Science.gov

Sample records for age-related gray matter

  1. Relationship between Brain Age-Related Reduction in Gray Matter and Educational Attainment

    PubMed Central

    Rzezak, Patricia; Squarzoni, Paula; Duran, Fabio L.; de Toledo Ferraz Alves, Tania; Tamashiro-Duran, Jaqueline; Bottino, Cassio M.; Ribeiz, Salma; Lotufo, Paulo A.; Menezes, Paulo R.; Scazufca, Marcia; Busatto, Geraldo F.

    2015-01-01

    Inter-subject variability in age-related brain changes may relate to educational attainment, as suggested by cognitive reserve theories. This voxel-based morphometry study investigated the impact of very low educational level on the relationship between regional gray matter (rGM) volumes and age in healthy elders. Magnetic resonance imaging data were acquired in elders with low educational attainment (less than 4 years) (n = 122) and high educational level (n = 66), pulling together individuals examined using either of three MRI scanners/acquisition protocols. Voxelwise group comparisons showed no rGM differences (p<0.05, family-wise error corrected for multiple comparisons). When within-group voxelwise patterns of linear correlation were compared between high and low education groups, there was one cluster of greater rGM loss with aging in low versus high education elders in the left anterior cingulate cortex (p<0.05, FWE-corrected), as well as a trend in the left dorsomedial prefrontal cortex (p<0.10). These results provide preliminary indication that education might exert subtle protective effects against age-related brain changes in healthy subjects. The anterior cingulate cortex, critical to inhibitory control processes, may be particularly sensitive to such effects, possibly given its involvement in cognitive stimulating activities at school or later throughout life. PMID:26474472

  2. Effect of Bcl-2 rs956572 polymorphism on age-related gray matter volume changes.

    PubMed

    Liu, Mu-En; Huang, Chu-Chung; Yang, Albert C; Tu, Pei-Chi; Yeh, Heng-Liang; Hong, Chen-Jee; Chen, Jin-Fan; Liou, Ying-Jay; Lin, Ching-Po; Tsai, Shih-Jen

    2013-01-01

    The anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) gene is a major regulator of neural plasticity and cellular resilience. Recently, the Bcl-2 rs956572 single nucleotide polymorphism was proposed to be a functional allelic variant that modulates cellular vulnerability to apoptosis. Our cross-sectional study investigated the genetic effect of this Bcl-2 polymorphism on age-related decreases in gray matter (GM) volume across the adult lifespan. Our sample comprised 330 healthy volunteers (191 male, 139 female) with a mean age of 56.2±22.0 years (range: 21-92). Magnetic resonance imaging and genotyping of the Bcl-2 rs956572 were performed for each participant. The differences in regional GM volumes between G homozygotes and A-allele carriers were tested using optimized voxel-based morphometry. The association between the Bcl-2 rs956572 polymorphism and age was a predictor of regional GM volumes in the right cerebellum, bilateral lingual gyrus, right middle temporal gyrus, and right parahippocampal gyrus. We found that the volume of these five regions decreased with increasing age (all P<.001). Moreover, the downward slope was steeper among the Bcl-2 rs956572 A-allele carriers than in the G-homozygous participants. Our data provide convergent evidence for the genetic effect of the Bcl-2 functional allelic variant in brain aging. The rs956572 G-allele, which is associated with significantly higher Bcl-2 protein expression and diminished cellular sensitivity to stress-induced apoptosis, conferred a protective effect against age-related changes in brain GM volume, particularly in the cerebellum. PMID:23437205

  3. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?

    PubMed

    Lemaitre, Herve; Goldman, Aaron L; Sambataro, Fabio; Verchinski, Beth A; Meyer-Lindenberg, Andreas; Weinberger, Daniel R; Mattay, Venkata S

    2012-03-01

    Normal aging is accompanied by global as well as regional structural changes. While these age-related changes in gray matter volume have been extensively studied, less has been done using newer morphological indexes, such as cortical thickness and surface area. To this end, we analyzed structural images of 216 healthy volunteers, ranging from 18 to 87 years of age, using a surface-based automated parcellation approach. Linear regressions of age revealed a concomitant global age-related reduction in cortical thickness, surface area and volume. Cortical thickness and volume collectively confirmed the vulnerability of the prefrontal cortex, whereas in other cortical regions, such as in the parietal cortex, thickness was the only measure sensitive to the pronounced age-related atrophy. No cortical regions showed more surface area reduction than the global average. The distinction between these morphological measures may provide valuable information to dissect age-related structural changes of the brain, with each of these indexes probably reflecting specific histological changes occurring during aging. PMID:20739099

  4. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21-45 years old.

    PubMed

    Bourisly, Ali K; El-Beltagi, Ahmed; Cherian, Jigi; Gejo, Grace; Al-Jazzaf, Abrar; Ismail, Mohammad

    2015-10-01

    Previous and more recent work of analyzing structural changes in the brain suggest that certain brain regions such as the frontal lobe are among the brain regions profoundly affected by the aging process across males and females. Also, a unified model of structural changes in a normally aging brain is still lacking. The present study investigated age-related structural brain changes in gray matter from young to early middle-age adulthood for males and females. Magnetic resonance images of 215 normal and healthy participants between the ages of 21-45 years were acquired. Changes in gray matter were assessed using voxel-based morphometry and gray matter volumetric analysis. The results showed significant decrease in gray matter volume between the youngest and oldest groups in the following brain regions: frontal, temporal, and parietal lobes. Grey matter loss in the frontal lobe was among the most widespread of all brain regions across the comparison groups that showed significant age-related changes in grey matter for both males and females. This work provides a unique pattern of age-related decline of normal and healthy adult males and females that can aid in the future development of a unified model of normal brain aging. PMID:26306927

  5. Age-Related White Matter Changes

    PubMed Central

    Xiong, Yun Yun; Mok, Vincent

    2011-01-01

    Age-related white matter changes (WMC) are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC. PMID:21876810

  6. Effect of Alzheimer's Disease Risk Variant rs3824968 at SORL1 on Regional Gray Matter Volume and Age-Related Interaction in Adult Lifespan

    PubMed Central

    Huang, Chu-Chung; Liu, Mu-En; Kao, Hung-Wen; Chou, Kun-Hsien; Yang, Albert C.; Wang, Ying-Hsiu; Chen, Tong-Ru; Tsai, Shih-Jen; Lin, Ching-Po

    2016-01-01

    Sortilin receptor 1 (SORL1) is involved in cellular trafficking of amyloid precursor protein and plays an essential role in amyloid-beta peptide generation in Alzheimer disease (AD). The major A allele in a SORL1 single nucleotide polymorphism (SNP), rs3824968, is associated with an increased AD risk. However, the role of SORL1 rs3824968 in the normal ageing process has rarely been examined in relation to brain structural morphology. This study investigated the association between SORL1 rs3824968 and grey matter (GM) volume in a nondemented Chinese population of 318 adults within a wide age range (21–92 years). Through voxel-based morphometry, we found that participants carrying SORL1 allele A exhibited significantly smaller GM volumes in the right posterior cingulate, left middle occipital, medial frontal, and superior temporal gyri. Considerable interaction between age and SORL1 suggested a detrimental and accelerated ageing effect of allele A on putamen. These findings provide evidence that SORL1 rs3824968 modulates regional GM volume and is associated with brain trajectory during the adult lifespan. PMID:26996954

  7. Gray Matter Axonal Connectivity Maps

    PubMed Central

    Bonilha, Leonardo; Gleichgerrcht, Ezequiel; Nesland, Travis; Rorden, Chris; Fridriksson, Julius

    2015-01-01

    Structural brain connectivity is generally assessed through methods that rely on pre-defined regions of interest (e.g., Brodmann’s areas), thus preventing analyses that are largely free from a priori anatomical assumptions. Here, we introduce a novel and practical technique to evaluate a voxel-based measure of axonal projections connecting gray matter tissue [gray matter axonal connectivity map (GMAC)]. GMACs are compatible with voxel-based statistical approaches, and can be used to assess whole brain, scale-free, gray matter connectivity. In this study, we demonstrate how whole-brain GMACs can be generated from conventional structural connectome methodology, describing each step in detail, as well as providing tools to allow for the calculation of GMAC. To illustrate the utility of GMAC, we demonstrate the relationship between age and gray matter connectivity, using voxel-based analyses of GMAC. We discuss the potential role of GMAC in further analyses of cortical connectivity in healthy and clinical populations. PMID:25798111

  8. Age-related hair changes in men: mechanisms and management of alopecia and graying.

    PubMed

    Mirmirani, Paradi

    2015-01-01

    The appearance of human scalp hair is often tied to perceptions of youth and virility, especially in men. Hair loss, or alopecia and hair graying are commonly associated with advancing age and are frequently a source for emotional distress and anxiety. Our understanding of the complex molecular signals and mechanisms that regulate and influence the hair follicle has expanded in recent years. By harnessing this understanding we are poised to address the esthetic concerns of aging hair. Additionally, changes in the hair follicle may be a reflection of systemic senescent signals, thus because of its accessibility, the hair follicle may serve as an important research tool in gerontology. In this review, the most current knowledge and research regarding mechanisms of androgenetic alopecia, senescent alopecia, and graying are discussed, as are extrinsic factors that may contribute to hair changes with age. Evidence based management strategies for treatment of age-related hair changes are also reviewed. PMID:25466305

  9. Hearing and age-related changes in the gray mouse lemur.

    PubMed

    Schopf, Christian; Zimmermann, Elke; Tünsmeyer, Julia; Kästner, Sabine B R; Hubka, Peter; Kral, Andrej

    2014-12-01

    In order to examine auditory thresholds and hearing sensitivity during aging in the gray mouse lemur (Microcebus murinus), suggested to represent a model for early primate evolution and Alzheimer research, we applied brainstem-evoked response audiometry (BERA), traditionally used for screening hearing sensitivity in human babies. To assess the effect of age, we determined auditory thresholds in two age groups of adult mouse lemurs (young adults, 1-5 years; old adults, ≥7 years) using clicks and tone pips. Auditory thresholds indicated frequency sensitivity from 800 Hz to almost 50 kHz, covering the species tonal communication range with fundamentals from about 8 to 40 kHz. The frequency of best hearing at 7.9 kHz was slightly lower than that and coincided with the dominant frequencies of communication signals of a predator. Aging shifted auditory thresholds in the range between 2 and 50.4 kHz significantly by 12-27 dB. This mild presbyacusis, expressed in a drop of amplitudes of BERA signals, but not discernible in latencies of responses, suggests a metabolic age-related decrease potentially combined with an accompanying degeneration of the cochlear nerve. Our findings on hearing range of this species support the hypothesis that predation was a driving factor for the evolution of hearing in small ancestral primates. Likewise, results provide the empirical basis for future approaches trying to differentiate peripheral from central factors when studying Alzheimer's disease-like pathologies in the aging brain. PMID:25112886

  10. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes

    PubMed Central

    Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey

    2016-01-01

    Abstract The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients. A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnetic resonance imaging machine. Subjects also completed nutritional intake records at the 24-hour and 3-day time points to determine their carbohydrate, protein, fat, and total calorie intake. We utilized optimized voxel-based morphometry to estimate the gray matter differences between the patients and controls. In addition, the preprandial serum glucose level and the carbohydrate, protein, fat, and total calorie intake levels were tested to determine whether these parameters were correlated with the gray matter volume. Prediabetic patients had lower gray matter volumes than controls in the right anterior cingulate gyrus, right posterior cingulate gyrus, left insula, left super temporal gyrus, and left middle temporal gyrus (corrected P < 0.05; voxel threshold: 33). Gray matter volume in the right anterior cingulate was also negatively correlated with the preprandial serum glucose level gyrus in a voxel-dependent manner (r = –0.501; 2-tailed P = 0.001). The cingulo-temporal and insula gray matter alterations may be associated with the glucose dysregulation in prediabetic patients. PMID:27336893

  11. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes.

    PubMed

    Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey

    2016-06-01

    The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients.A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnetic resonance imaging machine. Subjects also completed nutritional intake records at the 24-hour and 3-day time points to determine their carbohydrate, protein, fat, and total calorie intake. We utilized optimized voxel-based morphometry to estimate the gray matter differences between the patients and controls. In addition, the preprandial serum glucose level and the carbohydrate, protein, fat, and total calorie intake levels were tested to determine whether these parameters were correlated with the gray matter volume.Prediabetic patients had lower gray matter volumes than controls in the right anterior cingulate gyrus, right posterior cingulate gyrus, left insula, left super temporal gyrus, and left middle temporal gyrus (corrected P < 0.05; voxel threshold: 33). Gray matter volume in the right anterior cingulate was also negatively correlated with the preprandial serum glucose level gyrus in a voxel-dependent manner (r = -0.501; 2-tailed P = 0.001).The cingulo-temporal and insula gray matter alterations may be associated with the glucose dysregulation in prediabetic patients. PMID:27336893

  12. Physical activity, fitness, and gray matter volume.

    PubMed

    Erickson, Kirk I; Leckie, Regina L; Weinstein, Andrea M

    2014-09-01

    In this review, we explore the association among physical activity, cardiorespiratory fitness, and exercise on gray matter volume in older adults. We conclude that higher cardiorespiratory fitness levels are routinely associated with greater gray matter volume in the prefrontal cortex and hippocampus and less consistently in other regions. We also conclude that physical activity is associated with greater gray matter volume in the same regions that are associated with cardiorespiratory fitness including the prefrontal cortex and hippocampus. Some heterogeneity in the literature may be explained by effect moderation by age, stress, or other factors. Finally, we report promising results from randomized exercise interventions that suggest that the volume of the hippocampus and prefrontal cortex remain pliable and responsive to moderate intensity exercise for 6 months-1 year. Physical activity appears to be a propitious method for influencing gray matter volume in late adulthood, but additional well-controlled studies are necessary to inform public policies about the potential protective or therapeutic effects of exercise on brain volume. PMID:24952993

  13. Physical activity, fitness, and gray matter volume

    PubMed Central

    Erickson, Kirk I.; Leckie, Regina L.; Weinstein, Andrea M.

    2014-01-01

    In this review we explore the association between physical activity, cardiorespiratory fitness, and exercise on gray matter volume in older adults. We conclude that higher cardiorespiratory fitness levels are routinely associated with greater gray matter volume in the prefrontal cortex and hippocampus, and less consistently in other regions. We also conclude that physical activity is associated with greater gray matter volume in the same regions that are associated with cardiorespiratory fitness including the prefrontal cortex and hippocampus. Some heterogeneity in the literature may be explained by effect moderation by age, stress, or other factors. Finally, we report promising results from randomized exercise interventions that suggest that the volume of the hippocampus and prefrontal cortex remain pliable and responsive to moderate intensity exercise for 6-months to 1-year. Physical activity appears to be a propitious method for influencing gray matter volume in late adulthood, but additional well-controlled studies are necessary to inform public policies about the potential protective or therapeutic effects of exercise on brain volume. PMID:24952993

  14. The impact of aging on gray matter structural covariance networks.

    PubMed

    Montembeault, Maxime; Joubert, Sven; Doyon, Julien; Carrier, Julie; Gagnon, Jean-François; Monchi, Oury; Lungu, Ovidiu; Belleville, Sylvie; Brambati, Simona Maria

    2012-11-01

    Previous anatomical volumetric studies have shown that healthy aging is associated with gray matter tissue loss in specific cerebral regions. However, these studies may have potentially missed critical elements of age-related brain changes, which largely exist within interrelationships among brain regions. This magnetic resonance imaging research aims to assess the effects of aging on the organization of gray matter structural covariance networks. Here, we used voxel-based morphometry on high-definition brain scans to compare the patterns of gray matter structural covariance networks that sustain different sensorimotor and high-order cognitive functions among young (n=88, mean age=23.5±3.1 years, female/male=55/33) and older (n=88, mean age=67.3±5.9 years, female/male=55/33) participants. This approach relies on the assumption that functionally correlated brain regions show correlations in gray matter volume as a result of mutually trophic influences or common experience-related plasticity. We found reduced structural association in older adults compared with younger adults, specifically in high-order cognitive networks. Major differences were observed in the structural covariance networks that subserve the following: a) the language-related semantic network, b) the executive control network, and c) the default-mode network. Moreover, these cognitive functions are typically altered in the older population. Our results indicate that healthy aging alters the structural organization of cognitive networks, shifting from a more distributed (in young adulthood) to a more localized topological organization in older individuals. PMID:22776455

  15. Gray Matter Involvement in Radiologically Isolated Syndrome

    PubMed Central

    Labiano-Fontcuberta, Andrés; Mato-Abad, Virginia; Álvarez-Linera, Juan; Hernández-Tamames, Juan Antonio; Martínez-Ginés, Mª Luisa; Aladro, Yolanda; Ayuso, Lucía; Domingo-Santos, Ángela; Benito-León, Julián

    2016-01-01

    Abstract The unanticipated magnetic resonance imaging (MRI) detection in the brain of asymptomatic subjects of white matter lesions suggestive of multiple sclerosis has recently been named as radiologically isolated syndrome (RIS). The pathophysiological processes of RIS remain largely unknown and questions as to whether gray matter alterations actually occur in this entity are yet to be investigated in more detail. By means of a 3 T multimodal MRI approach, we searched for cortical and deep gray matter changes in a cohort of RIS patients. Seventeen RIS patients, 17 clinically isolated syndrome (CIS) patients (median disease duration from symptom onset = 12 months), and 17 healthy controls underwent MRI and neuropsychological testing. Normalized deep gray matter volumes and regional cortical thickness were assessed using FreeSurfer. SIENAX was used to obtain normalized global and cortical brain volumes. Voxelwise morphometry analysis was performed by using SPM8 software to localize regions of brain tissue showing significant changes of fractional anisotropy or mean diffusivity. Although no differences were observed between CIS and healthy controls groups, RIS patients showed significantly lower normalized cortical volume (673 ± 27.07 vs 641 ± 35.88 [cm3 × 103, Tukey P test = 0.009) and mean thalamic volume (0.0051 ± 0.4 vs 0.0046 ± 0.4 mm, P = 0.014) compared with healthy controls. RIS patients also showed significant thinning in a number of cortical areas, that were primarily distributed in frontal and temporal lobes (P < 0.05, uncorrected). Strong correlations were observed between T2-white matter lesion volume and regional cortical thickness (rho spearman ranging from 0.60 to 0.80). Our data suggest that white matter lesions on T2-weighted images are not the only hallmark of RIS. Future longitudinal studies with larger samples are warranted to better clarify the effect of RIS-related white matter lesions on gray matter

  16. Age-related body mass and reproductive measurements of gray wolves in Minnesota

    USGS Publications Warehouse

    Mech, L.D.

    2006-01-01

    Based on 65 free-ranging gray wolves (Canis lupus) of known age and 25 of estimated age examined during summers of 1970-2004 in northeastern Minnesota, body mass of both males and females peaked at 5 or 6 years of age, with mean masses of 40.8 kg and 31.2 kg, respectively. Testis size varied as a function of age and month through at least 8 years of age, with length plus width ranging from 1.9 to 7.8 cm. Most females aged 4-9 years bred based on assessment of nipple sizes; those that had not bred had average lower body mass than those that had. This is the 1st report of such data from known-aged wolves.

  17. Synergistic Effects of Age on Patterns of White and Gray Matter Volume across Childhood and Adolescence1,2,3

    PubMed Central

    Krongold, Mark; Cooper, Cassandra; Lebel, Catherine

    2015-01-01

    Abstract The human brain develops with a nonlinear contraction of gray matter across late childhood and adolescence with a concomitant increase in white matter volume. Across the adult population, properties of cortical gray matter covary within networks that may represent organizational units for development and degeneration. Although gray matter covariance may be strongest within structurally connected networks, the relationship to volume changes in white matter remains poorly characterized. In the present study we examined age-related trends in white and gray matter volume using T1-weighted MR images from 360 human participants from the NIH MRI study of Normal Brain Development. Images were processed through a voxel-based morphometry pipeline. Linear effects of age on white and gray matter volume were modeled within four age bins, spanning 4-18 years, each including 90 participants (45 male). White and gray matter age-slope maps were separately entered into k-means clustering to identify regions with similar age-related variability across the four age bins. Four white matter clusters were identified, each with a dominant direction of underlying fibers: anterior–posterior, left–right, and two clusters with superior–inferior directions. Corresponding, spatially proximal, gray matter clusters encompassed largely cerebellar, fronto-insular, posterior, and sensorimotor regions, respectively. Pairs of gray and white matter clusters followed parallel slope trajectories, with white matter changes generally positive from 8 years onward (indicating volume increases) and gray matter negative (decreases). As developmental disorders likely target networks rather than individual regions, characterizing typical coordination of white and gray matter development can provide a normative benchmark for understanding atypical development. PMID:26464999

  18. Deformation-based surface morphometry applied to gray matter deformation.

    PubMed

    Chung, Moo K; Worsley, Keith J; Robbins, Steve; Paus, Tomás; Taylor, Jonathan; Giedd, Jay N; Rapoport, Judith L; Evans, Alan C

    2003-02-01

    We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray matter volume change. It is highly likely that such age-related surface changes are not uniform. By measuring how such surface metrics change over time, the regions of the most rapid structural changes can be localized. We avoided using surface flattening, which distorts the inherent geometry of the cortex in our analysis and it is only used in visualization. To increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface data. Afterward, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how this new surface-based morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain images longitudinally collected in the group of children and adolescents. PMID:12595176

  19. Aberrant Paralimbic Gray Matter in Criminal Psychopathy

    PubMed Central

    Ermer, Elsa; Cope, Lora M.; Calhoun, Vince D.; Nyalakanti, Prashanth K.; Kiehl, Kent A.

    2014-01-01

    Psychopaths impose large costs on society, as they are frequently habitual, violent criminals. The pervasive nature of emotional and behavioral symptoms in psychopathy suggests that several associated brain regions may contribute to the disorder. Studies employing a variety of methods have converged on a set of brain regions in paralimbic cortex and limbic areas that appear to be dysfunctional in psychopathy. The present study further tests this hypothesis by investigating structural abnormalities using voxel-based morphometry in a sample of incarcerated men (N [H11005] 296). Psychopathy was associated with decreased regional gray matter in several paralimbic and limbic areas, including bilateral parahippocampal, amygdala, and hippocampal regions, bilateral temporal pole, posterior cingulate cortex, and orbitofrontal cortex. The consistent identification of paralimbic cortex and limbic structures in psychopathy across diverse methodologies strengthens the interpretation that these regions are crucial for understanding neural dysfunction in psychopathy. PMID:22149911

  20. Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state.

    PubMed

    Marstaller, L; Williams, M; Rich, A; Savage, G; Burianová, H

    2015-04-01

    Healthy aging is accompanied by neurobiological changes that affect the brain's functional organization and the individual's cognitive abilities. The aim of this study was to investigate the effect of global age-related differences in the cortical white and gray matter on neural activity in three key large-scale networks. We used functional-structural covariance network analysis to assess resting state activity in the default mode network (DMN), the fronto-parietal network (FPN), and the salience network (SN) of young and older adults. We further related this functional activity to measures of cortical thickness and volume derived from structural MRI, as well as to measures of white matter integrity (fractional anisotropy [FA], mean diffusivity [MD], and radial diffusivity [RD]) derived from diffusion-weighted imaging. First, our results show that, in the direct comparison of resting state activity, young but not older adults reliably engage the SN and FPN in addition to the DMN, suggesting that older adults recruit these networks less consistently. Second, our results demonstrate that age-related decline in white matter integrity and gray matter volume is associated with activity in prefrontal nodes of the SN and FPN, possibly reflecting compensatory mechanisms. We suggest that age-related differences in gray and white matter properties differentially affect the ability of the brain to engage and coordinate large-scale functional networks that are central to efficient cognitive functioning. PMID:25644420

  1. Mapping gray matter volume and cortical thickness in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojuan; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kuncheng

    2010-03-01

    Gray matter volume and cortical thickness are two important indices widely used to detect neuropathological changes in brain structural magnetic resonance imaging. Using optimized voxel-based morphometry (VBM) protocol and surface-based cortical thickness measure, this study comprehensively investigated the regional changes in cortical gray matter volume and cortical thickness in Alzheimer's disease (AD). Thirteen patients with AD and fourteen age- and gender-matched healthy controls were included in this study. Results showed that voxel-based gray matter volume and cortical thickness reductions were highly correlated in the temporal lobe and its medial structure in AD. Moreover significant reduced cortical regions of gray matter volume were obviously more than that of cortical thickness. These findings suggest that gray matter volume and cortical thickness, as two important imaging markers, are effective indices for detecting the neuroanatomical alterations and help us understand the neuropathology from different views in AD.

  2. Disconnected aging: cerebral white matter integrity and age-related differences in cognition.

    PubMed

    Bennett, I J; Madden, D J

    2014-09-12

    Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. PMID:24280637

  3. Medial Frontal White and Gray Matter Contributions to General Intelligence

    PubMed Central

    Bouix, Sylvain; Kubicki, Marek

    2014-01-01

    The medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA), which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%–34% of the variance in IQ, in comparison to 11%–16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence. PMID:25551572

  4. Gray Matter Is Targeted in First-Attack Multiple Sclerosis

    SciTech Connect

    Schutzer, Steven E.; Angel, Thomas E.; Liu, Tao; Schepmoes, Athena A.; Xie, Fang; Bergquist, Jonas P.; Vecsei, Lazlo'; Zadori, Denes; Camp, David G.; Holland, Bart K.; Smith, Richard D.; Coyle, Patricia K.

    2013-09-10

    The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We found that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.

  5. Age-related abnormalities in white matter microstructure in autism spectrum disorders

    PubMed Central

    Kleinhans, Natalia M.; Pauley, Gregory; Richards, Todd; Neuhaus, Emily; Martin, Nathalie; Corrigan, Neva M.; Shaw, Dennis W.; Estes, Annette; Dager, Stephen R.

    2012-01-01

    Abnormalities in structural and functional connectivity have been reported in autism spectrum disorders (ASD) across a wide age range. However, developmental changes in white matter microstructure are poorly understood. We used a cross-sectional design to determine whether white matter abnormalities measured using diffusion tensor imaging (DTI) were present in adolescents and adults with ASD and whether age-related changes in white matter microstructure differed between ASD and typically developing (TD) individuals. Participants included 28 individuals with ASD and 33 TD controls matched on age and IQ and assessed at one time point. Widespread decreased fractional anisotropy (FA), and increased radial diffusivity (RaD) and mean diffusivity (MD) were observed in the ASD group compared to the TD group. In addition, significant group-by-age interactions were also observed in FA, RaD, and MD in all major tracts except the brain stem, indicating that age-related changes in white matter microstructure differed between the groups. We propose that white matter microstructural changes in ASD may reflect myelination and/or other structural differences including differences in axonal density/arborization. In addition, we suggest that white matter microstuctural impairments may be normalizing during young adulthood in ASD. Future longitudinal studies that include a wider range of ages and more extensive clinical characterization will be critical for further uncovering the neurodevelopmental processes unfolding during this dynamic time in development. PMID:22902768

  6. Gray Matter Characteristics in Mid and Old Aged Adults with ASD.

    PubMed

    Koolschijn, P Cédric M P; Geurts, Hilde M

    2016-08-01

    It is widely acknowledged that the brain anatomy of children and adolescents with autism spectrum disorder (ASD) shows a different developmental pattern then typical age-matched peers. There is however, a paucity of studies examining gray matter in mid and late adulthood in ASD. In this cross-sectional neuroimaging study, we, performed vertex-wise whole-brain and region-of-interest analyses of cortical volume, thickness, surface area, and gyrification index in 51 adults with and 49 without ASD, between 30 and 75 years. There was significant age-related volume loss and cortical thinning, but there were no group differences. The lack of significant anatomical differences between intellectual able individuals with and without ASD, suggests that ASD is not (strongly) related to gray matter morphology in mid and late adulthood. PMID:27177894

  7. Aerobic Fitness is Associated with Gray Matter Volume and White Matter Integrity in Multiple Sclerosis

    PubMed Central

    Prakash, Ruchika Shaurya; Snook, Erin M.; Motl, Robert W.; Kramer, Arthur F.

    2009-01-01

    Alterations in gray and white matter have been well documented in individuals with multiple sclerosis. Severity and extent of such brain tissue damage have been associated with cognitive impairment, disease duration and neurological disability, making quantitative indices of tissue damage important markers of disease progression. In this study, we investigated the association between cardiorespiratory fitness and measures of gray matter atrophy and white matter integrity. Employing a voxel-based approach to analyses of gray matter and white matter, we specifically examined whether higher levels of fitness in multiple sclerosis participants were associated with preserved gray matter volume and integrity of white matter. We found a positive association between cardiorespiratory fitness and regional gray matter volumes and higher focal fractional anisotropy values. Statistical mapping revealed that higher levels of fitness were associated with greater gray matter volume in the midline cortical structures including the medial frontal gyrus, anterior cingulate cortex and the precuneus. Further, we also found increasing levels of fitness were associated with higher fractional anisotropy in the left thalamic radiation and right anterior corona radiata. Both preserved gray matter volume and white-matter tract integrity were associated with better performance on measures of processing speed. Taken together, these results suggest that fitness exerts a prophylactic influence on the cerebral atrophy observed early on preserving neuronal integrity in multiple sclerosis, thereby reducing long-term disability. PMID:19560443

  8. Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis.

    PubMed

    Prakash, Ruchika Shaurya; Snook, Erin M; Motl, Robert W; Kramer, Arthur F

    2010-06-23

    Alterations in gray and white matter have been well documented in individuals with multiple sclerosis. Severity and extent of such brain tissue damage have been associated with cognitive impairment, disease duration and neurological disability, making quantitative indices of tissue damage important markers of disease progression. In this study, we investigated the association between cardiorespiratory fitness and measures of gray matter atrophy and white matter integrity. Employing voxel-based approaches to analysis of gray matter and white matter, we specifically examined whether higher levels of fitness in multiple sclerosis participants were associated with preserved gray matter volume and integrity of white matter. We found a positive association between cardiorespiratory fitness and regional gray matter volumes and higher focal fractional anisotropy values. Statistical mapping revealed that higher levels of fitness were associated with greater gray matter volume in the midline cortical structures including the medial frontal gyrus, anterior cingulate cortex and the precuneus. Further, we also found that increasing levels of fitness were associated with higher fractional anisotropy in the left thalamic radiation and right anterior corona radiata. Both preserved gray matter volume and white matter tract integrity were associated with better performance on measures of processing speed. Taken together, these results suggest that fitness exerts a prophylactic influence on the structural decline observed early on, preserving neuronal integrity in multiple sclerosis, thereby reducing long-term disability. PMID:19560443

  9. Multimodal white matter imaging to investigate reduced fractional anisotropy and its age-related decline in schizophrenia

    PubMed Central

    Kochunov, Peter; Chiappelli, Joshua; Wright, Susan N.; Rowland, Laura M.; Patel, Benish; Wijtenburg, S. Andrea; Nugent, Katie; McMahon, Robert P.; Carpenter, William T.; Muellerklein, Florian; Sampath, Hemalatha; Hong, L. Elliot

    2014-01-01

    We hypothesized that reduced fractional anisotropy (FA) of water diffusion and its elevated aging-related decline in schizophrenia patients may be caused by elevated hyperintensive white matter (HWM) lesions, by reduced permeability-diffusivity index (PDI), or both. We tested this hypothesis in 40/30 control/patient participants. FA values for the corpus callosum were calculated from high angular resolution diffusion tensor imaging (DTI). Whole-brain volume of HWM lesions was quantified by 3D-T2w-fluid-attenuated inversion recovery (FLAIR) imaging. PDI for corpus callosum was ascertained using multi b-value diffusion imaging (15 b-shells with 30 directions per shell). Patients had significantly lower corpus callosum FA values, and there was a significant age-by-diagnosis interaction. Patients also had significantly reduced PDI but no difference in HWM volume. PDI and HWM volume were significant predictors of FA and captured the diagnosis-related variance. Separately, PDI robustly explained FA variance in schizophrenia patients, but not in controls. Conversely, HWM volume made equally significant contributions to variability in FA in both groups. The diagnosis-by-age effect of FA was explained by a PDI-by-diagnosis interaction. Post hoc testing showed a similar trend for PDI of gray mater. Our study demonstrated that reduced FA and its accelerated decline with age in schizophrenia were explained by pathophysiology indexed by PDI, rather than HWM volume. PMID:24909602

  10. Gray Matter Volume Changes in the Apathetic Elderly

    PubMed Central

    Yan, Hongjie; Onoda, Keiichi; Yamaguchi, Shuhei

    2015-01-01

    This study is to test the hypothesis that apathy in healthy participants is closely related to the prefrontal-basal-ganglia circuit and associated structural changes. We selected 36 healthy aged participants with (n = 18) or without apathy (n = 18) from our database. Participants underwent structural MRI scanning, providing data for voxel-based morphometric analysis to explore gray matter changes associated with apathy. Compared to the non-apathy group, the apathy group showed reduced gray matter volume of the right putamen, whereas volumes of the bilateral inferior frontal gyri and left inferior occipital gyrus showed increase. When depression scores were included in a regression model as a covariate, apathetic participants showed decreased gray matter volume in the right precentral gyrus compared to the non-apathetic participants. These findings suggest that apathy is associated with the gray matter volume in the prefrontal-basal-ganglia network, and may have a neuroanatomical basis distinct from depression in healthy elderly. PMID:26082708

  11. MR volume segmentation of gray matter and white matter using manual thresholding: Dependence on image brightness

    SciTech Connect

    Harris, G.J.; Barta, P.E.; Peng, L.W.; Lee, S.; Brettschneider, P.D.; Shah, A.; Henderer, J.D.; Schlaepfer, T.E.; Pearlson, G.D. Tufts Univ. School of Medicine, Boston, MA )

    1994-02-01

    To describe a quantitative MR imaging segmentation method for determination of the volume of cerebrospinal fluid, gray matter, and white matter in living human brain, and to determine the method's reliability. We developed a computer method that allows rapid, user-friendly determination of cerebrospinal fluid, gray matter, and white matter volumes in a reliable manner, both globally and regionally. This method was applied to a large control population (N = 57). Initially, image brightness had a strong correlation with the gray-white ratio (r = .78). Bright images tended to overestimate, dim images to underestimate gray matter volumes. This artifact was corrected for by offsetting each image to an approximately equal brightness. After brightness correction, gray-white ratio was correlated with age (r = -.35). The age-dependent gray-white ratio was similar to that for the same age range in a prior neuropathology report. Interrater reliability was high (.93 intraclass correlation coefficient). The method described here for gray matter, white matter, and cerebrospinal fluid volume calculation is reliable and valid. A correction method for an artifact related to image brightness was developed. 12 refs., 3 figs.

  12. Fractional Anisotropy of Cerebral White Matter and Thickness of Cortical Gray Matter across the Lifespan

    PubMed Central

    P., Kochunov; DC, Glahn; J., Lancaster; P.M., Thompson; V., Kochunov; B., Rogers; P., Fox; J., Blangero; D.E., Williamson

    2011-01-01

    We examined age trajectories of fractional anisotropy (FA) of cerebral white matter (WM) and thickness of cortical gray matter (GM) in 1,031 healthy human subjects (aged 11-90 years). Whole-brain FA and GM thickness values followed quadratic trajectories with age but the relationship between them was linear, indicating that a putative biological mechanism may explain the non-linearity of their age trajectories. Inclusion of the FA values into the quadratic model of the whole-brain and regional GM thickness changes with age made the effect of the age2 term no longer significant for the whole-brain GM thickness and greatly reduced its significance for regional GM thickness measurements. The phylogenetic order of cerebral myelination helped to further explain the intersubject variability in GM thickness. FA values for the early maturing WM were significantly better (p=10−6) at explaining variability in GM thickness in maturing (aged 11-20) subjects than FA values for the late maturing WM. The opposite trend was observed for aging subjects (aged 40-90) where FA values for the late maturing WM were better (p=10−16) at explaining the variability in GM thickness. We concluded that the non-linearity of the age trajectory for GM thickness, measured from T1-weighted MRI, was partially explained by the heterogeneity and the heterochronicity of the age-related changes in the microintegrity of cerebral WM. We consider these findings as the evidence that the measurements of age-related changes in GM thickness and FA are driven, in part, by a common biological mechanism, presumed to be related to changes in cerebral myelination. PMID:21640837

  13. The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity.

    PubMed

    Steffener, Jason; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-01-01

    Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional changes. This straightforward idea is tested in within a conceptual research model of cognitive aging. The current study tested whether age-related declines in task-performance were explained by age-related differences in brain structure and brain function using a task-switching paradigm in 175 participants. Sixty-three young and 112 old participants underwent MRI scanning of brain structure and brain activation. The experimental task was an executive context dual task with switch costs in response time as the behavioral measure. A serial mediation model was applied voxel-wise throughout the brain testing all pathways between age group, gray matter volume, brain activation and increased switch costs, worsening performance. There were widespread age group differences in gray matter volume and brain activation. Switch costs also significantly differed by age group. There were brain regions demonstrating significant indirect effects of age group on switch costs via the pathway through gray matter volume and brain activation. These were in the bilateral precuneus, bilateral parietal cortex, the left precentral gyrus, cerebellum, fusiform, and occipital cortices. There were also significant indirect effects via the brain activation pathway after controlling for gray matter volume. These effects were in the cerebellum, occipital cortex, left precentral gyrus, bilateral supramarginal, bilateral parietal, precuneus, middle cingulate extending to medial superior frontal gyri and the left middle frontal gyri. There were no significant effects through the gray matter volume alone pathway. These results demonstrate that a large proportion of the age group effect on switch costs can

  14. The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity

    PubMed Central

    Steffener, Jason; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-01-01

    Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional changes. This straightforward idea is tested in within a conceptual research model of cognitive aging. The current study tested whether age-related declines in task-performance were explained by age-related differences in brain structure and brain function using a task-switching paradigm in 175 participants. Sixty-three young and 112 old participants underwent MRI scanning of brain structure and brain activation. The experimental task was an executive context dual task with switch costs in response time as the behavioral measure. A serial mediation model was applied voxel-wise throughout the brain testing all pathways between age group, gray matter volume, brain activation and increased switch costs, worsening performance. There were widespread age group differences in gray matter volume and brain activation. Switch costs also significantly differed by age group. There were brain regions demonstrating significant indirect effects of age group on switch costs via the pathway through gray matter volume and brain activation. These were in the bilateral precuneus, bilateral parietal cortex, the left precentral gyrus, cerebellum, fusiform, and occipital cortices. There were also significant indirect effects via the brain activation pathway after controlling for gray matter volume. These effects were in the cerebellum, occipital cortex, left precentral gyrus, bilateral supramarginal, bilateral parietal, precuneus, middle cingulate extending to medial superior frontal gyri and the left middle frontal gyri. There were no significant effects through the gray matter volume alone pathway. These results demonstrate that a large proportion of the age group effect on switch costs can

  15. Estrogen treatment prevents gray matter atrophy in experimental autoimmune encephalomyelitis.

    PubMed

    MacKenzie-Graham, Allan J; Rinek, Gilda A; Avedisian, Andrea; Morales, Laurie B; Umeda, Elizabeth; Boulat, Benoit; Jacobs, Russell E; Toga, Arthur W; Voskuhl, Rhonda R

    2012-07-01

    Gray matter atrophy is an important correlate to clinical disability in multiple sclerosis (MS), and many treatment trials include atrophy as an outcome measure. Atrophy has been shown to occur in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The clinical severity of EAE is reduced in estrogen-reated mice, but it remains unknown whether estrogen treatment can reduce gray matter atrophy in EAE. In this study, mice with EAE were treated with either estrogen receptor (ER)-α ligand or ER-β ligand, and diffusion tensor images (DTI) were collected and neuropathology was performed. DTI showed atrophy in the cerebellar gray matter of vehicle-treated EAE mice compared with healthy controls but not in ER-α or ER-β ligand-treated EAE mice. Neuropathology demonstrated that Purkinje cell numbers were decreased in vehicle-treated EAE mice, whereas neither ER ligand-treated EAE groups showed a decrease. This is the first report of a neuroprotective therapy in EAE that unambiguously prevents gray matter atrophy while sparing a major neuronal cell type. Fractional anisotropy (FA) in the cerebellar white matter was decreased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Inflammatory cell infiltration was increased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Myelin staining was decreased in vehicle-treated EAE mice and was spared in both ER ligand-treated groups. This is consistent with decreased FA as a potential biomarker for inflammation rather than myelination or axonal damage in the cerebellum in EAE. PMID:22411609

  16. Age-related differences in white matter integrity and cognitive function are related to APOE status

    PubMed Central

    Ryan, Lee; Walther, Katrin; Bendlin, Barbara B.; Lue, Lih-Fen; Walker, Douglas G.; Glisky, Elizabeth L.

    2010-01-01

    While an extensive literature is now available on age-related differences in white matter integrity measured by diffusion MRI, relatively little is known about the relationships between diffusion and cognitive functions in older adults. Even less is known about whether these relationships are influenced by the apolipoprotein (APOE) ε4 allele, despite growing evidence that ε4 increases cognitive impairment in older adults. The purpose of the present study was to examine these relationships in a group of community-dwelling cognitively normal older adults. Data were obtained from a sample of 126 individuals (ages 52–92) that included 32 ε4 heterozygotes, 6 ε4 homozygotes, and 88 non-carriers. Two measures of diffusion, the apparent diffusion coefficient (ADC) and fractional anisotropy (FA), were obtained from six brain regions – frontal white matter, lateral parietal white matter, the centrum semiovale, the genu and splenium of the corpus callosum, and the temporal stem white matter – and were used to predict composite scores of cognitive function in two domains, executive function and memory function. Results indicated that ADC and FA differed with increasing age in all six brain regions, and these differences were significantly greater for ε4 carriers compared to noncarriers. Importantly, after controlling for age, diffusion measures predicted cognitive function in a region-specific way that was also influenced by ε4 status. Regardless of APOE status, frontal ADC and FA independently predicted executive function scores for all participants, while temporal lobe ADC additionally predicted executive function for ε4 carriers, but not noncarriers. Memory scores were predicted by temporal lobe ADC but not frontal diffusion for all participants, and this relationship was significantly stronger in ε4 carriers compared to noncarriers. Taken together, age and temporal lobe ADC accounted for a striking 53% of the variance in memory scores within the ε4 carrier

  17. Mapping ventricular expansion onto cortical gray matter in older adults.

    PubMed

    Madsen, Sarah K; Gutman, Boris A; Joshi, Shantanu H; Toga, Arthur W; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    Dynamic changes in the brain's lateral ventricles on magnetic resonance imaging are powerful biomarkers of disease progression in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Ventricular measures can represent accumulation of diffuse brain atrophy with very high effect sizes. Despite having no direct role in cognition, ventricular expansion co-occurs with volumetric loss in gray and white matter structures. To better understand relationships between ventricular and cortical changes over time, we related ventricular expansion to atrophy in cognitively relevant cortical gray matter surfaces, which are more challenging to segment. In ADNI participants, percent change in ventricular volumes at 1-year (N = 677) and 2-year (N = 536) intervals was significantly associated with baseline cortical thickness and volume in the full sample controlling for age, sex, and diagnosis, and in MCI separately. Ventricular expansion in MCI was associated with thinner gray matter in frontal, temporal, and parietal regions affected by AD. Ventricular expansion reflects cortical atrophy in early AD, offering a useful biomarker for clinical trials of interventions to slow AD progression. PMID:25311280

  18. Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians.

    PubMed

    Sluming, Vanessa; Barrick, Thomas; Howard, Matthew; Cezayirli, Enis; Mayes, Andrew; Roberts, Neil

    2002-11-01

    Broca's area is a major neuroanatomical substrate for spoken language and various musically relevant abilities, including visuospatial and audiospatial localization. Sight reading is a musician-specific visuospatial analysis task, and spatial ability is known to be amenable to training effects. Musicians have been reported to perform significantly better than nonmusicians on spatial ability tests, which is supported by our findings with the Benton judgement of line orientation (JOL) test (P < 0.001). We hypothesised that use-dependent adaptation would lead to increased gray matter density in Broca's area in musicians. Voxel-based morphometry (VBM) and stereological analyses were applied to high-resolution 3D MR images in male orchestral musicians (n = 26) and sex, handedness, and IQ-matched nonmusicians (n = 26). The wide age range (26 to 66 years) of volunteers permitted a secondary analysis of age-related effects. VBM with small volume correction (SVC) revealed a significant (P = 0.002) region of increased gray matter in Broca's area in the left inferior frontal gyrus in musicians. We observed significant age-related volume reductions in cerebral hemispheres, dorsolateral prefrontal cortex subfields bilaterally and gray matter density in the left inferior frontal gyrus in controls but not musicians; a positive correlation between JOL test score and age in musicians but not controls; a positive correlation between years of playing and the volume of gray matter in a significant region identified by VBM in under-50-year-old musicians. We suggest that orchestral musical performance promotes use-dependent retention, and possibly expansion, of gray matter involving Broca's area and that this provides further support for shared neural substrates underpinning expressive output in music and language. PMID:12414299

  19. Source-Based Morphometry: The Use of Independent Component Analysis to Identify Gray Matter Differences With Application to Schizophrenia

    PubMed Central

    Xu, Lai; Groth, Karyn M.; Pearlson, Godfrey; Schretlen, David J.; Calhoun, Vince D.

    2009-01-01

    We present a multivariate alternative to the voxel-based morphometry (VBM) approach called source-based morphometry (SBM), to study gray matter differences between patients and healthy controls. The SBM approach begins with the same preprocessing procedures as VBM. Next, independent component analysis is used to identify naturally grouping, maximally independent sources. Finally, statistical analyses are used to determine the significant sources and their relationship to other variables. The identified “source networks,” groups of spatially distinct regions with common covariation among subjects, provide information about localization of gray matter changes and their variation among individuals. In this study, we first compared VBM and SBM via a simulation and then applied both methods to real data obtained from 120 chronic schizophrenia patients and 120 healthy controls. SBM identified five gray matter sources as significantly associated with schizophrenia. These included sources in the bilateral temporal lobes, thalamus, basal ganglia, parietal lobe, and frontotemporal regions. None of these showed an effect of sex. Two sources in the bilateral temporal and parietal lobes showed age-related reductions. The most significant source of schizophrenia-related gray matter changes identified by SBM occurred in the bilateral temporal lobe, while the most significant change found by VBM occurred in the thalamus. The SBM approach found changes not identified by VBM in basal ganglia, parietal, and occipital lobe. These findings show that SBM is a multivariate alternative to VBM, with wide applicability to studying changes in brain structure. PMID:18266214

  20. Linking white matter and deep gray matter alterations in premanifest Huntington disease

    PubMed Central

    Faria, Andreia V.; Ratnanather, J. Tilak; Tward, Daniel J.; Lee, David Soobin; van den Noort, Frieda; Wu, Dan; Brown, Timothy; Johnson, Hans; Paulsen, Jane S.; Ross, Christopher A.; Younes, Laurent; Miller, Michael I.

    2016-01-01

    Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay

  1. Changes in Gray Matter Induced by Learning—Revisited

    PubMed Central

    Driemeyer, Joenna; Boyke, Janina; Gaser, Christian; Büchel, Christian; May, Arne

    2008-01-01

    Background Recently, activation-dependant structural brain plasticity in humans has been demonstrated in adults after three months of training a visio-motor skill. Learning three-ball cascade juggling was associated with a transient and highly selective increase in brain gray matter in the occipito-temporal cortex comprising the motion sensitive area hMT/V5 bilaterally. However, the exact time-scale of usage-dependant structural changes occur is still unknown. A better understanding of the temporal parameters may help to elucidate to what extent this type of cortical plasticity contributes to fast adapting cortical processes that may be relevant to learning. Principal Findings Using a 3 Tesla scanner and monitoring whole brain structure we repeated and extended our original study in 20 healthy adult volunteers, focussing on the temporal aspects of the structural changes and investigated whether these changes are performance or exercise dependant. The data confirmed our earlier observation using a mean effects analysis and in addition showed that learning to juggle can alter gray matter in the occipito-temporal cortex as early as after 7 days of training. Neither performance nor exercise alone could explain these changes. Conclusion We suggest that the qualitative change (i.e. learning of a new task) is more critical for the brain to change its structure than continued training of an already-learned task. PMID:18648501

  2. Investigating Age-Related Changes in Fine Motor Control Across Different Effectors and the Impact of White Matter Integrity

    PubMed Central

    Holtrop, Joseph L.; Loucks, Torrey M; Sosnoff, Jacob J; Sutton, Bradley P

    2014-01-01

    Changes in fine motor control that eventually compromise dexterity accompany advanced age; however there is evidence that age-related decline in motor control may not be uniform across effectors. Particularly, the role of central mechanisms in effector-specific decline has not been examined but is relevant for placing age-related motor declines into the growing literature of age-related changes in brain function. We examined sub-maximal force control across three different effectors (fingers, lips, and tongue) in 18 young and 14 older adults. In parallel with the force variability measures we examined changes in white matter structural integrity in effector-specific pathways in the brain with diffusion tensor imaging (DTI). Motor pathways for each effector were identified by using an fMRI localizer task followed by tractography to identify the fiber tracts propagating to the midbrain. Increases in force control variability were found with age in all three effectors but the effectors showed different degrees of age-related variability. Motor control changes were accompanied by a decline in white matter structural integrity with age shown by measures of fractional anisotropy and radial diffusivity. The DTI metrics appear to mediate some of the age-related declines in motor control. Our findings indicate that the structural integrity of descending motor systems may play a significant role in age-related increases in motor performance variability, but that differential age-related declines in oral and manual effectors are not likely due to structural integrity of descending motor pathways in the brain. PMID:24657352

  3. White and Gray Matter Abnormalities in Narcolepsy with Cataplexy

    PubMed Central

    Scherfler, Christoph; Frauscher, Birgit; Schocke, Michael; Nocker, Michael; Gschliesser, Viola; Ehrmann, Laura; Niederreiter, Markus; Esterhammer, Regina; Seppi, Klaus; Brandauer, Elisabeth; Poewe, Werner; Högl, Birgit

    2012-01-01

    Study Objectives: The authors applied diffusion-tensor imaging including measurements of mean diffusivity (MD), which is a parameter of brain tissue integrity, fractional anisotropy (FA), which is a parameter of neuronal fiber integrity, and voxel-based morphometry, which is a measure of gray and white matter volume, to detect brain tissue changes in patients with narcolepsy-cataplexy. Design: N/A. Patients: Patients with narcolepsy-cataplexy (n = 16) and age-matched healthy control subjects (n = 12) were studied. Interventions: Whole cerebral MD, FA measures, and the volumes of the gray and white matter compartments were analyzed using statistical parametric mapping. Measurement and Results: Significant MD increases and concomitant FA decreases were localized in the fronto-orbital cortex (P < 0.001) and the anterior cingulate (FA, P < 0.001; MD, P = 0.03) in narcolepsy-cataplexy. Additional MD increases without FA changes were detected in the ventral tegmental area, the dorsal raphe nuclei (P < 0.001), and the hypothalamus (P < 0.01). FA signal decreases were observed in the white matter tracts of the inferior frontal and inferior temporal cortices of narcolepsy-cataplexy patients (P < 0.001). Brain volume loss was evident in focal areas of the inferior and superior temporal cortices (P < 0.001) and the cingulate (P = 0.038). Conclusions: Areas of increased diffusivity in the hypothalamus appear consistent with hypocretinergic cell loss reported in narcolepsy-cataplexy. Signal abnormalities in the ventral tegmental area and the dorsal raphe nuclei correspond to major synaptic targets of hypocretin neurons that were associated with the regulation of the sleep-wake cycle. Brain tissue alterations identified in the frontal cortex and cingulate are crucial in the maintenance of attention and reward-dependent decision making, both known to be impaired in narcolepsy-cataplexy. Citation: Scherfler C; Frauscher B; Schocke M; Nocker M; Gschliesser V; Ehrmann L

  4. Changes in brain gray matter due to repetitive painful stimulation.

    PubMed

    Teutsch, S; Herken, W; Bingel, U; Schoell, E; May, A

    2008-08-15

    Using functional imaging, we recently investigated how repeated painful stimulation over several days is processed, perceived and modulated in the healthy human brain. Considering that activation-dependent brain plasticity in humans on a structural level has already been demonstrated in adults, we were interested in whether repeated painful stimulation may lead to structural changes of the brain. 14 healthy subjects were stimulated daily with a 20 min pain paradigm for 8 consecutive days, using structural MRI performed on days 1, 8, 22 and again after 1 year. Using voxel based morphometry, we are able to show that repeated painful stimulation resulted in a substantial increase of gray matter in pain transmitting areas, including mid-cingulate and somatosensory cortex. These changes are stimulation dependent, i.e. they recede after the regular nociceptive input is stopped. This data raises some interesting questions regarding structural plasticity of the brain concerning the experience of both acute and chronic pain. PMID:18582579

  5. Segmentation of MRI brain scans into gray matter, white matter, and CSF

    NASA Astrophysics Data System (ADS)

    Sandor, Tamas; Ong, Hoo-Tee; Valtchinov, Vladimir I.; Albert, Marilyn; Jolesz, Ferenc A.

    1997-04-01

    An algorithm is described that can separate gray matter, white matter and CSF in brain scans taken with 3DFFT T1- weighted gradient echo magnetic resonance imaging. Although the algorithm is fully automated, it requires brain contours as input that utilize user-defined features. The inter- and intra-operator errors stemming from the variability of the contour definition and affecting the segmentation were assessed by using coronal brain scans of 19 subjects. The inter-operator errors were (1.61 plus or minus 2.38)% (P equals 0.01) for gray matter, (0.31 plus or minus 2.06)% (P equals 0.53) for white matter and (0.28 plus or minus 3.84)% (P equals 0.76) for cerebrospinal fluid (CSF). the intra- operator error was (0.28 plus or minus 0.55)% (P greater than 0.04) for gray matter, (0.40 plus or minus 0.37)% (P equals 0.0002) for white matter and (0.26 plus or minus 1.31)% (P equals 0.39) for CSF.

  6. Mapping Gray Matter Development: Implications for Typical Development and Vulnerability to Psychopathology

    ERIC Educational Resources Information Center

    Gogtay, Nitin; Thompson, Paul M.

    2010-01-01

    Recent studies with brain magnetic resonance imaging (MRI) have scanned large numbers of children and adolescents repeatedly over time, as their brains develop, tracking volumetric changes in gray and white matter in remarkable detail. Focusing on gray matter changes specifically, here we explain how earlier studies using lobar volumes of specific…

  7. Subcortical Gray Matter Volume Abnormalities in Healthy Bipolar Offspring: Potential Neuroanatomical Risk Marker for Bipolar Disorder?

    ERIC Educational Resources Information Center

    Ladouceur, Cecile D.; Almeida, Jorge R. C.; Birmaher, Boris; Axelson, David A.; Nau, Sharon; Kalas, Catherine; Monk, Kelly; Kupfer, David J.; Phillips, Mary L.

    2008-01-01

    A study is conducted to examine the extent to which bipolar disorder (BD) is associated with gray matter volume abnormalities in brain regions in healthy bipolar offspring relative to age-matched controls. Results show increased gray matter volume in the parahippocampus/hippocampus in healthy offspring at genetic risk for BD.

  8. Regional Gray Matter Volume Deficits in Adolescents with First-Episode Psychosis

    ERIC Educational Resources Information Center

    Janssen, Joost; Parellada, Mara; Moreno, Dolores; Graell, Montserrat; Fraguas, David; Zabala, Arantzazu; Vazquez, Veronica Garcia; Desco, Manuel; Arango, Celso

    2008-01-01

    The regional gray matter volumes of adolescents with first-episode psychosis are compared with those of a control group. Magnetic resonance imaging was conducted on 70 patients with early onset FEP and on 51 individuals without FEP. Findings revealed that volume deficits in the left medial frontal gray matter were common in individuals with…

  9. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers

    PubMed Central

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F.

    2015-01-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. PMID:22277302

  10. Cortical gray matter lesions in acute encephalopathy with febrile convulsive status epilepticus.

    PubMed

    Sato, Atsushi; Mizuguchi, Masashi; Mimaki, Masakazu; Takahashi, Kan; Jimi, Hanako; Oka, Akira; Igarashi, Takashi

    2009-09-01

    In acute encephalopathy with febrile convulsive status epilepticus (AEFCSE), subcortical white matter lesions on diffusion-weighted images are sometimes encountered on magnetic resonance imaging (MRI), such as in acute encephalopathy with biphasic seizures and late reduced diffusion (AESD). We report here a severe case of AEFCSE following respiratory syncytial virus infection, with emphasis on the cranial MRI findings. MRI in this patient showed widespread T2-hyperintensity along the cerebral cortical gray matter from day 3 to day 22. Lesions with reduced diffusion were noted on day 3 in the deep zone of gray matter of the left occipito-temporo-parietal cortex, but on day 7 they shifted to the subcortical white matter of both the cerebral hemispheres. These MRI findings provide radiologic evidence for damage to the cortical gray matter in AEFCSE. The serial change of diffusion-weighted images suggests that the cortical gray matter may be injured prior to the involvement of the subcortical white matter. PMID:18848752

  11. Gray and white matter structural changes in corticobasal syndrome.

    PubMed

    Upadhyay, Neeraj; Suppa, Antonio; Piattella, Maria Cristina; Di Stasio, Flavio; Petsas, Nikolaos; Colonnese, Claudio; Colosimo, Carlo; Berardelli, Alfredo; Pantano, Patrizia

    2016-01-01

    We investigated gray matter and white matter (WM) changes in corticobasal syndrome (CBS). T1-weighted and diffusion tensor images (3T-magnet) were obtained in 11 patients and 11 healthy subjects (HS). Magnetic resonance imaging data were analyzed using FreeSurfer and Tracts Constrained by Underlying Anatomy to evaluate cortical thickness (CTh), surface area, and subcortical volumes as well as diffusion tensor image parameters along the major WM tracts. Compared with HS, the whole patient group showed decreased CTh in the prefrontal cortex, precentral gyrus, supplementary motor area, insula, and temporal pole bilaterally. When we divided patients into 2 subgroups (left: L-CBS, right: R-CBS) on the basis of the clinically more affected upper limb, the most prominent decrease in CTh occurred in the hemisphere contralateral to the more affected side. The whole patient group also had volume loss in the putamen, hippocampus, and accumbens bilaterally, in the corpus callosum and right amygdala. Finally, we found diffusion changes in several WM tracts with axial diffusivity being altered more than radial diffusivity. The upper limb motor severity negatively correlated with the contralateral CTh in the precentral and/or postcentral gyri and contralateral volumes of putamen and accumbens. The CTh asymmetry in postcentral and/or paracentral gyri also negatively correlated with disease duration. Cortical thinning, volume loss, and fiber tract degeneration in specific brain regions are important pathophysiological abnormalities in CBS. PMID:26545629

  12. Gray matter damage in multiple sclerosis: Impact on clinical symptoms.

    PubMed

    van Munster, Caspar E P; Jonkman, Laura E; Weinstein, Henry C; Uitdehaag, Bernard M J; Geurts, Jeroen J G

    2015-09-10

    Traditionally, multiple sclerosis (MS) is considered to be a disease primarily affecting the white matter (WM). However, the development of some clinical symptoms such as cognitive impairment cannot be fully explained by the severity of WM pathology alone. During the past decades it became clear that gray matter (GM) damage of the brain is also of major importance in patients with MS. Thanks to improved magnetic resonance imaging techniques, the in vivo detection of GM pathology became possible, enabling a better understanding of the manifestation of various clinical symptoms, such as cognitive impairment. Using higher field strengths and specific sequences, detection of cortical lesions was increased. However, despite these improvements, visualization of cortical MS lesions remains difficult (only about 30-50% of histopathologically confirmed lesions can be detected at 7 Tesla magnetic resonance imaging (MRI)). Furthermore, more research is needed to understand the exact interplay of cortical lesions, GM atrophy and WM pathology in the development of clinical symptoms. In this review, we summarize the historical background that preceded current research and provide an overview of the current knowledge on clinical consequences of GM pathology in MS in terms of disability, cognitive impairment and other clinically important signs such as epileptic seizures. PMID:26164500

  13. Gray- and white-matter anatomy of absolute pitch possessors.

    PubMed

    Dohn, Anders; Garza-Villarreal, Eduardo A; Chakravarty, M Mallar; Hansen, Mads; Lerch, Jason P; Vuust, Peter

    2015-05-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP. Here, we used MRI and diffusion tensor imaging to investigate structural differences in brains of musicians with and without AP, by means of whole-brain vertex-wise cortical thickness (CT) analysis and tract-based spatial statistics (TBSS) analysis. APs displayed increased CT in a number of areas including the bilateral superior temporal gyrus (STG), the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found higher fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the inferior longitudinal fasciculus. The findings in gray matter support previous studies indicating an increased left lateralized posterior STG in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a relation between the white-matter results and the CT in the right parahippocampal gyrus. In this study, we present novel findings in AP research that may have implications for the understanding of the neuroanatomical underpinnings of AP ability. PMID:24304583

  14. Forever Young(er): potential age-defying effects of long-term meditation on gray matter atrophy

    PubMed Central

    Luders, Eileen; Cherbuin, Nicolas; Kurth, Florian

    2015-01-01

    While overall life expectancy has been increasing, the human brain still begins deteriorating after the first two decades of life and continues degrading further with increasing age. Thus, techniques that diminish the negative impact of aging on the brain are desirable. Existing research, although scarce, suggests meditation to be an attractive candidate in the quest for an accessible and inexpensive, efficacious remedy. Here, we examined the link between age and cerebral gray matter re-analyzing a large sample (n = 100) of long-term meditators and control subjects aged between 24 and 77 years. When correlating global and local gray matter with age, we detected negative correlations within both controls and meditators, suggesting a decline over time. However, the slopes of the regression lines were steeper and the correlation coefficients were stronger in controls than in meditators. Moreover, the age-affected brain regions were much more extended in controls than in meditators, with significant group-by-age interactions in numerous clusters throughout the brain. Altogether, these findings seem to suggest less age-related gray matter atrophy in long-term meditation practitioners. PMID:25653628

  15. Electroconvulsive therapy increases temporal gray matter volume and cortical thickness.

    PubMed

    Sartorius, Alexander; Demirakca, Traute; Böhringer, Andreas; Clemm von Hohenberg, Christian; Aksay, Suna Su; Bumb, Jan Malte; Kranaster, Laura; Ende, Gabriele

    2016-03-01

    Electroconvulsive therapy (ECT) is a treatment of choice for severe and therapy resistant forms of major depressive episodes (MDE). Temporal brain volume alterations in MDE have been described for more than two decades. In our prospective study we aimed to investigate individual pre-post ECT treatment whole brain gray matter (GM) volume changes (quantified with voxel-based morphometry) in a sample of 18 patients with MDE. In addition, we studied the effect of ECT on voxel-based cortical thickness in cortical brain regions. The most prominent longitudinal GM increases (significant at a whole brain corrected level) occurred in temporal lobe regions. Within specific region of interest analyses we detected highly significant increases of GM in the hippocampus and the amygdala and to a lesser extent in the habenula (left p=0.003, right p=0.032). A voxel based cortical thickness analysis revealed an increase in cortical temporal regions (basically temporal pole and insula) further corroborating our cortical voxel-based morphometry results. Neither GM decreases or white matter increases nor correlations of GM changes with basic psychopathological parameters were detected. We corroborate earlier findings of hippocampal and amygdala GM volume increase following an acute ECT series in patients with MDE. Temporal GM volume increase was significant on a whole brain level and further corroborated by a cortical thickness analysis. Our data widely exclude white matter loss as an indirect cause of GM growth. Our data add further evidence to the hypothesis that ECT enables plasticity falsifying older ideas of ECT induced "brain damaging". PMID:26792445

  16. Gray Matter Features of Reading Disability: A Combined Meta-Analytic and Direct Analysis Approach1234

    PubMed Central

    Berninger, Virginia W.; Gebregziabher, Mulugeta; Tsu, Loretta

    2016-01-01

    Abstract Meta-analysis of voxel-based morphometry dyslexia studies and direct analysis of 293 reading disability and control cases from six different research sites were performed to characterize defining gray matter features of reading disability. These analyses demonstrated consistently lower gray matter volume in left posterior superior temporal sulcus/middle temporal gyrus regions and left orbitofrontal gyrus/pars orbitalis regions. Gray matter volume within both of these regions significantly predicted individual variation in reading comprehension after correcting for multiple comparisons. These regional gray matter differences were observed across published studies and in the multisite dataset after controlling for potential age and gender effects, and despite increased anatomical variance in the reading disability group, but were not significant after controlling for total gray matter volume. Thus, the orbitofrontal and posterior superior temporal sulcus gray matter findings are relatively reliable effects that appear to be dependent on cases with low total gray matter volume. The results are considered in the context of genetics studies linking orbitofrontal and superior temporal sulcus regions to alleles that confer risk for reading disability. PMID:26835509

  17. Examining the effect of psychopathic traits on gray matter volume in a community substance abuse sample

    PubMed Central

    Cope, Lora M.; Shane, Matthew S.; Segall, Judith M.; Nyalakanti, Prashanth K.; Stevens, Michael C.; Pearlson, Godfrey D.; Calhoun, Vince D.; Kiehl, Kent A.

    2012-01-01

    Psychopathy is believed to be associated with brain abnormalities in both paralimbic (i.e., orbitofrontal cortex, insula, temporal pole, parahippocampal gyrus, posterior cingulate) and limbic (i.e., amygdala, hippocampus, anterior cingulate) regions. Recent structural imaging studies in both community and prison samples are beginning to support this view. Sixty six participants, recruited from community corrections centers, were administered the Hare Psychopathy Checklist Revised (PCL R), and underwent magnetic resonance imaging (MRI). Voxel based morphometry was used to test the hypothesis that psychopathic traits would be associated with gray matter reductions in limbic and paralimbic regions. Effects of lifetime drug and alcohol use on gray matter volume were covaried. Psychopathic traits were negatively associated with gray matter volumes in right insula and right hippocampus. Additionally, psychopathic traits were positively associated with gray matter volumes in bilateral orbital frontal cortex and right anterior cingulate. Exploratory regression analyses indicated that gray matter volumes within right hippocampus and left orbital frontal cortex combined to explain 21.8% of the variance in psychopathy scores. These results support the notion that psychopathic traits are associated with abnormal limbic and paralimbic gray matter volume. Furthermore, gray matter increases in areas shown to be functionally impaired suggests that the structure function relationship may be more nuanced than previously thought. PMID:23217577

  18. Genetics of age-related white matter lesions from linkage to genome wide association studies

    PubMed Central

    Freudenberger, Paul; Schmidt, Reinhold; Schmidt, Helena

    2012-01-01

    White matter lesions are a frequent phenomenon in the elderly and contribute to the development of disability. The mechanisms underlying these brain lesions are still not fully understood with age and hypertension being the most well established risk factors. The heritability of white matter lesions is consistently high in different populations. Candidate gene studies strongly support the role of genes involved in the renin–angiotensin system, as well as Notch3 signaling. The recent genome wide association study by the CHARGE consortium identified a novel locus on chromosome 17q25 harboring several genes such as TRIM65 and TRIM47 which pinpoint to possible novel mechanisms leading to white matter lesions. PMID:22795385

  19. Differences in gray matter structure correlated to nationalism and patriotism

    PubMed Central

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2016-01-01

    Nationalism and patriotism both entail positive evaluations of one’s nation. However, the former inherently involves derogation of other nations, whereas the latter is independent of comparisons with other nations. We used voxel-based morphometry and psychological measures and determined nationalism and patriotism’s association with gray matter density (rGMD) and their cognitive nature in healthy individuals (433 men and 344 women; age, 20.7 ± 1.9 years) using whole-brain multiple regression analyses and post hoc analyses. We found higher nationalism associated with greater rGMD in (a) areas of the posterior cingulate cortex and greater rGMD in (b) the orbitofrontal cortex, and smaller rGMD in (c) the right amygdala area. Furthermore, we found higher patriotism associated with smaller rGMD in the (d) rostrolateral prefrontal cortex. Post hoc analyses revealed the mean rGMD of the cluster (a) associated with compassion, that of (b) associated with feeling of superiority, that of (c) associated with suicide ideation, and that of (d) associated with quality of life. These results indicate that individual nationalism may be mediated by neurocognitive mechanisms in social-related areas and limbic neural mechanisms, whereas patriotism may be mediated by neurocognitive mechanisms in areas related to well-being. PMID:27418362

  20. Alterations in gray matter volume due to unilateral hearing loss

    PubMed Central

    Wang, Xingchao; Xu, Pengfei; Li, Peng; Wang, Zhenmin; Zhao, Fu; Gao, Zhixian; Xu, Lei; Luo, Yue-jia; Fan, Jin; Liu, Pinan

    2016-01-01

    Although extensive research on neural plasticity resulting from hearing deprivation has been conducted, the direct influence of compromised audition on the auditory cortex and the potential impact of long durations of incomplete sensory stimulation on the adult cortex are still not fully understood. In this study, using voxel-based morphometry, we evaluated gray matter (GM) volume changes that may be associated with reduced hearing ability and the duration of hearing impairment in 42 unilateral hearing loss (UHL) patients with acoustic neuromas compared to 24 normal controls. We found significant GM volume increases in the somatosensory and motor systems and GM volume decreases in the auditory (i.e., Heschl’s gyrus) and visual systems (i.e., the calcarine cortex) in UHL patients. The GM volume decreases in the primary auditory cortex (i.e., superior temporal gyrus and Heschl’s gyrus) correlated with reduced hearing ability. Meanwhile, the GM volume decreases in structures involving high-level cognitive control functions (i.e., dorsolateral prefrontal cortex and anterior cingulate cortex) correlated positively with hearing loss duration. Our findings demonstrated that the severity and duration of UHL may contribute to the dissociated morphology of auditory and high-level neural structures, providing insight into the brain’s plasticity related to chronic, persistent partial sensory loss. PMID:27174521

  1. Differences in gray matter structure correlated to nationalism and patriotism.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2016-01-01

    Nationalism and patriotism both entail positive evaluations of one's nation. However, the former inherently involves derogation of other nations, whereas the latter is independent of comparisons with other nations. We used voxel-based morphometry and psychological measures and determined nationalism and patriotism's association with gray matter density (rGMD) and their cognitive nature in healthy individuals (433 men and 344 women; age, 20.7 ± 1.9 years) using whole-brain multiple regression analyses and post hoc analyses. We found higher nationalism associated with greater rGMD in (a) areas of the posterior cingulate cortex and greater rGMD in (b) the orbitofrontal cortex, and smaller rGMD in (c) the right amygdala area. Furthermore, we found higher patriotism associated with smaller rGMD in the (d) rostrolateral prefrontal cortex. Post hoc analyses revealed the mean rGMD of the cluster (a) associated with compassion, that of (b) associated with feeling of superiority, that of (c) associated with suicide ideation, and that of (d) associated with quality of life. These results indicate that individual nationalism may be mediated by neurocognitive mechanisms in social-related areas and limbic neural mechanisms, whereas patriotism may be mediated by neurocognitive mechanisms in areas related to well-being. PMID:27418362

  2. Hippocampal gray matter volume in bilateral vestibular failure.

    PubMed

    Göttlich, Martin; Jandl, Nico M; Sprenger, Andreas; Wojak, Jann F; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph

    2016-05-01

    Bilateral vestibular failure (BVF) is a severe chronic disorder of the labyrinth or the eighth cranial nerve characterized by unsteadiness of gait and disabling oscillopsia during head movements. According to animal data, vestibular input to the hippocampus is proposed to contribute to spatial memory and spatial navigation. Except for one seminal study showing the association of impaired spatial navigation and hippocampal atrophy, patient data in BVF are lacking. Therefore, we performed a voxel-wise comparison of the hippocampal gray matter volume (GMV) in a clinically representative sample of 27 patients with incomplete BVF and 29 age- and gender-matched healthy controls to test the hypothesis of hippocampal atrophy in BVF. Although the two groups did not generally differ in their hippocampal GMV, a reduction of GMV in the bilateral hippocampal CA3 region was significantly correlated with increased vestibulopathy-related clinical impairment. We propose that GMV reduction in the hippocampus of BVF patients is related to the severity of vestibular-induced disability which is in line with combined hippocampal atrophy and disorders of spatial navigation in complete vestibular deafferentation due to bilateral nerve section. Clinically, however, the most frequent etiologies of BVF cause incomplete lesions. Accordingly, hippocampus atrophy and deficits in spatial navigation occur possibly less frequently than previously suspected. Hum Brain Mapp 37:1998-2006, 2016. © 2016 Wiley Periodicals, Inc. PMID:26918638

  3. Alterations in gray matter volume due to unilateral hearing loss.

    PubMed

    Wang, Xingchao; Xu, Pengfei; Li, Peng; Wang, Zhenmin; Zhao, Fu; Gao, Zhixian; Xu, Lei; Luo, Yue-Jia; Fan, Jin; Liu, Pinan

    2016-01-01

    Although extensive research on neural plasticity resulting from hearing deprivation has been conducted, the direct influence of compromised audition on the auditory cortex and the potential impact of long durations of incomplete sensory stimulation on the adult cortex are still not fully understood. In this study, using voxel-based morphometry, we evaluated gray matter (GM) volume changes that may be associated with reduced hearing ability and the duration of hearing impairment in 42 unilateral hearing loss (UHL) patients with acoustic neuromas compared to 24 normal controls. We found significant GM volume increases in the somatosensory and motor systems and GM volume decreases in the auditory (i.e., Heschl's gyrus) and visual systems (i.e., the calcarine cortex) in UHL patients. The GM volume decreases in the primary auditory cortex (i.e., superior temporal gyrus and Heschl's gyrus) correlated with reduced hearing ability. Meanwhile, the GM volume decreases in structures involving high-level cognitive control functions (i.e., dorsolateral prefrontal cortex and anterior cingulate cortex) correlated positively with hearing loss duration. Our findings demonstrated that the severity and duration of UHL may contribute to the dissociated morphology of auditory and high-level neural structures, providing insight into the brain's plasticity related to chronic, persistent partial sensory loss. PMID:27174521

  4. Extensive Gray Matter Volume Reduction in Treatment-Resistant Schizophrenia

    PubMed Central

    Anderson, Valerie M; Goldstein, Meghan E; Kydd, Robert R.

    2015-01-01

    Background: Approximately one-third of people with schizophrenia are treatment-resistant and some do not achieve remission with clozapine, the gold-standard antipsychotic medication for treatment-resistant schizophrenia. This study compared global and regional brain volumes between treatment-respondent and treatment-resistant patients with schizophrenia, including a group of patients who were clozapine-resistant. Methods: T1-weighted brain MRIs were obtained on a 3T scanner in 20 controls and 52 people with schizophrenia who were selected based on their symptomatic responses to antipsychotic medication: 18 responded well to first-line atypical antipsychotics (FLR), 19 were treatment-resistant but responsive to clozapine monotherapy (TR), and 15 were ultra-treatment-resistant and did not respond to clozapine (UTR). Treatment groups were matched for disease duration and current psychopathology. SIENAX and FSL-VBM were used to investigate differences in the global brain, gray matter (GM), white matter, ventricular cerebrospinal fluid volumes, and regional GM volumes. Results: GM volume was significantly reduced in the TR and UTR groups compared with controls and the FLR group (p < 0.05). GM volume was significantly reduced in TR patients compared with FLRs in the superior, middle, and inferior temporal gyri, pre- and post-central gyri, middle and superior frontal gyri, right supramarginal gyrus, and right lateral occipital cortex. UTR patients showed reduced GM compared with FLRs in their right parietal operculum and left cerebellum. No significant volume differences were observed between TR and UTR groups. Conclusions: These differences are unlikely to be solely due to medication effects, and reduced GM volume in treatment-resistant schizophrenia may represent an accelerated disease course or a different underlying pathology. PMID:25716781

  5. Age-related slowing of memory retrieval: Contributions of perceptual speed and cerebral white matter integrity

    PubMed Central

    Bucur, Barbara; Madden, David J.; Spaniol, Julia; Provenzale, James M.; Cabeza, Roberto; White, Leonard E.; Huettel, Scott A.

    2007-01-01

    Previous research suggests that, in reaction time (RT) measures of episodic memory retrieval, the unique effects of adult age are relatively small compared to the effects aging shares with more elementary abilities such as perceptual speed. Little is known, however, regarding the mechanisms of perceptual speed. We used diffusion tensor imaging (DTI) to test the hypothesis that white matter integrity, as indexed by fractional anisotropy (FA), serves as one mechanism of perceptual slowing in episodic memory retrieval. Results indicated that declines in FA in the pericallosal frontal region and in the genu of the corpus callosum, but not in other regions, mediated the relationship between perceptual speed and episodic retrieval RT. This relation held, though to a different degree, for both hits and correct rejections. These findings suggest that white matter integrity in prefrontal regions is one mechanism underlying the relation between individual differences in perceptual speed and episodic retrieval. PMID:17383774

  6. Mechanical properties of gray and white matter brain tissue by indentation

    PubMed Central

    Budday, Silvia; Nay, Richard; de Rooij, Rijk; Steinmann, Paul; Wyrobek, Thomas; Ovaert, Timothy C.; Kuhl, Ellen

    2015-01-01

    The mammalian brain is composed of an outer layer of gray matter, consisting of cell bodies, dendrites, and unmyelinated axons, and an inner core of white matter, consisting primarily of myelinated axons. Recent evidence suggests that microstructural differences between gray and white matter play an important role during neurodevelopment. While brain tissue as a whole is rheologically well characterized, the individual features of gray and white matter remain poorly understood. Here we quantify the mechanical properties of gray and white matter using a robust, reliable, and repeatable method, flat-punch indentation. To systematically characterize gray and white matter moduli for varying indenter diameters, loading rates, holding times, post-mortem times, and locations we performed a series of n=192 indentation tests. We found that indenting thick, intact coronal slices eliminates the common challenges associated with small specimens: it naturally minimizes boundary effects, dehydration, swelling, and structural degradation. When kept intact and hydrated, brain slices maintained their mechanical characteristics with standard deviations as low as 5% throughout the entire testing period of five days post mortem. White matter, with an average modulus of 1.895kPa±0.592kPa, was on average 39% stiffer than gray matter, p<0.01, with an average modulus of 1.389kPa±0.289kPa, and displayed larger regional variations. It was also more viscous than gray matter and responded less rapidly to mechanical loading. Understanding the rheological differences between gray and white matter may have direct implications on diagnosing and understanding the mechanical environment in neurodevelopment and neurological disorders. PMID:25819199

  7. Aberrant Paralimbic Gray Matter in Incarcerated Male Adolescents With Psychopathic Traits RH: Paralimbic Gray Matter and Psychopathy

    PubMed Central

    Ermer, Elsa; Cope, Lora M.; Nyalakanti, Prashanth K.; Calhoun, Vince D.; Kiehl, Kent A.

    2012-01-01

    Objective To investigate the relationship between brain structure and psychopathic traits in maximum-security incarcerated male adolescents: Do the associations between brain volumes in paralimbic and limbic regions and psychopathic traits observed in incarcerated adult men extend to an independent sample of incarcerated male adolescents? Method A structural magnetic resonance imaging (MRI) study of regional gray matter volumes (GMV) by using voxel-based morphometry (VBM) in maximum-security incarcerated male adolescents (N=218) assessed for psychopathic traits using the Hare Psychopathy Checklist–Youth Version (PCL-YV). All analyses controlled for effects of age, substance use, and brain size. Results Consistent with hypotheses and the adult literature, psychopathic traits were associated with decreased regional GMV in diffuse paralimbic regions, including orbitofrontal cortex, bilateral temporal poles, and posterior cingulate cortex. Conclusions These results strengthen the interpretation that paralimbic regions are central for understanding neural dysfunction associated with psychopathic traits and that psychopathy is best conceptualized as a neurodevelopmental disorder. PMID:23265637

  8. Abnormal gray matter and white matter volume in 'Internet gaming addicts'.

    PubMed

    Lin, Xiao; Dong, Guangheng; Wang, Qiandong; Du, Xiaoxia

    2015-01-01

    Internet gaming addiction (IGA) is usually defined as the inability of an individual to control his/her use of the Internet with serious negative consequences. It is becoming a prevalent mental health concern around the world. To understand whether Internet gaming addiction contributes to cerebral structural changes, the present study examined the brain gray matter density and white matter density changes in participants suffering IGA using voxel-based morphometric analysis. Compared with the healthy controls (N=36, 22.2 ± 3.13 years), IGA participants (N=35, 22.28 ± 2.54 years) showed significant lower gray matter density in the bilateral inferior frontal gyrus, left cingulate gyrus, insula, right precuneus, and right hippocampus (all p<0.05). IGA participants also showed significant lower white matter density in the inferior frontal gyrus, insula, amygdala, and anterior cingulate than healthy controls (all p<0.05). Previous studies suggest that these brain regions are involved in decision-making, behavioral inhibition and emotional regulation. Current findings might provide insight in understanding the biological underpinnings of IGA. PMID:25260201

  9. Diabetes, gray matter loss and cognition in the setting of Parkinson Disease

    PubMed Central

    Petrou, M; Davatzikos, C; Hsieh, M; Albin, RL; Kotagal, V; Müller, ML; Koeppe, RA; Herman, WH; Frey, KA; Bohnen, NI

    2016-01-01

    Background and Purpose Parkinson disease (PD) is a progressive neurodegenerative disorder affecting motor and cognitive functions. Prior studies showed that PD patients with diabetes (DM) demonstrate worse clinical outcomes compared to non-diabetic PD subjects. Our study aimed at defining the relationship between DM, gray matter volume and cognition in PD patients. Materials and Methods 36 PD subjects (12 with DM, 24 without DM, mean age=66). Subjects underwent high resolution T1 weighted brain MR imaging, 11C-DTBZ PET imaging to quantify nigrostriatal dopaminergic denervation, clinical and cognitive assessments. MR images were post-processed to determine total and lobar cortical gray matter volumes. Cognitive testing scores were converted to z-scores for specific cognitive domains and a composite global cognitive z-score based on normative data computed. ANCOVA, accounting for effects of age, gender, intracranial volume (ICV) and striatal DTBZ binding was used to test the relationship between DM and gray matter volumes. Results Impact of diabetes on total gray matter volume was significant (p=0.02). Post hoc analyses of lobar cortical gray matter volumes revealed that DM was more selectively associated with lower gray matter volumes in the frontal regions (p=0.01). Cognitive post hoc analyses showed that interaction of total gray matter volume and DM status was significantly associated with composite (p=0.007), executive (p=0.02) and visuospatial domain cognitive z-scores (p=0.005). These associations were also significant for the frontal cortical gray matter. Conclusions DM may exacerbate brain atrophy and cognitive functions in PD with greater vulnerability in the frontal lobes. PMID:26874576

  10. Cannabis, Cigarettes, and Their Co-Occurring Use: Disentangling Differences in Gray Matter Volume

    PubMed Central

    Jagannathan, Kanchana; Hager, Nathan; Childress, Anna Rose; Rao, Hengyi; Franklin, Teresa R.

    2015-01-01

    Background: Structural magnetic resonance imaging techniques are powerful tools for examining the effects of drug use on the brain. The nicotine and cannabis literature has demonstrated differences between nicotine cigarette smokers and cannabis users compared to controls in brain structure; however, less is known about the effects of co-occurring cannabis and tobacco use. Methods: We used voxel-based morphometry to examine gray matter volume differences between four groups: (1) cannabis-dependent individuals who do not smoke tobacco (Cs); (2) cannabis-dependent individuals who smoke tobacco (CTs); (3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (Ts); and (4) healthy controls (HCs). We also explored associations between gray matter volume and measures of cannabis and tobacco use. Results: A significant group effect was observed in the left putamen, thalamus, right precentral gyrus, and left cerebellum. Compared to HCs, the Cs, CTs, and Ts exhibited larger gray matter volumes in the left putamen. Cs also had larger gray matter volume than HCs in the right precentral gyrus. Cs and CTs exhibited smaller gray matter volume than HCs in the thalamus, and CTs and Ts had smaller left cerebellar gray matter volume than HCs. Conclusions: This study extends previous research that independently examined the effects of cannabis or tobacco use on brain structure by including an examination of co-occurring cannabis and tobacco use, and provides evidence that cannabis and tobacco exposure are associated with alterations in brain regions associated with addiction. PMID:26045474

  11. Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines.

    PubMed

    Damangir, Soheil; Manzouri, Amirhossein; Oppedal, Ketil; Carlsson, Stefan; Firbank, Michael J; Sonnesyn, Hogne; Tysnes, Ole-Bjørn; O'Brien, John T; Beyer, Mona K; Westman, Eric; Aarsland, Dag; Wahlund, Lars-Olof; Spulber, Gabriela

    2012-11-15

    White matter changes (WMC) are the focus of intensive research and have been linked to cognitive impairment and depression in the elderly. Cumbersome manual outlining procedures make research on WMC labor intensive and prone to subjective bias. We present a fast, fully automated method for WMC segmentation using a cascade of reduced support vector machines (SVMs) with active learning. Data of 102 subjects was used in this study. Two MRI sequences (T1-weighted and FLAIR) and masks of manually outlined WMC from each subject were used for the image analysis. The segmentation framework comprises pre-processing, classification (training and core segmentation) and post-processing. After pre-processing, the model was trained on two subjects and tested on the remaining 100 subjects. The effectiveness and robustness of the classification was assessed using the receiver operating curve technique. The cascade of SVMs segmentation framework outputted accurate results with high sensitivity (90%) and specificity (99.5%) values, with the manually outlined WMC as reference. An algorithm for the segmentation of WMC is proposed. This is a completely competitive and fast automatic segmentation framework, capable of using different input sequences, without changes or restrictions of the image analysis algorithm. PMID:22921728

  12. Overlapping and Distinct Gray and White Matter Abnormalities in Schizophrenia and Bipolar I Disorder

    PubMed Central

    Anderson, Dana; Ardekani, Babak A.; Burdick, Katherine E.; Robinson, Delbert G.; John, Majnu; Malhotra, Anil K.; Szeszko, Philip R.

    2013-01-01

    Background Schizophrenia and bipolar disorder may share common neurobiological mechanisms, but few studies have directly compared gray and white matter structure in these disorders. We used diffusion-weighted magnetic resonance imaging and a region-of-interest based analysis to identify overlapping and distinct gray and white matter abnormalities in 35 patients with schizophrenia and 20 patients with bipolar I disorder in comparison to 56 healthy volunteers. Methods We examined fractional anisotropy within the white matter and mean diffusivity within the gray matter in 42 regions-of-interest defined on a probabilistic atlas following non-linear registration of the images to atlas space. Results Patients with schizophrenia had significantly lower fractional anisotropy in temporal (superior temporal and parahippocampal) and occipital (superior and middle occipital) white matter compared to patients with bipolar disorder and healthy volunteers. In contrast, both patient groups demonstrated significantly higher mean diffusivity in frontal (inferior frontal and lateral orbitofrontal) and temporal (superior temporal and parahippocampal) gray matter compared to healthy volunteers, but did not differ from each other. Discussion Our study implicates overlapping gray matter frontal and temporal lobe structural alterations in the neurobiology of schizophrenia and bipolar I disorder, but suggests that temporal and occipital lobe white matter deficits may be an additional risk factor for schizophrenia. Our findings may have relevance for future diagnostic classification systems and the identification of susceptibility genes for these disorders. PMID:23796123

  13. Gray Matter Volume Decreases in Elderly Patients with Schizophrenia: A Voxel-based Morphometry Study

    PubMed Central

    Schuster, Caroline; Schuller, Anne Marie; Paulos, Carlos; Namer, Izzie; Pull, Charles; Danion, Jean Marie; Foucher, Jack René

    2012-01-01

    Background: Aged patients (>50 years old) with residual schizophrenic symptoms differ from young patients. They represent a subpopulation with a more unfavorable Kraepelinian course and have an increased risk (up to 30%) for dementia of unknown origin. However, our current understanding of age-related brain changes in schizophrenia is derived from studies that included less than 17% of patients who were older than 50 years of age. This study investigated the anatomical distribution of gray matter (GM) brain deficits in aged patients with ongoing schizophrenia. Methods: Voxel-based morphometry was applied to 3D-T1 magnetic resonance images obtained from 27 aged patients with schizophrenia (mean age of 60 years) and 40 age-matched normal controls. Results: Older patients with schizophrenia showed a bilateral reduction of GM volume in the thalamus, the prefrontal cortex, and in a large posterior region centered on the occipito-temporo-parietal junction. Only the latter region showed accelerated GM volume loss with increasing age. None of these results could be accounted for by institutionalization, antipsychotic medication, or cognitive scores. Conclusions: This study replicated most common findings in patients with schizophrenia with regard to thalamic and frontal GM deficits. However, it uncovered an unexpected large region of GM atrophy in the posterior tertiary cortices. The latter observation may be specific to this aged and chronically symptomatic subpopulation, as atrophy in this region is rarely reported in younger patients and is accelerated with age. PMID:21205677

  14. Reduction in white matter connectivity, revealed by diffusion tensor imaging, may account for age-related changes in face perception.

    PubMed

    Thomas, Cibu; Moya, Linda; Avidan, Galia; Humphreys, Kate; Jung, Kwan Jin; Peterson, Mary A; Behrmann, Marlene

    2008-02-01

    An age-related decline in face processing, even under conditions in which learning and memory are not implicated, has been well documented, but the mechanism underlying this perceptual alteration remains unknown. Here, we examine whether this behavioral change may be accounted for by a reduction in white matter connectivity with age. To this end, we acquired diffusion tensor imaging data from 28 individuals aged 18 to 86 years and quantified the number of fibers, voxels, and fractional anisotropy of the two major tracts that pass through the fusiform gyrus, the pre-eminent face processing region in the ventral temporal cortex. We also measured the ability of a subset of these individuals to make fine-grained discriminations between pairs of faces and between pairs of cars. There was a significant reduction in the structural integrity of the inferior fronto-occipital fasciculus (IFOF) in the right hemisphere as a function of age on all dependent measures and there were also some changes in the left hemisphere, albeit to a lesser extent. There was also a clear age-related decrement in accuracy of perceptual discrimination, especially for more challenging perceptual discriminations, and this held to a greater degree for faces than for cars. Of greatest relevance, there was a robust association between the reduction of IFOF integrity in the right hemisphere and the decline in face perception, suggesting that the alteration in structural connectivity between the right ventral temporal and frontal cortices may account for the age-related difficulties in face processing. PMID:18275334

  15. White Matter Hemodynamic Abnormalities precede Sub-cortical Gray Matter Changes in Multiple Sclerosis

    PubMed Central

    Varga, Andrew W.; Johnson, Glyn; Babb, James S.; Herbert, Joseph; Grossman, Robert I.; Inglese, Matilde

    2009-01-01

    Background Hypoperfusion has been reported in lesions, normal-appearing white (NAWM) and gray matter (NAGM) of patients with clinically definite multiple sclerosis (MS) by using perfusion MRI. However, it is still unknown how early such changes in perfusion occur. The aim of our study was to assess the presence of hemodynamic changes in the NAWM and subcortical NAGM of patients with clinically isolated syndrome (CIS) in comparison to healthy controls and to patients with early relapsing-remitting (RR) MS. Methods Absolute cerebral blood flow (CBF), blood volume (CBV) and mean transit time (MTT) were measured in the periventricular and frontal NAWM, thalamus and putamen nuclei of 12 patients with CIS, 12 with early RR-MS and 12 healthy controls using dynamic susceptibility contrast enhanced (DSC) T2*-weighted MRI. Results Compared to controls, CBF was significantly decreased in the periventricular NAWM of CIS patients and in the periventricular NAWM and putamen of RR-MS patients. Compared to CIS, RR-MS patients showed a significant CBF decrease in the putamen. Conclusions CBF was decreased in the NAWM of both CIS and RR-MS patients and in the subcortical NAGM of RR-MS patients suggesting a continuum of tissue perfusion decreases beginning in white matter and spreading to gray matter, as the disease progresses. PMID:19181347

  16. Microstructural white matter changes mediate age-related cognitive decline on the Montreal Cognitive Assessment (MoCA).

    PubMed

    Jolly, Todd A D; Cooper, Patrick S; Badwi, Syarifah Azizah Wan Ahmadul; Phillips, Natalie A; Rennie, Jaime L; Levi, Christopher R; Drysdale, Karen A; Parsons, Mark W; Michie, Patricia T; Karayanidis, Frini

    2016-02-01

    Although the relationship between aging and cognitive decline is well established, there is substantial individual variability in the degree of cognitive decline in older adults. The present study investigates whether variability in cognitive performance in community-dwelling older adults is related to the presence of whole brain or tract-specific changes in white matter microstructure. Specifically, we examine whether age-related decline in performance on the Montreal Cognitive Assessment (MoCA), a cognitive screening tool, is mediated by the white matter microstructural decline. We also examine if this relationship is driven by the presence of cardiovascular risk factors or variability in cerebral arterial pulsatility, an index of cardiovascular risk. Sixty-nine participants (aged 43-87) completed behavioral and MRI testing including T1 structural, T2-weighted FLAIR, and diffusion-weighted imaging (DWI) sequences. Measures of white matter microstructure were calculated using diffusion tensor imaging analyses on the DWI sequence. Multiple linear regression revealed that MoCA scores were predicted by radial diffusivity (RaD) of white matter beyond age or other cerebral measures. While increasing age and arterial pulsatility were associated with increasing RaD, these factors did not mediate the relationship between total white matter RaD and MoCA. Further, the relationship between MoCA and RaD was specific to participants who reported at least one cardiovascular risk factor. These findings highlight the importance of cardiovascular risk factors in the presentation of cognitive decline in old age. Further work is needed to establish whether medical or lifestyle management of these risk factors can prevent or reverse cognitive decline in old age. PMID:26511789

  17. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia

    PubMed Central

    Sehatpour, Pejman; Long, Jun; Gui, Weihua; Qiao, Jianping; Javitt, Daniel C.; Wang, Zhishun

    2016-01-01

    A failure of adaptive inference—misinterpreting available sensory information for appropriate perception and action—is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D) fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci) in subcortical gray matter (GM) in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD), a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth) surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales) of subcortical GM in this disorder. Probabilistic (entropy-based) information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR) images in chronic patients with schizophrenia (n = 19) and age-matched healthy controls (n = 19) (age ranges: patients, 22.7–54.3 and healthy controls, 24.9–51.6 years old). We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07–2.18 vs. median: 2.1730, range: 2.15–2.23, p<0.001; Cohen’s effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0)), the right hippocampus (median: 2.1430, range: 2.05–2.19 vs. median: 2.1760, range: 2.12–2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1)), as well as left thalamus (median: 2.4230, range: 2.40–2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473)) in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM

  18. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia.

    PubMed

    Zhao, Guihu; Denisova, Kristina; Sehatpour, Pejman; Long, Jun; Gui, Weihua; Qiao, Jianping; Javitt, Daniel C; Wang, Zhishun

    2016-01-01

    A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D) fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci) in subcortical gray matter (GM) in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD), a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth) surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales) of subcortical GM in this disorder. Probabilistic (entropy-based) information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR) images in chronic patients with schizophrenia (n = 19) and age-matched healthy controls (n = 19) (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old). We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0)), the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1)), as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473)) in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in

  19. Female Adolescents with Severe Substance and Conduct Problems Have Substantially Less Brain Gray Matter Volume

    PubMed Central

    Dalwani, Manish S.; McMahon, Mary Agnes; Mikulich-Gilbertson, Susan K.; Young, Susan E.; Regner, Michael F.; Raymond, Kristen M.; McWilliams, Shannon K.; Banich, Marie T.; Tanabe, Jody L.; Crowley, Thomas J; Sakai, Joseph T.

    2015-01-01

    Objective Structural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages. Hypotheses: Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex), conflict processing (i.e., anterior cingulate), valuation of expected outcomes (i.e., medial orbitofrontal cortex) and the dopamine reward system (i.e. striatum). Methods We conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years) with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM) and voxel-based morphometric (VBM8) toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold. Results Female adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls. Conclusions Female adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in

  20. Quantification of white matter and gray matter volumes from T1 parametric images using fuzzy classifiers.

    PubMed

    Herndon, R C; Lancaster, J L; Toga, A W; Fox, P T

    1996-01-01

    White matter (WM) and gray matter (GM) were accurately measured using a technique based on a single standardized fuzzy classifier (FC) for each tissue. Fuzzy classifier development was based on experts' visual assessments of WM and GM boundaries from a set of T1 parametric MR images. The fuzzy classifier method's accuracy was validated and optimized by a set of T1 phantom images that were based on hand-detailed human brain cryosection images. Nine sets of axial T1 images of varying thickness equally distributed throughout the brain were simulated. All T1 data sets were mapped to the standardized FCs and rapidly segmented into WM and GM voxel fraction images. Resulting volumes revealed that, in most cases, the difference between measured and actual volumes was less than 5%. This was consistent throughout most of the brain, and as expected, the accuracy improved to generally less than 2% for the 1-mm simulated brain slices. PMID:8724407

  1. Regional age differences in gray matter diffusivity among healthy older adults.

    PubMed

    Salminen, Lauren E; Conturo, Thomas E; Laidlaw, David H; Cabeen, Ryan P; Akbudak, Erbil; Lane, Elizabeth M; Heaps, Jodi M; Bolzenius, Jacob D; Baker, Laurie M; Cooley, Sarah; Scott, Staci; Cagle, Lee M; Phillips, Sarah; Paul, Robert H

    2016-03-01

    Aging is associated with microstructural changes in brain tissue that can be visualized using diffusion tensor imaging (DTI). While previous studies have established age-related changes in white matter (WM) diffusion using DTI, the impact of age on gray matter (GM) diffusion remains unclear. The present study utilized DTI metrics of mean diffusivity (MD) to identify age differences in GM/WM microstructure in a sample of healthy older adults (N = 60). A secondary aim was to determine the functional significance of whole-brain GM/WM MD on global cognitive function using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Participants were divided into three age brackets (ages 50-59, 60-69, and 70+) to examine differences in MD and cognition by decade. MD was examined bilaterally in the frontal, temporal, parietal, and occipital lobes for the primary analyses and an aggregate measure of whole-brain MD was used to test relationships with cognition. Significantly higher MD was observed in bilateral GM of the temporal and parietal lobes, and in right hemisphere WM of the frontal and temporal lobes of older individuals. The most robust differences in MD were between the 50-59 and 70+ age groups. Higher whole-brain GM MD was associated with poorer RBANS performance in the 60-69 age group. Results suggest that aging has a significant and differential impact on GM/WM diffusion in healthy older adults, which may explain a modest degree of cognitive variability at specific time points during older adulthood. PMID:25864197

  2. Modeling the Relationship among Gray Matter Atrophy, Abnormalities in Connecting White Matter, and Cognitive Performance in Early Multiple Sclerosis

    PubMed Central

    Kuceyeski, A.F.; Vargas, W.; Dayan, M.; Monohan, E.; Blackwell, C.; Raj, A.; Fujimoto, K.; Gauthier, S.A.

    2016-01-01

    Background and Purpose Quantitative assessment of clinical and pathologic consequences of white matter abnormalities in multiple sclerosis is critical in understanding the pathways of disease. This study aimed to test whether gray matter atrophy was related to abnormalities in connecting white matter and to identify patterns of imaging biomarker abnormalities that were related to patient processing speed. Materials and Methods Image data and Symbol Digit Modalities Test scores were collected from a cohort of patients with early multiple sclerosis. The Network Modification Tool was used to estimate connectivity irregularities by projecting white matter abnormalities onto connecting gray matter regions. Partial least-squares regression quantified the relationship between imaging biomarkers and processing speed as measured by the Symbol Digit Modalities Test. Results Atrophy in deep gray matter structures of the thalami and putamen had moderate and significant correlations with abnormalities in connecting white matter (r = 0.39–0.41, P < .05 corrected). The 2 models of processing speed, 1 for each of the WM imaging biomarkers, had goodness-of-fit (R2) values of 0.42 and 0.30. A measure of the impact of white matter lesions on the connectivity of occipital and parietal areas had significant nonzero regression coefficients. Conclusions We concluded that deep gray matter regions may be susceptible to inflammation and/or demyelination in white matter, possibly having a higher sensitivity to remote degeneration, and that lesions affecting visual processing pathways were related to processing speed. The Network Modification Tool may be used to quantify the impact of early white matter abnormalities on both connecting gray matter structures and processing speed. PMID:25414004

  3. Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment.

    PubMed

    Arvanitakis, Zoe; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue E; Barnes, Lisa L; Bennett, David A

    2016-05-01

    Both presence of white matter hyperintensities (WMH) and smaller total gray matter volume on brain magnetic resonance imaging (MRI) are common findings in old age, and contribute to impaired cognition. We tested whether total WMH volume and gray matter volume had independent associations with cognition in community-dwelling individuals without dementia or mild cognitive impairment (MCI). We used data from participants of the Rush Memory and Aging Project. Brain MRI was available in 209 subjects without dementia or MCI (mean age 80; education = 15 years; 74 % women). WMH and gray matter were automatically segmented, and the total WMH and gray matter volumes were measured. Both MRI-derived measures were normalized by the intracranial volume. Cognitive data included composite measures of five different cognitive domains, based on 19 individual tests. Linear regression analyses, adjusted for age, sex, and education, were used to examine the relationship of logarithmically-transformed total WMH volume and of total gray matter volume to cognition. Larger total WMH volumes were associated with lower levels of perceptual speed (p < 0.001), but not with episodic memory, semantic memory, working memory, or visuospatial abilities (all p > 0.10). Smaller total gray matter volumes were associated with lower levels of perceptual speed (p = 0.013) and episodic memory (p = 0.001), but not with the other three cognitive domains (all p > 0.14). Larger total WMH volume was correlated with smaller total gray matter volume (p < 0.001). In a model with both MRI-derived measures included, the relation of WMH to perceptual speed remained significant (p < 0.001), while gray matter volumes were no longer related (p = 0.14). This study of older community-dwelling individuals without overt cognitive impairment suggests that the association of larger total WMH volume with lower perceptual speed is independent of total gray matter volume. These results help elucidate the

  4. Externalizing personality traits, empathy, and gray matter volume in healthy young drinkers.

    PubMed

    Charpentier, Judith; Dzemidzic, Mario; West, John; Oberlin, Brandon G; Eiler, William J A; Saykin, Andrew J; Kareken, David A

    2016-02-28

    Externalizing psychopathology has been linked to prefrontal abnormalities. While clinically diagnosed subjects show altered frontal gray matter, it is unknown if similar deficits relate to externalizing traits in non-clinical populations. We used voxel-based morphometry (VBM) to retrospectively analyze the cerebral gray matter volume of 176 young adult social to heavy drinkers (mean age=24.0±2.9, male=83.5%) from studies of alcoholism risk. We hypothesized that prefrontal gray matter volume and externalizing traits would be correlated. Externalizing personality trait components-Boredom Susceptibility-Impulsivity (BS/IMP) and Empathy/Low Antisocial Behaviors (EMP/LASB)-were tested for correlations with gray matter partial volume estimates (gmPVE). Significantly large clusters (pFWE<0.05, family-wise whole-brain corrected) of gmPVE correlated with EMP/LASB in dorsolateral and medial prefrontal regions, and in occipital cortex. BS/IMP did not correlate with gmPVE, but one scale of impulsivity (Eysenck I7) correlated positively with bilateral inferior frontal/orbitofrontal, and anterior insula gmPVE. In this large sample of community-dwelling young adults, antisocial behavior/low empathy corresponded with reduced prefrontal and occipital gray matter, while impulsivity correlated with increased inferior frontal and anterior insula cortical volume. These findings add to a literature indicating that externalizing personality features involve altered frontal architecture. PMID:26778367

  5. Comparison of gray matter volume and thickness for analysis of cortical changes in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Liu, Jiachao; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kunchen; Guo, Xiaojuan

    2011-03-01

    Gray matter volume and cortical thickness are two indices of concern in brain structure magnetic resonance imaging research. Gray matter volume reflects mixed-measurement information of cerebral cortex, while cortical thickness reflects only the information of distance between inner surface and outer surface of cerebral cortex. Using Scaled Subprofile Modeling based on Principal Component Analysis (SSM_PCA) and Pearson's Correlation Analysis, this study further provided quantitative comparisons and depicted both global relevance and local relevance to comprehensively investigate morphometrical abnormalities in cerebral cortex in Alzheimer's disease (AD). Thirteen patients with AD and thirteen age- and gender-matched healthy controls were included in this study. Results showed that factor scores from the first 8 principal components accounted for ~53.38% of the total variance for gray matter volume, and ~50.18% for cortical thickness. Factor scores from the fifth principal component showed significant correlation. In addition, gray matter voxel-based volume was closely related to cortical thickness alterations in most cortical cortex, especially, in some typical abnormal brain regions such as insula and the parahippocampal gyrus in AD. These findings suggest that these two measurements are effective indices for understanding the neuropathology in AD. Studies using both gray matter volume and cortical thickness can separate the causes of the discrepancy, provide complementary information and carry out a comprehensive description of the morphological changes of brain structure.

  6. Gray matter heterotopias: MR characteristics and correlation with developmental and neurologic manifestations.

    PubMed

    Barkovich, A J; Kjos, B O

    1992-02-01

    Magnetic resonance (MR) images and clinical records of 20 patients with gray matter heterotopias were retrospectively reviewed to correlate MR characteristics of the heterotopias with clinical findings. On the basis of the MR images, patients were divided into three groups: those with subependymal heterotopias (eight patients), focal subcortical gray matter heterotopias (six patients), and diffuse subcortical heterotopias (six patients). Patients with subependymal heterotopias had a significantly higher prevalence of normal development than patients in the other two groups (P = .02). When all patients with gray matter heterotopias were considered, patients with thick heterotopias and those with overlying cortical gyral anomalies, which correlated with one another, had a significantly higher prevalence of developmental delay (P = .002). Patients with thick focal gray matter heterotopias had a substantially increased prevalence of motor dysfunction. In three cases, gray matter heterotopias were associated with infoldings of dysplastic cortex containing blood vessels or cerebrospinal fluid. If not properly analyzed, these anomalies can be mistaken for vascular or cystic tumors. PMID:1732969

  7. Reduced gray matter volume in psychotic disorder patients with a history of childhood sexual abuse.

    PubMed

    Sheffield, Julia M; Williams, Lisa E; Woodward, Neil D; Heckers, Stephan

    2013-01-01

    Childhood trauma is associated with smaller gray matter volume, similar to the pattern seen in psychotic disorders. We explored the relationship between childhood abuse, psychosis, and brain volume in a group of 60 individuals with a psychotic disorder and 26 healthy control subjects. We used voxel-based morphometry (VBM) to quantify gray and white matter volume and the Childhood Trauma Questionnaire (CTQ) to measure childhood abuse. Within the psychotic disorder group, total gray matter volume was inversely correlated with the severity of childhood sexual abuse (r=-.34, p=.008), but not the other types of abuse. When the 24 patients with sexual abuse were compared with demographically matched samples of 23 patients without sexual abuse and 26 control subjects, only patients with a history of sexual abuse had reduced total gray matter volume (t(48)=2.3, p=.03; Cohen's d=.63). Voxel-based analysis revealed a cluster in the prefrontal cortex where volume was negatively correlated with sexual abuse severity. Voxel based comparison of the three matched groups revealed a similar pattern of results, with widespread reductions in psychosis patients with sexual abuse relative to controls that were not found in psychosis patients without sexual abuse. These findings indicate that some of the variance of gray matter volume in psychotic disorders can be explained by a history of sexual abuse. PMID:23178105

  8. Behavioral correlates of changes in hippocampal gray matter structure during acquisition of foreign vocabulary.

    PubMed

    Bellander, Martin; Berggren, Rasmus; Mårtensson, Johan; Brehmer, Yvonne; Wenger, Elisabeth; Li, Tie-Qiang; Bodammer, Nils C; Shing, Yee-Lee; Werkle-Bergner, Markus; Lövdén, Martin

    2016-05-01

    Experience can affect human gray matter volume. The behavioral correlates of individual differences in such brain changes are not well understood. In a group of Swedish individuals studying Italian as a foreign language, we investigated associations among time spent studying, acquired vocabulary, baseline performance on memory tasks, and gray matter changes. As a way of studying episodic memory training, the language learning focused on acquiring foreign vocabulary and lasted for 10weeks. T1-weighted structural magnetic resonance imaging and cognitive testing were performed before and after the studies. Learning behavior was monitored via participants' use of a smartphone application dedicated to the study of vocabulary. A whole-brain analysis showed larger changes in gray matter structure of the right hippocampus in the experimental group (N=33) compared to an active control group (N=23). A first path analyses revealed that time spent studying rather than acquired knowledge significantly predicted change in gray matter structure. However, this association was not significant when adding performance on baseline memory measures into the model, instead only the participants' performance on a short-term memory task with highly similar distractors predicted the change. This measure may tap similar individual difference factors as those involved in gray matter plasticity of the hippocampus. PMID:26477659

  9. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    NASA Astrophysics Data System (ADS)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  10. Gray matter network disruptions and amyloid beta in cognitively normal adults.

    PubMed

    Tijms, Betty M; ten Kate, Mara; Wink, Alle Meije; Visser, Pieter Jelle; Ecay, Mirian; Clerigue, Montserrat; Estanga, Ainara; Garcia Sebastian, Maite; Izagirre, Andrea; Villanua, Jorge; Martinez Lage, Pablo; van der Flier, Wiesje M; Scheltens, Philip; Sanz Arigita, Ernesto; Barkhof, Frederik

    2016-01-01

    Gray matter networks are disrupted in Alzheimer's disease (AD). It is unclear when these disruptions start during the development of AD. Amyloid beta 1-42 (Aβ42) is among the earliest changes in AD. We studied, in cognitively healthy adults, the relationship between Aβ42 levels in cerebrospinal fluid (CSF) and single-subject cortical gray matter network measures. Single-subject gray matter networks were extracted from structural magnetic resonance imaging scans in a sample of cognitively healthy adults (N = 185; age range 39-79, mini-mental state examination >25, N = 12 showed abnormal Aβ42 < 550 pg/mL). Degree, clustering coefficient, and path length were computed at whole brain level and for 90 anatomical areas. Associations between continuous Aβ42 CSF levels and single-subject cortical gray matter network measures were tested. Smoothing splines were used to determine whether a linear or nonlinear relationship gave a better fit to the data. Lower Aβ42 CSF levels were linearly associated at whole brain level with lower connectivity density, and nonlinearly with lower clustering values and higher path length values, which is indicative of a less-efficient network organization. These relationships were specific to medial temporal areas, precuneus, and the middle frontal gyrus (all p < 0.05). These results suggest that mostly within the normal spectrum of amyloid, lower Aβ42 levels can be related to gray matter networks disruptions. PMID:26559882

  11. Gray matter changes following limb amputation with high and low intensities of phantom limb pain.

    PubMed

    Preissler, Sandra; Feiler, Johanna; Dietrich, Caroline; Hofmann, Gunther O; Miltner, Wolfgang H R; Weiss, Thomas

    2013-05-01

    Limb amputation and chronic phantom limb pain (PLP) are both associated with neural alterations at all levels of the neuraxis. We investigated gray matter volume of 21 upper limb amputees and 14 healthy control subjects. Results demonstrate that amputation is associated with reduced gray matter in areas in the motor cortex representing the amputated limb. Additionally, patients show an increase in gray matter in brain regions that belong to the dorsal and ventral visual stream. We subdivided the patient group into patients with medium to high PLP (HPLP; N = 11) and those with slight PLP (SPLP; N = 10). HPLP patients showed reduced gray matter in brain areas involved in pain processing. SPLP patients showed a significant gray matter increase in regions of the visual stream. Results indicate that all patients may have an enhanced need for visual control to compensate the lack of sensory feedback of the missing limb. As we found these alterations primarily in the SPLP patient group, successful compensation may have an impact on PLP development. Therefore, we hypothesize that visual adaptation mechanisms may compensate for the lack of sensorimotor feedback and may therefore function as a protection mechanism against high PLP development. PMID:22510531

  12. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects.

    PubMed

    Ziegler, G; Ridgway, G R; Dahnke, R; Gaser, C

    2014-08-15

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18-94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. PMID:24742919

  13. White matter microstructure contributes to age-related declines in task-induced deactivation of the default mode network.

    PubMed

    Brown, Christopher A; Hakun, Jonathan G; Zhu, Zude; Johnson, Nathan F; Gold, Brian T

    2015-01-01

    Task-induced deactivations within the brain's default mode network (DMN) are thought to reflect suppression of endogenous thought processes to support exogenous goal-directed task processes. Older adults are known to show reductions in deactivation of the DMN compared to younger adults. However, little is understood about the mechanisms contributing to functional dysregulation of the DMN in aging. Here, we explored the relationships between functional modulation of the DMN and age, task performance and white matter (WM) microstructure. Participants were 117 adults ranging from 25 to 83 years old who completed an fMRI task switching paradigm, including easy (single) and difficult (mixed) conditions, and underwent diffusion tensor imaging (DTI). The fMRI results revealed an age by condition interaction (β = -0.13, t = -3.16, p = 0.002) such that increasing age affected deactivation magnitude during the mixed condition (β = -0.29, t = -3.24 p = 0.002) but not the single condition (p = 0.58). Additionally, there was a WM by condition interaction (β = 0.10, t = 2.33, p = 0.02) such that decreasing WM microstructure affected deactivation magnitude during the mixed condition (β = 0.30, t = 3.42 p = 0.001) but not the single condition (p = 0.17). Critically, mediation analyses indicated that age-related reductions in WM microstructure accounted for the relationship between age and DMN deactivation in the more difficult mixed condition. These findings suggest that age-related declines in anatomical connectivity between DMN regions contribute to functional dysregulation within the DMN in older adults. PMID:26500549

  14. White matter microstructure contributes to age-related declines in task-induced deactivation of the default mode network

    PubMed Central

    Brown, Christopher A.; Hakun, Jonathan G.; Zhu, Zude; Johnson, Nathan F.; Gold, Brian T.

    2015-01-01

    Task-induced deactivations within the brain’s default mode network (DMN) are thought to reflect suppression of endogenous thought processes to support exogenous goal-directed task processes. Older adults are known to show reductions in deactivation of the DMN compared to younger adults. However, little is understood about the mechanisms contributing to functional dysregulation of the DMN in aging. Here, we explored the relationships between functional modulation of the DMN and age, task performance and white matter (WM) microstructure. Participants were 117 adults ranging from 25 to 83 years old who completed an fMRI task switching paradigm, including easy (single) and difficult (mixed) conditions, and underwent diffusion tensor imaging (DTI). The fMRI results revealed an age by condition interaction (β = −0.13, t = −3.16, p = 0.002) such that increasing age affected deactivation magnitude during the mixed condition (β = −0.29, t = −3.24 p = 0.002) but not the single condition (p = 0.58). Additionally, there was a WM by condition interaction (β = 0.10, t = 2.33, p = 0.02) such that decreasing WM microstructure affected deactivation magnitude during the mixed condition (β = 0.30, t = 3.42 p = 0.001) but not the single condition (p = 0.17). Critically, mediation analyses indicated that age-related reductions in WM microstructure accounted for the relationship between age and DMN deactivation in the more difficult mixed condition. These findings suggest that age-related declines in anatomical connectivity between DMN regions contribute to functional dysregulation within the DMN in older adults. PMID:26500549

  15. Gray matter injury associated with periventricular leukomalacia in the premature infant

    PubMed Central

    Folkerth, Rebecca D.; Billiards, Saraid S.; Trachtenberg, Felicia L.; Drinkwater, Mark E.; Volpe, Joseph J.; Kinney, Hannah C.

    2007-01-01

    Neuroimaging studies indicate reduced volumes of certain gray matter regions in survivors of prematurity with periventricular leukomalacia (PVL). We hypothesized that subacute and/or chronic gray matter lesions are increased in incidence and severity in PVL cases compared to non-PVL cases at autopsy. Forty-one cases of premature infants were divided based on cerebral white matter histology: PVL (n = 17) with cerebral white matter gliosis and focal periventricular necrosis; diffuse white matter gliosis (DWMG) (n = 17) without necrosis; and “ Negative” group (n = 7) with no abnormalities. Neuronal loss was found almost exclusively in PVL, with significantly increased incidence and severity in the thalamus (38%), globus pallidus (33%), and cerebellar dentate nucleus (29%) compared to DWMG cases. The incidence of gliosis was significantly increased in PVL compared to DWMG cases in the deep gray nuclei (thalamus/basal ganglia; 50–60% of PVL cases), and basis pontis (100% of PVL cases). Thalamic and basal ganglionic lesions occur almost exclusively in infants with PVL. Gray matter lesions occur in a third or more of PVL cases suggesting that white matter injury generally does not occur in isolation, and that the term “perinatal panencephalopathy” may better describe the scope of the neuropathology. PMID:17912538

  16. Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD

    PubMed Central

    Heine, Josephine; Pache, Florence; Lacheta, Anna; Borisow, Nadja; Kuchling, Joseph; Bellmann-Strobl, Judith; Ruprecht, Klemens; Brandt, Alexander U.; Paul, Friedemann

    2016-01-01

    Objective: To assess volumes and microstructural integrity of deep gray matter structures in a homogeneous cohort of patients with neuromyelitis optica spectrum disorder (NMOSD). Methods: This was a cross-sectional study including 36 aquaporin-4 antibody-positive (AQP4 Ab-positive) Caucasian patients with NMOSD and healthy controls matched for age, sex, and education. Volumetry of deep gray matter structures (DGM; thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) was performed using 2 independent automated methods. Microstructural integrity was assessed based on diffusion tensor imaging. Results: Both volumetric analysis methods consistently revealed similar volumes of DGM structures in patients and controls without significant group differences. Moreover, no differences in DGM microstructural integrity were observed between groups. Conclusions: Deep gray matter structures are not affected in AQP4 Ab-positive Caucasian patients with NMOSD. NMOSD imaging studies should be interpreted with respect to Ab status, educational background, and ethnicity of included patients. PMID:27144219

  17. Insular and Hippocampal Gray Matter Volume Reductions in Patients with Major Depressive Disorder

    PubMed Central

    Kugel, Harald; Krug, Axel; Schöning, Sonja; Ohrmann, Patricia; Uhlmann, Christina; Postert, Christian; Suslow, Thomas; Heindel, Walter; Arolt, Volker; Kircher, Tilo; Dannlowski, Udo

    2014-01-01

    Background Major depressive disorder is a serious psychiatric illness with a highly variable and heterogeneous clinical course. Due to the lack of consistent data from previous studies, the study of morphometric changes in major depressive disorder is still a major point of research requiring additional studies. The aim of the study presented here was to characterize and quantify regional gray matter abnormalities in a large sample of clinically well-characterized patients with major depressive disorder. Methods For this study one-hundred thirty two patients with major depressive disorder and 132 age- and gender-matched healthy control participants were included, 35 with their first episode and 97 with recurrent depression. To analyse gray matter abnormalities, voxel-based morphometry (VBM8) was employed on T1 weighted MRI data. We performed whole-brain analyses as well as a region-of-interest approach on the hippocampal formation, anterior cingulate cortex and amygdala, correlating the number of depressive episodes. Results Compared to healthy control persons, patients showed a strong gray-matter reduction in the right anterior insula. In addition, region-of-interest analyses revealed significant gray-matter reductions in the hippocampal formation. The observed alterations were more severe in patients with recurrent depressive episodes than in patients with a first episode. The number of depressive episodes was negatively correlated with gray-matter volume in the right hippocampus and right amygdala. Conclusions The anterior insula gray matter structure appears to be strongly affected in major depressive disorder and might play an important role in the neurobiology of depression. The hippocampal and amygdala volume loss cumulating with the number of episodes might be explained either by repeated neurotoxic stress or alternatively by higher relapse rates in patients showing hippocampal atrophy. PMID:25051163

  18. Breakfast Staple Types Affect Brain Gray Matter Volume and Cognitive Function in Healthy Children

    PubMed Central

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-01-01

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence. PMID:21170334

  19. Fusion of white and gray matter geometry: a framework for investigating brain development

    PubMed Central

    Savadjiev, Peter; Rathi, Yogesh; Bouix, Sylvain; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini; Westin, Carl-Fredrik

    2014-01-01

    Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a result, it is not clear how to combine findings from these two types of approaches in order to obtain a consistent picture of morphological changes in both gray and white matter. In this paper, we propose a joint investigation of gray and white matter morphology by combining geometrical information from white and the gray matter. To achieve this, we first introduce a novel method for computing multi-scale white matter tract geometry. Its formulation is based on the differential geometry of curve sets and is easily incorporated into a continuous scale-space framework. We then incorporate this method into a novel framework for “fusing” white and gray matter geometrical information. Given a set of fiber tracts originating in a particular cortical region, the key idea is to compute two scalar fields that represent geometrical characteristics of the white matter and of the surface of the cortical region. A quantitative marker is created by combining the distributions of these scalar values using Mutual Information. This marker can be then used in the study of normal and pathological brain structure and development. We apply this framework to a study on autism spectrum disorder in children. Our preliminary results support the view that autism may be characterized by early brain overgrowth, followed by reduced or arrested growth [7]. PMID:25066750

  20. Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations

    PubMed Central

    Hawasli, Ammar H.; Kim, DoHyun; Ledbetter, Noah M.; Dahiya, Sonika; Barbour, Dennis L.; Leuthardt, Eric C.

    2016-01-01

    Brain oscillations reflect changes in electrical potentials summated across neuronal populations. Low- and high-frequency rhythms have different modulation patterns. Slower rhythms are spatially broad, while faster rhythms are more local. From this observation, we hypothesized that low- and high-frequency oscillations reflect white- and gray-matter communications, respectively, and synchronization between low-frequency phase with high-frequency amplitude represents a mechanism enabling distributed brain-networks to coordinate local processing. Testing this common understanding, we selectively disrupted white or gray matter connections to human cortex while recording surface field potentials. Counter to our original hypotheses, we found that cortex consists of independent oscillatory-units (IOUs) that maintain their own complex endogenous rhythm structure. IOUs are differentially modulated by white and gray matter connections. White-matter connections maintain topographical anatomic heterogeneity (i.e., separable processing in cortical space) and gray-matter connections segregate cortical synchronization patterns (i.e., separable temporal processing through phase-power coupling). Modulation of distinct oscillatory modules enables the functional diversity necessary for complex processing in the human brain. PMID:27445767

  1. Effect of Simulated Microgravity on Human Brain Gray Matter and White Matter – Evidence from MRI

    PubMed Central

    Li, Ke; Guo, Xiaojuan; Jin, Zhen; Ouyang, Xin; Zeng, Yawei; Feng, Jinsheng; Wang, Yu; Yao, Li; Ma, Lin

    2015-01-01

    Background There is limited and inconclusive evidence that space environment, especially microgravity condition, may affect microstructure of human brain. This experiment hypothesized that there would be modifications in gray matter (GM) and white matter (WM) of the brain due to microgravity. Method Eighteen male volunteers were recruited and fourteen volunteers underwent -6° head-down bed rest (HDBR) for 30 days simulated microgravity. High-resolution brain anatomical imaging data and diffusion tensor imaging images were collected on a 3T MR system before and after HDBR. We applied voxel-based morphometry and tract-based spatial statistics analysis to investigate the structural changes in GM and WM of brain. Results We observed significant decreases of GM volume in the bilateral frontal lobes, temporal poles, parahippocampal gyrus, insula and right hippocampus, and increases of GM volume in the vermis, bilateral paracentral lobule, right precuneus gyrus, left precentral gyrus and left postcentral gyrus after HDBR. Fractional anisotropy (FA) changes were also observed in multiple WM tracts. Conclusion These regions showing GM changes are closely associated with the functional domains of performance, locomotion, learning, memory and coordination. Regional WM alterations may be related to brain function decline and adaption. Our findings provide the neuroanatomical evidence of brain dysfunction or plasticity in microgravity condition and a deeper insight into the cerebral mechanisms in microgravity condition. PMID:26270525

  2. Mindfulness practice leads to increases in regional brain gray matter density

    PubMed Central

    Hölzel, Britta K.; Carmody, James; Vangel, Mark; Congleton, Christina; Yerramsetti, Sita M.; Gard, Tim; Lazar, Sara W.

    2010-01-01

    Therapeutic interventions that incorporate training in mindfulness meditation have become increasingly popular, but to date, little is known about neural mechanisms associated with these interventions. Mindfulness-Based Stress Reduction (MBSR), one of the most widely used mindfulness training programs, has been reported to produce positive effects on psychological well-being and to ameliorate symptoms of a number of disorders. Here, we report a controlled longitudinal study to investigate pre-post changes in brain gray matter concentration attributable to participation in an MBSR program. Anatomical MRI images from sixteen healthy, meditation-naïve participants were obtained before and after they underwent the eight-week program. Changes in gray matter concentration were investigated using voxel-based morphometry, and compared to a wait-list control group of 17 individuals. Analyses in a priori regions of interest confirmed increases in gray matter concentration within the left hippocampus. Whole brain analyses identified increases in the posterior cingulate cortex, the temporo-parietal junction, and the cerebellum in the MBSR group compared to the controls. The results suggest that participation in MBSR is associated with changes in gray matter concentration in brain regions involved in learning and memory processes, emotion regulation, self-referential processing, and perspective taking. PMID:21071182

  3. Cortical Gray Matter in Attention-Deficit/Hyperactivity Disorder: A Structural Magnetic Resonance Imaging Study

    ERIC Educational Resources Information Center

    Batty, Martin J.; Liddle, Elizabeth B.; Pitiot, Alain; Toro, Roberto; Groom, Madeleine J.; Scerif, Gaia; Liotti, Mario; Liddle, Peter F.; Paus, Tomas; Hollis, Chris

    2010-01-01

    Objective: Previous studies have shown smaller brain volume and less gray matter in children with attention-deficit/hyperactivity disorder (ADHD). Relatively few morphological studies have examined structures thought to subserve inhibitory control, one of the diagnostic features of ADHD. We examined one such region, the pars opercularis,…

  4. Correlation between Gray/White Matter Volume and Cognition in Healthy Elderly People

    ERIC Educational Resources Information Center

    Taki, Yasuyuki; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi

    2011-01-01

    This study applied volumetric analysis and voxel-based morphometry (VBM) of brain magnetic resonance (MR) images to assess whether correlations exist between global and regional gray/white matter volume and the cognitive functions of semantic memory and short-term memory, which are relatively well preserved with aging, using MR image data from 109…

  5. Gray Matter Characteristics in Mid and Old Aged Adults with ASD

    ERIC Educational Resources Information Center

    Koolschijn, P. Cédric M. P.; Geurts, Hilde M.

    2016-01-01

    It is widely acknowledged that the brain anatomy of children and adolescents with autism spectrum disorder (ASD) shows a different developmental pattern then typical age-matched peers. There is however, a paucity of studies examining gray matter in mid and late adulthood in ASD. In this cross-sectional neuroimaging study, we, performed vertex-wise…

  6. Dorsolateral and dorsomedial prefrontal gray matter density changes associated with bipolar depression

    PubMed Central

    Brooks, John O.; Bonner, Julie C.; Rosen, Allyson C.; Wang, Po W.; Hoblyn, Jennifer C.; Hill, Shelley J.; Ketter, Terence A.

    2009-01-01

    Mood states are associated with alterations in cerebral blood flow and metabolism, yet changes in cerebral structure are typically viewed in the context of enduring traits, genetic predispositions, or the outcome of chronic psychiatric illness. Magnetic resonance imaging (MRI) scans were obtained from two groups of patients with bipolar disorder. In one group, patients met criteria for a current major depressive episode whereas in the other no patient did. No patient in either group met criteria for a current manic, hypomanic, or mixed episode. Groups were matched with respect to age and illness severity. Analyses of gray matter density were performed with Statistical Parametric Mapping software (SPM5). Compared with non-depressed bipolar subjects, depressed bipolar subjects exhibited lower gray matter density in the right dorsolateral and bilateral dorsomedial prefrontal cortices and portions of the left parietal lobe. In addition, gray matter density was greater in the left temporal lobe and right posterior cingulate cortex/parahippocampal gyrus in depressed than in non-depressed subjects. Our findings highlight the importance of mood state in structural studies of the brain—an issue that has received insufficient attention to date. Moreover, our observed differences in gray matter density overlap metabolic areas of change and thus have implications for the conceptualization and treatment of affective disorders. PMID:19351579

  7. Brain gray and white matter differences in healthy normal weight and obese children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compare brain gray and white matter development in healthy normal weight and obese children. Twenty-four healthy 8- to 10-year-old children whose body mass index was either <75th percentile (normal weight) or >95th percentile (obese) completed an MRI examination which included T1-weighted three-d...

  8. Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry.

    PubMed

    Mercadillo, Roberto E; Galvez, Víctor; Díaz, Rosalinda; Hernández-Castillo, Carlos Roberto; Campos-Romo, Aurelio; Boll, Marie-Catherine; Pasaye, Erick H; Fernandez-Ruiz, Juan

    2014-12-15

    Spinocerebellar Ataxia Type 2 (SCA2) is a genetic disorder causing cerebellar degeneration that result in motor and cognitive alterations. Voxel-based morphometry (VBM) analyses have found neurodegenerative patterns associated to SCA2, but they show some discrepancies. Moreover, behavioral deficits related to non-cerebellar functions are scarcely discussed in those reports. In this work we use behavioral and cognitive tests and VBM to identify and confirm cognitive and gray matter alterations in SCA2 patients compared with control subjects. Also, we discuss the cerebellar and non-cerebellar functions affected by this disease. Our results confirmed gray matter reduction in the cerebellar vermis, pons, and insular, frontal, parietal and temporal cortices. However, our analysis also found unreported loss of gray matter in the parahippocampal gyrus bilaterally. Motor performance test ratings correlated with total gray and white matter reductions, but executive performance and clinical features such as CAG repetitions and disease progression did not show any correlation. This pattern of cerebellar and non-cerebellar morphological alterations associated with SCA2 has to be considered to fully understand the motor and non-motor deficits that include language production and comprehension and some social skill changes that occur in these patients. PMID:25263602

  9. Normalization of Cortical Gray Matter Deficits in Nonpsychotic Siblings of Patients with Childhood-Onset Schizophrenia

    ERIC Educational Resources Information Center

    Mattai, Anand A.; Weisinger, Brian; Greenstein, Deanna; Stidd, Reva; Clasen, Liv; Miller, Rachel; Tossell, Julia W.; Rapoport, Judith L.; Gogtay, Nitin

    2011-01-01

    Objective: Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to…

  10. Cortical gray matter loss in schizophrenia: Could microglia be the culprit?

    PubMed

    Rački, Valentino; Petrić, Daniela; Kučić, Natalia; Gržeta, Nika; Jurdana, Kristina; Rončević-Gržeta, Ika

    2016-03-01

    Cortical gray matter loss in schizophrenia remains a great therapeutic difficulty. Each psychotic episode causes irreversible cortical gray matter loss, that causes the patients to never regain their previous state of functioning. Microglial cells are part of the innate immune system and their functions, among others, include phagocytosis and release of neurotrophic factors. They have a key impact on developmental and plasticity-induced removal of neuronal precursors, live-but-stressed neurons and synapses, while also stimulating synaptic growth and development. We hypothesize that microglia are the culprit for the cortical gray matter loss in schizophrenia through abnormal synaptic pruning, phagocytosis of stressed neurons and lacking neurotrophic factor release. Furthermore, we propose a research that could validate the hypotheses using serum samples of first-episode early-onset patients. By measuring the serum levels of milk fat globule-EGF factor 8 (MFG-E8), subcomponent in the classical pathway of complement activation (C1q), brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6) and interleukin-10 (IL-10), we could gain an insight into the state of microglial activation during various stages of the disease. If this hypothesis is valid, new targeted drugs could be developed in order to reduce the deterioration of cortical gray matter, thereby possibly improving negative symptoms and cognitive deficits. PMID:26880628

  11. Brain gray and white matter differences in healthy normal weight and obese children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compare brain gray and white matter development in healthy normal weight and obese children. Twenty-four healthy 8- to 10-year-old children whose body mass index was either 95th percentile (obese) completed an MRI examination which included T1-weighted three-d...

  12. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents

    PubMed Central

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific

  13. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    PubMed

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific

  14. Gray and White Matter Contributions to Cognitive Frontostriatal Deficits in Non-Demented Parkinson's Disease

    PubMed Central

    Price, Catherine C.; Tanner, Jared; Nguyen, Peter T.; Schwab, Nadine A.; Mitchell, Sandra; Slonena, Elizabeth; Brumback, Babette; Okun, Michael S.; Mareci, Thomas H.; Bowers, Dawn

    2016-01-01

    Objective This prospective investigation examined: 1) processing speed and working memory relative to other cognitive domains in non-demented medically managed idiopathic Parkinson’s disease, and 2) the predictive role of cortical/subcortical gray thickness/volume and white matter fractional anisotropy on processing speed and working memory. Methods Participants completed a neuropsychological protocol, Unified Parkinson’s Disease Rating Scale, brain MRI, and fasting blood draw to rule out vascular contributors. Within group a priori anatomical contributors included bilateral frontal thickness, caudate nuclei volume, and prefrontal white matter fractional anisotropy. Results Idiopathic Parkinson’s disease (n = 40; Hoehn & Yahr stages 1–3) and non-Parkinson’s disease ‘control’ peers (n = 40) matched on demographics, general cognition, comorbidity, and imaging/blood vascular metrics. Cognitively, individuals with Parkinson’s disease were significantly more impaired than controls on tests of processing speed, secondary deficits on working memory, with subtle impairments in memory, abstract reasoning, and visuoperceptual/spatial abilities. Anatomically, Parkinson’s disease individuals were not statistically different in cortical gray thickness or subcortical gray volumes with the exception of the putamen. Tract Based Spatial Statistics showed reduced prefrontal fractional anisotropy for Parkinson’s disease relative to controls. Within Parkinson’s disease, prefrontal fractional anisotropy and caudate nucleus volume partially explained processing speed. For controls, only prefrontal white matter was a significant contributor to processing speed. There were no significant anatomical predictors of working memory for either group. Conclusions Caudate nuclei volume and prefrontal fractional anisotropy, not frontal gray matter thickness, showed unique and combined significance for processing speed in Parkinson’s disease. Findings underscore the

  15. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  16. Asymmetry, sex differences and age-related changes in the white matter in the healthy elderly: a tract-based study

    PubMed Central

    2011-01-01

    Background Hemispherical asymmetry, sex differences and age-related changes have been reported for the human brain. Meanwhile it was still unclear the presence of the asymmetry or sex differences in the human brain occurred whether as a normal development or as consequences of any pathological changes. The aim of this study was to investigate hemispherical asymmetry, sex differences and age-related changes by using a tract-based analysis in the nerve bundles. Methods 40 healthy elderly subjects underwent magnetic resonance diffusion tensor imaging, and we calculated fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values along the major white matter bundles. Results We identified hemispherical asymmetry in the ADC values for the cingulate fasciculus in the total subject set and in males, and a sex difference in the FA values for the right uncinate fasciculus. For age-related changes, we demonstrated a significant increase in ADC values with advancing age in the right cingulum, left temporal white matter, and a significant decrease in FA values in the right superior longitudinal fasciculus. Conclusion In this study, we found hemispherical asymmetry, sex differences and age-related changes in particular regions of the white matter in the healthy elderly. Our results suggest considering these differences can be important in imaging studies. PMID:21970546

  17. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence

    PubMed Central

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d’Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders. PMID:27199831

  18. White-matter microstructure and gray-matter volumes in adolescents with subthreshold bipolar symptoms

    PubMed Central

    Paillère Martinot, M-L; Lemaitre, H; Artiges, E; Miranda, R; Goodman, R; Penttilä, J; Struve, M; Fadai, T; Kappel, V; Poustka, L; Conrod, P; Banaschewski, T; Barbot, A; Barker, G J; Büchel, C; Flor, H; Gallinat, J; Garavan, H; Heinz, A; Ittermann, B; Lawrence, C; Loth, E; Mann, K; Paus, T; Pausova, Z; Rietschel, M; Robbins, T W; Smolka, M N; Schumann, G; Martinot, J-L; L, Reed; S, Williams; A, Lourdusamy; S, Costafreda; A, Cattrell; C, Nymberg; L, Topper; L, Smith; S, Havatzias; K, Stueber; C, Mallik; TK, Clarke; D, Stacey; Wong C, Peng; H, Werts; S, Williams; C, Andrew; S, Desrivieres; S, Zewdie; I, Häke; N, Ivanov; A, Klär; J, Reuter; C, Palafox; C, Hohmann; C, Schilling; K, Lüdemann; A, Romanowski; A, Ströhle; E, Wolff; M, Rapp; R, Brühl; A, Ihlenfeld; B, Walaszek; F, Schubert; C, Connolly; J, Jones; E, Lalor; E, McCabe; A, Ní Shiothcháin; R, Whelan; R, Spanagel; F, Leonardi-Essmann; W, Sommer; S, Vollstaedt-Klein; F, Nees; S, Steiner; M, Buehler; E, Stolzenburg; C, Schmal; F, Schirmbeck; P, Gowland; N, Heym; C, Newman; T, Huebner; S, Ripke; E, Mennigen; K, Muller; V, Ziesch; C, Büchel; U, Bromberg; L, Lueken; J, Yacubian; J, Finsterbusch; N, Bordas; S, de Bournonville; Z, Bricaud; Briand F, Gollier; J, Massicotte; JB, Poline; H, Vulser; Y, Schwartz; C, Lalanne; V, Frouin; B, Thyreau; J, Dalley; A, Mar; N, Subramaniam; D, Theobald; N, Richmond; M, de Rover; A, Molander; E, Jordan; E, Robinson; L, Hipolata; M, Moreno; M, Arroyo; D, Stephens; T, Ripley; H, Crombag; Y, Pena; M, Lathrop; D, Zelenika; S, Heath; D, Lanzerath; B, Heinrichs; T, Spranger; B, Fuchs; C, Speiser; F, Resch; J, Haffner; P, Parzer; R, Brunner; A, Klaassen; I, Klaassen; P, Constant; X, Mignon; T, Thomsen; S, Zysset; A, Vestboe; J, Ireland; J, Rogers

    2014-01-01

    Abnormalities in white-matter (WM) microstructure, as lower fractional anisotropy (FA), have been reported in adolescent-onset bipolar disorder and in youth at familial risk for bipolarity. We sought to determine whether healthy adolescents with subthreshold bipolar symptoms (SBP) would have early WM microstructural alterations and whether those alterations would be associated with differences in gray-matter (GM) volumes. Forty-two adolescents with three core manic symptoms and no psychiatric diagnosis, and 126 adolescents matched by age and sex, with no psychiatric diagnosis or symptoms, were identified after screening the IMAGEN database of 2223 young adolescents recruited from the general population. After image quality control, voxel-wise statistics were performed on the diffusion parameters using tract-based spatial statistics in 25 SBP adolescents and 77 controls, and on GM and WM images using voxel-based morphometry in 30 SBP adolescents and 106 controls. As compared with healthy controls, adolescents with SBP displayed lower FA values in a number of WM tracts, particularly in the corpus callosum, cingulum, bilateral superior and inferior longitudinal fasciculi, uncinate fasciculi and corticospinal tracts. Radial diffusivity was mainly higher in posterior parts of bilateral superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculi and right cingulum. As compared with controls, SBP adolescents had lower GM volume in the left anterior cingulate region. This is the first study to investigate WM microstructure and GM morphometric variations in adolescents with SBP. The widespread FA alterations in association and projection tracts, associated with GM changes in regions involved in mood disorders, suggest altered structural connectivity in those adolescents. PMID:23628983

  19. White-matter microstructure and gray-matter volumes in adolescents with subthreshold bipolar symptoms.

    PubMed

    Paillère Martinot, M-L; Lemaitre, H; Artiges, E; Miranda, R; Goodman, R; Penttilä, J; Struve, M; Fadai, T; Kappel, V; Poustka, L; Conrod, P; Banaschewski, T; Barbot, A; Barker, G J; Büchel, C; Flor, H; Gallinat, J; Garavan, H; Heinz, A; Ittermann, B; Lawrence, C; Loth, E; Mann, K; Paus, T; Pausova, Z; Rietschel, M; Robbins, T W; Smolka, M N; Schumann, G; Martinot, J-L

    2014-04-01

    Abnormalities in white-matter (WM) microstructure, as lower fractional anisotropy (FA), have been reported in adolescent-onset bipolar disorder and in youth at familial risk for bipolarity. We sought to determine whether healthy adolescents with subthreshold bipolar symptoms (SBP) would have early WM microstructural alterations and whether those alterations would be associated with differences in gray-matter (GM) volumes. Forty-two adolescents with three core manic symptoms and no psychiatric diagnosis, and 126 adolescents matched by age and sex, with no psychiatric diagnosis or symptoms, were identified after screening the IMAGEN database of 2223 young adolescents recruited from the general population. After image quality control, voxel-wise statistics were performed on the diffusion parameters using tract-based spatial statistics in 25 SBP adolescents and 77 controls, and on GM and WM images using voxel-based morphometry in 30 SBP adolescents and 106 controls. As compared with healthy controls, adolescents with SBP displayed lower FA values in a number of WM tracts, particularly in the corpus callosum, cingulum, bilateral superior and inferior longitudinal fasciculi, uncinate fasciculi and corticospinal tracts. Radial diffusivity was mainly higher in posterior parts of bilateral superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculi and right cingulum. As compared with controls, SBP adolescents had lower GM volume in the left anterior cingulate region. This is the first study to investigate WM microstructure and GM morphometric variations in adolescents with SBP. The widespread FA alterations in association and projection tracts, associated with GM changes in regions involved in mood disorders, suggest altered structural connectivity in those adolescents. PMID:23628983

  20. Improved prediction of Alzheimer's disease with longitudinal white matter/gray matter contrast changes.

    PubMed

    Grydeland, Håkon; Westlye, Lars T; Walhovd, Kristine B; Fjell, Anders M

    2013-11-01

    Brain morphometry measures derived from magnetic resonance imaging (MRI) are important biomarkers for Alzheimer's disease (AD). The objective of the present study was to test whether we could improve morphometry-based detection and prediction of disease state by use of white matter/gray matter (WM/GM) signal intensity contrast obtained from conventional MRI scans. We hypothesized that including WM/GM contrast change along with measures of atrophy in the entorhinal cortex and the hippocampi would yield better classification of AD patients, and more accurate prediction of early disease progression. T1 -weighted MRI scans from two sessions approximately 2 years apart from 78 participants with AD (Clinical Dementia Rating (CDR) = 0.5-2) and 71 age-matched controls were used to calculate annual change rates. Results showed that WM/GM contrast decay was larger in AD compared with controls in the medial temporal lobes. For the discrimination between AD and controls, entorhinal WM/GM contrast decay contributed significantly when included together with decrease in entorhinal cortical thickness and hippocampal volume, and increased the area under the curve to 0.79 compared with 0.75 when using the two morphometric variables only. Independent effects of WM/GM contrast decay and improved classification were also observed for the CDR-based subgroups, including participants converting from either a non-AD status to very mild AD, or from very mild to mild AD. Thus, WM/GM contrast decay increased diagnostic accuracy beyond what was obtained by well-validated morphometric measures alone. The findings suggest that signal intensity properties constitute a sensitive biomarker for cerebral degeneration in AD. PMID:22674625

  1. A comprehensive assessment of gray and white matter volumes and their relationship to outcome and severity in schizophrenia

    PubMed Central

    Mitelman, Serge A.; Brickman, Adam M.; Shihabuddin, Lina; Newmark, Randall E.; Hazlett, Erin A.; Haznedar, M. Mehmet; Buchsbaum, Monte S.

    2007-01-01

    Preliminary data suggest an association of posterior cortical gray matter reduction with poor outcome in schizophrenia. We made a systematic MRI assessment of regional gray and white matter volumes, parcellated into 40 Brodmann’s areas, in 104 patients with schizophrenia (51 with good outcomes, 53 with poor outcomes) and 41 normal comparison subjects, and investigated correlations of regional morphometry with outcome and severity of the illness. Schizophrenia patients displayed differential reductions in frontal and to a lesser degree temporal gray matter volumes in both hemispheres, most pronounced in the frontal pole and lateral temporal cortex. White matter volumes in schizophrenia patients were bilaterally increased, primarily in the frontal, parietal, and isolated temporal regions, with volume reductions confined to anterior cingulate gyrus. In patients with schizophrenia as a group, higher illness severity was associated with reduced temporal gray matter volumes and expanded frontal white matter volumes in both hemispheres. In comparison to good-outcome group, patients with poor outcomes had lower temporal, occipital, and to a lesser degree parietal gray matter volumes in both hemispheres and temporal, parietal, occipital, and posterior cingulate white matter volumes in the right hemisphere. While gray matter deficits in the granular cortex were observed in all schizophrenia patients, agranular cortical deficits in the left hemisphere were peculiar to patients with poor outcomes. These results provide support for frontotemporal gray matter reduction and frontoparietal white matter expansion in schizophrenia. Poor outcome is associated with more posterior distribution (posteriorization) of both gray and white matter changes, and with preferential impairment in the unimodal visual and paralimbic cortical regions. PMID:17587598

  2. Brain Gray Matter Changes Associated with Mindfulness Meditation in Older Adults: An Exploratory Pilot Study using Voxel-based Morphometry

    PubMed Central

    Kurth, Florian; Luders, Eileen; Wu, Brian; Black, David S.

    2015-01-01

    Background Mindfulness-based interventions (MBIs) have previously been associated with structural gray matter changes in normal healthy adults. However, it remains unknown if standardized MBIs can induce similar changes in older adults and those with health complaints as well. The objective of this investigation was to examine the effect of a standardized MBI on the gray matter tissue of older adults with sleep disturbances. Methods This exploratory single-group pilot longitudinal study examined local gray matter changes over a six-week MBI period. Participants included six older adult community volunteers (M=66.5 years of age, SD=5.5, range=58–75; 66% female) with sleep disturbances recruited through advertisement in local newspapers/flyers posted at a university medical center and affiliated clinics in Los Angeles, CA. The MBI was delivered as a weekly, two-hour, six-session, group-based course in mindfulness meditation. Gray matter was measured voxel-wise pre- and post-intervention. Results A significant gray matter increase was identified within the precuneus, possibly implicating meditation-induced changes of the default mode network. In contrast, observed significant gray matter decreases may have been driven by MBI-related remediation of brain architecture subserving sleep complaints. Conclusions Exploratory findings suggest that mindfulness meditation practice is associated with a detectable alteration of cerebral gray matter in older adults. PMID:25632405

  3. Gray, White Matter Concentration Changes and Their Correlation with Heterotopic Neurons in Temporal Lobe Epilepsy

    PubMed Central

    Tae, Woo Suk; Joo, Eun Yun; Kim, Sung Tae

    2010-01-01

    Objective To identify changes in gray and white matter concentrations (GMC, WMC), and their relation to heterotopic neuron numbers in mesial temporal lobe epilepsy (mTLE). Materials and Methods The gray matter or white matter concentrations of 16 left and 15 right mTLE patients who achieved an excellent surgical outcome were compared with those of 24 healthy volunteers for the left group and with 23 healthy volunteers for the right group, by optimized voxel-based morphometry using unmodulated and modulated images. A histologic count of heterotopic neurons was obtained in the white matter of the anterior temporal lobe originating from the patients' surgical specimens. In addition, the number of heterotopic neurons were tested to determine if there was a correlation with the GMC or WMC. Results The GMCs of the left and right mTLE groups were reduced in the ipsilateral hippocampi, bilateral thalami, precentral gyri, and in the cerebellum. The WMCs were reduced in the ipsilateral white matter of the anterior temporal lobe, bilateral parahippocampal gyri, and internal capsules, but increased in the pons and bilateral precentral gyri. The heterotopic neuron counts in the left mTLE group showed a positive correlation (r = 0.819, p < 0.0001) with GMCs and a negative correlation (r = -0.839, p < 0.0001) with WMCs in the white matter of the anterior temporal lobe. Conclusion The present study shows the abnormalities of the cortico-thalamo-hippocampal network including a gray matter volume reduction in the anterior frontal lobes and an abnormality of brain tissue concentration in the pontine area. Furthermore, heterotopic neuron numbers were significantly correlated with GMC or WMC in the left white matter of anterior temporal lobe. PMID:20046492

  4. Obesity Associated Cerebral Gray and White Matter Alterations Are Interrelated in the Female Brain

    PubMed Central

    Möller, Harald E.; Anwander, Alfred; Lepsien, Jöran; Schroeter, Matthias L.; Villringer, Arno; Pleger, Burkhard

    2014-01-01

    Obesity is known to affect the brain's gray matter (GM) and white matter (WM) structure but the interrelationship of such changes remains unclear. Here we used T1-weighted magnetic resonance imaging (MRI) in combination with voxel-based morphometry (VBM) and diffusion-tensor imaging (DTI) with tract-based spatial statistics (TBSS) to assess the relationship between obesity-associated alterations of gray matter density (GMD) and anisotropic water diffusion in WM, respectively. In a small cohort of lean to obese women, we confirmed previous reports of obesity-associated alterations of GMD in brain regions involved in executive control (i.e., dorsolateral prefrontal cortex, DLPFC) and habit learning (i.e., dorsal striatum). Gray matter density alterations of the DLPFC were negatively correlated with radial diffusivity in the entire corpus callosum. Within the genu of the corpus callosum we found a positive correlation with axial diffusivity. In posterior region and inferior areas of the body of the corpus callosum, axial diffusivity correlated negatively with altered GMD in the dorsal striatum. These findings suggest that, in women, obesity-related alterations of GMD in brain regions involved in executive control and habit learning might relate to alterations of associated WM fiber bundles within the corpus callosum. PMID:25494174

  5. Patterns of gray and white matter changes in individuals at risk for Alzheimer's disease.

    PubMed

    Jacobs, Heidi I L; van Boxtel, Martin P J; Gronenschild, Ed H B M; Williams, Victoria J; Burgmans, Saartje; Uylings, Harry B M; Jolles, Jelle; Verhey, Frans R J

    2012-11-01

    Structural brain changes precede cognitive and clinical symptoms in Alzheimer's disease (AD). We aimed to examine the gray and white matter tissue changes in individuals with memory decline over a 12-year period, who might be at risk for AD. The participants were selected from the longitudinal Maastricht Aging Study based on their scores on the verbal word learning task. A group with profound memory decline over a 12-year period (n = 20) was identified and matched with a group that did not meet this criterion (n = 20). All of the participants underwent MRI scanning. Diffusion tensor imaging and cortical thickness analyses were performed to investigate the white and gray matter differences respectively. We found decreased white matter integrity in the memory decline group compared to the control group in frontal and parietal brain regions and in several cortico-cortical and cortico-subcortical tracts. Cortical thinning in the memory decline group was found in frontal, parietal, medial temporal and occipital areas. These results showed similarities with the structural brain changes observed in early AD. Thus, not only may cognitive changes be detected years before the clinical diagnosis, but typical gray and white matter changes appear to be present in older people with memory decline as well. This suggests that a combination of cognitive decline and structural brain changes might be an ideal biomarker for AD pathogenesis. PMID:22920268

  6. A New Approach for Deep Gray Matter Analysis Using Partial-Volume Estimation

    PubMed Central

    Bonnier, Guillaume; Kober, Tobias; Schluep, Myriam; Du Pasquier, Renaud; Krueger, Gunnar; Meuli, Reto

    2016-01-01

    Introduction The existence of partial volume effects in brain MR images makes it challenging to understand physio-pathological alterations underlying signal changes due to pathology across groups of healthy subjects and patients. In this study, we implement a new approach to disentangle gray and white matter alterations in the thalamus and the basal ganglia. The proposed method was applied to a cohort of early multiple sclerosis (MS) patients and healthy subjects to evaluate tissue-specific alterations related to diffuse inflammatory or neurodegenerative processes. Method Forty-three relapsing-remitting MS patients and nineteen healthy controls underwent 3T MRI including: (i) fluid-attenuated inversion recovery, double inversion recovery, magnetization-prepared gradient echo for lesion count, and (ii) T1 relaxometry. We applied a partial volume estimation algorithm to T1 relaxometry maps to gray and white matter local concentrations as well as T1 values characteristic of gray and white matter in the thalamus and the basal ganglia. Statistical tests were performed to compare groups in terms of both global T1 values, tissue characteristic T1 values, and tissue concentrations. Results Significant increases in global T1 values were observed in the thalamus (p = 0.038) and the putamen (p = 0.026) in RRMS patients compared to HC. In the Thalamus, the T1 increase was associated with a significant increase in gray matter characteristic T1 (p = 0.0016) with no significant effect in white matter. Conclusion The presented methodology provides additional information to standard MR signal averaging approaches that holds promise to identify the presence and nature of diffuse pathology in neuro-inflammatory and neurodegenerative diseases. PMID:26845760

  7. MRI-based correction for PET partial volume effects in the presence of heterogeneity in gray matter radioactivity

    SciTech Connect

    Meltzer, C.C.; Zubieta, J.K.; Links, J.M.

    1994-05-01

    Quantitation of small structures with PET may be inaccurate due to partial volume averaging of surrounding structures. We have previously described a method of correcting PET data for the effects of partial volume averaging on gray matter quantitation. This method may incompletely correct gray matter structures when local tissue concentrations are highly heterogenous. We present an extension of our previous method that by accounting for gray matter heterogeneity, allows for partial volume correction in small structures that can be delineated on MR images. Spoiled gradient echo MR data were acquired coplanar to the PET imaging plane. For each PET slice, 17 contiguous 1.5 mm-thick MR images were tri-segmented into gray matter, white matter, matter maps were created by and the for gray a second step, the structure of for volume and spill-in from surrounding gray and white matter. PET images simulated from MR data from patients with Alzheimer disease and controls demonstrated full recovery of tracer concentration in the amygdala over a range of contrasts (from that of white matter to 4x gray matter) (error = 0.36{plus_minus}0.29%) and sizes (152-725mm{sup 3}) (error = 0.11{plus_minus}0.17%). The method was validated with sphere phantoms and a 5-compartment brain phantom in actual PET acquisitions. This newly developed and validated MR-based partial volume correction algorithm for PET, accurately derives non-homogeneous gray matter radioactivity concentrations and should improve quantitation of subcortical structures.

  8. Extensive learning is associated with gray matter changes in the right hippocampus.

    PubMed

    Koch, Kathrin; Reess, Tim Jonas; Rus, Oana Georgiana; Zimmer, Claus

    2016-01-15

    Longitudinal voxel-based morphometry studies have demonstrated increases in gray matter volume in hippocampal areas following extensive cognitive learning. Moreover, there is increasing evidence for the relevance of the subiculum in the context of learning and memory. Using longitudinal FreeSurfer analyses and hippocampus subfield segmentation the present study investigated the effects of 14weeks of intensive learning on hippocampal and subicular gray matter volume in a sample of medical students compared to control subjects not engaged in any cognitive learning activities. We found that extensive learning resulted in a significant increase of right hippocampal volume. Volume of the left hippocampus and the subiculum remained unchanged. The current findings emphasize the role of the hippocampus in semantic learning and memory processes and provide further evidence for the neuroplastic ability of the hippocampus in the context of cognitive learning. PMID:26518629

  9. Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link?

    PubMed

    Flöel, A; Ruscheweyh, R; Krüger, K; Willemer, C; Winter, B; Völker, K; Lohmann, H; Zitzmann, M; Mooren, F; Breitenstein, C; Knecht, S

    2010-02-01

    Epidemiological studies reveal better cognitive function in physically active individuals. Possible mediators for this effect are neurotrophins, which are up-regulated through physical exercise and induce neuronal growth and synaptogenesis in the animal model. Here we cross-sectionally assessed 75 healthy older individuals for levels of physical activity, aerobic fitness, and memory encoding, as well as neurotrophin levels and cerebral gray matter volume. We found that physical activity, but not cardiovascular fitness, was associated with better memory encoding after controlling for age, sex, education, depression, alcohol consumption, and smoking. Higher levels of physical activity were associated with higher levels of the neurotrophin granulocyte colony stimulating factor (G-CSF) and increased cerebral gray matter volume in prefrontal and cingulate cortex as assessed by magnetic resonance voxel-based morphometry. While mediating factors will need to be further elucidated, these findings indicate that even low-level physical activity exerts beneficial effects on memory functions in older individuals. PMID:19853041

  10. Paralimbic Gray Matter Reductions in Incarcerated Adolescent Females with Psychopathic Traits

    PubMed Central

    Cope, Lora M.; Ermer, Elsa; Nyalakanti, Prashanth K.; Calhoun, Vince D.; Kiehl, Kent A.

    2013-01-01

    Psychopathy-related paralimbic and limbic structural brain abnormalities have been implicated in incarcerated adult and adolescent male samples. However, there have been few neuroimaging studies of psychopathic traits in females in general and no studies from incarcerated female youth in particular. Here we present the first study to examine the relationship between brain gray matter volumes and psychopathic traits (assessed using the Psychopathy Checklist-Youth Version [PCL-YV]) in a sample of maximum-security incarcerated female adolescents (N = 39; mean age = 17.6 years). Consistent with male samples, regional gray matter volumes were negatively related to psychopathic traits in female youth offenders in limbic and paralimbic areas, including orbitofrontal cortex, parahippocampal cortex, temporal poles, and left hippocampus. These results provide evidence that psychopathic traits manifest similar neural abnormalities across sex and age. PMID:24682609

  11. Gene by Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction

    SciTech Connect

    Alia-Klein, N.; Alia-Klein, N.; Parvaz, M.A.; Woicik, P.A.; Konova, A.; Maloney, T.; Shumay, E.; Wang, R.; Telang, F.; Biegon, A.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Volkow, N.D.; Goldstein, R.Z.

    2010-12-05

    Chronic cocaine use has been associated with structural deficits in brain regions having dopamine receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. We therefore examined variations in gray matter volume (GMV) as a function of lifetime drug use and the monoamine oxidase A (MAOA) genotype in cocaine use disorders (CUD) and healthy controls.

  12. Alcohol exposure in utero is associated with decreased gray matter volume in neonates.

    PubMed

    Donald, Kirsten A; Fouche, J P; Roos, Annerine; Koen, Nastassja; Howells, Fleur M; Riley, Edward P; Woods, Roger P; Zar, Heather J; Narr, Katherine L; Stein, Dan J

    2016-02-01

    Neuroimaging studies have indicated that prenatal alcohol exposure is associated with alterations in the structure of specific brain regions. However, the temporal specificity of such changes and their behavioral consequences are less known. Here we explore the brain structure of infants with in utero exposure to alcohol shortly after birth. T2 structural MRI images were acquired from 28 alcohol-exposed infants and 45 demographically matched healthy controls at 2-4 weeks of age on a 3T Siemens Allegra system as part of large birth cohort study, the Drakenstein Child Health Study (DCHS). Neonatal neurobehavior was assessed at this visit; early developmental outcome assessed on the Bayley Scales of Infant Development III at 6 months of age. Volumes of gray matter regions were estimated based on the segmentations of the University of North Carolina neonatal atlas. Significantly decreased total gray matter volume was demonstrated for the alcohol-exposed cohort compared to healthy control infants (p < 0.001). Subcortical gray matter regions that were significantly different between groups after correcting for overall gray matter volume included left hippocampus, bilateral amygdala and left thalamus (p < 0.01). These findings persisted even when correcting for infant age, gender, ethnicity and maternal smoking status. Both early neurobehavioral and developmental adverse outcomes at 6 months across multiple domains were significantly associated with regional volumes primarily in the temporal and frontal lobes in infants with prenatal alcohol exposure. Alcohol exposure during the prenatal period has potentially enduring neurobiological consequences for exposed children. These findings suggest the effects of prenatal alcohol exposure on brain growth is present very early in the first year of life, a period during which the most rapid growth and maturation occurs. PMID:26616173

  13. Origins of R2* orientation dependence in gray and white matter.

    PubMed

    Rudko, David A; Klassen, L Martyn; de Chickera, Sonali N; Gati, Joseph S; Dekaban, Gregory A; Menon, Ravi S

    2014-01-01

    Estimates of the apparent transverse relaxation rate (R2*) can be used to quantify important properties of biological tissue. Surprisingly, the mechanism of R2* dependence on tissue orientation is not well understood. The primary goal of this paper was to characterize orientation dependence of R2* in gray and white matter and relate it to independent measurements of two other susceptibility based parameters: the local Larmor frequency shift (fL) and quantitative volume magnetic susceptibility (Δχ). Through this comparative analysis we calculated scaling relations quantifying R2' (reversible contribution to the transverse relaxation rate from local field inhomogeneities) in a voxel given measurements of the local Larmor frequency shift. R2' is a measure of both perturber geometry and density and is related to tissue microstructure. Additionally, two methods (the Generalized Lorentzian model and iterative dipole inversion) for calculating Δχ were compared in gray and white matter. The value of Δχ derived from fitting the Generalized Lorentzian model was then connected to the observed R2* orientation dependence using image-registered optical density measurements from histochemical staining. Our results demonstrate that the R2* and fL of white and cortical gray matter are well described by a sinusoidal dependence on the orientation of the tissue and a linear dependence on the volume fraction of myelin in the tissue. In deep brain gray matter structures, where there is no obvious symmetry axis, R2* and fL have no orientation dependence but retain a linear dependence on tissue iron concentration and hence Δχ. PMID:24374633

  14. APOL1 renal-risk variants associate with reduced cerebral white matter lesion volume and increased gray matter volume.

    PubMed

    Freedman, Barry I; Gadegbeku, Crystal A; Bryan, R Nick; Palmer, Nicholette D; Hicks, Pamela J; Ma, Lijun; Rocco, Michael V; Smith, S Carrie; Xu, Jianzhao; Whitlow, Christopher T; Wagner, Benjamin C; Langefeld, Carl D; Hawfield, Amret T; Bates, Jeffrey T; Lerner, Alan J; Raj, Dominic S; Sadaghiani, Mohammad S; Toto, Robert D; Wright, Jackson T; Bowden, Donald W; Williamson, Jeff D; Sink, Kaycee M; Maldjian, Joseph A; Pajewski, Nicholas M; Divers, Jasmin

    2016-08-01

    To assess apolipoprotein L1 gene (APOL1) renal-risk-variant effects on the brain, magnetic resonance imaging (MRI)-based cerebral volumes and cognitive function were assessed in 517 African American-Diabetes Heart Study (AA-DHS) Memory IN Diabetes (MIND) and 2568 hypertensive African American Systolic Blood Pressure Intervention Trial (SPRINT) participants without diabetes. Within these cohorts, 483 and 197 had cerebral MRI, respectively. AA-DHS participants were characterized as follows: 60.9% female, mean age of 58.6 years, diabetes duration 13.1 years, estimated glomerular filtration rate of 88.2 ml/min/1.73 m(2), and a median spot urine albumin to creatinine ratio of 10.0 mg/g. In additive genetic models adjusting for age, sex, ancestry, scanner, intracranial volume, body mass index, hemoglobin A1c, statins, nephropathy, smoking, hypertension, and cardiovascular disease, APOL1 renal-risk-variants were positively associated with gray matter volume (β = 3.4 × 10(-3)) and negatively associated with white matter lesion volume (β = -0.303) (an indicator of cerebral small vessel disease) and cerebrospinal fluid volume (β= -30707) (all significant), but not with white matter volume or cognitive function. Significant associations corresponding to adjusted effect sizes (β/SE) were observed with gray matter volume (0.16) and white matter lesion volume (-0.208), but not with cerebrospinal fluid volume (-0.251). Meta-analysis results with SPRINT Memory and Cognition in Decreased Hypertension (MIND) participants who had cerebral MRI were confirmatory. Thus, APOL1 renal-risk-variants are associated with larger gray matter volume and lower white matter lesion volume suggesting lower intracranial small vessel disease. PMID:27342958

  15. Insular Gray Matter Volume and Objective Quality of Life in Schizophrenia.

    PubMed

    Uwatoko, Teruhisa; Yoshizumi, Miho; Miyata, Jun; Ubukata, Shiho; Fujiwara, Hironobu; Kawada, Ryosaku; Kubota, Manabu; Sasamoto, Akihiko; Sugihara, Genichi; Aso, Toshihiko; Urayama, Shinichi; Fukuyama, Hidenao; Murai, Toshiya; Takahashi, Hidehiko

    2015-01-01

    Improving quality of life has been recognized as an important outcome for schizophrenia treatment, although the fundamental determinants are not well understood. In this study, we investigated the association between brain structural abnormalities and objective quality of life in schizophrenia patients. Thirty-three schizophrenia patients and 42 age-, sex-, and education-matched healthy participants underwent magnetic resonance imaging. The Quality of Life Scale was used to measure objective quality of life in schizophrenia patients. Voxel-based morphometry was performed to identify regional brain alterations that correlate with Quality of Life Scale score in the patient group. Schizophrenia patients showed gray matter reductions in the frontal, temporal, limbic, and subcortical regions. We then performed voxel-based multiple regression analysis in these regions to identify any correlations between regional gray matter volume and Quality of Life Scale scores. We found that among four subcategories of the scale, the Instrumental Role category score correlated with gray matter volume in the right anterior insula in schizophrenia patients. In addition, this correlation was shown to be mediated by negative symptoms. Our findings suggest that the neural basis of objective quality of life might differ topographically from that of subjective QOL in schizophrenia. PMID:26544607

  16. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis☆

    PubMed Central

    Nakamura, Kunio; Guizard, Nicolas; Fonov, Vladimir S.; Narayanan, Sridar; Collins, D. Louis; Arnold, Douglas L.

    2013-01-01

    Gray matter atrophy provides important insights into neurodegeneration in multiple sclerosis (MS) and can be used as a marker of neuroprotection in clinical trials. Jacobian integration is a method for measuring volume change that uses integration of the local Jacobian determinants of the nonlinear deformation field registering two images, and is a promising tool for measuring gray matter atrophy. Our main objective was to compare the statistical power of the Jacobian integration method to commonly used methods in terms of the sample size required to detect a treatment effect on gray matter atrophy. We used multi-center longitudinal data from relapsing–remitting MS patients and evaluated combinations of cross-sectional and longitudinal pre-processing with SIENAX/FSL, SPM, and FreeSurfer, as well as the Jacobian integration method. The Jacobian integration method outperformed these other commonly used methods, reducing the required sample size by a factor of 4–5. The results demonstrate the advantage of using the Jacobian integration method to assess neuroprotection in MS clinical trials. PMID:24266007

  17. Importance of extended spatial coverage for quantitative susceptibility mapping of iron-rich deep gray matter.

    PubMed

    Elkady, Ahmed M; Sun, Hongfu; Wilman, Alan H

    2016-05-01

    Quantitative Susceptibility Mapping (QSM) is an emerging area of brain research with clear application to brain iron studies in deep gray matter. However, acquisition of standard whole brain QSM can be time-consuming. One means to reduce scan time is to use a focal acquisition restricted only to the regions of interest such as deep gray matter. However, the non-local dipole field necessary for QSM reconstruction extends far beyond the structure of interest. We demonstrate the practical implications of these non-local fields on the choice of brain volume for QSM. In an illustrative numerical simulation and then in human brain experiments, we examine the effect on QSM of volume reduction in each dimension. For the globus pallidus, as an example of iron-rich deep gray matter, we demonstrate that substantial errors can arise even when the field-of-view far exceeds the physical structural boundaries. Thus, QSM reconstruction requires a non-local field-of-view prescription to ensure minimal errors. An axial QSM acquisition, centered on the globus pallidus, should encompass at least 76mm in the superior-inferior direction to conserve susceptibility values from the globus pallidus. This dimension exceeds the physical coronal extent of this structure by at least five-fold. As QSM sees wider use in the neuroscience community, its unique requirement for an extended field-of-view needs to be considered. PMID:26721523

  18. Longitudinal development of cortical and subcortical gray matter from birth to 2 years.

    PubMed

    Gilmore, John H; Shi, Feng; Woolson, Sandra L; Knickmeyer, Rebecca C; Short, Sarah J; Lin, Weili; Zhu, Hongtu; Hamer, Robert M; Styner, Martin; Shen, Dinggang

    2012-11-01

    Very little is known about cortical development in the first years of life, a time of rapid cognitive development and risk for neurodevelopmental disorders. We studied regional cortical and subcortical gray matter volume growth in a group of 72 children who underwent magnetic resonance scanning after birth and at ages 1 and 2 years using a novel longitudinal registration/parcellation approach. Overall, cortical gray matter volumes increased substantially (106%) in the first year of life and less so in the second year (18%). We found marked regional differences in developmental rates, with primary motor and sensory cortices growing slower in the first year of life with association cortices growing more rapidly. In the second year of life, primary sensory regions continued to grow more slowly, while frontal and parietal regions developed relatively more quickly. The hippocampus grew less than other subcortical structures such as the amygdala and thalamus in the first year of life. It is likely that these patterns of regional gray matter growth reflect maturation and development of underlying function, as they are consistent with cognitive and functional development in the first years of life. PMID:22109543

  19. Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-09-01

    Emotional Intelligence (EI) is the ability to monitor one's own and others' emotions and the ability to use the gathered information to guide one's thinking and action. EI is thought to be important for social life making it a popular subject of research. However, despite the existence of previous functional imaging studies on EI, the relationship between regional gray matter morphology and EI has never been investigated. We used voxel-based morphometry (VBM) and a questionnaire (Emotional Intelligence Scale) to measure EI to identify the gray matter correlates of each factor of individual EI (Intrapersonal factor, Interpersonal factor, Situation Management factor). We found significant negative relationships between the Intrapersonal factor and regional gray matter density (rGMD) (1-a) in an anatomical cluster that included the right anterior insula, (1-b) in the right cerebellum, (1-c) in an anatomical cluster that extends from the cuneus to the precuneus, (1-d) and in an anatomical cluster that extends from the medial prefrontal cortex to the left lateral fronto-polar cortex. We also found significant positive correlations between the Interpersonal factor and rGMD in the right superior temporal sulcus, and significant negative correlations between the Situation Management factor and rGMD in the ventromedial prefrontal cortex. These findings suggest that each factor of EI in healthy young people is related to the specific brain regions known to be involved in the networks of social cognition and self-related recognition, and in the somatic marker circuitry. PMID:20740644

  20. Insular Gray Matter Volume and Objective Quality of Life in Schizophrenia

    PubMed Central

    Uwatoko, Teruhisa; Yoshizumi, Miho; Miyata, Jun; Ubukata, Shiho; Fujiwara, Hironobu; Kawada, Ryosaku; Kubota, Manabu; Sasamoto, Akihiko; Sugihara, Genichi; Aso, Toshihiko; Urayama, Shinichi; Fukuyama, Hidenao; Murai, Toshiya; Takahashi, Hidehiko

    2015-01-01

    Improving quality of life has been recognized as an important outcome for schizophrenia treatment, although the fundamental determinants are not well understood. In this study, we investigated the association between brain structural abnormalities and objective quality of life in schizophrenia patients. Thirty-three schizophrenia patients and 42 age-, sex-, and education-matched healthy participants underwent magnetic resonance imaging. The Quality of Life Scale was used to measure objective quality of life in schizophrenia patients. Voxel-based morphometry was performed to identify regional brain alterations that correlate with Quality of Life Scale score in the patient group. Schizophrenia patients showed gray matter reductions in the frontal, temporal, limbic, and subcortical regions. We then performed voxel-based multiple regression analysis in these regions to identify any correlations between regional gray matter volume and Quality of Life Scale scores. We found that among four subcategories of the scale, the Instrumental Role category score correlated with gray matter volume in the right anterior insula in schizophrenia patients. In addition, this correlation was shown to be mediated by negative symptoms. Our findings suggest that the neural basis of objective quality of life might differ topographically from that of subjective QOL in schizophrenia. PMID:26544607

  1. DTI and VBM reveal white matter changes without associated gray matter changes in patients with idiopathic restless legs syndrome

    PubMed Central

    Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja

    2015-01-01

    Background and Purpose We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Methods Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Results Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. Conclusions We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS. PMID:26442748

  2. Detection of microscopic anisotropy in gray matter and in a novel tissue phantom using double Pulsed Gradient Spin Echo MR.

    PubMed

    Komlosh, M E; Horkay, F; Freidlin, R Z; Nevo, U; Assaf, Y; Basser, P J

    2007-11-01

    A double Pulsed Gradient Spin Echo (d-PGSE) MR experiment was used to measure and assess the degree of local diffusion anisotropy in brain gray matter, and in a novel "gray matter" phantom that consists of randomly oriented tubes filled with water. In both samples, isotropic diffusion was observed at a macroscopic scale while anisotropic diffusion was observed at a microscopic scale, however, the nature of the resulting echo attenuation profiles were qualitatively different. Gray matter, which contains multiple cell types and fibers, exhibits a more complicated echo attenuation profile than the phantom. Since microscopic anisotropy was observed in both samples in the low q regime comparable to that achievable in clinical scanner, it may offer a new potential contrast mechanism for characterizing gray matter microstructure in medical and biological applications. PMID:17869147

  3. A Large Scale (N=400) Investigation of Gray Matter Differences in Schizophrenia Using Optimized Voxel-based Morphometry

    PubMed Central

    Meda, Shashwath A.; Giuliani, Nicole R.; Calhoun, Vince D.; Jagannathan, Kanchana; Schretlen, David J.; Pulver, Anne; Cascella, Nicola; Keshavan, Matcheri; Kates, Wendy; Buchanan, Robert; Sharma, Tonmoy; Pearlson, Godfrey D.

    2008-01-01

    Background Many studies have employed voxel-based morphometry (VBM) of MRI images as an automated method of investigating cortical gray matter differences in schizophrenia. However, results from these studies vary widely, likely due to different methodological or statistical approaches. Objective To use VBM to investigate gray matter differences in schizophrenia in a sample significantly larger than any published to date, and to increase statistical power sufficiently to reveal differences missed in smaller analyses. Methods Magnetic resonance whole brain images were acquired from four geographic sites, all using the same model 1.5T scanner and software version, and combined to form a sample of 200 patients with both first episode and chronic schizophrenia and 200 healthy controls, matched for age, gender and scanner location. Gray matter concentration was assessed and compared using optimized VBM. Results Compared to the healthy controls, schizophrenia patients showed significantly less gray matter concentration in multiple cortical and subcortical regions, some previously unreported. Overall, we found lower concentrations of gray matter in regions identified in prior studies, most of which reported only subsets of the affected areas. Conclusions Gray matter differences in schizophrenia are most comprehensively elucidated using a large, diverse and representative sample. PMID:18378428

  4. Association of regional gray matter volumes in the brain with disruptive behavior disorders in male and female children

    PubMed Central

    Michalska, Kalina J.; Decety, Jean; Zeffiro, Thomas A.; Lahey, Benjamin B.

    2014-01-01

    Because the disruptive behavior disorders are highly impairing conditions, it is important to determine if structural variations in brain are associated early in life with these problems among children. Structural MRI data were acquired from 111 9–11 year olds (58 girls and 53 boys), 43 who met diagnostic criteria for oppositional defiant disorder and/or conduct disorder and 68 healthy controls. Voxel-based morphometry was used to examine associations of behavioral measures with gray matter volumes in whole-brain analyses. Unlike previous studies, variation in gray matter volume was not found to be associated with a disruptive behavior disorder diagnosis in any brain region at p < .05 with FWE correction. Nonetheless, an inverse nonlinear association of the number of conduct disorder (CD) symptoms with gray matter volume along the left superior temporal sulcus was significant in the full sample (p < .05 with FWE correction), with a trend in the right hemisphere (p < 0.001 uncorrected). There also was a trend toward a stronger association of the number of CD symptoms with gray matter volume along the left superior temporal sulcus in girls than boys. The present findings did not replicate previous findings of reduced gray matter volumes in the anterior insula, amygdala, and frontal cortex in youth with CD, but are consistent with previous findings of reduced gray matter volumes in temporal regions, particularly in girls. PMID:25610787

  5. The Relationship of Serum Macrophage Inhibitory Cytokine – 1 Levels with Gray Matter Volumes in Community-Dwelling Older Individuals

    PubMed Central

    Jiang, Jiyang; Wen, Wei; Brown, David A.; Crawford, John; Thalamuthu, Anbupalam; Smith, Evelyn; Breit, Samuel N.; Liu, Tao; Zhu, Wanlin; Brodaty, Henry; Baune, Bernhard T.; Trollor, Julian N.; Sachdev, Perminder S.

    2015-01-01

    Using circulating inflammatory markers and magnetic resonance imaging (MRI), recent studies have associated inflammation with brain volumetric measures. Macrophage Inhibitory Cytokine–1 (MIC-1/GDF15) is a divergent transforming growth factor – beta (TGF-β) superfamily cytokine. To uncover the underlying mechanisms of the previous finding of a negative association between MIC-1/GDF15 serum levels and cognition, the present study aimed to examine the relationship of circulating MIC-1/GDF15 levels with human brain gray matter (GM) volumes, in a community-dwelling sample aged 70–90 years over two years (Wave 1: n = 506, Wave 2: n = 327), of which the age-related brain atrophy had been previously well defined. T1-weighted MRI scans were obtained at both waves and analyzed using the FMRIB Software Library and FreeSurfer. The results showed significantly negative associations between MIC-1/GDF15 serum levels and both subcortical and cortical GM volumes. GM volumes of the whole brain, cortex, temporal lobe, thalamus and accumbens showed significant mediating effects on the associations between MIC-1/GDF15 serum levels and global cognition scores. Increases in MIC-1/GDF15 serum levels were associated with decreases in cortical and subcortical GM volume over two years. In conclusion, MIC-1/GDF15 serum levels were inversely associated with GM volumes both cross-sectionally and longitudinally. PMID:25867953

  6. Effects of the BDNF Val66Met Polymorphism on Gray Matter Volume in Typically Developing Children and Adolescents

    PubMed Central

    Hashimoto, Teruo; Fukui, Kento; Takeuchi, Hikaru; Yokota, Susumu; Kikuchi, Yoshie; Tomita, Hiroaki; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    The Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) is associated with psychiatric disorders and regional gray matter volume (rGMV) in adults. However, the relationship between BDNF and rGMV in children has not been clarified. In this 3-year cross-sectional/longitudinal (2 time points) study, we investigated the effects of BDNF genotypes on rGMV in 185 healthy Japanese children aged 5.7–18.4 using magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) analyses. We found that the volume of the right cuneus in Met homozygotes (Met/Met) was greater than in Val homozygotes (Val/Val) in both exams, and the left insula and left ventromedial prefrontal cortex volumes were greater in Val homozygotes versus Met homozygotes in Exam l. In addition, Met homozygous subjects exhibited higher processing speed in intelligence indices than Val homozygotes and Val/Met heterozygotes at both time points. Longitudinal analysis showed that the left temporoparietal junction volume of Val/Met heterozygotes increased more substantially over the 3-year study period than in Val homozygotes, and age-related changes were observed for the Val/Met genotype. Our findings suggest that the presence of 2 Met alleles may have a positive effect on rGMV at the developmental stages analyzed in this study. PMID:26830347

  7. Effects of the BDNF Val66Met Polymorphism on Gray Matter Volume in Typically Developing Children and Adolescents.

    PubMed

    Hashimoto, Teruo; Fukui, Kento; Takeuchi, Hikaru; Yokota, Susumu; Kikuchi, Yoshie; Tomita, Hiroaki; Taki, Yasuyuki; Kawashima, Ryuta

    2016-04-01

    The Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) is associated with psychiatric disorders and regional gray matter volume (rGMV) in adults. However, the relationship between BDNF and rGMV in children has not been clarified. In this 3-year cross-sectional/longitudinal (2 time points) study, we investigated the effects of BDNF genotypes on rGMV in 185 healthy Japanese children aged 5.7-18.4 using magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) analyses. We found that the volume of the right cuneus in Met homozygotes (Met/Met) was greater than in Val homozygotes (Val/Val) in both exams, and the left insula and left ventromedial prefrontal cortex volumes were greater in Val homozygotes versus Met homozygotes in Exam l. In addition, Met homozygous subjects exhibited higher processing speed in intelligence indices than Val homozygotes and Val/Met heterozygotes at both time points. Longitudinal analysis showed that the left temporoparietal junction volume of Val/Met heterozygotes increased more substantially over the 3-year study period than in Val homozygotes, and age-related changes were observed for the Val/Met genotype. Our findings suggest that the presence of 2 Met alleles may have a positive effect on rGMV at the developmental stages analyzed in this study. PMID:26830347

  8. Frontobasal gray matter loss is associated with the TREM2 p.R47H variant.

    PubMed

    Luis, Elkin O; Ortega-Cubero, Sara; Lamet, Isabel; Razquin, Cristina; Cruchaga, Carlos; Benitez, Bruno A; Lorenzo, Elena; Irigoyen, Jaione; Pastor, Maria A; Pastor, Pau

    2014-12-01

    A rare heterozygous TREM2 variant p.R47H (rs75932628) has been associated with an increased risk for Alzheimer's disease (AD). We aimed to investigate the clinical presentation, neuropsychological profile, and regional pattern of gray matter and white matter loss associated with the TREM2 variant p.R47H, and to establish which regions best differentiate p.R47H carriers from noncarriers in 2 sample sets (Spanish and Alzheimer's Disease Neuroimaging Initiative, ADNI1). This was a cross-sectional study including a total number of 16 TREM2 p.R47H carriers diagnosed with AD or mild cognitive impairment, 75 AD p.R47H noncarriers and 75 cognitively intact TREM2 p.R47H noncarriers. Spanish AD TREM2 p.R47H carriers showed apraxia (9 of 9) and psychiatric symptoms such as personality changes, anxiety, paranoia, or fears more frequently than in AD noncarriers (corrected p = 0.039). For gray matter and white matter volumetric brain magnetic resonance imaging voxelwise analyses, we used statistical parametric mapping (SPM8) based on the General Linear Model. We used 3 different design matrices with a full factorial design. Voxel-based morphometry analyses were performed separately in the 2 sample sets. The absence of interset statistical differences allowed us to perform joint and conjunction analyses. Independent voxel-based morphometry analysis of the Spanish set as well as conjunction and joint analyses revealed substantial gray matter loss in orbitofrontal cortex and anterior cingulate cortex with relative preservation of parietal lobes in AD and/or mild cognitive impairment TREM2 p.R47H carriers, suggesting that TREM2 p.R47H variant is associated with certain clinical and neuroimaging AD features in addition to the increased TREM2 p.R47H atrophy in temporal lobes as described previously. The high frequency of pathologic behavioral symptoms, combined with a preferential frontobasal gray matter cortical loss, suggests that frontobasal and temporal regions could be more

  9. A structural equation modeling investigation of age-related variance in executive function and DTI measured white matter damage.

    PubMed

    Charlton, R A; Landau, S; Schiavone, F; Barrick, T R; Clark, C A; Markus, H S; Morris, R G

    2008-10-01

    Cognitive changes in normal aging have been explained by the frontal-executive hypothesis, but the assumptions made by this hypothesis concerning the neurobiological causes are still a matter of debate. Executive functions (EF) may activate neural networks that include disparate grey matter regions, and rely on the integrity of white matter connections. In 118 adults (50-90 years old) from the GENIE study, white matter integrity was measured using diffusion tensor imaging, and information processing speed, fluid intelligence and EF were assessed. A theory-driven structural equation model was developed to test associations between variables. The model was revised, removing non-significant paths. The adjusted model explained well the covariance in our data; and suggested that the reduction in white matter integrity associated with age directly affected only working memory. Fluid intelligence was mediated by all measured cognitive variables. The results suggest that white matter integrity may be particularly important for abilities activating complex neural networks, as occurs in working memory. Integration of the information processing speed and frontal-executive hypotheses may provide important information regarding common, unique, and mediating factors in cognitive aging. PMID:17451845

  10. The Role of White Matter Hyperintensities and Medial Temporal Lobe Atrophy in Age-Related Executive Dysfunctioning

    ERIC Educational Resources Information Center

    Oosterman, Joukje M.; Vogels, Raymond L. C.; van Harten, Barbera; Gouw, Alida A.; Scheltens, Philip; Poggesi, Anna; Weinstein, Henry C.; Scherder, Erik J. A.

    2008-01-01

    Various studies support an association between white matter hyperintensities (WMH) and deficits in executive function in nondemented ageing. Studies examining executive functions and WMH have generally adopted executive function as a phrase including various functions such as flexibility, inhibition, and working memory. However, these functions…

  11. Prefrontal Gray Matter and Motivation for Treatment in Cocaine-Dependent Individuals with and without Personality Disorders

    PubMed Central

    Moreno-López, Laura; Albein-Urios, Natalia; Martinez-Gonzalez, José Miguel; Soriano-Mas, Carles; Verdejo-García, Antonio

    2014-01-01

    Addiction treatment is a long-term goal and therefore prefrontal–striatal regions regulating goal-directed behavior are to be associated with individual differences on treatment motivation. We aimed at examining the association between gray matter volumes in prefrontal cortices and striatum and readiness to change at treatment onset in cocaine users with and without personality disorders. Participants included 17 cocaine users without psychiatric comorbidities, 17 cocaine users with Cluster B disorders, and 12 cocaine users with Cluster C disorders. They completed the University of Rhode Island Change Assessment Scale, which measures four stages of treatment change (precontemplation, contemplation, action, and maintenance) and overall readiness to change, and were scanned in a 3 T MRI scanner. We defined three regions of interest (ROIs): the ventromedial prefrontal cortex (including medial orbitofrontal cortex and subgenual and rostral anterior cingulate cortex), the dorsomedial prefrontal cortex (i.e., superior medial frontal cortex), and the neostriatum (caudate and putamen). We found that readiness to change correlated with different aspects of ventromedial prefrontal gray matter as a function of diagnosis. In cocaine users with Cluster C comorbidities, readiness to change positively correlated with gyrus rectus gray matter, whereas in cocaine users without comorbidities it negatively correlated with rostral anterior cingulate cortex gray matter. Moreover, maintenance scores positively correlated with dorsomedial prefrontal gray matter in cocaine users with Cluster C comorbidities, but negatively correlated with this region in cocaine users with Cluster B and cocaine users without comorbidities. Maintenance scores also negatively correlated with dorsal striatum gray matter in cocaine users with Cluster C comorbidities. We conclude that the link between prefrontal–striatal gray matter and treatment motivation is modulated by co-existence of personality

  12. Gray Matter Loss and Related Functional Connectivity Alterations in A Chinese Family With Benign Adult Familial Myoclonic Epilepsy

    PubMed Central

    Zeng, Ling-Li; Long, Lili; Shen, Hui; Fang, Peng; Song, Yanmin; Zhang, Linlin; Xu, Lin; Gong, Jian; Zhang, Yunci; Zhang, Yong; Xiao, Bo; Hu, Dewen

    2015-01-01

    Abstract Benign adult familial myoclonic epilepsy (BAFME) is a non-progressive monogenic epilepsy syndrome. So far, the structural and functional brain reorganizations in BAFME remain uncharacterized. This study aims to investigate gray matter atrophy and related functional connectivity alterations in patients with BAFME using magnetic resonance imaging (MRI). Eleven BAFME patients from a Chinese pedigree and 15 matched healthy controls were enrolled in the study. Optimized voxel-based morphometric and resting-state functional MRI approaches were performed to measure gray matter atrophy and related functional connectivity, respectively. The Trail-Making Test-part A and part B, Digit Symbol Test (DST), and Verbal Fluency Test (VFT) were carried out to evaluate attention and executive functions. The BAFME patients exhibited significant gray matter loss in the right hippocampus, right temporal pole, left orbitofrontal cortex, and left dorsolateral prefrontal cortex. With these regions selected as seeds, the voxel-wise functional connectivity analysis revealed that the right hippocampus showed significantly enhanced connectivity with the right inferior parietal lobule, bilateral middle cingulate cortex, left precuneus, and left precentral gyrus. Moreover, the BAFME patients showed significant lower scores in DST and VFT tests compared with the healthy controls. The gray matter densities of the right hippocampus, right temporal pole, and left orbitofrontal cortex were significantly positively correlated with the DST scores. In addition, the gray matter density of the right temporal pole was significantly positively correlated with the VFT scores, and the gray matter density of the right hippocampus was significantly negatively correlated with the duration of illness in the patients. The current study demonstrates gray matter loss and related functional connectivity alterations in the BAFME patients, perhaps underlying deficits in attention and executive functions in the

  13. Impulsivity relates to striatal gray matter volumes in humans: evidence from a delay discounting paradigm

    PubMed Central

    Tschernegg, Melanie; Pletzer, Belinda; Schwartenbeck, Philipp; Ludersdorfer, Philipp; Hoffmann, Uta; Kronbichler, Martin

    2015-01-01

    Time-stable personality traits, such as impulsivity and its relationship with functional and structural brain alterations, have gained much attention in the recent literature. Evidence from functional neuroimaging data implies an association between impulsivity and cortical as well as subcortical areas of the reward system. Discounting future rewards during impulsive decisions can be related to activation in the orbitofrontal cortex and striatum. Cortical structural changes in prefrontal regions have been found for introspective impulsivity measures. The present study focuses on brain regions associated with delay discounting to investigate structural manifestations of trait impulsivity. To test this, seventy subjects underwent structural magnetic resonance imaging (MRI) followed by a behavioral delay discounting task outside of the scanner to measure impulsivity with questions like: “Would you like to have 3€ immediately or 10€ in 5 days?”. The amount of smaller-but-sooner decisions was calculated and used as a measure of behavioral impulsivity. Furthermore, we estimated subject’s individual delay discounting parameter K reflecting the tendency to discount future rewards. Behaviorally, we found strong evidence in favor of a discounting utility model compared to a standard hyperbolic model of choice valuation. Neuronally, we focused on cortical and subcortical brain structure and investigated the association of behavioral impulsivity with delay discounting tendencies and gray matter volume. Voxel-based morphometric analyses showed positive correlations between delay discounting and gray matter volume in the striatum. Additional analyses using Freesurfer provided evidence for a positive correlation between delay discounting and gray matter volume of the caudate. Taken together, our study provides strong evidence for a structural manifestation of time-stable trait impulsivity in the human brain. PMID:26190993

  14. Gene x Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction

    SciTech Connect

    Alia-Klein, N.; Alia-Klein, N.; Parvaz, M.A.; Woicik, P.A.; Konova, A.B.; Maloney, T.; Shumay, E.; Wang, R.; Telang, F.; Biegon, A.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Volkow, N.D.; Goldstein, R.Z.

    2011-03-07

    Long-term cocaine use has been associated with structural deficits in brain regions having dopamine-receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. The objective is to examine variations in gray matter volume (GMV) as a function of lifetime drug use and the genotype of the monoamine oxidase A gene, MAOA, in men with cocaine use disorders (CUD) and healthy male controls. Forty individuals with CUD and 42 controls who underwent magnetic resonance imaging to assess GMV and were genotyped for the MAOA polymorphism (categorized as high- and low-repeat alleles). The impact of cocaine addiction on GMV, tested by (1) comparing the CUD group with controls, (2) testing diagnosis x MAOA interactions, and (3) correlating GMV with lifetime cocaine, alcohol, and cigarette smoking, and testing their unique contribution to GMV beyond other factors. The results are: (1) Individuals with CUD had reductions in GMV in the orbitofrontal, dorsolateral prefrontal, and temporal cortex and the hippocampus compared with controls; (2) The orbitofrontal cortex reductions were uniquely driven by CUD with low- MAOA genotype and by lifetime cocaine use; and (3) The GMV in the dorsolateral prefrontal cortex and hippocampus was driven by lifetime alcohol use beyond the genotype and other pertinent variables. Long-term cocaine users with the low-repeat MAOA allele have enhanced sensitivity to gray matter loss, specifically in the orbitofrontal cortex, indicating that this genotype may exacerbate the deleterious effects of cocaine in the brain. In addition, long-term alcohol use is a major contributor to gray matter loss in the dorsolateral prefrontal cortex and hippocampus, and is likely to further impair executive function and learning in cocaine addiction.

  15. Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.

  16. Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring

    PubMed Central

    Parvaz, Muhammad A.; Maloney, Thomas; Moeller, Scott J.; Malaker, Pias; Konova, Anna B.; Alia-Klein, Nelly; Goldstein, Rita Z.

    2014-01-01

    Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC) in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume) influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs) to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component) of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A) acquiring the same data from individuals with cocaine use disorder (CUD), known to have deficits in executive function including behavioral monitoring; and (B) acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females) healthy individuals and 25 (42.7 ± 5.9 years; 6 females) individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300) in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC–N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations. PMID:24918068

  17. APOE2 Is Associated with Spatial Navigational Strategies and Increased Gray Matter in the Hippocampus.

    PubMed

    Konishi, Kyoko; Bhat, Venkat; Banner, Harrison; Poirier, Judes; Joober, Ridha; Bohbot, Véronique D

    2016-01-01

    The Apolipoprotein E (APOE) gene has a strong association with Alzheimer's disease (AD). The ε4 allele is a well-documented genetic risk factor of AD. In contrast, the ε2 allele of the APOE gene is known to be protective against AD. Much of the focus on the APOE gene has been on the ε4 allele in both young and older adults and few studies have looked into the cognitive and brain structure correlates of the ε2 allele, especially in young adults. In the current study, we investigated the relationship between APOE genotype, navigation behavior, and hippocampal gray matter in healthy young adults. One-hundred and twenty-four healthy young adults were genotyped and tested on the 4on8 virtual maze, a task that allows for the assessment of navigation strategy. The task assesses the spontaneous use of either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy. Of the 124 participants, 37 underwent structural magnetic resonance imaging (MRI). We found that ε2 carriers use a hippocampus-dependent spatial strategy to a greater extent than ε3 homozygous individuals and ε4 carriers. We also found that APOE ε2 allele carriers have more gray matter in the hippocampus compared to ε3 homozygous individuals and ε4 carriers. Our findings suggest that the protective effects of the ε2 allele may, in part, be expressed through increased hippocampus gray matter and increased use of hippocampus-dependent spatial strategies. The current article demonstrates the relationship between brain structure, navigation behavior, and APOE genotypes in healthy young adults. PMID:27468260

  18. The Relation between Gray Matter Morphology and Divergent Thinking in Adolescents and Young Adults

    PubMed Central

    Zanolie, Kiki; Kleibeuker, Sietske W.; Crone, Eveline A.

    2014-01-01

    Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15–17 and 20 young adults aged 25–30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted. PMID:25514366

  19. The trajectory of gray matter development in Broca's area is abnormal in people who stutter.

    PubMed

    Beal, Deryk S; Lerch, Jason P; Cameron, Brodie; Henderson, Rhaeling; Gracco, Vincent L; De Nil, Luc F

    2015-01-01

    The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca's area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter) ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in people who stutter. PMID

  20. APOE2 Is Associated with Spatial Navigational Strategies and Increased Gray Matter in the Hippocampus

    PubMed Central

    Konishi, Kyoko; Bhat, Venkat; Banner, Harrison; Poirier, Judes; Joober, Ridha; Bohbot, Véronique D.

    2016-01-01

    The Apolipoprotein E (APOE) gene has a strong association with Alzheimer’s disease (AD). The ε4 allele is a well-documented genetic risk factor of AD. In contrast, the ε2 allele of the APOE gene is known to be protective against AD. Much of the focus on the APOE gene has been on the ε4 allele in both young and older adults and few studies have looked into the cognitive and brain structure correlates of the ε2 allele, especially in young adults. In the current study, we investigated the relationship between APOE genotype, navigation behavior, and hippocampal gray matter in healthy young adults. One-hundred and twenty-four healthy young adults were genotyped and tested on the 4on8 virtual maze, a task that allows for the assessment of navigation strategy. The task assesses the spontaneous use of either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy. Of the 124 participants, 37 underwent structural magnetic resonance imaging (MRI). We found that ε2 carriers use a hippocampus-dependent spatial strategy to a greater extent than ε3 homozygous individuals and ε4 carriers. We also found that APOE ε2 allele carriers have more gray matter in the hippocampus compared to ε3 homozygous individuals and ε4 carriers. Our findings suggest that the protective effects of the ε2 allele may, in part, be expressed through increased hippocampus gray matter and increased use of hippocampus-dependent spatial strategies. The current article demonstrates the relationship between brain structure, navigation behavior, and APOE genotypes in healthy young adults. PMID:27468260

  1. The relation between gray matter morphology and divergent thinking in adolescents and young adults.

    PubMed

    Cousijn, Janna; Koolschijn, P Cédric M P; Zanolie, Kiki; Kleibeuker, Sietske W; Crone, Eveline A

    2014-01-01

    Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15-17 and 20 young adults aged 25-30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted. PMID:25514366

  2. Gray matter abnormalities associated with betel quid dependence: a voxel-based morphometry study

    PubMed Central

    Chen, Feng; Zhong, Yuan; Zhang, Zhiqiang; Xu, Qiang; Liu, Tao; Pan, Mengjie; Li, Jianjun; Lu, Guangming

    2015-01-01

    Background: Betel quid dependence (BQD) patients have a cluster of cognitive, behavioral, and physiological symptoms which are associated with structural abnormalities in brain gray matter. However, so far there have neither been brain structural studies investigating the alterations related to BQD, nor studies assessing the brain structural changes with clinical indexes. Methods: 65 subjects were recruited including 33 ‘pure’ BQD patients and another 32 gender and age matched in the control group. T1 structural voxel-based morphometry (VBM) was performed to investigate the gray matter (GM) volume alterations. In BQD patients, Pearson correlation analysis was performed to investigate the association between GM segmentations and clinical indexes, including BQD scores, illness duration, SAS and SDS. Results: Compared with that of the control group, the VBM of GM in BQD patients exhibited a significant decrease in volume (All P values > 0.05, AlphaSim correction) in the midbrain, right anterior cingulate cortex (rACC), bilateral dorsolateral prefrontal cortex (dlPFC) and right superior temporal gyrus (STG), and also there was an increased volume in right hippocampal and right precuneus. GM volumes of the left DLPFC and right rACC showed negative correlation with the duration of BQD, meanwhile, midbrain volumes were negative correlating with BQD scores (All P values > 0.05). Conclusions: Our findings suggested that brain structural changes were present in BQD patients, and those may be a neurobiological basis for BQD patients. These findings may provide a new insight into the pathogenesis of BQD. Also, VBM is an effective tool for in vivo investigation of gray matter alterations in patients with BQD. PMID:25901203

  3. Effect of glutamate transporter EAAT2 gene variants and gray matter deficits on working memory in schizophrenia.

    PubMed

    Poletti, S; Radaelli, D; Bosia, M; Buonocore, M; Pirovano, A; Lorenzi, C; Cavallaro, R; Smeraldi, E; Benedetti, F

    2014-05-01

    Glutamate is the major excitatory neurotransmitter in the brain, with up to 40% of all synapses being glutamatergic. An altered glutamatergic transmission could play a critical role in working memory deficts observed in schizophrenia and could underline progressive changes such as grey matter loss throughout the brain. The aim of the study was to investigate if gray matter volume and working memory could be modulated by a genetic polymorphism related to glutamatergic function. Fifty schizophrenia patients underwent magnetic resonance and working memory testing outside of the scanner and were genotyped for rs4354668 EAAT2 polymorphism. Carriers of the G allele had lower gray matter volumes than T/T homozygote and worse working memory performance. Poor working memory performance was associated with gray matter reduction. Differences between the three genotypes are more relevant among patients showing poor performance at the 2-back task. Since glutamate abnormalities are known to be involved in excitotoxic processes, the decrease in cortical thickness observed in schizophrenia patients could be linked to an excess of extracellular glutamate. The differential effect of EAAT2 observed between good and poor performers suggests that the effect of EEAT2 on gray matter might reveal in the presence of a pathological process affecting gray matter. PMID:24076156

  4. Overlapping decline in orbitofrontal gray matter volume related to cocaine use and body mass index.

    PubMed

    Smith, Dana G; Jones, P Simon; Williams, Guy B; Bullmore, Edward T; Robbins, Trevor W; Ersche, Karen D

    2015-01-01

    Loss of control over hedonically motivated actions is a defining component of impulse control disorders, such as drug dependence and the proposed 'food addiction' model of obesity. Devolution from goal-directed to compulsively maintained behaviors is partially attributed to abnormalities in the orbitofrontal cortex, an area critical in reward valuation. In the current study, overlapping reductions in orbitofrontal gray matter volume relating to body mass index were seen in healthy control and cocaine-dependent individuals, as well as in relation to duration of cocaine abuse, providing support for a shared neuropathology between the two conditions potentially related to dysfunctional reward-seeking behavior. PMID:23927455

  5. Age-Related Modifications of Diffusion Tensor Imaging Parameters and White Matter Hyperintensities as Inter-Dependent Processes

    PubMed Central

    Pelletier, Amandine; Periot, Olivier; Dilharreguy, Bixente; Hiba, Bassem; Bordessoules, Martine; Chanraud, Sandra; Pérès, Karine; Amieva, Hélène; Dartigues, Jean-François; Allard, Michèle; Catheline, Gwénaëlle

    2016-01-01

    Microstructural changes of White Matter (WM) associated with aging have been widely described through Diffusion Tensor Imaging (DTI) parameters. In parallel, White Matter Hyperintensities (WMH) as observed on a T2-weighted MRI are extremely common in older individuals. However, few studies have investigated both phenomena conjointly. The present study investigates aging effects on DTI parameters in absence and in presence of WMH. Diffusion maps were constructed based on 21 directions DTI scans of young adults (n = 19, mean age = 33 SD = 7.4) and two age-matched groups of older adults, one presenting low-level-WMH (n = 20, mean age = 78, SD = 3.2) and one presenting high-level-WMH (n = 20, mean age = 79, SD = 5.4). Older subjects with low-level-WMH presented modifications of DTI parameters in comparison to younger subjects, fitting with the DTI pattern classically described in aging, i.e., Fractional Anisotropy (FA) decrease/Radial Diffusivity (RD) increase. Furthermore, older subjects with high-level-WMH showed higher DTI modifications in Normal Appearing White Matter (NAWM) in comparison to those with low-level-WMH. Finally, in older subjects with high-level-WMH, FA, and RD values of NAWM were associated with to WMH burden. Therefore, our findings suggest that DTI modifications and the presence of WMH would be two inter-dependent processes but occurring within different temporal windows. DTI changes would reflect the early phase of white matter changes and WMH would appear as a consequence of those changes. PMID:26834625

  6. Gray matter blood flow and volume are reduced in association with white matter hyperintensity lesion burden: a cross-sectional MRI study

    PubMed Central

    Crane, David E.; Black, Sandra E.; Ganda, Anoop; Mikulis, David J.; Nestor, Sean M.; Donahue, Manus J.; MacIntosh, Bradley J.

    2015-01-01

    Cerebral White Matter Hyperintensities (WMH) are associated with vascular risk factors and age-related cognitive decline. WMH have primarily been associated with global white matter and gray matter (GM) changes and less is known about regional effects in GM. The purpose of this study was to test for an association between WMH and two GM imaging measures: cerebral blood flow (CBF) and voxel-based morphometry (VBM). Twenty-six elderly adults with mild to severe WMH participated in this cross-sectional 3 Tesla magnetic resonance imaging (MRI) study. MRI measures of GM CBF and VBM were derived from arterial spin labeling (ASL) and T1-weighted images, respectively. Fluid-attenuated inversion recovery (FLAIR) images were used to quantify the WMH lesion burden (mL). GM CBF and VBM data were used as dependent variables. WMH lesion burden, age and sex were used in a regression model. Visual rating of WMH with the Fazekas method was used to compare the WMH lesion volume regression approach. WMH volume was normally distributed for this group (mean volume of 22.7 mL, range: 2.2–70.6 mL). CBF analysis revealed negative associations between WMH volume and CBF in the left anterior putamen, subcallosal, accumbens, anterior caudate, orbital frontal, anterior insula, and frontal pole (corrected p < 0.05). VBM analysis revealed negative associations between WMH and GM volume in lingual gyrus, intracalcarine, and bilateral hippocampus (corrected p < 0.05). The visual rating scale corroborated the regression findings (corrected p < 0.05). WMH lesion volume was associated with intra-group GM CBF and structural differences in this cohort of WMH adults with mild to severe lesion burden. PMID:26217223

  7. Gray matter blood flow and volume are reduced in association with white matter hyperintensity lesion burden: a cross-sectional MRI study.

    PubMed

    Crane, David E; Black, Sandra E; Ganda, Anoop; Mikulis, David J; Nestor, Sean M; Donahue, Manus J; MacIntosh, Bradley J

    2015-01-01

    Cerebral White Matter Hyperintensities (WMH) are associated with vascular risk factors and age-related cognitive decline. WMH have primarily been associated with global white matter and gray matter (GM) changes and less is known about regional effects in GM. The purpose of this study was to test for an association between WMH and two GM imaging measures: cerebral blood flow (CBF) and voxel-based morphometry (VBM). Twenty-six elderly adults with mild to severe WMH participated in this cross-sectional 3 Tesla magnetic resonance imaging (MRI) study. MRI measures of GM CBF and VBM were derived from arterial spin labeling (ASL) and T1-weighted images, respectively. Fluid-attenuated inversion recovery (FLAIR) images were used to quantify the WMH lesion burden (mL). GM CBF and VBM data were used as dependent variables. WMH lesion burden, age and sex were used in a regression model. Visual rating of WMH with the Fazekas method was used to compare the WMH lesion volume regression approach. WMH volume was normally distributed for this group (mean volume of 22.7 mL, range: 2.2-70.6 mL). CBF analysis revealed negative associations between WMH volume and CBF in the left anterior putamen, subcallosal, accumbens, anterior caudate, orbital frontal, anterior insula, and frontal pole (corrected p < 0.05). VBM analysis revealed negative associations between WMH and GM volume in lingual gyrus, intracalcarine, and bilateral hippocampus (corrected p < 0.05). The visual rating scale corroborated the regression findings (corrected p < 0.05). WMH lesion volume was associated with intra-group GM CBF and structural differences in this cohort of WMH adults with mild to severe lesion burden. PMID:26217223

  8. Greater intake of vitamins B6 and B12 spares gray matter in healthy elderly: a voxel-based morphometry study.

    PubMed

    Erickson, Kirk I; Suever, Barbara L; Prakash, Ruchika Shaurya; Colcombe, Stanley J; McAuley, Edward; Kramer, Arthur F

    2008-03-14

    Previous studies have reported that high concentrations of homocysteine and lower concentrations of vitamins B6, B12, and folate increase the risk for cognitive decline and pathology in aging populations. In this cross-sectional study, high resolution magnetic resonance imaging (MRI) scans and a 3-day food diary were collected on 32 community-dwelling adults between the ages of 59 and 79. We examined the relation between vitamins B6, B12, and folate intake on cortical volume using an optimized voxel-based morphometry (VBM) method and global gray and white matter volume after correcting for age, sex, body mass index, calorie intake, and education. All participants met or surpassed the recommended daily intake for these vitamins. In the VBM analysis, we found that adults with greater vitamin B6 intake had greater gray matter volume along the medial wall, anterior cingulate cortex, medial parietal cortex, middle temporal gyrus, and superior frontal gyrus, whereas people with greater B12 intake had greater volume in the left and right superior parietal sulcus. These effects were driven by vitamin supplementation and were negated when only examining vitamin intake from diet. Folate had no effect on brain volume. Furthermore, there was no relationship between vitamins B6, B12, or folate intake on global brain volume measures, indicating that VBM methods are more sensitive for detecting localized differences in gray matter volume than global measures. These results are discussed in relation to a growing literature on vitamin intake on age-related neurocognitive deterioration. PMID:18281020

  9. Dyslexia and Voxel-Based Morphometry: Correlations between Five Behavioural Measures of Dyslexia and Gray and White Matter Volumes

    ERIC Educational Resources Information Center

    Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…

  10. DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development.

    PubMed

    Darki, Fahimeh; Peyrard-Janvid, Myriam; Matsson, Hans; Kere, Juha; Klingberg, Torkel

    2014-10-22

    Three genes, DYX1C1, DCDC2, and KIAA0319, have been previously associated with dyslexia, neuronal migration, and ciliary function. Three polymorphisms within these genes, rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319) have also been linked to normal variability of left temporoparietal white matter volume connecting the middle temporal cortex to the angular and supramarginal gyri. Here, we assessed whether these polymorphisms are also related to the cortical thickness of the associated regions during childhood development using a longitudinal dataset of 76 randomly selected children and young adults who were scanned up to three times each, 2 years apart. rs793842 in DCDC2 was significantly associated with the thickness of left angular and supramarginal gyri as well as the left lateral occipital cortex. The cortex was significantly thicker for T-allele carriers, who also had lower white matter volume and lower reading comprehension scores. There was a negative correlation between white matter volume and cortical thickness, but only white matter volume predicted reading comprehension 2 years after scanning. These results show how normal variability in reading comprehension is related to gene, white matter volume, and cortical thickness in the inferior parietal lobe. Possibly, the variability of gray and white matter structures could both be related to the role of DCDC2 in ciliary function, which affects both neuronal migration and axonal outgrowth. PMID:25339756

  11. Age-related decline in the microstructural integrity of white matter in children with early- and continuously-treated PKU: A DTI study of the corpus callosum☆

    PubMed Central

    White, Desiree A.; Connor, Lisa Tabor; Nardos, Binyam; Shimony, Joshua S.; Archer, Rebecca; Snyder, Abraham Z.; Moinuddin, Asif; Grange, Dorothy K.; Steiner, Robert D.; McKinstry, Robert C.

    2013-01-01

    Structural, volumetric, and microstructural abnormalities have been reported in the white matter of the brain in individuals with phenylketonuria (PKU). Very little research, however, has been conducted to investigate the development of white matter in children with PKU, and the developmental trajectory of their white matter microstructure is unknown. In the current study, diffusion tensor imaging (DTI) was used to examine the development of the microstructural integrity of white matter across six regions of the corpus callosum in 34 children (7–18 years of age) with early- and continuously-treated PKU. Comparison was made with 61 demographically-matched healthy control children. Two DTI variables were examined: mean diffusivity (MD) and relative anisotropy (RA). RA was comparable to that of controls across all six regions of the corpus callosum. In contrast, MD was restricted for children with PKU in anterior (i.e., genu, rostral body, anterior midbody) but not posterior (posterior midbody, isthmus, splenium) regions of the corpus callosum. In addition, MD restriction became more pronounced with increasing age in children with PKU in the two most anterior regions of the corpus callosum (i.e., genu, rostral body). These findings point to an age-related decrement in the microstructural integrity of the anterior white matter of the corpus callosum in children with PKU. PMID:20123469

  12. Genetic markers of cholesterol transport and gray matter diffusion: a preliminary study of the CETP I405V polymorphism.

    PubMed

    Salminen, Lauren E; Schofield, Peter R; Pierce, Kerrie D; Luo, Xi; Zhao, Yi; Laidlaw, David H; Cabeen, Ryan P; Conturo, Thomas E; Lane, Elizabeth M; Heaps, Jodi M; Bolzenius, Jacob D; Baker, Laurie M; Cooley, Sarah A; Scott, Staci; Cagle, Lee M; Paul, Robert H

    2015-11-01

    Variations of the cholesteryl ester transfer protein polymorphism (CETP I405V/rs5882) have been associated with an increased risk for neurodegeneration, particularly when examined in conjunction with the epsilon 4 isoform of apolipoprotein E (ApoE4). Despite these identified relationships, the impact of I405V on gray matter microstructure remains unknown. The present study examined the impact of the CETP I405V polymorphism on gray matter integrity among 52 healthy adults between ages 51 and 85. Gray matter was measured bilaterally using diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Participants were grouped according to a dominant statistical model (II genotype vs. IV/VV genotypes) and secondary analyses were completed to examine the interactive effects of CETP and ApoE4 on DTI metrics. Compared to individuals with the IV/VV genotypes, II homozygotes demonstrated significantly higher MD in bilateral temporal, parietal, and occipital gray matter. Secondary analyses revealed higher FA and AD in the left temporal lobe of IV/VV genotypes with an ApoE4 allele. Our results provide preliminary evidence that CETP II homozygosity is a predisposing risk factor for gray matter abnormalities in posterior brain regions in healthy older adults, independent of an ApoE4 allele. PMID:26253899

  13. Childhood Maltreatment Is Associated with Larger Left Thalamic Gray Matter Volume in Adolescents with Generalized Anxiety Disorder

    PubMed Central

    Liao, Mei; Yang, Fan; Zhang, Yan; He, Zhong; Song, Ming; Jiang, Tianzi; Li, Zexuan; Lu, Shaojia; Wu, Weiwei; Su, Linyan; Li, Lingjiang

    2013-01-01

    Background Generalized anxiety disorder (GAD) is a common anxiety disorder that usually begins in adolescence. Childhood maltreatment is highly prevalent and increases the possibility for developing a variety of mental disorders including anxiety disorders. An earlier age at onset of GAD is significantly related to maltreatment in childhood. Exploring the underpinnings of the relationship between childhood maltreatment and adolescent onset GAD would be helpful in identifying the potential risk markers of this condition. Methods Twenty-six adolescents with GAD and 25 healthy controls participated in this study. A childhood trauma questionnaire (CTQ) was introduced to assess childhood maltreatment. All subjects underwent high-resolution structural magnetic resonance scans. Voxel-based morphometry (VBM) was used to investigate gray matter alterations. Results Significantly larger gray matter volumes of the right putamen were observed in GAD patients compared to healthy controls. In addition, a significant diagnosis-by-maltreatment interaction effect for the left thalamic gray matter volume was revealed, as shown by larger volumes of the left thalamic gray matter in GAD patients with childhood maltreatment compared with GAD patients without childhood maltreatment as well as with healthy controls with/without childhood maltreatment. A significant positive association between childhood maltreatment and left thalamic gray matter volume was only seen in GAD patients. Conclusions These findings revealed an increased volume in the subcortical regions in adolescent GAD, and the alterations in the left thalamus might be involved in the association between childhood maltreatment and the occurrence of GAD. PMID:23951265

  14. Focal Gray Matter Plasticity as a Function of Long Duration Bedrest: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Koppelmans, V.; Erdeniz, B.; De Dios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. It is unknown whether and how spaceflight impacts sensorimotor brain structure and function, and whether such changes may potentially underlie behavioral effects. Long duration head down tilt bed rest has been used repeatedly as an exclusionary analog to study microgravity effects on the sensorimotor system [1]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. We are currently testing sensorimotor function, brain structure, and brain function pre and post a 70-day bed rest period. We will acquire the same measures on NASA crewmembers starting in 2014. Here we present the results of the first eight bed rest subjects. Subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility, UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM. Focal changes in white matter microstructural integrity were assessed using tract based spatial statistics (TBSS) as part of the FMRIB software library (FSL). TBSS registers all DTI scans to standard space. It subsequently creates a study specific white matter skeleton of the major white matter tracts. Non-parametric permutation based t-tests and ANOVA's were used for voxel-wise comparison of the skeletons. For both VBM and TBSS, comparison of the two pre bed rest measurements did not show significant differences. VBM analysis revealed decreased gray matter density in bilateral areas including the frontal medial cortex, the insular cortex and the caudate nucleus

  15. Perfusion Shift from White to Gray Matter May Account for Processing Speed Deficits in Schizophrenia

    PubMed Central

    Wright, Susan N.; Hong, L. Elliot; Winkler, Anderson M.; Chiappelli, Joshua; Nugent, Katie; Muellerklein, Florian; Du, Xioming; Rowland, Laura M.; Wang, Danny J. J.; Kochunov, Peter

    2016-01-01

    Reduced speed of cerebral information processing is a cognitive deficit associated with schizophrenia. Normal information processing speed (PS) requires intact white matter (WM) physiology to support information transfer. In a cohort of 107 subjects (47/60 patients/controls), we demonstrate that PS deficits in schizophrenia patients are explained by reduced WM integrity, which is measured using diffusion tensor imaging, mediated by the mismatch in WM/gray matter blood perfusion, and measured using arterial spin labeling. Our findings are specific to PS, and testing this hypothesis for patient-control differences in working memory produces no explanation. We demonstrate that PS deficits in schizophrenia can be explained by neurophysiological alterations in cerebral WM. Whether the disproportionately low WM integrity in schizophrenia is due to illness or secondary due to this disorder deserves further examination. PMID:26108347

  16. Perfusion shift from white to gray matter may account for processing speed deficits in schizophrenia.

    PubMed

    Wright, Susan N; Hong, L Elliot; Winkler, Anderson M; Chiappelli, Joshua; Nugent, Katie; Muellerklein, Florian; Du, Xioming; Rowland, Laura M; Wang, Danny J J; Kochunov, Peter

    2015-10-01

    Reduced speed of cerebral information processing is a cognitive deficit associated with schizophrenia. Normal information processing speed (PS) requires intact white matter (WM) physiology to support information transfer. In a cohort of 107 subjects (47/60 patients/controls), we demonstrate that PS deficits in schizophrenia patients are explained by reduced WM integrity, which is measured using diffusion tensor imaging, mediated by the mismatch in WM/gray matter blood perfusion, and measured using arterial spin labeling. Our findings are specific to PS, and testing this hypothesis for patient-control differences in working memory produces no explanation. We demonstrate that PS deficits in schizophrenia can be explained by neurophysiological alterations in cerebral WM. Whether the disproportionately low WM integrity in schizophrenia is due to illness or secondary due to this disorder deserves further examination. PMID:26108347

  17. Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study

    PubMed Central

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F.

    2015-01-01

    Background Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. Objectives This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. Methods High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Results Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Conclusions Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature. PMID:26601082

  18. Learning new color names produces rapid increase in gray matter in the intact adult human cortex

    PubMed Central

    Kwok, Veronica; Niu, Zhendong; Kay, Paul; Zhou, Ke; Mo, Lei; Jin, Zhen; So, Kwok-Fai; Tan, Li Hai

    2011-01-01

    The human brain has been shown to exhibit changes in the volume and density of gray matter as a result of training over periods of several weeks or longer. We show that these changes can be induced much faster by using a training method that is claimed to simulate the rapid learning of word meanings by children. Using whole-brain magnetic resonance imaging (MRI) we show that learning newly defined and named subcategories of the universal categories green and blue in a period of 2 h increases the volume of gray matter in V2/3 of the left visual cortex, a region known to mediate color vision. This pattern of findings demonstrates that the anatomical structure of the adult human brain can change very quickly, specifically during the acquisition of new, named categories. Also, prior behavioral and neuroimaging research has shown that differences between languages in the boundaries of named color categories influence the categorical perception of color, as assessed by judgments of relative similarity, by response time in alternative forced-choice tasks, and by visual search. Moreover, further behavioral studies (visual search) and brain imaging studies have suggested strongly that the categorical effect of language on color processing is left-lateralized, i.e., mediated by activity in the left cerebral hemisphere in adults (hence “lateralized Whorfian” effects). The present results appear to provide a structural basis in the brain for the behavioral and neurophysiologically observed indices of these Whorfian effects on color processing. PMID:21464316

  19. The correlation between gray matter volume and perceived social support: a voxel-based morphometry study.

    PubMed

    Che, XianWei; Wei, DongTao; Li, WenFu; Li, HaiJiang; Qiao, Lei; Qiu, Jiang; Zhang, QingLin; Liu, YiJun

    2014-01-01

    Social support refers to interpersonal exchanges that include the combinations of aid, affirmation and affection. Perceived social support is a kind of subjective judgment of one's availability of social support. In spite of the importance of perceived social support to health, however, its neural substrate remains unknown. To address this question, voxel-based morphometry was employed to investigate the neural bases of individual differences in responses to the Perceived Social Support Scale (PSSS) in healthy volunteers (144 men and 203 women; mean age = 19.9; SD = 1.33, age range : 17-27). As a result, multiple regression analysis revealed that the PSSS scores were significantly and positively correlated with gray matter volume in a cluster that mainly included areas in posterior parts of posterior cingulate cortex, bilateral lingual cortex, left occipital lobe and cuneus. Highly-supported individuals had larger gray matter volume in these brain regions, implying a relatively high level of ability to engage in self-referential processes and social cognition. Our results provide a biological basis for exploring perceived social support particularly in relationship to various health parameters and outcomes. PMID:24397344

  20. Rapid and specific gray matter changes in M1 induced by balance training.

    PubMed

    Taubert, Marco; Mehnert, Jan; Pleger, Burkhard; Villringer, Arno

    2016-06-01

    Training-induced changes in cortical structure can be observed non-invasively with magnetic resonance imaging (MRI). While macroscopic changes were found mainly after weeks to several months of training in humans, imaging of motor cortical networks in animals revealed rapid microstructural alterations after a few hours of training. We used MRI to test the hypothesis of immediate and specific training-induced alterations in motor cortical gray matter in humans. We found localized increases in motor cortical thickness after 1h of practice in a complex balancing task. These changes were specific to motor cortical effector representations primarily responsible for balance control in our task (lower limb and trunk) and these effects could be confirmed in a replication study. Cortical thickness changes (i) linearly increased across the training session, (ii) occurred independent of alterations in resting cerebral blood flow and (iii) were not triggered by repetitive use of the lower limbs. Our findings show that motor learning triggers rapid and specific gray matter changes in M1. PMID:26994831

  1. Regional Gray Matter Density Associated with Cognitive Reflectivity–Impulsivity: Evidence from Voxel-Based Morphometry

    PubMed Central

    Yokoyama, Ryoichi; Nozawa, Takayuki; Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Hanihara, Mayu; Sassa, Yuko; Kawashima, Ryuta

    2015-01-01

    When faced with a problem or choice, humans can use two different strategies: “cognitive reflectivity,” which involves slow responses and fewer mistakes, or “cognitive impulsivity,” which comprises of quick responses and more mistakes. Different individuals use these two strategies differently. To our knowledge, no study has directly investigated the brain regions involved in reflectivity–impulsivity; therefore, this study focused on associations between these cognitive strategies and the gray matter structure of several brain regions. In order to accomplish this, we enrolled 776 healthy, right-handed individuals (432 men and 344 women; 20.7 ± 1.8 years) and used voxel-based morphometry with administration of a cognitive reflectivity–impulsivity questionnaire. We found that high cognitive reflectivity was associated with greater regional gray matter density in the ventral medial prefrontal cortex. Our finding suggests that this area plays an important role in defining an individual’s trait associated with reflectivity and impulsivity. PMID:25803809

  2. Age-Related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural MRI and Diffusion Tensor Imaging

    PubMed Central

    Rathee, Rishu; Rallabandi, V.P. Subramanyam; Roy, Prasun K.

    2016-01-01

    The aim is to investigate the relationship between microstructural white matter (WM) diffusivity indices and macrostructural WM volume (WMV) among healthy individuals (20–85 years). Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract-based spatial statistics. Our results revealed that mean diffusivity, axial diffusivity, and radial diffusivity had shown good correlation with WMV but not for fractional anisotropy (FA). Voxel-wise tract-based spatial statistics analysis for FA showed a significant decrease in four regions for middle-aged group compared to young-aged group, in 22 regions for old-aged group compared to middle-aged group, and in 26 regions for old-aged group compared to young-aged group (P < 0.05). We found significantly lower WMV, FA, and mean diffusivity values in females than males and inverted-U trend for FA in males. We conclude differential age- and gender-related changes for structural WMV and WM diffusion indices. PMID:27279747

  3. Early Gray-Matter and White-Matter Concentration in Infancy Predict Later Language Skills: A Whole Brain Voxel-Based Morphometry Study

    ERIC Educational Resources Information Center

    Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia K.

    2013-01-01

    Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months.…

  4. Longitudinal Relationships between Caloric Expenditure and Gray Matter in the Cardiovascular Health Study

    PubMed Central

    Raji, Cyrus A.; Merrill, David A.; Eyre, Harris; Mallam, Sravya; Torosyan, Nare; Erickson, Kirk I.; Lopez, Oscar L.; Becker, James T.; Carmichael, Owen T.; Gach, H. Michael; Thompson, Paul M.; Longstreth, W.T.; Kuller, Lewis H.

    2016-01-01

    Background: Physical activity (PA) can be neuroprotective and reduce the risk for Alzheimer’s disease (AD). In assessing physical activity, caloric expenditure is a proxy marker reflecting the sum total of multiple physical activity types conducted by an individual. Objective:To assess caloric expenditure, as a proxy marker of PA, as a predictive measure of gray matter (GM) volumes in the normal and cognitively impaired elderly persons. Methods: All subjects in this study were recruited from the Institutional Review Board approved Cardiovascular Health Study (CHS), a multisite population-based longitudinal study in persons aged 65 and older. We analyzed a sub-sample of CHS participants 876 subjects (mean age 78.3, 57.5% F, 42.5% M) who had i) energy output assessed as kilocalories (kcal) per week using the standardized Minnesota Leisure-Time Activities questionnaire, ii) cognitive assessments for clinical classification of normal cognition, mild cognitive impairment (MCI), and AD, and iii) volumetric MR imaging of the brain. Voxel-based morphometry modeled the relationship between kcal/week and GM volumes while accounting for standard covariates including head size, age, sex, white matter hyperintensity lesions, MCI or AD status, and site. Multiple comparisons were controlled using a False Discovery Rate of 5 percent. Results: Higher energy output, from a variety of physical activity types, was associated with larger GM volumes in frontal, temporal, and parietal lobes, as well as hippocampus, thalamus, and basal ganglia. High levels of caloric expenditure moderated neurodegeneration-associated volume loss in the precuneus, posterior cingulate, and cerebellar vermis. Conclusion:Increasing energy output from a variety of physical activities is related to larger gray matter volumes in the elderly, regardless of cognitive status. PMID:26967227

  5. Gray and white matter changes associated with tool-use learning in macaque monkeys

    PubMed Central

    Quallo, M. M.; Price, C. J.; Ueno, K.; Asamizuya, T.; Cheng, K.; Lemon, R. N.; Iriki, A.

    2009-01-01

    We used noninvasive MRI and voxel-based morphometry (VBM) to detect changes in brain structure in three adult Japanese macaques trained to use a rake to retrieve food rewards. Monkeys, who were naive to any previous tool use, were scanned repeatedly in a 4-T scanner over 6 weeks, comprising 2 weeks of habituation followed by 2 weeks of intensive daily training and a 2-week posttraining period. VBM analysis revealed significant increases in gray matter with rake performance across the three monkeys. The effects were most significant (P < 0.05 corrected for multiple comparisons across the whole brain) in the right superior temporal sulcus, right second somatosensory area, and right intraparietal sulcus, with less significant effects (P < 0.001 uncorrected) in these same regions of the left hemisphere. Bilateral increases were also observed in the white matter of the cerebellar hemisphere in lobule 5. In two of the monkeys who exhibited rapid learning of the rake task, gray matter volume in peak voxels increased by up to 17% during the intensive training period; the earliest changes were seen after 1 week of intensive training, and they generally peaked when performance on the task plateaued. In the third monkey, who was slower to learn the task, peak voxels showed no systematic changes. Thus, VBM can detect significant brain changes in individual trained monkeys exposed to tool-use training for the first time. This approach could open up a means of investigating the underlying neurobiology of motor learning and other higher brain functions in individual animals. PMID:19820167

  6. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study.

    PubMed

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339

  7. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study

    PubMed Central

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339

  8. Self-reported physical activity and objective aerobic fitness: differential associations with gray matter density in healthy aging

    PubMed Central

    Zlatar, Zvinka Z.; McGregor, Keith M.; Towler, Stephen; Nocera, Joe R.; Dzierzewski, Joseph M.; Crosson, Bruce

    2015-01-01

    Aerobic fitness (AF) and self-reported physical activity (srPA) do not represent the same construct. However, many exercise and brain aging studies interchangeably use AF and srPA measures, which may be problematic with regards to how these metrics are associated with brain outcomes, such as morphology. If AF and PA measures captured the same phenomena, regional brain volumes associated with these measures should directly overlap. This study employed the general linear model to examine the differential association between objectively-measured AF (treadmill assessment) and srPA (questionnaire) with gray matter density (GMd) in 29 cognitively unimpaired community-dwelling older adults using voxel based morphometry. The results show significant regional variance in terms of GMd when comparing AF and srPA as predictors. Higher AF was associated with greater GMd in the cerebellum only, while srPA displayed positive associations with GMd in occipito-temporal, left perisylvian, and frontal regions after correcting for age. Importantly, only AF level, and not srPA, modified the relationship between age and GMd, such that higher levels of AF were associated with increased GMd in older age, while decreased GMd was seen in those with lower AF as a function of age. These results support existing literature suggesting that both AF and PA exert beneficial effects on GMd, but only AF served as a buffer against age-related GMd loss. Furthermore, these results highlight the need for use of objective PA measurement and comparability of tools across studies, since results vary dependent upon the measures used and whether these are objective or subjective in nature. PMID:25691866

  9. Gray-white matter and cerebrospinal fluid volume differences in children with Specific Language Impairment and/or Reading Disability.

    PubMed

    Girbau-Massana, Dolors; Garcia-Marti, Gracian; Marti-Bonmati, Luis; Schwartz, Richard G

    2014-04-01

    We studied gray-white matter and cerebrospinal fluid (CSF) alterations that may be critical for language, through an optimized voxel-based morphometry evaluation in children with Specific Language Impairment (SLI), compared to Typical Language Development (TLD). Ten children with SLI (8;5-10;9) and 14 children with TLD (8;2-11;8) participated. They received a comprehensive language and reading test battery. We also analyzed a subgroup of six children with SLI+RD (Reading Disability). Brain images from 3-Tesla MRIs were analyzed with intelligence, age, gender, and total intracranial volume as covariates. Children with SLI or SLI+RD exhibited a significant lower overall gray matter volume than children with TLD. Particularly, children with SLI showed a significantly lower volume of gray matter compared to children with TLD in the right postcentral parietal gyrus (BA4), and left and right medial occipital gyri (BA19). The group with SLI also exhibited a significantly greater volume of gray matter in the right superior occipital gyrus (BA19), which may reflect a brain reorganization to compensate for their lower volumes at medial occipital gyri. Children with SLI+RD, compared to children with TLD, showed a significantly lower volume of: (a) gray matter in the right postcentral parietal gyrus; and (b) white matter in the right inferior longitudinal fasciculus (RILF), which interconnects the temporal and occipital lobes. Children with TLD exhibited a significantly lower CSF volume than children with SLI and children with SLI+RD respectively, who had somewhat smaller volumes of gray matter allowing for more CSF volume. The significant lower gray matter volume at the right postcentral parietal gyrus and greater cerebrospinal fluid volume may prove to be unique markers for SLI. We discuss the association of poor knowledge/visual representations and language input to brain development. Our comorbid study showed that a significant lower volume of white matter in the right

  10. A multidistance probe arrangement NIRS for detecting absorption changes in cerebral gray matter layer

    NASA Astrophysics Data System (ADS)

    Yamada, Toru; Umeyama, Shinji; Matsuda, Keiji

    2010-02-01

    We provide theoretical validation of the brain-functional detection using multidistance probe arrangement based on Monte Carlo simulations of five-layered model in which both scattering and absorption changes occur. It shows that optimized multidistance probe arrangement can be effective in removing interferences by scattering and absorption changes in upper layers and extracting absorption change in the gray matter layer. Using newly designed probes and their holder system, both conventional and proposed fNIRS measurements were implemented with non-functional (body and head movements and respiratory change) and functional (finger opposition) tasks. Artifacts, even if it correlate with task sequence, were well reduced. Functional signals were well localized at lateralized cerebral functional area.

  11. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    NASA Astrophysics Data System (ADS)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  12. Gray matter volume differences specific to formal thought disorder in schizophrenia.

    PubMed

    Horn, Helge; Federspiel, Andrea; Wirth, Miranka; Müller, Thomas J; Wiest, Roland; Walther, Sebastian; Strik, Werner

    2010-05-30

    Formal thought disorder (FTD) is one of the main symptoms of schizophrenia. To date there are no whole brain volumetric studies investigating gray matter (GM) differences specifically associated with FTD. Here, we studied 20 right-handed schizophrenia patients that differed in the severity of formal thought disorder and 20 matched healthy controls, using voxel-based morphometry (VBM). The severity of FTD was measured with the Scale for the Assessment of Thought, Language, and Communication. The severity was negatively correlated with the GM volume of the left superior temporal sulcus, the left temporal pole, the right middle orbital gyrus and the right cuneus/lingual gyrus. Structural abnormalities specific for FTD were found to be unrelated to GM differences associated with schizophrenia in general. The specific GM abnormalities within the left temporal lobe may help to explain language disturbances included in FTD. PMID:20418073

  13. Increased regional gray matter atrophy and enhanced functional connectivity in male multiple sclerosis patients.

    PubMed

    Sanchis-Segura, C; Cruz-Gómez, A J; Belenguer, A; Fittipaldi Márquez, M S; Ávila, C; Forn, C

    2016-09-01

    Evidence suggests that sex/gender is an important factor for understanding multiple sclerosis (MS) and that some of its neuropathological consequences might manifest earlier in males. In the present study, we assessed gray matter (GM) volume and functional connectivity (FC) in a sample of female and male MS patients (MSp) and female and male healthy controls (HCs). As compared to female MSp, male MSp showed decreased GM volume in the bilateral frontal areas and increased FC between different brain regions. Because both sets of changes correlated significantly and no differences in cognitive performance were observed, we suggest that the FC increase observed in male MSp acts as a compensatory mechanism for their more extensive GM loss and that it promotes a functional convergence between male- and female-MSp. PMID:27436479

  14. Acute lower motor neuron syndrome and spinal cord gray matter hyperintensities in HIV infection

    PubMed Central

    Wilson, Michael R.; Chad, David A.; Venna, Nagagopal

    2015-01-01

    Objective: To describe a novel manifestation of lower motor neuron disease in patients with well-controlled HIV infection. Methods: A retrospective study was performed to identify HIV-positive individuals with acute, painful lower motor neuron diseases. Results: Six patients were identified with HIV and lower motor neuron disease. Two patients met the inclusion criteria of well-controlled, chronic HIV infection and an acute, painful, unilateral lower motor neuron paralytic syndrome affecting the distal portion of the upper limb. These patients had segmental T2-hyperintense lesions in the central gray matter of the cervical spinal cord on MRI. One patient stabilized and the second patient improved with immunomodulatory therapy. Conclusions: This newly described syndrome expands the clinical spectrum of lower motor neuron diseases in HIV. PMID:26015990

  15. Stimulation of the periaqueductal gray matter of the rat produces a preferential ipsilateral antinociception.

    PubMed

    Levine, R; Morgan, M M; Cannon, J T; Liebeskind, J C

    1991-12-13

    The few studies analyzing somatotopic organization of stimulation-produced antinociception (SPA) from the periaqueductal gray matter (PAG) have reported contradictory results. In the present study, the distribution of SPA on the hindquarters was assessed by measuring the threshold for inhibition of withdrawal reflexes to noxious heat applied to the hindpaws and tail in pentobarbital-anesthetized rats. Of the 3 body regions tested, the hindpaw contralateral to the stimulating electrode required the highest level of PAG stimulation to inhibit withdrawal. Reducing the intensity of the heat stimulus applied to the hindpaws caused a concomitant reduction in SPA threshold. As before, a higher stimulation current was needed to inhibit the withdrawal reflex in the contralateral than in the ipsilateral paw. These data indicate the antinociception from PAG stimulation is not equally distributed throughout the body, and that the intensity of the noxious stimulus influences the threshold for SPA. PMID:1815821

  16. The impact of CACNA1C allelic variation on regional gray matter volume in Chinese population.

    PubMed

    Huang, Liang; Mo, Yin; Sun, Xuejin; Yu, Hualin; Li, Hao; Wu, Lichuan; Li, Ming

    2016-04-01

    The SNP rs1006737 in CACNA1C gene has been significantly associated with psychiatric disorders (e.g., schizophrenia and bipolar disorder) in European populations. In Han Chinese, rs1006737 is also strongly associated with schizophrenia, although the effects of the psychosis risk SNP on related brain functions and structures in this population remain unclear. Here, we examined the association of rs1006737 with gray matter volume in a sample of 278 healthy Han Chinese. A whole-brain voxel-based morphometry (VBM) analysis revealed a significant association in the region around right superior occipital gyrus (family-wise error corrected, P = 0.023). Our data provides initial evidence for the involvement of this psychosis genetic risk locus in brain structure variations in Chinese population, and calls for further investigations. PMID:26756527

  17. Particulate matter characterization by gray level co-occurrence matrix based support vector machines.

    PubMed

    Manivannan, K; Aggarwal, P; Devabhaktuni, V; Kumar, A; Nims, D; Bhattacharya, P

    2012-07-15

    An efficient and highly reliable automatic selection of optimal segmentation algorithm for characterizing particulate matter is presented in this paper. Support vector machines (SVMs) are used as a new self-regulating classifier trained by gray level co-occurrence matrix (GLCM) of the image. This matrix is calculated at various angles and the texture features are evaluated for classifying the images. Results show that the performance of GLCM-based SVMs is drastically improved over the previous histogram-based SVMs. Our proposed GLCM-based approach of training SVM predicts a robust and more accurate segmentation algorithm than the standard histogram technique, as additional information based on the spatial relationship between pixels is incorporated for image classification. Further, the GLCM-based SVM classifiers were more accurate and required less training data when compared to the artificial neural network (ANN) classifiers. PMID:22595545

  18. Cerebellar gray matter and lobular volumes correlate with core autism symptoms.

    PubMed

    D'Mello, Anila M; Crocetti, Deana; Mostofsky, Stewart H; Stoodley, Catherine J

    2015-01-01

    Neuroanatomical differences in the cerebellum are among the most consistent findings in autism spectrum disorder (ASD), but little is known about the relationship between cerebellar dysfunction and core ASD symptoms. The newly-emerging existence of cerebellar sensorimotor and cognitive subregions provides a new framework for interpreting the functional significance of cerebellar findings in ASD. Here we use two complementary analyses - whole-brain voxel-based morphometry (VBM) and the SUIT cerebellar atlas - to investigate cerebellar regional gray matter (GM) and volumetric lobular measurements in 35 children with ASD and 35 typically-developing (TD) children (mean age 10.4 ± 1.6 years; range 8-13 years). To examine the relationships between cerebellar structure and core ASD symptoms, correlations were calculated between scores on the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview (ADI) and the VBM and volumetric data. Both VBM and the SUIT analyses revealed reduced GM in ASD children in cerebellar lobule VII (Crus I/II). The degree of regional and lobular gray matter reductions in different cerebellar subregions correlated with the severity of symptoms in social interaction, communication, and repetitive behaviors. Structural differences and behavioral correlations converged on right cerebellar Crus I/II, a region which shows structural and functional connectivity with fronto-parietal and default mode networks. These results emphasize the importance of the location within the cerebellum to the potential functional impact of structural differences in ASD, and suggest that GM differences in cerebellar right Crus I/II are associated with the core ASD profile. PMID:25844317

  19. Gray matter structural compromise is equally distributed in left and right temporal lobe epilepsy.

    PubMed

    Liu, Min; Bernhardt, Boris C; Bernasconi, Andrea; Bernasconi, Neda

    2016-02-01

    In drug-resistant temporal lobe epilepsy (TLE), MRI studies have shown consistent mesiotemporal and neocortical structural alterations when comparing patients to healthy controls. It remains, however, relatively unclear whether the side of seizure focus differentially impacts the degree of structural damage. This work performed a comprehensive surface-based analysis of mesiotemporal and neocortical morphology on preoperative 1.5 T MRI in 25/35 LTLE/RTLE patients that achieved seizure freedom after surgery (i.e., Engel-I outcome; 7 ± 2 years follow-up), an imaging-independent confirmation of focus lateralization. Compared to 46 age- and sex-matched controls, both TLE groups displayed marked ipsilateral atrophy in mesiotemporal regions, while cortical thinning was bilateral. Direct contrasts between LTLE and RTLE did not reveal significant differences. Bootstrap simulations indicated low reproducibility of observing a between-cohort difference; power analysis revealed that more than 110 patients would be necessary to detect subtle differences. No difference between LTLE and RTLE was confirmed when using voxel-based morphometry, an independent proxy of gray matter volume. Similar results were obtained analyzing a separate 3 T dataset (15/15 LTLE/RTLE patients; Engel-I after 4 ± 2 years follow-up; 42 controls). Our results strongly support equivalent gray matter compromise in left and right TLE. The morphological profile of seizure-free patients, presenting with ipsilateral mesiotemporal and bilateral cortical atrophy, motivates the development of neuromarkers of outcome that consider both mesiotemporal and neocortical structures. Hum Brain Mapp 37:515-524, 2016. © 2015 Wiley Periodicals, Inc. PMID:26526187

  20. Arterial input function and gray matter cerebral blood volume measurements in children

    PubMed Central

    Withey, Stephanie B.; Novak, Jan; MacPherson, Lesley

    2015-01-01

    Purpose To investigate how arterial input functions (AIFs) vary with age in children and compare the use of individual and population AIFs for calculating gray matter CBV values. Quantitative measures of cerebral blood volume (CBV) using dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) require measurement of an AIF. AIFs are affected by numerous factors including patient age. Few data presenting AIFs in the pediatric population exists. Materials and Methods Twenty‐two previously treated pediatric brain tumor patients (mean age, 6.3 years; range, 2.0–15.3 years) underwent DSC‐MRI scans on a 3T MRI scanner over 36 visits. AIFs were measured in the middle cerebral artery. A functional form of an adult population AIF was fitted to each AIF to obtain parameters reflecting AIF shape. The relationship between parameters and age was assessed. Correlations between gray matter CBV values calculated using the resulting population and individual patient AIFs were explored. Results There was a large variation in individual patient AIFs but correlations between AIF shape and age were observed. The center (r = 0.596, P < 0.001) and width of the first‐pass peak (r = 0.441, P = 0.007) were found to correlate significantly with age. Intrapatient coefficients of variation were significantly lower than interpatient values for all parameters (P < 0.001). Differences in CBV values calculated with an overall population and age‐specific population AIF compared to those calculated with individual AIFs were 31.3% and 31.0%, respectively. Conclusion Parameters describing AIF shape correlate with patient age in line with expected changes in cardiac output. In pediatric DSC‐MRI studies individual patient AIFs are recommended. J. Magn. Reson. Imaging 2016;43:981–989 PMID:26514288

  1. Patterns of Gray Matter Abnormalities in Schizophrenia Based on an International Mega-analysis

    PubMed Central

    Gupta, Cota Navin; Calhoun, Vince D.; Rachakonda, Srinivas; Chen, Jiayu; Patel, Veena; Liu, Jingyu; Segall, Judith; Franke, Barbara; Zwiers, Marcel P.; Arias-Vasquez, Alejandro; Buitelaar, Jan; Fisher, Simon E.; Fernandez, Guillen; van Erp, Theo G. M.; Potkin, Steven; Ford, Judith; Mathalon, Daniel; McEwen, Sarah; Lee, Hyo Jong; Mueller, Bryon A.; Greve, Douglas N.; Andreassen, Ole; Agartz, Ingrid; Gollub, Randy L.; Sponheim, Scott R.; Ehrlich, Stefan; Wang, Lei; Pearlson, Godfrey; Glahn, David C.; Sprooten, Emma; Mayer, Andrew R.; Stephen, Julia; Jung, Rex E.; Canive, Jose; Bustillo, Juan; Turner, Jessica A.

    2015-01-01

    Analyses of gray matter concentration (GMC) deficits in patients with schizophrenia (Sz) have identified robust changes throughout the cortex. We assessed the relationships between diagnosis, overall symptom severity, and patterns of gray matter in the largest aggregated structural imaging dataset to date. We performed both source-based morphometry (SBM) and voxel-based morphometry (VBM) analyses on GMC images from 784 Sz and 936 controls (Ct) across 23 scanning sites in Europe and the United States. After correcting for age, gender, site, and diagnosis by site interactions, SBM analyses showed 9 patterns of diagnostic differences. They comprised separate cortical, subcortical, and cerebellar regions. Seven patterns showed greater GMC in Ct than Sz, while 2 (brainstem and cerebellum) showed greater GMC for Sz. The greatest GMC deficit was in a single pattern comprising regions in the superior temporal gyrus, inferior frontal gyrus, and medial frontal cortex, which replicated over analyses of data subsets. VBM analyses identified overall cortical GMC loss and one small cluster of increased GMC in Sz, which overlapped with the SBM brainstem component. We found no significant association between the component loadings and symptom severity in either analysis. This mega-analysis confirms that the commonly found GMC loss in Sz in the anterior temporal lobe, insula, and medial frontal lobe form a single, consistent spatial pattern even in such a diverse dataset. The separation of GMC loss into robust, repeatable spatial patterns across multiple datasets paves the way for the application of these methods to identify subtle genetic and clinical cohort effects. PMID:25548384

  2. Patterns of Gray Matter Abnormalities in Schizophrenia Based on an International Mega-analysis.

    PubMed

    Gupta, Cota Navin; Calhoun, Vince D; Rachakonda, Srinivas; Chen, Jiayu; Patel, Veena; Liu, Jingyu; Segall, Judith; Franke, Barbara; Zwiers, Marcel P; Arias-Vasquez, Alejandro; Buitelaar, Jan; Fisher, Simon E; Fernandez, Guillen; van Erp, Theo G M; Potkin, Steven; Ford, Judith; Mathalon, Daniel; McEwen, Sarah; Lee, Hyo Jong; Mueller, Bryon A; Greve, Douglas N; Andreassen, Ole; Agartz, Ingrid; Gollub, Randy L; Sponheim, Scott R; Ehrlich, Stefan; Wang, Lei; Pearlson, Godfrey; Glahn, David C; Sprooten, Emma; Mayer, Andrew R; Stephen, Julia; Jung, Rex E; Canive, Jose; Bustillo, Juan; Turner, Jessica A

    2015-09-01

    Analyses of gray matter concentration (GMC) deficits in patients with schizophrenia (Sz) have identified robust changes throughout the cortex. We assessed the relationships between diagnosis, overall symptom severity, and patterns of gray matter in the largest aggregated structural imaging dataset to date. We performed both source-based morphometry (SBM) and voxel-based morphometry (VBM) analyses on GMC images from 784 Sz and 936 controls (Ct) across 23 scanning sites in Europe and the United States. After correcting for age, gender, site, and diagnosis by site interactions, SBM analyses showed 9 patterns of diagnostic differences. They comprised separate cortical, subcortical, and cerebellar regions. Seven patterns showed greater GMC in Ct than Sz, while 2 (brainstem and cerebellum) showed greater GMC for Sz. The greatest GMC deficit was in a single pattern comprising regions in the superior temporal gyrus, inferior frontal gyrus, and medial frontal cortex, which replicated over analyses of data subsets. VBM analyses identified overall cortical GMC loss and one small cluster of increased GMC in Sz, which overlapped with the SBM brainstem component. We found no significant association between the component loadings and symptom severity in either analysis. This mega-analysis confirms that the commonly found GMC loss in Sz in the anterior temporal lobe, insula, and medial frontal lobe form a single, consistent spatial pattern even in such a diverse dataset. The separation of GMC loss into robust, repeatable spatial patterns across multiple datasets paves the way for the application of these methods to identify subtle genetic and clinical cohort effects. PMID:25548384

  3. A longitudinal study of age- and gender-related annual rate of volume changes in regional gray matter in healthy adults.

    PubMed

    Taki, Yasuyuki; Thyreau, Benjamin; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-09-01

    The aim of this study was to analyze correlations among the annual rate of gray matter volume change, age, gender, and cerebrovascular risk factors in 381 healthy community-dwelling subjects with a large age range by applying a longitudinal design over 6 years using brain magnetic resonance images (MRIs). Brain MRI data were processed with voxel-based morphometry using a custom template by applying diffeomorphic anatomical registration using the exponentiated lie algebra procedure. The annual rate of regional gray matter volume change showed significant positive correlations with age in several regions, including the bilateral temporal pole, caudate nucleus, ventral and dorsolateral prefrontal cortices, insula, hippocampus, and temporoparietal cortex, whereas significant negative correlations with age were observed in several regions including the bilateral cingulate gyri and anterior lobe of the cerebellum. Additionally, a significant age-by-gender interaction was found for the annual rate of regional gray matter volume change in the bilateral hippocampus. No significant correlations were observed between the annual rate of regional gray matter volume change and body mass index or systolic blood pressure. A significant positive correlation between the annual rate of gray matter volume change and age indicates that the region shows not linear but accelerated gray matter loss with age. Therefore, evaluating the annual rate of the gray matter volume change with age in healthy subjects is important in understanding how gray matter volume changes with aging in each brain region and in anticipating what cognitive functions are likely to show accelerated decline with aging. PMID:22438299

  4. Modality-spanning deficits in attention-deficit/hyperactivity disorder in functional networks, gray matter, and white matter.

    PubMed

    Kessler, Daniel; Angstadt, Michael; Welsh, Robert C; Sripada, Chandra

    2014-12-10

    Previous neuroimaging investigations in attention-deficit/hyperactivity disorder (ADHD) have separately identified distributed structural and functional deficits, but interconnections between these deficits have not been explored. To unite these modalities in a common model, we used joint independent component analysis, a multivariate, multimodal method that identifies cohesive components that span modalities. Based on recent network models of ADHD, we hypothesized that altered relationships between large-scale networks, in particular, default mode network (DMN) and task-positive networks (TPNs), would co-occur with structural abnormalities in cognitive regulation regions. For 756 human participants in the ADHD-200 sample, we produced gray and white matter volume maps with voxel-based morphometry, as well as whole-brain functional connectomes. Joint independent component analysis was performed, and the resulting transmodal components were tested for differential expression in ADHD versus healthy controls. Four components showed greater expression in ADHD. Consistent with our a priori hypothesis, we observed reduced DMN-TPN segregation co-occurring with structural abnormalities in dorsolateral prefrontal cortex and anterior cingulate cortex, two important cognitive control regions. We also observed altered intranetwork connectivity in DMN, dorsal attention network, and visual network, with co-occurring distributed structural deficits. There was strong evidence of spatial correspondence across modalities: For all four components, the impact of the respective component on gray matter at a region strongly predicted the impact on functional connectivity at that region. Overall, our results demonstrate that ADHD involves multiple, cohesive modality spanning deficits, each one of which exhibits strong spatial overlap in the pattern of structural and functional alterations. PMID:25505309

  5. Volume changes and brain-behavior relationships in white matter and subcortical gray matter in children with prenatal alcohol exposure.

    PubMed

    Gautam, Prapti; Lebel, Catherine; Narr, Katherine L; Mattson, Sarah N; May, Philip A; Adnams, Colleen M; Riley, Edward P; Jones, Kenneth L; Kan, Eric C; Sowell, Elizabeth R

    2015-06-01

    Children with prenatal alcohol exposure (PAE) may have cognitive, behavioral and brain abnormalities. Here, we compare rates of white matter and subcortical gray matter volume change in PAE and control children, and examine relationships between annual volume change and arithmetic ability, behavior, and executive function. Participants (n = 75 PAE/64 control; age: 7.1-15.9 years) each received two structural magnetic resonance scans, ~2 years apart. Assessments included Wechsler Intelligence Scale for Children (WISC-IV), the Child Behavior Checklist and the Behavior Rating Inventory of Executive Function. Subcortical white and gray volumes were extracted for each hemisphere. Group volume differences were tested using false discovery rate (q < 0.05). Analyses examined group-by-age interactions and group-score interactions for correlations between change in volume and raw behavioral scores. Results showed that subjects with PAE had smaller volumes than control subjects across the brain. Significant group-score interactions were found in temporal and parietal regions for WISC arithmetic scores and in frontal and parietal regions for behavioral measures. Poorer cognitive/ behavioral outcomes were associated with larger volume increases in PAE, while control subjects generally showed no significant correlations. In contrast with previous results demonstrating different trajectories of cortical volume change in PAE, our results show similar rates of subcortical volume growth in subjects with PAE and control subjects. We also demonstrate abnormal brain-behavior relationships in subjects with PAE, suggesting different use of brain resources. Our results are encouraging in that, due to the stable volume differences, there may be an extended window of opportunity for intervention in children with PAE. PMID:25711175

  6. Lower gray matter density and functional connectivity in the anterior insula in smokers compared with never smokers.

    PubMed

    Stoeckel, Luke E; Chai, Xiaoqian J; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A Eden

    2016-07-01

    Although nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. This study aimed to (1) evaluate gray matter density and functional connectivity of the anterior insula in cigarette smokers and never smokers and (2) characterize how differences in these measures were related to smoking behavior. We compared structural magnetic resonance imaging (MRI) (gray matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never smokers. Compared with controls, smokers had lower gray matter density in left anterior insula extending into inferior frontal and temporal cortex. Gray matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lPFC) and semantic processing/emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. There were differences in the anterior insula, a central region in the brain's salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, were also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865

  7. Nonspecific Effect of Stress on Brain Gray Matter Volume in Drug-naive Female Patients with First Depressive Episode

    PubMed Central

    Zhuo, Chuan-Jun; Bian, Hai-Man; Gao, Yan-Jie; Ma, Xiao-Lei; Ji, Sheng-Zhang; Yao, Meng-Yuan; Zhai, Ning; Sun, Xin-Hai; Ma, Xiao-Yan; Tian, Hong-Jun; Li, Gong-Ying

    2016-01-01

    Background: This study aimed to observe the differences in brain gray matter volume in drug-naive female patients after the first episode of major depression with and without stressful life events (SLEs) before the onset of depression. Methods: Forty-three drug-naive female patients voluntarily participated in the present study after the first major depressive episode. The life event scale was used to evaluate the severity of the impact of SLEs during 6 months before the onset of the major depressive episode. High-field magnetic resonance imaging (MRI) scans were obtained, and the VBM and SPM8 software process were used to process and analyze the MRI. Results: Compared to that in patients without SLEs, the volume of brain gray matter was lower in the bilateral temporal lobe, right occipital lobe, and right limbic lobe in the SLE group. However, the gray matter volume did not differ significantly between the two groups after the application of false discovery rate (FDR) correction. Conclusions: Although the results of the present study suggest the absence of significant differences in brain gray matter volume between female drug-naive patients after the first episode of major depression with and without SLEs after FDR correction, the study provides useful information for exploring the definitive role of stress in the onset of depression. PMID:26831228

  8. Surface area accounts for the relation of gray matter volume to reading-related skills and history of dyslexia.

    PubMed

    Frye, Richard E; Liederman, Jacqueline; Malmberg, Benjamin; McLean, John; Strickland, David; Beauchamp, Michael S

    2010-11-01

    It is unknown whether the abnormalities in brain structure and function observed in dyslexic readers are congenital or arise later in development. Analyzing the 2 components of gray matter volume separately may help in differentiating these possibilities. Gray matter volume is the product of cortical surface area, determined during prenatal brain development, and cortical thickness, determined during postnatal development. For this study, 16 adults with a history of phonological dyslexia and 16 age- and gender-matched controls underwent magnetic resonance imaging and an extensive battery of tests of reading-related skills. Cortical surface area and gray matter volume measures of the whole brain, the inferior frontal gyrus, and the fusiform gyrus were similarly related to phonological skills and a history of dyslexia. There was no relationship between cortical thickness and phonological skills or history of dyslexia. Because cortical surface area reflects cortical folding patterns determined prenatally, this suggests that brain differences in dyslexia are rooted in early cortical development and are not due to compensatory changes that occur during postnatal development and would be expected to influence cortical thickness. This study demonstrates the importance of examining the separate components of gray matter volume when studying developmental abnormalities. PMID:20154011

  9. Higher homocysteine associated with thinner cortical gray matter in 803 participants from the Alzheimer's Disease Neuroimaging Initiative.

    PubMed

    Madsen, Sarah K; Rajagopalan, Priya; Joshi, Shantanu H; Toga, Arthur W; Thompson, Paul M

    2015-01-01

    A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor, high-homocysteine levels in the blood, is known to increase risk for Alzheimer's disease and vascular disorders. Here, we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, and surface area) computed from brain magnetic resonance imaging in 803 elderly subjects from the Alzheimer's Disease Neuroimaging Initiative data set. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital, and right temporal regions and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, patients with mild cognitive impairment, or patients with Alzheimer's disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels. PMID:25444607

  10. The Association of Type 2 Diabetes Mellitus with Cerebral Gray Matter Volume Is Independent of Retinal Vascular Architecture and Retinopathy

    PubMed Central

    Moran, C.; Tapp, R. J.; Hughes, A. D.; Magnussen, C. G.; Blizzard, L.; Phan, T. G.; Beare, R.; Witt, N.; Venn, A.; Münch, G.; Amaratunge, B. C.; Srikanth, V.

    2016-01-01

    It is uncertain whether small vessel disease underlies the relationship between Type 2 Diabetes Mellitus (T2DM) and brain atrophy. We aimed to study whether retinal vascular architecture, as a proxy for cerebral small vessel disease, may modify or mediate the associations of T2DM with brain volumes. In this cross-sectional study using Magnetic Resonance Imaging (MRI) scans and retinal photographs in 451 people with and without T2DM, we measured brain volumes, geometric measures of retinal vascular architecture, clinical retinopathy, and MRI cerebrovascular lesions. There were 270 people with (mean age 67.3 years) and 181 without T2DM (mean age 72.9 years). T2DM was associated with lower gray matter volume (p = 0.008). T2DM was associated with greater arteriolar diameter (p = 0.03) and optimality ratio (p = 0.04), but these associations were attenuated by adjustments for age and sex. Only optimality ratio was associated with lower gray matter volume (p = 0.03). The inclusion of retinal measures in regression models did not attenuate the association of T2DM with gray matter volume. The association of T2DM with lower gray matter volume was independent of retinal vascular architecture and clinical retinopathy. Retinal vascular measures or retinopathy may not be sufficiently sensitive to confirm a microvascular basis for T2DM-related brain atrophy. PMID:27314049

  11. The Association of Type 2 Diabetes Mellitus with Cerebral Gray Matter Volume Is Independent of Retinal Vascular Architecture and Retinopathy.

    PubMed

    Moran, C; Tapp, R J; Hughes, A D; Magnussen, C G; Blizzard, L; Phan, T G; Beare, R; Witt, N; Venn, A; Münch, G; Amaratunge, B C; Srikanth, V

    2016-01-01

    It is uncertain whether small vessel disease underlies the relationship between Type 2 Diabetes Mellitus (T2DM) and brain atrophy. We aimed to study whether retinal vascular architecture, as a proxy for cerebral small vessel disease, may modify or mediate the associations of T2DM with brain volumes. In this cross-sectional study using Magnetic Resonance Imaging (MRI) scans and retinal photographs in 451 people with and without T2DM, we measured brain volumes, geometric measures of retinal vascular architecture, clinical retinopathy, and MRI cerebrovascular lesions. There were 270 people with (mean age 67.3 years) and 181 without T2DM (mean age 72.9 years). T2DM was associated with lower gray matter volume (p = 0.008). T2DM was associated with greater arteriolar diameter (p = 0.03) and optimality ratio (p = 0.04), but these associations were attenuated by adjustments for age and sex. Only optimality ratio was associated with lower gray matter volume (p = 0.03). The inclusion of retinal measures in regression models did not attenuate the association of T2DM with gray matter volume. The association of T2DM with lower gray matter volume was independent of retinal vascular architecture and clinical retinopathy. Retinal vascular measures or retinopathy may not be sufficiently sensitive to confirm a microvascular basis for T2DM-related brain atrophy. PMID:27314049

  12. Set-Shifting Ability Is Associated with Gray Matter Volume in Older People with Mild Cognitive Impairment

    PubMed Central

    Tsutsumimoto, Kota; Makizako, Hyuma; Shimada, Hiroyuki; Doi, Takehiko; Suzuki, Takao

    2015-01-01

    Background/Aims An understanding of the association between gray matter volume and executive functioning could provide strategies to reduce dementia risk in older people with mild cognitive impairment (MCI). Methods In a cross-sectional analysis, we assessed executive functioning in 83 older people with MCI using three standard neuropsychological tests: set shifting (difference between Trail Making Test Parts B and A), working memory (difference between Digit Span forward and backward from the Wechsler Adult Intelligence Scale-IV), and selective attention/response inhibition (difference between the second and third conditions of the color- and picture-word Stroop test). Gray matter volume was computed from brain MRIs and SIENAX from FSL software. Results Gray matter volume was significantly associated with set-shifting performance after accounting for age, gender, body mass index, education, and global cognition (standardized β = −0.376, p = 0.001), but not with working memory or selective attention/response inhibition. Conclusion The executive function of set-shifting ability was correlated with gray matter volume in older people with MCI. PMID:26628898

  13. Association between gray matter volume in the caudate nucleus and financial extravagance: findings from voxel-based morphometry.

    PubMed

    Yokoyama, Ryoichi; Nozawa, Takayuki; Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Hanihara, Mayu; Sassa, Yuko; Kawashima, Ryuta

    2014-03-20

    Consumer behavior differs among individuals; one such common individual difference is financial extravagance. Recent research suggests that the activation of the caudate nucleus plays an important role in consumer behavior. However, to the best of our knowledge, no study has investigated the specific relationship between the caudate nucleus and consumer financial extravagance. Therefore, in this study, we investigated the association between individual differences in financial extravagance and regional gray matter volume in the caudate nucleus by using voxel-based morphometry (VBM). We recruited 776 healthy, right-handed individuals (432 men and 344 women; mean age=20.7 ± 1.8) and used voxel-based morphometry and a financial extravagance questionnaire to determine the association between financial extravagance and gray matter structure in the caudate nucleus. Our measure of financial extravagance was based on the novelty seeking subscales of the Japanese version of the Temperament and Character Inventory. A multiple regression analysis including financial extravagance, age, sex, Raven's Advanced Progressive Matrix score, total intracranial volume, and novelty seeking subscales was conducted to examine what variables were related to regional gray matter volume in the region of interest within the caudate nucleus. A significant positive correlation was found between the obtained financial extravagance score and regional gray matter volume in the caudate nucleus. We found that structural variations in the caudate nucleus contributed to individual differences in financial extravagance. This finding may provide a new neuroscientific approach to understanding individual characteristics of consumers. PMID:24486253

  14. Gray Matter Density Negatively Correlates with Duration of Heroin Use in Young Lifetime Heroin-Dependent Individuals

    ERIC Educational Resources Information Center

    Yuan, Yi; Zhu, Zude; Shi, Jinfu; Zou, Zhiling; Yuan, Fei; Liu, Yijun; Lee, Tatia M. C.; Weng, Xuchu

    2009-01-01

    Numerous studies have documented cognitive impairments and hypoactivity in the prefrontal and anterior cingulate cortices in drug users. However, the relationships between opiate dependence and brain structure changes in heroin users are largely unknown. In the present study, we measured the density of gray matter (DGM) with voxel-based…

  15. Prolonged gray matter disease without demyelination caused by Theiler's murine encephalomyelitis virus with a mutation in VP2 puff B.

    PubMed

    Tsunoda, I; Wada, Y; Libbey, J E; Cannon, T S; Whitby, F G; Fujinami, R S

    2001-08-01

    Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons in the gray matter, infected mice developed a severe polioencephalomyelitis, and no virus is detected in the white matter or other areas in the CNS in rare survivors. Several sequence differences between the two viruses are located in VP2 puff B and VP1 loop II, which are located near each other, close to the proposed receptor binding site. We constructed a DA virus mutant, DApBL2M, which has the VP1 loop II of GDVII virus and a mutation at position 171 in VP2 puff B. While DApBL2M virus replicated less efficiently than DA virus during the acute phase, DApBL2M-induced acute polioencephalitis was comparable to that in DA virus infection. Interestingly, during the chronic phase, DApBL2M caused prolonged gray matter disease in the brain without white matter involvement in the spinal cord. This is opposite what is observed during wild-type DA virus infection. Our study is the first to demonstrate that conformational differences via interaction of VP2 puff B and VP1 loop II between GDVII and DA viruses can play an important role in making the transition of infection from the gray matter in the brain to the spinal cord white matter during TMEV infection. PMID:11462022

  16. Gray-Matter Volume, Midbrain Dopamine D2/D3 Receptors and Drug Craving in Methamphetamine Users

    PubMed Central

    Morales, Angelica A.; Kohno, Milky; Robertson, Chelsea L.; Dean, Andy C.; Mandelkern, Mark A.; London, Edythe D.

    2015-01-01

    Dysfunction of the mesocorticolimbic system plays a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [18F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, p<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum, and thalamus (p<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance use disorders. PMID:25896164

  17. Gray matter and intrinsic network changes in the posterior cingulate cortex after selective serotonin reuptake inhibitor intake.

    PubMed

    Kraus, Christoph; Ganger, Sebastian; Losak, Jan; Hahn, Andreas; Savli, Markus; Kranz, Georg S; Baldinger, Pia; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2014-01-01

    Preclinical studies have demonstrated that serotonin (5-HT) challenge changes neuronal circuitries and microarchitecture. However, evidence in human subjects is missing. Pharmacologic magnetic resonance imaging (phMRI) applying selective 5-HT reuptake inhibitors (SSRIs) and high-resolution structural and functional brain assessment is able to demonstrate the impact of 5-HT challenge on neuronal network morphology and functional activity. To determine how SSRIs induce changes in gray matter and neuronal activity, we conducted a longitudinal study using citalopram and escitalopram. Seventeen healthy subjects completed a structural and functional phMRI study with randomized, cross-over, placebo-controlled, double-blind design. Significant gray matter increases were observed (among other regions) in the posterior cingulate cortex (PCC) and the ventral precuneus after SSRI intake of 10days, while decreases were observed within the pre- and postcentral gyri (all P<0.05, family-wise error [FWE] corrected). Furthermore, enhanced resting functional connectivity (rFC) within the ventral precuneus and PCC was associated with gray matter increases in the PCC (all FWE Pcorr<0.05). Corroborating these results, whole-brain connectivity density, measuring the brain's functional network hubs, was significantly increased after SSRI-intake in the ventral precuneus and PCC (all FWE Pcorr<0.05). Short-term administration of SSRIs changes gray matter structures, consistent with previous work reporting enhancement of neuroplasticity by serotonergic neurotransmission. Furthermore, increased gray matter in the PCC is associated with increased functional connectivity in one of the brain's metabolically most active regions. Our novel findings provide convergent evidence for dynamic alterations of brain structure and function associated with SSRI pharmacotherapy. PMID:23988273

  18. Cognitive Enhancement Therapy Protects Against Gray Matter Loss in Early Schizophrenia: Results From a Two-Year Randomized Controlled Trial

    PubMed Central

    Eack, Shaun M.; Hogarty, Gerard E.; Cho, Raymond Y.; Prasad, Konasale M. R.; Greenwald, Deborah P.; Hogarty, Susan S.; Keshavan, Matcheri S.

    2013-01-01

    Context Cognitive rehabilitation has shown efficacy for improving cognition in patients with schizophrenia, but the underlying neurobiologic changes that occur during these treatments and support cognitive improvement are not well known. Objective To examine differential changes in brain morphology in early schizophrenia during cognitive rehabilitation versus supportive therapy. Design A 2-year, randomized-controlled trial with annual structural magnetic resonance imaging and cognitive assessments. Setting An outpatient research clinic at a university-based medical center providing comprehensive care services for patients with severe mental illness. Patients A total of 53 symptomatically stable, but cognitively disabled outpatients in the early course of schizophrenia or schizoaffective disorder. Interventions Cognitive enhancement therapy is an integrated approach to the remediation of cognitive impairments in schizophrenia that utilizes computer-assisted neurocognitive training and group-based social-cognitive exercises. Enriched supportive therapy is an illness management approach that provides psychoeducation and teaches applied coping strategies. Main Outcome Measures Broad areas of frontal and temporal gray matter change were analyzed using longitudinal voxel-based morphometry methods employing mixed-effects models, followed by volumetric analyses of regions demonstrating significant differential changes between treatment groups. Results Patients receiving cognitive enhancement therapy demonstrated significantly greater preservation of gray matter volume over the course of two years in the left hippocampus, parahippocampal gyrus, and fusiform gyrus, and significantly greater gray matter increases in the left amygdala (all corrected P < .040), compared with those receiving enriched supportive therapy. Less gray matter loss in the left parahippocampal and fusiform gyrus, and greater gray matter increases in the left amygdala were significantly related to

  19. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China.

    PubMed

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca(2+) were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca(2+). Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95 g.kg(-1)). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca(2+) to DOM, application of chemical fertilizers weakened Ca(2+) association with components of the amide II group (1510 cm(-1)) and Si-O linkage (1080 cm(-1)), whereas application of goat manure enhanced the affinity of Ca(2+) for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca(2+) and organic matter complexes. PMID:26751962

  20. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China

    PubMed Central

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca2+ were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca2+. Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95g.kg-1). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca2+ to DOM, application of chemical fertilizers weakened Ca2+ association with components of the amide II group (1510 cm-1) and Si-O linkage (1080 cm-1), whereas application of goat manure enhanced the affinity of Ca2+ for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca2+ and organic matter complexes. PMID:26751962

  1. Significance of gray matter brain lesions in multiple sclerosis and neuromyelitis optica.

    PubMed

    Kawachi, Izumi; Nishizawa, Masatoyo

    2015-10-01

    Multiple sclerosis (MS) and neuromyelitis optica (NMO) are the two main autoimmune diseases of the CNS. In patients with NMO, the target antigen is aquaporin-4 (AQP4), the most abundant water channel protein in the CNS. AQP4 is mainly expressed on astrocytic endfoot processes at the blood-brain barrier and in subpial and subendymal regions. MS and NMO are distinct diseases, but they have some common clinical features: both have long been considered autoimmune diseases that primarily affect the white matter (WM). However, because WM demyelination by itself cannot explain the full extent of the clinical disabilities, including cognitive decline in patients with MS and NMO, renewed interest in gray matter (GM) pathology in MS and NMO is emerging. Important hallmarks of WM and GM lesions in MS and NMO may differentially influence neuronal degeneration and demyelination in the brain and spinal cord, given different detrimental effects, including cytokine diffusion, disruption of water homeostasis associated with or without AQP4 (the target antigen in NMO) dynamics, or other unidentified mechanisms. An increase in knowledge of the structure of GM and WM lesions in MS and NMO will result in more targeted therapeutic approaches to these two diseases. PMID:26079808

  2. Volumetric and fiber-tracing MRI methods for gray and white matter.

    PubMed

    Larvie, Mykol; Fischl, Bruce

    2016-01-01

    Magnetic resonance imaging (MRI) is capable of generating high-resolution brain images with fine anatomic detail and unique tissue contrasts that reveal structures that are not visible to the eye. Sharply defined gray- and white-matter interfaces allow for quantitative anatomic analysis that can be accurately performed with largely automated segmentation methods. In an analogous fashion, diffusion MRI in the brain provides structural information based on contrasts derived from the diffusivity of water in brain tissue, which can highlight the orientation of neuronal axons. Also using largely automated methods, diffusion MRI can be used to generate models of white-matter tracts throughout the brain, a method known as tractography, as well as characterize the microstructural integrity of neuronal axons. Tractographic analysis has helped to define connectivity in the brain that powerfully informs understanding of brain function, and, together with other diffusion metrics, is useful in evaluation of the normal and diseased brain. The quantitative methods of brain segmentation, tractography, and diffusion MRI extend MRI into a realm beyond visual inspection and provide otherwise unachievable sensitivity and specificity in the analysis of brain structure and function. PMID:27432659

  3. Decreased NAA in Gray Matter is Correlated with Decreased Availability of Acetate in White Matter in Postmortem Multiple Sclerosis Cortex

    PubMed Central

    Li, S.; Clements, R.; Sulak, M.; Gregory, R.; Freeman, E.; McDonough, J.

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system (CNS) which leads to progressive neurological disability. Our previous studies have demonstrated mitochondrial involvement in MS cortical pathology and others have documented decreased levels of the neuronal mitochondrial metabolite N-acetyl aspartate (NAA) in the MS brain. While NAA is synthesized in neurons, it is broken down in oligodendrocytes into aspartate and acetate. The resulting acetate is incorporated into myelin lipids, linking neuronal mitochondrial function to oligodendrocyte-mediated elaboration of myelin lipids in the CNS. In the present study we show that treating human SH-SY5Y neuroblastoma cells with the electron transport chain inhibitor antimycin A decreased levels of NAA as measured by HPLC. To better understand the significance of the relationship between mitochondrial function and levels of NAA and its breakdown product acetate on MS pathology we then quantitated the levels of NAA and acetate in MS and control postmortem tissue blocks. Regardless of lesion status, we observed that levels of NAA were decreased 25 and 32 % in gray matter from parietal and motor cortex in MS, respectively, compared to controls. Acetate levels in adjacent white matter mirrored these decreases as evidenced by the 36 and 45 % reduction in acetate obtained from parietal and motor cortices. These data suggest a novel mechanism whereby mitochondrial dysfunction and reduced NAA levels in neurons may result in compromised myelination by oligodendrocytes due to decreased availability of acetate necessary for the synthesis of myelin lipids. PMID:24078261

  4. Gray and white matter structures in the midcingulate cortex region contribute to body mass index in Chinese young adults.

    PubMed

    He, Qinghua; Chen, Chuansheng; Dong, Qi; Xue, Gui; Chen, Chunhui; Lu, Zhong-Lin; Bechara, Antoine

    2015-01-01

    Overweight and obesity are rapidly becoming a central public health challenge around the world. Previous studies have suggested that elevated Body Mass Index (BMI) might be associated with structural changes in both gray and white matter, but this association is still not well understood. The present study aimed to investigate the relationship between BMI and brain structure with a relatively large sample of young adults (N = 336) in a small age range (20 ± 1 years). Voxel-based morphometry results showed significant negative correlations between BMI and gray-matter volumes in the midcingulate cortex (MCC), left orbital frontal cortex, and left ventromedial prefrontal cortex. There was also a significant negative correlation between BMI and white matter integrity as indexed by fractional anisotropy in bilateral cingulum. Further tractography analysis showed a significant negative correlation between BMI and the number of fibers passing the MCC region. Regression analysis showed that gray matter and white matter in these regions both contributed to the variance of BMI. These results remained significant even when analysis was restricted to the subjects with normal weights. Finally, we found that decision-making ability (as assessed by the Iowa Gambling Task) mediated the association between the structure of the MCC (a region responsible for impulse control and decision making) and BMI. These results shed light on the structural neural basis of weight variations. PMID:24146133

  5. Gray and White Matter Structures in the Midcingulate Cortex Region Contribute to Body Mass Index in Chinese Young Adults

    PubMed Central

    He, Qinghua; Chen, Chuansheng; Dong, Qi; Xue, Gui; Chen, Chunhui; Lu, Zhong-Lin; Bechara, Antoine

    2014-01-01

    Overweight and obesity are rapidly becoming a central public health challenge around the world. Previous studies have suggested that elevated Body Mass Index (BMI) might be associated with structural changes in both gray and white matter, but this association is still not well understood. The present study aimed to investigate the relationship between BMI and brain structure with a relatively large sample of young adults (N = 336) in a small age range (20 ± 1 years). VBM results showed significant negative correlations between BMI and Gray Matter Volumes (GMV) in the MCC, left OFC, and left VMPFC. There was also a significant negative correlation between BMI and white matter integrity as indexed by fractional anisotropy (FA) in bilateral cingulum. Further tractography analysis showed a significant negative correlation between BMI and the number of fibers passing the MCC region. Regression analysis showed that gray matter and white matter in these regions both contributed to the variance of BMI. These results remained significant even when analysis was restricted to the subjects with normal-weights. Finally, we found that decision making ability (as assessed by the Iowa Gambling Task) mediated the association between the structure of the MCC (a region responsible for impulse control and decision making) and BMI. These results shed light on the structural neural basis of weight variations. PMID:24146133

  6. The Plasticity of Brain Gray Matter and White Matter following Lower Limb Amputation

    PubMed Central

    Jiang, Guangyao; Yin, Xuntao; Li, Chuanming; Li, Lei; Zhao, Lu; Evans, Alan C.; Jiang, Tianzi; Wu, Jixiang; Wang, Jian

    2015-01-01

    Accumulating evidence has indicated that amputation induces functional reorganization in the sensory and motor cortices. However, the extent of structural changes after lower limb amputation in patients without phantom pain remains uncertain. We studied 17 adult patients with right lower limb amputation and 18 healthy control subjects using T1-weighted magnetic resonance imaging and diffusion tensor imaging. Cortical thickness and fractional anisotropy (FA) of white matter (WM) were investigated. In amputees, a thinning trend was seen in the left premotor cortex (PMC). Smaller clusters were also noted in the visual-to-motor regions. In addition, the amputees also exhibited a decreased FA in the right superior corona radiata and WM regions underlying the right temporal lobe and left PMC. Fiber tractography from these WM regions showed microstructural changes in the commissural fibers connecting the bilateral premotor cortices, compatible with the hypothesis that amputation can lead to a change in interhemispheric interactions. Finally, the lower limb amputees also displayed significant FA reduction in the right inferior frontooccipital fasciculus, which is negatively correlated with the time since amputation. In conclusion, our findings indicate that the amputation of lower limb could induce changes in the cortical representation of the missing limb and the underlying WM connections. PMID:26587289

  7. The Plasticity of Brain Gray Matter and White Matter following Lower Limb Amputation.

    PubMed

    Jiang, Guangyao; Yin, Xuntao; Li, Chuanming; Li, Lei; Zhao, Lu; Evans, Alan C; Jiang, Tianzi; Wu, Jixiang; Wang, Jian

    2015-01-01

    Accumulating evidence has indicated that amputation induces functional reorganization in the sensory and motor cortices. However, the extent of structural changes after lower limb amputation in patients without phantom pain remains uncertain. We studied 17 adult patients with right lower limb amputation and 18 healthy control subjects using T1-weighted magnetic resonance imaging and diffusion tensor imaging. Cortical thickness and fractional anisotropy (FA) of white matter (WM) were investigated. In amputees, a thinning trend was seen in the left premotor cortex (PMC). Smaller clusters were also noted in the visual-to-motor regions. In addition, the amputees also exhibited a decreased FA in the right superior corona radiata and WM regions underlying the right temporal lobe and left PMC. Fiber tractography from these WM regions showed microstructural changes in the commissural fibers connecting the bilateral premotor cortices, compatible with the hypothesis that amputation can lead to a change in interhemispheric interactions. Finally, the lower limb amputees also displayed significant FA reduction in the right inferior frontooccipital fasciculus, which is negatively correlated with the time since amputation. In conclusion, our findings indicate that the amputation of lower limb could induce changes in the cortical representation of the missing limb and the underlying WM connections. PMID:26587289

  8. Cognitive correlates of gray matter abnormalities in adolescent siblings of patients with childhood-onset schizophrenia

    PubMed Central

    Wagshal, Dana; Knowlton, Barbara Jean; Cohen, Jessica Rachel; Bookheimer, Susan Yost; Bilder, Robert Martin; Fernandez, Vindia Gisela; Asarnow, Robert Franklin

    2015-01-01

    Patients with childhood onset schizophrenia (COS) display widespread gray matter (GM) structural brain abnormalities. Healthy siblings of COS patients share some of these structural abnormalities, suggesting that GM abnormalities are endophenotypes for schizophrenia. Another possible endophenotype for schizophrenia that has been relatively unexplored is corticostriatal dysfunction. The corticostriatal system plays an important role in skill learning. Our previous studies have demonstrated corticostriatal dysfunction in COS siblings with a profound skill learning deficit and abnormal pattern of brain activation during skill learning. This study investigated whether structural abnormalities measured using volumetric brain morphometry (VBM) were present in siblings of COS patients and whether these were related to deficits in cognitive skill learning. Results revealed smaller GM volume in COS siblings relative to controls in a number of regions, including occipital, parietal, and subcortical regions including the striatum, and greater GM volume relative to controls in several subcortical regions. Volume in the right superior frontal gyrus and cerebellum were related to performance differences between groups on the weather prediction task, a measure of cognitive skill learning. Our results support the idea that corticostriatal and cerebellar impairment in unaffected siblings of COS patients are behaviorally relevant and may reflect genetic risk for schizophrenia. PMID:25541139

  9. Interindividual differences in cognitive flexibility: influence of gray matter volume, functional connectivity and trait impulsivity

    PubMed Central

    Langner, Robert; Cieslik, Edna C.; Rottschy, Claudia; Eickhoff, Simon B.

    2016-01-01

    Cognitive flexibility, a core aspect of executive functioning, is required for the speeded shifting between different tasks and sets. Using an interindividual differences approach, we examined whether cognitive flexibility, as assessed by the Delis–Kaplan card-sorting test, is associated with gray matter volume (GMV) and functional connectivity (FC) of regions of a core network of multiple cognitive demands as well as with different facets of trait impulsivity. The core multiple-demand network was derived from three large-scale neuroimaging meta-analyses and only included regions that showed consistent associations with sustained attention, working memory as well as inhibitory control. We tested to what extent self-reported impulsivity as well as GMV and resting-state FC in this core network predicted cognitive flexibility independently and incrementally. Our analyses revealed that card-sorting performance correlated positively with GMV of the right anterior insula, FC between bilateral anterior insula and midcingulate cortex/supplementary motor area as well as the impulsivity dimension “Premeditation.” Importantly, GMV, FC and impulsivity together accounted for more variance of card-sorting performance than every parameter alone. Our results therefore indicate that various factors contribute individually to cognitive flexibility, underlining the need to search across multiple modalities when aiming to unveil the mechanisms behind executive functioning. PMID:24878823

  10. The Cortical Signature of Central Poststroke Pain: Gray Matter Decreases in Somatosensory, Insular, and Prefrontal Cortices.

    PubMed

    Krause, T; Asseyer, S; Taskin, B; Flöel, A; Witte, A V; Mueller, K; Fiebach, J B; Villringer, K; Villringer, A; Jungehulsing, G J

    2016-01-01

    It has been proposed that cortical structural plasticity plays a crucial role in the emergence and maintenance of chronic pain. Various distinct pain syndromes have accordingly been linked to specific patterns of decreases in regional gray matter volume (GMV). However, it is not known whether central poststroke pain (CPSP) is also associated with cortical structural plasticity. To determine this, we employed T1-weighted magnetic resonance imaging at 3 T and voxel-based morphometry in 45 patients suffering from chronic subcortical sensory stroke with (n = 23) and without CPSP (n = 22), and healthy matched controls (n = 31). CPSP patients showed decreases in GMV in comparison to healthy controls, involving secondary somatosensory cortex (S2), anterior as well as posterior insular cortex, ventrolateral prefrontal and orbitofrontal cortex, temporal cortex, and nucleus accumbens. Comparing CPSP patients to nonpain patients revealed a similar but more restricted pattern of atrophy comprising S2, ventrolateral prefrontal and temporal cortex. Additionally, GMV in the ventromedial prefrontal cortex negatively correlated to pain intensity ratings. This shows for the first time that CPSP is accompanied by a unique pattern of widespread structural plasticity, which involves the sensory-discriminative areas of insular/somatosensory cortex, but also expands into prefrontal cortex and ventral striatum, where emotional aspects of pain are processed. PMID:25129889

  11. The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder

    PubMed Central

    Wang, Hongmei; Jin, Chenwang; Yuan, Kai; Shakir, Tahir Mehmood; Mao, Cuiping; Niu, Xuan; Niu, Chen; Guo, Liping; Zhang, Ming

    2015-01-01

    Objective: Internet gaming disorder (IGD) has been investigated by many behavioral and neuroimaging studies, for it has became one of the main behavior disorders among adolescents. However, few studies focused on the relationship between alteration of gray matter volume (GMV) and cognitive control feature in IGD adolescents. Methods: Twenty-eight participants with IAD and twenty-eight healthy age and gender matched controls participated in the study. Brain morphology of adolescents with IGD and healthy controls was investigated using an optimized voxel-based morphometry (VBM) technique. Cognitive control performances were measured by Stroop task, and correlation analysis was performed between brain structural change and behavioral performance in IGD group. Results: The results showed that GMV of the bilateral anterior cingulate cortex (ACC), precuneus, supplementary motor area (SMA), superior parietal cortex, left dorsal lateral prefrontal cortex (DLPFC), left insula, and bilateral cerebellum decreased in the IGD participants compared with healthy controls. Moreover, GMV of the ACC was negatively correlated with the incongruent response errors of Stroop task in IGD group. Conclusion: Our results suggest that the alteration of GMV is associated with the performance change of cognitive control in adolescents with IGD, which indicating substantial brain image effects induced by IGD. PMID:25852507

  12. Gray and white matter volume abnormalities in generalized anxiety disorder by categorical and dimensional characterization.

    PubMed

    Hilbert, Kevin; Pine, Daniel S; Muehlhan, Markus; Lueken, Ulrike; Steudte-Schmiedgen, Susann; Beesdo-Baum, Katja

    2015-12-30

    Increasing efforts have been made to investigate the underlying pathophysiology of generalized anxiety disorder (GAD), but only limited consistent information is available on gray (GM) and white matter (WM) volume changes in affected adults. Additionally, few studies employed dimensional approaches to GAD pathology. This study compares structural brain imaging data from n=19 GAD subjects and n=24 healthy comparison (HC) subjects, all medication-free and matched on age, sex and education. Separate categorical and dimensional models were employed using voxel-based morphometry for GM and WM. Significantly higher GM volumes were found in GAD subjects mainly in basal ganglia structures and less consistently in the superior temporal pole. For WM, GAD subjects showed significantly lower volumes in the dlPFC. Largely consistent findings in dimensional and categorical models point toward these structural alterations being reliable and of importance for GAD. While lower volume in the dlPFC could reflect impaired emotional processing and control over worry in GAD, basal ganglia alterations may be linked to disturbed gain and loss anticipation as implicated in previous functional GAD studies. As perturbations in anticipation processes are central to GAD, these areas may warrant greater attention in future studies. PMID:26490569

  13. Gray matter decrease distribution in the early stages of Anorexia Nervosa restrictive type in adolescents.

    PubMed

    Gaudio, Santino; Nocchi, Federico; Franchin, Tiziana; Genovese, Elisabetta; Cannatà, Vittorio; Longo, Daniela; Fariello, Giuseppe

    2011-01-30

    Few studies have used Voxel-Based Morphometry (VBM) to examine brain structure in Anorexia Nervosa patients. The purpose of the present study was to investigate a sample of Anorexia Nervosa restrictive type (AN-r) adolescent patients in the early stages of the illness, using VBM in order to characterize morphometric gray matter (GM) changes. Participants were 16 AN-r female patients (with no other psychiatric disorders) whose AN-r had been in progress for less than 12 months and 16 age-matched healthy female subjects. High-resolution T1-weighted magnetic resonance images were preprocessed according to the optimized VBM method, and statistically analyzed. The analyses revealed a significant global GM decrease in the AN-r patients; furthermore, a significant region-specific decrease in GM volume was found bilaterally in the middle cingulate cortex, the precuneus, and the inferior and superior parietal lobules. The significant early GM decrease in the aforementioned regions in AN-r adolescent patients suggests that there might be a region-specific GM vulnerability that could play a role in the pathophysiology of the disease. Given that these regions are also involved in the manipulation of mental images and the mental representation of the self, this might explain the presence of a distorted body image in these patients. PMID:21081268

  14. Anorexia Nervosa during Adolescence Is Associated with Decreased Gray Matter Volume in the Inferior Frontal Gyrus

    PubMed Central

    Mabe, Hiroyo; Yamada, Eiji; Masuda, Masato; Tomoda, Akemi

    2015-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by the relentless pursuit to lose weight, mostly through self-starvation, and a distorted body image. AN tends to begin during adolescence among women. However, the underlying neural mechanisms related to AN remain unclear. Using voxel-based morphometry based on magnetic resonance imaging scans, we investigated whether the presence of AN was associated with discernible changes in brain morphology. Participants were 20 un-medicated, right-handed patients with early-onset AN and 14 healthy control subjects. Group differences in gray matter volume (GMV) were assessed using high-resolution, T1-weighted, volumetric magnetic resonance imaging datasets (3T Trio scanner; Siemens AG) and analyzed after controlling for age and total GMV, which was decreased in the bilateral inferior frontal gyrus (IFG) (left IFG: FWE corrected, p < 0.05; right IFG: uncorrected, p < 0.05) of patients with AN. The GMV in the bilateral IFG correlated significantly with current age (left IFG: r = -.481, p < .05; right IFG: r = -.601, p < .01) and was limited to the AN group. We speculate that decreased IFG volume might lead to deficits in executive functioning or inhibitory control within neural reward systems. Precocious or unbalanced neurological trimming within this particular region might be an important factor for the pathogenesis of AN onset. PMID:26067825

  15. The correlation between emotional intelligence and gray matter volume in university students.

    PubMed

    Tan, Yafei; Zhang, Qinglin; Li, Wenfu; Wei, Dongtao; Qiao, Lei; Qiu, Jiang; Hitchman, Glenn; Liu, Yijun

    2014-11-01

    A number of recent studies have investigated the neurological substrates of emotional intelligence (EI), but none of them have considered the neural correlates of EI that are measured using the Schutte Self-Report Emotional Intelligence Scale (SSREIS). This scale was developed based on the EI model of Salovey and Mayer (1990). In the present study, SSREIS was adopted to estimate EI. Meanwhile, magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) were used to evaluate the gray matter volume (GMV) of 328 university students. Results found positive correlations between Monitor of Emotions and VBM measurements in the insula and orbitofrontal cortex. In addition, Utilization of Emotions was positively correlated with the GMV in the parahippocampal gyrus, but was negatively correlated with the VBM measurements in the fusiform gyrus and middle temporal gyrus. Furthermore, Social Ability had volume correlates in the vermis. These findings indicate that the neural correlates of the EI model, which primarily focuses on the abilities of individuals to appraise and express emotions, can also regulate and utilize emotions to solve problems. PMID:25282329

  16. Connectivity‐based segmentation of the periaqueductal gray matter in human with brainstem optimized diffusion MRI

    PubMed Central

    Faull, Olivia Kate; Jbabdi, Saad; Pattinson, Kyle Thomas

    2015-01-01

    Abstract The periaqueductal gray matter (PAG) is a midbrain structure, involved in key homeostatic neurobiological functions, such as pain modulation and cardiorespiratory control. Animal research has identified four subdivisional columns that differ in both connectivity and function. Until now these findings have not been replicated in humans. This study used high‐resolution brainstem optimized diffusion magnetic resonance imaging and probabilistic tractography to segment the human PAG into four subdivisions, based on voxel connectivity profiles. We identified four distinct subdivisions demonstrating high spatial concordance with the columns of the animal model. The resolution of these subdivisions for individual subjects permitted detailed examination of their structural connectivity without the requirement of an a priori starting location. Interestingly patterns of forebrain connectivity appear to be different to those found in nonhuman studies, whereas midbrain and hindbrain connectivity appears to be maintained. Although there are similarities in the columnar structure of the PAG subdivisions between humans and nonhuman animals, there appears to be different patterns of cortical connectivity. This suggests that the functional organization of the PAG may be different between species, and as a consequence, functional studies in nonhumans may not be directly translatable to humans. This highlights the need for focused functional studies in humans. Hum Brain Mapp 36:3459–3471, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26138504

  17. Prediction of antidepressant treatment response from gray matter volume across diagnostic categories.

    PubMed

    Sämann, Philipp G; Höhn, David; Chechko, Natalya; Kloiber, Stefan; Lucae, Susanne; Ising, Marcus; Holsboer, Florian; Czisch, Michael

    2013-11-01

    Dysfunctional limbic, paralimbic and prefrontal brain circuits represent neural substrates of major depression that are targeted by pharmacotherapy. In a high resolution structural magnetic resonance imaging (MRI) study we investigated the potential of variability of the cortex volume to predict the response to antidepressant treatment among patients with major depression. We enrolled 167 patients participating in the Munich Antidepressant Response Signature (MARS) study and employed voxel based morphometry to investigate covariation of gray matter (GM) maps with changes of depression severity over 5 weeks. Larger left hippocampal and bilateral posterior cingulate GM volumes and lower right temporolateral GM volumes were associated with beneficial treatment response. Subcallosal/orbitofrontal GM volumes were associated with treatment response mainly through gender-by-region interactions. A hippocampal/temporolateral composite marker proved robust in both first episode and recurrent unipolar patients and in bipolar patients. Compared with 92 healthy controls, abnormally low volumes were only detected in the left hippocampal area, particularly in recurrent unipolar patients. These findings indicate that variability of the cortex volume of specific brain areas is associated with different response to antidepressants. In addition, hippocampal findings recursively link together unfavorable treatment response and progressive hippocampal structural changes in recurrent depression. PMID:23920122

  18. Gray matter correlates of creative potential: a latent variable voxel-based morphometry study.

    PubMed

    Jauk, Emanuel; Neubauer, Aljoscha C; Dunst, Beate; Fink, Andreas; Benedek, Mathias

    2015-05-01

    There is increasing research interest in the structural and functional brain correlates underlying creative potential. Recent investigations found that interindividual differences in creative potential relate to volumetric differences in brain regions belonging to the default mode network, such as the precuneus. Yet, the complex interplay between creative potential, intelligence, and personality traits and their respective neural bases is still under debate. We investigated regional gray matter volume (rGMV) differences that can be associated with creative potential in a heterogeneous sample of N=135 individuals using voxel-based morphometry (VBM). By means of latent variable modeling and consideration of recent psychometric advancements in creativity research, we sought to disentangle the effects of ideational originality and fluency as two independent indicators of creative potential. Intelligence and openness to experience were considered as common covariates of creative potential. The results confirmed and extended previous research: rGMV in the precuneus was associated with ideational originality, but not with ideational fluency. In addition, we found ideational originality to be correlated with rGMV in the caudate nucleus. The results indicate that the ability to produce original ideas is tied to default-mode as well as dopaminergic structures. These structural brain correlates of ideational originality were apparent throughout the whole range of intellectual ability and thus not moderated by intelligence. In contrast, structural correlates of ideational fluency, a quantitative marker of creative potential, were observed only in lower intelligent individuals in the cuneus/lingual gyrus. PMID:25676914

  19. Altered Gray Matter Structural Covariance Networks in Early Stages of Alzheimer's Disease.

    PubMed

    Montembeault, Maxime; Rouleau, Isabelle; Provost, Jean-Sébastien; Brambati, Simona Maria

    2016-06-01

    Clinical symptoms observed in Alzheimer's disease (AD) patients may reflect variations within specific large-scale brain networks, modeling AD as a disconnection syndrome. The present magnetic resonance imaging study aims to compare the organization of gray matter structural covariance networks between 109 cognitively unimpaired controls (CTRL) and 109 AD patients positive to beta-amyloid at the early stages of the disease, using voxel-based morphometry. The default-mode network (DMN; medial temporal lobe subsystem) was less extended in AD patients in comparison with CTRL, with a significant decrease in the structural association between the entorhinal cortex and the medial prefrontal and the dorsolateral prefrontal cortices. The DMN (midline core subsystem) was also less extended in AD patients. Trends toward increased structural association were observed in the salience and executive control networks. The observed changes suggest that early disruptions in structural association between heteromodal association cortices and the entorhinal cortex could contribute to an isolation of the hippocampal formation, potentially giving rise to the clinical hallmark of AD, progressive memory impairment. It also provides critical support to the hypothesis that the reduced connectivity within the DMN in early AD is accompanied by an enhancement of connectivity in the salience and executive control networks. PMID:25994962

  20. Gray matter correlates of creative potential: A latent variable voxel-based morphometry study

    PubMed Central

    Jauk, Emanuel; Neubauer, Aljoscha C.; Dunst, Beate; Fink, Andreas; Benedek, Mathias

    2015-01-01

    There is increasing research interest in the structural and functional brain correlates underlying creative potential. Recent investigations found that interindividual differences in creative potential relate to volumetric differences in brain regions belonging to the default mode network, such as the precuneus. Yet, the complex interplay between creative potential, intelligence, and personality traits and their respective neural bases is still under debate. We investigated regional gray matter volume (rGMV) differences that can be associated with creative potential in a heterogeneous sample of N = 135 individuals using voxel-based morphometry (VBM). By means of latent variable modeling and consideration of recent psychometric advancements in creativity research, we sought to disentangle the effects of ideational originality and fluency as two independent indicators of creative potential. Intelligence and openness to experience were considered as common covariates of creative potential. The results confirmed and extended previous research: rGMV in the precuneus was associated with ideational originality, but not with ideational fluency. In addition, we found ideational originality to be correlated with rGMV in the caudate nucleus. The results indicate that the ability to produce original ideas is tied to default-mode as well as dopaminergic structures. These structural brain correlates of ideational originality were apparent throughout the whole range of intellectual ability and thus not moderated by intelligence. In contrast, structural correlates of ideational fluency, a quantitative marker of creative potential, were observed only in lower intelligent individuals in the cuneus/lingual gyrus. PMID:25676914

  1. Cognitive impairment and gray matter volume abnormalities in silent cerebral infarction.

    PubMed

    Yang, Tao; Zhang, Lan; Xiang, Mingqing; Luo, Wei; Huang, Jinbai; Li, Maokun; Xiong, Xunbo; Wang, Hua

    2015-10-21

    To investigate the association between cognitive impairment and gray matter volume (GMV) abnormalities in silent cerebral infarction (SCI) patients, the GMV of 62 pairs of patients and well-matched healthy controls was calculated. All participants underwent a P300 test, a Montreal Cognitive Assessment (MoCA) test. Compared with controls, the patients showed decreased GMV in the left superior frontal gyrus, left inferior frontal gyrus, left superior temporal gyrus, right middle temporal gyrus, and bilateral parahippocampal gyrus; no significantly increasing GMV was found. The volumes of the frontal and temporal lobes were positively correlated with the score of the MoCA scale and P300 amplitudes (r≥0.62, P<0.01). The P300 latency was negatively correlated with the volumes of the frontal lobe, the temporal lobe, and the hippocampus (r≤-0.71, P<0.05). No significant correlations between the GMV of the abnormal brain regions and four clinical characteristics in SCI patients were found, suggesting that cognitive deficiency existed in SCI patients and the reduced GMV might contribute to the pathology of cognitive deficiency in SCI patients. PMID:26313037

  2. Side of Limb-Onset Predicts Laterality of Gray Matter Loss in Amyotrophic Lateral Sclerosis

    PubMed Central

    Mao, Cuiping; Jin, Jiaoting; Niu, Chen; Dang, Jingxia

    2014-01-01

    Conflicting findings have been reported regarding the lateralized brain abnormality in patients with amyotrophic lateral sclerosis (ALS). In this study, we aimed to investigate the probable lateralization of gray matter (GM) atrophy in ALS patients. We focused on the relationship between the asymmetry in decreased GM volume and the side of disease onset in patients with limb-onset. Structural imaging evaluation of normalized atrophy (SIENAX) and voxel-based morphometry (VBM) were used to assess differences in global and local brain regions in patients with heterogeneous body onset and subgroups with different side of limb-onset. We found global brain atrophy and GM losses in the frontal and parietal areas in each patient group as well as left predominant GM losses in the total cohort. The intriguing findings in subgroup analyses demonstrated that the motor cortex in the contralateral hemisphere of the initially involved limb was most affected. We also found that regional brain atrophy was related to disease progression rate. Our observations suggested that side of limb-onset can predict laterality of GM loss in ALS patients and disease progression correlates with the extent of cortical abnormality. PMID:25093168

  3. Sleep reverts changes in human gray and white matter caused by wake-dependent training.

    PubMed

    Bernardi, Giulio; Cecchetti, Luca; Siclari, Francesca; Buchmann, Andreas; Yu, Xiaoqian; Handjaras, Giacomo; Bellesi, Michele; Ricciardi, Emiliano; Kecskemeti, Steven R; Riedner, Brady A; Alexander, Andrew L; Benca, Ruth M; Ghilardi, M Felice; Pietrini, Pietro; Cirelli, Chiara; Tononi, Giulio

    2016-04-01

    Learning leads to rapid microstructural changes in gray (GM) and white (WM) matter. Do these changes continue to accumulate if task training continues, and can they be reverted by sleep? We addressed these questions by combining structural and diffusion weighted MRI and high-density EEG in 16 subjects studied during the physiological sleep/wake cycle, after 12h and 24h of intense practice in two different tasks, and after post-training sleep. Compared to baseline wake, 12h of training led to a decline in cortical mean diffusivity. The decrease became even more significant after 24h of task practice combined with sleep deprivation. Prolonged practice also resulted in decreased ventricular volume and increased GM and WM subcortical volumes. All changes reverted after recovery sleep. Moreover, these structural alterations predicted cognitive performance at the individual level, suggesting that sleep's ability to counteract performance deficits is linked to its effects on the brain microstructure. The cellular mechanisms that account for the structural effects of sleep are unknown, but they may be linked to its role in promoting the production of cerebrospinal fluid and the decrease in synapse size and strength, as well as to its recently discovered ability to enhance the extracellular space and the clearance of brain metabolites. PMID:26812659

  4. Effects of multitasking-training on gray matter structure and resting state neural mechanisms

    PubMed Central

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Hashizume, Hiroshi; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Sassa, Yuko; Kawashima, Ryuta

    2014-01-01

    Multitasking (MT) constitutes engaging in two or more cognitive activities at the same time. MT-training improves performance on untrained MT tasks and alters the functional activity of the brain during MT. However, the effects of MT-training on neural mechanisms beyond MT-related functions are not known. We investigated the effects of 4 weeks of MT-training on regional gray matter volume (rGMV) and functional connectivity during rest (resting-FC) in young human adults. MT-training was associated with increased rGMV in three prefrontal cortical regions (left lateral rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC), and left inferior frontal junction), the left posterior parietal cortex, and the left temporal and lateral occipital areas as well as decreased resting-FC between the right DLPFC and an anatomical cluster around the ventral anterior cingulate cortex (ACC). Our findings suggest that participation in MT-training is as a whole associated with task-irrelevant plasticity (i.e., neural changes are not limited to certain specific task conditions) in regions and the network that are assumed to play roles in MT as well as diverse higher-order cognitive functions. We could not dissociate the effects of each task component and the diverse cognitive processes involved in MT because of the nature of the study, and these remain to be investigated. Hum Brain Mapp 35:3646–3660, 2014. © 2013 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:24343872

  5. Voxel-Wise Meta-Analysis of Gray Matter Changes in Amyotrophic Lateral Sclerosis

    PubMed Central

    Shen, Dongchao; Cui, Liying; Fang, Jia; Cui, Bo; Li, Dawei; Tai, Hongfei

    2016-01-01

    Background: Increasing neuroimaging studies have revealed gray matter (GM) anomalies of several brain regions by voxel-based morphometry (VBM) studies in patients with amyotrophic lateral sclerosis (ALS). A voxel-wise meta-analysis was conducted to integrate the reported studies to determine the consistent GM alterations in ALS based on VBM methods. Methods: Ovid Medline, Pubmed, Emabase, and BrainMap database were searched for relevant studies.Data were extracted by two independent researchers. Voxel-wise meta-analysis was performed using the effect-size signed differential mapping (ES-SDM) software. Results: Twenty-nine VBM studies comprising 638 subjects with ALS and 622 healthy controls (HCs) met inclusion criteria.The global GM volumes of ALS patients were significantly decreased compared with those of HCs. GM reductions in patients were mainly located in the right precentral gyrus, the left Rolandic operculum, the left lenticular nucleus and the right anterior cingulate/paracingulate gyri. The right precentral gyrus and the left inferior frontal gyrus might be potential anatomical biomarkers to evaluate the severity of the disease, and longer disease duration was associated with more GM atrophy in the left frontal aslant tract and the right precentral gyrus in ALS patients. Conclusion: The results support that ALS is a complex degenerative disease involving multisystems besides the motor system.The mechanism of asymmetric atrophy of the motor cortex and the implication of Rolandic operculum involvement in ALS need to be further elucidated in future studies. PMID:27065078

  6. Gray matter volumes in symptomatic and asymptomatic offspring of parents diagnosed with bipolar disorder.

    PubMed

    Hanford, Lindsay C; Hall, Geoffrey B; Minuzzi, Luciano; Sassi, Roberto B

    2016-09-01

    Children of parents diagnosed with bipolar disorder (BD), termed high-risk offspring (HRO), are at greater risk of developing psychiatric disorders compared to healthy children of healthy parents (HCO). Gray matter volume (GMV) abnormalities have been observed in HRO, however, these reports are inconsistent. We posit that this variability may be attributed to differences in methodology among offspring studies; in particular, the presence of psychiatric symptoms in HRO. Here, we directly compared GMVs between symptomatic and asymptomatic HRO, and HCO. High-resolution T1-weighted MR images were collected from 31 HRO (18 symptomatic and 13 asymptomatic) and 20 age- and sex-matched HCO. HRO had at least one parent diagnosed with BD. Symptomatic HRO were defined as having a psychiatric diagnosis other than BD, while asymptomatic HRO were required to be free of any psychiatric diagnosis. Scans were processed using voxel-based morphometry methods and between group analyses were performed in SPM. Compared to HCO, the HRO group showed decreased GMV in the right inferior orbitofrontal, right middle frontal, and bilateral superior and middle temporal regions. Both symptomatic and asymptomatic HRO groups showed decreased GMV in these regions separately when compared to HCO. When comparing symptomatic and asymptomatic HRO, GMVs were comparable in all regions except the lateral occipital cortex. Our study compared symptomatic and asymptomatic HRO directly. In doing so, we provided further support for the presence of discrete GMV deficits in HRO, and confirmed that these deficits are present irrespective of the presence of symptoms in HRO. PMID:26767977

  7. A Voxel Based Morphometry Study of Brain Gray Matter Volumes in Juvenile Obsessive Compulsive Disorder

    PubMed Central

    Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V.; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C.R.; Janardhan Reddy, Y.C.

    2015-01-01

    Introduction: Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions – the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Method: Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children’s Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. Results: In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. Conclusion: These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe – especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD. PMID:26379719

  8. The Relationship between Gray Matter Quantitative MRI and Disability in Secondary Progressive Multiple Sclerosis

    PubMed Central

    Gracien, René-Maxime; Jurcoane, Alina; Wagner, Marlies; Reitz, Sarah C.; Mayer, Christoph; Volz, Steffen; Hof, Stephanie-Michelle; Fleischer, Vinzenz; Droby, Amgad; Steinmetz, Helmuth; Zipp, Frauke; Hattingen, Elke; Deichmann, Ralf; Klein, Johannes C.

    2016-01-01

    Purpose In secondary progressive Multiple Sclerosis (SPMS), global neurodegeneration as a driver of disability gains importance in comparison to focal inflammatory processes. However, clinical MRI does not visualize changes of tissue composition outside MS lesions. This quantitative MRI (qMRI) study investigated cortical and deep gray matter (GM) proton density (PD) values and T1 relaxation times to explore their potential to assess neuronal damage and its relationship to clinical disability in SPMS. Materials and Methods 11 SPMS patients underwent quantitative T1 and PD mapping. Parameter values across the cerebral cortex and deep GM structures were compared with 11 healthy controls, and correlation with disability was investigated for regions exhibiting significant group differences. Results PD was increased in the whole GM, cerebral cortex, thalamus, putamen and pallidum. PD correlated with disability in the whole GM, cerebral cortex, putamen and pallidum. T1 relaxation time was prolonged and correlated with disability in the whole GM and cerebral cortex. Conclusion Our study suggests that the qMRI parameters GM PD (which likely indicates replacement of neural tissue with water) and cortical T1 (which reflects cortical damage including and beyond increased water content) are promising qMRI candidates for the assessment of disease status, and are related to disability in SPMS. PMID:27513853

  9. HIV-Associated Distal Neuropathic Pain is Associated with Smaller Total Cerebral Cortical Gray Matter

    PubMed Central

    Keltner, John R.; Fennema-Notestine, Christine; Vaida, Florin; Wang, Dongzhe; Franklin, Donald R.; Dworkin, Robert H.; Sanders, Chelsea; McCutchan, J. Allen; Archibald, Sarah L.; Miller, David J.; Kesidis, George; Cushman, Clint; Kim, Sung Min; Abramson, Ian; Taylor, Michael J.; Theilmann, Rebecca J.; Julaton, Michelle D.; Notestine, Randy J.; Corkran, Stephanie; Cherner, Mariana; Duarte, Nichole A.; Alexander, Terry; Robinson-Papp, Jessica; Gelman, Benjamin B.; Simpson, David M.; Collier, Ann C.; Marra, Christina M.; Morgello, Susan; Brown, Greg; Grant, Igor; Atkinson, J. Hampton; Jernigan, Terry L.; Ellis, Ronald J.

    2014-01-01

    Despite modern antiretroviral therapy, HIV-associated sensory neuropathy affects over 50% of HIV patients. The clinical expression of HIV neuropathy is highly variable: many individuals report few symptoms, but about half report distal neuropathic pain (DNP), making it one of the most prevalent, disabling and treatment-resistant complications of HIV disease. The presence and intensity of pain is not fully explained by the degree of peripheral nerve damage, making it unclear why some patients do, and others do not, report pain. To better understand central nervous system contributions to HIV DNP, we performed a cross-sectional analysis of structural magnetic resonance imaging (MRI) volumes in 241 HIV-infected participants from an observational multi-site cohort study at five US sites (CNS HIV Antiretroviral Treatment Effects Research Study, CHARTER). The association between DNP and the structural imaging outcomes was investigated using both linear and nonlinear (Gaussian Kernel support vector) multivariable regression, controlling for key demographic and clinical variables. Severity of DNP symptoms was correlated with smaller total cerebral cortical gray matter volume (R = −0.24; p = 0.004). Understanding the mechanisms for this association between smaller total cortical volumes and DNP may provide insight into HIV DNP chronicity and treatment-resistance. PMID:24549970

  10. Structural Brain Anomalies and Chronic Pain: A Quantitative Meta-Analysis of Gray Matter Volume

    PubMed Central

    Smallwood, Rachel F.; Laird, Angela R.; Ramage, Amy E.; Parkinson, Amy L.; Lewis, Jeffrey; Clauw, Daniel J.; Williams, David A.; Schmidt-Wilcke, Tobias; Farrell, Michael J.; Eickhoff, Simon B.; Robin, Donald A.

    2016-01-01

    The diversity of chronic pain syndromes and the methods employed to study them make integrating experimental findings challenging. This study performed coordinate-based meta-analyses using voxel-based morphometry imaging results to examine gray matter volume (GMV) differences between chronic pain patients and healthy controls. There were 12 clusters where GMV was decreased in patients compared with controls, including many regions thought to be part of the “pain matrix” of regions involved in pain perception, but also including many other regions that are not commonly regarded as pain-processing areas. The right hippocampus and parahippocampal gyrus were the only regions noted to have increased GMV in patients. Functional characterizations were implemented using the BrainMap database to determine which behavioral domains were significantly represented in these regions. The most common behavioral domains associated with these regions were cognitive, affective, and perceptual domains. Because many of these regions are not classically connected with pain and because there was such significance in functionality outside of perception, it is proposed that many of these regions are related to the constellation of comorbidities of chronic pain, such as fatigue and cognitive and emotional impairments. Further research into the mechanisms of GMV changes could provide a perspective on these findings. Perspective Quantitative meta-analyses revealed structural differences between brains of individuals with chronic pain and healthy controls. These differences may be related to comorbidities of chronic pain. PMID:23685185

  11. Adaptive Modulation of Adult Brain Gray and White Matter to High Altitude: Structural MRI Studies

    PubMed Central

    Zhang, Jiaxing; Zhang, Haiyan; Li, Jinqiang; Chen, Ji; Han, Qiaoqing; Lin, Jianzhong; Yang, Tianhe; Fan, Ming

    2013-01-01

    The aim of this study was to investigate brain structural alterations in adult immigrants who adapted to high altitude (HA). Voxel-based morphometry analysis of gray matter (GM) volumes, surface-based analysis of cortical thickness, and Tract-Based Spatial Statistics analysis of white matter fractional anisotropy (FA) based on MRI images were conducted on 16 adults (20–22 years) who immigrated to the Qinghai-Tibet Plateau (2300–4400 m) for 2 years. They had no chronic mountain sickness. Control group consisted of 16 matched sea level subjects. A battery of neuropsychological tests was also conducted. HA immigrants showed significantly decreased GM volumes in the right postcentral gyrus and right superior frontal gyrus, and increased GM volumes in the right middle frontal gyrus, right parahippocampal gyrus, right inferior and middle temporal gyri, bilateral inferior ventral pons, and right cerebellum crus1. While there was some divergence in the left hemisphere, surface-based patterns of GM changes in the right hemisphere resembled those seen for VBM analysis. FA changes were observed in multiple WM tracts. HA immigrants showed significant impairment in pulmonary function, increase in reaction time, and deficit in mental rotation. Parahippocampal and middle frontal GM volumes correlated with vital capacity. Superior frontal GM volume correlated with mental rotation and postcentral GM correlated with reaction time. Paracentral lobule and frontal FA correlated with mental rotation reaction time. There might be structural modifications occurred in the adult immigrants during adaptation to HA. The changes in GM may be related to impaired respiratory function and psychological deficits. PMID:23874692

  12. Cerebral gray and white matter changes and clinical course in metachromatic leukodystrophy

    PubMed Central

    í Dali, Christine; Clas, Philipp; Böhringer, Judith; Duno, Morten; Krarup, Christian; Kehrer, Christiane; Wilke, Marko; Krägeloh-Mann, Ingeborg

    2012-01-01

    Objective: Metachromatic leukodystrophy (MLD) is a rare metabolic disorder leading to demyelination and rapid neurologic deterioration. As therapeutic options evolve, it seems essential to understand and quantify progression of the natural disease. The aim of this study was to assess cerebral volumetric changes in children with MLD in comparison to normal controls and in relation to disease course. Method: Eighteen patients with late-infantile MLD and 42 typically developing children in the same age range (20–59 months) were analyzed in a cross-sectional study. Patients underwent detailed genetic, biochemical, electrophysiologic, and clinical characterization. Cerebral gray matter (GM) and white matter (WM) volumes were assessed by multispectral segmentation of T1- and T2-weighted MRI. In addition, the demyelinated WM (demyelination load) was automatically quantified in T2-weighted images of the patients, and analyzed in relation to the clinical course. Results: WM volumes of patients did not differ from controls, although their growth curves were slightly different. GM volumes of patients, however, were on average 10.7% (confidence interval 6.0%–14.9%, p < 0.001) below those of normally developing children. The demyelination load (corrected for total WM volume) increased with disease duration (p < 0.003) and motor deterioration (p < 0.001). Conclusion: GM volume in patients with MLD is reduced when compared with healthy controls, already at young age. This supports the notion that, beside demyelination, neuronal dysfunction caused by neuronal storage plays an additional role in the disease process. The demyelination load may be a useful noninvasive imaging marker for disease progression and may serve as reference for therapeutic intervention. PMID:22993277

  13. Fast, shape-directed, landmark-based deep gray matter segmentation for quantification of iron deposition

    NASA Astrophysics Data System (ADS)

    Ekin, Ahmet; Jasinschi, Radu; van der Grond, Jeroen; van Buchem, Mark A.; van Muiswinkel, Arianne

    2006-03-01

    This paper introduces image processing methods to automatically detect the 3D volume-of-interest (VOI) and 2D region-of-interest (ROI) for deep gray matter organs (thalamus, globus pallidus, putamen, and caudate nucleus) of patients with suspected iron deposition from MR dual echo images. Prior to the VOI and ROI detection, cerebrospinal fluid (CSF) region is segmented by a clustering algorithm. For the segmentation, we automatically determine the cluster centers with the mean shift algorithm that can quickly identify the modes of a distribution. After the identification of the modes, we employ the K-Harmonic means clustering algorithm to segment the volumetric MR data into CSF and non-CSF. Having the CSF mask and observing that the frontal lobe of the lateral ventricle has more consistent shape accross age and pathological abnormalities, we propose a shape-directed landmark detection algorithm to detect the VOI in a speedy manner. The proposed landmark detection algorithm utilizes a novel shape model of the front lobe of the lateral ventricle for the slices where thalamus, globus pallidus, putamen, and caudate nucleus are expected to appear. After this step, for each slice in the VOI, we use horizontal and vertical projections of the CSF map to detect the approximate locations of the relevant organs to define the ROI. We demonstrate the robustness of the proposed VOI and ROI localization algorithms to pathologies, including severe amounts of iron accumulation as well as white matter lesions, and anatomical variations. The proposed algorithms achieved very high detection accuracy, 100% in the VOI detection , over a large set of a challenging MR dataset.

  14. Increases in brain white matter abnormalities and subcortical gray matter are linked to CD4 recovery in HIV infection.

    PubMed

    Fennema-Notestine, Christine; Ellis, Ronald J; Archibald, Sarah L; Jernigan, Terry L; Letendre, Scott L; Notestine, Randy J; Taylor, Michael J; Theilmann, Rebecca J; Julaton, Michelle D; Croteau, David J; Wolfson, Tanya; Heaton, Robert K; Gamst, Anthony C; Franklin, Donald R; Clifford, David B; Collier, Ann C; Gelman, Benjamin B; Marra, Christina; McArthur, Justin C; McCutchan, J Allen; Morgello, Susan; Simpson, David M; Grant, Igor

    2013-08-01

    MRI alterations in the cerebral white (WM) and gray matter (GM) are common in HIV infection, even during successful combination antiretroviral therapy (CART), and their pathophysiology and clinical significance are unclear. We evaluated the association of these alterations with recovery of CD4+ T cells. Seventy-five HIV-infected (HIV+) volunteers in the CNS HIV Anti-Retroviral Therapy Effects Research study underwent brain MRI at two visits. Multi-channel morphometry yielded volumes of total cerebral WM, abnormal WM, cortical and subcortical GM, and ventricular and sulcal CSF. Multivariable linear regressions were used to predict volumetric changes with change in current CD4 and detectable HIV RNA. On average, the cohort (79 % initially on CART) demonstrated loss of total cerebral WM alongside increases in abnormal WM and ventricular volumes. A greater extent of CD4 recovery was associated with increases in abnormal WM and subcortical GM volumes. Virologic suppression was associated with increased subcortical GM volume, independent of CD4 recovery. These findings suggest a possible link between brain alterations and immune recovery, distinct from the influence of virologic suppression. The association of increasing abnormal WM and subcortical GM volumes with CD4+ T cell recovery suggests that neuroinflammation may be one mechanism in CNS pathogenesis. PMID:23838849

  15. Larger mid-dorsolateral prefrontal gray matter volume in young binge drinkers revealed by voxel-based morphometry.

    PubMed

    Doallo, Sonia; Cadaveira, Fernando; Corral, Montserrat; Mota, Nayara; López-Caneda, Eduardo; Holguín, Socorro Rodríguez

    2014-01-01

    Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory), processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9), less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years) binge drinking pattern of alcohol use (n = 11; age 22.43 ± 1.03) and control subjects (n = 21; age 22.18 ± 1.08) to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9) in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT) total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol -that does not meet criteria for alcohol dependence- throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory. PMID:24789323

  16. Larger Mid-Dorsolateral Prefrontal Gray Matter Volume in Young Binge Drinkers Revealed by Voxel-Based Morphometry

    PubMed Central

    Doallo, Sonia; Cadaveira, Fernando; Corral, Montserrat; Mota, Nayara; López-Caneda, Eduardo; Holguín, Socorro Rodríguez

    2014-01-01

    Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory), processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9), less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years) binge drinking pattern of alcohol use (n = 11; age 22.43±1.03) and control subjects (n = 21; age 22.18±1.08) to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9) in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT) total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol −that does not meet criteria for alcohol dependence− throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory. PMID:24789323

  17. NCAN Cross-Disorder Risk Variant Is Associated With Limbic Gray Matter Deficits in Healthy Subjects and Major Depression.

    PubMed

    Dannlowski, Udo; Kugel, Harald; Grotegerd, Dominik; Redlich, Ronny; Suchy, Janina; Opel, Nils; Suslow, Thomas; Konrad, Carsten; Ohrmann, Patricia; Bauer, Jochen; Kircher, Tilo; Krug, Axel; Jansen, Andreas; Baune, Bernhard T; Heindel, Walter; Domschke, Katharina; Forstner, Andreas J; Nöthen, Markus M; Treutlein, Jens; Arolt, Volker; Hohoff, Christa; Rietschel, Marcella; Witt, Stephanie H

    2015-10-01

    Genome-wide association studies have reported an association between NCAN rs1064395 genotype and bipolar disorder. This association was later extended to schizophrenia and major depression. However, the neurobiological underpinnings of these associations are poorly understood. NCAN is implicated in neuronal plasticity and expressed in subcortical brain areas, such as the amygdala and hippocampus, which are critically involved in dysfunctional emotion processing and regulation across diagnostic boundaries. We hypothesized that the NCAN risk variant is associated with reduced gray matter volumes in these areas. Gray matter structure was assessed by voxel-based morphometry on structural MRI data in two independent German samples (healthy subjects, n=512; depressed inpatients, n=171). All participants were genotyped for NCAN rs1064395. Hippocampal and amygdala region-of-interest analyses were performed within each sample. In addition, whole-brain data from the combined sample were analyzed. Risk (A)-allele carriers showed reduced amygdala and hippocampal gray matter volumes in both cohorts with a remarkable spatial overlap. In the combined sample, genotype effects observed for the amygdala and hippocampus survived correction for entire brain volume. Further effects were also observed in the left orbitofrontal cortex and the cerebellum/fusiform gyrus. We conclude that NCAN genotype is associated with limbic gray matter alterations in healthy and depressed subjects in brain areas implicated in emotion perception and regulation. The present data suggest that NCAN forms susceptibility to neurostructural deficits in the amygdala, hippocampus, and prefrontal areas independent of disease, which might lead to disorder onset in the presence of other genetic or environmental risk factors. PMID:25801500

  18. Association between waist circumference and gray matter volume in 2344 individuals from two adult community-based samples.

    PubMed

    Janowitz, Deborah; Wittfeld, Katharina; Terock, Jan; Freyberger, Harald Jürgen; Hegenscheid, Katrin; Völzke, Henry; Habes, Mohamad; Hosten, Norbert; Friedrich, Nele; Nauck, Matthias; Domanska, Grazyna; Grabe, Hans Jörgen

    2015-11-15

    We analyzed the putative association between abdominal obesity (measured in waist circumference) and gray matter volume (Study of Health in Pomerania: SHIP-2, N=758) adjusted for age and gender by applying volumetric analysis and voxel-based morphometry (VBM) with VBM8 to brain magnetic resonance (MR) imaging. We sought replication in a second, independent population sample (SHIP-TREND, N=1586). In a combined analysis (SHIP-2 and SHIP-TREND) we investigated the impact of hypertension, type II diabetes and blood lipids on the association between waist circumference and gray matter. Volumetric analysis revealed a significant inverse association between waist circumference and gray matter volume. VBM in SHIP-2 indicated distinct inverse associations in the following structures for both hemispheres: frontal lobe, temporal lobes, pre- and postcentral gyrus, supplementary motor area, supramarginal gyrus, insula, cingulate gyrus, caudate nucleus, olfactory sulcus, para-/hippocampus, gyrus rectus, amygdala, globus pallidus, putamen, cerebellum, fusiform and lingual gyrus, (pre-) cuneus and thalamus. These areas were replicated in SHIP-TREND. More than 76% of the voxels with significant gray matter volume reduction in SHIP-2 were also distinct in TREND. These brain areas are involved in cognition, attention to interoceptive signals as satiety or reward and control food intake. Due to our cross-sectional design we cannot clarify the causal direction of the association. However, previous studies described an association between subjects with higher waist circumference and future cognitive decline suggesting a progressive brain alteration in obese subjects. Pathomechanisms may involve chronic inflammation, increased oxidative stress or cellular autophagy associated with obesity. PMID:26256530

  19. Puberty Influences Medial Temporal Lobe and Cortical Gray Matter Maturation Differently in Boys Than Girls Matched for Sexual Maturity

    PubMed Central

    Hranilovich, Jennifer A.; Dahl, Ronald E.; Forbes, Erika E.; Chen, Jessica; Toga, Arthur W.; Dinov, Ivo D.; Worthman, Carol M.

    2011-01-01

    Sex differences in age- and puberty-related maturation of human brain structure have been observed in typically developing age-matched boys and girls. Because girls mature 1–2 years earlier than boys, the present study aimed at assessing sex differences in brain structure by studying 80 adolescent boys and girls matched on sexual maturity, rather than age. We evaluated pubertal influences on medial temporal lobe (MTL), thalamic, caudate, and cortical gray matter volumes utilizing structural magnetic resonance imaging and 2 measures of pubertal status: physical sexual maturity and circulating testosterone. As predicted, significant interactions between sex and the effect of puberty were observed in regions with high sex steroid hormone receptor densities; sex differences in the right hippocampus, bilateral amygdala, and cortical gray matter were greater in more sexually mature adolescents. Within sex, we found larger volumes in MTL structures in more sexually mature boys, whereas smaller volumes were observed in more sexually mature girls. Our results demonstrate puberty-related maturation of the hippocampus, amygdala, and cortical gray matter that is not confounded by age, and is different for girls and boys, which may contribute to differences in social and cognitive development during adolescence, and lasting sexual dimorphisms in the adult brain. PMID:20713504

  20. Abnormal gray matter volume and resting-state functional connectivity in former heroin-dependent individuals abstinent for multiple years.

    PubMed

    Wang, Lubin; Zou, Feng; Zhai, Tianye; Lei, Yu; Tan, Shuwen; Jin, Xiao; Ye, Enmao; Shao, Yongcong; Yang, Yihong; Yang, Zheng

    2016-05-01

    Previous studies have suggested that heroin addiction is associated with structural and functional brain abnormalities. However, it is largely unknown whether these characteristics of brain abnormalities would be persistent or restored after long periods of abstinence. Considering the very high rates of relapse, we hypothesized that there may exist some latent neural vulnerabilities in abstinent heroin users. In this study, structural and resting-state functional magnetic resonance imaging data were collected from 30 former heroin-dependent (FHD) subjects who were drug free for more than 3 years and 30 non-addicted control (CN) volunteers. Voxel-based morphometry was used to identify possible gray matter volume differences between the FHD and CN groups. Alterations in resting-state functional connectivity in FHD were examined using brain areas with gray matter deficits as seed regions. Significantly reduced gray matter volume was observed in FHD in an area surrounding the parieto-occipital sulcus, which included the precuneus and cuneus. Functional connectivity analyses revealed that the FHD subjects showed reduced positive correlation within the default mode network and visual network and decreased negative correlation between the default mode network, visual network and task positive network. Moreover, the altered functional connectivity was correlated with self-reported impulsivity scores in the FHD subjects. Our findings suggest that disruption of large-scale brain systems is present in former heroin users even after multi-year abstinence, which could serve as system-level neural underpinnings for behavioral dysfunctions associated with addiction. PMID:25727574

  1. Changes in regional gray matter volume in women with chronic pelvic pain: a voxel-based morphometry study.

    PubMed

    As-Sanie, Sawsan; Harris, Richard E; Napadow, Vitaly; Kim, Jieun; Neshewat, Gina; Kairys, Anson; Williams, David; Clauw, Daniel J; Schmidt-Wilcke, Tobias

    2012-05-01

    Chronic pelvic pain (CPP) is a highly prevalent pain condition, estimated to affect 15%-20% of women in the United States. Endometriosis is often associated with CPP, however, other factors, such as preexisting or concomitant changes of the central pain system, might contribute to the development of chronic pain. We applied voxel-based morphometry to determine whether women with CPP with and without endometriosis display changes in brain morphology in regions known to be involved in pain processing. Four subgroups of women participated: 17 with endometriosis and CPP, 15 with endometriosis without CPP, 6 with CPP without endometriosis, and 23 healthy controls. All patients with endometriosis and/or CPP were surgically confirmed. Relative to controls, women with endometriosis-associated CPP displayed decreased gray matter volume in brain regions involved in pain perception, including the left thalamus, left cingulate gyrus, right putamen, and right insula. Women with CPP without endometriosis also showed decreases in gray matter volume in the left thalamus. Such decreases were not observed in patients with endometriosis who had no CPP. We conclude that CPP is associated with changes in regional gray matter volume within the central pain system. Although endometriosis may be an important risk factor for the development of CPP, acting as a cyclic source of peripheral nociceptive input, our data support the notion that changes in the central pain system also play an important role in the development of chronic pain, regardless of the presence of endometriosis. PMID:22387096

  2. Changes in regional gray matter volume in women with chronic pelvic pain - a voxel based morphometry study

    PubMed Central

    As-Sanie, Sawsan; Harris, Richard; Napadow, Vitaly; Kim, Jieun; Neshewat, Gina; Kairys, Anson; Williams, David; Clauw, Daniel; Schmidt-Wilcke, Tobias

    2012-01-01

    Chronic pelvic pain (CPP) is a highly prevalent pain condition, estimated to affect 15-20% of women in the United States. Endometriosis is often associated with CPP, however other factors, such as pre-existing or concomitant changes of the central pain system, might contribute to the development of chronic pain. We applied voxel-based morphometry to determine whether women with CPP with and without endometriosis display changes in brain morphology in regions known to be involved in pain processing.Four subgroups of women participated: 17 with endometriosis and CPP, 15 with endometriosis without CPP, 6 with CPP without endometriosis, as well as 23 healthy controls. All patients with endometriosis and/or CPP were surgically-confirmed. Relative to controls, women with endometriosis-associated CPP displayed decreased gray matter volume in brain regions involved in pain perception including the left thalamus, left cingulategyrus, right putamen, and right insula. Women with CPP without endometriosis also showed decreases in gray matter volume in the left thalamus. Such decreases were not observed in patients with endometriosis that had no CPP. We conclude thatCPP is associated with changes in regional gray matter volume within the central pain system. Although endometriosis may be an important risk factor for the development of CPP, acting as a cyclic source of peripheral nociceptive input, our data support the notion that changes in the central pain system also play an important role in the development of chronic pain, regardless of the presence of endometriosis. PMID:22387096

  3. Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD.

    PubMed

    Zhang, Jian; Tan, Qingrong; Yin, Hong; Zhang, Xiaoliang; Huan, Yi; Tang, Lihua; Wang, Huaihai; Xu, Junqing; Li, Lingjiang

    2011-05-31

    Although limbic structure changes have been found in chronic and recent onset post-traumatic stress disorder (PTSD) patients, there are few studies about brain structure changes in recent onset PTSD patients after a single extreme and prolonged trauma. In the current study, 20 coal mine flood disaster survivors underwent magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) and region of interest (ROI) techniques were used to detect the gray matter and white matter volume changes in 10 survivors with recent onset PTSD and 10 survivors without PTSD. The correlation between the Clinician-Administered PTSD Scale (CAPS) and gray matter density in the ROI was also studied. Compared with survivors without PTSD, survivors with PTSD had significantly decreased gray matter volume and density in left anterior hippocampus, left parahippocampal gyrus, and bilateral calcarine cortex. The CAPS score correlated negatively with the gray matter density in bilateral calcarine cortex and left hippocampus in coal mine disaster survivors. Our study suggests that the gray matter volume and density of limbic structure decreased in recent onset PTSD patients who were exposed to extreme trauma. PTSD symptom severity was associated with gray matter density in calcarine cortex and hippocampus. PMID:21498053

  4. Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment.

    PubMed

    Douaud, Gwenaëlle; Refsum, Helga; de Jager, Celeste A; Jacoby, Robin; Nichols, Thomas E; Smith, Stephen M; Smith, A David

    2013-06-01

    Is it possible to prevent atrophy of key brain regions related to cognitive decline and Alzheimer's disease (AD)? One approach is to modify nongenetic risk factors, for instance by lowering elevated plasma homocysteine using B vitamins. In an initial, randomized controlled study on elderly subjects with increased dementia risk (mild cognitive impairment according to 2004 Petersen criteria), we showed that high-dose B-vitamin treatment (folic acid 0.8 mg, vitamin B6 20 mg, vitamin B12 0.5 mg) slowed shrinkage of the whole brain volume over 2 y. Here, we go further by demonstrating that B-vitamin treatment reduces, by as much as seven fold, the cerebral atrophy in those gray matter (GM) regions specifically vulnerable to the AD process, including the medial temporal lobe. In the placebo group, higher homocysteine levels at baseline are associated with faster GM atrophy, but this deleterious effect is largely prevented by B-vitamin treatment. We additionally show that the beneficial effect of B vitamins is confined to participants with high homocysteine (above the median, 11 µmol/L) and that, in these participants, a causal Bayesian network analysis indicates the following chain of events: B vitamins lower homocysteine, which directly leads to a decrease in GM atrophy, thereby slowing cognitive decline. Our results show that B-vitamin supplementation can slow the atrophy of specific brain regions that are a key component of the AD process and that are associated with cognitive decline. Further B-vitamin supplementation trials focusing on elderly subjets with high homocysteine levels are warranted to see if progression to dementia can be prevented. PMID:23690582

  5. Combining Diffusion Tensor Imaging and Gray Matter Volumetry to Investigate Motor Functioning in Chronic Stroke

    PubMed Central

    Yang, Ming; Yang, Ya-ru; Li, Hui-jun; Lu, Xue-song; Shi, Yong-mei; Liu, Bin; Chen, Hua-jun; Teng, Gao-jun; Chen, Rong; Herskovits, Edward H.

    2015-01-01

    Motor impairment after stroke is related to the integrity of the corticospinal tract (CST). However, considerable variability in motor impairment remains unexplained. To increase the accuracy in evaluating long-term motor function after ischemic stroke, we tested the hypothesis that combining diffusion tensor imaging (DTI) and gray matter (GM) volumetry can better characterize long-term motor deficit than either method alone in patients with chronic stroke. We recruited 31 patients whose Medical Research Council strength grade was ≤ 3/5 in the extensor muscles of the affected upper extremity in the acute phase. We used the Upper Extremity Fugl-Meyer (UE-FM) assessment to evaluate motor impairment, and as the primary outcome variable. We computed the fractional anisotropy ratio of the entire CST (CSTratio) and the volume of interest ratio (VOIratio), between ipsilesional and contralesional hemispheres, to explain long-term motor impairment. The results showed that CSTratio, VOIratio of motor-related brain regions, and VOIratio in the temporal lobe were correlated with UE-FM. A multiple regression model including CSTratio and VOIratio of the caudate nucleus explained 40.7% of the variability in UE-FM. The adjusted R2 of the regression model with CSTratio as an independent variable was 29.4%, and that of using VOIratio of the caudate nucleus as an independent variable was 23.1%. These results suggest that combining DTI and GM volumetry may achieve better explanation of long-term motor deficit in stroke patients, than using either measure individually. This finding may provide guidance in determining optimal neurorehabilitative interventions. PMID:25965398

  6. Regional gray matter volume is associated with empathizing and systemizing in young adults.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2014-01-01

    Empathizing is defined as the drive to identify the mental states of others for predicting their behavior and responding with an appropriate emotion. Systemizing is defined as the drive to analyze a system in terms of the rules that govern the system in order to predict its behavior. Using voxel-based morphometry and questionnaires in a large sample of normal, right-handed young adults, we investigated the regional gray matter volume (rGMV) correlates of empathizing and systemizing and additionally those of the D score, which is the difference between systemizing and empathizing, to reveal the comprehensive picture of those correlates. Negative rGMV correlates of empathizing and positive rGMV correlates of the D score (formed by the negative correlation between rGMV and empathizing), were found primarily in nodes in the default mode network, mirror neuron system, dorsal anterior cingulate cortex, and the lateral part of the prefrontal cortex together with other areas. Positive rGMV correlates of systemizing and of the D score (formed by the positive correlation between rGMV and systemizing) were found primarily in nodes in the external attention system, middle cingulate cortex, and other regions. Negative rGMV correlates of systemizing were found in an area close to the left posterior insula and putamen. These findings reconcile some previously inconsistent findings, provide other new findings and suggest that these areas contribute to empathizing-systemizing. Furthermore, the negative/positive rGMV correlates of empathizing and positive/negative rGMV correlates of systemizing overlapped substantially. This may be in line with the notion that empathizing and systemizing compete neurally in the brain. PMID:24409308

  7. Regional gray matter atrophy in relapsing remitting multiple sclerosis: baseline analysis of multi-center data.

    PubMed

    Datta, Sushmita; Staewen, Terrell D; Cofield, Stacy S; Cutter, Gary R; Lublin, Fred D; Wolinsky, Jerry S; Narayana, Ponnada A

    2015-03-01

    Regional gray matter (GM) atrophy in multiple sclerosis (MS) at disease onset and its temporal variation can provide objective information regarding disease evolution. An automated pipeline for estimating atrophy of various GM structures was developed using tensor based morphometry (TBM) and implemented on a multi-center sub-cohort of 1008 relapsing remitting MS (RRMS) patients enrolled in a Phase 3 clinical trial. Four hundred age and gender matched healthy controls were used for comparison. Using the analysis of covariance, atrophy differences between MS patients and healthy controls were assessed on a voxel-by-voxel analysis. Regional GM atrophy was observed in a number of deep GM structures that included thalamus, caudate nucleus, putamen, and cortical GM regions. General linear regression analysis was performed to analyze the effects of age, gender, and scanner field strength, and imaging sequence on the regional atrophy. Correlations between regional GM volumes and expanded disability status scale (EDSS) scores, disease duration (DD), T2 lesion load (T2 LL), T1 lesion load (T1 LL), and normalized cerebrospinal fluid (nCSF) were analyzed using Pearson׳s correlation coefficient. Thalamic atrophy observed in MS patients compared to healthy controls remained consistent within subgroups based on gender and scanner field strength. Weak correlations between thalamic volume and EDSS (r=-0.133; p<0.001) and DD (r=-0.098; p=0.003) were observed. Of all the structures, thalamic volume moderately correlated with T2 LL (r=-0.492; P-value<0.001), T1 LL (r=-0.473; P-value<0.001) and nCSF (r=-0.367; P-value<0.001). PMID:25787188

  8. Regional Distribution and Evolution of Gray Matter Damage in Different Populations of Multiple Sclerosis Patients

    PubMed Central

    Calabrese, Massimiliano; Reynolds, Richard; Magliozzi, Roberta; Castellaro, Marco; Morra, Aldo; Scalfari, Antonio; Farina, Gabriele; Romualdi, Chiara; Gajofatto, Alberto; Pitteri, Marco; Benedetti, Maria Donata; Monaco, Salvatore

    2015-01-01

    Background Both gray-matter (GM) atrophy and lesions occur from the earliest stages of Multiple Sclerosis (MS) and are one of the major determinants of long-term clinical outcomes. Nevertheless, the relationship between focal and diffuse GM damage has not been clarified yet. Here we investigate the regional distribution and temporal evolution of cortical thinning and how it is influenced by the local appearance of new GM lesions at different stages of the disease in different populations of MS patients. Methods We studied twenty MS patients with clinically isolated syndrome (CIS), 27 with early relapsing-remitting MS (RRMS, disease duration <5 years), 29 with late RRMS (disease duration ≥ 5 years) and 20 with secondary-progressive MS (SPMS). The distribution and evolution of regional cortical thickness and GM lesions were assessed during 5-year follow-up. Results The results showed that new lesions appeared more frequently in hippocampus and parahippocampal gyri (9.1%), insula (8.9%), cingulate cortex (8.3%), superior frontal gyrus (8.1%), and cerebellum (6.5%). The aforementioned regions showed the greatest reduction in thickness/volume, although (several) differences were observed across subgroups. The correlation between the appearance of new cortical lesions and cortical thinning was stronger in CIS (r2 = 50.0, p<0.001) and in early RRMS (r2 = 52.3, p<0.001), compared to late RRMS (r2 = 25.5, p<0.001) and SPMS (r2 = 6.3, p = 0.133). Conclusions We conclude that GM atrophy and lesions appear to be different signatures of cortical disease in MS having in common overlapping spatio-temporal distribution patterns. However, the correlation between focal and diffuse damage is only moderate and more evident in the early phase of the disease. PMID:26267665

  9. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment

    PubMed Central

    Douaud, Gwenaëlle; Refsum, Helga; de Jager, Celeste A.; Jacoby, Robin; E. Nichols, Thomas; Smith, Stephen M.; Smith, A. David

    2013-01-01

    Is it possible to prevent atrophy of key brain regions related to cognitive decline and Alzheimer’s disease (AD)? One approach is to modify nongenetic risk factors, for instance by lowering elevated plasma homocysteine using B vitamins. In an initial, randomized controlled study on elderly subjects with increased dementia risk (mild cognitive impairment according to 2004 Petersen criteria), we showed that high-dose B-vitamin treatment (folic acid 0.8 mg, vitamin B6 20 mg, vitamin B12 0.5 mg) slowed shrinkage of the whole brain volume over 2 y. Here, we go further by demonstrating that B-vitamin treatment reduces, by as much as seven fold, the cerebral atrophy in those gray matter (GM) regions specifically vulnerable to the AD process, including the medial temporal lobe. In the placebo group, higher homocysteine levels at baseline are associated with faster GM atrophy, but this deleterious effect is largely prevented by B-vitamin treatment. We additionally show that the beneficial effect of B vitamins is confined to participants with high homocysteine (above the median, 11 µmol/L) and that, in these participants, a causal Bayesian network analysis indicates the following chain of events: B vitamins lower homocysteine, which directly leads to a decrease in GM atrophy, thereby slowing cognitive decline. Our results show that B-vitamin supplementation can slow the atrophy of specific brain regions that are a key component of the AD process and that are associated with cognitive decline. Further B-vitamin supplementation trials focusing on elderly subjets with high homocysteine levels are warranted to see if progression to dementia can be prevented. PMID:23690582

  10. Gray matter loss correlates with mesial temporal lobe neuronal hyperexcitability inside the human seizure onset zone

    PubMed Central

    Staba, Richard J.; Ekstrom, Arne D.; Suthana, Nanthia A.; Burggren, Alison; Fried, Itzhak; Engel, Jerome; Bookheimer, Susan Y.

    2011-01-01

    Summary Purpose Patient studies have not provided consistent evidence for interictal neuronal hyperexcitability inside the seizure onset zone (SOZ). We hypothesized that gray matter (GM) loss could have important effects on neuronal firing, and quantifying these effects would reveal significant differences in neuronal firing inside versus outside the SOZ. Methods MRI and computational unfolding of mesial temporal lobe (MTL) subregions was used to construct anatomical maps to compute GM loss in presurgical patients with medically intractable focal seizures in relation to control subjects. In patients, these same maps were used to locate the position of microelectrodes that recorded interictal neuronal activity. Single neuron firing and burst rates were evaluated in relation to GM loss and MTL subregions inside and outside the SOZ. Key findings MTL GM thickness was reduced inside and outside the SOZ in patients with respect to control subjects, yet GM loss was associated more strongly with firing and burst rates in several MTL subregions inside the SOZ. Adjusting single neuron firing and burst rates for the effects of GM loss revealed significantly higher firing rates in the subregion consisting of dentate gyrus and CA2 and CA3 (CA23DG), as well as CA1 and entorhinal cortex (EC) inside versus outside the SOZ where normalized MRI GM loss was ≥1.40 mm. Firing rates were higher in subicular cortex inside the SOZ at GM loss ≥1.97 mm, while burst rates were higher in CA23DG, CA1, and EC inside than outside the SOZ at similar levels of GM loss. Significance The correlation between GM loss and increased firing and burst rates suggests GM structural alterations in MTL subregions are associated with interictal neuronal hyperexcitability inside the SOZ. Significant differences in firing rates and bursting in areas with GM loss inside compared to outside the SOZ indicate that synaptic reorganization following cell loss could be associated with varying degrees of

  11. Exposure to Parental Verbal Abuse is Associated with Increased Gray Matter Volume in Superior Temporal Gyrus

    PubMed Central

    Tomoda, Akemi; Sheu, Yi-Shin; Rabi, Keren; Suzuki, Hanako; Navalta, Carryl P.; Polcari, Ann; Teicher, Martin H.

    2010-01-01

    Objective Exposure to parental verbal aggression (PVA) during childhood increases risk for the development of psychopathology, particularly mood and anxiety disorders. Other forms of childhood abuse have been found to be associated with alterations in brain structure. The aim of this study was to ascertain whether exposure to PVA was associated with discernible effects on brain morphology. Methods Optimized voxel based morphometry was performed on 21 unmedicated, right-handed subjects (18–25 years) with histories of PVA and 19 psychiatrically healthy controls of comparable age and gender. Group differences in gray matter volume (GMV) – covaried by age, gender, parental education, financial stress, and total GMV – were assessed using high-resolution, T1-weighted, volumetric MRI data sets (Siemens 3T trio scanner). Results GMV was increased by 14.1% in the left superior temporal gyrus (STG, BA 22) (P = 0.004, corrected cluster level). GMV in this cluster was associated most strongly with levels of maternal (β = 0.544, P < 0.0001) and paternal (β = 0.300, P < 0.02) verbal aggression and inversely associated with parental education (β = −0.577, P < 0.0001). Conclusion Previous studies have demonstrated an increase in STG GMV in children with abuse histories, and found a reduction in fractional anisotropy in the arcuate fasciculus connecting Wernicke’s and frontal areas in young adults exposed to PVA. These findings and the present results suggest that the development of auditory association cortex involved in language processing may be affected by exposure to early stress and/or emotionally-abusive language. PMID:20483374

  12. Negative and interactive effects of sex, aging, and alcohol abuse on gray matter morphometry.

    PubMed

    Thayer, Rachel E; Hagerty, Sarah L; Sabbineni, Amithrupa; Claus, Eric D; Hutchison, Kent E; Weiland, Barbara J

    2016-06-01

    Chronic alcohol use is associated with declines in gray matter (GM) volume, as is the normal aging process. Less apparent, however, is how the interaction between aging and heavy alcohol use affects changes in GM across the lifespan. There is some evidence that women are more vulnerable to the negative effects of alcohol use on GM than men. In the current study, we examined whether localized GM was related to measures of alcohol use disorder (e.g., AUDIT score) in a large sample (N = 436) of participants, ages 18-55 years, with a range of disease severity, using both voxel-based morphometry (VBM) and surface-based morphometry (SBM). We also explored whether GM associations with alcohol use disorder (AUD) severity are moderated by sex and age. Results showed significant negative associations between AUD severity and GM volume throughout temporal, parietal, frontal, and occipital lobes. Women showed more negative effects of alcohol use than men for cortical thickness in left orbitofrontal cortex, but evidence for increased vulnerability based on sex was limited overall. Similarly, a specific age by alcohol use interaction was observed for volume of right insula, but other regional or global interactions were not statistically supported. However, significant negative associations between heavy alcohol use and GM volumes were observed as early as 18-25 years. These findings support that alcohol has deleterious effects on global and regional GM above and beyond age, and, of particular importance, that regional associations emerge in early adulthood. Hum Brain Mapp 37:2276-2292, 2016. © 2016 Wiley Periodicals, Inc. PMID:26947584

  13. Altered Gray Matter Volume and School Age Anxiety in Children Born Late Preterm

    PubMed Central

    Rogers, Cynthia E; Barch, Deanna M; Sylvester, Chad M; Pagliaccio, David; Harms, Michael P; Botteron, Kelly N; Luby, Joan L

    2014-01-01

    Objectives To determine if late preterm (LP) children differ from full term (FT) children in volumes of the cortex, hippocampus, corpus callosum, or amygdala and whether these differences are associated with anxiety symptoms at school-age. Study design LP children born between 34 and 36 weeks gestation and FT children born between 39 and 41 weeks gestation from a larger longitudinal cohort had MRI scans at school-age. Brain volumes, cortical surface area and thickness measures were obtained. Anxiety symptoms were assessed using a structured diagnostic interview annually beginning at preschool-age and following the MRI. Results LP children (n=21) had a smaller percentage of total, right parietal, and right temporal lobe gray matter volume than FT children (n=87). There were no differences in hippocampal, callosal, or amygdala volumes or cortical thickness. LP children also had a relative decrease in right parietal lobe cortical surface area. LP children had greater anxiety symptoms over all assessments. The relationship between late prematurity and school-age anxiety symptoms was mediated by the relative decrease in right temporal lobe volume. Conclusion LP children, comprising 70% of preterm children, are also at increased risk for altered brain development particularly in the right temporal and parietal cortices. Alterations in the right temporal lobe cortical volume may underlie the increased rate of anxiety symptoms among these LP children. These findings suggest that LP delivery may disrupt temporal and parietal cortical development that persists until school-age with the right temporal lobe conferring risk for elevated anxiety symptoms. PMID:25108541

  14. Head motion during MRI acquisition reduces gray matter volume and thickness estimates.

    PubMed

    Reuter, Martin; Tisdall, M Dylan; Qureshi, Abid; Buckner, Randy L; van der Kouwe, André J W; Fischl, Bruce

    2015-02-15

    Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. PMID:25498430

  15. Regional Gray Matter Atrophy in Relapsing Remitting Multiple Sclerosis: Baseline Analysis of Multi-Center Data

    PubMed Central

    Datta, Sushmita; Staewen, Terrell D.; Cofield, Stacy S.; Cutter, Gary R.; Lublin, Fred D.; Wolinsky, Jerry S.; Narayana, Ponnada A.

    2015-01-01

    Regional gray matter (GM) atrophy in multiple sclerosis (MS) at disease onset and its temporal variation can provide objective information regarding disease evolution. An automated pipeline for estimating atrophy of various GM structures was developed using tensor based morphometry (TBM) and implemented on a multi-center sub-cohort of 1008 relapsing remitting MS (RRMS) patients enrolled in a Phase 3 clinical trial. Four hundred age and gender matched healthy controls were used for comparison. Using the analysis of covariance, atrophy differences between MS patients and healthy controls were assessed on a voxel-by-voxel analysis. Regional GM atrophy was observed in a number of deep GM structures that included thalamus, caudate nucleus, putamen, and cortical GM regions. General linear regression analysis was performed to analyze the effects of age, gender, and scanner field strength, and imaging sequence on the regional atrophy. Correlations between regional GM volumes and expanded disability status scale (EDSS) scores, disease duration (DD), T2 lesion load (T2 LL), T1 lesion load (T1 LL), and normalized cerebrospinal fluid (nCSF) were analyzed using Pearson’s correlation coefficient. Thalamic atrophy observed in MS patients compared to healthy controls remained consistent within subgroups based on gender and scanner field strength. Weak correlations between thalamic volume and EDSS (r = −0.133; p < 0.001) and DD (r = −0.098; p = 0.003) were observed. Of all the structures, thalamic volume moderately correlated with T2 LL (r = −0.492; p-value < 0.001), T1 LL (r = −0.473; p-value < 0.001) and nCSF (r = −0.367; p-value < 0.001). PMID:25787188

  16. Gray matter volume and executive functioning correlate with time since injury following mild traumatic brain injury.

    PubMed

    Killgore, William D S; Singh, Prabhjyot; Kipman, Maia; Pisner, Derek; Fridman, Andrew; Weber, Mareen

    2016-01-26

    Most people who sustain a mild traumatic brain injury (mTBI) will recover to baseline functioning within a period of several days to weeks. A substantial minority of patients, however, will show persistent symptoms and mild cognitive complaints for much longer. To more clearly delineate how the duration of time since injury (TSI) is associated with neuroplastic cortical volume changes and cognitive recovery, we employed voxel-based morphometry (VBM) and select neuropsychological measures in a cross-sectional sample of 26 patients with mTBI assessed at either two-weeks, one-month, three-months, six-months, or one-year post injury, and a sample of 12 healthy controls. Longer duration of TSI was associated with larger gray matter volume (GMV) within the ventromedial prefrontal cortex (vmPFC) and right fusiform gyrus, and better neurocognitive performance on measures of visuospatial design fluency and emotional functioning. In particular, volume within the vmPFC was positively correlated with design fluency and negatively correlated with symptoms of anxiety, whereas GMV of the fusiform gyrus was associated with greater design fluency and sustained visual psychomotor vigilance performance. Moreover, the larger GMV seen among the more chronic individuals was significantly greater than healthy controls, suggesting possible enlargement of these regions with time since injury. These findings are interpreted in light of burgeoning evidence suggesting that cortical regions often exhibit structural changes following experience or practice, and suggest that with greater time since an mTBI, the brain displays compensatory remodeling of cortical regions involved in emotional regulation, which may reduce distractibility during attention demanding visuo-motor tasks. PMID:26711488

  17. Gene by Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction

    PubMed Central

    Alia-Klein, Nelly; Parvaz, Muhammad A.; Woicik, Patricia A.; Konova, Anna B.; Maloney, Thomas; Shumay, Elena; Wang, Ruiliang; Telang, Frank; Biegon, Anat; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.

    2011-01-01

    Context Chronic cocaine use has been associated with structural deficits in brain regions having dopamine receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. Objective To examine variations in gray matter volume (GMV) as a function of lifetime drug use and the monoamine oxidase A (MAOA) genotype in men with cocaine use disorders (CUD) and healthy male controls. Design Cross-sectional comparison between 40 CUD and 42 controls scanned with magnetic resonance imaging (MRI) to assess GMV and genotyped for the MAOA polymorphism. The impact of cocaine addiction on GM was tested by 1) comparing CUD with controls, 2) testing diagnosis-by-MAOA interactions, and 3) correlating GMV with lifetime cocaine, alcohol, and cigarette smoking, and testing their unique contribution to GM beyond other factors. Outcome Measures GMV were derived from MRI with voxel-based-morphometry. Genotyping was performed for a functional polymorphism (a variable number tandem repeat or VNTR) in the promoter region of the MAOA gene with “high” and “low” alleles. Results 1) Individuals with CUD had reductions in GMV in the orbitofrontal (OFC), dorsolateral prefrontal (DLPFC) and temporal cortex, and hippocampus, compared to controls. 2) The OFC reductions were uniquely driven by CUD with low MAOA genotype and by lifetime cocaine use. 3) GMV in the DLPFC and hippocampus, was driven by lifetime alcohol use beyond the genotype and other pertinent variables. Conclusions This study documents for the first time, the enhanced sensitivity of CUD low MAOA carriers to GM loss, specifically in the OFC, indicating that this genotype may exacerbate the deleterious effects of cocaine in the brain. In addition, chronic alcohol use was a major contributor to GM loss in the DLPFC and hippocampus, and is likely to further impair executive function and learning in cocaine addiction. PMID:21383264

  18. Reduced cerebellar gray matter is a neural signature of physical frailty.

    PubMed

    Chen, Wei-Ta; Chou, Kun-Hsien; Liu, Li-Kuo; Lee, Pei-Lin; Lee, Wei-Ju; Chen, Liang-Kung; Wang, Pei-Ning; Lin, Ching-Po

    2015-09-01

    Physical frailty has been recognized as a clinical syndrome resulting from declines in various physiological systems; however, the role of the central nervous system in the pathophysiology of frailty remains unclear. The I-Lan Longitudinal Aging Study randomly sampled community-dwelling people aged 50 or older for a brain magnetic resonance imaging study. All participants were assessed for frailty status (robust, prefrail, and frail) based on the presence of five frailty components: slow walking speed, muscle weakness, low physical activity, exhaustion and weight loss (Fried criteria). Gray matter volume (GMV) changes associated with frailty status and individual frailty components were examined. Overall, 456 participants (64.0 ± 8.5 years, 47.6% women) were included in this study. The prefrail (n = 178, 39.0%) and frail (n = 19, 4.2%) subjects were grouped for analysis. The prefrail-frail group showed reduced GMV, compared to the robust group (n = 259, 56.8%), in the cerebellum, hippocampi, middle frontal gyri, and several other cerebral regions (corrected P < 0.05). Each frailty component was associated with GMV changes in functionally related brain areas. Hierarchical cluster analysis categorized these components into three subsets. Motor-related components, including weakness, low activity, and slowness, comprised one subset with a common cerebellar involvement. Exhaustion and weight loss were the other two subsets without cerebellar changes. To conclude, physical frailty is associated with a decreased reserve in specific brain regions, especially cerebellum. Further longitudinal studies are needed to explore if the cerebellum- and noncerebellum-based frailty components reflect a distinctive future risk for developing frailty. PMID:26096356

  19. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    PubMed

    Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-05-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain. PMID:25720349

  20. Galanin microinjection into the dorsal periaqueductal gray matter produces paradigm-dependent anxiolytic effects.

    PubMed

    Soares, F R C; Silote, G P; Almeida-Santos, A F; Aguiar, D C; Schenberg, L C; Beijamini, V

    2016-03-01

    Galanin is a peptide that is present in the central nervous system in mammals, including rodents and humans. The actions of galanin are mediated by three types of metabotropic receptors: GAL1, GAL2, and GAL3. GAL1 and GAL3 increase K(+) efflux, and GAL2 increases intracellular Ca(2+) levels. The distribution of galanin and its receptors suggests its involvement in fear and/or anxiety. The periaqueductal gray matter (PAG) is a key mediator of defensive behaviors that is both targeted by galaninergic projections and supplied with GAL1 receptors and, less markedly, GAL2 receptors. We examined the effects of galanin microinjections in the dorsal PAG (dPAG) on the performance of rats in different models of anxiety. Male Wistar rats (n=7-12) were implanted with guide cannulae in the dPAG. They received microinjections of either galanin (0.3, 1.0, and 3.0 nmol) or vehicle and were tested in the Vogel conflict test (VCT), elevated plus maze (EPM), and elevated T-maze (ETM). Rats that were tested in the ETM were further evaluated for exploratory activity in the open field test (OFT). Galanin microinjections had no effects on anxiety-like behavior in the EPM or VCT or exploratory activity in the EPM or OFT. In the ETM, however, microinjections of 3 nmol galanin impaired learned anxiety (i.e., avoidance of the open arms) without changing unconditioned fear (i.e., escape from the open arms). The present data suggest that galanin transmission in the dPAG inhibits the acquisition of anxiety-like responses in the ETM. PMID:26751815

  1. Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat.

    PubMed

    Herbert, H; Saper, C B

    1992-01-01

    The periaqueductal or midbrain central gray matter (CG) in the rat contains a dense network of adrenergic and noradrenergic fibers. We examined the origin of this innervation by using retrograde and anterograde axonal tracers combined with immunohistochemistry for the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), and phenylethanolamine N-methyltransferase (PNMT). Following injections of the fluorescent tracers Fast Blue or Fluorogold into the CG, double-labeled neurons in the medulla were identified mainly in the noradrenergic A1 group in the caudal ventrolateral medulla (VLM) and A2 group in the medial part of the nucleus of the solitary tract (NTS); and in the adrenergic C1 group in the rostral ventrolateral medulla and C3 group in the rostral dorsomedial medulla. Injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) into these cell groups resulted in a distinct pattern of axonal labeling in various subdivisions of the CG. Anterogradely labeled fibers originating in the medial NTS were predominantly found in the lateral portion of the dorsal raphe nucleus and in the adjacent part of the lateroventral CG (CGlv). Following PHA-L injections into the C3 region the anterogradely labeled fibers were diffusely distributed in the CGlv and the dorsal raphe nucleus at caudal levels, but rostrally tended to be located laterally in the CGlv. In contrast, ascending fibers from the caudal and rostral VLM terminated in the rostral dorsal part of the CGlv and in the dorsal nucleus of the CG, whereas ventral parts of the CG, including the dorsal raphe nucleus, contained few afferent fibers. Double-label studies with antisera against DBH and PNMT confirmed that noradrenergic neurons in the A1 and A2 groups and adrenergic neurons in the C1 and C3 groups contributed to these innervation patterns in the CGlv. Noradrenergic and adrenergic projections from the medulla to the CG may play an important role in a variety of autonomic

  2. Diffuse Decreased Gray Matter in Patients with Idiopathic Craniocervical Dystonia: A Voxel-Based Morphometry Study

    PubMed Central

    Piccinin, Camila C.; Piovesana, Luiza G.; Santos, Maria C. A.; Guimarães, Rachel P.; De Campos, Brunno M.; Rezende, Thiago J. R.; Campos, Lidiane S.; Torres, Fabio R.; Amato-Filho, Augusto C.; França, Marcondes C.; Lopes-Cendes, Iscia; Cendes, Fernando; D’Abreu, Anelyssa

    2015-01-01

    Background: Recent studies have addressed the role of structures other than the basal ganglia in the pathophysiology of craniocervical dystonia (CCD). Neuroimaging studies have attempted to identify structural abnormalities in CCD but a clear pattern of alteration has not been established. We performed whole-brain evaluation using voxel-based morphometry (VBM) to identify patterns of gray matter (GM) changes in CCD. Methods: We compared 27 patients with CCD matched in age and gender to 54 healthy controls. VBM was used to compare GM volumes. We created a two-sample t-test corrected for subjects’ age, and we tested with a level of significance of p < 0.001 and false discovery rate (FDR) correction (p < 0.05). Results: Voxel-based morphometry demonstrated significant reductions of GM using p < 0.001 in the cerebellar vermis IV/V, bilaterally in the superior frontal gyrus, precuneus, anterior cingulate and paracingulate, insular cortex, lingual gyrus, and calcarine fissure; in the left hemisphere in the supplementary motor area, inferior frontal gyrus, inferior parietal gyrus, temporal pole, supramarginal gyrus, rolandic operculum, hippocampus, middle occipital gyrus, cerebellar lobules IV/V, superior, and middle temporal gyri; in the right hemisphere, the middle cingulate and precentral gyrus. Our study did not report any significant result using the FDR correction. We also detected correlations between GM volume and age, disease duration, duration of botulinum toxin treatment, and the Marsden–Fahn dystonia scale scores. Conclusion: We detected large clusters of GM changes chiefly in structures primarily involved in sensorimotor integration, motor planning, visuospatial function, and emotional processing. PMID:25620953

  3. Sex-specific Gray Matter Volume Differences in Females with Developmental Dyslexia

    PubMed Central

    Evans, Tanya M.; Flowers, D. Lynn; Napoliello, Eileen M.; Eden, Guinevere F.

    2013-01-01

    Developmental dyslexia, characterized by unexpected reading difficulty, is associated with anomalous brain anatomy and function. Previous structural neuroimaging studies have converged in reports of less gray matter volume (GMV) in dyslexics within left hemisphere regions known to subserve language. Due to the higher prevalence of dyslexia in males, these studies are heavily weighted towards males, raising the question whether studies of dyslexia in females only and using the same techniques, would generate the same findings. In a replication study of men we obtained the same findings of less GMV in dyslexics in left middle/inferior temporal gyri and right postcentral/supramarginal gyri as reported in the literature. However, comparisons in women with and without dyslexia did not yield left hemisphere differences and instead we found less GMV in right precuneus and paracentral lobule/medial frontal gyrus. In boys, we found less GMV in left inferior parietal cortex (supramarginal/angular gyri), again consistent with previous work, while in girls differences were within right central sulcus, spanning adjacent gyri, and left primary visual cortex. Our investigation into anatomical variants in dyslexia replicates existing studies in males, but at the same time shows that dyslexia in females is not characterized by involvement of left hemisphere language regions but rather early sensory and motor cortices (i.e. motor and premotor cortex, primary visual cortex). Our findings suggest that models on the brain basis of dyslexia, primarily developed through the study of males, may not be appropriate for females and suggest a need for more sex-specific investigations into dyslexia. PMID:23625146

  4. Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy

    PubMed Central

    Bonilha, Leonardo; Edwards, Jonathan C.; Kinsman, Stephen L.; Morgan, Paul S.; Fridriksson, Julius; Rorden, Chris; Rumboldt, Zoran; Roberts, Donna R.; Eckert, Mark A.; Halford, Jonathan J.

    2010-01-01

    Summary Purpose Medial temporal epilepsy (MTLE) is associated with extrahippocampal brain atrophy. The mechanisms underlying brain damage in MTLE are unknown. Seizures may lead to neuronal damage, but another possible explanation is deafferentation from loss of hippocampal connections. This study aimed to investigate the relationship between hippocampal deafferentation and brain atrophy in MTLE. Methods Three different MRI studies were performed involving 23 patients with unilateral MTLE (8 left and 15 right) and 34 healthy controls: (1) voxel-based morphometry (VBM), (2) diffusion tensor imaging (DTI) and (3) probabilistic tractography (PT). VBM was employed to define differences in regional gray matter volume (GMV) between controls and patients. Voxel-wise analyses of DTI evaluated differences in fractional anisotropy (FA), mean diffusivity (MD) and hippocampal PT. Z-scores were computed for regions-of-interest (ROI) GMV and perihippocampal FA and MD (to quantify hippocampal fiber integrity). The relationship between hippocampal deafferentation and regional GMV was investigated through the association between ROI Z scores and hippocampal fiber integrity. Results Patients with MTLE exhibited a significant reduction in GMV and FA in perihippocampal and limbic areas. There was a decrease in hippocampal PT in patients with MTLE in limbic areas. A significant relationship between loss of hippocampal connections and regional GMV atrophy was found involving the putamen, pallidum, middle and inferior temporal areas, amygdala and ceberellar hemisphere. Discussion There is a relationship between hippocampal disconnection and regional brain atrophy in MTLE. These results indicate that hippocampal deafferentation plays a contributory role in extrahippocampal brain damage in MTLE. PMID:20163442

  5. Evidence of a suffocation alarm system within the periaqueductal gray matter of the rat.

    PubMed

    Schimitel, F G; de Almeida, G M; Pitol, D N; Armini, R S; Tufik, S; Schenberg, L C

    2012-01-01

    Dyspnea, hunger for air, and urge to flee are the cardinal symptoms of panic attacks. Patients also show baseline respiratory abnormalities and a higher rate of comorbid and antecedent respiratory diseases. Panic attacks are also precipitated by infusion of sodium lactate and inhalation of 5% CO₂ in predisposed patients but not in healthy volunteers or patients without panic disorder. Accordingly, Klein [Klein (1993) Arch Gen Psychiatry 50:306-317] suggested that clinical panic is the misfiring of an as-yet-unidentified suffocation alarm system. In rats, selective anoxia of chemoreceptor cells by potassium cyanide (KCN) and electrical and chemical stimulations of periaqueductal gray matter (PAG) produce defensive behaviors, which resemble panic attacks. Thus, here we examined the effects of single or combined administrations of CO₂ (8% and 13%) and KCN (10-80 μg, i.v.) on spontaneous and PAG-evoked behaviors of rats either intact or bearing electrolytic lesions of PAG. Exposure to CO₂ alone reduced grooming while increased exophthalmus, suggesting an arousal response to non-visual cues of environment. Unexpectedly, however, CO₂ attenuated PAG-evoked immobility, trotting, and galloping while facilitated defecation and micturition. Conversely, KCN produced all defensive behaviors of the rat and facilitated PAG-evoked trotting, galloping, and defecation. There were also facilitatory trends in PAG-evoked exophthalmus, immobility, and jumping. Moreover, whereas the KCN-evoked defensive behaviors were attenuated or even suppressed by discrete lesions of PAG, they were markedly facilitated by CO₂. Authors suggest that the PAG harbors an anoxia-sensitive suffocation alarm system which activation precipitates panic attacks and potentiates the subject responses to hypercapnia. PMID:22062132

  6. Head Motion during MRI Acquisition Reduces Gray Matter Volume and Thickness Estimates

    PubMed Central

    Reuter, Martin; Tisdall, M. Dylan; Qureshi, Abid; Buckner, Randy L.; van der Kouwe, André J. W.; Fischl, Bruce

    2014-01-01

    Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquillizing, or neuromuscular-blocking substances may contain spurious “effects” of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. PMID:25498430

  7. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. PMID:22505237

  8. The role of gray and white matter segmentation in quantitative proton MR spectroscopic imaging.

    PubMed

    Tal, Assaf; Kirov, Ivan I; Grossman, Robert I; Gonen, Oded

    2012-12-01

    Since the brain's gray matter (GM) and white matter (WM) metabolite concentrations differ, their partial volumes can vary the voxel's ¹H MR spectroscopy (¹H-MRS) signal, reducing sensitivity to changes. While single-voxel ¹H-MRS cannot differentiate between WM and GM signals, partial volume correction is feasible by MR spectroscopic imaging (MRSI) using segmentation of the MRI acquired for VOI placement. To determine the magnitude of this effect on metabolic quantification, we segmented a 1-mm³ resolution MRI into GM, WM and CSF masks that were co-registered with the MRSI grid to yield their partial volumes in approximately every 1 cm³ spectroscopic voxel. Each voxel then provided one equation with two unknowns: its i- metabolite's GM and WM concentrations C(i) (GM) , C(i) (WM) . With the voxels' GM and WM volumes as independent coefficients, the over-determined system of equations was solved for the global averaged C(i) (GM) and C(i) (WM) . Trading off local concentration differences offers three advantages: (i) higher sensitivity due to combined data from many voxels; (ii) improved specificity to WM versus GM changes; and (iii) reduced susceptibility to partial volume effects. These improvements made no additional demands on the protocol, measurement time or hardware. Applying this approach to 18 volunteered 3D MRSI sets of 480 voxels each yielded N-acetylaspartate, creatine, choline and myo-inositol C(i) (GM) concentrations of 8.5 ± 0.7, 6.9 ± 0.6, 1.2 ± 0.2, 5.3 ± 0.6 mM, respectively, and C(i) (WM) concentrations of 7.7 ± 0.6, 4.9 ± 0.5, 1.4 ± 0.1 and 4.4 ± 0.6mM, respectively. We showed that unaccounted voxel WM or GM partial volume can vary absolute quantification by 5-10% (more for ratios), which can often double the sample size required to establish statistical significance. PMID:22714729

  9. Multiple Brain Markers are Linked to Age-Related Variation in Cognition.

    PubMed

    Hedden, Trey; Schultz, Aaron P; Rieckmann, Anna; Mormino, Elizabeth C; Johnson, Keith A; Sperling, Reisa A; Buckner, Randy L

    2016-04-01

    Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65-90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70-80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health. PMID:25316342

  10. APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury.

    PubMed

    Stetler, R Anne; Gao, Yanqin; Leak, Rehana K; Weng, Zhongfang; Shi, Yejie; Zhang, Lili; Pu, Hongjian; Zhang, Feng; Hu, Xiaoming; Hassan, Sulaiman; Ferguson, Carolyn; Homanics, Gregg E; Cao, Guodong; Bennett, Michael V L; Chen, Jun

    2016-06-21

    A major hallmark of oxidative DNA damage after stroke is the induction of apurinic/apyrimidinic (AP) sites and strand breaks. To mitigate cell loss after oxidative DNA damage, ischemic cells rapidly engage the base excision-repair proteins, such as the AP site-repairing enzyme AP endonuclease-1 (APE1), also named redox effector factor-1 (Ref-1). Although forced overexpression of APE1 is known to protect against oxidative stress-induced neurodegeneration, there is no concrete evidence demonstrating a role for endogenous APE1 in the long-term recovery of gray and white matter following ischemic injury. To address this gap, we generated, to our knowledge, the first APE1 conditional knockout (cKO) mouse line under control of tamoxifen-dependent Cre recombinase. Using a well-established model of transient focal cerebral ischemia (tFCI), we show that induced deletion of APE1 dramatically enlarged infarct volume and impaired the recovery of sensorimotor and cognitive deficits. APE1 cKO markedly increased postischemic neuronal and oligodendrocyte degeneration, demonstrating that endogenous APE1 preserves both gray and white matter after tFCI. Because white matter repair is instrumental in behavioral recovery after stroke, we also examined the impact of APE1 cKO on demyelination and axonal conduction and discovered that APE1 cKO aggravated myelin loss and impaired neuronal communication following tFCI. Furthermore, APE1 cKO increased AP sites and activated the prodeath signaling proteins, PUMA and PARP1, after tFCI in topographically distinct manners. Our findings provide evidence that endogenous APE1 protects against ischemic infarction in both gray and white matter and facilitates the functional recovery of the central nervous system after mild stroke injury. PMID:27274063

  11. APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury

    PubMed Central

    Stetler, R. Anne; Gao, Yanqin; Leak, Rehana K.; Weng, Zhongfang; Zhang, Lili; Pu, Hongjian; Zhang, Feng; Hu, Xiaoming; Hassan, Sulaiman; Ferguson, Carolyn; Homanics, Gregg E.; Cao, Guodong; Bennett, Michael V. L.; Chen, Jun

    2016-01-01

    A major hallmark of oxidative DNA damage after stroke is the induction of apurinic/apyrimidinic (AP) sites and strand breaks. To mitigate cell loss after oxidative DNA damage, ischemic cells rapidly engage the base excision-repair proteins, such as the AP site-repairing enzyme AP endonuclease-1 (APE1), also named redox effector factor-1 (Ref-1). Although forced overexpression of APE1 is known to protect against oxidative stress-induced neurodegeneration, there is no concrete evidence demonstrating a role for endogenous APE1 in the long-term recovery of gray and white matter following ischemic injury. To address this gap, we generated, to our knowledge, the first APE1 conditional knockout (cKO) mouse line under control of tamoxifen-dependent Cre recombinase. Using a well-established model of transient focal cerebral ischemia (tFCI), we show that induced deletion of APE1 dramatically enlarged infarct volume and impaired the recovery of sensorimotor and cognitive deficits. APE1 cKO markedly increased postischemic neuronal and oligodendrocyte degeneration, demonstrating that endogenous APE1 preserves both gray and white matter after tFCI. Because white matter repair is instrumental in behavioral recovery after stroke, we also examined the impact of APE1 cKO on demyelination and axonal conduction and discovered that APE1 cKO aggravated myelin loss and impaired neuronal communication following tFCI. Furthermore, APE1 cKO increased AP sites and activated the prodeath signaling proteins, PUMA and PARP1, after tFCI in topographically distinct manners. Our findings provide evidence that endogenous APE1 protects against ischemic infarction in both gray and white matter and facilitates the functional recovery of the central nervous system after mild stroke injury. PMID:27274063

  12. Multimodal imaging of a tescalcin (TESC)-regulating polymorphism (rs7294919)-specific effects on hippocampal gray matter structure.

    PubMed

    Dannlowski, U; Grabe, H J; Wittfeld, K; Klaus, J; Konrad, C; Grotegerd, D; Redlich, R; Suslow, T; Opel, N; Ohrmann, P; Bauer, J; Zwanzger, P; Laeger, I; Hohoff, C; Arolt, V; Heindel, W; Deppe, M; Domschke, K; Hegenscheid, K; Völzke, H; Stacey, D; Meyer Zu Schwabedissen, H; Kugel, H; Baune, B T

    2015-03-01

    In two large genome-wide association studies, an intergenic single-nucleotide polymorphism (SNP; rs7294919) involved in TESC gene regulation has been associated with hippocampus volume. Further characterization of neurobiological effects of the TESC gene is warranted using multimodal brain-wide structural and functional imaging. Voxel-based morphometry (VBM8) was used in two large, well-characterized samples of healthy individuals of West-European ancestry (Münster sample, N=503; SHIP-TREND, N=721) to analyze associations between rs7294919 and local gray matter volume. In subsamples, white matter fiber structure was investigated using diffusion tensor imaging (DTI) and limbic responsiveness was measured by means of functional magnetic resonance imaging (fMRI) during facial emotion processing (N=220 and N=264, respectively). Furthermore, gene x environment (G × E) interaction and gene x gene interaction with SNPs from genes previously found to be associated with hippocampal size (FKBP5, Reelin, IL-6, TNF-α, BDNF and 5-HTTLPR/rs25531) were explored. We demonstrated highly significant effects of rs7294919 on hippocampal gray matter volumes in both samples. In whole-brain analyses, no other brain areas except the hippocampal formation and adjacent temporal structures were associated with rs7294919. There were no genotype effects on DTI and fMRI results, including functional connectivity measures. No G × E interaction with childhood maltreatment was found in both samples. However, an interaction between rs7294919 and rs2299403 in the Reelin gene was found that withstood correction for multiple comparisons. We conclude that rs7294919 exerts highly robust and regionally specific effects on hippocampal gray matter structures, but not on other neuropsychiatrically relevant imaging markers. The biological interaction between TESC and RELN pointing to a neurodevelopmental origin of the observed findings warrants further mechanistic investigations. PMID:24776739

  13. Neurodevelopmental sequelae associated with gray and white matter changes and their cellular basis: A comparison between Autism Spectrum Disorder, ADHD and dyslexia.

    PubMed

    Bennett, M R; Lagopoulos, J

    2015-11-01

    Many psychiatric diseases, such as major depression and schizophrenia, are accompanied by patterns of gray matter and white matter changes in the cortex that may be due to structural pathologies of synapses and their dendrites in the gray matter on the one hand and to pathologies in myelinating oligodendrocytes on the other. Here the possibility has been briefly examined that such a generalization might also hold for Autistic Spectrum Disorders (ASD). Evidence is presented that gray matter changes that accompany ASD may in fact reflect changes in synapses and subsequently of their dendrites, whereas those in the white matter reflect changes in myelination due to pathologies of oligodendrocytes. It is proposed that such structural pathologies during development provide a coherent biological model not only for the onset and course of ASD but also provide the basis for development and systematic evaluation of new treatment strategies. PMID:26456538

  14. Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest

    NASA Technical Reports Server (NTRS)

    Koppelmans, V.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Koppelmans, V.

    2014-01-01

    Long duration spaceflight (i.e., > or = 22 days) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, experimental studies revealed changes in the gray matter (GM) of the brain after simulated microgravity. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning and motor behavior. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on the brain. VBM analysis revealed a progressive decrease from pre- to in- bed rest in GM volume in bilateral areas including the frontal medial cortex, the insular cortex and the caudate. Over the same time period, there was a progressive increase in GM volume in the cerebellum, occipital-, and parietal cortex, including the precuneus. The majority of these changes did not fully recover during the post-bed rest period. Analysis of lobular GM volumes obtained with BRAINS showed significantly increased volume from pre-bed rest to in-bed rest in GM of the parietal lobe and the third ventricle. Temporal GM volume at 70 days in bed rest was smaller than that at the first pre-bed rest measurement. Trend analysis showed significant positive linear and negative quadratic relationships between parietal GM and time, a positive linear relationship between third ventricle volume and time, and a negative linear

  15. Longitudinal gray matter contraction in three variants of primary progressive aphasia: A tenser-based morphometry study.

    PubMed

    Brambati, Simona Maria; Amici, Serena; Racine, Caroline A; Neuhaus, John; Miller, Zachary; Ogar, Jenny; Dronkers, Nina; Miller, Bruce L; Rosen, Howard; Gorno-Tempini, Maria Luisa

    2015-01-01

    The present study investigated the pattern of longitudinal changes in cognition and anatomy in three variants of primary progressive aphasia (PPA). Eight patients with the non-fluent variant of PPA (nfvPPA), 13 patients with the semantic variant (svPPA), seven patients with the logopenic variant (lvPPA), and 29 age-matched, neurologically healthy controls were included in the study. All participants underwent longitudinal MRI, neuropsychological and language testing at baseline and at a 1-year follow-up. Tenser-based morphometry (TBM) was applied to T1-weighted MRI images in order to map the progression of gray and white matter atrophy over a 1-year period. Results showed that each patient group was characterized by a specific pattern of cognitive and anatomical changes. Specifically, nfvPPA patients showed gray matter atrophy progression in the left frontal and subcortical areas as well as a decline in motor speech and executive functions; svPPA patients presented atrophy progression in the medial and lateral temporal lobe and decline in semantic memory abilities; and lvPPA patients showed atrophy progression in lateral/posterior temporal and medial parietal regions with a decline in memory, sentence repetition and calculations. In addition, in all three variants, the white matter fibers underlying the abovementioned cortical areas underwent significant volume contraction over a 1-year period. Overall, these results indicate that the three PPA variants present distinct patterns of neuroanatomical contraction, which reflect their clinical and cognitive progression. PMID:26106560

  16. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis

    PubMed Central

    Bernstock, Joshua D.; Pluchino, Stefano

    2015-01-01

    Multiple sclerosis is one of the most common causes of chronic neurological disability beginning in early to middle adult life. Multiple sclerosis is idiopathic in nature, yet increasing correlative evidence supports a strong association between one’s genetic predisposition, the environment and the immune system. Symptoms of multiple sclerosis have primarily been shown to result from a disruption in the integrity of myelinated tracts within the white matter of the central nervous system. However, recent research has also highlighted the hitherto underappreciated involvement of gray matter in multiple sclerosis disease pathophysiology, which may be especially relevant when considering the accumulation of irreversible damage and progressive disability. This review aims at providing a comprehensive overview of the interplay between inflammation, glial/neuronal damage and regeneration throughout the course of multiple sclerosis via the analysis of both white and gray matter lesional pathology. Further, we describe the common pathological mechanisms underlying both relapsing and progressive forms of multiple sclerosis, and analyze how current (as well as future) treatments may interact and/or interfere with its pathology. Understanding the putative mechanisms that drive disease pathogenesis will be key in helping to develop effective therapeutic strategies to prevent, mitigate, and treat the diverse morbidities associated with multiple sclerosis. PMID:25802011

  17. The temptation of suicide: striatal gray matter, discounting of delayed rewards, and suicide attempts in late-life depression

    PubMed Central

    Dombrovski, Alexandre Y.; Siegle, Greg J.; Szanto, Katalin; Clark, Luke; Reynolds, Charles F.; Aizenstein, Howard

    2012-01-01

    Background Converging evidence implicates basal ganglia alterations in impulsivity and suicidal behavior. For example, D2/D3 agonists and subthalamic nucleus stimulation in Parkinson’s disease trigger impulse control disorders and possibly suicidal behavior. Further, suicidal behavior has been associated with structural basal ganglia abnormalities. Finally, low-lethality, unplanned suicide attempts are associated with increased discounting of delayed rewards, a behavior dependent upon the striatum. Thus, we tested whether, in late-life depression, changes in the basal ganglia were associated with suicide attempts and with increased delay discounting. Methods Fifty-two persons aged ≥60 underwent extensive clinical and cognitive characterization: 33 with major depression (13 suicide attempters [SA], 20 non-suicidal depressed elderly), and 19 non-depressed controls. Participants had high-resolution T1-weighted MPRAGE MRI scans. Basal ganglia gray matter voxel counts were estimated using atlas-based segmentation, with a highly-deformable automated algorithm. Discounting of delayed rewards was assessed using the Monetary Choice Questionnaire, and delay aversion with the Cambridge Gamble Task. Results SA had lower putamen but not caudate or pallidum gray matter voxel counts, compared to the control groups. This difference persisted after accounting for substance use disorders and possible brain injury from suicide attempts. SA with lower putamen gray matter voxel counts displayed higher delay discounting on the MCQ, but not delay aversion on the CGT. Secondary analyses revealed that SA had lower voxel counts in associative and possibly ventral, but not sensorimotor striatum. Conclusions Our findings, while limited by small sample size and case-control design, suggest that striatal lesions could contribute to suicidal behavior by increasing impulsivity. PMID:21999930

  18. The trajectory of gray matter development in Broca’s area is abnormal in people who stutter

    PubMed Central

    Beal, Deryk S.; Lerch, Jason P.; Cameron, Brodie; Henderson, Rhaeling; Gracco, Vincent L.; De Nil, Luc F.

    2015-01-01

    The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca’s area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter) ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in people who stutter

  19. Anomalous Gray Matter Structural Networks in Patients with Hepatitis B Virus-Related Cirrhosis without Overt Hepatic Encephalopathy

    PubMed Central

    Qiu, Ying-Wei; Cai, Pei-Qiang; Li, Jing; Jiang, Gui-Hua; Deng, Yan-Jia; Zhang, Xue-Lin; Wu, Pei-Hong; Xie, Chuan-Miao; Wen, Ge

    2015-01-01

    Background and Purpose Increasing evidence suggests that cirrhosis may affect the connectivity among different brain regions in patients before overt hepatic encephalopathy (OHE) occurs. However, there has been no study investigating the structural reorganization of these altered connections at the network level. The primary focus of this study was to investigate the abnormal topological organization of the structural network in patients with hepatitis B virus-related cirrhosis (HBV-RC) without OHE using structural MRI. Methods Using graph theoretical analysis, we compared the global and regional topological properties of gray matter structural networks between 28 patients with HBV-RC without OHE and 30 age-, sex- and education-matched healthy controls. The structural correlation networks were constructed for the two groups based on measures of gray matter volume. Results The brain network of the HBV-RC group exhibited a significant decrease in the clustering coefficient and reduced small-worldness at the global level across a range of network densities. Regionally, brain areas with altered nodal degree/betweenness centrality were observed predominantly in association cortices (frontal and temporal regions) (p < 0.05, uncorrected), including a significantly decreased nodal degree in the inferior temporal gyrus (p < 0.001, uncorrected). Furthermore, the HBV-RC group exhibited a loss of association hubs and the emergence of an increased number of non-association hubs compared with the healthy controls. Conclusion The results of this large-scale gray matter structural network study suggest reduced topological organization efficiency in patients with HBV-RC without OHE. Our findings provide new insight concerning the mechanisms of neurobiological reorganization in the HBV-RC brain from a network perspective. PMID:25786256

  20. Many-body processes in black and gray matter-wave solitons

    NASA Astrophysics Data System (ADS)

    Krönke, Sven; Schmelcher, Peter

    2015-05-01

    We perform a comparative beyond-mean-field study of black and gray solitonic excitations in a finite ensemble of ultracold bosons confined to a one-dimensional box. An optimized density-engineering potential is developed and employed together with phase imprinting to cleanly initialize gray solitons. By means of ab initio simulations with the multiconfiguration time-dependent Hartree method for bosons, we demonstrate that quantum fluctuations limit the lifetime of the soliton contrast, which increases with increasing soliton velocity. A natural orbital analysis reveals a two-stage process underlying the decay of the soliton contrast. The broken parity symmetry of gray solitons results in a local asymmetry of the orbital mainly responsible for the decay, which leads to a characteristic asymmetry of remarkably localized two-body correlations. The emergence and decay of these correlations as well as their displacement from the instantaneous soliton position are analyzed in detail. Finally, the role of phase imprinting for the many-body dynamics is illuminated and additional nonlocal correlations in pairs of counterpropagating gray solitons are observed.

  1. Mineralization of organic matter in gray forest soil and typical chernozem with degraded structure due to physical impacts

    NASA Astrophysics Data System (ADS)

    Semenov, V. M.; Zhuravlev, N. S.; Tulina, A. S.

    2015-10-01

    The dynamics of the organic matter mineralization in the gray forest soil and typical chernozem with structure disturbed by physical impacts (grinding and extraction of water-soluble substances) were studied in two long-term experiments at the constant temperature and moisture. The grinding of soil to particles of < 1 mm or < 0.25 mm promoted the mobilization of a small part of the formerly aggregated and protected organic matter, along with a short-term increase in the C-CO2 production. The dispersion of the soils with water and leaching of water-soluble organic matter resulted in the significant decrease of the content of potentially mineralizable organic matter in the soils. The physical disturbance caused changes in the ratio of easily mineralizable ( k 1 > 0.1, day-1) and difficultly mineralizable (0.01 > k 3 > 0.001, day-1) fractions in the active pool of soil organic matter. The results of the studies show that the destruction of the structural-aggregate status is one of the reasons for the active soil organic matter depletion and, as a consequence, for the degradation of the properties inherent to the undisturbed soils.

  2. Lithium-Induced Gray Matter Volume Increase As a Neural Correlate of Treatment Response in Bipolar Disorder: A Longitudinal Brain Imaging Study

    PubMed Central

    Lyoo, In Kyoon; Dager, Stephen R; Kim, Jieun E; Yoon, Sujung J; Friedman, Seth D; Dunner, David L; Renshaw, Perry F

    2010-01-01

    Preclinical studies suggest that lithium may exert neurotrophic effects that counteract pathological processes in the brain of patients with bipolar disorder (BD). To describe and compare the course and magnitude of gray matter volume changes in patients with BD who are treated with lithium or valproic acid (VPA) compared to healthy comparison subjects, and to assess clinical relationships to gray matter volume changes induced by lithium in patients with BD, we conducted longitudinal brain imaging and clinical evaluations of treatment response in 22 mood-stabilizing and antipsychotic medications-naive patients with BD who were randomly assigned to either lithium or VPA treatment after baseline assessment. Fourteen healthy comparison subjects did not take any psychotropic medications during follow-up. Longitudinal data analyses of 93 serial magnetic resonance images revealed lithium-induced increases in gray matter volume, which peaked at week 10–12 and were maintained through 16 weeks of treatment. This increase was associated with positive clinical response. In contrast, VPA-treated patients with BD or healthy comparison subjects did not show gray matter volume changes over time. Results suggest that lithium induces sustained increases in cerebral gray matter volume in patients with BD and that these changes are related to the therapeutic efficacy of lithium. PMID:20357761

  3. Anterior Cingulate Cortex Gray Matter Volume Mediates an Association between 2D:4D Ratio and Trait Aggression in Women but not Men

    PubMed Central

    Gorka, Adam X.; Norman, Rachel E.; Radtke, Spenser R.; Carré, Justin M.; Hariri, Ahmad R.

    2015-01-01

    Previous research demonstrates that prenatal testosterone exposure increases aggression, possibly through its effects on the structure and function of neural circuits supporting threat detection and emotion regulation. Here we examined associations between regional gray matter volume, trait aggression, and the ratio of the second and fourth digit of the hand (2D:4D ratio) as a putative index of prenatal testosterone exposure in 464 healthy young adult volunteers. Our analyses revealed a significant positive correlation between 2D:4D ratio and gray matter volume of the dorsal anterior cingulate cortex (dACC), a brain region supporting, emotion regulation, conflict monitoring, and behavioral inhibition. Subsequent analyses demonstrated that reduced (i.e., masculinized) gray matter volume in the dACC mediated the relationship between 2D:4D ratio and aggression in women, but not men. Expanding on this gender-specific mediation, additional analyses demonstrated that the shared variance between 2D:4D ratio, dACC gray matter volume, and aggression in women reflected the tendency to engage in cognitive reappraisal of emotionally provocative stimuli. Our results provide novel evidence that 2D:4D ratio is associated with masculinization of dACC gray matter volume, and that this neural phenotype mediates, in part, the expression of trait aggression in women. PMID:25827959

  4. A pilot study of gray matter volume changes associated with paroxetine treatment and response in social anxiety disorder.

    PubMed

    Talati, Ardesheer; Pantazatos, Spiro P; Hirsch, Joy; Schneier, Franklin

    2015-03-30

    Social anxiety disorder (SAD) has received relatively little attention in neurobiological studies. We sought to identify neuro-anatomical changes associated with successful treatment for the disorder. Fourteen patients (31 years; 57% female) with DSM-IV generalized SAD were imaged before and after 8-weeks of paroxetine treatment on a 1.5 T GE Signa MRI scanner. Symptoms were assessed by a clinician using the Liebowitz Social Anxiety Scale (LSAS). Longitudinal changes in voxel based morphometry (VBM) were determined using the VBM8 Toolbox for SPM8. Symptom severity decreased by 46% following treatment (p<0.001). At week 8, significant gray matter reductions were detected in bilateral caudate and putamen, and right thalamus, and increases in the cerebellum. Gray matter decreases in left thalamus were correlated with clinical response. This is the first study to our knowledge to identify treatment related correlates of symptom improvement for SAD. Replication in larger samples with control groups is needed to confirm these findings, as well as to test their specificity and temporal stability. PMID:25659476

  5. Brain Gray Matter Abnormalities in First-Episode, Treatment-Naive Children with Obsessive-Compulsive Disorder

    PubMed Central

    Cheng, Bochao; Cai, Wu; Wang, Xiuli; Lei, Du; Guo, Yingkun; Yang, Xun; Wu, Qizhu; Gong, Jianping; Gong, Qiyong; Ning, Gang

    2016-01-01

    Although several magnetic resonance imaging (MRI) studies have been conducted in children with obsessive-compulsive disorder (OCD), the brain structural abnormalities in OCD, especially in children, are not yet well characterized. We aimed to identify gray matter (GM) abnormalities in the early stage of pediatric OCD and examine the relationship between these structural abnormalities with clinical characteristics. Examinations of 30 first-episode, treatment-naive pediatric OCD patients without any comorbidities and 30 matched healthy controls (HCs) were performed with 3.0 T magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) was used to conduct voxel-wise tests for group differences in regional gray matter volume (GMV). Compared to HCs, the patient group exhibited more GMV in the bilateral putamen and left orbitofrontal cortex (OFC) and less GMV in the left inferior parietal lobule (IPL). The GMV alternation in the right putamen of OCD patients was positively correlated with Hamilton Anxiety Rating Scale (HAM-A) scores, while the GMV alternation in the left IPL exhibited a trend to negatively correlate with HAM-A scores. Our current results suggest that the GM abnormalities were defined in the early stage of pediatric OCD. Moreover, these findings provided further evidence of brain GM abnormalities that are not only present in the classical fronto–striatal–thalamic circuit but also in the default mode network (DMN), which may represent the interaction of abnormally functional organization of both network in pediatric OCD. PMID:27445736

  6. Higher body mass index in older adults is associated with lower gray matter volume: implications for memory performance.

    PubMed

    Kharabian Masouleh, Shahrzad; Arélin, Katrin; Horstmann, Annette; Lampe, Leonie; Kipping, Judy A; Luck, Tobias; Riedel-Heller, Steffi G; Schroeter, Matthias L; Stumvoll, Michael; Villringer, Arno; Witte, Anja Veronica

    2016-04-01

    Midlife obesity has been associated with increased dementia risk, yet reports on brain structure and function are mixed. We therefore assessed the effects of body mass index (BMI) on gray matter volume (GMV) and cognition in a well-characterized sample of community-dwelled older adults. GMV was measured using 3T-neuroimaging in 617 participants (258 women, 60-80 years, BMI 17-41 kg/m(2)). In addition, cognitive performance and various confounders including hypertension, diabetes, and apolipoprotein E genotype were assessed. A higher BMI correlated significantly with lower GMV in multiple brain regions, including (pre)frontal, temporal, insular and occipital cortex, thalamus, putamen, amygdala, and cerebellum, even after adjusting for confounders. In addition, lower GMV in prefrontal and thalamic areas partially mediated negative effects of (1) higher BMI and (2) higher age on memory performance. We here showed that a higher BMI in older adults is associated with widespread gray matter alterations, irrespective of obesity-related comorbidities and other confounders. Our results further indicate that a higher BMI induces structural alterations that translate into subtle impairments in memory performance in aging. PMID:26973099

  7. Complementary Characteristics of Correlation Patterns in Morphometric Correlation Networks of Cortical Thickness, Surface Area, and Gray Matter Volume.

    PubMed

    Yang, Jin-Ju; Kwon, Hunki; Lee, Jong-Min

    2016-01-01

    Morphometric correlation networks of cortical thickness, surface area, and gray matter volume have statistically different structural topology. However, there is no report directly describing their correlation patterns in view of interregional covariance. Here, we examined the characteristics of the correlation patterns in three morphometric networks of cortical thickness, surface area, and gray matter volume using a Venn diagram concept across 314 normal subjects. We found that over 60% of all nonoverlapping correlation patterns emerged with divergent unique patterns, while there were 10% of all common edges in ipsilateral and homotopic regions among the three morphometric correlation networks. It was also found that the network parameters of the three networks were different. Our findings showed that correlation patterns of the network itself can provide complementary information when compared with network properties. We demonstrate that morphometric correlation networks of distinct structural phenotypes have different correlation patterns and different network properties. This finding implies that the topology of each morphometric correlation network may reflect different aspects of each morphometric descriptor. PMID:27226000

  8. Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome

    PubMed Central

    Baas, Annette F; Gabbett, Michael; Rimac, Milan; Kansikas, Minttu; Raphael, Martine; Nievelstein, Rutger AJ; Nicholls, Wayne; Offerhaus, Johan; Bodmer, Danielle; Wernstedt, Annekatrin; Krabichler, Birgit; Strasser, Ulrich; Nyström, Minna; Zschocke, Johannes; Robertson, Stephen P; van Haelst, Mieke M; Wimmer, Katharina

    2013-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09–0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome. PMID:22692065

  9. Sex differences in socioemotional functioning, attentional bias, and gray matter volume in maltreated children: A multilevel investigation.

    PubMed

    Kelly, Philip A; Viding, Essi; Puetz, Vanessa B; Palmer, Amy L; Mechelli, Andrea; Pingault, Jean-Baptiste; Samuel, Sophie; McCrory, Eamon J

    2015-11-01

    While maltreatment is known to impact social and emotional functioning, threat processing, and neural structure, the potentially dimorphic influence of sex on these outcomes remains relatively understudied. We investigated sex differences across these domains in a large community sample of children aged 10 to 14 years (n = 122) comprising 62 children with verified maltreatment experience and 60 well-matched nonmaltreated peers. The maltreated group relative to the nonmaltreated comparison group exhibited poorer social and emotional functioning (more peer problems and heightened emotional reactivity). Cognitively, they displayed a pattern of attentional avoidance of threat in a visual dot-probe task. Similar patterns were observed in males and females in these domains. Reduced gray matter volume was found to characterize the maltreated group in the medial orbitofrontal cortex, bilateral middle temporal lobes, and bilateral supramarginal gyrus; sex differences were observed only in the supramarginal gyrus. In addition, a disordinal interaction between maltreatment exposure and sex was found in the postcentral gyrus. Finally, attentional avoidance to threat mediated the relationship between maltreatment and emotional reactivity, and medial orbitofrontal cortex gray matter volume mediated the relationship between maltreatment and peer functioning. Similar mediation patterns were observed across sexes. This study highlights the utility of combining multiple levels of analysis when studying the "latent vulnerability" engendered by childhood maltreatment and yields tentative findings regarding a neural basis of sex differences in long-term outcomes for maltreated children. PMID:26535946

  10. Voxel-based morphometry in opera singers: Increased gray-matter volume in right somatosensory and auditory cortices.

    PubMed

    Kleber, Boris; Veit, Ralf; Moll, Christina Valérie; Gaser, Christian; Birbaumer, Niels; Lotze, Martin

    2016-06-01

    In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured. PMID:27034024

  11. Brain Gray Matter Abnormalities in First-Episode, Treatment-Naive Children with Obsessive-Compulsive Disorder.

    PubMed

    Cheng, Bochao; Cai, Wu; Wang, Xiuli; Lei, Du; Guo, Yingkun; Yang, Xun; Wu, Qizhu; Gong, Jianping; Gong, Qiyong; Ning, Gang

    2016-01-01

    Although several magnetic resonance imaging (MRI) studies have been conducted in children with obsessive-compulsive disorder (OCD), the brain structural abnormalities in OCD, especially in children, are not yet well characterized. We aimed to identify gray matter (GM) abnormalities in the early stage of pediatric OCD and examine the relationship between these structural abnormalities with clinical characteristics. Examinations of 30 first-episode, treatment-naive pediatric OCD patients without any comorbidities and 30 matched healthy controls (HCs) were performed with 3.0 T magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) was used to conduct voxel-wise tests for group differences in regional gray matter volume (GMV). Compared to HCs, the patient group exhibited more GMV in the bilateral putamen and left orbitofrontal cortex (OFC) and less GMV in the left inferior parietal lobule (IPL). The GMV alternation in the right putamen of OCD patients was positively correlated with Hamilton Anxiety Rating Scale (HAM-A) scores, while the GMV alternation in the left IPL exhibited a trend to negatively correlate with HAM-A scores. Our current results suggest that the GM abnormalities were defined in the early stage of pediatric OCD. Moreover, these findings provided further evidence of brain GM abnormalities that are not only present in the classical fronto-striatal-thalamic circuit but also in the default mode network (DMN), which may represent the interaction of abnormally functional organization of both network in pediatric OCD. PMID:27445736

  12. Complementary Characteristics of Correlation Patterns in Morphometric Correlation Networks of Cortical Thickness, Surface Area, and Gray Matter Volume

    PubMed Central

    Yang, Jin-Ju; Kwon, Hunki; Lee, Jong-Min

    2016-01-01

    Morphometric correlation networks of cortical thickness, surface area, and gray matter volume have statistically different structural topology. However, there is no report directly describing their correlation patterns in view of interregional covariance. Here, we examined the characteristics of the correlation patterns in three morphometric networks of cortical thickness, surface area, and gray matter volume using a Venn diagram concept across 314 normal subjects. We found that over 60% of all nonoverlapping correlation patterns emerged with divergent unique patterns, while there were 10% of all common edges in ipsilateral and homotopic regions among the three morphometric correlation networks. It was also found that the network parameters of the three networks were different. Our findings showed that correlation patterns of the network itself can provide complementary information when compared with network properties. We demonstrate that morphometric correlation networks of distinct structural phenotypes have different correlation patterns and different network properties. This finding implies that the topology of each morphometric correlation network may reflect different aspects of each morphometric descriptor. PMID:27226000

  13. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.

    PubMed

    Kovacs, Gabor G; Ferrer, Isidro; Grinberg, Lea T; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J; Crary, John F; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M; Ironside, James W; Love, Seth; Mackenzie, Ian R; Munoz, David G; Murray, Melissa E; Nelson, Peter T; Takahashi, Hitoshi; Trojanowski, John Q; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Dugger, Brittany N; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Hatanpaa, Kimmo J; Heale, Richard; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Mann, David M; Matej, Radoslav; McKee, Ann C; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J; Murayama, Shigeo; Lee, Edward B; Rahimi, Jasmin; Rodriguez, Roberta D; Rozemüller, Annemieke; Schneider, Julie A; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B; Tolnay, Markus; Troncoso, Juan C; Vinters, Harry V; Weis, Serge; Wharton, Stephen B; White, Charles L; Wisniewski, Thomas; Woulfe, John M; Yamada, Masahito; Dickson, Dennis W

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  14. Focal Gray Matter Plasticity as a Function of Long Duration Head Down Tilted Bed Rest: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Koppelmans, V.; Erdeniz, B.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes are solely related to peripheral changes from reduced vestibular stimulation, body unloading, body fluid shifts or that they may be related to structural and functional brain changes is yet unknown. However, a recent study reported associations between microgravity and flattening of the posterior eye globe and protrusion of the optic nerve [1] possibly as the result of increased intracranial pressure due to microgravity induced bodily fluid shifts [3]. Moreover, elevated intracranial pressure has been related to white matter microstructural damage [2]. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system [4]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure [5]. Here we present results of the first six subjects. Six subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility in UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM

  15. First episode drug-naïve major depressive disorder with panic disorder: gray matter deficits in limbic and default network structures.

    PubMed

    Lai, Chien-Han; Hsu, Yuan-Yu; Wu, Yu-Te

    2010-10-01

    This study was designed to investigate the structural differences in the brains of first episode, drug-naïve patients with major depressive disorder and panic disorder versus healthy control subjects. High-resolution brain magnetic resonance images were performed on patients and health control subjects (age, sex and handedness matched). Structural magnetic resonance images of brain were estimated by optimized voxel-based morphometry of FSL (FMRIB Software Library). Patients had deficits of gray matter volumes over right anterior cingulate cortex, right medial frontal gyrus, left posterior cingulate cortex, right parahippocampal gyrus, limbic areas, occipital lingual gyrus and bilateral cerebellums when compared to controls. These results suggested that this group of patients has possible deficits of gray matter volumes over the default-mode network, fronto-cingulate and limbic structures. The decline of gray matter volumes might have started since the first episode. PMID:20599363

  16. Moderate and late preterm infants exhibit widespread brain white matter microstructure alterations at term-equivalent age relative to term-born controls.

    PubMed

    Kelly, Claire E; Cheong, Jeanie L Y; Gabra Fam, Lillian; Leemans, Alexander; Seal, Marc L; Doyle, Lex W; Anderson, Peter J; Spittle, Alicia J; Thompson, Deanne K

    2016-03-01

    Despite the many studies documenting cerebral white matter microstructural alterations associated with very preterm birth (<32 weeks' gestation), there is a dearth of similar research in moderate and late preterm infants (born 32-36 weeks' gestation), who experience higher rates of neurodevelopmental delays than infants born at term (≥37 weeks' gestation). We therefore aimed to determine whether whole brain white matter microstructure differs between moderate and late preterm infants and term-born controls at term-equivalent age, as well as to identify potential perinatal risk factors for white matter microstructural alterations in moderate and late preterm infants. Whole brain white matter microstructure was studied in 193 moderate and late preterm infants and 83 controls at term-equivalent age by performing Tract-Based Spatial Statistics analysis of diffusion tensor imaging data. Moderate and late preterm infants had lower fractional anisotropy and higher mean, axial and radial diffusivities compared with controls in nearly 70 % of the brain's major white matter fiber tracts. In the moderate and late preterm group, being born small for gestational age and male sex were associated with lower fractional anisotropy, largely within the optic radiation, corpus callosum and corona radiata. In conclusion, moderate and late preterm infants exhibit widespread brain white matter microstructural alterations compared with controls at term-equivalent age, in patterns consistent with delayed or disrupted white matter microstructural development. These findings may underpin some of the neurodevelopmental delays observed in moderate and late preterm children. PMID:25739350

  17. Laser ablation-inductively coupled plasma-mass spectrometry imaging of white and gray matter iron distribution in Alzheimer's disease frontal cortex.

    PubMed

    Hare, Dominic J; Raven, Erika P; Roberts, Blaine R; Bogeski, Mirjana; Portbury, Stuart D; McLean, Catriona A; Masters, Colin L; Connor, James R; Bush, Ashley I; Crouch, Peter J; Doble, Philip A

    2016-08-15

    Iron deposition in the brain is a feature of normal aging, though in several neurodegenerative disorders, including Alzheimer's disease, the rate of iron accumulation is more advanced than in age-matched controls. Using laser ablation-inductively coupled plasma-mass spectrometry imaging we present here a pilot study that quantitatively assessed the iron content of white and gray matter in paraffin-embedded sections from the frontal cortex of Alzheimer's and control subjects. Using the phosphorus image as a confirmed proxy for the white/gray matter boundary, we found that increased intrusion of iron into gray matter occurs in the Alzheimer's brain compared to controls, which may be indicative of either a loss of iron homeostasis in this vulnerable brain region, or provide evidence of increased inflammatory processes as a response to chronic neurodegeneration. We also observed a trend of increasing iron within the white matter of the frontal cortex, potentially indicative of disrupted iron metabolism preceding loss of myelin integrity. Considering the known potential toxicity of excessive iron in the brain, our results provide supporting evidence for the continuous development of novel magnetic resonance imaging approaches for assessing white and gray matter iron accumulation in Alzheimer's disease. PMID:27233149

  18. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia

    PubMed Central

    Wright, C; Gupta, C N; Chen, J; Patel, V; Calhoun, V D; Ehrlich, S; Wang, L; Bustillo, J R; Perrone-Bizzozero, N I; Turner, J A

    2016-01-01

    Evidence suggests that microRNA-137 (miR-137) is involved in the genetic basis of schizophrenia. Risk variants within the miR-137 host gene (MIR137HG) influence structural and functional brain-imaging measures, and miR-137 itself is predicted to regulate hundreds of genes. We evaluated the influence of a MIR137HG risk variant (rs1625579) in combination with variants in miR-137-regulated genes TCF4, PTGS2, MAPK1 and MAPK3 on gray matter concentration (GMC). These genes were selected based on our previous work assessing schizophrenia risk within possible miR-137-regulated gene sets using the same cohort of subjects. A genetic risk score (GRS) was determined based on genotypes of these four schizophrenia risk-associated genes in 221 Caucasian subjects (89 schizophrenia patients and 132 controls). The effects of the rs1625579 genotype with the GRS of miR-137-regulated genes in a three-way interaction with diagnosis on GMC patterns were assessed using a multivariate analysis. We found that schizophrenia subjects homozygous for the MIR137HG risk allele show significant decreases in occipital, parietal and temporal lobe GMC with increasing miR-137-regulated GRS, whereas those carrying the protective minor allele show significant increases in GMC with GRS. No correlations of GMC and GRS were found in control subjects. Variants within or upstream of genes regulated by miR-137 in combination with the MIR137HG risk variant may influence GMC in schizophrenia-related regions in patients. Given that the genes evaluated here are involved in protein kinase A signaling, dysregulation of this pathway through alterations in miR-137 biogenesis may underlie the gray matter loss seen in the disease. PMID:26836412

  19. Sex differences of Gray Matter Morphology in Cortico-limbic-striatal Neural System in Major Depressive Disorder

    PubMed Central

    Kong, Lingtao; Chen, Kaiyuan; Womer, Fay; Jiang, Wenyan; Luo, Xingguang; Driesen, Naomi; Liu, Jie; Blumberg, Hilary; Tang, Yanqing; Xu, Ke; Wang, Fei

    2013-01-01

    Sex differences are observed in both epidemiological and clinical aspects of major depressive disorder (MDD). The cortico-limbic-striatal neural system, including the prefrontal cortex, amygdala, hippocampus, and striatum, have shown sexually dimorphic morphological features and have been implicated in the dysfunctional regulation of mood and emotion in MDD. In this study, we utilized a whole-brain, voxel-based approach to examine sex differences in the regional distribution of gray matter (GM) morphological abnormalities in medication-naïve participants with MDD. Participants included 29 medication-naïve individuals with MDD (16 females and 13 males) and 33 healthy controls (HC) (17 females and 16 males). Gray matter morphology of the cortico-limbic-striatal neural system was examined using voxel-based morphometry analyses of high-resolution structural magnetic resonance imaging scans. The main effect of diagnosis and interaction effect of diagnosis by sex on GM morphology were statistically significant (p<0.05, corrected) in the left ventral prefrontal cortex, right amygdala, right hippocampus and bilateral caudate when comparing the MDD and HC groups. Posthoc analyses showed that females with MDD had significant GM decreases in limbic regions (p<0.05, corrected), compared to female HC; while males with MDD demonstrated significant GM reduction in striatal regions, (p<0.05, corrected), compared to HC males. The observed sex-related patterns of abnormalities within the cortico-limbic-strial neural system, such as predominant prefrontal-limbic abnormalities in MDD females vs. predominant prefrontal-striatal abnormalities in MDD males, suggest differences in neural circuitry that may mediate sex differences in the clinical presentation of MDD and potential targets for sex-differentiated treatment of the disorder. PMID:23453566

  20. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia

    DOE PAGESBeta

    Wright, C.; Gupta, C. N.; Chen, J.; Patel, V.; Calhoun, V. D.; Ehrlich, S.; Wang, L.; Bustillo, J. R.; Perrone-Bizzozero, N. I.; Turner, J. A.

    2016-02-02

    Evidence suggests that microRNA-137 (miR-137) is involved in the genetic basis of schizophrenia. Risk variants within the miR-137 host gene (MIR137HG) influence structural and functional brain-imaging measures, and miR-137 itself is predicted to regulate hundreds of genes. We evaluated the influence of a MIR137HG risk variant (rs1625579) in combination with variants in miR-137- regulated genes TCF4, PTGS2, MAPK1 and MAPK3 on gray matter concentration (GMC). These genes were selected based on our previous work assessing schizophrenia risk within possible miR-137-regulated gene sets using the same cohort of subjects. A genetic risk score (GRS) was determined based on genotypes of thesemore » four schizophrenia risk-associated genes in 221 Caucasian subjects (89 schizophrenia patients and 132 controls). The effects of the rs1625579 genotype with the GRS of miR-137-regulated genes in a three-way interaction with diagnosis on GMC patterns were assessed using a multivariate analysis. We found that schizophrenia subjects homozygous for the MIR137HG risk allele show significant decreases in occipital, parietal and temporal lobe GMC with increasing miR-137-regulated GRS, whereas those carrying the protective minor allele show significant increases in GMC with GRS. No correlations of GMC and GRS were found in control subjects. Variants within or upstream of genes regulated by miR-137 in combination with the MIR137HG risk variant may influence GMC in schizophrenia-related regions in patients. Furthermore, given that the genes evaluated here are involved in protein kinase A signaling, dysregulation of this pathway through alterations in miR-137 biogenesis may underlie the gray matter loss seen in the disease.« less

  1. Gray Matter-Specific Changes in Brain Bioenergetics after Acute Sleep Deprivation: A 31P Magnetic Resonance Spectroscopy Study at 4 Tesla

    PubMed Central

    Plante, David T.; Trksak, George H.; Jensen, J. Eric; Penetar, David M.; Ravichandran, Caitlin; Riedner, Brady A.; Tartarini, Wendy L.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.; Harper, David G.

    2014-01-01

    Study Objectives: A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Design: Experimental laboratory study. Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Interventions: Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation, and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. Measurements and Results: PCr increased in gray matter after 2 nights of recovery sleep relative to sleep deprivation with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. Conclusions: These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in phosphocreatine after recovery sleep may be related to sleep homeostasis. Citation: Plante DT, Trksak GH, Jensen JE, Penetar DM, Ravichandran C, Riedner BA, Tartarini WL, Dorsey CM, Renshaw PF, Lukas SE, Harper DG. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla. SLEEP 2014

  2. Age-Related Macular Degeneration

    MedlinePlus

    ... this page please turn Javascript on. Age-related Macular Degeneration What is AMD? Click for more information Age-related macular degeneration, ... the macula allows you to see fine detail. AMD Blurs Central Vision AMD blurs the sharp central ...

  3. Gray Matter Volume in Adolescent Anxiety: An Impact of the Brain-Derived Neurotrophic Factor Val[superscript 66]Met Polymorphism?

    ERIC Educational Resources Information Center

    Mueller, Sven C.; Aouidad, Aveline; Gorodetsky, Elena; Goldman, David; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Minimal research links anxiety disorders in adolescents to regional gray matter volume (GMV) abnormalities and their modulation by genetic factors. Prior research suggests that a brain-derived neurotrophic factor (BNDF) Val[superscript 66]Met polymorphism may modulate such brain morphometry profiles. Method: Using voxel-based…

  4. Auditory Short-Term Memory Capacity Correlates with Gray Matter Density in the Left Posterior STS in Cognitively Normal and Dyslexic Adults

    ERIC Educational Resources Information Center

    Richardson, Fiona M.; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M.; Leff, Alex P.; Price, Cathy J.

    2011-01-01

    A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using…

  5. Gray matter atrophy in patients with Parkinson’s disease and those with mild cognitive impairment: a voxel-based morphometry study

    PubMed Central

    Zhang, Jing; Zhang, Yun-Ting; Hu, Wei-Dong; Li, Li; Liu, Guang-Yao; Bai, Yu-Ping

    2015-01-01

    Purpose: Mild cognitive impairment is common in Parkinson’s disease, but the underlying pathological mechanism has not been fully understood. To examine the gray matter changes in patients with Parkinson’s disease and those with mild cognitive impairment (MCI) using voxel based Morphometry (VBM). Methods: Magnetic resonance images were obtained from 35 patients with PD and 20 age and sex-matched healthy control subjects. In the PD group, 14 subjects had no MCI and 21 had MCI. MRI 3D structural images were acquired and analyzed by means of the optimized VBM procedure with Statistical Parametric Mapping (SPM5). Results: Widespread areas of cortical atrophy were found in patients with PD compared with normal controls (in both temporal, occipital, parietal, frontal lobes and right limbic lobes, posterior lobes of the cerebellum and left caudate nucleus). Gray matter reductions were found in bilateral fusiform gyrus and lingual gyrus, left anterior cingulate cortex and insula, and right superior temporal gyrus, orbitofrontal cortex, central gyrus and precuneus in patients with PD with MCI compared with normal controls. Inpatients with PD with MCI, areas of reduced gray matter were found in both precentral gyrus and middle temporal gyrus, right cuneus, precuneus, and orbitofrontal cortex, and left fusiform gyrus compared with those without MCI. Conclusions: These findings suggest that PD is associated with the gray matter atrophy in the neocortical areas, and that cognitive impairment in patients with PD may be associated with gray matter changes in the parieto-occipital association cortex, right orbitofrontal cortex, and middle temporal gyrus. PMID:26629027

  6. Reduced hippocampal and medial prefrontal gray matter mediate the association between reported childhood maltreatment and trait anxiety in adulthood and predict sensitivity to future life stress

    PubMed Central

    2014-01-01

    Background The experience of early life stress is a consistently identified risk factor for the development of mood and anxiety disorders. Preclinical research employing animal models of early life stress has made inroads in understanding this association and suggests that the negative sequelae of early life stress may be mediated by developmental disruption of corticolimbic structures supporting stress responsiveness. Work in humans has corroborated this idea, as childhood adversity has been associated with alterations in gray matter volumes of the hippocampus, amygdala, and medial prefrontal cortex. Yet, missing from this body of research is a full understanding of how these neurobiological vulnerabilities may mechanistically contribute to the reported link between adverse childhood experiences and later affective psychopathology. Results Analyses revealed that self-reported childhood maltreatment was associated with reduced gray matter volumes within the medial prefrontal cortex and left hippocampus. Furthermore, reduced left hippocampal and medial prefrontal gray matter volume mediated the relationship between childhood maltreatment and trait anxiety. Additionally, individual differences in corticolimbic gray matter volume within these same structures predicted the anxious symptoms as a function of life stress 1 year after initial assessment. Conclusions Collectively, these findings provide novel evidence that reductions in corticolimbic gray matter, particularly within the hippocampus and medial prefrontal cortex, are associated with reported childhood maltreatment and individual differences in adult trait anxiety. Furthermore, our results suggest that these structural alterations contribute to increased affective sensitivity to stress later in life in those that have experienced early adversity. More broadly, the findings contribute to an emerging literature highlighting the critical importance of early stress on the development of corticolimbic structures

  7. Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences.

    PubMed

    Sigalovsky, Irina S; Fischl, Bruce; Melcher, Jennifer R

    2006-10-01

    Recently, magnetic resonance properties of cerebral gray matter have been spatially mapped--in vivo--over the cortical surface. In one of the first neuroscientific applications of this approach, this study explores what can be learned about auditory cortex in living humans by mapping longitudinal relaxation rate (R1), a property related to myelin content. Gray matter R1 (and thickness) showed repeatable trends, including the following: (1) Regions of high R1 were always found overlapping posteromedial Heschl's gyrus. They also sometimes occurred in planum temporale and never in other parts of the superior temporal lobe. We hypothesize that the high R1 overlapping Heschl's gyrus (which likely indicates dense gray matter myelination) reflects auditory koniocortex (i.e., primary cortex), a heavily myelinated area that shows comparable overlap with the gyrus. High R1 overlapping Heschl's gyrus was identified in every instance suggesting that R1 may ultimately provide a marker for koniocortex in individuals. Such a marker would be significant for auditory neuroimaging, which has no standard means (anatomic or physiologic) for localizing cortical areas in individual subjects. (2) Inter-hemispheric comparisons revealed greater R1 on the left on Heschl's gyrus, planum temporale, superior temporal gyrus and superior temporal sulcus. This asymmetry suggests greater gray matter myelination in left auditory cortex, which may be a substrate for the left hemisphere's specialized processing of speech, language, and rapid acoustic changes. These results indicate that in vivo R1 mapping can provide new insights into the structure of human cortical gray matter and its relation to function. PMID:16806989

  8. Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear.

    PubMed

    Vianna, D M; Landeira-Fernandez, J; Brandão, M L

    2001-12-01

    Stepwise increases in the electrical stimulation of the dorsolateral periaqueductal gray (dlPAG) produces alertness, then freezing and finally escape. This paper examines whether this freezing is (i) caused by Pavlovian fear conditioning to the contextual cues present during stimulation and (ii) the result of the stimulation of neurons located inside the dlPAG or elsewhere. To this end, freezing behavior was assessed in rats exposed either to the same or a different environment (context shift test) following the application of either footshocks or stimulation of the dlPAG at the freezing threshold. Rats submitted to footshocks presented freezing to the context 24h later whereas rats submitted to the dlPAG stimulation showed freezing only immediately after the stimulation, regardless of the context. In the second experiment, aversive states generated by activation of the dlPAG were assessed either by measuring the thresholds for freezing and escape responses or the duration of these responses following microinjections of semicarbazide inside the dlPAG. The duration of freezing behavior was also measured in rats submitted to a contextual fear-conditioning paradigm using footshocks as unconditioned stimulus. Lesions of the ventral periaqueductal gray (vPAG) disrupted conditioned freezing to contextual cues associated to footshocks but vPAG lesions did not change the threshold of either freezing or escape responses elicited by electrical stimulation of the dlPAG. Lesions of the vPAG did not change the amount of freezing or escape responses produced by microinjections of semicarbazide into the dlPAG. These results indicate that stimulation of dlPAG neurons produce freezing behavior independent of any contextual fear conditioning and add to previously reported evidence showing that the vPAG is a critical structure for the expression of conditioned fear. In contrast, the neural substrate of unconditioned dlPAG stimulation-induced freezing is likely to elaborate

  9. Age-related hair pigment loss.

    PubMed

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. PMID:26370651

  10. Connections from the rat dorsal column nuclei (DCN) to the periaqueductal gray matter (PAG).

    PubMed

    Barbaresi, Paolo; Mensà, Emanuela

    2016-08-01

    Electrical stimulation of the dorsal columns (DCs; spinal cord stimulation; SCS) has been proposed to treat chronic neuropathic pain. SCS may activate a dual mechanism that would affect both the spinal cord and supraspinal levels. Stimulation of DCs or DC nuclei (DCN) in animals where neuropathic pain has been induced causes activation of brainstem centers including the periaqueductal gray (PAG), which is involved in the endogenous pain suppression system. Biotinylated dextran-amine (BDA) was iontophoretically injected into the DCN to analyze the ascending projection directed to the PAG. Separate injections into the gracile nucleus (GrN) and the cuneate nucleus (CunN) showed BDA-positive fibers terminating in different regions of the contralateral PAG. GrN-PAG afferents terminated in the caudal and middle portions of PAG-l, whereas CunN-PAG fibers terminated in the middle and rostral portions of PAG-l. Based on the DCN somatotopic map, the GrN sends information to the PAG from the contralateral hindlimb and the tail and the CunN from the contralateral forelimb, shoulder, neck and ear. This somatotopic organization is consistent with earlier electrophysiological and PAG stimulation studies. These fibers could form part of the DCs-brainstem-spinal cord loop, which may be involved in the inhibitory effects of SCS on neuropathic pain. PMID:26902642

  11. Diffusion tensor imaging detects chronic microstructural changes in white and gray matter after traumatic brain injury in rat

    PubMed Central

    Laitinen, Teemu; Sierra, Alejandra; Bolkvadze, Tamuna; Pitkänen, Asla; Gröhn, Olli

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of disability and death in people of all ages worldwide. An initial brain injury caused by external mechanical forces triggers a cascade of tissue changes that lead to a wide spectrum of symptoms and disabilities, such as cognitive deficits, mood or anxiety disorders, motor impairments, chronic pain, and epilepsy. We investigated the detectability of secondary injury at a chronic time-point using ex vivo diffusion tensor imaging (DTI) in a rat model of TBI, lateral fluid percussion (LFP) injury. Our analysis of ex vivo DTI data revealed persistent microstructural tissue changes in white matter tracts, such as the splenium of the corpus callosum, angular bundle, and internal capsule. Histologic examination revealed mainly loss of myelinated axons and/or iron accumulation. Gray matter areas in the thalamus exhibited an increase in fractional anisotropy associated with neurodegeneration, myelinated fiber loss, and/or calcifications at the chronic phase. In addition, we examined whether these changes could also be detected with in vivo settings at the same chronic time-point. Our results provide insight into DTI detection of microstructural changes in the chronic phase of TBI, and elucidate how these changes correlate with cellular level alterations. PMID:25954146

  12. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas

    PubMed Central

    Kaiser, Anelis; Eppenberger, Leila S.; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that – at least with respect to language acquisition – early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood. PMID:26106338

  13. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas.

    PubMed

    Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood. PMID:26106338

  14. Neuroanatomical correlates of the sense of control: Gray and white matter volumes associated with an internal locus of control.

    PubMed

    Hashimoto, Teruo; Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Kawashima, Ryuta

    2015-10-01

    A belief that effort is rewarded can develop incentive, achievement motivation, and self-efficacy. Individuals with such a belief attribute causes of events to themselves, not to external, uncontrollable factors, and are thus said to have an internal locus of control. An internal locus of control is a positive personality trait and has been thoroughly studied in applied psychology, but has not been widely examined in neuroscience. In the present study, correlations between locus of control assessment scores and brain volumes were examined in 777 healthy young adults using magnetic resonance imaging. A whole-brain multiple regression analysis with corrections for the effects of age, gender, and intelligence was conducted. Voxel-based morphometry analyses revealed that gray matter volumes in the anterior cingulate cortex, striatum, and anterior insula positively correlated with higher scores, which indicate an internal LOC. In addition, white matter volumes in the striatum showed significant correlations with an internal locus of control. These results suggest that cognitive, socioemotional, self-regulatory, and reward systems might be associated with internal control orientation. The finding of greater volumes in several brain regions in individuals with a stronger internal locus of control indicates that there is a neuroanatomical basis for the belief that one's efforts are rewarded. PMID:26123375

  15. Comparison of quantitative autoradiographic and xenon-133 clearance methods: correlation of gray and white matter cerebral blood flow with compartmental blood flow indices

    SciTech Connect

    Tuor, U.I.; Fitch, W.; Graham, D.I.; Mendelow, A.D.

    1986-08-01

    The relationships between CBF in gray and white matter to those of the fast and slow components of xenon-133 clearance curves remain uncertain. CBF was measured in 13 anaesthetized baboons under a variety of conditions, using both the xenon-133 clearance technique and (14C)iodoantipyrine quantitative autoradiography. There was a linear relationship between CBF, as determined by the stochastic (height/area) analysis of the clearance curve, and mean CBF determined from the autoradiograms (r = 0.94, p less than 0.001, slope = 0.86 +/- 0.09). There was also a linear correlation between the fast-flow component (measured with xenon-133) and blood flow in the cerebral gray matter (measured with (14C)iodoantipyrine) (r = 0.92, p less than 0.001, slope = 0.69 +/- 0.15) and between the slow-flow component (with xenon-133) and blood flow in white matter (with (14C)iodoantipyrine) (r = 0.79, p less than 0.01, slope = 0.81 +/- 0.10). In the primate brain, the fast- and slow-flow indices therefore appear to be representative of CBF in gray matter and white matter, respectively, whereas the stochastic analysis provides a stable measure of mean CBF within the tissue monitored.

  16. The Empowering Role of Mobile Apps in Behavior Change Interventions: The Gray Matters Randomized Controlled Trial

    PubMed Central

    Nugent, Chris D; McClean, Sally I; Cleland, Ian; Tschanz, JoAnn T; Clark, Christine J; Norton, Maria C

    2016-01-01

    Background Health education and behavior change programs targeting specific risk factors have demonstrated their effectiveness in reducing the development of future diseases. Alzheimer disease (AD) shares many of the same risk factors, most of which can be addressed via behavior change. It is therefore theorized that a behavior change intervention targeting these risk factors would likely result in favorable rates of AD prevention. Objective The objective of this study was to reduce the future risk of developing AD, while in the short term promoting vascular health, through behavior change. Methods The study was an interventional randomized controlled trial consisting of subjects who were randomly assigned into either treatment (n=102) or control group (n=42). Outcome measures included various blood-based biomarkers, anthropometric measures, and behaviors related to AD risk. The treatment group was provided with a bespoke “Gray Matters” mobile phone app designed to encourage and facilitate behavior change. The app presented evidence-based educational material relating to AD risk and prevention strategies, facilitated self-reporting of behaviors across 6 behavioral domains, and presented feedback on the user’s performance, calculated from reported behaviors against recommended guidelines. Results This paper explores the rationale for a mobile phone–led intervention and details the app’s effect on behavior change and subsequent clinical outcomes. Via the app, the average participant submitted 7.3 (SD 3.2) behavioral logs/day (n=122,719). Analysis of these logs against primary outcome measures revealed that participants who improved their high-density lipoprotein cholesterol levels during the study duration answered a statistically significant higher number of questions per day (mean 8.30, SD 2.29) than those with no improvement (mean 6.52, SD 3.612), t97.74=−3.051, P=.003. Participants who decreased their body mass index (BMI) performed significantly

  17. Cortical complexity as a measure of age-related brain atrophy.

    PubMed

    Madan, Christopher R; Kensinger, Elizabeth A

    2016-07-01

    The structure of the human brain changes in a variety of ways as we age. While a sizeable literature has examined age-related differences in cortical thickness, and to a lesser degree, gyrification, here we examined differences in cortical complexity, as indexed by fractal dimensionality in a sample of over 400 individuals across the adult lifespan. While prior studies have shown differences in fractal dimensionality between patient populations and age-matched, healthy controls, it is unclear how well this measure would relate to age-related cortical atrophy. Initially computing a single measure for the entire cortical ribbon, i.e., unparcellated gray matter, we found fractal dimensionality to be more sensitive to age-related differences than either cortical thickness or gyrification index. We additionally observed regional differences in age-related atrophy between the three measures, suggesting that they may index distinct differences in cortical structure. We also provide a freely available MATLAB toolbox for calculating fractal dimensionality. PMID:27103141

  18. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

    PubMed Central

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

  19. Gray Matter Alterations in Post-Traumatic Stress Disorder, Obsessive–Compulsive Disorder, and Social Anxiety Disorder

    PubMed Central

    Cheng, Bochao; Huang, Xiaoqi; Li, Shiguang; Hu, Xinyu; Luo, Ya; Wang, Xiuli; Yang, Xun; Qiu, Changjian; Yang, Yanchun; Zhang, Wei; Bi, Feng; Roberts, Neil; Gong, Qiyong

    2015-01-01

    Post-traumatic stress disorder (PTSD), obsessive–compulsive disorder (OCD), and social anxiety disorder (SAD) all bear the core symptom of anxiety and are separately classified in the new DSM-5 system. The aim of the present study is to obtain evidence for neuroanatomical difference for these disorders. We applied voxel-based morphometry (VBM) with Diffeomorphic Anatomical Registration Through Exponentiated Lie to compare gray matter volume (GMV) in magnetic resonance images obtained for 30 patients with PTSD, 29 patients with OCD, 20 patients with SAD, and 30 healthy controls. GMV across all four groups differed in left hypothalamus and left inferior parietal lobule and post hoc analyses revealed that this difference is primarily due to reduced GMV in the PTSD group relative to the other groups. Further analysis revealed that the PTSD group also showed reduced GMV in frontal lobe, temporal lobe, and cerebellum compared to the OCD group, and reduced GMV in frontal lobes bilaterally compared to SAD group. A significant negative correlation with anxiety symptoms is observed for GMV in left hypothalamus in three disorder groups. We have thus found evidence for brain structure differences that in future could provide biomarkers to potentially support classification of these disorders using MRI. PMID:26347628

  20. Examining gray matter structures associated with individual differences in global life satisfaction in a large sample of young adults.

    PubMed

    Kong, Feng; Ding, Ke; Yang, Zetian; Dang, Xiaobin; Hu, Siyuan; Song, Yiying; Liu, Jia

    2015-07-01

    Although much attention has been directed towards life satisfaction that refers to an individual's general cognitive evaluations of his or her life as a whole, little is known about the neural basis underlying global life satisfaction. In this study, we used voxel-based morphometry to investigate the structural neural correlates of life satisfaction in a large sample of young healthy adults (n = 299). We showed that individuals' life satisfaction was positively correlated with the regional gray matter volume (rGMV) in the right parahippocampal gyrus (PHG), and negatively correlated with the rGMV in the left precuneus and left ventromedial prefrontal cortex. This pattern of results remained significant even after controlling for the effect of general positive and negative affect, suggesting a unique structural correlates of life satisfaction. Furthermore, we found that self-esteem partially mediated the association between the PHG volume and life satisfaction as well as that between the precuneus volume and global life satisfaction. Taken together, we provide the first evidence for the structural neural basis of life satisfaction, and highlight that self-esteem might play a crucial role in cultivating an individual's life satisfaction. PMID:25406366

  1. Decreased bilateral thalamic gray matter volume in first-episode schizophrenia with prominent hallucinatory symptoms: A volumetric MRI study.

    PubMed

    Huang, Peng; Xi, Yibin; Lu, Zhong-Lin; Chen, Yunchun; Li, Xiangrui; Li, Weiguo; Zhu, Xia; Cui, Long-Biao; Tan, Qingrong; Liu, Wenming; Li, Chen; Miao, Danmin; Yin, Hong

    2015-01-01

    Studies comparing gray matter (GM) volume of schizophrenic patients with or without auditory verbal hallucinations (AVHs) to that of normal controls remain controversial. This project aims to investigate changes of GM volumes of drug-naïve schizophrenic patients with and without AVHs. Eighteen first episode schizophrenic (FES) patients with AVHs, 18 FES patients without AVHs, and 18 healthy controls were scanned using structural MRI. Voxel-based morphometry (VBM) analysis was conducted to investigate changes of GM volume among the three groups. Patients with and without AVHs exhibited reduced GM volumes relative to normal controls in the left superior temporal gyrus, frontal regions, cerebellum and caudate. Further analysis of the GM of subcortical structures found that patients with AVHs had reduced thalamic volume than healthy controls. No significant difference was found between patients with and without AVHs. Significant correlation was found between the total scores of the Positive and Negative Syndrome Scale and bilateral thalamic volume. ROC analysis of thalamic volumes of the patients with AVHs and normal controls showed that the area under the curve was 0.698 (P = 0.043). The decreased thalamic volumes might serve as a biomarker for discriminating FES AVHs patients from normals. PMID:26403064

  2. Cortical and subcortical gray matter shrinkage in alcohol-use disorders: a voxel-based meta-analysis.

    PubMed

    Yang, Xun; Tian, Fangfang; Zhang, Handi; Zeng, Jianguang; Chen, Taolin; Wang, Song; Jia, Zhiyun; Gong, Qiyong

    2016-07-01

    Although gray matter (GM) damages caused by long term and excessive alcohol consumption have long been reported, the structural neuroimaging findings on alcohol-use disorders (AUD) are inconsistent. The aim of this study was to conduct a meta-analysis, using a novel voxel-based meta-analytic method effect-size signed differential mapping (ES-SDM), to characterize GM changes in AUD patients. Twelve studies including 433 AUD patients and 498 healthy controls (HCs) were retrieved. The AUD group demonstrated significant GM reductions in the corticostriatal-limbic circuits, including bilateral insula, superior temporal gyrus, striatum, dorsal lateral prefrontal cortex (DLPFC), precentral gyrus, anterior cingulate cortex (ACC), left thalamus and right hippocampus compared to HCs. GM reduction in the right striatum is significantly negatively related to duration of alcohol dependence, while GM shrinkage of the left superior, middle frontal gyrus, and left thalamus is related to lifetime alcohol consumption. The findings demonstrate that the GM abnormalities caused by AUD are in corticostriatal-limbic circuits whose dysfunctions may involve in craving and observed functional deficits. PMID:27108216

  3. Gray matter volume alterations in first-episode drug-naïve patients with deficit and nondeficit schizophrenia.

    PubMed

    Lei, Wei; Deng, Wei; Li, Mingli; He, Zongling; Han, Yuanyuan; Huang, Chaohua; Ma, Xiaohong; Wang, Qiang; Guo, Wanjun; Li, Yinfei; Jiang, Lijun; Gong, Qiyong; Hu, Xun; Zhang, Nanyin; Li, Tao

    2015-11-30

    Different patterns of gray matter volume (GMV) abnormalities have been reported between chronic patients with deficit schizophrenia (DS), relative to nondeficit schizophrenia (NDS) patients. However, it is not clear whether these differences are characteristic to the pathophysiology of DS or due to the effects of medications or illness durations. To address this issue, GMV in 88 first-episode, drug-naive patients with schizophrenia (44 DS and 44 NDS), 67 of their first-degree relatives and 84 healthy controls were assessed using voxel- based morphometry (VBM) and compared between groups. Correlations between GMV and clinical symptoms in patients were also assessed. Compared to controls, DS patients displayed more severe GMV reduction in the cerebellar culmen than NDS patients. GMV reduction in culmen was also observed in the first-degree relatives of DS (but not NDS) patients, suggesting possible different genetic risk in DS and NDS. The left insula was significantly smaller in DS patients than both NDS patients and controls, and smaller GMV of this region was associated with more severe negative symptoms in patients. Our results collectively indicate that DS might represent a distinct subtype of schizophrenia from NDS and the GMV change in left insula may be a morphological signature of DS. PMID:26409573

  4. Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter μ-opioid receptors.

    PubMed

    Roncon, Camila Marroni; Almada, Rafael Carvalho; Maraschin, Jhonatan Christian; Audi, Elisabeth Aparecida; Zangrossi, Hélio; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne

    2015-12-01

    Previously reported results have shown that the inhibitory effect of fluoxetine on escape behavior, interpreted as a panicolytic-like effect, is blocked by pretreatment with either the opioid receptor antagonist naloxone or the 5-HT1A receptor (5-HT1A-R) antagonist WAY100635 via injection into the dorsal periaqueductal gray matter (dPAG). Additionally, reported evidence indicates that the μ-opioid receptor (MOR) interacts with the 5-HT1A-R in the dPAG. In the present work, pretreatment of the dPAG with the selective MOR blocker CTOP antagonized the anti-escape effect of chronic fluoxetine (10 mg/kg, i.p., daily, for 21 days), as measured in the elevated T-maze (ETM) test, indicating mediation of this effect by the MOR. In addition, the combined administration of sub-effective doses of the selective MOR agonist DAMGO (intra-dPAG) and sub-effective doses of chronic as well as subchronic (7 days) fluoxetine increased avoidance and escape latencies, suggesting that the activation of MORs may facilitate and accelerate the effects of fluoxetine. The current observation that MORs located in the dPAG mediate the anti-escape effect of fluoxetine may open new perspectives for the development of more efficient and fast-acting panic-alleviating drugs. PMID:26320545

  5. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game.

    PubMed

    Kühn, S; Gleich, T; Lorenz, R C; Lindenberger, U; Gallinat, J

    2014-02-01

    Video gaming is a highly pervasive activity, providing a multitude of complex cognitive and motor demands. Gaming can be seen as an intense training of several skills. Associated cerebral structural plasticity induced has not been investigated so far. Comparing a control with a video gaming training group that was trained for 2 months for at least 30 min per day with a platformer game, we found significant gray matter (GM) increase in right hippocampal formation (HC), right dorsolateral prefrontal cortex (DLPFC) and bilateral cerebellum in the training group. The HC increase correlated with changes from egocentric to allocentric navigation strategy. GM increases in HC and DLPFC correlated with participants' desire for video gaming, evidence suggesting a predictive role of desire in volume change. Video game training augments GM in brain areas crucial for spatial navigation, strategic planning, working memory and motor performance going along with evidence for behavioral changes of navigation strategy. The presented video game training could therefore be used to counteract known risk factors for mental disease such as smaller hippocampus and prefrontal cortex volume in, for example, post-traumatic stress disorder, schizophrenia and neurodegenerative disease. PMID:24166407

  6. Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention.

    PubMed

    Sampaio-Baptista, Cassandra; Scholz, Jan; Jenkinson, Mark; Thomas, Adam G; Filippini, Nicola; Smit, Gabrielle; Douaud, Gwenaëlle; Johansen-Berg, Heidi

    2014-08-01

    The ability to predict learning performance from brain imaging data has implications for selecting individuals for training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-body task. 44 naïve participants were scanned before undertaking daily juggling practice for 6weeks, following either a high intensity or a low intensity training regime. To assess performance across the training period participants' practice sessions were filmed. Greater GM volume in medial occipito-parietal areas at baseline correlated with steeper learning slopes. We also tested whether practice time or performance outcomes modulated the degree of structural brain change detected between the baseline scan and additional scans performed immediately after training and following a further 4weeks without training. Participants with better performance had higher increases in GM volume during the period following training (i.e., between scans 2 and 3) in dorsal parietal cortex and M1. When contrasting brain changes between the practice intensity groups, we did not find any straightforward effects of practice time though practice modulated the relationship between performance and GM volume change in dorsolateral prefrontal cortex. These results suggest that practice time and performance modulate the degree of structural brain change evoked by long-term training regimes. PMID:24680712

  7. Odor identification deficit in mild cognitive impairment and Alzheimer's disease is associated with hippocampal and deep gray matter atrophy.

    PubMed

    Hagemeier, Jesper; Woodward, Matthew R; Rafique, Usama A; Amrutkar, Chaitanya V; Bergsland, Niels; Dwyer, Michael G; Benedict, Ralph; Zivadinov, Robert; Szigeti, Kinga

    2016-09-30

    Even in early stages, Alzheimer's disease (AD) is associated with olfactory deficit. We assess the association of volumetric differences in subcortical deep gray matter (DGM) structures and odor identification deficit (OID) in subjects with amnestic mild cognitive impairment (aMCI), AD and normal controls (NCs), and relate findings to the current gold standard right sided memory measure, visual reproduction. Eighty subjects (19 aMCI; 42 CE; 19 NC) were included in this study. We obtained olfactory testing and normalized structural brain volumes from 3T T1 MRI scans. Associations between MRI, olfactory- and memory impairment were studied using Pearson- and partial-correlation adjusted for age. AD patients had significantly higher olfactory deficits, lower visual reproduction scores, and reduced brain volumes (p<0.05). Within aMCI, OID was associated with lower right hippocampal- and left amygdala volume (p<0.05). In AD, OID was associated with bilaterally lower hippocampus and left amygdala volumes. In contrast, visual reproduction was associated with bilateral volume loss regardless of study group. OID is a more specific marker of early pathological right mesial-temporal involvement than the currently regarded gold standard of right sided-memory (visual reproduction). OID may be valuable in the longitudinal evaluation of disease modifying treatments in early disease course. PMID:27567325

  8. Gray Matter Alterations in Post-Traumatic Stress Disorder, Obsessive-Compulsive Disorder, and Social Anxiety Disorder.

    PubMed

    Cheng, Bochao; Huang, Xiaoqi; Li, Shiguang; Hu, Xinyu; Luo, Ya; Wang, Xiuli; Yang, Xun; Qiu, Changjian; Yang, Yanchun; Zhang, Wei; Bi, Feng; Roberts, Neil; Gong, Qiyong

    2015-01-01

    Post-traumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD), and social anxiety disorder (SAD) all bear the core symptom of anxiety and are separately classified in the new DSM-5 system. The aim of the present study is to obtain evidence for neuroanatomical difference for these disorders. We applied voxel-based morphometry (VBM) with Diffeomorphic Anatomical Registration Through Exponentiated Lie to compare gray matter volume (GMV) in magnetic resonance images obtained for 30 patients with PTSD, 29 patients with OCD, 20 patients with SAD, and 30 healthy controls. GMV across all four groups differed in left hypothalamus and left inferior parietal lobule and post hoc analyses revealed that this difference is primarily due to reduced GMV in the PTSD group relative to the other groups. Further analysis revealed that the PTSD group also showed reduced GMV in frontal lobe, temporal lobe, and cerebellum compared to the OCD group, and reduced GMV in frontal lobes bilaterally compared to SAD group. A significant negative correlation with anxiety symptoms is observed for GMV in left hypothalamus in three disorder groups. We have thus found evidence for brain structure differences that in future could provide biomarkers to potentially support classification of these disorders using MRI. PMID:26347628

  9. The intensity of organic matter decomposition in gray soils of forest ecosystems in the southern taiga of Central Siberia

    NASA Astrophysics Data System (ADS)

    Vedrova, E. F.

    2008-08-01

    The estimates of the carbon pool in the organic matter of gray soils of the southern taiga, the intensity of destruction of its components, and participation of the latter in the formation of the mineralized carbon flux to the atmosphere are presented for different stages of succession of deciduous (birch) and coniferous (fir) forests. The carbon pool varies from 139.7 to 292.7 t/ha. It is distributed between phytodetritus, mobile and stabile humus (32, 19, and 49%, respectively). The intensity of the mineralization carbon flux to the atmosphere amounts to 3.93 4.13 t C per year. Phytodetritus plays the main role in the formation of this flux. In the soils under the forests studied, 4 6% of the carbon flux are formed owing to mineralization of the newly formed soil humus. In birch forests, 2 6% (0.1 0.2% of the humus pool in the 0 20-cm layer) is the contribution to the flux due to mineralization of soil humus. In fir forests, the mineralized humus is compensated by humus substances synthesized in the process of humification during phytodetritus decomposition.

  10. Relative activity of cerebral subcortical gray matter in varying states of attention and awareness in normal subjects and patient studies

    SciTech Connect

    Cooper, M.; Chen, C.T.; Levy, J.; Wagner, N.; Spire, J.P.; Jacobsen, J.; Meltzer, H.; Metz, J.; Beck, R.N.

    1985-05-01

    An important aspect of the study of brain function involves measurement of the relationships; between activities in the subcortical gray matter of the caudate and of the thalamus; and between these structures and functional cortical areas. The authors have studied these relationships in 22 subjects under different conditions of activation, sleep and sensory deprivation using a PET VI system and F-18-2DG to determine regional cerebral metabolism. Subject activating conditions were maintained throughout the period of equilibration of F-18-2DG and E.E.G.'s were monitored. Multiple tomographic slices of 1-2 million counts were obtained simultaneously with slice separation of 14mm and each plane parallel to the cantho-meatal line. In activated and non-activated awake conditions for normal subjects, left and right thalmus-to-caudate ratios were similar and greater than unity. This relationship was maintained in non-REM sleep, but was reversed and divergent in REM sleep and sensory deprivation; this was also evident in 3/4 narcoleptics awake and asleep in non-REM and REM and 2/3 schizophrenics and affective disorder, subjects. This approach appears to have potential for characterizating normal and disordered regional cerebral function.

  11. Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention

    PubMed Central

    Sampaio-Baptista, Cassandra; Scholz, Jan; Jenkinson, Mark; Thomas, Adam G.; Filippini, Nicola; Smit, Gabrielle; Douaud, Gwenaëlle; Johansen-Berg, Heidi

    2014-01-01

    The ability to predict learning performance from brain imaging data has implications for selecting individuals for training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-body task. 44 naïve participants were scanned before undertaking daily juggling practice for 6 weeks, following either a high intensity or a low intensity training regime. To assess performance across the training period participants' practice sessions were filmed. Greater GM volume in medial occipito-parietal areas at baseline correlated with steeper learning slopes. We also tested whether practice time or performance outcomes modulated the degree of structural brain change detected between the baseline scan and additional scans performed immediately after training and following a further 4 weeks without training. Participants with better performance had higher increases in GM volume during the period following training (i.e., between scans 2 and 3) in dorsal parietal cortex and M1. When contrasting brain changes between the practice intensity groups, we did not find any straightforward effects of practice time though practice modulated the relationship between performance and GM volume change in dorsolateral prefrontal cortex. These results suggest that practice time and performance modulate the degree of structural brain change evoked by long-term training regimes. PMID:24680712

  12. Association of AKT1 with verbal learning, verbal memory, and regional cortical gray matter density in twins.

    PubMed

    Pietiläinen, Olli P H; Paunio, Tiina; Loukola, Anu; Tuulio-Henriksson, Annamari; Kieseppä, Tuula; Thompson, Paul; Toga, Arthur W; van Erp, Theo G M; Silventoinen, Karri; Soronen, Pia; Hennah, William; Turunen, Joni A; Wedenoja, Juho; Palo, Outi M; Silander, Kaisa; Lönnqvist, Jouko; Kaprio, Jaakko; Cannon, Tyrone D; Peltonen, Leena

    2009-07-01

    AKT1, encoding the protein kinase B, has been associated with the genetic etiology of schizophrenia and bipolar disorder. However, minuscule data exist on the role of different alleles of AKT1 in measurable quantitative endophenotypes, such as cognitive abilities and neuroanatomical features, showing deviations in schizophrenia and bipolar disorder. We evaluated the contribution of AKT1 to quantitative cognitive traits and 3D high-resolution neuroanatomical images in a Finnish twin sample consisting of 298 twins: 61 pairs with schizophrenia (8 concordant), 31 pairs with bipolar disorder (5 concordant) and 65 control pairs matched for age, sex and demographics. An AKT1 allele defined by the SNP rs1130214 located in the UTR of the gene revealed association with cognitive traits related to verbal learning and memory (P = 0.0005 for a composite index). This association was further fortified by a higher degree of resemblance of verbal memory capacity in pairs sharing the rs1130214 genotype compared to pairs not sharing the genotype. Furthermore, the same allele was also associated with decreased gray matter density in medial and dorsolateral prefrontal cortex (P < 0.05). Our findings support the role of AKT1 in the genetic background of cognitive and anatomical features, known to be affected by psychotic disorders. The established association of the same allelic variant of AKT1 with both cognitive and neuroanatomical aberrations could suggest that AKT1 exerts its effect on verbal learning and memory via neural networks involving prefrontal cortex. PMID:19051289

  13. Cerebral gray matter volume variation in female-to-male transsexuals: a voxel-based morphometric study.

    PubMed

    Kim, Tae-Hoon; Kim, Seok-Kwun; Jeong, Gwang-Woo

    2015-12-16

    Several studies seem to support the hypothesis that brain anatomy is associated with transsexualism. However, these studies were still limited because few neuroanatomical findings have been obtained from female-to-male (FtM) transsexuals. This study compared the cerebral regional volumes of gray matter (GM) between FtM transsexuals and female controls using a voxel-based morphometry. Twelve FtM transsexuals who had undergone sex-reassignment surgery and 15 female controls participated in this study. Both groups were age matched and right-handed, with no history of neurological illness. Fifteen female controls were recruited to determine whether GM volumes in FtM transsexuals more closely resembled individuals who shared their biological sex. MRI data were processed using SPM 8 with the diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL). FtM transsexuals showed significantly larger volumes of the thalamus, hypothalamus, midbrain, gyrus rectus, head of caudate nucleus, precentral gyrus, and subcallosal area compared with the female controls. However, the female controls showed a significantly larger volume in the superior temporal gyrus including Heschl's gyrus and Rolandic operculum. These findings confirm that the volume difference in brain substructures in FtM transsexuals is likely to be associated with transsexualism and that transsexualism is probably associated with distinct cerebral structures, determining gender identity. PMID:26559725

  14. Examining gray matter structures associated with individual differences in global life satisfaction in a large sample of young adults

    PubMed Central

    Kong, Feng; Ding, Ke; Yang, Zetian; Dang, Xiaobin; Hu, Siyuan; Song, Yiying

    2015-01-01

    Although much attention has been directed towards life satisfaction that refers to an individual’s general cognitive evaluations of his or her life as a whole, little is known about the neural basis underlying global life satisfaction. In this study, we used voxel-based morphometry to investigate the structural neural correlates of life satisfaction in a large sample of young healthy adults (n = 299). We showed that individuals’ life satisfaction was positively correlated with the regional gray matter volume (rGMV) in the right parahippocampal gyrus (PHG), and negatively correlated with the rGMV in the left precuneus and left ventromedial prefrontal cortex. This pattern of results remained significant even after controlling for the effect of general positive and negative affect, suggesting a unique structural correlates of life satisfaction. Furthermore, we found that self-esteem partially mediated the association between the PHG volume and life satisfaction as well as that between the precuneus volume and global life satisfaction. Taken together, we provide the first evidence for the structural neural basis of life satisfaction, and highlight that self-esteem might play a crucial role in cultivating an individual’s life satisfaction. PMID:25406366

  15. Gray Matter Volume Alterations in First-episode Drug-naïve Patients with Deficit and Nondeficit Schizophrenia

    PubMed Central

    Li, Mingli; He, Zongling; Han, Yuanyuan; Huang, Chaohua; Ma, Xiaohong; Wang, Qiang; Guo, Wanjun; Li, Yinfei; Jiang, Lijun; Gong, Qiyong; Hu, Xun; Zhang, Nanyin; Li, Tao

    2016-01-01

    Different patterns of gray matter volume (GMV) abnormalities have been reported between chronic patients with deficit schizophrenia (DS), relative to nondeficit schizophrenia (NDS) patients. However, it is not clear whether these differences are characteristic to the pathophysiology of DS or due to the effects of medications or illness durations. To address this issue, GMV in 88 first-episode, drug-naive patients with schizophrenia (44 DS and 44 NDS), 67 of their first-degree relatives and 84 healthy controls were assessed using voxel- based morphometry (VBM) and compared between groups. Correlations between GMV and clinical symptoms in patients were also assessed. Compared to controls, DS patients displayed more severe GMV reduction in the cerebellar culmen than NDS patients. GMV reduction in culmen was also observed in the first-degree relatives of DS (but not NDS) patients, suggesting possible different genetic risk in DS and NDS. The left insula was significantly smaller in DS patients than both NDS patients and controls, and smaller GMV of this region was associated with more severe negative symptoms in patients. Our results collectively indicate that DS might represent a distinct subtype of schizophrenia from NDS and the GMV change in left insula may be a morphological signature of DS. PMID:26409573

  16. A voxel-based morphometry study of gray matter correlates of facial emotion recognition in bipolar disorder.

    PubMed

    Neves, Maila de Castro L; Albuquerque, Maicon Rodrigues; Malloy-Diniz, Leandro; Nicolato, Rodrigo; Silva Neves, Fernando; de Souza-Duran, Fábio Luis; Busatto, Geraldo; Corrêa, Humberto

    2015-08-30

    Facial emotion recognition (FER) is one of the many cognitive deficits reported in bipolar disorder (BD) patients. The aim of this study was to investigate neuroanatomical correlates of FER impairments in BD type I (BD-I). Participants comprised 21 euthymic BD-I patients without Axis I DSM IV-TR comorbidities and 21 healthy controls who were assessed using magnetic resonance imaging and the Penn Emotion Recognition Test (ER40). Preprocessing of images used DARTEL (diffeomorphic anatomical registration through exponentiated Lie algebra) for optimized voxel-based morphometry in SPM8. Compared with healthy subjects, BD-I patients performed poorly in on the ER40 and had reduced gray matter volume (GMV) in the left orbitofrontal cortex, superior portion of the temporal pole and insula. In the BD-I group, the statistical maps indicated a direct correlation between FER on the ER40 and right middle cingulate gyrus GMV. Our findings are consistent with the previous studies regarding the overlap of multiple brain networks of social cognition and BD neurobiology, particularly components of the anterior-limbic neural network. PMID:26123449

  17. Higher Media Multi-Tasking Activity Is Associated with Smaller Gray-Matter Density in the Anterior Cingulate Cortex

    PubMed Central

    Loh, Kep Kee; Kanai, Ryota

    2014-01-01

    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences. PMID:25250778

  18. Gray matter increases in fronto-parietal regions of depression patients with aripiprazole monotherapy: An exploratory study.

    PubMed

    Lai, Chien-Han; Wu, Yu-Te; Chen, Cheng-Yu; Hou, Yi-Cheng

    2016-08-01

    We investigated the treatment effects of aripiprazole monotherapy in first-episode medication-naïve patients with major depressive disorder (MDD). The accompanying changes in the gray matter volume (GMV) were also explored.Fifteen patients completed the trial and received structural scans by 3-Tesla magnetic resonance imaging at baseline and partially responding state (sixth week). To account for the test-retest bias, 27 healthy controls were scanned twice within 6 weeks. We utilized optimized voxel-based morphometry with different comparisons between groups.The partially responding patients with MDD had greater GMV in left middle frontal gyrus and left superior parietal gyrus when compared with baseline. However, they had decreases in the GMV of right orbitofrontal gyrus and right inferior temporal gyrus after response. The partially responding patients with MDD still had residual GMV deficits in right superior frontal gyrus when compared with controls. However, the lack of second patient group without aripiprazole intervention would be a significant limitation to interpret the aripiprazole-specific effects on GMV.The changes in the GMV of fronto-parieto-temporal regions and residual GMV deficits in the superior frontal gyrus might represent "state-dependent brain changes" and "residual-deficit brain regions," respectively, for aripiprzole monotherapy in MDD. PMID:27559967

  19. Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing.

    PubMed

    Gong, Diankun; He, Hui; Liu, Dongbo; Ma, Weiyi; Dong, Li; Luo, Cheng; Yao, Dezhong

    2015-01-01

    Research has shown that distinct insular subregions are associated with particular neural networks (e.g., attentional and sensorimotor networks). Based on the evidence that playing action video games (AVGs) facilitates attentional and sensorimotor functions, this study examined the relation between AVG experience and the plasticity of insular subregions and the functional networks therein that are related to attentional and sensorimotor functions. By comparing AVG experts and amateurs, we found that AVG experts had enhanced functional connectivity and grey matter volume in insular subregions. Furthermore, AVG experts exhibited increased functional connectivity between the attentional and sensorimotor networks, and the experience-related enhancement was predominantly evident in the left insula, an understudied brain area. Thus, AVG playing may enhance functional integration of insular subregions and the pertinent networks therein. PMID:25880157

  20. Macular degeneration - age-related

    MedlinePlus

    Age-related macular degeneration (ARMD); AMD ... distorted and wavy. There may be a small dark spot in the center of your vision that ... leafy vegetables, may also decrease your risk of age-related macular degeneration. If you have wet AMD, ...

  1. Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model.

    PubMed

    Dwyer, Michael G; Bergsland, Niels; Zivadinov, Robert

    2014-04-15

    SIENA and similar techniques have demonstrated the utility of performing "direct" measurements as opposed to post-hoc comparison of cross-sectional data for the measurement of whole brain (WB) atrophy over time. However, gray matter (GM) and white matter (WM) atrophy are now widely recognized as important components of neurological disease progression, and are being actively evaluated as secondary endpoints in clinical trials. Direct measures of GM/WM change with advantages similar to SIENA have been lacking. We created a robust and easily-implemented method for direct longitudinal analysis of GM/WM atrophy, SIENAX multi-time-point (SIENAX-MTP). We built on the basic halfway-registration and mask composition components of SIENA to improve the raw output of FMRIB's FAST tissue segmentation tool. In addition, we created LFAST, a modified version of FAST incorporating a 4th dimension in its hidden Markov random field model in order to directly represent time. The method was validated by scan-rescan, simulation, comparison with SIENA, and two clinical effect size comparisons. All validation approaches demonstrated improved longitudinal precision with the proposed SIENAX-MTP method compared to SIENAX. For GM, simulation showed better correlation with experimental volume changes (r=0.992 vs. 0.941), scan-rescan showed lower standard deviations (3.8% vs. 8.4%), correlation with SIENA was more robust (r=0.70 vs. 0.53), and effect sizes were improved by up to 68%. Statistical power estimates indicated a potential drop of 55% in the number of subjects required to detect the same treatment effect with SIENAX-MTP vs. SIENAX. The proposed direct GM/WM method significantly improves on the standard SIENAX technique by trading a small amount of bias for a large reduction in variance, and may provide more precise data and additional statistical power in longitudinal studies. PMID:24333394

  2. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures

    PubMed Central

    Lim, Issel Anne L.; Faria, Andreia V.; Li, Xu; Hsu, Johnny T.C.; Airan, Raag D.; Mori, Susumu; van Zijl, Peter C. M.

    2013-01-01

    The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a “deep gray matter parcellation map” (DGMPM) derived from a single-subject quantitative susceptibility map with the previously established “white matter parcellation map” (WMPM) from the same subject’s T1-weighted and diffusion tensor imaging data into an MNI coordinate map named the “Everything Parcellation Map in Eve Space,” also known as the “EvePM.” It allows automated segmentation of gray matter and white matter structures. Quantitative susceptibility maps from five healthy male volunteers (30 to 33 years of age) were coregistered to the Eve Atlas with AIR and Large Deformation Diffeomorphic Metric Mapping (LDDMM), and the transformation matrices were applied to the EvePM to produce automated parcellation in subject space. Parcellation accuracy was measured with a kappa analysis for the left and right structures of six deep gray matter regions. For multi-orientation QSM images, the Kappa statistic was 0.85 between automated and manual segmentation, with the inter-rater reproducibility Kappa being 0.89 for the human raters, suggesting “almost perfect” agreement between all segmentation methods. Segmentation seemed slightly more difficult for human raters on single-orientation QSM images, with the Kappa statistic being 0.88 between automated and manual segmentation, and 0.85 and 0.86 between human raters. Overall, this atlas provides a time-efficient tool for automated coregistration and segmentation of quantitative susceptibility data to analyze many regions of interest. These data were used to establish a baseline for normal magnetic susceptibility measurements for over 60 brain structures of 30- to 33-year-old males. Correlating the average susceptibility with age-based iron

  3. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study

    PubMed Central

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren. PMID:23630510

  4. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study.

    PubMed

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren. PMID:23630510

  5. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume.

    PubMed

    Erickson, Kirk I; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D; Martin, Stephen A; Vieira, Victoria J; Woods, Jeffrey A; McAuley, Edward; Kramer, Arthur F

    2010-04-14

    Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain-derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age, and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958

  6. Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest

    NASA Technical Reports Server (NTRS)

    Koppelmans, Vincent; Erdeniz, Burak; DeDios, Yiri; Wood, Scott; Reuter-Lorenz, Patricia; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, increased intracranial pressure that by itself has been related to microgravity-induced bodily fluid shifts: [1] has been associated with white matter microstructural damage, [2] Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system, [3] Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure, and [4] Here we present results of the first eight subjects.

  7. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia.

    PubMed

    Cannon, Tyrone D; Thompson, Paul M; van Erp, Theo G M; Toga, Arthur W; Poutanen, Veli-Pekka; Huttunen, Matti; Lonnqvist, Jouko; Standerskjold-Nordenstam, Carl-Gustav; Narr, Katherine L; Khaledy, Mohammad; Zoumalan, Chris I; Dail, Rajneesh; Kaprio, Jaakko

    2002-03-01

    The symptoms of schizophrenia imply disruption to brain systems supporting higher-order cognitive activity, but whether these systems are impacted differentially against a background of diffuse cortical gray-matter deficit remains ambiguous. Some unaffected first-degree relatives of schizophrenics also manifest cortical gray-matter deficits, but it is unclear whether these changes are isomorphic with those in patients, and the answer is critical to understanding the neurobiological conditions necessary for disease expression given a predisposing genotype. Here we report three-dimensional cortical surface maps (probabilistic atlases matching subjects' anatomy point by point throughout cortex) in monozygotic (MZ) and dizygotic (DZ) twins discordant for chronic schizophrenia along with demographically matched control twins. A map encoding the average differences between schizophrenia patients and their unaffected MZ co-twins revealed deficits primarily in dorsolateral prefrontal cortex, superior temporal gyrus, and superior parietal lobule. A map encoding variation associated with genetic proximity to a patient (MZ co-twins > DZ co-twins > control twins) isolated deficits primarily in polar and dorsolateral prefrontal cortex. In each case, the statistical significance was confirmed through analysis of 10,000 Monte Carlo permutations, and the remaining cortex was shown to be significantly less affected by contrast analysis. The disease-related deficits in gray matter were correlated with measures of symptom severity and cognitive dysfunction but not with duration of illness or antipsychotic drug treatment. Genetic and disease-specific influences thus affect gray matter in partially nonoverlapping areas of predominantly heteromodal association cortex, changes that may act synergistically in producing overt behavioral features of the disorder. PMID:11867725

  8. Burning odor-elicited anxiety in OEF/OIF combat veterans: Inverse relationship to gray matter volume in olfactory cortex.

    PubMed

    Cortese, Bernadette M; McConnell, Patrick A; Froeliger, Brett; Leslie, Kimberly; Uhde, Thomas W

    2015-11-01

    Despite the anatomical overlap between the brain's fear/threat and olfactory systems, a very limited number of investigations have considered the role of odors and the central olfactory system in the pathophysiology of PTSD. The goal of the present study was to assess structural differences in primary and secondary olfactory cortex between combat veterans with and without PTSD (CV + PTSD, CV-PTSD, respectively). An additional goal was to determine the relationship between gray matter volume (GMV) in olfactory cortex and the distressing properties of burning-related odors. A region of interest voxel-based morphometric (VBM) approach was used to measure GMV in olfactory cortex in a well-characterized group of CV + PTSD (n = 20) and CV-PTSD (n = 25). Prior to the MRI exam, combat-related (i.e., burning rubber) and control odors were systematically sampled and rated according to their potential for eliciting PTSD symptoms. Results showed that CV + PTSD exhibited significantly reduced GMV in anterior piriform (primary olfactory) and orbitofrontal (secondary olfactory) cortices compared to CV-PTSD (both p < .01). For the entire group, GMV in bilateral anterior piriform cortex was inversely related to burning rubber odor-elicited memories of trauma (p < .05). GMV in orbitofrontal cortex was inversely related to both clinical and laboratory measures of PTSD symptoms (all p < .05). In addition to replicating an established inverse relationship between GMV in anxiety-associated brain structures and PTSD symptomatology, the present study extends those findings by being the first report of volumetric decreases in olfactory cortex that are inversely related to odor-elicited PTSD symptoms. Potential mechanisms underlying these findings are discussed. PMID:26424424

  9. Reduced Visual Cortex Gray Matter Volume and Thickness in Young Adults Who Witnessed Domestic Violence during Childhood

    PubMed Central

    Tomoda, Akemi; Polcari, Ann; Anderson, Carl M.; Teicher, Martin H.

    2012-01-01

    Exposure to interparental violence is associated with negative outcomes, such as depression, post-traumatic stress disorder and reduced cognitive abilities. However, little is known about the potential effects of witnessing domestic violence during childhood on gray matter volume (GMV) or cortical thickness. High-resolution 3.0 T volumetric scans (Siemens Trio Scanner) were obtained on 52 subjects (18–25 years) including 22 (6 males/16 females) with a history of visually witnessing episodes of domestic violence, and 30 (8 males/22 females) unexposed control subjects, with neither a current nor past DSM-IV Axis I or II disorder. Potential confounding effects of age, gender, level of parental verbal aggression, parental education, financial stress, full scale IQ, and total GMV, or average thickness were modeled using voxel based morphometry and FreeSurfer. Witnessing domestic violence subjects had a 6.1% GMV reduction in the right lingual gyrus (BA18) (P = 0.029, False Discovery Rate corrected peak level). Thickness in this region was also reduced, as was thickness in V2 bilaterally and left occipital pole. Theses regions were maximally sensitive to exposure to witnessing domestic violence between 11–13 years of age. Regional reductions in GMV and thickness were observed in both susceptible and resilient witnessing domestic violence subjects. Results in subjects witnessing domestic violence were similar to previously reported results in subjects with childhood sexual abuse, as the primary region affected was visual cortex. Brain regions that process and convey the adverse sensory input of the abuse may be specifically modified by this experience, particularly in subjects exposed to a single type of maltreatment. Exposure to multiple types of maltreatment is more commonly associated with morphological alterations in corticolimbic regions. These findings fit with preclinical studies showing that visual cortex is a highly plastic structure. PMID:23300699

  10. Exploring the brains of Baduk (Go) experts: gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis

    PubMed Central

    Jung, Wi Hoon; Kim, Sung Nyun; Lee, Tae Young; Jang, Joon Hwan; Choi, Chi-Hoon; Kang, Do-Hyung; Kwon, Jun Soo

    2013-01-01

    One major characteristic of experts is intuitive judgment, which is an automatic process whereby patterns stored in memory through long-term training are recognized. Indeed, long-term training may influence brain structure and function. A recent study revealed that chess experts at rest showed differences in structure and functional connectivity (FC) in the head of caudate, which is associated with rapid best next-move generation. However, less is known about the structure and function of the brains of Baduk experts (BEs) compared with those of experts in other strategy games. Therefore, we performed voxel-based morphometry (VBM) and FC analyses in BEs to investigate structural brain differences and to clarify the influence of these differences on functional interactions. We also conducted graph theoretical analysis (GTA) to explore the topological organization of whole-brain functional networks. Compared to novices, BEs exhibited decreased and increased gray matter volume (GMV) in the amygdala and nucleus accumbens (NA), respectively. We also found increased FC between the amygdala and medial orbitofrontal cortex (mOFC) and decreased FC between the NA and medial prefrontal cortex (mPFC). Further GTA revealed differences in measures of the integration of the network and in the regional nodal characteristics of various brain regions activated during Baduk. This study provides evidence for structural and functional differences as well as altered topological organization of the whole-brain functional networks in BEs. Our findings also offer novel suggestions about the cognitive mechanisms behind Baduk expertise, which involves intuitive decision-making mediated by somatic marker circuitry and visuospatial processing. PMID:24106471

  11. ZNF804A variants confer risk for heroin addiction and affect decision making and gray matter volume in heroin abusers.

    PubMed

    Sun, Yan; Zhao, Li-Yan; Wang, Gui-Bin; Yue, Wei-Hua; He, Yong; Shu, Ni; Lin, Qi-Xiang; Wang, Fan; Li, Jia-Li; Chen, Na; Wang, Hui-Min; Kosten, Thomas R; Feng, Jia-Jia; Wang, Jun; Tang, Yu-De; Liu, Shu-Xue; Deng, Gui-Fa; Diao, Gan-Huan; Tan, Yun-Long; Han, Hong-Bin; Lin, Lu; Shi, Jie

    2016-05-01

    Drug addiction shares common neurobiological pathways and risk genes with other psychiatric diseases, including psychosis. One of the commonly identified risk genes associated with broad psychosis has been ZNF804A. We sought to test whether psychosis risk variants in ZNF804A increase the risk of heroin addiction by modulating neurocognitive performance and gray matter volume (GMV) in heroin addiction. Using case-control genetic analysis, we compared the distribution of ZNF804A variants (genotype and haplotype) in 1035 heroin abusers and 2887 healthy subjects. We also compared neurocognitive performance (impulsivity, global cognitive ability and decision-making ability) in 224 subjects and GMV in 154 subjects based on the ZNF804A variants. We found significant differences in the distribution of ZNF804A intronic variants (rs1344706 and rs7597593) allele and haplotype frequencies between the heroin and control groups. Decision-making impairment was worse in heroin abusers who carried the ZNF804A risk allele and haplotype. Subjects who carried more risk alleles and haplotypes of ZNF804A had greater GMV in the bilateral insular cortex, right temporal cortex and superior parietal cortex. The interaction between heroin addiction and ZNF804A variants affected GMV in the left sensorimotor cortex. Our findings revealed several ZNF804A variants that were significantly associated with the risk of heroin addiction, and these variants affected decision making and GMV in heroin abusers compared with controls. The precise neural mechanisms that underlie these associations are unknown, which requires future investigations of the effects of ZNF804A on both dopamine neurotransmission and the relative increases in the volume of various brain areas. PMID:25708696

  12. Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo PET study with [18F]-FEPPA.

    PubMed

    Kenk, Miran; Selvanathan, Thiviya; Rao, Naren; Suridjan, Ivonne; Rusjan, Pablo; Remington, Gary; Meyer, Jeffrey H; Wilson, Alan A; Houle, Sylvain; Mizrahi, Romina

    2015-01-01

    Neuroinflammation and abnormal immune responses have been implicated in schizophrenia (SCZ). Past studies using positron emission tomography (PET) that examined neuroinflammation in patients with SCZ in vivo using the translocator protein 18kDa (TSPO) target were limited by the insensitivity of the first-generation imaging agent [(11)C]-PK11195, scanners used, and the small sample sizes studied. Present study uses a novel second-generation TSPO PET radioligand N-acetyl-N-(2-[(18)F]fluoroethoxybenzyl)-2-phenoxy-5-pyridinamine ([(18)F]-FEPPA) to evaluate whether there is increased neuroinflammation in patients with SCZ. A cross-sectional study was performed using [(18)F]-FEPPA and a high-resolution research tomograph (HRRT). Eighteen patients with SCZ with ongoing psychotic symptoms and 27 healthy volunteers (HV) were recruited from a tertiary psychiatric clinical setting and the community, respectively. All participants underwent [(18)F]-FEPPA PET and magnetic resonance imaging, and PET data were analyzed to obtain [(18)F]-FEPPA total volume of distribution (VT) using a 2-tissue compartment model with an arterial plasma input function, as previously validated. All subjects were classified as high-, medium- or low-affinity [(18)F]-FEPPA binders on the basis of rs6971 polymorphism, and genotype information was incorporated into the analyses of imaging outcomes. No significant differences in neuroinflammation indexed as [(18)F]-FEPPA VT were observed between groups in either gray (F(1,39) = 0.179, P = .674) or white matter regions (F(1,38) = 0.597, P = .445). The lack of significant difference in neuroinflammation in treated patients with SCZ in the midst of a psychotic episode and HV suggests that neuroinflammatory processes may take place early in disease progression or are affected by antipsychotic treatment. PMID:25385788

  13. Similar cortical but not subcortical gray matter abnormalities in women with posttraumatic stress disorder with versus without dissociative identity disorder.

    PubMed

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Barker, Gareth J; Veltman, Dick J; Reinders, Antje A T S

    2015-03-30

    Neuroanatomical evidence on the relationship between posttraumatic stress disorder (PTSD) and dissociative disorders is still lacking. We acquired brain structural magnetic resonance imaging (MRI) scans from 17 patients with dissociative identity disorder (DID) and co-morbid PTSD (DID-PTSD) and 16 patients with PTSD but without DID (PTSD-only), and 32 healthy controls (HC), and compared their whole-brain cortical and subcortical gray matter (GM) morphological measurements. Associations between GM measurements and severity of dissociative and depersonalization/derealization symptoms or lifetime traumatizing events were evaluated in the patient groups. DID-PTSD and PTSD-only patients, compared with HC, had similarly smaller cortical GM volumes of the whole brain and of frontal, temporal and insular cortices. DID-PTSD patients additionally showed smaller hippocampal and larger pallidum volumes relative to HC, and larger putamen and pallidum volumes relative to PTSD-only. Severity of lifetime traumatizing events and volume of the hippocampus were negatively correlated. Severity of dissociative and depersonalization/derealization symptoms correlated positively with volume of the putamen and pallidum, and negatively with volume of the inferior parietal cortex. Shared abnormal brain structures in DID-PTSD and PTSD-only, small hippocampal volume in DID-PTSD, more severe lifetime traumatizing events in DID-PTSD compared with PTSD-only, and negative correlations between lifetime traumatizing events and hippocampal volume suggest a trauma-related etiology for DID. Our results provide neurobiological evidence for the side-by-side nosological classification of PTSD and DID in the DSM-5. PMID:25670646

  14. Effect of Bcl-2 rs956572 SNP on regional gray matter volumes and cognitive function in elderly males without dementia.

    PubMed

    Liu, Mu-En; Huang, Chu-Chung; Hwang, Jen-Ping; Yang, Albert C; Tu, Pei-Chi; Yeh, Heng-Liang; Hong, Chen-Jee; Liou, Ying-Jay; Chen, Jin-Fan; Lin, Ching-Po; Tsai, Shih-Jen

    2013-04-01

    The Bcl-2 gene is a major regulator of neural plasticity and cellular resilience. A single-nucleotide polymorphism (SNP) in the Bcl-2 gene, Bcl-2 rs956572, significantly modulates the expression of Bcl-2 protein and cellular vulnerability to apoptosis. This study investigated the association between the Bcl-2 rs956572 SNP and brain structural abnormalities in non-demented elders, and to test the relationship between neuropsychological performance and regional gray matter (GM) volumes. Our sample comprised 97 non-demented elderly men with a mean age of 80.6 ± 5.6 years (range, 65 to 92 years). Cognitive test results, magnetic resonance imaging, and genotyping of Bcl-2 rs956572 were examined for each subject. The differences in regional GM volumes between G homozygotes and A-allele carriers were tested using optimized voxel-based morphometry. Subjects with G homozygotes exhibited significantly worse performance in the language domain of the Cognitive Abilities Screening Instrument (CASI; p = 0.009). They also showed significantly smaller GM volumes in the right middle temporal gyrus (MTG) (BA 21), but larger GM volumes in the left precuneus (BA 31), right lingual gyrus (BA 18), and left superior occipital gyrus (BA 19) relative to A-allele carriers (p < 0.001). A trend toward a positive correlation between right MTG GM volumes and the language domain of CASI was also evident (r = 0.181; p = 0.081). The findings suggest that Bcl-2 rs956572 SNP may modulate cognitive function and regional GM volume in non-demented elderly men, and that this polymorphism may affect language performance through its effect on the right MTG. PMID:22198673

  15. The Associations between Regional Gray Matter Structural Changes and Changes of Cognitive Performance in Control Groups of Intervention Studies

    PubMed Central

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Sekiguchi, Atsushi; Nagase, Tomomi; Nouchi, Rui; Fukushima, Ai; Kawashima, Ryuta

    2015-01-01

    In intervention studies of cognitive training, the challenging cognitive tests, which were used as outcome measures, are generally completed in more than a few hours. Here, utilizing the control groups' data from three 1-week intervention studies in which young healthy adult subjects underwent a wide range of cognitive tests and T1-weighted magnetic resonance imaging (MRI) before and after the intervention period, we investigated how regional gray matter (GM) density (rGMD) of the subjects changed through voxel-based morphometry (VBM). Statistically significant increases in rGMD were observed in the anatomical cluster that mainly spread around the bilateral dorsal anterior cingulate cortex (dACC) and the right superior frontal gyrus (rSFG). Moreover, mean rGMD within this cluster changes were significantly and positively correlated with performance changes in the Stroop task, and tended to positively correlate with performance changes in a divergent thinking task. Affected regions are considered to be associated with performance monitoring (dACC) and manipulation of the maintained information including generating associations (rSFG), and both are relevant to the cognitive functions measured in the cognitive tests. Thus, the results suggest that even in the groups of the typical “control group” in intervention studies including those of the passive one, experimental or non-experimental factors can result in an increase in the regional GM structure and form the association between such neural changes and improvements related to these cognitive tests. These results suggest caution toward the experimental study designs without control groups. PMID:26733852

  16. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes

    PubMed Central

    Savic, Ivanka

    2014-01-01

    Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY). Methods: Regional asymmetry in gray and white matter volumes (GMV and WMV) was calculated using voxel based moprhometry (SPM5), by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis. Results: All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward GMV asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected. Conclusion: The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner. PMID:25505869

  17. Voxel-based meta-analysis of gray matter volume reductions associated with cognitive impairment in Parkinson's disease.

    PubMed

    Xu, Yaqian; Yang, Jing; Hu, Xinyu; Shang, Huifang

    2016-06-01

    Brain gray matter volume (GMV) reduction has been reported in Parkinson's disease (PD) with mild cognitive impairment (PD-MCI) and in PD patients with dementia (PDD) with cumulative evidence using voxel-based morphometry (VBM). However, the findings of these studies have not been entirely concordant. Whole-brain VBM studies comparing PD-MCI with PD patients without cognitive impairment (PD-NCI) and comparing PDD with PD patients without dementia (PDND) were systematically searched in PubMed and EMBASE databases from January 1995 to December 2015. Coordinates with significant differences were extracted from each cluster. Meta-analysis was performed using AES-SDM to quantitatively evaluate the GMV changes. Five studies comparing 92 PD-MCI with 192 PD-NCI patients were included in the PD-MCI vs. PD-NCI meta-analysis. Ten studies with 168 PDD and 233 PDND patients were included in the PDD vs. PDND meta-analysis. Compared with PD-NCI, GMV reductions were observed in left superior temporal lobe, left insula and left superior frontal lobe in PD-MCI patients. Significant GMV reduction were found in bilateral superior temporal lobe extending to hippocampus, and left superior frontal lobe in PDD patients comparing with PDND. Meta-regression of PDD studies showed that disease duration was negatively correlated with GMV in the left superior frontal lobe. GMV reductions in the frontal-limbic-temporal regions were main features of cognitive decline in PD. Unilateral-to-bilateral development of GMV reduction in the frontal-limbic-temporal regions is a possible indicator for PD-MCI to PDD progression, whereas significant hippocampal GMV reduction may not be a marker for early cognitive decline in PD. PMID:27113603

  18. Reduced visual cortex gray matter volume and thickness in young adults who witnessed domestic violence during childhood.

    PubMed

    Tomoda, Akemi; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2012-01-01

    Exposure to interparental violence is associated with negative outcomes, such as depression, post-traumatic stress disorder and reduced cognitive abilities. However, little is known about the potential effects of witnessing domestic violence during childhood on gray matter volume (GMV) or cortical thickness. High-resolution 3.0 T volumetric scans (Siemens Trio Scanner) were obtained on 52 subjects (18-25 years) including 22 (6 males/16 females) with a history of visually witnessing episodes of domestic violence, and 30 (8 males/22 females) unexposed control subjects, with neither a current nor past DSM-IV Axis I or II disorder. Potential confounding effects of age, gender, level of parental verbal aggression, parental education, financial stress, full scale IQ, and total GMV, or average thickness were modeled using voxel based morphometry and FreeSurfer. Witnessing domestic violence subjects had a 6.1% GMV reduction in the right lingual gyrus (BA18) (P = 0.029, False Discovery Rate corrected peak level). Thickness in this region was also reduced, as was thickness in V2 bilaterally and left occipital pole. Theses regions were maximally sensitive to exposure to witnessing domestic violence between 11-13 years of age. Regional reductions in GMV and thickness were observed in both susceptible and resilient witnessing domestic violence subjects. Results in subjects witnessing domestic violence were similar to previously reported results in subjects with childhood sexual abuse, as the primary region affected was visual cortex. Brain regions that process and convey the adverse sensory input of the abuse may be specifically modified by this experience, particularly in subjects exposed to a single type of maltreatment. Exposure to multiple types of maltreatment is more commonly associated with morphological alterations in corticolimbic regions. These findings fit with preclinical studies showing that visual cortex is a highly plastic structure. PMID:23300699

  19. Clinical Significance of Fronto-Temporal Gray Matter Atrophy in Executive Dysfunction in Patients with Chronic Kidney Disease: The VCOHP Study

    PubMed Central

    Tsuruya, Kazuhiko; Yoshida, Hisako; Haruyama, Naoki; Fujisaki, Kiichiro; Hirakata, Hideki; Kitazono, Takanari

    2015-01-01

    Background & Objectives It is well known that cognitive impairment in patients with chronic kidney disease (CKD) is characterized by executive dysfunction, rather than memory dysfunction, although the precise mechanism of this remains to be elucidated. The purpose of the present study is to examine the correlation between gray matter volume (GMV) and executive function in CKD patients. Design, Setting, Participants, Measurements This cross-sectional study recruited 95 patients with non-dialysis-dependent CKD (NDD-CKD) with no history of cerebrovascular disease, who underwent brain magnetic resonance imaging (MRI) and Trail Making Test (TMT) in the VCOHP Study. The subjects underwent brain MRI and TMT part A (TMT-A) and part B (TMT-B). The segmentation algorithm from Statistical Parametric Mapping 8 software was applied to every T1-weighted MRI scan to extract tissue maps corresponding to gray matter, white matter, and cerebrospinal fluid. GMV was normalized by dividing by the total intracranial volume, calculated by adding GMV, white matter volume, and cerebrospinal fluid space volume. Then, normalized whole-brain GMV was divided into four categories of brain lobes; frontal, parietal, temporal, and occipital. We assessed the correlation between normalized GMV and TMT using multivariable regression analysis. Results Normalized whole-brain GMV was significantly inversely correlated to the scores of TMT-A, TMT-B, and ΔTMT (TMT-B minus TMT-A). These correlations remained significant even after adjusting for relevant confounding factors. Normalized frontal and temporal GMV, but not parietal and occipital GMV, were significantly inversely correlated with TMT-A, TMT-B, and ΔTMT using multivariable regression analysis. Conclusions The present study demonstrates the correlation between normalized GMV, especially in the frontal and temporal lobes, and executive function, suggesting that fronto-temporal gray matter atrophy might contribute to executive dysfunction in NDD

  20. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    PubMed

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak. PMID:24236696

  1. Density abnormalities in normal-appearing gray matter in the middle-aged brain with white matter hyperintense lesions: a DARTEL-enhanced voxel-based morphometry study

    PubMed Central

    Peng, Yan; Li, Shenhong; Zhuang, Ying; Liu, Xiaojia; Wu, Lin; Gong, Honghan; Liu, Dewu; Zhou, Fuqing

    2016-01-01

    Background and purpose Little is known about the structural alterations within gray matter (GM) in middle-aged subjects with white matter hyperintense (WMH) lesions. Here, we aimed to examine the anatomical changes within the GM and their relationship to WMH lesion loads in middle-aged subjects. Participants and methods Twenty-three middle-aged subjects with WMH lesions (WMH group) and 23 demographically matched healthy control subjects participated in the study. A Diffeomorphic Anatomical Registration Through Exponentiated Liealgebra-enhanced voxel-based morphometry was used to measure the GM density, and the correlations between WMH lesion volume and extracted GM values in abnormal regions were identified by voxel-based morphometry analysis. Results Compared with the healthy control subjects, the WMH group had a significantly decreased GM density in the left middle frontal gyrus, bilateral anterior cingulate cortex, left and right premotor cortex, and left and right middle cingulate cortex and an increased GM density in the bilateral cerebellum anterior lobe, left middle temporal gyrus, right temporoparietal junction, left and right prefrontal cortex (PFC), and left inferior parietal lobule. A relationship was observed between the normalized WMH lesion volume and the decreased GM density, including the left middle frontal gyrus (ρ=−0.629, P=0.002), bilateral anterior cingulate cortex (ρ=−0.507, P=0.019), right middle cingulate cortex (ρ=−0.484, P=0.026), and right premotor cortex (ρ=−0.438, P=0.047). The WMH lesion loads also negatively correlated with increased GM density in the right temporoparietal junction (ρ=−0.484, P=0.026), left PFC (ρ=−0.469, P=0.032), and right PFC (ρ=−0.438, P=0.047). Conclusion We observed that lesion load-associated structural plasticity corresponds to bidirectional changes in regional GM density in the WMH group. PMID:27274211

  2. Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: potential mechanism of increased vulnerability in the immature brain.

    PubMed

    Jantzie, Lauren L; Talos, Delia M; Jackson, Michele C; Park, Hyun-Kyung; Graham, Dionne A; Lechpammer, Mirna; Folkerth, Rebecca D; Volpe, Joseph J; Jensen, Frances E

    2015-02-01

    The pathophysiology of perinatal brain injury is multifactorial and involves hypoxia-ischemia (HI) and inflammation. N-methyl-d-aspartate receptors (NMDAR) are present on neurons and glia in immature rodents, and NMDAR antagonists are protective in HI models. To enhance clinical translation of rodent data, we examined protein expression of 6 NMDAR subunits in postmortem human brains without injury from 20 postconceptional weeks through adulthood and in cases of periventricular leukomalacia (PVL). We hypothesized that the developing brain is intrinsically vulnerable to excitotoxicity via maturation-specific NMDAR levels and subunit composition. In normal white matter, NR1 and NR2B levels were highest in the preterm period compared with adult. In gray matter, NR2A and NR3A expression were highest near term. NR2A was significantly elevated in PVL white matter, with reduced NR1 and NR3A in gray matter compared with uninjured controls. These data suggest increased NMDAR-mediated vulnerability during early brain development due to an overall upregulation of individual receptors subunits, in particular, the presence of highly calcium permeable NR2B-containing and magnesium-insensitive NR3A NMDARs. These data improve understanding of molecular diversity and heterogeneity of NMDAR subunit expression in human brain development and supports an intrinsic prenatal vulnerability to glutamate-mediated injury; validating NMDAR subunit-specific targeted therapies for PVL. PMID:24046081

  3. Developmental Expression of N-Methyl-d-Aspartate (NMDA) Receptor Subunits in Human White and Gray Matter: Potential Mechanism of Increased Vulnerability in the Immature Brain

    PubMed Central

    Jantzie, Lauren L.; Talos, Delia M.; Jackson, Michele C.; Park, Hyun-Kyung; Graham, Dionne A.; Lechpammer, Mirna; Folkerth, Rebecca D.; Volpe, Joseph J.; Jensen, Frances E.

    2015-01-01

    The pathophysiology of perinatal brain injury is multifactorial and involves hypoxia-ischemia (HI) and inflammation. N-methyl-d-aspartate receptors (NMDAR) are present on neurons and glia in immature rodents, and NMDAR antagonists are protective in HI models. To enhance clinical translation of rodent data, we examined protein expression of 6 NMDAR subunits in postmortem human brains without injury from 20 postconceptional weeks through adulthood and in cases of periventricular leukomalacia (PVL). We hypothesized that the developing brain is intrinsically vulnerable to excitotoxicity via maturation-specific NMDAR levels and subunit composition. In normal white matter, NR1 and NR2B levels were highest in the preterm period compared with adult. In gray matter, NR2A and NR3A expression were highest near term. NR2A was significantly elevated in PVL white matter, with reduced NR1 and NR3A in gray matter compared with uninjured controls. These data suggest increased NMDAR-mediated vulnerability during early brain development due to an overall upregulation of individual receptors subunits, in particular, the presence of highly calcium permeable NR2B-containing and magnesium-insensitive NR3A NMDARs. These data improve understanding of molecular diversity and heterogeneity of NMDAR subunit expression in human brain development and supports an intrinsic prenatal vulnerability to glutamate-mediated injury; validating NMDAR subunit-specific targeted therapies for PVL. PMID:24046081

  4. Differences in age-related effects on brain volume in Down syndrome as compared to Williams syndrome and typical development

    PubMed Central

    2014-01-01

    Background Individuals with Down Syndrome (DS) are reported to experience early onset of brain aging. However, it is not well understood how pre-existing neurodevelopmental effects versus neurodegenerative processes might be contributing to the observed pattern of brain atrophy in younger adults with DS. The aims of the current study were to: (1) to confirm previous findings of age-related changes in DS compared to adults with typical development (TD), (2) to test for an effect of these age-related changes in a second neurodevelopmental disorder, Williams syndrome (WS), and (3) to identify a pattern of regional age-related effects that are unique to DS. Methods High-resolution T1-weighted MRI of the brains of subjects with DS, WS, and TD controls were segmented, and estimates of regional brain volume were derived using FreeSurfer. A general linear model was employed to test for age-related effects on volume between groups. Secondary analyses in the DS group explored the relationship between brain volume and neuropsychological tests and APOE. Results Consistent with previous findings, the DS group showed significantly greater age-related effects relative to TD controls in total gray matter and in regions of the orbitofrontal cortex and the parietal cortex. Individuals with DS also showed significantly greater age-related effects on volume of the left and right inferior lateral ventricles (LILV and RILV, respectively). There were no significant differences in age-related effects on volume when comparing the WS and TD groups. In the DS group, cognitive tests scores measuring signs of dementia and APOE ϵ4 carrier status were associated with LILV and RILV volume. Conclusions Individuals with DS demonstrated a unique pattern of age-related effects on gray matter and ventricular volume, the latter of which was associated with dementia rating scores in the DS group. Results may indicate that early onset of brain aging in DS is primarily due to DS

  5. Henry Gray, plagiarist.

    PubMed

    Richardson, Ruth

    2016-03-01

    The first edition of Anatomy Descriptive and Surgical (1858) was greeted with accolades, but also provoked serious controversy concerning Henry Gray's failure to acknowledge the work of earlier anatomists. A review in the Medical Times (1859) accused Gray of intellectual theft. The journal took the unusual step of substantiating its indictment by publishing twenty parallel texts from Gray and from a pre-existing textbook, Quain's Anatomy. At the recent "Vesalius Continuum" conference in Zakynthos, Greece (2014) Professor Brion Benninger disputed the theft by announcing from the floor the results of a computer analysis of both texts, which he reported exonerated Gray by revealing no evidence of plagiarism. The analysis has not been forthcoming, however, despite requests. Here the historian of Gray's Anatomy supplements the argument set out in the Medical Times 150 years ago with data suggesting unwelcome personality traits in Henry Gray, and demonstrating the utility of others' work to his professional advancement. Fair dealing in the world of anatomy and indeed the genuineness of the lustre of medical fame are important matters, but whether quantitative evidence has anything to add to the discussion concerning Gray's probity can be assessed only if Benninger makes public his computer analysis. PMID:26696521

  6. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy. PMID:25715554

  7. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance

    PubMed Central

    Doucet, Gaelle E.; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I.

    2016-01-01

    Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is

  8. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance.

    PubMed

    Doucet, Gaelle E; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I

    2016-01-01

    Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is

  9. Evidence that the periaqueductal gray matter mediates the facilitation of panic-like reactions in neonatally-isolated adult rats.

    PubMed

    Quintino-dos-Santos, Jeyce Willig; Müller, Cláudia Janaína Torres; Bernabé, Cristie Setúbal; Rosa, Caroline Azevedo; Tufik, Sérgio; Schenberg, Luiz Carlos

    2014-01-01

    Plenty of evidence suggests that childhood separation anxiety (CSA) predisposes the subject to adult-onset panic disorder (PD). As well, panic is frequently comorbid with both anxiety and depression. The brain mechanisms whereby CSA predisposes to PD are but completely unknown in spite of the increasing evidence that panic attacks are mediated at midbrain's dorsal periaqueductal gray matter (DPAG). Accordingly, here we examined whether the neonatal social isolation (NSI), a model of CSA, facilitates panic-like behaviors produced by electrical stimulations of DPAG of rats as adults. Eventual changes in anxiety and depression were also assessed in the elevated plus-maze (EPM) and forced-swimming test (FST) respectively. Male pups were subjected to 3-h daily isolations from post-natal day 2 (PN2) until weaning (PN21) allotting half of litters in individual boxes inside a sound-attenuated chamber (NSI, n = 26) whilst siblings (sham-isolated rats, SHAM, n = 27) and dam were moved to another box in a separate room. Non-handled controls (CTRL, n = 18) remained undisturbed with dams until weaning. As adults, rats were implanted with electrodes into the DPAG (PN60) and subjected to sessions of intracranial stimulation (PN65), EPM (PN66) and FST (PN67-PN68). Groups were compared by Fisher's exact test (stimulation sites), likelihood ratio chi-square tests (stimulus-response threshold curves) and Bonferroni's post hoc t-tests (EPM and FST), for P<0.05. Notably, DPAG-evoked panic-like responses of immobility, exophthalmus, trotting, galloping and jumping were markedly facilitated in NSI rats relative to both SHAM and CTRL groups. Conversely, anxiety and depression scores either did not change or were even reduced in neonatally-handled groups relative to CTRL, respectively. Data are the first behavioral evidence in animals that early-life separation stress produces the selective facilitation of panic-like behaviors in adulthood. Most importantly, results implicate

  10. Guided Exploration of Genomic Risk for Gray Matter Abnormalities in Schizophrenia Using Parallel Independent Component Analysis with Reference

    PubMed Central

    Chen, Jiayu; Calhoun, Vince D.; Pearlson, Godfrey D.; Perrone-Bizzozero, Nora; Sui, Jing; Turner, Jessica A.; Bustillo, Juan R; Ehrlich, Stefan; Sponheim, Scott R.; Cañive, José M.; Ho, Beng-Choon; Liu, Jingyu

    2013-01-01

    One application of imaging genomics is to explore genetic variants associated with brain structure and function, presenting a new means of mapping genetic influences on mental disorders. While there is growing interest in performing genome-wide searches for determinants, it remains challenging to identify genetic factors of small effect size, especially in limited sample sizes. In an attempt to address this issue, we propose to take advantage of a priori knowledge, specifically to extend parallel independent component analysis (pICA) to incorporate a reference (pICA-R), aiming to better reveal relationships between hidden factors of a particular attribute. The new approach was first evaluated on simulated data for its performance under different configurations of effect size and dimensionality. Then pICA-R was applied to a 300-participant (140 schizophrenia (SZ) patients versus 160 healthy controls) dataset consisting of structural magnetic resonance imaging (sMRI) and single nucleotide polymorphism (SNP) data. Guided by a reference SNP set derived from ANK3, a gene implicated by the Psychiatric Genomic Consortium SZ study, pICA-R identified one pair of SNP and sMRI components with a significant loading correlation of 0.27 (p = 1.64×10−6). The sMRI component showed a significant group difference in loading parameters between patients and controls (p = 1.33×10−15), indicating SZ-related reduction in gray matter concentration in prefrontal and temporal regions. The linked SNP component also showed a group difference (p = 0.04) and was predominantly contributed to by 1,030 SNPs. The effect of these top contributing SNPs was verified using association test results of the Psychiatric Genomic Consortium SZ study, where the 1,030 SNPs exhibited significant SZ enrichment compared to the whole genome. In addition, pathway analyses indicated the genetic component majorly relating to neurotransmitter and nervous system signaling pathways. Given the simulation and

  11. Age-related hearing loss

    MedlinePlus

    ... is no known single cause of age-related hearing loss. Most commonly, it is caused by changes in the inner ear that occur as you grow older. Your genes and loud noise (from rock concerts or music headphones) may play a large role. The following ...

  12. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  13. Reduced gray matter volume in the anterior cingulate, orbitofrontal cortex and thalamus as a function of mild depressive symptoms: a voxel-based morphometric analysis

    PubMed Central

    Webb, C. A.; Weber, M.; Mundy, E. A.; Killgore, W. D. S.

    2014-01-01

    Background Studies investigating structural brain abnormalities in depression have typically employed a categorical rather than dimensional approach to depression [i.e. comparing subjects with Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined major depressive disorder (MDD) v. healthy controls]. The National Institute of Mental Health, through their Research Domain Criteria initiative, has encouraged a dimensional approach to the study of psychopathology as opposed to an over-reliance on categorical (e.g. DSM-based) diagnostic approaches. Moreover, subthreshold levels of depressive symptoms (i.e. severity levels below DSM criteria) have been found to be associated with a range of negative outcomes, yet have been relatively neglected in neuroimaging research. Method To examine the extent to which depressive symptoms – even at subclinical levels – are linearly related to gray matter volume reductions in theoretically important brain regions, we employed whole-brain voxel-based morphometry in a sample of 54 participants. Results The severity of mild depressive symptoms, even in a subclinical population, was associated with reduced gray matter volume in the orbitofrontal cortex, anterior cingulate, thalamus, superior temporal gyrus/temporal pole and superior frontal gyrus. A conjunction analysis revealed concordance across two separate measures of depression. Conclusions Reduced gray matter volume in theoretically important brain regions can be observed even in a sample that does not meet DSM criteria for MDD, but who nevertheless report relatively elevated levels of depressive symptoms. Overall, these findings highlight the need for additional research using dimensional conceptual and analytic approaches, as well as further investigation of subclinical populations. PMID:25066703

  14. Change in Brainstem Gray Matter Concentration Following a Mindfulness-Based Intervention is Correlated with Improvement in Psychological Well-Being

    PubMed Central

    Singleton, Omar; Hölzel, Britta K.; Vangel, Mark; Brach, Narayan; Carmody, James; Lazar, Sara W.

    2014-01-01

    Individuals can improve their levels of psychological well-being (PWB) through utilization of psychological interventions, including the practice of mindfulness meditation, which is defined as the non-judgmental awareness of experiences in the present moment. We recently reported that an 8-week-mindfulness-based stress reduction (MBSR) course lead to increases in gray matter concentration in several brain areas, as detected with voxel-based morphometry of magnetization prepared rapid acquisition gradient echo MRI scans, including the pons/raphe/locus coeruleus area of the brainstem. Given the role of the pons and raphe in mood and arousal, we hypothesized that changes in this region might underlie changes in well-being. A subset of 14 healthy individuals from a previously published data set completed anatomical MRI and filled out the PWB scale before and after MBSR participation. PWB change was used as the predictive regressor for changes in gray matter density within those brain regions that had previously shown pre- to post-MBSR changes. Results showed that scores on five PWB subscales as well as the PWB total score increased significantly over the MBSR course. The change was positively correlated with gray matter concentration increases in two symmetrically bilateral clusters in the brainstem. Those clusters appeared to contain the area of the pontine tegmentum, locus coeruleus, nucleus raphe pontis, and the sensory trigeminal nucleus. No clusters were negatively correlated with the change in PWB. This preliminary study suggests a neural correlate of enhanced PWB. The identified brain areas include the sites of synthesis and release of the neurotransmitters, norepinephrine and serotonin, which are involved in the modulation of arousal and mood, and have been related to a variety of affective functions as well as associated clinical dysfunctions. PMID:24600370

  15. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  16. Concurrent white and gray matter degeneration of disease-specific networks in early-stage Alzheimer's disease and behavioral variant frontotemporal dementia.

    PubMed

    Steketee, Rebecca M E; Meijboom, Rozanna; de Groot, Marius; Bron, Esther E; Niessen, Wiro J; van der Lugt, Aad; van Swieten, John C; Smits, Marion

    2016-07-01

    This study investigates regional coherence between white matter (WM) microstructure and gray matter (GM) volume and perfusion measures in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) using a correlational approach. WM-GM coherence, compared with controls, was stronger between cingulum WM and frontotemporal GM in AD, and temporoparietal GM in bvFTD. In addition, in AD compared with controls, coherence was stronger between inferior fronto-occipital fasciculus WM microstructure and occipital GM perfusion. In this first study assessing regional WM-GM coherence in AD and bvFTD, we show that WM microstructure and GM volume and perfusion measures are coherent, particularly in regions implicated in AD and bvFTD pathology. This indicates concurrent degeneration in disease-specific networks. Our methodology allows for the detection of incipient abnormalities that go undetected in conventional between-group analyses. PMID:27255821

  17. Use of Anisotropy, 3D Segmented Atlas, and Computational Analysis to Identify Gray Matter Subcortical Lesions Common to Concussive Injury from Different Sites on the Cortex

    PubMed Central

    Kulkarni, Praveen; Kenkel, William; Finklestein, Seth P.; Barchet, Thomas M.; Ren, JingMei; Davenport, Mathew; Shenton, Martha E.; Kikinis, Zora; Nedelman, Mark; Ferris, Craig F.

    2015-01-01

    Traumatic brain injury (TBI) can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA) for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1) the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2) the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3) the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion. PMID:25955025

  18. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis.

    PubMed

    Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J; Møller, Arne; Globinsky, Ronen; Fulbright, Robert K; Rothman, Douglas L; Gjedde, Albert

    2016-05-01

    Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means, regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF≈0.4) and glucose oxidation (OGI ≈ 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphorylation rates, with globally optimal maximum ATP turnover rates (VATP ≈ 9.4 µmol/g/min), in good agreement with (31)P and (13)C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization artefacts from relative PET measurements. PMID:26755443

  19. Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntingtons Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter

    SciTech Connect

    Bonda M.; Miller L.; Perrin V.; Vileno B.; Runne H.; Kretlow A.; Forro L.; Luthi-Carter R. and Jeney S.

    2011-09-02

    Huntington's disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of {beta}-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt's {beta}-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.

  20. Decreased gray matter volume is associated with the subtypes of psychotic symptoms in patients with antipsychotic-naïve mild or moderate Alzheimer's disease: A voxel-based morphometry study.

    PubMed

    Lee, Young-Min; Chung, Young-In; Park, Je-Min; Lee, Byung-Dae; Moon, Eunsoo; Jeong, Hee-Jeong; Kim, Ji-Hoon; Kim, Hak-Jin; Mun, Chi-Woong; Kim, Tae-Hyung; Kim, Young-Hoon; Kim, Eun-Joo

    2016-03-30

    The purpose of this study was to investigate the association between brain regional gray matter volume and two subtypes of psychotic symptoms, namely paranoid and misidentification subtypes, in antipsychotic-naïve mild or moderate Alzheimer's disease (AD) patients. Forty AD patients with psychotic symptoms and 25 AD patients without psychotic symptoms were assessed for cognitive and functional impairment. Presence and subtype of psychotic symptoms were assessed by using the delusion and hallucination subscale of the Korean Neuropsychiatric Inventory (K-NPI). Structural MRI images were acquired on a 3 T scanner, and were analyzed using voxel-based morphometry (VBM) for automated analysis. The misidentification subtype is associated with more severe gray matter atrophy, and paranoid subtype is associated with less severe gray matter atrophy compared to non-psychosis group. These results suggest that the misidentification, the paranoid subtype and the non-psychosis group have a distinct neural correlation. PMID:27000306

  1. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients. PMID:10420956

  2. Organohalogen contaminants and metabolites in cerebrospinal fluid and cerebellum gray matter in short-beaked common dolphins and Atlantic white-sided dolphins from the western North Atlantic.

    PubMed

    Montie, Eric W; Reddy, Christopher M; Gebbink, Wouter A; Touhey, Katie E; Hahn, Mark E; Letcher, Robert J

    2009-01-01

    Concentrations of several congeners and classes of organohalogen contaminants (OHCs) and/or their metabolites, namely organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), hydroxylated-PCBs (OH-PCBs), methylsulfonyl-PCBs (MeSO(2)-PCBs), polybrominated diphenyl ether (PBDE) flame retardants, and OH-PBDEs, were measured in cerebrospinal fluid (CSF) of short-beaked common dolphins (n = 2), Atlantic white-sided dolphins (n = 8), and gray seal (n = 1) from the western North Atlantic. In three Atlantic white-sided dolphins, cerebellum gray matter (GM) was also analyzed. The levels of OCs, PCBs, MeSO(2)-PCBs, PBDEs, and OH-PBDEs in cerebellum GM were higher than the concentrations in CSF. 4-OH-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) was the only detectable OH-PCB congener present in CSF. The sum (Sigma) OH-PCBs/Sigma PCB concentration ratio in CSF was approximately two to three orders of magnitude greater than the ratio in cerebellum GM for dolphins. PMID:19375836

  3. Oxidative mitochondrial DNA damage in peripheral blood mononuclear cells is associated with reduced volumes of hippocampus and subcortical gray matter in chronically HIV-infected patients

    PubMed Central

    Kallianpur, Kalpana J.; Gerschenson, Mariana; Mitchell, Brooks I.; LiButti, Daniel E.; Umaki, Tracie M.; Ndhlovu, Lishomwa C.; Nakamoto, Beau K.; Chow, Dominic C.; Shikuma, Cecilia M.

    2016-01-01

    Cross-sectional relationships were examined between regional brain volumes and mitochondrial DNA (mtDNA) 8-hydroxy-2-deoxyguanosine (8-oxo-dG) in peripheral blood mononuclear cells (PBMCs) of 47 HIV patients [mean age 51 years; 81% with HIV RNA ≤50 copies/mL] on combination antiretroviral therapy. The gene-specific DNA damage and repair assay measured mtDNA 8-oxo-dG break frequency. Magnetic resonance imaging was performed at 3 T. Higher mtDNA 8-oxo-dG was associated with lateral ventricular enlargement and with decreased volumes of hippocampus, pallidum, and total subcortical gray matter, suggesting the involvement of systemic mitochondrial-specific oxidative stress in chronic HIV-related structural brain changes and cognitive difficulties. Clarification of the mechanism may provide potential therapeutic targets. PMID:26923169

  4. Neural systems for social cognition: gray matter volume abnormalities in boys at high genetic risk of autism symptoms, and a comparison with idiopathic autism spectrum disorder.

    PubMed

    Goddard, Marcia N; Swaab, Hanna; Rombouts, Serge A R B; van Rijn, Sophie

    2016-09-01

    Klinefelter syndrome (47, XXY) is associated with several physical, cognitive, and behavioral consequences. In terms of social development, there is an increased risk of autism symptomatology. However, it remains unclear how social deficits are related to abnormal brain development and to what degree underlying mechanisms of social dysfunction in 47, XXY are similar to, or different from, those in idiopathic autism (ASD). This study was aimed at investigating the neural architecture of brain structures related to social information processing in boys with 47, XXY, also in comparison with boys with idiopathic ASD. MRI scans of 16 boys with 47, XXY, 16 with ASD, and 16 nonclinical, male controls were analyzed using voxel-based morphometry (VBM). A region of interest mask containing the superior temporal cortex, amygdala, orbitofrontal cortex (OFC), insular cortex, and medial frontal cortex was used. The Social Responsiveness Scale (SRS) was used to assess degree of autism spectrum symptoms. The 47, XXY group could not be distinguished from the ASD group on mean SRS scores, and their scores were significantly higher than in controls. VBM showed that boys with 47, XXY have significant gray matter volume reductions in the left and right insula, and the left OFC, compared with controls and boys with ASD. Additionally, boys with 47, XXY had significantly less gray matter in the right superior temporal gyrus than controls. These results imply social challenges associated with 47, XXY may be rooted in neural anatomy, and autism symptoms in boys with 47, XXY and boys with ASD might have, at least partially, different underlying etiologies. PMID:26233431

  5. No consistent difference in gray matter volume between individuals with fibromyalgia and age-matched healthy subjects when controlling for affective disorder.

    PubMed

    Hsu, Michael C; Harris, Richard E; Sundgren, Pia C; Welsh, Robert C; Fernandes, Carlo R; Clauw, Daniel J; Williams, David A

    2009-06-01

    Fibromyalgia (FM) is thought to involve abnormalities in central pain processing. Recent studies involving small samples have suggested alterations in gray matter volume (GMV) in brains of FM patients. Our objective was to verify these findings in a somewhat larger sample using voxel-based morphometry (VBM), while controlling for the presence of affective disorders (AD). T1-weighted magnetic resonance image (MRI) brain scans were obtained on 29 FM patients with AD, 29 FM patients without AD, and 29 age-matched healthy controls (HCs) using a 3T scanner. Segmentation, spatial normalization, and volumetric modulation were performed using an automated protocol within SPM5. Smoothed gray matter segments were entered into a voxel-wise one-way ANOVA, and a search for significant clusters was performed using thresholding methods published in previous studies (whole-brain threshold of p<.05 correcting for multiple comparisons; region-of-interest (ROI) threshold of p< or =.001 uncorrected, or p<.05 small-volume corrected). The whole-brain analysis did not reveal any significant clusters. ROI-based analysis revealed a significant difference in left anterior insula GMV among the three groups (xyz={-28, 21, 9}; p=.026, corrected). However, on post-hoc testing, FM patients without AD did not differ significantly from HC with respect to mean GMV extracted from this cluster. A significant negative correlation was found between mean cluster GMV and scores of trait anxiety (State-Trait Personality Inventory, Trait Anxiety scale; rho=-.470, p<.001). No other significant clusters were found on ROI-based analysis. Our results emphasize the importance of correcting for AD when carrying out VBM studies in chronic pain. PMID:19375224

  6. Occipital sources of resting-state alpha rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer's disease.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Boccardi, Marina; Lizio, Roberta; Lopez, Susanna; Carducci, Filippo; Marzano, Nicola; Soricelli, Andrea; Ferri, Raffaele; Triggiani, Antonio Ivano; Prestia, Annapaola; Salinari, Serenella; Rasser, Paul E; Basar, Erol; Famà, Francesco; Nobili, Flavio; Yener, Görsev; Emek-Savaş, Derya Durusu; Gesualdo, Loreto; Mundi, Ciro; Thompson, Paul M; Rossini, Paolo M; Frisoni, Giovanni B

    2015-02-01

    Occipital sources of resting-state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer's disease (AD). Here, we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging. Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density, estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8-10.5 Hz) and alpha 2 (10.5-13 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography. Results showed a positive correlation between occipital gray matter density and amplitude of occipital alpha 1 sources in Nold, MCI, and AD subjects as a whole group (r = 0.3, p = 0.000004, N = 235). Furthermore, there was a positive correlation between the amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Examination score across all subjects (r = 0.38, p = 0.000001, N = 235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the receiver operating characteristic curve: 0.81). These results suggest that the amplitude of occipital sources of resting-state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathologic aging. PMID:25442118

  7. White and Gray Matter Volume Changes and Correlation with Visual Evoked Potential in Patients with Optic Neuritis: A Voxel-Based Morphometry Study.

    PubMed

    Huang, Xin; Zhang, Qiang; Hu, Pei-Hong; Zhong, Yu-Lin; Zhang, Ying; Wei, Rong; Xu, Ting-Ting; Shao, Yi; fMRI Study Group, And Oculopathy

    2016-01-01

    BACKGROUND The aim of this study was to investigate potential morphological alterations of gray and white matter in patients with optic neuritis (ON) and their relationship with behavioral performance, using voxel-based morphometry (VBM). MATERIAL AND METHODS Twelve (4 males, 8 females) patients with ON and 12 (4 males, 8 females) age-, sex-, and education-matched healthy controls (HCs) underwent magnetic resonance imaging (MRI). Imaging data were analyzed using two-sample t tests to identify group differences in gray and white matter volume (GMV, WMV). Correlation analysis was used to explore relationships between observed GMV and WMV of different areas and visual evoked potential (VEP) in ON. RESULTS Compared with HCs, ON patients had: significantly decreased GMV in the left postcentral gyrus, left inferior frontal gyrus, left anterior cingulate, left and right middle frontal gyrus, and right inferior parietal lobule; decreased WMV in the left middle frontal gyrus, right superior frontal gyrus, left precentral gyrus and right inferior parietal lobule; and increased WMV in the left fusiform gyrus and left inferior parietal lobule. VEP latency of the right eye in ON correlated positively with WMV signal value of the left fusiform gyrus (r=0.726, p=0.008), and negatively with GMV signal value of the right inferior parietal lobule (r=-0.611, p=0.035). Duration of ON correlated negatively with WMV signal value of the right superior frontal gyrus (r=-0.662, p=0.019), while best-corrected visual acuity (VA) of the right eye correlated negatively with WMV signal value of the left middle frontal gyrus (r=-0.704, p=0.011). CONCLUSIONS These results suggest significant brain involvement in ON, which may reflect the underlying pathologic mechanism. Correlational results demonstrate that VEP in ON is closely associated with WMV and GMV atrophy in many brain regions. PMID:27045330

  8. A Distinct Class of Antibodies May Be an Indicator of Gray Matter Autoimmunity in Early and Established Relapsing Remitting Multiple Sclerosis Patients

    PubMed Central

    Ligocki, Ann J.; Rivas, Jacqueline R.; Rounds, William H.; Guzman, Alyssa A.; Li, Min; Spadaro, Melania; Lahey, Lauren; Chen, Ding; Henson, Paul M.; Graves, Donna; Greenberg, Benjamin M.; Frohman, Elliot M.; Sally Ward, E.; Robinson, William; Meinl, Edgar; White, Charles L.; Stowe, Ann M.

    2015-01-01

    *These authors contributed equally to the work in this manuscript.We have previously identified a distinct class of antibodies expressed by B cells in the cerebrospinal fluid (CSF) of early and established relapsing remitting multiple sclerosis (RRMS) patients that is not observed in healthy donors. These antibodies contain a unique pattern of mutations in six codons along VH4 antibody genes that we termed the antibody gene signature (AGS). In fact, patients who have such B cells in their CSF are identified as either having RRMS or developing RRMS in the future. As mutations in antibody genes increase antibody affinity for particular antigens, the goal for this study was to investigate whether AGS+ antibodies bind to brain tissue antigens. Single B cells were isolated from the CSF of 10 patients with early or established RRMS. We chose 32 of these B cells that expressed antibodies enriched for the AGS for further study. We generated monoclonal full-length recombinant human antibodies (rhAbs) and used both immunological assays and immunohistochemistry to investigate the capacity of these AGS+ rhAbs to bind brain tissue antigens. AGS+ rhAbs did not recognize myelin tracts in the corpus callosum. Instead, AGS+ rhAbs recognized neuronal nuclei and/or astrocytes, which are prevalent in the cortical gray matter. This pattern was unique to the AGS+ antibodies from early and established RRMS patients, as AGS+ antibodies from an early neuromyelitis optica patient did not display the same reactivity. Prevalence of CSF-derived B cells expressing AGS+ antibodies that bind to these cell types may be an indicator of gray matter-directed autoimmunity in early and established RRMS patients. PMID:26489686

  9. No Consistent Difference in Gray Matter Volume between Individuals with Fibromyalgia and Age-Matched Healthy Subjects when Controlling for Affective Disorder

    PubMed Central

    Hsu, Michael C.; Harris, Richard E.; Sundgren, Pia C.; Welsh, Robert C.; Fernandes, Carlo R.; Clauw, Daniel J.; Williams, David A.

    2009-01-01

    Fibromyalgia (FM) is thought to involve abnormalities in central pain processing. Recent studies involving small samples have suggested alterations in gray matter volume (GMV) in brains of FM patients. Our objective was to verify these findings in a somewhat larger sample using voxel-based morphometry (VBM), while controlling for presence of affective disorders (AD). T1-weighted magnetic resonance image (MRI) brain scans were obtained on 29 FM patients with AD, 29 FM patients without AD, and 29 age-matched healthy controls (HC) using a 3T scanner. Segmentation, spatial normalization, and volumetric modulation were performed using an automated protocol within SPM5. Smoothed gray matter segments were entered into a voxel-wise one-way ANOVA, and a search for significant clusters was performed using thresholding methods published in previous studies (whole-brain threshold of p<.05 correcting for multiple comparisons; region-of-interest (ROI) threshold of p≤.001 uncorrected, or p<.05 small-volume corrected). The whole-brain analysis did not reveal any significant clusters. ROI-based analysis revealed a significant difference in left anterior insula GMV among the three groups (xyz={−28, 21, 9}; p=.026, corrected). However, on post-hoc testing, FM patients without AD did not differ significantly from HC with respect to mean GMV extracted from this cluster. A significant negative correlation was found between mean cluster GMV and scores of trait anxiety (State-Trait Personality Inventory, Trait Anxiety scale; rho=−.470, p<.001). No other significant clusters were found on ROI-based analysis. Our results emphasize the importance of correcting for AD when carrying out VBM studies in chronic pain. PMID:19375224

  10. White and Gray Matter Volume Changes and Correlation with Visual Evoked Potential in Patients with Optic Neuritis: A Voxel-Based Morphometry Study

    PubMed Central

    Huang, Xin; Zhang, Qiang; Hu, Pei-Hong; Zhong, Yu-Lin; Zhang, Ying; Wei, Rong; Xu, Ting-Ting; Shao, Yi

    2016-01-01

    Background The aim of this study was to investigate potential morphological alterations of gray and white matter in patients with optic neuritis (ON) and their relationship with behavioral performance, using voxel-based morphometry (VBM). Material/Methods Twelve (4 males, 8 females) patients with ON and 12 (4 males, 8 females) age-, sex-, and education-matched healthy controls (HCs) underwent magnetic resonance imaging (MRI). Imaging data were analyzed using two-sample t tests to identify group differences in gray and white matter volume (GMV, WMV). Correlation analysis was used to explore relationships between observed GMV and WMV of different areas and visual evoked potential (VEP) in ON. Results Compared with HCs, ON patients had: significantly decreased GMV in the left postcentral gyrus, left inferior frontal gyrus, left anterior cingulate, left and right middle frontal gyrus, and right inferior parietal lobule; decreased WMV in the left middle frontal gyrus, right superior frontal gyrus, left precentral gyrus and right inferior parietal lobule; and increased WMV in the left fusiform gyrus and left inferior parietal lobule. VEP latency of the right eye in ON correlated positively with WMV signal value of the left fusiform gyrus (r=0.726, p=0.008), and negatively with GMV signal value of the right inferior parietal lobule (r=−0.611, p=0.035). Duration of ON correlated negatively with WMV signal value of the right superior frontal gyrus (r=−0.662, p=0.019), while best-corrected visual acuity (VA) of the right eye correlated negatively with WMV signal value of the left middle frontal gyrus (r=−0.704, p=0.011). Conclusions These results suggest significant brain involvement in ON, which may reflect the underlying pathologic mechanism. Correlational results demonstrate that VEP in ON is closely associated with WMV and GMV atrophy in many brain regions. PMID:27045330

  11. Relationship between Proton Magnetic Resonance Spectroscopy of Frontoinsular Gray Matter and Neurodevelopmental Outcomes in Very Low Birth Weight Children at the Age of 4

    PubMed Central

    Herman-Sucharska, Izabela; Urbanik, Andrzej; Klimek, Małgorzata; Karcz, Paulina; Dutkowska, Grażyna; Nitecka, Magdalena; Kwinta, Przemko

    2016-01-01

    Very low birth weight is associated with long term neurodevelopmental complications. Macroscopic brain abnormalities in prematurity survivors have been investigated in several studies. However, there is limited data regarding local cerebral metabolic status and neurodevelopmental outcomes. The purpose of this study was to characterize the relationship between proton magnetic resonance spectra in basal ganglia, frontal white matter and frontoinsular gray matter, neurodevelopmental outcomes assessed with the Leiter scale and the Developmental Test of Visual Perception and selected socioeconomic variables in a cohort of very low birth weight children at the age of four. Children were divided in three groups based on the severity of neurodevelopmental impairment. There were no differences in spectroscopy in basal ganglia and frontal white matter between the groups. Lower concentrations of N-acetylaspartate (NAA), choline (Cho) and myoinositol (mI) were observed in the frontoinsular cortex of the left hemisphere in children with neurodevelopmental impairment compared to children with normal neurodevelopmental outcomes. Higher parental education, daycare attendance and breastfeeding after birth were associated with more favorable neurodevelopmental prognosis, whereas rural residence was more prevalent in children with moderate and severe impairment. Our study demonstrates the role of long term neurometabolic disruption in the left frontoinsular cortex and selected socioeconomic variables in determination of neurodevelopmental prognosis in prematurity survivors. PMID:27223474

  12. Follow-up study on histogenesis of microcephaly associated with ectopic gray matter induced by prenatal {gamma}-irradiation in the mouse

    SciTech Connect

    Sun, Xue-Zhi; Inouye, Monoru; Takagishi, Yoshiko

    1996-03-01

    Brain malformation with ectopic gray matter was visualized with magnetic resonance imaging in small-sized heads of prenatally exposed atomic bomb survivors. The identical brain malformation was reproduced in mice and its histogenesis was studied in the present experiment. Pregnant mice were exposed to {sup 60}Co {gamma}-irradiation at a single dose of 1.5 Gy on embryonic day 13 (E13), and then injected intraperitoneally with 30 mg/kg BrdU on E15. The extensive dead cells appeared throughout the brain mantle at 6 hours (h) after exposure. On E16 cell aggregations formed rosettes. On E18 a high proportion of BrdU-labeled cells reached the superficial layers of the cortical plate with the remaining cells located in the ectopic neuronal masses. The quantitative study showed that labeled cells in layers II to III were fewer and those in layers IV to VI more numerous in the prenatally irradiated adult mice than in controls. The anti-GFAP immunostaining revealed that the glial fibers in the irradiated mice were preserved, but disorganized. These findings suggested that the majority of migrating neurons were able to arrive at their normal layers, but some neurons remained due to the interrupted migratory pathway and eventually formed ectopic neuronal masses beneath the subcortical white matter. 60 refs., 5 figs., 1 tab.

  13. Individual voxel-based analysis of brain magnetization transfer maps shows great variability of gray matter injury in the first stage of multiple sclerosis.

    PubMed

    Jure, Lorena; Zaaraoui, Wafaa; Rousseau, Celia; Reuter, Françoise; Rico, Audrey; Malikova, Irina; Confort-Gouny, Sylviane; Cozzone, Patrick J; Pelletier, Jean; Ranjeva, Jean-Philippe; Audoin, Bertrand

    2010-08-01

    In multiple sclerosis (MS), it seems likely that the variability of the long-term disability might be partly due to the variability of the early gray matter (GM) injury. In the present study, we assessed the variability of GM injury in early MS, using a method designed to determine individual pathological GM patterns. Eighteen patients presenting with a clinically isolated syndrome and 24 healthy matched control subjects were included in this study. Patients were explored using a 1.5 Tesla MR scanner (Magnetom Vision Plus; Siemens). Brain MR protocol included magnetization transfer ratio imaging (MTR). Statistical mapping analyses were performed to compare each subject's GM MTR maps with those of the whole group of control subjects (SPM5). The statistical threshold was taken to be the maximum P value showing no significant cluster when any control individual was compared with the whole control population. GM abnormalities were observed in 83% of the patients, ranging in size from 0.3 to 125 cm(3). Among the patients with GM abnormalities, 87% had abnormalities located in the temporal cortex, 80% in the frontal cortex, 80% in the limbic cortex, 73% in the posterior fossa, 53% in the deep GM, 47% in the parietal cortex, and 47% in the occipital cortex. Individual statistical mapping of MTR data, which gives a quantitative assessment of individual GM lesions, demonstrates great variability of grey matter injury in the first stage of multiple sclerosis. PMID:20677272

  14. Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function

    PubMed Central

    Smolker, H. R.; Reineberg, A. E.; Orr, J. M.; Banich, M. T.

    2015-01-01

    Although the relationship between structural differences within the prefrontal cortex (PFC) and executive function (EF) has been widely explored in cognitively impaired populations, little is known about this relationship in healthy young adults. Using optimized voxel-based morphometry (VBM), surface-based morphometry (SBM), and fractional anisotropy (FA) we determined the association between regional PFC grey matter (GM) morphometry and white matter tract diffusivity with performance on tasks that tap different aspects of EF as drawn from Miyake et al.’s three-factor model of EF. Reductions in both GM volume (VBM) and cortical folding (SBM) in the ventromedial PFC (vmPFC), ventrolateral PFC (vlPFC), and dorsolateral PFC (dlPFC) predicted better common EF, shifting-specific, and updating-specific performance, respectively. Despite capturing different components of GM morphometry, voxel- and surface-based findings were highly related, exhibiting regionally overlapping relationships with EF. Increased white matter FA in fiber tracts that connect the vmPFC and vlPFC with posterior regions of the brain also predicted better common EF and shifting-specific performance, respectively. These results suggest that the neural mechanisms supporting distinct aspects of EF may differentially rely on distinct regions of the PFC, and at least in healthy young adults, are influenced by regional morphometry of the PFC and the FA of major white matter tracts that connect the PFC with posterior cortical and subcortical regions. PMID:24562372

  15. Prefrontal Ischemia in the Rat Leads to Secondary Damage and Inflammation in Remote Gray and White Matter Regions

    PubMed Central

    Weishaupt, Nina; Zhang, Angela; Deziel, Robert A.; Tasker, R. Andrew; Whitehead, Shawn N.

    2016-01-01

    Secondary damage processes, such as inflammation and oxidative stress, can exacerbate an ischemic lesion and spread to adjacent brain regions. Yet, few studies investigate how regions remote from the infarct could also suffer from degeneration and inflammation in the aftermath of a stroke. To find out to what extent far-remote brain regions are affected after stroke, we used a bilateral endothelin-1-induced prefrontal infarct rat model. Brain regions posterior to the prefrontal cortical infarct were analyzed for ongoing neurodegeneration using FluoroJadeB (FJB) and for neuroinflammation using Iba1 and OX-6 immunohistochemistry 28 days post-stroke. The FJB-positive dorsomedial nucleus of the thalamus (DMN) and retrosplenial area (RSA) of the cortex displayed substantial neuroinflammation. Significant neuronal loss was only observed within the cortex. Significant microglia recruitment and activation in the FJB-positive internal capsule indicates remote white matter pathology. These findings demonstrate that even regions far remote from an infarct are affected predictably based on anatomical connectivity, and that white matter inflammation is an integral part of remote pathology. The delayed nature of this pathology makes it a valid target for preventative treatment, potentially with an extended time window of opportunity for therapeutic intervention using anti-inflammatory agents. PMID:26973455

  16. Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures

    SciTech Connect

    Sakas, D.E.; Moskowitz, M.A.; Kano, M.; Ogilvy, C.S. ); Wei, E.P.; Kontos, H.A. )

    1989-02-01

    Cerebral blood flow was measured and compared in 10 symmetrical brain regions following unilateral trigeminal ganglionectomy, sham operation, or trigeminal root section (rhizotomy) in cats. Multiple determinations were obtained in anesthetized and paralyzed animals using radiolabeled microspheres during (i) normocapnia-normotension, (ii) hypercapnia, (iii) angiotensin-induced acute severe hypertension, or (iv) bicuculline-induced seizures. Flow was symmetrical in all brain regions at rest and during increases induced by hypercapnia in the three groups. During severe hypertension or seizures, marked elevations developed bilaterally. In ganglionectomized animals, increases due to hypertension or seizures were attenuated by 28-32% on the denervated side within cortical gray matter regions corresponding to the anterior, middle, and posterior cerebral arteries. Flow was symmetrical within all brain regions in sham-operated animals and in the rhizotomy group, despite comparable increases in regional cerebral blood flow induced by angiotensin. Hence, the trigeminal nerve mediates blood flow adaptations during severe hypertension and seizures. Furthermore, since trigeminal cell bodies and peripheral axons are destroyed or degenerate following ganglionectomy but not following rhizotomy, local axon reflex-like mechanisms mediate these increases in cerebral blood flow.

  17. Improved delineation of short cortical association fibers and gray/white matter boundary using whole-brain three-dimensional diffusion tensor imaging at submillimeter spatial resolution.

    PubMed

    Song, Allen W; Chang, Hing-Chiu; Petty, Christopher; Guidon, Arnaud; Chen, Nan-Kuei

    2014-11-01

    Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome. PMID:25264168

  18. The Heterogeneity in Retrieved Relations between the Personality Trait ‘Harm Avoidance’ and Gray Matter Volumes Due to Variations in the VBM and ROI Labeling Processing Settings

    PubMed Central

    Van Schuerbeek, Peter; Baeken, Chris; De Mey, Johan

    2016-01-01

    Concerns are raising about the large variability in reported correlations between gray matter morphology and affective personality traits as ‘Harm Avoidance’ (HA). A recent review study (Mincic 2015) stipulated that this variability could come from methodological differences between studies. In order to achieve more robust results by standardizing the data processing procedure, as a first step, we repeatedly analyzed data from healthy females while changing the processing settings (voxel-based morphology (VBM) or region-of-interest (ROI) labeling, smoothing filter width, nuisance parameters included in the regression model, brain atlas and multiple comparisons correction method). The heterogeneity in the obtained results clearly illustrate the dependency of the study outcome to the opted analysis settings. Based on our results and the existing literature, we recommended the use of VBM over ROI labeling for whole brain analyses with a small or intermediate smoothing filter (5-8mm) and a model variable selection step included in the processing procedure. Additionally, it is recommended that ROI labeling should only be used in combination with a clear hypothesis and that authors are encouraged to report their results uncorrected for multiple comparisons as supplementary material to aid review studies. PMID:27096608

  19. The Heterogeneity in Retrieved Relations between the Personality Trait 'Harm Avoidance' and Gray Matter Volumes Due to Variations in the VBM and ROI Labeling Processing Settings.

    PubMed

    Van Schuerbeek, Peter; Baeken, Chris; De Mey, Johan

    2016-01-01

    Concerns are raising about the large variability in reported correlations between gray matter morphology and affective personality traits as 'Harm Avoidance' (HA). A recent review study (Mincic 2015) stipulated that this variability could come from methodological differences between studies. In order to achieve more robust results by standardizing the data processing procedure, as a first step, we repeatedly analyzed data from healthy females while changing the processing settings (voxel-based morphology (VBM) or region-of-interest (ROI) labeling, smoothing filter width, nuisance parameters included in the regression model, brain atlas and multiple comparisons correction method). The heterogeneity in the obtained results clearly illustrate the dependency of the study outcome to the opted analysis settings. Based on our results and the existing literature, we recommended the use of VBM over ROI labeling for whole brain analyses with a small or intermediate smoothing filter (5-8mm) and a model variable selection step included in the processing procedure. Additionally, it is recommended that ROI labeling should only be used in combination with a clear hypothesis and that authors are encouraged to report their results uncorrected for multiple comparisons as supplementary material to aid review studies. PMID:27096608

  20. Medium-chain plasma acylcarnitines, ketone levels, cognition, and gray matter volumes in healthy elderly, mildly cognitively impaired, or Alzheimer's disease subjects.

    PubMed

    Ciavardelli, Domenico; Piras, Fabrizio; Consalvo, Ada; Rossi, Claudia; Zucchelli, Mirco; Di Ilio, Carmine; Frazzini, Valerio; Caltagirone, Carlo; Spalletta, Gianfranco; Sensi, Stefano L

    2016-07-01

    Aging, amyloid deposition, and tau-related pathology are key contributors to the onset and progression of Alzheimer's disease (AD). However, AD is also associated with brain hypometabolism and deficits of mitochondrial bioenergetics. Plasma acylcarnitines (ACCs) are indirect indices of altered fatty acid beta-oxidation, and ketogenesis has been found to be decreased on aging. Furthermore, in elderly subjects, alterations in plasma levels of specific ACCs have been suggested to predict conversion to mild cognitive impairment (MCI) or AD. In this study, we assayed plasma profiles of ACCs in a cohort of healthy elderly control, MCI subjects, and AD patients. Compared with healthy controls or MCI subjects, AD patients showed significant lower plasma levels of several medium-chain ACCs. Furthermore, in AD patients, these lower concentrations were associated with lower prefrontal gray matter volumes and the presence of cognitive impairment. Interestingly, lower levels of medium-chain ACCs were also found to be associated with lower plasma levels of 2-hydroxybutyric acid. Overall, these findings suggest that altered metabolism of medium-chain ACCs and impaired ketogenesis can be metabolic features of AD. PMID:27255810

  1. Quantitative analysis of ubiquitin-immunoreactivity in the midbrain periaqueductal gray matter with regard to the causes of death in forensic autopsy.

    PubMed

    Quan, Li; Ishikawa, Takaki; Michiue, Tomomi; Li, Dong-Ri; Zhao, Dong; Zhu, Bao-Li; Maeda, Hitoshi

    2005-05-01

    The aim of the present study was to examine Ub-immunoreactivity in the midbrain periaqueductal gray matter (PGM), which is involved in pain processing and modulation, in forensic autopsy cases (n=273) in relation to the causes of death: acute deaths from blunt injuries (n=75), sharp weapon injuries (n=36), fatal asphyxiation (n=22), drownings (n=16: freshwater, n=9; saltwater, n=7), fire fatalities (n=64), poisoning (n=12), hyperthermia (n=5), hypothermia (n=5), delayed deaths from blunt head injury (n=8), acute cardiac deaths (n=24), and acute cerebrovascular strokes (n=6). The Ub-immunoreactivity was clearly observed in the nuclei of the PGM neurons, showing no postmortem interference or age-dependency. A higher value was observed in blunt injuries, fire fatalities and also in saltwater drowning, hyperthermia and delayed head injury deaths. These findings suggest a complicated mechanism for the ubiquitination of PGM neurons, to which multiple factors including the intensity and duration of pains possibly under alert consciousness, traumatic and metabolic neurodegeneration may contribute. PMID:15847822

  2. Yoga Meditation Practitioners Exhibit Greater Gray Matter Volume and Fewer Reported Cognitive Failures: Results of a Preliminary Voxel-Based Morphometric Analysis

    PubMed Central

    Froeliger, Brett; Garland, Eric L.; McClernon, F. Joseph

    2012-01-01

    Hatha yoga techniques, including physical postures (asanas), breathing exercises (pranayama), and meditation, involve the practice of mindfulness. In turn, yoga meditation practices may induce the state of mindfulness, which, when evoked recurrently through repeated practice, may accrue into trait or dispositional mindfulness. Putatively, these changes may be mediated by experience-dependent neuroplastic changes. Though prior studies have identified differences in gray matter volume (GMV) between long-term mindfulness practitioners and controls, no studies to date have reported on whether yoga meditation is associated with GMV differences. The present study investigated GMV differences between yoga meditation practitioners (YMP) and a matched control group (CG). The YMP group exhibited greater GM volume in frontal, limbic, temporal, occipital, and cerebellar regions; whereas the CG had no greater regional greater GMV. In addition, the YMP group reported significantly fewer cognitive failures on the Cognitive Failures Questionnaire (CFQ), the magnitude of which was positively correlated with GMV in numerous regions identified in the primary analysis. Lastly, GMV was positively correlated with the duration of yoga practice. Results from this preliminary study suggest that hatha yoga practice may be associated with the promotion of neuroplastic changes in executive brain systems, which may confer therapeutic benefits that accrue with repeated practice. PMID:23304217

  3. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study

    PubMed Central

    Itahashi, Takashi; Yamada, Takashi; Nakamura, Motoaki; Watanabe, Hiromi; Yamagata, Bun; Jimbo, Daiki; Shioda, Seiji; Kuroda, Miho; Toriizuka, Kazuo; Kato, Nobumasa; Hashimoto, Ryuichiro

    2014-01-01

    Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD) can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI) or diffusion tensor imaging (DTI), and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA), to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM) volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA) in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder. PMID:25610777

  4. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  5. Age-Related Changes in Creative Thinking

    ERIC Educational Resources Information Center

    Roskos-Ewoldsen, Beverly; Black, Sheila R.; Mccown, Steven M.

    2008-01-01

    Age-related differences in cognitive processes were used to understand age-related declines in creativity. According to the Geneplore model (Finke, Ward, & Smith, 1992), there are two phases of creativity--generating an idea and exploring the implications of the idea--each with different underlying cognitive processes. These two phases are…

  6. Cued recall measure predicts the progression of gray matter atrophy in patients with amnesic mild cognitive impairment.

    PubMed

    Koric, Lejla; Ranjeva, Jean-Philippe; Felician, Olivier; Guye, Maxime; de Anna, Francesca; Soulier, Elisabeth; Didic, Mira; Ceccaldi, Mathieu

    2013-01-01

    Amnesic mild cognitive impairment (aMCI) is a heterogeneous syndrome that could be subdivided into distinct neuropsychological variants. To investigate relationships between the neuropsychological profile of memory impairment at baseline and the neuroimaging pattern of grey matter (GM) loss over 18 months, we performed a prospective volumetric brain study on 31 aMCI patients and 29 matched controls. All subjects were tested at baseline using a standardized neuropsychological battery, which included the Free and Cued Selective Recall Reminding Test (FCSRT) for the assessment of verbal declarative memory. Over 18 months, patients with impaired free recall but normal total recall (high index of cueing) on the FCSRT developed subcortical and frontal GM loss, while patients with impaired free and total recall (low index of cueing) developed GM atrophy within the left anterior and lateral temporal lobe. In summary, cued recall deficits are associated with a progression of atrophy that closely parallels the spatiotemporal distribution of neurofibrillary degeneration in early Alzheimer's disease (AD), indicating possible AD pathological changes. PMID:23899504

  7. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment.

    PubMed

    Köbe, Theresa; Witte, A Veronica; Schnelle, Ariane; Lesemann, Anne; Fabian, Sonja; Tesky, Valentina A; Pantel, Johannes; Flöel, Agnes

    2016-05-01

    Previous studies in older adults suggested beneficial effects of omega-3 fatty acid (FA) supplementation, aerobic exercise, or cognitive stimulation on brain structure and function. However, combined effects of these interventions in patients suffering from mild cognitive impairment (MCI) are unknown. Using a randomized interventional design, we evaluated the effect of combined omega-3 FA supplementation, aerobic exercise and cognitive stimulation (target intervention) versus omega-3 FA supplementation and non-aerobic exercise (control intervention) on cognitive function and gray matter volume in patients with MCI. Moreover, we analyzed potential vascular, metabolic or inflammatory mechanisms underlying these effects. Twenty-two MCI patients (8 females; 60-80years) successfully completed six months of omega-3 FA intake, aerobic cycling training and cognitive stimulation (n=13) or omega-3 FA intake and non-aerobic stretching and toning (n=9). Before and after the interventions, cognitive performance, magnetic resonance imaging of the brain at 3T (n=20), intima-media thickness of the internal carotid artery and serum markers of glucose control, lipid and B-vitamin metabolism, and inflammation were assessed. Intervention-related changes in gray matter volume of Alzheimer's disease (AD)-related brain regions, i.e., frontal, parietal, temporal and cingulate cortex were examined using voxel-based morphometry of high resolution T1-weighted images. After the intervention period, significant differences emerged in brain structure between groups: Gray matter volume decreased in the frontal, parietal and cingulate cortex of patients in the control intervention, while gray matter volume in these areas was preserved or even increased after the target intervention. Decreases in homocysteine levels in the target intervention group were associated with increases in gray matter volume in the middle frontal cortex (p=0.010). No significant differences in cognitive performance or

  8. BDNF-TRKB signaling system of the dorsal periaqueductal gray matter is implicated in the panicolytic-like effect of antidepressant drugs.

    PubMed

    Casarotto, Plinio C; Santos, Paula C dos; Lucas, Guilherme A; Biojone, Caroline; Pobbe, Roger L H; Vilela-Costa, Heloisa H; Joca, Samia R L; Guimarães, Francisco S; Zangrossi, Hélio

    2015-06-01

    A wealth of evidence implicates the BDNF-TRKB system in the therapeutic effects of antidepressant drugs (ADs) on mood disorders. However, little is known about the involvement of this system in the panicolytic property also exerted by these compounds. In the present study we evaluated the participation of the BDNF-TRKB system of the dorsal periaqueductal gray matter (DPAG), a core structure involved in the pathophysiology of panic disorder, in AD-induced panicolytic-like effects in rats. The results showed that short- (3 days) or long-term (21 days) systemic treatment with the tricyclic ADs imipramine, clomipramine or desipramine increased BDNF levels in the DPAG. Only longterm treatment with the selective serotonin reuptake inhibitor fluoxetine was able to increase BDNF levels in this structure. After 21-day treatment, fluoxetine and the three tricyclic ADs used also increased BDNF concentration in the hippocampus, a key area implicated in their mood-related actions. Neither in the DPAG nor hippocampus did long-term treatment with the standard anxiolytics diazepam, clonazepam or buspirone affect BDNF levels. Imipramine, both after short and long-term administration, and fluoxetine under the latter regimen, raised the levels of phosphorylated TRKB in the DPAG. Short-term treatment with imipramine or BDNF microinjection inhibited escape expression in rats exposed to the elevated T maze, considered as a panicolytic-like effect. This anti-escape effect was attenuated by the intra-DPAG administration of the TRK receptor antagonist k252a. Altogether, our data suggests that facilitation of the BDNF-TRKB system in the DPAG is implicated in the panicolytic effect of ADs. PMID:25840741

  9. Asymmetric Gray Matter Volume Changes Associated with Epilepsy Duration and Seizure Frequency in Temporal-Lobe-Epilepsy Patients with Favorable Surgical Outcome

    PubMed Central

    Kim, Jeong Sik; Koo, Dae Lim; Joo, Eun Yeon; Kim, Sung Tae; Seo, Dae Won

    2016-01-01

    Background and Purpose This study aimed to estimate the changes in gray matter volume (GMV) and their hemispheric difference in patients with mesial temporal lobe epilepsy (MTLE) using a voxel-based morphometry (VBM) methodology, and to determine whether GMV changes are correlated with clinical features. Methods VBM analysis of brain MRI using statistical parametric mapping 8 (SPM8) was performed for 30 left MTLE (LMTLE) and 30 right MTLE (RMTLE) patients and 30 age- and sex-matched healthy controls. We also analyzed the correlations between GMV changes and clinical features of MTLE patients. Results In SPM8-based analyses, MTLE patients showed significant GMV reductions in the hippocampus ipsilateral to the epileptic focus, bilateral thalamus, and contralateral putamen in LMTLE patients. The GMV reductions were more extensive in the ipsilateral hippocampus, thalamus, caudate, putamen, uncus, insula, inferior temporal gyrus, middle occipital gyrus, cerebellum, and paracentral lobule in RMTLE patients. These patients also exhibited notable reductions of GMV in the contralateral hippocampus, thalamus, caudate, putamen, and inferior frontal gyrus. We observed that GMV reduction was positively correlated with several clinical features (epilepsy duration and seizure frequency in RMTLE, and history of febrile seizure in LMTLE) and negatively correlated with seizure onset age in both the RMTLE and LMTLE groups. Conclusions Our study revealed GMV decreases in the hippocampus and extrahippocampal regions. Furthermore, the GMV reduction was more extensive in the RMTLE group than in the LMTLE group, since it included the contralateral hemisphere in the former. This difference in the GMV reduction patterns between LMTLE and RMTLE may be related to a longer epilepsy duration and higher seizure frequency in the latter. PMID:27449913

  10. Self-regulation therapy increases frontal gray matter in children with fetal alcohol spectrum disorder: evaluation by voxel-based morphometry

    PubMed Central

    Soh, Debra W.; Skocic, Jovanka; Nash, Kelly; Stevens, Sara; Turner, Gary R.; Rovet, Joanne

    2015-01-01

    Children with fetal alcohol spectrum disorder show executive function (EF) deficits, particularly in self-regulation skills, and abnormalities in brain regions critical for these skills. None of the validated EF interventions for these children has been evaluated with regards to impacts on brain structure. Twenty-nine children with FASD were assigned to either an immediate-treatment (TX) or delayed-treatment control (DTC) group (DTC). Nineteen typically developing children served as healthy controls (CT). All received a structural MRI scan and baseline neuropsychological testing, following which the TX group underwent 12 weekly 1.5-h sessions of the Alert Program for Self-Regulation®. After treatment or a period of ~14 weeks, all received a repeat scan and post-intervention testing. Whole-brain and region-of-interest analyses using voxel-based morphometry evaluated group differences and changes over time in gray matter (GM). Exploratory analyses revealed significant group changes: (1) At baseline, combined TX and DTC groups demonstrated global GM reductions compared with the CT group. (2) Region-of-interest analysis using a frontal mask, comparing post-intervention to pre-intervention results, showed significantly increased GM in the left middle frontal gyrus (BA10), right frontal pole (BA11), and right anterior cingulate (BA32) in the TX group. Similar results were not found in the DTC or CT groups. (3) At post-intervention, both TX and CT groups showed larger GM volumes than the DTC group in the left superior frontal gyrus (BA9), which was smaller in the FASD group at baseline. These results suggested that Alert led to improvements in post-intervention testing of self-regulation skills and typical brain development in treated children. PMID:25788884

  11. A Longitudinal Study of Disability, Cognition and Gray Matter Atrophy in Early Multiple Sclerosis Patients According to Evidence of Disease Activity

    PubMed