan M; Birukova, Anna A; Birukov, Konstantin G

    2015-03-15

    Increased endothelial cell (EC) permeability and vascular inflammation along with alveolar epithelial damage are key features of acute lung injury (ALI). Products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) showed protective effects against inflammatory signaling and vascular EC barrier dysfunction induced by gram-negative bacterial wall lipopolysaccharide (LPS). We explored the more general protective effects of OxPAPC and investigated whether delayed posttreatment with OxPAPC boosts the recovery of lung inflammatory injury and EC barrier dysfunction triggered by intratracheal injection of heat-killed gram-positive Staphylococcus aureus (HKSA) bacteria. HKSA-induced pulmonary EC permeability, activation of p38 MAP kinase and NF-κB inflammatory cascades, secretion of IL-8 and soluble ICAM1, fibronectin deposition, and expression of adhesion molecules ICAM1 and VCAM1 by activated EC were significantly attenuated by cotreatment as well as posttreatment wi