Science.gov

Sample records for age-related learning deficits

  1. Age-Related Declines in Visuospatial Working Memory Correlate With Deficits in Explicit Motor Sequence Learning

    PubMed Central

    Bo, J.; Borza, V.

    2009-01-01

    Numerous studies have shown that older adults exhibit deficits in motor sequence learning, but the mechanisms underlying this effect remain unclear. Our recent work has shown that visuospatial working-memory capacity predicts the rate of motor sequence learning and the length of motor chunks formed during explicit sequence learning in young adults. In the current study, we evaluate whether age-related deficits in working memory explain the reduced rate of motor sequence learning in older adults. We found that older adults exhibited a correlation between visuospatial working-memory capacity and motor sequence chunk length, as we observed previously in young adults. In addition, older adults exhibited an overall reduction in both working-memory capacity and motor chunk length compared with that of young adults. However, individual variations in visuospatial working-memory capacity did not correlate with the rate of learning in older adults. These results indicate that working memory declines with age at least partially explain age-related differences in explicit motor sequence learning. PMID:19726728

  2. Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning.

    PubMed

    Bo, J; Borza, V; Seidler, R D

    2009-11-01

    Numerous studies have shown that older adults exhibit deficits in motor sequence learning, but the mechanisms underlying this effect remain unclear. Our recent work has shown that visuospatial working-memory capacity predicts the rate of motor sequence learning and the length of motor chunks formed during explicit sequence learning in young adults. In the current study, we evaluate whether age-related deficits in working memory explain the reduced rate of motor sequence learning in older adults. We found that older adults exhibited a correlation between visuospatial working-memory capacity and motor sequence chunk length, as we observed previously in young adults. In addition, older adults exhibited an overall reduction in both working-memory capacity and motor chunk length compared with that of young adults. However, individual variations in visuospatial working-memory capacity did not correlate with the rate of learning in older adults. These results indicate that working memory declines with age at least partially explain age-related differences in explicit motor sequence learning. PMID:19726728

  3. A blueberry-enriched antioxidant diet reduces an age-related deficit in one trial per day discriminative reward learning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been reported that an antioxidant-rich, blueberry-supplemented rat diet may slow brain aging in the rat and protect against age-related memory impairment as measured by such tasks as the water maze and visual object recognition. The present study determined whether such supplementation could ...

  4. Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory

    PubMed Central

    VanGuilder, Heather D.; Bixler, Georgina V.; Sonntag, William E.; Freeman, Willard M.

    2012-01-01

    Impairment of cognitive functions including hippocampus-dependent spatial learning and memory affects nearly half of the aged population. Age-related cognitive decline is associated with synaptic dysfunction that occurs in the absence of neuronal cell loss, suggesting that impaired neuronal signaling and plasticity may underlie age-related deficits of cognitive function. Expression of myelin-associated inhibitors (MAIs) of synaptic plasticity, including the ligands MAG, Nogo-A, and OMgp, and their common receptor, NgR1, was examined in hippocampal synaptosomes and CA1, CA3 and DG subregions derived from adult (12–13 months) and aged (26–28 months) Fischer 344 × Brown Norway rats. Rats were behaviorally phenotyped by Morris water maze testing and classified as aged cognitively intact (n=7–8) or aged cognitively impaired (n=7–10) relative to adults (n=5–7). MAI protein expression was induced in cognitively impaired, but not cognitively intact, aged rats and correlated with cognitive performance in individual rats. Immunohistochemical experiments demonstrated that upregulation of MAIs occurs, in part, in hippocampal neuronal axons and somata. While a number of pathways and processes are altered with brain aging, we report a coordinated induction of myelin-associated inhibitors of functional and structural plasticity only in cognitively impaired aged rats. Induction of MAIs may decrease stimulus-induced synaptic strengthening and structural remodeling, ultimately impairing synaptic mechanisms of spatial learning and memory and resulting in cognitive decline. PMID:22269040

  5. Can DRYAD explain age-related associative memory deficits?

    PubMed

    Smyth, Andrea C; Naveh-Benjamin, Moshe

    2016-02-01

    A recent interesting theoretical account of aging and memory judgments, the DRYAD (density of representations yields age-related deficits; Benjamin, 2010; Benjamin, Diaz, Matzen, & Johnson, 2012), attributes the extensive findings of disproportional age-related deficits in memory for source, context, and associations, to a global decline in memory fidelity. It is suggested that this global deficit, possibly due to a decline in attentional processes, is moderated by weak representation of contextual information to result in disproportional age-related declines. In the current article, we evaluate the DRYAD model, comparing it to specific age-related deficits theories, in particular, the ADH (associative deficit hypothesis, Naveh-Benjamin, 2000). We question some of the main assumptions/hypotheses of DRYAD in light of data reported in the literature, and we directly assess the role of attention in age-related deficits by manipulations of divided attention and of the instructions regarding what to pay attention to in 2 experiments (one from the literature and a new one). The results of these experiments fit the predictions of the ADH and do not support the main assumption/hypotheses of DRYAD. PMID:25961878

  6. Oxidative stress and age-related neuronal deficits.

    PubMed

    Joseph, J A; Denisova, N; Villalobos-Molina, R; Erat, S; Strain, J

    1996-01-01

    Research from our laboratory has indicated that the loss of sensitivity that occurs in several receptor systems as a function of age may be an index of an increasing inability to respond to oxidative stress (OS). This loss occurs partially as a result of altered signal transduction (ST). Assessments have involved determining the nature of age-related reductions in oxotremorine enhancement of K(+)-evoked dopamine release (K(+)-ERDA) from superfused striatal slices. Using this model, we have found that 1. Reductions can be restored with in vivo administration of the free-radical trapping agent, N-tert-butyl-alpha-phenylnitrone (PBN); 2. Decrements in DA release induced by NO or H2O2 from striatal slices from both young and old animals could be restored with alpha-tocopherol or PBN; 3. ST decrements, such as those seen in aging, could be induced with radiation exposure; and 4. Pre-incubation of the striatal slices with cholesterol decreased subsequent deleterious effects of NO or OH. on DA release. Thus, cholesterol, which increases in neuronal membranes as a function of age, may function as a potent antioxidant and protectant against neuronal damage. These results suggest that therapeutic efforts to restore cognitive deficits in aging and age-related disease might begin with antioxidant reversal of ST decrements. PMID:8871939

  7. Aging and associative recognition: A view from the DRYAD model of age-related memory deficits.

    PubMed

    Benjamin, Aaron S

    2016-02-01

    How do we best characterize the memory deficits that accompany aging? A popular hypothesis, articulated originally by Naveh-Benjamin (2000) and reviewed in the accompanying article by Smyth and Naveh-Benjamin (2016), suggests that older adults are selectively deficient in establishing associations between to-be-learned memoranda and as a result have deficits in memory for sources or contexts. An alternative proposal, called density of representations yields age-related deficits (DRYAD) and outlined in recent articles by Benjamin (2010) and colleagues (Benjamin, Diaz, Matzen, & Johnson, 2012), attributes disproportionate deficits in memory to a global, rather than a selective, deficit of memory. In an attempt to adjudicate between these competing positions, Smyth and Naveh-Benjamin (2016) discussed 2 sets of experimental data that they claim speak against the global deficit model. Here I review some general principles of how the global-deficit view is applied to experimental paradigms and demonstrate that even a simplified form of DRYAD can comfortably accommodate the critical findings cited by Smyth and Naveh-Benjamin. I also evaluate aspects of their results that may be problematic for DRYAD and describe ways in which DRYAD's account of associative recognition can be falsified. I end with a discussion of the complementary strengths and weaknesses of the 2 approaches and consider ways in which the associative deficit hypothesis and DRYAD might work more profitably together than apart. PMID:26866587

  8. Changes in pattern completion – a key mechanism to explain age-related recognition memory deficits?

    PubMed Central

    Vieweg, Paula; Stangl, Matthias; Howard, Lorelei R.; Wolbers, Thomas

    2016-01-01

    Accurate memory retrieval from partial or degraded input requires the reactivation of memory traces, a hippocampal mechanism termed pattern completion. Age-related changes in hippocampal integrity have been hypothesized to shift the balance of memory processes in favor of the retrieval of already stored information (pattern completion), to the detriment of encoding new events (pattern separation). Using a novel behavioral paradigm, we investigated the impact of cognitive aging (1) on recognition performance across different levels of stimulus completeness, and (2) on potential response biases. Participants were required to identify previously learned scenes among new ones. Additionally, all stimuli were presented in gradually masked versions to alter stimulus completeness. Both young and older adults performed increasingly poorly as the scenes became less complete, and this decline in performance was more pronounced in elderly participants indicative of a pattern completion deficit. Intriguingly, when novel scenes were shown, only the older adults showed an increased tendency to identify these as familiar scenes. In line with theoretical models, we argue that this reflects an age-related bias towards pattern completion. PMID:25597525

  9. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  10. Dynamical network model for age-related health deficits and mortality

    NASA Astrophysics Data System (ADS)

    Taneja, Swadhin; Mitnitski, Arnold B.; Rockwood, Kenneth; Rutenberg, Andrew D.

    2016-02-01

    How long people live depends on their health, and how it changes with age. Individual health can be tracked by the accumulation of age-related health deficits. The fraction of age-related deficits is a simple quantitative measure of human aging. This quantitative frailty index (F ) is as good as chronological age in predicting mortality. In this paper, we use a dynamical network model of deficits to explore the effects of interactions between deficits, deficit damage and repair processes, and the connection between the F and mortality. With our model, we qualitatively reproduce Gompertz's law of increasing human mortality with age, the broadening of the F distribution with age, the characteristic nonlinear increase of the F with age, and the increased mortality of high-frailty individuals. No explicit time-dependence in damage or repair rates is needed in our model. Instead, implicit time-dependence arises through deficit interactions—so that the average deficit damage rates increase, and deficit repair rates decrease, with age. We use a simple mortality criterion, where mortality occurs when the most connected node is damaged.

  11. Nutritional interventions protect against age-related deficits in behavior: from animals to humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on motor and cognitive tasks. Similar changes in behavior occur in humans with age, and the development of methods to retard or reverse these age-related neuronal and behavioral deficits could increase healthy aging and decrease health care costs. In the present s...

  12. High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution

    PubMed Central

    Puccioni, Olga; Vallesi, Antonino

    2012-01-01

    Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors. PMID:23248595

  13. Age-related deficits in a forebrain-dependent task, trace-eyeblink conditioning

    PubMed Central

    Galvez, Roberto; Cua, Sabrina; Disterhoft, John F.

    2009-01-01

    Trace-eyeblink conditioning is a forebrain-dependent learning paradigm that has assisted in our understanding of age-related hippocampal neuronal plasticity; however, the hippocampus is not believed to be the permanent site for most long-term-memory storage. Studies in adult subjects have suggested the neocortex as one such site. Whisker plucking studies have further suggested that the ability for plasticity in the neocortex declines with age. Mice were trained in trace- and delay-eyeblink conditioning with whisker or auditory stimulation as the conditioned stimulus to examine possible age-related behavioral and neocortical abnormalities. Whisker stimulation was determined to be a more effective stimulus for examining age-related behavioral abnormalities in C57 mice. Additionally, neocortical barrel expansion, observed in trace conditioned adult mice and rabbits, does not occur in mice conditioned on a delay paradigm or in old mice unable to learn the whisker trace association. Abnormalities in neocortical memory storage in the elderly could contribute to normal age-dependent declines in associative learning abilities. PMID:20018411

  14. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits

    PubMed Central

    Oh, M. Matthew; Simkin, Dina; Disterhoft, John F.

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  15. Vagal Recovery From Cognitive Challenge Moderates Age-Related Deficits in Executive Functioning.

    PubMed

    Crowley, Olga V; Kimhy, David; McKinley, Paula S; Burg, Matthew M; Schwartz, Joseph E; Lachman, Margie E; Tun, Patricia A; Ryff, Carol D; Seeman, Teresa E; Sloan, Richard P

    2016-05-01

    Decline in executive functioning (EF) is a hallmark of cognitive aging. We have previously reported that faster vagal recovery from cognitive challenge is associated with better EF. This study examined the association between vagal recovery from cognitive challenge and age-related differences in EF among 817 participants in the Midlife in the U.S. study (aged 35-86). Cardiac vagal control was measured as high-frequency heart rate variability. Vagal recovery moderated the association between age and EF (β = .811, p = .004). Secondary analyses revealed that older participants (aged 65-86) with faster vagal recovery had superior EF compared to their peers who had slower vagal recovery. In contrast, among younger (aged 35-54) and middle-aged (aged 55-64) participants, vagal recovery was not associated with EF. We conclude that faster vagal recovery from cognitive challenge is associated with reduced deficits in EF among older, but not younger individuals. PMID:26303063

  16. Vagal Recovery From Cognitive Challenge Moderates Age-Related Deficits in Executive Functioning

    PubMed Central

    Crowley, Olga V.; Kimhy, David; McKinley, Paula S.; Burg, Matthew M.; Schwartz, Joseph E.; Lachman, Margie E.; Tun, Patricia A.; Ryff, Carol D.; Seeman, Teresa E.; Sloan, Richard P.

    2015-01-01

    Decline in executive functioning (EF) is a hallmark of cognitive aging. We have previously reported that faster vagal recovery from cognitive challenge is associated with better EF. This study examined the association between vagal recovery from cognitive challenge and age-related differences in EF among 817 participants in the Midlife in the U.S. study (aged 35–86). Cardiac vagal control was measured as high-frequency heart rate variability. Vagal recovery moderated the association between age and EF (β = .811, p = .004). Secondary analyses revealed that older participants (aged 65–86) with faster vagal recovery had superior EF compared to their peers who had slower vagal recovery. In contrast, among younger (aged 35–54) and middle-aged (aged 55–64) participants, vagal recovery was not associated with EF. We conclude that faster vagal recovery from cognitive challenge is associated with reduced deficits in EF among older, but not younger individuals. PMID:26303063

  17. Age-related deficit in a bimanual joint position matching task is amplitude dependent

    PubMed Central

    Boisgontier, Matthieu P.; Swinnen, Stephan P.

    2015-01-01

    The cognitive load associated with joint position sense increases with age but does not necessarily result in impaired performance in a joint position matching task. It is still unclear which factors interact with age to predict matching performance. To test whether movement amplitude and direction are part of such predictors, young and older adults performed a bimanual wrist joint position matching task. Results revealed an age-related deficit when the target limb was positioned far from (25°) the neutral position, but not when close to (15°, 5°) the neutral joint position, irrespective of the direction. These results suggest that the difficulty associated with the comparison of two musculoskeletal states increases towards extreme joint amplitude and that older adults are more vulnerable to this increased difficulty. PMID:26347649

  18. Age-related deficit accumulation and the risk of late-life dementia

    PubMed Central

    2014-01-01

    Introduction Many age-related health problems have been associated with dementia, leading to the hypothesis that late-life dementia may be determined less by specific risk factors, and more by the operation of multiple health deficits in the aggregate. Our study addressed (a) how the predictive value of dementia risk varies by the number of deficits considered and (b) how traditional (for example. vascular risks) and nontraditional risk factors (for example, foot problems, nasal congestion) compare in their predictive effects. Methods Older adults in the Canadian Study of Health and Aging who were cognitively healthy at baseline were analyzed (men, 2,902; women, 4,337). Over a 10-year period, 44.8% of men and 33.4% of women died; 7.4% of men and 9.1% of women without baseline cognitive impairment developed dementia. Self-rated health problems, including, but not restricted to, dementia risk factors, were coded as deficit present/absent. Different numbers of randomly selected variables were used to calculate various iterations of the index (that is, the proportion of deficits present in an individual. Risks for 10-year mortality and dementia outcomes were evaluated separately for men and women by using logistic regression, adjusted for age. The prediction accuracy was evaluated by using C-statistics. Results Age-adjusted odds ratios per additional deficit were 1.22 (95% confidence interval (CI), 1.18 to 1.26) in men and 1.14 (1.11 to 1.16) in women in relation to death, and 1.18 (1.12 to 1.25) in men and 1.08 (1.04 to 1.11) in women in relation to dementia. The predictive value increased with the number (n) of deficits considered, regardless of whether they were known dementia risks, and stabilized at n > 25. The all-factor index best predicted dementia (C-statistics, 0.67 ± 0.03). Conclusions The variety of items associated with dementias suggests that some part of the risk might relate more to aberrant repair processes, than to specifically toxic results

  19. Age-related deficits in generation and manipulation of mental images: II. The role of dorsolateral prefrontal cortex.

    PubMed

    Raz, N; Briggs, S D; Marks, W; Acker, J D

    1999-09-01

    The authors investigated neural substrates of age-related declines in mental imagery. Healthy adult participants (ages 19 to 77) performed a series of visual-spatial mental imagery tasks that varied in apparent difficulty and involved stimuli of varying graphic complexity. The volumes of the dorsolateral frontal cortex (DLPFC) and posterior visual processing areas were estimated from magnetic resonance imaging scans. The volume of the DLPFC and the fusiform cortex, working-memory capacity, and performance on the tasks involving image generation and manipulation were significantly reduced with age. Further analyses suggested that age-related deficits in performance on mental imagery tasks may stem in part from age-related shrinkage of the prefrontal cortex and age-related declines in working memory but not from age-related slowing of sensorimotor reaction time. The volume of cortical regions associated with modality-specific visual information processing did not show a consistent relationship with specific mental imagery processes. PMID:10509698

  20. Proactive interference and concurrent inhibitory processes do not differentially affect item and associative recognition: Implication for the age-related associative memory deficit.

    PubMed

    Guez, Jonathan; Naveh-Benjamin, Moshe

    2016-09-01

    Previous studies have suggested an associative deficit hypothesis [Naveh-Benjamin, M. ( 2000 ). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1170-1187] to explain age-related episodic memory declines. The hypothesis attributes part of the deficient episodic memory performance in older adults to a difficulty in creating and retrieving cohesive episodes. In this article, we further evaluate this hypothesis by testing two alternative processes that potentially mediate associative memory deficits in older adults. Four experiments are presented that assess whether failure of inhibitory processes (proactive interference in Experiments 1 and 2), and concurrent inhibition (in Experiments 3 and 4) are mediating factors in age-related associative deficits. The results suggest that creating conditions that require the operation of inhibitory processes, or that interfere with such processes, cannot simulate associative memory deficit in older adults. Instead, such results support the idea that associative memory deficits reflect a unique binding failure in older adults. This failure seems to be independent of other cognitive processes, including inhibitory and other resource-demanding processes. PMID:26230249

  1. How age-related strategy switching deficits affect wayfinding in complex environments.

    PubMed

    Harris, Mathew A; Wolbers, Thomas

    2014-05-01

    Although most research on navigation in aging focuses on allocentric processing deficits, impaired strategy switching may also contribute to navigational decline. Using a specifically designed task involving navigating a town-like virtual environment, we assessed the ability of young and old participants to switch from following learned routes to finding novel shortcuts. We found large age differences in the length of routes taken during testing and in use of shortcuts, as, while nearly all young participants switched from the egocentric route-following strategy to the allocentric wayfinding strategy, none of the older participants stably switched. Although secondary tasks confirmed that older participants were impaired both at strategy switching and allocentric processing, the difficulty in using shortcuts was selectively related to impaired strategy switching. This may in turn relate to dysfunction of the prefrontal-noradrenergic network responsible for coordinating switching behavior. We conclude that the large age difference in performance at the shortcutting task demonstrates for the first time, how strategy switching deficits can have a severe impact on navigation in aging. PMID:24239438

  2. Age-related changes in learning across early childhood: a new imitation task.

    PubMed

    Dickerson, Kelly; Gerhardstein, Peter; Zack, Elizabeth; Barr, Rachel

    2013-11-01

    Imitation plays a critical role in social and cognitive development, but the social learning mechanisms contributing to the development of imitation are not well understood. We developed a new imitation task designed to examine social learning mechanisms across the early childhood period. The new task involves assembly of abstract-shaped puzzle pieces in an arbitrary sequence on a magnet board. Additionally, we introduce a new scoring system that extends traditional goal-directed imitation scoring to include measures of both children's success at copying gestures (sliding the puzzle pieces) and goals (connecting the puzzle pieces). In Experiment 1, we demonstrated an age-invariant baseline from 1.5 to 3.5 years of age, accompanied by age-related changes in success at copying goals and gestures from a live demonstrator. In Experiment 2, we applied our new task to learning following a video demonstration. Imitation performance in the video demonstration group lagged behind that of the live demonstration group, showing a protracted video deficit effect. Across both experiments, children were more likely to copy gestures at earlier ages, suggesting mimicry, and only later copy both goals and gestures, suggesting imitation. Taken together, the findings suggest that different social learning strategies may predominate in imitation learning dependent upon the degree of object affordance, task novelty, and task complexity. PMID:22786801

  3. Fruits, Nuts, and Brain Aging: Nutritional Interventions Targeting Age-Related Neuronal and Behavioral Deficits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By the year 2050, 30% of the total population of the US will be over 65 years of age. As the aged population expands, the economic burden of care and treatment of those with age-related health disorders also increases, necessitating the immediate implementation of therapeutics to prevent or even rev...

  4. An age-related deficit in spatial-feature reference memory in homing pigeons (Columba livia).

    PubMed

    Coppola, Vincent J; Flaim, Mary E; Carney, Samantha N; Bingman, Verner P

    2015-03-01

    Age-related memory decline in mammals has been well documented. By contrast, very little is known about memory decline in birds as they age. In the current study we trained younger and older homing pigeons on a reference memory task in which a goal location could be encoded by spatial and feature cues. Consistent with a previous working memory study, the results revealed impaired acquisition of combined spatial-feature reference memory in older compared to younger pigeons. Following memory acquisition, we used cue-conflict probe trials to provide an initial assessment of possible age-related differences in cue preference. Both younger and older pigeons displayed a similarly modest preference for feature over spatial cues. PMID:25449841

  5. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits.

    PubMed

    Ward, Andrew M; Mormino, Elizabeth C; Huijbers, Willem; Schultz, Aaron P; Hedden, Trey; Sperling, Reisa A

    2015-01-01

    Advanced aging negatively impacts memory performance. Brain aging has been associated with shrinkage in medial temporal lobe structures essential for memory--including hippocampus and entorhinal cortex--and with deficits in default-mode network connectivity. Yet, whether and how these imaging markers are relevant to age-related memory deficits remains a topic of debate. Using a sample of 182 older (age 74.6 ± 6.2 years) and 66 young (age 22.2 ± 3.6 years) participants, this study examined relationships among memory performance, hippocampus volume, entorhinal cortex thickness, and default-mode network connectivity across aging. All imaging markers and memory were significantly different between young and older groups. Each imaging marker significantly mediated the relationship between age and memory performance and collectively accounted for most of the variance in age-related memory performance. Within older participants, default-mode connectivity and hippocampus volume were independently associated with memory. Structural equation modeling of cross-sectional data within older participants suggest that entorhinal thinning may occur before reduced default-mode connectivity and hippocampal volume loss, which in turn lead to deficits in memory performance. PMID:25113793

  6. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors.

    PubMed

    Luo, Yi; Zhou, Jun; Li, Ming-Xing; Wu, Peng-Fei; Hu, Zhuang-Li; Ni, Lan; Jin, You; Chen, Jian-Guo; Wang, Fang

    2015-04-01

    Aging-related emotional memory deficit is a well-known complication in Alzheimer's disease and normal aging. However, little is known about its molecular mechanism. To address this issue, we examined the role of norepinephrine (NE) and its relevant drug desipramine in the regulation of hippocampal long-term potentiation (LTP), surface expression of AMPA receptor, and associative fear memory in rats. We found that there was a defective regulation of NE content and AMPA receptor trafficking during fear conditioning, which were accompanied by impaired emotional memory and LTP in aged rats. Furthermore, we also found that the exogenous upregulation of NE ameliorated the impairment of LTP and emotional memory via enhancing AMPA receptor trafficking in aged rats, and the downregulation of NE impaired LTP in adult rats. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory in aged rats. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in aging rats and suggest that desipramine is a potential candidate for treating aging-related emotional memory deficit. PMID:25564942

  7. Integrative and semantic relations equally alleviate age-related associative memory deficits.

    PubMed

    Badham, Stephen P; Estes, Zachary; Maylor, Elizabeth A

    2012-03-01

    Two experiments compared effects of integrative and semantic relations between pairs of words on lexical and memory processes in old age. Integrative relations occur when two dissimilar and unassociated words are linked together to form a coherent phrase (e.g., horse-doctor). In Experiment 1, older adults completed a lexical-decision task where prime and target words were related either integratively or semantically. The two types of relation both facilitated responses compared to a baseline condition, demonstrating that priming can occur in older adults with minimal preexisting associations between primes and targets. In Experiment 2, young and older adults completed a cued recall task with integrative, semantic, and unrelated word pairs. Both integrative and semantic pairs showed significantly smaller age differences in associative memory compared to unrelated pairs. Integrative relations facilitated older adults' memory to a similar extent as semantic relations despite having few preexisting associations in memory. Integratability of stimuli is therefore a new factor that reduces associative deficits in older adults, most likely by supporting encoding and retrieval mechanisms. PMID:21639644

  8. Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP

    PubMed Central

    Distrutti, Eleonora; O’Reilly, Julie-Ann; McDonald, Claire; Cipriani, Sabrina; Renga, Barbara; Lynch, Marina A.; Fiorucci, Stefano

    2014-01-01

    The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut–brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function. PMID:25202975

  9. Age-related deficits in voluntary control over saccadic eye movements: consideration of electrical brain stimulation as a therapeutic strategy.

    PubMed

    Chen, Po Ling; Machado, Liana

    2016-05-01

    Sudden changes in our visual environment trigger reflexive eye movements, so automatically they often go unnoticed. Consequently, voluntary control over reflexive eye movements entails considerable effort. In relation to frontal-lobe deterioration, adult aging adversely impacts voluntary saccadic eye movement control in particular, which compromises effective performance of daily activities. Here, we review the nature of age-related changes in saccadic control, focusing primarily on the antisaccade task because of its assessment of 2 key age-sensitive control functions: reflexive saccade inhibition and voluntary saccade generation. With an ultimate view toward facilitating development of therapeutic strategies, we systematically review the neuroanatomy underpinning voluntary control over saccadic eye movements and natural mechanisms that kick in to compensate for age-related declines. We then explore the potential of noninvasive electrical brain stimulation to counteract aging deficits. Based on evidence that anodal transcranial direct current stimulation can confer a range of benefits specifically relevant to aging brains, we put forward this neuromodulation technique as a therapeutic strategy for improving voluntary saccadic eye movement control in older adults. PMID:27103518

  10. Age-related deficits in low-level inhibitory motor control.

    PubMed

    Schlaghecken, Friederike; Birak, Kulbir S; Maylor, Elizabeth A

    2011-12-01

    Inhibitory control functions in old age were investigated with the "masked prime" paradigm in which participants executed speeded manual choice responses to simple visual targets. These were preceded--either immediately or at some earlier time--by a backward-masked prime. Young adults produced positive compatibility effects (PCEs)--faster and more accurate responses for matching than for nonmatching prime-target pairs--when prime and target immediately followed each other, and the reverse effect (negative compatibility effect, NCE) for targets that followed the prime after a short interval. Older adults produced similar PCEs to young adults, indicating intact low-level motor activation, but failed to produce normal NCEs even with longer delays (Experiment 1), increased opportunity for prime processing (Experiment 2), and prolonged learning (Experiment 3). However, a fine-grained analysis of each individual's time course of masked priming effects revealed NCEs in the majority of older adults, of the same magnitude as those of young adults. These were significantly delayed (even more than expected on the basis of general slowing), indicating a disproportionate impairment of low-level inhibitory motor control in old age. PMID:21604886

  11. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults

    PubMed Central

    King, Bradley R.; Fogel, Stuart M.; Albouy, Geneviève; Doyon, Julien

    2013-01-01

    As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning. PMID:23616757

  12. Student journals: a means of assessing transformative learning in aging related courses.

    PubMed

    Cohen, Adrienne L; Pitman Brown, Pamela; Morales, Justin P

    2015-01-01

    In courses where topics are sensitive or even considered taboo for discussion, it can be difficult to assess students' deeper learning. In addition, incorporating a wide variety of students' values and beliefs, designing instructional strategies and including varied assessments adds to the difficulty. Journal entries or response notebooks can highlight reflection upon others' viewpoints, class readings, and additional materials. These are useful across all educational levels in deep learning and comprehension strategies assessments. Journaling meshes with transformative learning constructs, allowing for critical self-reflection essential to transformation. Qualitative analysis of journals in a death and dying class reveals three transformative themes: awareness of others, questioning, and comfort. Students' journal entries demonstrate transformative learning via communication with others through increased knowledge/exposure to others' experiences and comparing/contrasting others' personal beliefs with their own. Using transformative learning within gerontology and geriatrics education, as well as other disciplined aging-related courses is discussed. PMID:25386895

  13. Age-related deficits in selective attention during encoding increase demands on episodic reconstruction during context retrieval: An ERP study.

    PubMed

    James, Taylor; Strunk, Jonathan; Arndt, Jason; Duarte, Audrey

    2016-06-01

    Previous event-related potential (ERP) and neuroimaging evidence suggests that directing attention toward single item-context associations compared to intra-item features at encoding improves context memory performance and reduces demands on strategic retrieval operations in young and older adults. In everyday situations, however, there are multiple event features competing for our attention. It is not currently known how selectively attending to one contextual feature while attempting to ignore another influences context memory performance and the processes that support successful retrieval in the young and old. We investigated this issue in the current ERP study. Young and older participants studied pictures of objects in the presence of two contextual features: a color and a scene, and their attention was directed to the object's relationship with one of those contexts. Participants made context memory decisions for both attended and unattended contexts and rated their confidence in those decisions. Behavioral results showed that while both groups were generally successful in applying selective attention during context encoding, older adults were less confident in their context memory decisions for attended features and showed greater dependence in context memory accuracy for attended and unattended contextual features (i.e., hyper-binding). ERP results were largely consistent between age groups but older adults showed a more pronounced late posterior negativity (LPN) implicated in episodic reconstruction processes. We conclude that age-related suppression deficits during encoding result in reduced selectivity in context memory, thereby increasing subsequent demands on episodic reconstruction processes when sought after details are not readily retrieved. PMID:27094851

  14. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status.

    PubMed

    D'Angelo, Maria C; Smith, Victoria M; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A; Barense, Morgan D; Ryan, Jennifer D

    2016-11-01

    Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals' failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA. PMID:27049878

  15. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status

    PubMed Central

    D’Angelo, Maria C.; Smith, Victoria M.; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A.; Barense, Morgan D.; Ryan, Jennifer D.

    2016-01-01

    ABSTRACT Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals’ failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA. PMID:27049878

  16. Event Simultaneity Does Not Eliminate Age Deficits in Implicit Probabilistic Sequence Learning

    PubMed Central

    Forman-Alberti, Alissa B.; Seaman, Kendra L.; Howard, Darlene V.; Howard, James H.

    2016-01-01

    Recent studies have shown age-related deficits in learning subtle probabilistic sequential relationships. However, virtually all sequence learning studies have displayed successive events one at a time. Here we used a modified Triplets Learning Task to investigate if an age deficit occurs even when sequentially-presented predictive events remain in view simultaneously. Twelve young and 12 old adults observed two cue events and responded to a target event on each of a series of trials. All three events remained in view until the subject responded. Unbeknownst to participants, the first cue predicted 1 of 4 targets on 80% of the trials. Learning was indicated by faster and more accurate responding to these high-probability targets than to low-probability targets. Results revealed age deficits in sequence learning even with this simultaneous display, suggesting that age differences are not due solely to general processing declines, but rather reflect an age-related deficit in associative learning. PMID:25622473

  17. The effect of normal aging and age-related macular degeneration on perceptual learning.

    PubMed

    Astle, Andrew T; Blighe, Alan J; Webb, Ben S; McGraw, Paul V

    2015-01-01

    We investigated whether perceptual learning could be used to improve peripheral word identification speed. The relationship between the magnitude of learning and age was established in normal participants to determine whether perceptual learning effects are age invariant. We then investigated whether training could lead to improvements in patients with age-related macular degeneration (AMD). Twenty-eight participants with normal vision and five participants with AMD trained on a word identification task. They were required to identify three-letter words, presented 10° from fixation. To standardize crowding across each of the letters that made up the word, words were flanked laterally by randomly chosen letters. Word identification performance was measured psychophysically using a staircase procedure. Significant improvements in peripheral word identification speed were demonstrated following training (71% ± 18%). Initial task performance was correlated with age, with older participants having poorer performance. However, older adults learned more rapidly such that, following training, they reached the same level of performance as their younger counterparts. As a function of number of trials completed, patients with AMD learned at an equivalent rate as age-matched participants with normal vision. Improvements in word identification speed were maintained at least 6 months after training. We have demonstrated that temporal aspects of word recognition can be improved in peripheral vision with training across a range of ages and these learned improvements are relatively enduring. However, training targeted at other bottlenecks to peripheral reading ability, such as visual crowding, may need to be incorporated to optimize this approach. PMID:26605694

  18. The effect of normal aging and age-related macular degeneration on perceptual learning

    PubMed Central

    Astle, Andrew T.; Blighe, Alan J.; Webb, Ben S.; McGraw, Paul V.

    2015-01-01

    We investigated whether perceptual learning could be used to improve peripheral word identification speed. The relationship between the magnitude of learning and age was established in normal participants to determine whether perceptual learning effects are age invariant. We then investigated whether training could lead to improvements in patients with age-related macular degeneration (AMD). Twenty-eight participants with normal vision and five participants with AMD trained on a word identification task. They were required to identify three-letter words, presented 10° from fixation. To standardize crowding across each of the letters that made up the word, words were flanked laterally by randomly chosen letters. Word identification performance was measured psychophysically using a staircase procedure. Significant improvements in peripheral word identification speed were demonstrated following training (71% ± 18%). Initial task performance was correlated with age, with older participants having poorer performance. However, older adults learned more rapidly such that, following training, they reached the same level of performance as their younger counterparts. As a function of number of trials completed, patients with AMD learned at an equivalent rate as age-matched participants with normal vision. Improvements in word identification speed were maintained at least 6 months after training. We have demonstrated that temporal aspects of word recognition can be improved in peripheral vision with training across a range of ages and these learned improvements are relatively enduring. However, training targeted at other bottlenecks to peripheral reading ability, such as visual crowding, may need to be incorporated to optimize this approach. PMID:26605694

  19. A Mid-Life Vitamin A Supplementation Prevents Age-Related Spatial Memory Deficits and Hippocampal Neurogenesis Alterations through CRABP-I

    PubMed Central

    Touyarot, Katia; Bonhomme, Damien; Roux, Pascale; Alfos, Serge; Lafenêtre, Pauline; Richard, Emmanuel; Higueret, Paul; Pallet, Véronique

    2013-01-01

    Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions. PMID:23977218

  20. Auditory Perceptual Learning in Adults with and without Age-Related Hearing Loss

    PubMed Central

    Karawani, Hanin; Bitan, Tali; Attias, Joseph; Banai, Karen

    2016-01-01

    Introduction : Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL). Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL. Methods : Fifty-six listeners (60–72 y/o), 35 participants with ARHL, and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training, and no-training group). Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1) Speech-in-noise, (2) time compressed speech, and (3) competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results : Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions : ARHL did not preclude auditory perceptual learning but there was little generalization to

  1. Automated age-related macular degeneration classification in OCT using unsupervised feature learning

    NASA Astrophysics Data System (ADS)

    Venhuizen, Freerk G.; van Ginneken, Bram; Bloemen, Bart; van Grinsven, Mark J. J. P.; Philipsen, Rick; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I.

    2015-03-01

    Age-related Macular Degeneration (AMD) is a common eye disorder with high prevalence in elderly people. The disease mainly affects the central part of the retina, and could ultimately lead to permanent vision loss. Optical Coherence Tomography (OCT) is becoming the standard imaging modality in diagnosis of AMD and the assessment of its progression. However, the evaluation of the obtained volumetric scan is time consuming, expensive and the signs of early AMD are easy to miss. In this paper we propose a classification method to automatically distinguish AMD patients from healthy subjects with high accuracy. The method is based on an unsupervised feature learning approach, and processes the complete image without the need for an accurate pre-segmentation of the retina. The method can be divided in two steps: an unsupervised clustering stage that extracts a set of small descriptive image patches from the training data, and a supervised training stage that uses these patches to create a patch occurrence histogram for every image on which a random forest classifier is trained. Experiments using 384 volume scans show that the proposed method is capable of identifying AMD patients with high accuracy, obtaining an area under the Receiver Operating Curve of 0:984. Our method allows for a quick and reliable assessment of the presence of AMD pathology in OCT volume scans without the need for accurate layer segmentation algorithms.

  2. Hyperactivity in the Gunn rat model of neonatal jaundice: age-related attenuation and emergence of gait deficits

    PubMed Central

    Stanford, John A.; Shuler, Jeffrey M.; Fowler, Stephen C.; Stanford, Kimberly G.; Ma, Delin; Bittel, Douglas C.; Le Pichon, Jean-Baptiste; Shapiro, Steven M.

    2014-01-01

    Background Neonatal jaundice resulting from elevated unconjugated bilirubin (UCB) occurs in 60–80% of newborn infants. Although mild jaundice is generally considered harmless, little is known about its long-term consequences. Recent studies have linked mild bilirubin-induced neurological dysfunction (BIND) with a range of neurological syndromes, including attention deficit-hyperactivity disorder. The goal of this study was to measure BIND across the lifespan in the Gunn rat model of BIND. Methods Using a sensitive force plate actometer, we measured locomotor activity and gait in jaundiced (jj) Gunn rats versus their non-jaundiced (Nj) littermates. Data were analyzed for young adult (3–4 months), early middle-aged (9–10 months), and late middle-aged (17–20 months) male rats. Results jj rats exhibited lower body weights at all ages and a hyperactivity that resolved at 17–20 months of age. Increased propulsive force and gait velocity accompanied hyperactivity during locomotor bouts at 9–10 months in jj rats. Stride length did not differ between the two groups at this age. Hyperactivity normalized and gait deficits, including decreased stride length, propulsive force, and gait velocity, emerged in the 17–20-month-old jj rats. Conclusions These results demonstrate that, in aging, hyperactivity decreases with the onset of gait deficits in the Gunn rat model of BIND. PMID:25518009

  3. Age-Related Differences in the Relation between Motivation to Learn and Transfer of Training in Adult Continuing Education

    ERIC Educational Resources Information Center

    Gegenfurtner, Andreas; Vauras, Marja

    2012-01-01

    This meta-analysis (k = 38, N = 6977) examined age-related differences in the relation between motivation to learn and transfer of training, using data derived from the literature on adult continuing education of the past 25 years. Based on socioemotional selectivity theory, a lifespan approach to expectancy theory, and research on interest and…

  4. Aging-related 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurochemial and behavioral deficits and redox dysfunction: improvement by AK-7.

    PubMed

    Guan, Qiang; Wang, Meihua; Chen, Hanqing; Yang, Liu; Yan, Zhiqiang; Wang, Xijin

    2016-09-01

    Aging is a prominent risk factor for the occurrence and progression of Parkinson disease (PD). Aging animals are more significant for PD research than young ones. It is promising to develop effective treatments for PD through modulation of aging-related molecules. Sirtuin 2 (SIRT2), a strong deacetylase highly expressed in the brain, has been implicated in the aging process. In our present study, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 12mg/kg once daily) was observed to bring about significant behavioral deficits and striatal dopamine depletion in aging male and female mice, while it did not do so in young animals. MPTP did not cause significant reduction in striatal 5-hydroxytryptamine content in aging male and female mice. Furthermore, we observed that MPTP treatment resulted in significant reduction in GSH content and significant increase in MDA content and SIRT2 expression in the substantia nigra (SN) of aging mice, while it did not do so in young animals. Importantly, we observed that AK-7 (a selective SIRT2 inhibitor) significantly improved behavior abnormality and neurochemical deficits in aging male and female mice treated with MPTP. Significant increase in GSH content and significant decrease in MDA content were also observed in the SN of aging male and female mice co-treated with MPTP and AK-7 compared with the MPTP-treated animals. Our results indicated that MPTP induce aging-related neurochemical and behavioural deficits and dysfunction of redox network in male and female mice and AK-7 may be neuroprotective in PD through modulating redox network. PMID:27235848

  5. Tocotrienol improves learning and memory deficit of aged rats

    PubMed Central

    Kaneai, Nozomi; Sumitani, Kazumi; Fukui, Koji; Koike, Taisuke; Takatsu, Hirokatsu; Urano, Shiro

    2016-01-01

    To define whether tocotrienol (T-3) improves cognitive deficit during aging, effect of T-3 on learning and memory functions of aged rats was assessed. It was found that T-3 markedly counteracts the decline in learning and memory function in aged rats. Quantitative analysis of T-3 content in the rat brain showed that the aged rats fed T-3 mixture-supplemented diet revealed the transport of α- and γ-T-3 to the brain. In contrast, normal young rats fed the same diet did not exhibit brain localization. Furthermore, the T-3 inhibited age-related decreases in the expression of certain blood brain barrier (BBB) proteins, including caludin-5, occludin and junctional adhesion molecule (JAM). It was found that the activation of the cellular proto-oncogene c-Src and extracellular signal-regulated protein kinase (ERK), in the mitogen-activated protein kinase (MAPK) cell signaling pathway for neuronal cell death, was markedly inhibited by T-3. These results may reveal that aging induces partial BBB disruption caused by oxidative stress, thereby enabling the transport of T-3 through the BBB to the central nervous system, whereupon neuronal protection may be mediated by inhibition of c-Src and/or ERK activation, resulting in an improvement in age-related cognitive deficits. PMID:27013777

  6. Tocotrienol improves learning and memory deficit of aged rats.

    PubMed

    Kaneai, Nozomi; Sumitani, Kazumi; Fukui, Koji; Koike, Taisuke; Takatsu, Hirokatsu; Urano, Shiro

    2016-03-01

    To define whether tocotrienol (T-3) improves cognitive deficit during aging, effect of T-3 on learning and memory functions of aged rats was assessed. It was found that T-3 markedly counteracts the decline in learning and memory function in aged rats. Quantitative analysis of T-3 content in the rat brain showed that the aged rats fed T-3 mixture-supplemented diet revealed the transport of α- and γ-T-3 to the brain. In contrast, normal young rats fed the same diet did not exhibit brain localization. Furthermore, the T-3 inhibited age-related decreases in the expression of certain blood brain barrier (BBB) proteins, including caludin-5, occludin and junctional adhesion molecule (JAM). It was found that the activation of the cellular proto-oncogene c-Src and extracellular signal-regulated protein kinase (ERK), in the mitogen-activated protein kinase (MAPK) cell signaling pathway for neuronal cell death, was markedly inhibited by T-3. These results may reveal that aging induces partial BBB disruption caused by oxidative stress, thereby enabling the transport of T-3 through the BBB to the central nervous system, whereupon neuronal protection may be mediated by inhibition of c-Src and/or ERK activation, resulting in an improvement in age-related cognitive deficits. PMID:27013777

  7. Age-Related Differences in Foreign Language Learning. Revisiting the Empirical Evidence

    ERIC Educational Resources Information Center

    Munoz, Carmen

    2008-01-01

    This paper focuses on the effects of age on second language learning, specifically in foreign language settings. It begins by pointing out that the effects of learners' initial age of learning in foreign language learning settings are partially different from those in naturalistic language learning settings and, furthermore, that studies in the…

  8. Long-term caloric restriction in mice may prevent age-related learning impairment via suppression of apoptosis.

    PubMed

    Ma, Lina; Wang, Rong; Dong, Wen; Li, Yun; Xu, Baolei; Zhang, Jingshuang; Zhao, Zhiwei

    2016-12-15

    Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. However, the underlying mechanisms have not yet been clearly defined. Therefore, we aimed to identify the underlying mechanisms of long-term CR on age-related learning impairment in C57/BL mice. Thirty six-week-old male C57/BL mice were randomly divided into three groups: normal control group (NC group, n=10), high energy group (HE group, n=10), and CR group (n=10). After 10 months, the Morris water maze test was performed to monitor learning abilities. Western blotting, immunohistochemistry and real-time polymerase chain reaction were used to monitor changes in protein and mRNA levels associated with apoptosis-related proteins in the hippocampus. The average escape latency was lower in the CR group compared with the NC group, and the average time taken to first cross the platform in the CR group was significantly shorter than the HE group. Both Bcl-2 protein and mRNA expression levels in the CR group were significantly higher than those of the NC group and HE group. The expression of Bax, Caspase-3 and PARP protein in the CR group was significantly lower than the NC group. Our findings demonstrate that long-term CR may prevent age-related learning impairments via suppressing apoptosis in mice. PMID:27452805

  9. Maternal inflammation linearly exacerbates offspring age-related changes of spatial learning and memory, and neurobiology until senectitude.

    PubMed

    Li, Xue-Wei; Cao, Lei; Wang, Fang; Yang, Qi-Gang; Tong, Jing-Jing; Li, Xue-Yan; Chen, Gui-Hai

    2016-06-01

    Maternal inflammation during pregnancy can elevate the risk of neurodegenerative disorders in offspring. However, how it affects age-related impairments of spatial learning and memory and changes in the neurobiological indictors in the offspring in later adulthood is still elusive. In this study, the CD-1 mice with maternal gestational inflammation due to receiving lipopolysaccharide (LPS, i.p. 50 or 25μg/kg) were divided into 3-, 12-, 18-, and 22-month-old groups. The spatial learning and memory were evaluated using a six-radial arm water maze and the levels of presynaptic proteins (synaptotagmin-1 and syntaxin-1) and histone acetylation (H3K9ac and H4K8ac) in the dorsal hippocampus were detected using the immunohistochemical method. The results indicated that there were significant age-related impairments of spatial learning and memory, decreased levels of H4K8ac, H3K9ac, and syntaxin-1, and increased levels of synaptotagmin-1 in the offspring mice from 12 months old to 22 months old compared to the same-age controls. Maternal LPS treatment significantly exacerbated the offspring impairments of spatial learning and memory, the reduction of H3K9ac, H4K8ac, and syntaxin-1, and the increment of synaptotagmin-1 from 12 months old to 22 months old compared to the same-age control groups. The changes in the neurobiological indicators significantly correlated with the impairments of spatial learning and memory. Furthermore, this correlation, besides the age and LPS-treatment effects, also showed a dose-dependent effect. Our results suggest that maternal inflammation during pregnancy could exacerbate age-related impairments of spatial learning and memory, and neurobiochemical indicators in the offspring CD-1 mice from midlife to senectitude. PMID:26992827

  10. Difference Not Deficit: Reconceptualizing Mathematical Learning Disabilities

    ERIC Educational Resources Information Center

    Lewis, Katherine E.

    2014-01-01

    Mathematical learning disability (MLD) research often conflates low achievement with disabilities and focuses exclusively on deficits of students with MLDs. In this study, the author adopts an alternative approach using a response-to-intervention MLD classification model to identify the resources students draw on rather than the skills they lack.…

  11. Are There Age-Related Differences in the Ability to Learn Configural Responses?

    PubMed

    Clark, Rachel; Freedberg, Michael; Hazeltine, Eliot; Voss, Michelle W

    2015-01-01

    Age is often associated with a decline in cognitive abilities that are important for maintaining functional independence, such as learning new skills. Many forms of motor learning appear to be relatively well preserved with age, while learning tasks that involve associative binding tend to be negatively affected. The current study aimed to determine whether age differences exist on a configural response learning task, which includes aspects of motor learning and associative binding. Young (M = 24 years) and older adults (M = 66.5 years) completed a modified version of a configural learning task. Given the requirement of associative binding in the configural relationships between responses, we predicted older adults would show significantly less learning than young adults. Older adults demonstrated lower performance (slower reaction time and lower accuracy). However, contrary to our prediction, older adults showed similar rates of learning as indexed by a configural learning score compared to young adults. These results suggest that the ability to acquire knowledge incidentally about configural response relationships is largely unaffected by cognitive aging. The configural response learning task provides insight into the task demands that constrain learning abilities in older adults. PMID:26317773

  12. Age-related changes in deterministic learning from positive versus negative performance feedback.

    PubMed

    van de Vijver, Irene; Ridderinkhof, K Richard; de Wit, Sanne

    2015-01-01

    Feedback-based learning declines with age. Because older adults are generally biased toward positive information ("positivity effect"), learning from positive feedback may be less impaired than learning from negative outcomes. The literature documents mixed results, due possibly to variability between studies in task design. In the current series of studies, we investigated the influence of feedback valence on reinforcement learning in young and older adults. We used nonprobabilistic learning tasks, to more systematically study the effects of feedback magnitude, learning of stimulus-response (S-R) versus stimulus-outcome (S-O) associations, and working-memory capacity. In most experiments, older adults benefitted more from positive than negative feedback, but only with large feedback magnitudes. Positivity effects were pronounced for S-O learning, whereas S-R learning correlated with working-memory capacity in both age groups. These results underline the context dependence of positivity effects in learning and suggest that older adults focus on high gains when these are informative for behavior. PMID:25761598

  13. Age-related changes in the cerebral substrates of cognitive procedural learning.

    PubMed

    Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2009-04-01

    Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative, and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus, and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, the engagement of frontal and cingulate regions persisted in the older group as learning continued, whereas it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. PMID:18537110

  14. Age-related changes in the cerebral substrates of cognitive procedural learning

    PubMed Central

    Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2009-01-01

    Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, whereas the engagement of frontal and cingulate regions persisted in the older group as learning continued, it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. PMID:18537110

  15. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis

    PubMed Central

    Baehr, Leslie M.; West, Daniel W.D.; Marcotte, George; Marshall, Andrea G.; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C.

    2016-01-01

    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. PMID:26826670

  16. Ageing-Related Experiences of Adults with Learning Disability Resident in Rural Areas: One Australian Perspective

    ERIC Educational Resources Information Center

    Wark, Stuart; Canon-Vanry, Miranda; Ryan, Peta; Hussain, Rafat; Knox, Marie; Edwards, Meaghan; Parmenter, Marie; Parmenter, Trevor; Janicki, Matthew; Leggatt-Cook, Chez

    2015-01-01

    Background: Access to support services in rural areas is known to be problematic both in Australia, and in other countries around the world, but the majority of research on the population of people ageing with learning disability has so far focussed on metropolitan residents. The authors report about select aspects of the lived experience of older…

  17. Age related-changes in the neural basis of self-generation in verbal paired associate learning.

    PubMed

    Vannest, Jennifer; Maloney, Thomas; Kay, Benjamin; Siegel, Miriam; Allendorfer, Jane B; Banks, Christi; Altaye, Mekibib; Szaflarski, Jerzy P

    2015-01-01

    Verbal information is better retained when it is self-generated rather than when it is received passively. The application of self-generation procedures has been found to improve memory in healthy elderly and in individuals with impaired cognition. Overall, the available studies support the notion that active participation in verbal encoding engages memory mechanisms that supplement those used during passive observation. Thus, the objective of this study was to investigate the age-related changes in the neural mechanisms involved in the encoding of paired-associates using a self-generation method that has been shown to improve memory performance across the lifespan. Subjects were 113 healthy right-handed adults (Edinburgh Handedness Inventory >50; 67 females) ages 18-76, native speakers of English with no history of neurological or psychiatric disorders. Subjects underwent fMRI at 3 T while performing didactic learning ("read") or self-generation learning ("generate") of 30 word pairs per condition. After fMRI, recognition memory for the second word in each pair was evaluated outside of the scanner. On the post-fMRI testing more "generate" words were correctly recognized than "read" words (p < 0.001) with older adults recognizing the "generated" words less accurately (p < 0.05). Independent component analysis of fMRI data identified task-related brain networks. Several components were positively correlated with the task reflecting multiple cognitive processes involved in self-generated encoding; other components correlated negatively with the task, including components of the default-mode network. Overall, memory performance on generated words decreased with age, but the benefit from self-generation remained consistently significant across ages. Independent component analysis of the neuroimaging data revealed an extensive set of components engaged in self-generation learning compared with didactic learning, and identified areas that were associated with age-related

  18. Age related-changes in the neural basis of self-generation in verbal paired associate learning

    PubMed Central

    Vannest, Jennifer; Maloney, Thomas; Kay, Benjamin; Siegel, Miriam; Allendorfer, Jane B.; Banks, Christi; Altaye, Mekibib; Szaflarski, Jerzy P.

    2015-01-01

    Verbal information is better retained when it is self-generated rather than when it is received passively. The application of self-generation procedures has been found to improve memory in healthy elderly and in individuals with impaired cognition. Overall, the available studies support the notion that active participation in verbal encoding engages memory mechanisms that supplement those used during passive observation. Thus, the objective of this study was to investigate the age-related changes in the neural mechanisms involved in the encoding of paired-associates using a self-generation method that has been shown to improve memory performance across the lifespan. Subjects were 113 healthy right-handed adults (Edinburgh Handedness Inventory >50; 67 females) ages 18–76, native speakers of English with no history of neurological or psychiatric disorders. Subjects underwent fMRI at 3 T while performing didactic learning (“read”) or self-generation learning (“generate”) of 30 word pairs per condition. After fMRI, recognition memory for the second word in each pair was evaluated outside of the scanner. On the post-fMRI testing more “generate” words were correctly recognized than “read” words (p < 0.001) with older adults recognizing the “generated” words less accurately (p < 0.05). Independent component analysis of fMRI data identified task-related brain networks. Several components were positively correlated with the task reflecting multiple cognitive processes involved in self-generated encoding; other components correlated negatively with the task, including components of the default-mode network. Overall, memory performance on generated words decreased with age, but the benefit from self-generation remained consistently significant across ages. Independent component analysis of the neuroimaging data revealed an extensive set of components engaged in self-generation learning compared with didactic learning, and identified areas that were

  19. Age-Related Differences in Associative Learning of Landmarks and Heading Directions in a Virtual Navigation Task

    PubMed Central

    Zhong, Jimmy Y.; Moffat, Scott D.

    2016-01-01

    Previous studies have showed that spatial memory declines with age but have not clarified the relevance of different landmark cues for specifying heading directions among different age groups. This study examined differences between younger, middle-aged and older adults in route learning and memory tasks after they navigated a virtual maze that contained: (a) critical landmarks that were located at decision points (i.e., intersections) and (b) non-critical landmarks that were located at non-decision points (i.e., the sides of the route). Participants were given a recognition memory test for critical and non-critical landmarks and also given a landmark-direction associative learning task. Compared to younger adults, older adults committed more navigation errors during route learning and were poorer at associating the correct heading directions with both critical and non-critical landmarks. Notably, older adults exhibited a landmark-direction associative memory deficit at decision points; this was the first finding to show that an associative memory deficit exist among older adults in a navigational context for landmarks that are pertinent for reaching a goal, and suggest that older adults may expend more cognitive resources on the encoding of landmark/object features than on the binding of landmark and directional information. This study is also the first to show that older adults did not have a tendency to process non-critical landmarks, which were regarded as distractors/irrelevant cues for specifying the directions to reach the goal, to an equivalent or larger extent than younger adults. We explain this finding in view of the low number of non-critical cues in our virtual maze (relative to a real-world urban environment) that might not have evoked older adults’ usual tendency toward processing or encoding distractors. We explain the age differences in navigational and cognitive performance with regards to functional and structural changes in the hippocampus and

  20. Age-Related Differences in Associative Learning of Landmarks and Heading Directions in a Virtual Navigation Task.

    PubMed

    Zhong, Jimmy Y; Moffat, Scott D

    2016-01-01

    Previous studies have showed that spatial memory declines with age but have not clarified the relevance of different landmark cues for specifying heading directions among different age groups. This study examined differences between younger, middle-aged and older adults in route learning and memory tasks after they navigated a virtual maze that contained: (a) critical landmarks that were located at decision points (i.e., intersections) and (b) non-critical landmarks that were located at non-decision points (i.e., the sides of the route). Participants were given a recognition memory test for critical and non-critical landmarks and also given a landmark-direction associative learning task. Compared to younger adults, older adults committed more navigation errors during route learning and were poorer at associating the correct heading directions with both critical and non-critical landmarks. Notably, older adults exhibited a landmark-direction associative memory deficit at decision points; this was the first finding to show that an associative memory deficit exist among older adults in a navigational context for landmarks that are pertinent for reaching a goal, and suggest that older adults may expend more cognitive resources on the encoding of landmark/object features than on the binding of landmark and directional information. This study is also the first to show that older adults did not have a tendency to process non-critical landmarks, which were regarded as distractors/irrelevant cues for specifying the directions to reach the goal, to an equivalent or larger extent than younger adults. We explain this finding in view of the low number of non-critical cues in our virtual maze (relative to a real-world urban environment) that might not have evoked older adults' usual tendency toward processing or encoding distractors. We explain the age differences in navigational and cognitive performance with regards to functional and structural changes in the hippocampus and

  1. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    PubMed

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  2. Psychosocial and Adaptive Deficits Associated with Learning Disability Subtypes

    ERIC Educational Resources Information Center

    Backenson, Erica M.; Holland, Sara C.; Kubas, Hanna A.; Fitzer, Kim R.; Wilcox, Gabrielle; Carmichael, Jessica A.; Fraccaro, Rebecca L.; Smith, Amanda D.; Macoun, Sarah J.; Harrison, Gina L.; Hale, James B.

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent…

  3. Attentiion Deficits in Hyperactive and Learning-Disabled Children.

    ERIC Educational Resources Information Center

    Pelham, William E.

    1981-01-01

    Research findings on the attention of learning disabled (LD) and hyperactive students are reviewed, with the focus upon three aspects: alertness, selection, and capacity. The author suggests that the connection between attentional deficits and hyperactivity is stronger than that between attention deficits and LD. (CL)

  4. ESTROGENS AND AGE-RELATED MEMORY DECLINE IN RODENTS: WHAT HAVE WE LEARNED AND WHERE DO WE GO FROM HERE?

    PubMed Central

    Frick, Karyn M.

    2009-01-01

    The question of whether ovarian hormone therapy can prevent or reduce age-related memory decline in menopausal women has been the subject of much recent debate. Although numerous studies have demonstrated a beneficial effect of estrogen and/or progestin therapy for certain types of memory in menopausal women, recent clinical trials suggest that such therapy actually increases the risk of cognitive decline and dementia. Because rodent models have been frequently used to examine the effects of age and/or ovarian hormone deficiency on mnemonic function, rodent models of age-related hormone and memory decline may be useful in helping to resolve this issue. This review will focus on evidence suggesting that estradiol modulates memory, particularly hippocampal-dependent memory, in young and aging female rats and mice. Various factors affecting the mnemonic response to estradiol in aging females will be highlighted to illustrate the complications inherent to studies of estrogen therapy in aging females. Avenues for future development of estradiol-based therapies will also be discussed, and it is argued that an approach to drug development based on identifying the molecular mechanisms underlying estrogenic modulation of memory may lead to promising future treatments for reducing age-related mnemonic decline. PMID:18835561

  5. Age-related Decline in Kv3.1b Expression in the Mouse Auditory Brainstem Correlates with Functional Deficits in the Medial Olivocochlear Efferent System

    PubMed Central

    Zhu, Xiaoxia; O’Neill, William E.; Frisina, Robert D.

    2007-01-01

    Kv3.1b channel protein is widely distributed in the mammalian auditory brainstem, but studies have focused mainly on regions critical for temporal processing, including the medial nucleus of the trapezoid body (MNTB) and anteroventral cochlear nucleus (AVCN). Because temporal processing declines with age, this study was undertaken to determine if the expression of Kv3.1b likewise declines, and if changes are specific to these nuclei. Immunocytochemistry using an anti-Kv3.1b antibody was performed, and the relative optical density of cells and neuropil was determined from CBA/CaJ mice of four age groups. Declines in expression in AVCN, MNTB, and lateral superior olive (35, 26, and 23%) were found, but changes were limited to neuropil. Interestingly, cellular optical density declines were found in superior paraolivary nucleus, ventral nucleus of the trapezoid body, and lateral nucleus of the trapezoid body (24, 29, and 26%), which comprise the medial olivocochlear (MOC) feedback system. All declines occurred by middle age (15 months old). No age-related changes were found in the remaining regions of cochlear nucleus or in the inferior colliculus. Contralateral suppression of distortion-product otoacoustic emission amplitudes of age-matched littermates also declined by middle age, suggesting a correlation between Kv3.1 expression and MOC function. In search of more direct evidence for such a correlation, Kv3.1b knockout mice were examined. Knockouts show poor MOC function as compared to +/+ and +/− genotypes. Thus, Kv3.1b expression declines in MOC neurons by middle age, and these changes appear to correlate with functional declines in efferent activity in both middle-aged CBA mice and Kv3.1b knockout mice. PMID:17453307

  6. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    PubMed

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits. PMID:25359175

  7. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    PubMed

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity. PMID:25156204

  8. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity

    PubMed Central

    Foster, Thomas C.

    2012-01-01

    In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca2+) regulation and Ca2+-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca2+ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca2+ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging. PMID:22307057

  9. Psychosocial and Adaptive Deficits Associated With Learning Disability Subtypes.

    PubMed

    Backenson, Erica M; Holland, Sara C; Kubas, Hanna A; Fitzer, Kim R; Wilcox, Gabrielle; Carmichael, Jessica A; Fraccaro, Rebecca L; Smith, Amanda D; Macoun, Sarah J; Harrison, Gina L; Hale, James B

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent comprehensive evaluations for learning and/or behavior problems in two Pacific Northwest school districts. Using concordance-discordance model (C-DM) processing strengths and weaknesses SLD identification criteria, results revealed working memory SLD (n = 20), processing speed SLD (n = 30), executive SLD (n = 32), and no disability groups (n = 41). Of the SLD subtypes, repeated measures MANOVA results revealed the processing speed SLD subtype exhibited the greatest psychosocial and adaptive impairment according to teacher behavior ratings. Findings suggest processing speed deficits may be behind the cognitive and psychosocial disturbances found in what has been termed "nonverbal" SLD. Limitations, implications, and future research needs are addressed. PMID:24300589

  10. Implicit learning deficits among adults with developmental dyslexia.

    PubMed

    Kahta, Shani; Schiff, Rachel

    2016-07-01

    The aim of the present study was to investigate implicit learning processes among adults with developmental dyslexia (DD) using a visual linguistic artificial grammar learning (AGL) task. Specifically, it was designed to explore whether the intact learning reported in previous studies would also occur under conditions including minimal training and instructions that do not reveal the grammatical nature of the strings. Twenty-nine (14 DD and 15 typical development (TD)) adults were presented with letter sequences in the training phase and were asked to classify the test strings for their grammaticality. The results of the d' measures in the implicit task indicated that learning had occurred for both groups, as the proportion of hits exceeded the proportion of false alarms. However, a significant difference was found between the groups in their learning measures, as TD readers performed significantly better than individuals with DD, supporting the assumption of a deficit in implicit sequential learning processes among individuals with DD. In order to examine whether the deficit found in the first experiment was indeed due to a deficit in implicit processes, a second experiment was designed in which explicit instructions were given during an AGL task. Results of the explicit task strengthen the assumption that the deficit is indeed specific to implicit sequential processes, as no difference between the groups was found when participants were aware of the existence of the grammar underlying the strings. Theoretical and clinical implications are discussed. PMID:26864577

  11. Age-Related Wayfinding Differences in Real Large-Scale Environments: Detrimental Motor Control Effects during Spatial Learning Are Mediated by Executive Decline?

    PubMed Central

    Taillade, Mathieu; Sauzéon, Hélène; Arvind Pala, Prashant; Déjos, Marie; Larrue, Florian; Gross, Christian; N’Kaoua, Bernard

    2013-01-01

    The aim of this study was to evaluate motor control activity (active vs. passive condition) with regards to wayfinding and spatial learning difficulties in large-scale spaces for older adults. We compared virtual reality (VR)-based wayfinding and spatial memory (survey and route knowledge) performances between 30 younger and 30 older adults. A significant effect of age was obtained on the wayfinding performances but not on the spatial memory performances. Specifically, the active condition deteriorated the survey measure in all of the participants and increased the age-related differences in the wayfinding performances. Importantly, the age-related differences in the wayfinding performances, after an active condition, were further mediated by the executive measures. All of the results relative to a detrimental effect of motor activity are discussed in terms of a dual task effect as well as executive decline associated with aging. PMID:23843992

  12. The Best Time to Acquire New Skills: Age-Related Differences in Implicit Sequence Learning across the Human Lifespan

    ERIC Educational Resources Information Center

    Janacsek, Karolina; Fiser, Jozsef; Nemeth, Dezso

    2012-01-01

    Implicit skill learning underlies obtaining not only motor, but also cognitive and social skills through the life of an individual. Yet, the ontogenetic changes in humans' implicit learning abilities have not yet been characterized, and, thus, their role in acquiring new knowledge efficiently during development is unknown. We investigated such…

  13. Word Learning Deficit among Chinese Dyslexic Children

    ERIC Educational Resources Information Center

    Ho, Connie Suk-Han; Chan, David W.; Tsang, Suk-Man; Lee, Suk-Han; Chung, Kevin K. H.

    2006-01-01

    The present study examined word learning difficulties in Chinese dyslexic children, readers of a nonalphabetic script. A total of 105 Hong Kong Chinese children were recruited and divided into three groups: Dyslexic (mean age 8;8), CA control (mean age 8;9), and RL control (mean age 6;11). They were given a word learning task and a familiar word…

  14. Spatial Learning Deficits in Adult Children of Alcoholic Parents.

    ERIC Educational Resources Information Center

    Schandler, Steven L.; And Others

    1991-01-01

    Investigated whether visuospatial deficits displayed by chronic alcoholics are present in persons at risk for alcoholism. Compared 17 social drinkers who were children of alcoholics and 17 who had no family alcoholism history. Visuospatial learning of children of alcoholics was significantly poorer than that of subjects with no family alcoholism…

  15. Relationship between Learning Problems and Attention Deficit in Childhood

    ERIC Educational Resources Information Center

    Ponde, Milena Pereira; Cruz-Freire, Antonio Carlos; Silveira, Andre Almeida

    2012-01-01

    Objective: To assess the impact of attention deficit on learning problems in a sample of schoolchildren in the city of Salvador, Bahia, Brazil. Method: All students enrolled in selected elementary schools were included in this study, making a total of 774 children. Each child was assessed by his or her teacher using a standardized scale. "The…

  16. Age-Related Benefits of Digital Noise Reduction for Short-Term Word Learning in Children with Hearing Loss

    ERIC Educational Resources Information Center

    Pittman, Andrea

    2011-01-01

    Purpose: To determine the rate of word learning for children with hearing loss (HL) in quiet and in noise compared to normal-hearing (NH) peers. The effects of digital noise reduction (DNR) were examined for children with HL. Method: Forty-one children with NH and 26 children with HL were grouped by age (8-9 years and 11-12 years). The children…

  17. Career Development Needs among College and University Students with Learning Disabilities and Attention Deficit Disorder/Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Hennessey, Mary L.; Rumrill, Phillip D., Jr.; Roessler, Richard T.; Cook, Bryan G.

    2006-01-01

    The purpose of this study was to (a) examine the employment and career development concerns of postsecondary students with learning disabilities and Attention Deficit Disorder (ADD) or Attention Deficit/Hyperactivity Disorder (AD/HD) and (b) develop strategies for improving their post-graduation employment outcomes. Employing an established…

  18. Motor Skill Learning, Retention, and Control Deficits in Parkinson's Disease

    PubMed Central

    Pendt, Lisa Katharina; Reuter, Iris; Müller, Hermann

    2011-01-01

    Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance. PMID:21760898

  19. Do children with developmental dyslexia have an implicit learning deficit?

    PubMed Central

    Vicari, S; Finzi, A; Menghini, D; Marotta, L; Baldi, S; Petrosini, L

    2005-01-01

    Objective: The purpose of this study was to investigate the effects of specific types of tasks on the efficiency of implicit procedural learning in the presence of developmental dyslexia (DD). Methods: Sixteen children with DD (mean (SD) age 11.6 (1.4) years) and 16 matched normal reader controls (mean age 11.4 (1.9) years) were administered two tests (the Serial Reaction Time test and the Mirror Drawing test) in which implicit knowledge was gradually acquired across multiple trials. Although both tests analyse implicit learning abilities, they tap different competencies. The Serial Reaction Time test requires the development of sequential learning and little (if any) procedural learning, whereas the Mirror Drawing test involves fast and repetitive processing of visuospatial stimuli but no acquisition of sequences. Results: The children with DD were impaired on both implicit learning tasks, suggesting that the learning deficit observed in dyslexia does not depend on the material to be learned (with or without motor sequence of response action) but on the implicit nature of the learning that characterises the tasks. Conclusion: Individuals with DD have impaired implicit procedural learning. PMID:16170083

  20. Extinction learning deficit in a rodent model of attention-deficit hyperactivity disorder

    PubMed Central

    2012-01-01

    Background Deficient operant extinction has been hypothesized to be constitutive of ADHD dysfunction. In order to elucidate the behavioral mechanisms underlying this deficit, the performance of an animal model of ADHD, the spontaneously hypertensive rat (SHR), was compared against the performance of a control strain, the Wistar-Kyoto rat (WKY) during extinction. Method Following extensive training of lever pressing under variable interval schedules of food reinforcement (reported previously), SHR and WKY rats were exposed to two sessions of extinction training. Extinction data was analyzed using the Dynamic Bi-Exponential Refractory Model (DBERM) of operant performance. DBERM assumes that operant responses are organized in bouts separated by pauses; during extinction, bouts may decline across multiple dimensions, including frequency and length. DBERM parameters were estimated using hierarchical Bayesian modeling. Results SHR responded more than WKY during the first extinction session. DBERM parameter estimates revealed that, at the onset of extinction, SHR produced more response bouts than WKY. Over the course of extinction, response bouts progressively shortened for WKY but not for SHR. Conclusions Based on prior findings on the sensitivity of DBERM parameters to motivational and schedule manipulations, present data suggests that (1) more frequent response bouts in SHR are likely related to greater incentive motivation, and (2) the persistent length of bouts in SHR are likely related to a slower updating of the response-outcome association. Overall, these findings suggest specific motivational and learning deficits that may explain ADHD-related impairments in operant performance. PMID:23237608

  1. Neurodevelopmental Characteristics of Children with Learning Impairments Classified According to the Double-Deficit Hypothesis

    ERIC Educational Resources Information Center

    Waber, Deborah P.; Forbes, Peter W.; Wolff, Peter H.; Weiler, Michael D.

    2004-01-01

    The double-deficit model has been examined primarily in relation to reading. We investigated whether children classified according to the double-deficit model would exhibit differences in other neuropsychological domains. Children referred for learning problems (N = 188), ages 7 to 11, were classified by double-deficit subtype. Only three of the…

  2. β-Amyloid infusion results in delayed and age-dependent learning deficits without role of inflammation or β-amyloid deposits

    PubMed Central

    Malm, Tarja; Ort, Michael; Tähtivaara, Leena; Jukarainen, Niko; Goldsteins, Gundars; Puoliväli, Jukka; Nurmi, Antti; Pussinen, Raimo; Ahtoniemi, Toni; Miettinen, Taina-Kaisa; Kanninen, Katja; Leskinen, Suvi; Vartiainen, Nina; Yrjänheikki, Juha; Laatikainen, Reino; Harris-White, Marni E.; Koistinaho, Milla; Frautschy, Sally A.; Bures, Jan; Koistinaho, Jari

    2006-01-01

    β-Amyloid (Aβ) polypeptide plays a critical role in the pathogenesis of Alzheimer's disease (AD), which is characterized by progressive decline of cognitive functions, formation of Aβ deposits and neurofibrillary tangles, and loss of neurons. Increased genetic production or direct intracerebral administration of Aβ in animal models results in Aβ deposition, gliosis, and impaired cognitive functions. Whether aging renders the brain prone to Aβ and whether inflammation is required for Aβ-induced learning deficits is unclear. We show that intraventricular infusion of Aβ1–42 results in learning deficits in 9-month-old but not 2.5-month-old mice. Deficits that become detectable 12 weeks after the infusion are associated with a slight reduction in Cu,Zn superoxide dismutase activity but do not correlate with Aβ deposition and are not associated with gliosis. In rats, Aβ infusion induced learning deficits that were detectable 6 months after the infusion. Approximately 20% of the Aβ immunoreactivity in rats was associated with astrocytes. NMR spectrum analysis of the animals cerebrospinal fluid revealed a strong reduction trend in several metabolites in Aβ-infused rats, including lactate and myo-inositol, supporting the idea of dysfunctional astrocytes. Even a subtle increase in brain Aβ1–42 concentration may disrupt normal metabolism of astrocytes, resulting in altered neuronal functions and age-related development of learning deficits independent of Aβ deposition and inflammation. PMID:16723396

  3. Administration of donepezil does not rescue galanin-induced spatial learning deficits.

    PubMed

    Sabbagh, Jonathan J; Heaney, Chelcie F; Bolton, Monica M; Murtishaw, Andrew S; Ure, Jennifer A; Kinney, Jefferson W

    2012-12-01

    The neuropeptide galanin inhibits the evoked release of several neurotransmitters including acetylcholine and modulates adenylate cyclase (AC) activity. Galanin has also been established to impair various forms of learning and memory in rodents. However, whether galanin produces learning deficits by inhibiting cholinergic activity or decreasing AC function has not been clearly established. The current study investigated if donepezil, an acetylcholinesterase inhibitor utilized in Alzheimer's disease, could rescue galanin-induced Morris water task deficits in rats. The results demonstrated that donepezil did not alter the previously established deficits induced by galanin. These findings suggest that galanin-mediated spatial learning deficits may be unrelated to its modulation of the cholinergic system. PMID:22897394

  4. Age-Related Macular Degeneration

    MedlinePlus

    ... this page please turn Javascript on. Age-related Macular Degeneration What is AMD? Click for more information Age-related macular degeneration, ... the macula allows you to see fine detail. AMD Blurs Central Vision AMD blurs the sharp central ...

  5. Controversial approaches to treating learning disabilities and attention deficit disorder.

    PubMed

    Silver, L B

    1986-10-01

    It is estimated that between 3% and 7% of children and adolescents in this country--up to 4 million--are learning disabled. Of this group, about 20% also have attention deficit disorder. Many professionals in multiple disciplines have proposed treatment approaches. When research has been done to support the approach, the reports and data may be published in journals not normally read by the practicing physician. When research data are not available, the information may be in a popular book, newspapers, or lay magazines or on television. Thus, parents may know of ideas and suggestions before the professional in clinical practice. These acceptable and controversial approaches to treatment are reviewed. It is understandable that a parent would seek out improved ways of helping his or her child. I reviewed the significant literature in an effort to assist the practicing physician in providing appropriate parental guidance and clinical interventions. PMID:2875647

  6. Stability of computational deficits in math learning disability from second through fifth grades.

    PubMed

    Chong, Suet Ling; Siegel, Linda S

    2008-01-01

    This study utilized growth modeling to investigate the stability of two computational deficits that are strongly associated with math learning disability (MLD)-procedural deficits and fact fluency deficits. Math "deficit" was defined in two ways-having scores in the lower 10th percentile (MLD) and between the 11th and 25th percentiles (LA, low achieving). The longitudinal sample was composed of 214 children. Between the second and fifth grades, children who started at grade 2 with procedural deficits showed more rapid growth in procedural skills than typically achieving (TA) children. The procedural deficits group was able to narrow the initial gap in procedural skills and catch up with their normal peers. In contrast, children who started at grade 2 with fact fluency deficits showed the same growth in fact fluency skills as TA children. The fact fluency deficits group maintained their initial gap and was not able to catch up. This pattern of results held for both the MLD and LA criteria. Fact fluency deficits are more stable in the elementary years. Further results showed that fact fluency deficits may be associated with more pervasive and persistent cognitive deficits than procedural deficits. The fact fluency group showed persistent cognitive deficits in working memory, processing speed, and phonological processing, from grades 2-5. The group with procedural deficits at grade 2 showed persistent deficits in working memory and processing speed, but closed the gap in phonological skills. In addition, only the MLD procedural deficits group showed these cognitive deficits; the LA group was no different than the typical achievers. The present results support the hypothesis that fact fluency deficits and procedural deficits are dissociable and may represent distinct subgroups of MLD. PMID:18473201

  7. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; McEwen, J. J.; Rabin, B. M.; Joseph, J. A.

    2000-01-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  8. Auditory processing deficits among language-learning disordered children and adults

    NASA Astrophysics Data System (ADS)

    Wayland, Ratree; Lombardino, Linda

    2003-10-01

    It has been estimated that approximately 5%-9% of school-aged children in the United States are diagnosed with some kind of learning disorders. Moreover, previous research has established that many of these children exhibited perceptual deficits in response to auditory stimuli, suggesting that an auditory perceptual deficit may underlie their learning disabilities. The goal of this research is to examine the ability to auditorily process speech and nonspeech stimuli among language-learning disabled (LLD) children and adults. The two questions that will be addressed in this study are: (a) Are there subtypes of LLD children/adults based on their auditory processing deficit, and (b) Is there any relationship between types of auditory processing deficits and types of language deficits as measured by a battery of psychoeducational tests.

  9. Allocentric spatial learning and memory deficits in Down syndrome.

    PubMed

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  10. Allocentric spatial learning and memory deficits in Down syndrome

    PubMed Central

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  11. Macular degeneration - age-related

    MedlinePlus

    Age-related macular degeneration (ARMD); AMD ... distorted and wavy. There may be a small dark spot in the center of your vision that ... leafy vegetables, may also decrease your risk of age-related macular degeneration. If you have wet AMD, ...

  12. Age-Related Declines in General Cognitive Abilities of Balb/C Mice and General Activity Are Associated with Disparities in Working Memory, Body Weight, and General Activity

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Grossman, Henya; Light, Kenneth; Townsend, David; Kolata, Stefan

    2008-01-01

    A defining characteristic of age-related cognitive decline is a deficit in general cognitive performance. Here we use a testing and analysis regimen that allows us to characterize the general learning abilities of young (3-5 mo old) and aged (19-21 mo old) male and female Balb/C mice. Animals' performance was assessed on a battery of seven diverse…

  13. Identifying learning disabilities through a cognitive deficit framework: can verbal memory deficits explain similarities between learning disabled and low achieving students?

    PubMed

    Callinan, Sarah; Theiler, Stephen; Cunningham, Everarda

    2015-01-01

    Traditionally, students with learning disabilities (LD) have been identified using an aptitude-achievement discrepancy or response to intervention approach. As profiles of the cognitive deficits of discrepancy-defined students with LD have already been developed using these approaches, these deficits can in turn be used to identify LD using the discrepancy approach as a benchmark for convergent validity. Australian Grade 3 (N = 172) students were administered cognitive processing tests to ascertain whether scores in these tests could accurately allocate students into discrepancy-defined groups using discriminant function analysis. Results showed that 77% to 82% of students could be correctly allocated into LD, low achievement, and regular achievement groups using only measures of phonological processing, rapid naming, and verbal memory. Furthermore, verbal memory deficits were found, along with phonological processing and rapid naming deficits, in students that would be designated as low achieving by the discrepancy method. Because a significant discrepancy or lack of response to intervention is a result of cognitive deficits rather than the other way around, it is argued that LD should be identified via cognitive deficits. PMID:23886581

  14. Glutamatergic treatment strategies for age-related memory disorders.

    PubMed

    Müller, W E; Scheuer, K; Stoll, S

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7997073

  15. Social Skills Deficits as Primary Learning Disabilities: A Note on Problems with the ICLD Diagnostic Criteria.

    ERIC Educational Resources Information Center

    Forness, Steven R.; Kavale, Kenneth A.

    1991-01-01

    The Interagency Committee on Learning Disabilities' definition of learning disabilities implies that the presence of social skills deficits alone suffices for diagnosis, even in the absence of academic difficulties. Overlaps between this criterion and eligibility criteria for emotional disturbance are discussed along with implications for…

  16. The Readiness of Adults with Attention Deficit Hyperactivity Disorder for Self-Directed Learning

    ERIC Educational Resources Information Center

    Wright, Melissa Sue

    2011-01-01

    This study investigated the readiness for self-directed learning of adults with Attention Deficit Hyperactivity Disorder (ADHD), as well as their overall educational experiences. Using Guglielmino's Self-Directed Learning Readiness Scale for Adults (SDLRS-A), the researcher investigated whether the following factors were significantly related to…

  17. Sequence-Specific Procedural Learning Deficits in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Hsu, Hsinjen Julie; Bishop, Dorothy V. M.

    2014-01-01

    This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger…

  18. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy. PMID:25715554

  19. Online and Blended Learning: The Advantages and the Challenges for Students with Learning Disabilities and Attention Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Madaus, Joseph W.; Banerjee, Manju; McKeown, Kimberly; Gelbar, Nicholas

    2011-01-01

    As students with learning disabilities and attention deficit/hyperactivity disorder (ADHD) participate in postsecondary education, they are likely to encounter a new learning medium that will need to be mastered--online and blended courses. Although many college-aged students have grown up using the Internet and other information technologies,…

  20. Dyslexic children show deficits in implicit sequence learning, but not in explicit sequence learning or contextual cueing.

    PubMed

    Jiménez-Fernández, Gracia; Vaquero, Joaquín M M; Jiménez, Luis; Defior, Sylvia

    2011-06-01

    Dyslexia is a specific learning disability characterized by difficulties with accurate and/or fluent word recognition and by poor spelling abilities. The absence of other high level cognitive deficits in the dyslexic population has led some authors to propose that non-strategical processes like implicit learning could be impaired in this population. Most studies have addressed this issue by using sequence learning tasks, but so far the results have not been conclusive. We test this hypothesis by comparing the performance of dyslexic children and good readers in both implicit and explicit versions of the sequence learning task, as well as in another implicit learning task not involving sequential information. The results showed that dyslexic children failed to learn the sequence when they were not informed about its presence (implicit condition). In contrast, they learned without significant differences in relation to the good readers group when they were encouraged to discover the sequence and to use it in order to improve their performance (explicit condition). Moreover, we observed that this implicit learning deficit was not extended to other forms of non-sequential, implicit learning such as contextual cueing. In this case, both groups showed similar implicit learning about the information provided by the visual context. These results help to clarify previous contradictory data, and they are discussed in relation to how the implicit sequence learning deficit could contribute to the understanding of dyslexia. PMID:21082295

  1. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease

    PubMed Central

    Crosson, Bruce; McGregor, Keith M.; Nocera, Joe R.; Drucker, Jonathan H.; Tran, Stella M.; Butler, Andrew J.

    2015-01-01

    The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered. PMID:26074807

  2. Nicotine attenuates spatial learning deficits induced in the rat by perinatal lead exposure.

    PubMed

    Zhou, Mingfu; Suszkiw, Janusz B

    2004-02-27

    Maternally lead (Pb)-exposed, juvenile rats exhibit significant deficits in spatial reference memory acquisition and working memory performance in the Morris water maze (MWM). Acute systemic application of nicotine reverses these deficits without affecting behavioral performance of the age-matched, lead-unexposed control animals. These results suggest that nicotinic agonist treatments can ameliorate learning and memory impairments, presumably by compensating for deficient nicotinic function in developmentally lead-exposed animals. PMID:14746932

  3. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri.

    PubMed

    Valenzano, Dario R; Terzibasi, Eva; Cattaneo, Antonino; Domenici, Luciano; Cellerino, Alessandro

    2006-06-01

    Temperature variations are known to modulate aging and life-history traits in poikilotherms as different as worms, flies and fish. In invertebrates, temperature affects lifespan by modulating the slope of age-dependent acceleration in death rate, which is thought to reflect the rate of age-related damage accumulation. Here, we studied the effects of temperature on aging kinetics, aging-related behavioural deficits, and age-associated histological markers of senescence in the short-lived fish Nothobranchius furzeri. This species shows a maximum captive lifespan of only 3 months, which is tied with acceleration in growth and expression of aging biomarkers. These biological peculiarities make it a very convenient animal model for testing the effects of experimental manipulations on life-history traits in vertebrates. Here, we show that (i) lowering temperature from 25 degrees C to 22 degrees C increases both median and maximum lifespan; (ii) life extension is due to reduction in the slope of the age-dependent acceleration in death rate; (iii) lowering temperature from 25 degrees C to 22 degrees C retards the onset of age-related locomotor and learning deficits; and (iv) lowering temperature from 25 degrees C to 22 degrees C reduces the accumulation of the age-related marker lipofuscin. We conclude that lowering water temperature is a simple experimental manipulation which retards the rate of age-related damage accumulation in this short-lived species. PMID:16842500

  4. Age-related hearing loss

    MedlinePlus

    ... is no known single cause of age-related hearing loss. Most commonly, it is caused by changes in the inner ear that occur as you grow older. Your genes and loud noise (from rock concerts or music headphones) may play a large role. The following ...

  5. Simulating Category Learning and Set Shifting Deficits in Patients Weight-Restored from Anorexia Nervosa

    PubMed Central

    Filoteo, J. Vincent; Paul, Erick J.; Ashby, F. Gregory; Frank, Guido K.W.; Helie, Sebastien; Rockwell, Roxanne; Bischoff-Grethe, Amanda; Wierenga, Christina; Kaye, Walter H.

    2014-01-01

    Objective To examine set shifting in a group of women previously diagnosed with anorexia nervosa who are now weight-restored (AN-WR) and then apply a biologically-based computational model (Competition between Verbal and Implicit Systems; COVIS) to simulate the pattern of category learning and set shifting performances observed. Method Nineteen AN-WR women and 35 control women (CW) were administered an explicit category learning task that required rule acquisition and then a set shift following a rule change. COVIS was first fit to the behavioral results of the controls and then parameters of the model theoretically relevant to AN were altered to mimic the behavioral results. Results Relative to CW, the AN-WR group displayed steeper learning curves (i.e., hyper learning) prior to the rule shift, but greater difficulty in learning the new categories after the rule shift (i.e., a deficit in set shifting).Hyper learning and set shifting deficits in the AN-WR group were not associated and differentially correlated with clinical measures. Hyper learning in the AN-WR group was simulated by increasing the model parameter that represents sensitivity to negative feedback (δ parameter), whereas the deficit in set shifting was simulated by altering the parameters that represent changes in rule selection and flexibility (λ and γ parameters, respectively). Conclusions These simulations suggest that multiple factors can impact category learning and set shifting in AN-WR individuals (e.g., alterations in sensitivity to negative feedback, rule selection deficits, and inflexibility) and provide an important starting point to further investigate this pervasive deficit in adult AN. PMID:24799291

  6. Low Calorie Diet Affects Aging-Related Factors

    MedlinePlus

    ... Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / Summer 2006 Table of ... project sponsored by the NIH's National Institute on Aging (NIA) to learn more about the effects of ...

  7. Low Calorie Diet Affects Aging-Related Factors

    MedlinePlus

    ... Issue Past Issues Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / Summer ... learn more about the effects of sustained low-calorie diets in humans on factors affecting aging. This ...

  8. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  9. Neuropsychological evaluation of deficits in executive functioning for ADHD children with or without learning disabilities.

    PubMed

    Wu, Kitty K; Anderson, Vicki; Castiello, Umberto

    2002-01-01

    This study investigates multiple aspects of executive functioning in children with attention deficit/hyperactivity disorder (ADHD). These areas include attentional components, impulsiveness, planning, and problem solving. The rationale of the study is based on neurophysiological studies that suggest frontal lobe dysfunction in ADHD. As frontal lobe functioning is related to abilities in executive control, ADHD is hypothesised to be associated with deficits in various areas of executive functioning. The specific effect of comorbidity of learning disability (LD) was also investigated. Eighty-three children with ADHD and 29 age-matched controls (age 7-13) participated in the study. A battery of neuropsychological tests was utilized to evaluate specific deficits in speed of processing, selective attention, switching attention, sustained attention, attentional capacity, impulsiveness, planning and problem solving. Findings indicated that children with ADHD have slower verbal responses and sustained attention deficit. Deficits in selective attention and attentional capacity observed were largely related to the presence of LD. No specific deficit associated with ADHD or the comorbidity of LD was identified in switching attention, impulsiveness, planning, and problem solving. These results revealed that ADHD is not associated with a general deficit in executive functioning. Instead, ADHD is related to a specific deficit in regulation for attentional resources. The importance of isolating the deficit related to LDs for examining the specific deficit associated with ADHD is highlighted. Results also emphasised the importance of isolating the effect of lower level of abilities (e.g., speed of processing) and the utilization of specific definition for the examination of executive functions. PMID:12537336

  10. Insulin-like growth factor 2 rescues aging-related memory loss in rats.

    PubMed

    Steinmetz, Adam B; Johnson, Sarah A; Iannitelli, Dylan E; Pollonini, Gabriella; Alberini, Cristina M

    2016-08-01

    Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments. PMID:27318130

  11. Specific Deficit in Implicit Motor Sequence Learning following Spinal Cord Injury

    PubMed Central

    Bloch, Ayala; Tamir, Dror; Vakil, Eli; Zeilig, Gabi

    2016-01-01

    Background Physical and psychosocial rehabilitation following spinal cord injury (SCI) leans heavily on learning and practicing new skills. However, despite research relating motor sequence learning to spinal cord activity and clinical observations of impeded skill-learning after SCI, implicit procedural learning following spinal cord damage has not been examined. Objective To test the hypothesis that spinal cord injury (SCI) in the absence of concomitant brain injury is associated with a specific implicit motor sequence learning deficit that cannot be explained by depression or impairments in other cognitive measures. Methods Ten participants with SCI in T1-T11, unharmed upper limb motor and sensory functioning, and no concomitant brain injury were compared to ten matched control participants on measures derived from the serial reaction time (SRT) task, which was used to assess implicit motor sequence learning. Explicit generation of the SRT sequence, depression, and additional measures of learning, memory, and intelligence were included to explore the source and specificity of potential learning deficits. Results There was no between-group difference in baseline reaction time, indicating that potential differences between the learning curves of the two groups could not be attributed to an overall reduction in response speed in the SCI group. Unlike controls, the SCI group showed no decline in reaction time over the first six blocks of the SRT task and no advantage for the initially presented sequence over the novel interference sequence. Meanwhile, no group differences were found in explicit learning, depression, or any additional cognitive measures. Conclusions The dissociation between impaired implicit learning and intact declarative memory represents novel empirical evidence of a specific implicit procedural learning deficit following SCI, with broad implications for rehabilitation and adjustment. PMID:27355834

  12. Contributions from specific and general factors to unique deficits: two cases of mathematics learning difficulties

    PubMed Central

    Haase, Vitor G.; Júlio-Costa, Annelise; Lopes-Silva, Júlia B.; Starling-Alves, Isabella; Antunes, Andressa M.; Pinheiro-Chagas, Pedro; Wood, Guilherme

    2014-01-01

    Mathematics learning difficulties are a highly comorbid and heterogeneous set of disorders linked to several dissociable mechanisms and endophenotypes. Two of these endophenotypes consist of primary deficits in number sense and verbal numerical representations. However, currently acknowledged endophenotypes are underspecified regarding the role of automatic vs. controlled information processing, and their description should be complemented. Two children with specific deficits in number sense and verbal numerical representations and normal or above-normal intelligence and preserved visuospatial cognition illustrate this point. Child H.V. exhibited deficits in number sense and fact retrieval. Child G.A. presented severe deficits in orally presented problems and transcoding tasks. A partial confirmation of the two endophenotypes that relate to the number sense and verbal processing was obtained, but a much more clear differentiation between the deficits presented by H.V. and G.A. can be reached by looking at differential impairments in modes of processing. H.V. is notably competent in the use of controlled processing but has problems with more automatic processes, such as nonsymbolic magnitude processing, speeded counting and fact retrieval. In contrast, G.A. can retrieve facts and process nonsymbolic magnitudes but exhibits severe impairment in recruiting executive functions and the concentration that is necessary to accomplish transcoding tasks and word problem solving. These results indicate that typical endophenotypes might be insufficient to describe accurately the deficits that are observed in children with mathematics learning abilities. However, by incorporating domain-specificity and modes of processing into the assessment of the endophenotypes, individual deficit profiles can be much more accurately described. This process calls for further specification of the endophenotypes in mathematics learning difficulties. PMID:24592243

  13. Age-related prefrontal impairments implicate deficient prediction of future reward in older adults.

    PubMed

    Eppinger, Ben; Heekeren, Hauke R; Li, Shu-Chen

    2015-08-01

    Foresighted decision-making depends on the ability to learn the value of future outcomes and the sequential choices necessary to achieve them. Using a 3-stage Markov decision task and functional magnetic resonance imaging, we investigated age differences in the ability to extract state transition structures while learning to predict future reward. In younger adults learning was associated with enhanced activity in the prefrontal cortex (PFC). In older adults (OA) we found no evidence for PFC recruitment. However, high-performing OA showed enhanced striatal activity, suggesting that they may engage in a model-free (experience-based) learning strategy. Change point analyses revealed that in younger adults learning was characterized by distinct and abrupt shifts in PFC activity, which were predictive of behavioral change points. In OA PFC activity was less pronounced and not predictive of behavior. Our findings suggest that age-related impairments in learning future reward value can be attributed to a deficit in extracting sequential state transition structures. This deficit may lead to myopic decisions in OA if contextual information has to be temporally integrated. PMID:26004018

  14. Verbal Deficit in Learning Disabilities: Electrophysiological Evidence for Visuospatial Processing Predominance.

    ERIC Educational Resources Information Center

    Naour, Paul; Martin, Daniel

    Twelve learning disabled (9-12 years old) boys were identified according to special class placement, WISC-R (Wechsler Intelligence Scale for Children-Revised) and performance measures. A group demonstrating a verbal WISC-R deficit was sex- and age-matched with a normal group. Electroencephalograms (EEGs) were collected while these individuals…

  15. MATERNAL HYPOTHYROXENEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN OFFSPRING.

    EPA Science Inventory

    MATERNAL HYPOTHYROXINEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN RAT OFFSPRING. M.E. Gilbert1 and Li Sui2, Neurotoxicology Division, 1US EPA and 2National Research Council, Research Triangle Pk, NC 27711.
    While severe hypothyroidis...

  16. Learning and Memory Impairments in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Andersen, Per N.; Egeland, Jens; Øie, Merete

    2013-01-01

    There are relatively few studies on learning and delayed memory with attention-deficit/hyperactivity disorder (ADHD). The objective of the present study was to examine acquisition, free delayed memory, and recognition skills in medication naive children and adolescents aged 8-16 years with ADHD combined subtype (36 participants) and inattentive…

  17. Fact Retrieval Deficits in Low Achieving Children and Children with Mathematical Learning Disability

    ERIC Educational Resources Information Center

    Geary, David C.; Hoard, Mary K.; Bailey, Drew H.

    2012-01-01

    Using 4 years of mathematics achievement scores, groups of typically achieving children (n = 101) and low achieving children with mild (LA-mild fact retrieval; n = 97) and severe (LA-severe fact retrieval; n = 18) fact retrieval deficits and mathematically learning disabled children (MLD; n = 15) were identified. Multilevel models contrasted…

  18. Enhanced Learning Deficits in Female Rats Following Lifetime Pb Exposure Combined with Prenatal Stress

    PubMed Central

    Cory-Slechta, Deborah A.; Stern, Sander; Weston, Doug; Allen, Joshua L.; Liu, Sue

    2010-01-01

    Pb (lead) exposure and stress are co-occurring risk factors (particularly in low socioeconomic communities) that also act on common biological substrates and produce common adverse outcomes, including cognitive impairments. This study sought to determine whether lifetime Pb exposure combined with prenatal stress would enhance the cognitive deficits independently associated with each of these risk factors and to explore associated mechanisms of any observed impairments. Learning was evaluated using a multiple schedule of repeated learning and performance in female rats subjected to lifetime Pb exposure (0 or 50 ppm Pb in drinking water beginning in dams 2 months prior to breeding; blood Pb levels ∼10 μg/dl), to prenatal restraint stress on gestational days 16 and 17, or to both. Blood Pb, corticosterone levels, brain monoamines, and hippocampal nerve growth factor levels were also measured. Sequence-specific learning deficits produced by Pb, particularly the number of responses to correctly learn response sequences, were further enhanced by stress, whereas performance measures were unimpaired. Statistical analyses indicated significant relationships among corticosterone levels, frontal cortex dopamine (DA), nucleus accumbens dopamine turnover, and total responses required to learn sequences. This study demonstrates that Pb and stress can act together to produce selective and highly condition-dependent deficits in learning in female rats that may be related to glucocorticoid-mediated interactions with mesocorticolimbic regions of brain. These findings also underscore the critical need to evaluate toxicants in the context of other risk factors pertinent to human diseases and disorders. PMID:20639260

  19. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients. PMID:10420956

  20. Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride.

    PubMed

    Jetti, Raghu; Raghuveer, C V; Mallikarjuna, Rao C

    2016-01-01

    Fluoride is present in the ground water, World Health Organization permitted level of fluoride in the ground water is 0.5 ppm. Tooth pastes, mouth washes, tea and sea fish are the sources of fluoride. Exposure to these multiple sources results in several adverse effects in addition to the fluorosis. The present study aimed to test the effect of vitamin C and Ginkgo biloba against the behavioural deficits caused by fluoride. Rats were divided into five groups with six animals in each group (n = 6). Control group received ordinary tap water with 0.5 ppm of fluoride, the remaining groups received 100 ppm of fluoride for 30 days prior to fluoride exposure. Two groups of animals received 100 mg/kg body weight of vitamin C and G. biloba for 15 days prior to fluoride exposure. After 45 days, behavioural studies (T-Maze, passive avoidance) were conducted on the experimental animals. The results of the present study showed no behavioural deficits in the control group of animals however, the rats that received fluoride water exhibited impairment in their spatial learning and memory deficits. The deficits are not marked in the vitamin C and G. biloba groups. To conclude chronic exposure to high levels of fluoride causes severe impairment in the spatial learning and memory, these deficits can be ameliorated with the vitamin C and G. biloba. PMID:24081631

  1. Sequence-specific procedural learning deficits in children with specific language impairment

    PubMed Central

    Hsu, Hsinjen Julie; Bishop, Dorothy VM

    2014-01-01

    This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children’s performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. PMID:24410990

  2. Nootropic drugs have different effects on kindling-induced learning deficits in rats.

    PubMed

    Becker, A; Grecksch, G

    1995-09-01

    Kindling represents an accepted model of human epileptogenesis. Furthermore, it has been demonstrated that kindled rats show a diminished learning performance in an active avoidance task. In our study we administered different nootropic drugs to kindled rats to test their effects on learning a two-way active avoidance task in the shuttle-box. Kindling was induced by repeated intraperitoneal injections of 45 mg kg-1 pentylenetetrazol (PTZ) once every 48 h. The substances vinpocetine (0.1 and 1.0 mg kg-1), methylglucamin orotate (225 and 450 mg kg-1), piracetam (100 mg kg-1), and meclofenoxate (100 mg kg-1) were administered during kindling development and after kindling completion prior to each session in the learning experiment. The nootropic drugs had little if any effect on severity of seizures. Concerning their effect on learning the substances each acted in a specific manner. Methylglucamin orotate enhanced the learning deficit induced by kindling. Meclofenoxate injected prior to the kindling stimulation was ineffective, whereas administration prior to the learning test improved the learning performance effectively. A complementary action was shown in experiments with vinpocetine. Only piracetam prevented the occurrence of kindling-induced learning deficits regardless the administration schedule. PMID:8745340

  3. Learning and memory impairments in children and adolescents with attention-deficit/hyperactivity disorder.

    PubMed

    Andersen, Per N; Egeland, Jens; Øie, Merete

    2013-01-01

    There are relatively few studies on learning and delayed memory with attention-deficit/hyperactivity disorder (ADHD). The objective of the present study was to examine acquisition, free delayed memory, and recognition skills in medication naive children and adolescents aged 8-16 years with ADHD combined subtype (36 participants) and inattentive subtype (45) compared to 50 healthy controls (HC) aged 8-17 years. Learning and delayed memory were assessed with the Hopkins Verbal Learning Test-Revised and the Brief Visuospatial Memory Test-Revised, which have compatible methods of administration, test format, and score ranges. The results showed that children with both ADHD subtypes scored significantly below HC in acquisition, free delayed memory, and recognition, even when controlling for the effect of IQ. Comparing phases in the learning process showed an initial deficit in acquisition but no increase in effect size in subsequent testing of free delayed memory or recognition. The study indicates that learning and delayed memory processes are impaired in both combined and inattentive subtypes of ADHD and that the deficits are not merely an artifact of IQ. The study indicates that emphasis must be put on the acquisition phase and how students with ADHD organize and encode new information. PMID:22392892

  4. Child Abuse: Growth Failure, IQ Deficit, and Learning Disability.

    ERIC Educational Resources Information Center

    Money, John

    1982-01-01

    The author reviews research on early deprivation and neglect and recounts his own experience with children whose dwarfism is attributed to abuse or neglect. The existence of specific learning disability and diminished IQ in many of these children is cited. The author suggests further attention to the problem. (CL)

  5. Vigilance Deficit in Learning Disabled Children: A Signal Detection Analysis.

    ERIC Educational Resources Information Center

    Swanson, Lee

    1981-01-01

    Tested whether learning disabled children start a vigilance task (1) with the same capacity or detectability as nondisabled children but decline as time on task increases; (2) at a lower level of stimulus detectability due to a reduced capacity for information processing but do not decline in attention faster than nondisabled children. (Author/DB)

  6. Overcoming Age-Related Differences

    ERIC Educational Resources Information Center

    Agullo, Gloria Luque

    2006-01-01

    One of the most controversial issues in foreign language (FL) teaching is the age at which language learning should start. Nowadays it is recognized that in second language contexts maturational constraints make an early start advisable, but there is still disagreement regarding the problem of when to start or the best way to learn in foreign…

  7. Bangle (Zingiber purpureum) Improves Spatial Learning, Reduces Deficits in Memory, and Promotes Neurogenesis in the Dentate Gyrus of Senescence-Accelerated Mouse P8.

    PubMed

    Nakai, Megumi; Iizuka, Michiro; Matsui, Nobuaki; Hosogi, Kazuko; Imai, Akiko; Abe, Noriaki; Shiraishi, Hisashi; Hirata, Ayumu; Yagi, Yusuke; Jobu, Kohei; Yokota, Junko; Kato, Eishin; Hosoda, Shinya; Yoshioka, Saburo; Harada, Kenichi; Kubo, Miwa; Fukuyama, Yoshiyasu; Miyamura, Mitsuhiko

    2016-05-01

    Bangle (Zingiber purpureum) is a tropical ginger that is used as a spice in Southeast Asia. Phenylbutenoid dimers isolated from Bangle have exhibited neurotrophic effects in primary cultured rat cortical neurons and PC12 cells. Furthermore, chronic treatment with phenylbutenoid dimers enhances hippocampal neurogenesis in olfactory bulbectomized mice. In this study, we investigated the effects of Bangle extract on behavior and hippocampal neurogenesis in vivo. SAMP8 mice, which are an established model for accelerated aging, with age-related learning and memory impairments, were given a Bangle-containing diet for 1 month, and subsequent behavioral tests and immunohistochemistry for Ki67, a proliferating cell marker, were performed. We found that the Bangle-containing diet improved spatial learning and memory deficits in the Morris water maze and significantly increased the numbers of Ki67-positive cells in the dentate gyrus of the SAMP8 mice. In addition, the Bangle extract exhibited a neurotrophin-like activity as indicated by the induction of neurite sprouting in PC12 cells. Our results suggest that Bangle is beneficial for the prevention of age-related progression of cognitive impairment. PMID:26829513

  8. Biological correlates of learning and attention: what is relevant to learning disability and attention-deficit hyperactivity disorder?

    PubMed

    Denckla, M B

    1996-04-01

    Advances in the related fields of cognitive neuroscience and neuropsychology offer intriguing reformulations of the clinical entities of attention-deficit hyperactivity disorder (ADHD) and learning disabilities (LD). The definition of such terms as attention and learning used in cognitive neuroscience differ from their use in clinical practice and emphasize such processes as intention, working memory, and executive function. Research suggests that neither attention nor long-term memory are the critical cognitive correlates of ADHD or LD. Rather, encoding processes, particularly working memory, are identified as deficiencies for children with these conditions. Furthermore, intention and inhibition appear to be particularly impaired in children with ADHD, who exhibit broader deficits in so-called executive function. Findings from cognitive neuroscience offer explanations of the neuroanatomical and neurophysiological underpinnings of learning problems and the frequent comorbidity of LD and ADHD. PMID:8727849

  9. Novel-word learning deficits in Mandarin-speaking preschool children with specific language impairments.

    PubMed

    Chen, Yuchun; Liu, Huei-Mei

    2014-01-01

    Children with SLI exhibit overall deficits in novel word learning compared to their age-matched peers. However, the manifestation of the word learning difficulty in SLI was not consistent across tasks and the factors affecting the learning performance were not yet determined. Our aim is to examine the extent of word learning difficulties in Mandarin-speaking preschool children with SLI, and to explore the potent influence of existing lexical knowledge on to the word learning process. Preschool children with SLI (n=37) and typical language development (n=33) were exposed to novel words for unfamiliar objects embedded in stories. Word learning tasks including the initial mapping and short-term repetitive learning were designed. Results revealed that Mandarin-speaking preschool children with SLI performed as well as their age-peers in the initial form-meaning mapping task. Their word learning difficulty was only evidently shown in the short-term repetitive learning task under a production demand, and their learning speed was slower than the control group. Children with SLI learned the novel words with a semantic head better in both the initial mapping and repetitive learning tasks. Moderate correlations between stand word learning performances and scores on standardized vocabulary were found after controlling for children's age and nonverbal IQ. The results suggested that the word learning difficulty in children with SLI occurred in the process of establishing a robust phonological representation at the beginning stage of word learning. Also, implicit compound knowledge is applied to aid word learning process for children with and without SLI. We also provide the empirical data to validate the relationship between preschool children's word learning performance and their existing receptive vocabulary ability. PMID:24211792

  10. Age-Related Differences in Incidental Learning.

    ERIC Educational Resources Information Center

    Barrett, Terry R.

    Research has suggested that memory performance may be related to the extent of stimulus processing during acquisition. To examine processing efficiency and processing deficiency differences between younger and older adults, four studies were conducted. In the first study, young and old adults rated word lists, manipulated for generation specific…

  11. Reversal of a trimethyltin-induced learning deficit by desglycinamide-8-arginine vasopressin

    SciTech Connect

    Sparber, S.B.; Cohen, C.A.; Messing, R.B.

    1988-01-01

    Trimethyltin (TMT) is an organometal neurotoxin which produces lesions primarily in the limbic system. Selectivity seems to depend upon the dose, but the hippocampus and related entorhinal cortical structures, of importance for learning and memory, are most often described as target sites. The authors have previously demonstrated that subjects treated with a moderate dose of TMT prior to acquisition sessions, are unable to learn a forward autoshaping task with a 6 sec delay of reinforcement, but are capable of acquiring the same task when no delay of reinforcement is used. These data suggested that the performance deficit is one of learning rather than of memory, retrieval, or sensorimotor impairment. To more rigorously test this hypothesis, we determined if performance of a task already learned would be impaired by the neurotoxin. Adult male Long Evans rats were given 10 acquisition sessions of 24 trials, following which TMT was administered. One month later, these rats performed the lever-touching behavior as well as controls, despite the fact that the same dose of TMT interfered with learning if given one month prior to acquisition sessions, thus confirming our hypothesis. In a second experiment we determined if the peptide analog of vasopressin, desglycinamide-8-arginine vasopressin (DGAVP), could reverse a learning deficit in a population of non-learners. Rats were treated with TMT or water vehicle one month prior to autoshaping. TMT significantly retarded acquisition. 36 references, 2 figures, 1 table.

  12. Neural Correlates of Experience-Induced Deficits in Learned Vocal Communication

    PubMed Central

    George, Isabelle; Alcaix, Sandrine; Henry, Laurence; Richard, Jean-Pierre; Cousillas, Hugo; Hausberger, Martine

    2010-01-01

    Songbirds are one of the few vertebrate groups (including humans) that evolved the ability to learn vocalizations. During song learning, social interactions with adult models are crucial and young songbirds raised without direct contacts with adults typically produce abnormal songs showing phonological and syntactical deficits. This raises the question of what functional representation of their vocalizations such deprived animals develop. Here we show that young starlings that we raised without any direct contact with adults not only failed to differentiate starlings' typical song classes in their vocalizations but also failed to develop differential neural responses to these songs. These deficits appear to be linked to a failure to acquire songs' functions and may provide a model for abnormal development of communicative skills, including speech. PMID:21179492

  13. Temporal Processing Deficits of Language-Learning Impaired Children Ameliorated by Training

    NASA Astrophysics Data System (ADS)

    Merzenich, Michael M.; Jenkins, William M.; Johnston, Paul; Schreiner, Christoph; Miller, Steven L.; Tallal, Paula

    1996-01-01

    Children with language-based learning impairments (LLIs) have major deficits in their recognition of some rapidly successive phonetic elements and nonspeech sound stimuli. In the current study, LLI children were engaged in adaptive training exercises mounted as computer "games" designed to drive improvements in their "temporal processing" skills. With 8 to 16 hours of training during a 20-day period, LLI children improved markedly in their abilities to recognize brief and fast sequences of nonspeech and speech stimuli.

  14. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease.

    PubMed

    Wang, Yunliang; Wang, Yutong; Li, Jinfeng; Hua, Linlin; Han, Bing; Zhang, Yuzhen; Yang, Xiaopeng; Zeng, Zhilei; Bai, Hongying; Yin, Honglei; Lou, Jiyu

    2016-09-01

    Caffeic acid is a type of phenolic acid and organic acid. It is found in food (such as tomatoes, carrots, strawberries, blueberries and wheat), beverages (such as wine, tea, coffee and apple juice) as well as Chinese herbal medicines. In the present study, we examined the effects of caffeic acid on learning deficits in a rat model of Alzheimer's disease (AD). The rats were randomly divided into three groups: i) control group, ii) AD model group and iii) caffeic acid group. Caffeic acid significantly rescued learning deficits and increased cognitive function in the rats with AD as demonstrated by the Morris water maze task. Furthermore, caffeic acid administration resulted in a significant decrease in acetylcholinesterase activity and nitrite generation in the rats with AD compared with the AD model group. Furthermore, caffeic acid suppressed oxidative stress, inflammation, nuclear factor‑κB‑p65 protein expression and caspase‑3 activity as well as regulating the protein expression of p53 and phosphorylated (p-)p38 MAPK expression in the rats with AD. These experimental results indicate that the beneficial effects of caffeic acid on learning deficits in a model of AD were due to the suppression of oxidative stress and inflammation through the p38 MAPK signaling pathway. PMID:27430591

  15. A perceptual learning deficit in Chinese developmental dyslexia as revealed by visual texture discrimination training.

    PubMed

    Wang, Zhengke; Cheng-Lai, Alice; Song, Yan; Cutting, Laurie; Jiang, Yuzheng; Lin, Ou; Meng, Xiangzhi; Zhou, Xiaolin

    2014-08-01

    Learning to read involves discriminating between different written forms and establishing connections with phonology and semantics. This process may be partially built upon visual perceptual learning, during which the ability to process the attributes of visual stimuli progressively improves with practice. The present study investigated to what extent Chinese children with developmental dyslexia have deficits in perceptual learning by using a texture discrimination task, in which participants were asked to discriminate the orientation of target bars. Experiment l demonstrated that, when all of the participants started with the same initial stimulus-to-mask onset asynchrony (SOA) at 300 ms, the threshold SOA, adjusted according to response accuracy for reaching 80% accuracy, did not show a decrement over 5 days of training for children with dyslexia, whereas this threshold SOA steadily decreased over the training for the control group. Experiment 2 used an adaptive procedure to determine the threshold SOA for each participant during training. Results showed that both the group of dyslexia and the control group attained perceptual learning over the sessions in 5 days, although the threshold SOAs were significantly higher for the group of dyslexia than for the control group; moreover, over individual participants, the threshold SOA negatively correlated with their performance in Chinese character recognition. These findings suggest that deficits in visual perceptual processing and learning might, in part, underpin difficulty in reading Chinese. PMID:24643918

  16. Probabilistic Reversal Learning in Schizophrenia: Stability of Deficits and Potential Causal Mechanisms.

    PubMed

    Reddy, Lena Felice; Waltz, James A; Green, Michael F; Wynn, Jonathan K; Horan, William P

    2016-07-01

    Although individuals with schizophrenia show impaired feedback-driven learning on probabilistic reversal learning (PRL) tasks, the specific factors that contribute to these deficits remain unknown. Recent work has suggested several potential causes including neurocognitive impairments, clinical symptoms, and specific types of feedback-related errors. To examine this issue, we administered a PRL task to 126 stable schizophrenia outpatients and 72 matched controls, and patients were retested 4 weeks later. The task involved an initial probabilistic discrimination learning phase and subsequent reversal phases in which subjects had to adjust their responses to sudden shifts in the reinforcement contingencies. Patients showed poorer performance than controls for both the initial discrimination and reversal learning phases of the task, and performance overall showed good test-retest reliability among patients. A subgroup analysis of patients (n = 64) and controls (n = 49) with good initial discrimination learning revealed no between-group differences in reversal learning, indicating that the patients who were able to achieve all of the initial probabilistic discriminations were not impaired in reversal learning. Regarding potential contributors to impaired discrimination learning, several factors were associated with poor PRL, including higher levels of neurocognitive impairment, poor learning from both positive and negative feedback, and higher levels of indiscriminate response shifting. The results suggest that poor PRL performance in schizophrenia can be the product of multiple mechanisms. PMID:26884546

  17. Kv4.2 knockout mice have hippocampal-dependent learning and memory deficits.

    PubMed

    Lugo, Joaquin N; Brewster, Amy L; Spencer, Corinne M; Anderson, Anne E

    2012-05-01

    Kv4.2 channels contribute to the transient, outward K(+) current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit in the learning phase of the Morris water maze (MWM) and significant impairment in the probe trial compared with wild type (WT). Kv4.2 KO mice also demonstrated a specific deficit in contextual learning in the fear-conditioning test, without impairment in the conditioned stimulus or new context condition. Kv4.2 KO mice had normal activity, anxiety levels, and prepulse inhibition compared with WT mice. A compensatory increase in tonic inhibition has been previously described in hippocampal slice recordings from Kv4.2 KO mice. In an attempt to decipher whether increased tonic inhibition contributed to the learning and memory deficits in Kv4.2 KO mice, we administered picrotoxin to block GABA(A) receptors (GABA(A)R), and thereby tonic inhibition. This manipulation had no effect on behavior in the WT or KO mice. Furthermore, total protein levels of the α5 or δ GABA(A)R subunits, which contribute to tonic inhibition, were unchanged in hippocampus. Overall, our findings add to the growing body of evidence, suggesting an important role for Kv4.2 channels in hippocampal-dependent learning and memory. PMID:22505720

  18. Age-related forgetting in locomotor adaptation

    PubMed Central

    Malone, Laura A.; Bastian, Amy J.

    2016-01-01

    The healthy aging process affects the ability to learn and remember new facts and tasks. Prior work has shown that motor learning can be adversely affected by non-motor deficits, such as time. Here we investigated how age, and a dual task influence the learning and forgetting of a new walking pattern. We studied healthy younger (<30 yo) and older adults (>50 yo) as they alternated between 5-minute bouts of split-belt treadmill walking and resting. Older subjects learned a new walking pattern at the same rate as younger subjects, but forgot some of the new pattern during the rest breaks. We tested if forgetting was due to reliance on a cognitive strategy that was not fully engaged after rest breaks. When older subjects performed a dual cognitive task to reduce strategic control of split-belt walking, their adaptation rate slowed, but they still forgot much of the new pattern during the rest breaks. Our results demonstrate that the healthy aging process weakens motor memories during rest breaks and that this phenomenon cannot be explained solely by reliance on a conscious strategy in older adults. PMID:26589520

  19. Post-anesthesia AMPA receptor potentiation prevents anesthesia-induced learning and synaptic deficits.

    PubMed

    Huang, Lianyan; Cichon, Joseph; Ninan, Ipe; Yang, Guang

    2016-06-22

    Accumulating evidence has shown that repeated exposure to general anesthesia during critical stages of brain development results in long-lasting behavioral deficits later in life. To date, there has been no effective treatment to mitigate the neurotoxic effects of anesthesia on brain development. By performing calcium imaging in the mouse motor cortex, we show that ketamine anesthesia causes a marked and prolonged reduction in neuronal activity during the period of post-anesthesia recovery. Administration of the AMPAkine drug CX546 [1-(1,4-benzodioxan-6-ylcarbonyl)piperidine] to potentiate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor activity during emergence from anesthesia in mice enhances neuronal activity and prevents long-term motor learning deficits induced by repeated neonatal anesthesia. In addition, we show that CX546 administration also ameliorates various synaptic deficits induced by anesthesia, including reductions in synaptic expression of NMDA (N-methyl-d-aspartate) and AMPA receptor subunits, motor training-evoked neuronal activity, and dendritic spine remodeling associated with motor learning. Together, our results indicate that pharmacologically enhancing neuronal activity during the post-anesthesia recovery period could effectively reduce the adverse effects of early-life anesthesia. PMID:27334260

  20. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse

    PubMed Central

    Carey, Amanda N.; Sypek, Elizabeth I.; Singh, Harminder D.; Kaufman, Marc J.; McLaughlin, Jay P.

    2012-01-01

    HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance, versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors. PMID:22197678

  1. Training and transfer-of-learning effects in disabled and normal readers: evidence of specific deficits.

    PubMed

    Benson, N J; Lovett, M W; Kroeber, C L

    1997-03-01

    Two experiments were conducted to assess the specificity of training and transfer deficits in disabled readers, aged 7 to 9 years. Forty-eight children (reading disabled, age-matched normal controls, and reading-level-matched normal controls) participated in both a reading and a nonreading (music) acquisition paradigm. Children received instruction in grapheme-phoneme and symbol-note correspondence patterns, respectively. Posttraining tests (one day and one week) following rule training compared performance on trained exemplar items with performance on untrained transfer items. Results revealed that normal readers were able to transfer their rule knowledge in both the reading and nonreading (music) acquisition paradigms, while disabled readers were proficient only in the music task, and thus demonstrated transfer deficits specific to learning printed language. Transfer was optimally facilitated for all readers when training procedures included not only presentation of exemplars, but also cues for rule derivation and explicit statement of pattern invariances. PMID:9073377

  2. Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability.

    PubMed

    Geary, David C; Hoard, Mary K; Byrd-Craven, Jennifer; Nugent, Lara; Numtee, Chattavee

    2007-01-01

    Using strict and lenient mathematics achievement cutoff scores to define a learning disability, respective groups of children who are math disabled (MLD, n=15) and low achieving (LA, n=44) were identified. These groups and a group of typically achieving (TA, n=46) children were administered a battery of mathematical cognition, working memory, and speed of processing measures (M=6 years). The children with MLD showed deficits across all math cognition tasks, many of which were partially or fully mediated by working memory or speed of processing. Compared with the TA group, the LA children were less fluent in processing numerical information and knew fewer addition facts. Implications for defining MLD and identifying underlying cognitive deficits are discussed. PMID:17650142

  3. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    PubMed

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  4. Tau Reduction Diminishes Spatial Learning and Memory Deficits after Mild Repetitive Traumatic Brain Injury in Mice

    PubMed Central

    Cheng, Jason S.; Craft, Ryan; Yu, Gui-Qiu; Ho, Kaitlyn; Wang, Xin; Mohan, Geetha; Mangnitsky, Sergey; Ponnusamy, Ravikumar; Mucke, Lennart

    2014-01-01

    Objective Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer's disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI). Methods We adapted a mild frontal impact model of TBI for wildtype C57Bl/6J mice and characterized the behavioral deficits it causes in these animals. The Barnes maze, Y maze, contextual and cued fear conditioning, elevated plus maze, open field, balance beam, and forced swim test were used to assess different behavioral functions. Magnetic resonance imaging (MRI, 7 Tesla) and histological analysis of brain sections were used to look for neuropathological alterations. We also compared the functional effects of this TBI model and of controlled cortical impact in mice with two, one or no Tau alleles. Results Repeated (2-hit), but not single (1-hit), mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact. Interpretation Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects. PMID:25551452

  5. Academic Risk Factors and Deficits of Learned Hopelessness: A Longitudinal Study of Hong Kong Secondary School Students

    ERIC Educational Resources Information Center

    Au, Raymond C. P.; Watkins, David A.; Hattie, John A. C.

    2010-01-01

    The aim of the present study is to explore a causal model of academic achievement and learning-related personal variables by testing the nature of relationships between learned hopelessness, its risk factors and hopelessness deficits as proposed in major theories in this area. The model investigates affective-motivational characteristics of…

  6. Withdrawal from Cocaine Self-Administration Produces Long-Lasting Deficits in Orbitofrontal-Dependent Reversal Learning in Rats

    ERIC Educational Resources Information Center

    Calu, Donna J.; Stalnaker, Thomas A.; Franz, Theresa M.; Singh, Teghpal; Shaham, Yavin; Schoenbaum, Geoffrey

    2007-01-01

    Drug addicts make poor decisions. These decision-making deficits have been modeled in addicts and laboratory animals using reversal-learning tasks. However, persistent reversal-learning impairments have been shown in rats and monkeys only after noncontingent cocaine injections. Current thinking holds that to represent the human condition…

  7. Learning Styles of Students with Attention Deficit Hyperactivity Disorder: Who Are They and How Can We Teach Them?

    ERIC Educational Resources Information Center

    Brand, Susan; Dunn, Rita; Greb, Fran

    2002-01-01

    Proposes that students with Attention Deficit Hyperactivity Disorder (ADHD) learn differently than other students. Discusses two studies of ADHD students. Concludes such students may learn better in the afternoon instead of the morning; with tactile and kinesthetic instructional resources; in soft illumination; with Multisensory Instructional…

  8. Lack of strategy holding: a new pattern of learning deficit in cortical dementias.

    PubMed

    Benedet, María J; Lauro-Grotto, Rosapia; Giotti, Chiara

    2009-09-01

    The aim of this study was to demonstrate, by means of systematic research and qualitative data analysis, the presence, among a group of patients with fronto-temporal lobar degeneration of a subgroup that, at variance with the standard pattern, is able to devise and implement learning strategies, but appear impaired at carrying them on from a trial to the next. In order to provide evidence of the existence of a group of patients showing this type of learning disability, that we refer to as lack of strategy holding, we performed a stepwise hierarchical cluster analysis of a set of variables whose scores were selected from the subject's performance at the Test de Aprendizaje Verbal España-Complutense. Results substantiate the segregation of three groups of subjects characterized by the following patterns of performance: normal elderly individuals, who show a quite preserved ability to discover a semantic strategy along the learning trials and to carry it from a trial to the next, patients presenting with a deficit in implementing semantic learning strategies and possibly use of serial and/or phonological strategies to perform the task, and to patients who, although able to generate and implement appropriate learning strategies, appear unable to carry them over the learning trials. The presence of this new pattern raises a few questions that seem worth trying to address. PMID:19338728

  9. A Meta-Analysis of Working Memory Deficits in Children with Learning Difficulties: Is There a Difference between Verbal Domain and Numerical Domain?

    ERIC Educational Resources Information Center

    Peng, Peng; Fuchs, Douglas

    2016-01-01

    Children with learning difficulties suffer from working memory (WM) deficits. Yet the specificity of deficits associated with different types of learning difficulties remains unclear. Further research can contribute to our understanding of the nature of WM and the relationship between it and learning difficulties. The current meta-analysis…

  10. Reversal deficits in individuals with psychopathy in explicit but not implicit learning conditions

    PubMed Central

    Brazil, Inti A.; Maes, Joseph H.R.; Scheper, Inge; Bulten, Berend H.; Kessels, Roy P.C.; Verkes, Robbert Jan; de Bruijn, Ellen R.A.

    2013-01-01

    Background Psychopathy is a severe personality disorder that has been linked to impaired behavioural adaptation during reinforcement learning. Recent electrophysiological studies have suggested that psychopathy is related to impairments in intentionally using information relevant for adapting behaviour, whereas these impairments remain absent for behaviour relying on automatic use of information. We sought to investigate whether previously found impairments in response reversal in individuals with psychopathy also follow this dichotomy. We expected response reversal to be intact when the automatic use of information was facilitated. In contrast, we expected impaired response reversal when intentional use of information was required. Methods We included offenders with psychopathy and matched healthy controls in 2 experiments with a probabilistic cued go/no-go reaction time task. The task implicated the learning and reversal of 2 predictive contingencies. In experiment 1, participants were not informed about the inclusion of a learning component, thus making cue-dependent learning automatic/incidental. In experiment 2, the instructions required participants to actively monitor and learn predictive relationships, giving learning a controlled/intentional nature. Results While there were no significant group differences in acquisition learning in either experiment, the results revealed impaired response reversal in offenders with psychopathy when controlled learning was facilitated. Interestingly, this impairment was absent when automatic learning was predominant. Limitations Possible limitations are the use of a nonforensic control group and of self-report measures for drug use. Conclusion Response reversal deficits in individuals with psychopathy are modulated by the context provided by the instructions, according to the distinction between automatic and controlled processing in these individuals. PMID:23552501

  11. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  12. Age-Related Changes in Creative Thinking

    ERIC Educational Resources Information Center

    Roskos-Ewoldsen, Beverly; Black, Sheila R.; Mccown, Steven M.

    2008-01-01

    Age-related differences in cognitive processes were used to understand age-related declines in creativity. According to the Geneplore model (Finke, Ward, & Smith, 1992), there are two phases of creativity--generating an idea and exploring the implications of the idea--each with different underlying cognitive processes. These two phases are…

  13. Early-life seizures result in deficits in social behavior and learning.

    PubMed

    Lugo, Joaquin N; Swann, John W; Anderson, Anne E

    2014-06-01

    Children with epilepsy show a high co-morbidity with psychiatric disorders and autism. One of the critical determinants of a child's behavioral outcome with autism and cognitive dysfunction is the age of onset of seizures. In order to examine whether seizures during postnatal days 7-11 result in learning and memory deficits and behavioral features of autism we administered the inhalant flurothyl to induce seizures in C57BL/6J mice. Mice received three seizures per day for five days starting on postnatal day 7. Parallel control groups consisted of similarly handled animals that were not exposed to flurothyl and naïve mice. Subjects were then processed through a battery of behavioral tests in adulthood: elevated-plus maze, nose-poke assay, marble burying, social partition, social chamber, fear conditioning, and Morris water maze. Mice with early-life seizures had learning and memory deficits in the training portion of the Morris water maze (p<0.05) and probe trial (p<0.01). Mice with seizures showed no differences in marble burying, the nose-poke assay, or elevated plus-maze testing compared to controls. However, they showed a significant difference in the social chamber and social partition tests. Mice with seizures during postnatal days 7-11 showed a significant decrease in social interaction in the social chamber test and had a significant impairment in social behavior in the social partition test. Together, these results indicate that early life seizures result in deficits in hippocampal-dependent memory tasks and produce long-term disruptions in social behavior. PMID:24685665

  14. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  15. Age-Related Impairment in the 250-Millisecond Delay Eyeblink Classical Conditioning Procedure in C57BL/6 Mice

    PubMed Central

    Vogel, Richard W.; Ewers, Michael; Ross, Charlene; Gould, Thomas J.; Woodruff-Pak, Diana S.

    2002-01-01

    In this study we tested 4-, 9-, 12-, and 18-month-old C57BL/6 mice in the 250-msec delay eyeblink classical conditioning procedure to study age-related changes in a form of associative learning. The short life expectancy of mice, complete knowledge about the mouse genome, and the availability of transgenic and knock-out mouse models of age-related impairments make the mouse an excellent species for expanding knowledge on the neurobiologically and behaviorally well-characterized eyeblink classical conditioning paradigm. Based on previous research with delay eyeblink conditioning in rabbits and humans, we predicted that mice would be impaired on this cerebellar-dependent associative learning task in middle-age, at ∼9 months. To fully examine age differences in behavior in mice, we used a battery of additional behavioral measures with which to compare young and older mice. These behaviors included the acoustic startle response, prepulse inhibition, rotorod, and the Morris water maze. Mice began to show impairment in cerebellar-dependent tasks such as rotorod and eyeblink conditioning at 9 to 12 months of age. Performance in hippocampally dependent tasks was not impaired in any group, including 18-month-old mice. These results in mice support results in other species, indicating that cerebellar-dependent tasks show age-related deficits earlier in adulthood than do hippocampally dependent tasks. PMID:12359840

  16. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  17. Learning a Living: A Guide to Planning Your Career and Finding a Job for People with Learning Disabilities, Attention Deficit Disorder, and Dyslexia.

    ERIC Educational Resources Information Center

    Brown, Dale S.

    This document is a guide to career planning and finding a job for high school and college students and graduates with learning disabilities, attention deficit disorder, and dyslexia. The guide, which is written from the perspective of an individual with firsthand experience with a learning disability, explains how individuals can find the best…

  18. Motor Control and Aging: Links to Age-Related Brain Structural, Functional, and Biochemical Effects

    PubMed Central

    Seidler, Rachael D.; Bernard, Jessica A.; Burutolu, Taritonye B.; Fling, Brett W.; Gordon, Mark T.; Gwin, Joseph T.; Kwak, Youngbin; Lipps, David B.

    2009-01-01

    Although connections between cognitive deficits and age-associated brain differences have been elucidated, relationships with motor performance are less well understood. Here, we broadly review age-related brain differences and motor deficits in older adults in addition to cognition-action theories. Age-related atrophy of the motor cortical regions and corpus callosum may precipitate or coincide with motor declines such as balance and gait deficits, coordination deficits, and movement slowing. Correspondingly, degeneration of neurotransmitter systems—primarily the dopaminergic system—may contribute to age-related gross and fine motor declines, as well as to higher cognitive deficits. In general, older adults exhibit involvement of more widespread brain regions for motor control than young adults, particularly the prefrontal cortex and basal ganglia networks. Unfortunately these same regions are the most vulnerable to age-related effects, resulting in an imbalance of “supply and demand”. Existing exercise, pharmaceutical, and motor training interventions may ameliorate motor deficits in older adults. PMID:19850077

  19. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  20. Revealing Behavioral Learning Deficit Phenotypes Subsequent to In Utero Exposure to Benzo(a)pyrene.

    PubMed

    McCallister, Monique M; Li, Zhu; Zhang, Tongwen; Ramesh, Aramandla; Clark, Ryan S; Maguire, Mark; Hutsell, Blake; Newland, M Christopher; Hood, Darryl B

    2016-01-01

    To characterize behavioral deficits in pre-adolescent offspring exposed in utero to Benzo(a)pyrene [B(a)P], timed-pregnant Long Evans Hooded rats were treated with B(a)P (150, 300, 600, and 1200 µg/kg BW) or peanut oil (vehicle) on E14, 15, 16, and 17. Following birth, during the pre-weaning period, B(a)P metabolites were examined in plasma and whole brain or cerebral cortex from exposed and control offspring. Tissue concentrations of B(a)P metabolites were (1) dose-dependent and (2) followed a time-dependence for elimination with ∼60% reduction by PND5 in the 1200 µg/kg BW experimental group. Spatial discrimination-reversal learning was utilized to evaluate potential behavioral neurotoxicity in P40-P60 offspring. Late-adolescent offspring exposed in utero to 600 and 1200 µg/kg BW were indistinguishable from their control counterparts for ability to acquire an original discrimination (OD) and reach criterion. However, a dose-dependent effect of in utero B(a)P-exposure was evident upon a discrimination reversal as exposed offspring perseverated on the previously correct response. This newly characterized behavioral deficit phenotype for the first reversal was not apparent in either the (1) OD or (2) subsequent reversal sessions relative to the respective control offspring. Furthermore, the expression of activity related-cytoskeletal-associated protein (Arc), an experience-dependent cortical protein marker known to be up-regulated in response to acquisition of a novel behavior, was greater in B(a)P-exposed offspring included in the spatial discrimination cohort versus home cage controls. Collectively, these findings support the hypothesis that in utero exposure to B(a)P during critical windows of development representing peak periods of neurogenesis results in behavioral deficits in later life. PMID:26420751

  1. N450 as a candidate neural marker for interference control deficits in children with learning disabilities.

    PubMed

    Liu, Chunlei; Yao, Ru; Wang, Zuowei; Zhou, Renlai

    2014-07-01

    A deficit in the ability to suppress irrelevant or interfering stimuli may account for a variety of dysfunctional behaviors in children with learning disabilities (LD). However, neural correlates underlying this deficit in interference control in the LD are still unknown. In this study, we recruited a group of children with LD (age: 10.78 ± 0.52) along with an age-matched control group (age: 10.74 ± 0.86) and asked them to perform a numerical Stroop task. During the task, we used electroencephalogram (EEG) to record their event-related potentials (ERPs). We further evaluated performance of these children on a battery of tests, including the Academic Adaptability Test (AAT), an adapted Chinese version of Pupil Rating Scale (PRS), and Raven's Standard Progressive Matrices (SPM). Children's scores on recent math and Chinese exams were also obtained. Results showed that: 1) children with LD had worse performance in the incongruent condition of the numerical Stroop task suggesting that children with LD had interference control deficits but not basic numerical cognition; 2) children with LD had larger N450 effects on the frontal and posterior sites, but did not show any difference in early ERP components, suggesting that the behavioral difference was related with interference control rather than early visual perception processing; and 3) N450 effects were correlated with accuracy in the numerical Stroop task, performance in Raven's SPM, as well as school math performance. These results suggest that N450 can serve as a potential electrophysiology marker for identifying and potentially, providing targeted intervention for children with LD. PMID:24858538

  2. Comorbidity of Learning Disorders and Attention Deficit Hyperactivity Disorder in a Sample of Omani Schoolchildren

    PubMed Central

    Al-Mamari, Watfa S.; Emam, Mahmoud M.; Al-Futaisi, Amna M.; Kazem, Ali M.

    2015-01-01

    Objectives: The estimated worldwide prevalence of learning disorders (LDs) is approximately 2–10% among school-aged children. LDs have variable clinical features and are often associated with other disorders. This study aimed to examine the comorbidity of LDs and attention deficit hyperactivity disorder (ADHD) among a sample of schoolchildren in Oman. Methods: This study was conducted between January 2014 and January 2015 at the Sultan Qaboos University, Muscat, Oman. The Learning Disabilities Diagnostic Inventory (LDDI) and the 28-item version of the Conners’ Teacher Rating Scale was completed by classroom teachers to determine the existence of LD and ADHD symptoms in 321 children in grades 1–4 who had been referred to a learning support unit for LDs from elementary schools in Muscat. Results: The mean age of the students was 8.5 years. Among the cohort, 30% were reported to have symptoms of ADHD, including conduct problems (24%), hyperactivity (24%) and inattentive-passive behaviours (41%). Male students reportedly exhibited greater conduct problems and hyperactivity than females. However, there were no gender differences noted between LDDI scores. Conclusion: This study suggests that Omani schoolchildren with LDs are likely to exhibit signs of ADHD. The early identification of this disorder is essential considering the chronic nature of ADHD. For interventional purposes, multidisciplinary teams are recommended, including general and special educators, clinical psychologists, school counsellors, developmental or experienced general paediatricians and child psychiatrists. PMID:26629382

  3. Attention deficit and hyperactivity disorder/learning disabilities (ADHD/LD): parental characterization and perception.

    PubMed

    Brook, Uzi; Boaz, Mona

    2005-04-01

    Sixty-six parents of adolescents (mean age, 14.8 years), who attended special education classes and who were diagnosed as having attention deficit and hyperactivity disorder/learning disabilities (ADHD/LD), were interviewed. The comorbidity of the ADHD group included emotional lability and/or depression, 70%; oppositional defiant disorder (ODD), 67%; obsessive-compulsive disorder (OCD), 44%; addiction to buying, 44%; and aggressiveness, 62%. Twenty-one percent were either involved in the past or presently using drugs. Nine percent had attempted suicide. According to their parents, the main characteristic of these adolescents was low self-image. Parents enumerated five negative characteristics: impulsiveness; nervousness; angered easily ('short fused'); aggressiveness with cursing and outbursts; and impaired sociability with impoliteness. PMID:15797157

  4. Intranasal Insulin Prevents Anesthesia-Induced Spatial Learning and Memory Deficit in Mice

    PubMed Central

    Zhang, Yongli; Dai, Chun-ling; Chen, Yanxing; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2016-01-01

    Elderly individuals are at increased risk of cognitive decline after anesthesia. General anesthesia is believed to be a risk factor for Alzheimer’s disease (AD). At present, there is no treatment that can prevent anesthesia-induced postoperative cognitive dysfunction. Here, we treated mice with daily intranasal administration of insulin (1.75 U/day) for one week before anesthesia induced by intraperitoneal injection of propofol and maintained by inhalation of sevoflurane for 1 hr. We found that the insulin treatment prevented anesthesia-induced deficit in spatial learning and memory, as measured by Morris water maze task during 1–5 days after exposure to anesthesia. The insulin treatment also attenuated anesthesia-induced hyperphosphorylation of tau and promoted the expression of synaptic proteins and insulin signaling in the brain. These findings show a therapeutic potential of intranasal administration of insulin before surgery to reduce the risk of anesthesia-induced cognitive decline and AD. PMID:26879001

  5. The ameliorative effect of ascorbic acid and Ginkgo biloba on learning and memory deficits associated with fluoride exposure

    PubMed Central

    Raghuveer, Vasudeva C.; Rao, Mallikarjuna C.; Somayaji, Nagabhooshana S.; Babu, Prakash B.

    2013-01-01

    Chronic exposure to fluoride causes dental and skeletal fluorosis. Fluoride exposure is also detrimental to soft tissues and organs. The present study aimed at evaluation of the effect of Ginkgo biloba and ascorbic acid on learning and memory deficits caused by fluoride exposure. Male Wistar rats were divided into five groups (n=6). Group 1 control. Groups 2 to 5 received 100 ppm of sodium fluoride over 30 days. Groups 3, 4 and 5 were further treated for 15 days receiving respectively 1% gum acacia solution, 100 mg/kg body weight ascorbic acid, and 100mg/kg body weight Ginkgo biloba extract. After 45 days, all animals were subjected to behavioural tests. The results showed that fluoride affected learning and memory. Fluoride causes oxidative stress and neurodegeneration, thereby affecting learning and memory. Ascorbic acid and Ginkgo biloba were found to augment the reversal of learning and memory deficits caused by fluoride ingestion. PMID:24678261

  6. Contribution of organizational strategy to verbal learning and memory in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Roth, Robert M; Wishart, Heather A; Flashman, Laura A; Riordan, Henry J; Huey, Leighton; Saykin, Andrew J

    2004-01-01

    Statistical mediation modeling was used to test the hypothesis that poor use of a semantic organizational strategy contributes to verbal learning and memory deficits in adults with attention-deficit/hyperactivity disorder (ADHD). Comparison of 28 adults with ADHD and 34 healthy controls revealed lower performance by the ADHD group on tests of verbal learning and memory, sustained attention, and use of semantic organization during encoding. Mediation modeling indicated that state anxiety, but not semantic organization, significantly contributed to the prediction of both learning and delayed recall in the ADHD group. The pattern of findings suggests that decreased verbal learning and memory in adult ADHD is due in part to situational anxiety and not to poor use of organizational strategies during encoding. PMID:14744190

  7. Clove oil reverses learning and memory deficits in scopolamine-treated mice.

    PubMed

    Halder, Sumita; Mehta, Ashish Krishan; Kar, Rajarshi; Mustafa, Mohammad; Mediratta, Pramod Kumari; Sharma, Krishna Kishore

    2011-05-01

    The present study was performed to examine the effect of Eugenia caryophyllata (Myrtaceae) on learning and memory, and also evaluate whether it can modulate oxidative stress in mice. Passive avoidance step-down task and elevated plus-maze were used to assess learning and memory in scopolamine-treated mice. Oxidative stress parameters were also assessed in brain samples by estimating the malondialdehyde (MDA) and reduced glutathione (GSH) levels at the end of the study. Scopolamine (0.3 mg/kg, i. p.) produced impairment of acquisition memory as evidenced by a decrease in step-down latency and an increase in transfer latency on day 1, and also impairment of retention of memory on day 2. Pretreatment with clove oil (0.05 mL/kg and 0.1 mL/kg) for 3 weeks significantly reversed the increase in acquisition latency and all the doses (0.025, 0.05, 0.1 mL/kg, i. p.) reversed the increase in retention latency induced by scopolamine (0.3 mg/kg, i. p.) in elevated plus-maze. However, 0.05 mL/kg clove oil attenuated memory deficits in the passive avoidance step-down task. Brain samples showed a significant decrease in MDA levels in the group treated with clove oil (0.05 and 0.025 mL/kg). GSH levels were also increased in clove oil-treated mice though the results were not significant. Thus, it can be concluded that clove oil can reverse the short-term and long-term memory deficits induced by scopolamine (0.3 mg/kg, i. p.) and this effect can, to some extent, be attributed to decreased oxidative stress. PMID:21157682

  8. Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice.

    PubMed

    Tohda, Chihiro; Nakanishi, Ruiko; Kadowaki, Makoto

    Although previous studies have reported a role for phosphoinositide-3 kinase (PI3K) in axonal definition and growth in vitro, it is not clear whether PI3K regulates axonal formation and synaptogenesis in vivo. The goal of the present study was to clarify the role of PI3K in behavioral functions and some underlying neuroanatomical structures. Immunohistochemistry, an electron-microscopic analysis and behavioral tests were carried out. Knockout mice lacking the p85alpha regulatory subunit of PI3K (p85alpha-/- mice) significantly showed learning deficits, restlessness and motivation deficit. Expression of phosphorylated Akt, which indirectly shows the activity of PI3K, was high in myelinated axons, especially in axonal bundles in the striatum of wild-type mice, but was significantly low in the striatum, cerebral cortex and the hippocampal CA3 of p85alpha-/- mice. The axonal marker protein level decreased mainly in the striatum and cerebral cortex of p85alpha-/- mice. In these two regions, myelinated axons are rich in the wild-type mice. However, the density of myelinated axons and myelin thickness were significantly low in the striatum and cerebral cortex of p85alpha-/- mice. Synaptic protein level was clearly decreased in the striatum, cerebral cortex, and hippocampus of p85alpha-/- mice when compared with wild mice. The present results suggest that PI3K plays a role in the generation and/or maintenance of synapses and myelinated axons in the brain and that deficiencies in PI3K activity result in abnormalities in several neuronal functions, including learning, restlessness and motivation. PMID:17901711

  9. Positive Psychology and Self-Efficacy: Potential Benefits for College Students with Attention Deficit Hyperactivity Disorder and Learning Disabilities

    ERIC Educational Resources Information Center

    Costello, Carla A.; Stone, Sharon L. M.

    2012-01-01

    In this article, the authors examine strategies for supporting college students with learning disabilities (LD) and attention deficit hyperactivity disorder (ADHD) from the conceptual frameworks of positive psychology and self-efficacy theory. Higher education professionals can use principles taken from the relatively new field of positive…

  10. Learning Disability, Attention-Deficit Disorder, and Language Impairment as Outcomes of Prematurity: A Longitudinal Descriptive Study.

    ERIC Educational Resources Information Center

    Cherkes-Julkowski, Miriam

    1998-01-01

    A longitudinal study of 28 mildly preterm children and 20 full-term comparison children found 75% of preterm children had a learning disability, attention deficit disorder (ADD), language impairment, mild neurologic impairment, or general school problems by grade 5. Evidence of differences in attention deployment at ages 13 and 15 months for ADD…

  11. Metyrapone attenuates the sequential learning deficits but not monoamine depletions following d,l-fenfluramine administration to adult rats.

    PubMed

    Skelton, Matthew R; Blankenmeyer, Tracy L; Gudelsky, Gary A; Brown-Strittholt, Carrie A; Vorhees, Charles V; Williams, Michael T

    2004-12-15

    Fenfluramine (FEN) is a substituted amphetamine known for its anorectic effects, without the stimulatory or abuse potential associated with other amphetamine derivatives. FEN is a potent serotonin (5-HT) releaser and reuptake inhibitor and has been shown to cause depletions of 5-HT that can last days and even weeks after administration. Administration of FEN four times on a single day also causes a prolonged increase of corticosterone (CORT) that lasts approximately 72 h following the first FEN dose. This dosing regimen also produces deficits in sequential learning as measured in the Cincinnati water maze (CWM). Adrenalectomy blocks this effect but removes more than CORT. Accordingly, the purpose of this study was to determine whether inhibiting glucocorticoid production, by administration of the 11 beta-hydroxylase inhibitor metyrapone (MET), will similarly attenuate or eliminate the sequential learning deficits seen with FEN exposure. MET (50 mg/kg) injections were administered 90 min prior to and for 3 days after FEN (four doses given at 2-h intervals). Animals pretreated with MET and treated with FEN showed no sequential learning deficits when tested 1 week following FEN administration compared to FEN alone. The depletions of monoamines were similar following FEN administration, regardless of MET treatment. Taken together, this suggests that a potential mechanism for the sequential learning deficits in FEN-treated animals is a result of prolonged increases in CORT output. PMID:15484208

  12. A Review of the Literature on Attention-Deficit Hyperactivity Disorder Children: Peer Interactions and Collaborative Learning.

    ERIC Educational Resources Information Center

    Saunders, Bella; Chambers, Susan M.

    1996-01-01

    A review of the literature on Attention-Deficit Hyperactivity Disorder (ADHD) children suggests that maladaptive classroom peer interactions for ADHD children may disadvantage their learning on collaborative tasks. Provides a definition of the disorder and discusses key aspects of ADHD and its effects on peer interactions. Makes suggestions for…

  13. Support for Learning Goes beyond Academic Support: Voices of Students with Asperger's Disorder and Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Bolic Baric, Vedrana; Hellberg, Kristina; Kjellberg, Anette; Hemmingsson, Helena

    2016-01-01

    The purpose of this study was to describe and explore the experiences of support at school among young adults with Asperger's disorder and attention deficit hyperactivity disorder and also to examine what support they, in retrospect, described as influencing learning. Purposive sampling was used to enroll participants. Data were collected through…

  14. Using Color to Increase the Math Persistence of Children with Co-Occurring Learning Disabilities and Attentional Deficits

    ERIC Educational Resources Information Center

    Lee, David L.; Asplen, Jennifer

    2004-01-01

    Dealing with the behavioral and academic problems of children with co-occurring learning disabilities and attention-deficit/hyperactivity disorder (AD/HD) can be challenge for educators. One characteristic often associated with AD/HD is an inability to remain engaged in tasks for long periods of time. This lack of attentional focus often results…

  15. Numerical and Arithmetical Cognition: A Longitudinal Study of Process and Concept Deficits in Children with Learning Disability.

    ERIC Educational Resources Information Center

    Geary, David C.; Hamson, Carmen O.; Hoard, Mary K.

    2000-01-01

    Compared performance of first and second graders with normal intelligence but with learning disabilities (LD) in mathematics, reading, or both and children with variable achievement test performance to that of academically normal peers on experimental and psychometric tasks. Found that LD groups showed specific cognitive deficit patterns; children…

  16. Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training

    PubMed Central

    de Villers-Sidani, Etienne; Alzghoul, Loai; Zhou, Xiaoming; Simpson, Kimberly L.; Lin, Rick C. S.; Merzenich, Michael M.

    2010-01-01

    Cognitive decline is a virtually universal aspect of the aging process. However, its neurophysiological basis remains poorly understood. We describe here more than 20 age-related cortical processing deficits in the primary auditory cortex of aging versus young rats that appear to be strongly contributed to by altered cortical inhibition. Consistent with these changes, we recorded in old rats a decrease in parvalbumin-labeled inhibitory cortical neurons. Furthermore, old rats were slower to master a simple behavior, with learning progressions marked by more false-positive responses. We then examined the effect of intensive auditory training on the primary auditory cortex in these aged rats by using an oddball discrimination task. Following training, we found a nearly complete reversal of the majority of previously observed functional and structural cortical impairments. These findings suggest that age-related cognitive decline is a tightly regulated plastic process, and demonstrate that most of these age-related changes are, by their fundamental nature, reversible. PMID:20643928

  17. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10.

    PubMed

    Miyamoto, M

    1997-01-01

    Senescence-Accelerated Mouse (SAM), a murine model of accelerated senescence, has been established by Takeda et al. (1981). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. In 1991 there were eight different substrains in the P-series, which commonly exhibited accelerated aging with a shortened life span (Takeda et al., 1991). Among the P-series, we have found that SAMP8 mice show significant impairments in a variety of learning tasks when compared with SAMR1 mice (Miyamoto et al., 1986). Further studies suggest that SAMP8 exhibits an age-related emotional disorder characterized by reduced anxiety-like behavior (Miyamoto et al., 1992). On the other hand, it has been shown that SAMP10 exhibits brain atrophy and learning impairments in an avoidance task (Shimada et al., 1992, 1993). Here, characteristics of age-related deficits in learning and memory, changes in emotional behavior, and abnormality of circadian rhythms in SAMP8 and SAMP10 mice are described. In the experiments, SAMP8/Ta (SAMP8), SAMP10/(/)Ta (SAMP10) and SAMR1TA (SAMR1) reared under specific pathogen-free conditions at Takeda Chemical Industries were used. PMID:9088911

  18. Age-Related White Matter Changes

    PubMed Central

    Xiong, Yun Yun; Mok, Vincent

    2011-01-01

    Age-related white matter changes (WMC) are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC. PMID:21876810

  19. Pharmacogenetics and age-related macular degeneration.

    PubMed

    Schwartz, Stephen G; Brantley, Milam A

    2011-01-01

    Pharmacogenetics seeks to explain interpatient variability in response to medications by investigating genotype-phenotype correlations. There is a small but growing body of data regarding the pharmacogenetics of both nonexudative and exudative age-related macular degeneration. Most reported data concern polymorphisms in the complement factor H and age-related maculopathy susceptibility 2 genes. At this time, the data are not consistent and no definite conclusions may be drawn. As clinical trials data continue to accumulate, these relationships may become more apparent. PMID:22046503

  20. Reversal of age-related neural timing delays with training.

    PubMed

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-03-12

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  1. Reversal of age-related neural timing delays with training

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  2. Adult learning deficits after neonatal exposure to D-methamphetamine: selective effects on spatial navigation and memory.

    PubMed

    Vorhees, C V; Inman-Wood, S L; Morford, L L; Broening, H W; Fukumura, M; Moran, M S

    2000-06-15

    The effects of neonatal d-methamphetamine (MA) treatment on cued and spatial learning and memory were investigated. MA was administered to neonatal rats on postnatal days 11-20. All groups received four subcutaneous injections per day. Group MA40-4 received 40 mg. kg(-1). d(-1) of MA in four divided doses (10 mg/kg per injection). Group MA40-2 received 40 mg. kg(-1). d(-1) of MA in two divided (20 mg/kg/injection) and saline for the other two injections per day. Controls received saline for four injections per day. As adults, both MA groups showed no differences in swimming ability in a straight swimming channel. The MA40-4 group showed no differences in cued learning, but was impaired in hidden platform learning in the Morris water maze on acquisition. They also showed reduced memory performance on probe trials. Similar trends were seen on reversal learning and reversal probe trials. Reduced platform-size learning trials caused spatial learning impairments to re-emerge in the MA40-4 group. The MA40-2 group showed no differences in straight channel swimming, but was slower at finding the visible platform during cued learning. They were also impaired during acquisition and memory trials in the Morris hidden platform maze. They showed a similar trend on reversal learning and memory trials, but were not different during reduced platform-size learning trials. When the MA40-2 group's performance on hidden platform learning and memory trials was adjusted for cued trial performance, the spatial learning deficits remained. Deficits of spatial learning and memory are a selective effect of neonatal methamphetamine treatment irrespective of other learning and performance variables. PMID:10844042

  3. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  4. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  5. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  6. Driving and Age-Related Macular Degeneration

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2009-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety, and considers directions for future research. PMID:20046818

  7. Neuromuscular contributions to age-related weakness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related physiological change of neuromuscular function is not a linear process and is likely influenced by various biological and behavioral factors (e.g., genetics, nutrition, physical activity level, comorbidities, etc.). These factors contribute to heterogeneity among older adults, which chal...

  8. Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection.

    PubMed

    Matamales, Miriam; Skrbis, Zala; Hatch, Robert J; Balleine, Bernard W; Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-04-20

    For goal-directed action to remain adaptive, new strategies are required to accommodate environmental changes, a process for which parafascicular thalamic modulation of cholinergic interneurons in the striatum (PF-to-CIN) appears critical. In the elderly, however, previously acquired experience frequently interferes with new learning, yet the source of this effect has remained unexplored. Here, combining sophisticated behavioral designs, cell-specific manipulation, and extensive neuronal imaging, we investigated the involvement of the PF-to-CIN pathway in this process. We found functional alterations of this circuit in aged mice that were consistent with their incapacity to update initial goal-directed learning, resulting in faulty activation of projection neurons in the striatum. Toxicogenetic ablation of CINs in young mice reproduced these behavioral and neuronal defects, suggesting that age-related deficits in PF-to-CIN function reduce the ability of older individuals to resolve conflict between actions, likely contributing to impairments in adaptive goal-directed action and executive control in aging. VIDEO ABSTRACT. PMID:27100198

  9. Age differences in learning emerge from an insufficient representation of uncertainty in older adults.

    PubMed

    Nassar, Matthew R; Bruckner, Rasmus; Gold, Joshua I; Li, Shu-Chen; Heekeren, Hauke R; Eppinger, Ben

    2016-01-01

    Healthy aging can lead to impairments in learning that affect many laboratory and real-life tasks. These tasks often involve the acquisition of dynamic contingencies, which requires adjusting the rate of learning to environmental statistics. For example, learning rate should increase when expectations are uncertain (uncertainty), outcomes are surprising (surprise) or contingencies are more likely to change (hazard rate). In this study, we combine computational modelling with an age-comparative behavioural study to test whether age-related learning deficits emerge from a failure to optimize learning according to the three factors mentioned above. Our results suggest that learning deficits observed in healthy older adults are driven by a diminished capacity to represent and use uncertainty to guide learning. These findings provide insight into age-related cognitive changes and demonstrate how learning deficits can emerge from a failure to accurately assess how much should be learned. PMID:27282467

  10. Age differences in learning emerge from an insufficient representation of uncertainty in older adults

    PubMed Central

    Nassar, Matthew R.; Bruckner, Rasmus; Gold, Joshua I.; Li, Shu-Chen; Heekeren, Hauke R.; Eppinger, Ben

    2016-01-01

    Healthy aging can lead to impairments in learning that affect many laboratory and real-life tasks. These tasks often involve the acquisition of dynamic contingencies, which requires adjusting the rate of learning to environmental statistics. For example, learning rate should increase when expectations are uncertain (uncertainty), outcomes are surprising (surprise) or contingencies are more likely to change (hazard rate). In this study, we combine computational modelling with an age-comparative behavioural study to test whether age-related learning deficits emerge from a failure to optimize learning according to the three factors mentioned above. Our results suggest that learning deficits observed in healthy older adults are driven by a diminished capacity to represent and use uncertainty to guide learning. These findings provide insight into age-related cognitive changes and demonstrate how learning deficits can emerge from a failure to accurately assess how much should be learned. PMID:27282467

  11. Novel age-dependent learning deficits in a mouse model of Alzheimer’s disease: implications for translational research

    PubMed Central

    Montgomery, K. S.; Simmons, R. K.; Edwards, G.; Nicolle, M. M.; Gluck, M. A.; Myers, C. E.; Bizon, J. L.

    2015-01-01

    Computational modeling predicts that the hippocampus plays an important role in the ability to apply previously learned information to novel problems and situations (referred to as the ability to generalize information or simply as ‘transfer learning’). These predictions have been tested in humans using a computer-based task on which individuals with hippocampal damage are able to learn a series of complex discriminations with two stimulus features (shape and color), but are impaired in their ability to transfer this information to newly configured problems in which one of the features is altered. This deficit occurs despite the fact that the feature predictive of the reward (the relevant information) is not changed. The goal of the current study was to develop a mouse analog of transfer learning and to determine if this new task was sensitive to pathological changes in a mouse model of AD. We describe a task in which mice were able to learn a series of concurrent discriminations that contained two stimulus features (odor and digging media) and could transfer this learned information to new problems in which the irrelevant feature in each discrimination pair was altered. Moreover, we report age-dependent deficits specific to transfer learning in APP+PS1 mice relative to nontransgenic littermates. The robust impairment in transfer learning may be more sensitive to AD-like pathology than traditional cognitive assessments in that no deficits were observed in the APP+PS1 mice on the widely used Morris water maze task. These data describe a novel and sensitive paradigm to evaluate mnemonic decline in AD mouse models that has unique translational advantages over standard species-specific cognitive assessments (e.g. water maze for rodent and delayed paragraph recall for humans). PMID:19720431

  12. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS.

    PubMed

    Longoni, Giulia; Rocca, Maria A; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2015-01-01

    The hippocampus has a critical role in episodic memory and visuospatial learning and consolidation. We assessed the patterns of whole and regional hippocampal atrophy in a large group of multiple sclerosis (MS) patients, and their correlations with neuropsychological impairment. From 103 MS patients and 28 healthy controls (HC), brain dual-echo and high-resolution 3D T1-weighted images were acquired using a 3.0-Tesla scanner. All patients underwent a neuropsychological assessment of hippocampal-related cognitive functions, including Paired Associate Word Learning, Short Story, delayed recall of Rey-Osterrieth Complex Figure and Paced Auditory Serial Attention tests. The hippocampi were manually segmented and volumes derived. Regional atrophy distribution was assessed using a radial mapping analysis. Correlations between hippocampal atrophy and clinical, neuropsychological and MRI metrics were also evaluated. Hippocampal volume was reduced in MS patients vs HC (p < 0.001 for both right and hippocampus). In MS patients, radial atrophy affected CA1 subfield and subiculum of posterior hippocampus, bilaterally. The dentate hilus (DG:H) of the right hippocampal head was also affected. Regional hippocampal atrophy correlated with brain T2 and T1 lesion volumes, while no correlation was found with disability. Damage to the CA1 and subiculum was significantly correlated to the performances at hippocampal-targeted neuropsychological tests. These results show that hippocampal subregions have a different vulnerability to MS-related damage, with a relative sparing of the head of the left hippocampus. The assessment of regional hippocampal atrophy may help explain deficits of specific cognitive functions in MS patients, including memory and visuospatial abilities. PMID:24189776

  13. Methamphetamine exposure during early postnatal development in rats: I. Acoustic startle augmentation and spatial learning deficits.

    PubMed

    Vorhees, C V; Ahrens, K G; Acuff-Smith, K D; Schilling, M A; Fisher, J E

    1994-04-01

    Methamphetamine (MA) induces neurotransmitter reductions and neurotoxicity at high doses in adult animals, but its effects on early brain development and behavior have received less attention. In this experiment the effects of MA exposure during a period equivalent to the human third trimester were examined. Rats (Sprague-Dawley CD) were injected subcutaneously with d-MA (30 mg/kg b.i.d.) early in postnatal development (days 1-10), later (postnatal days 11-20), or with water during both of these periods. Both early and later MA-exposed offspring exhibited augmented acoustic startle and impaired performance in a complex multiple-T water maze. Only the early MA exposure group showed a persistent deficit in weight while only the later MA exposure group showed impaired learning in the Morris hidden platform maze. Effects on locomoter activity are reported in the accompanying article. It was concluded that the effects of MA are both long lasting and stage dependent and involve cognitive as well as arousal functions. PMID:7855197

  14. Do Problems with Information Processing Affect the Process of Psychotherapy for Adults with Learning Disabilities or Attention Deficit/Hyperactivity Disorder?

    ERIC Educational Resources Information Center

    Cosden, Merith; Patz, Sarah; Smith, Steven

    2009-01-01

    Problems in processing information can affect psychosocial functioning. Psychotherapy can be used to address psychosocial problems; however, the same information-processing problems that contribute to disabilities, such as learning disabilities (LD) or attention deficit/hyperactivity disorder (ADHD), particularly deficits in auditory processing…

  15. Age-Related Changes in Deferred Imitation from Television by 6- to 18-Month-Olds

    ERIC Educational Resources Information Center

    Barr, Rachel; Muentener, Paul; Garcia, Amaya

    2007-01-01

    During the second year of life, infants exhibit a "video deficit effect." That is, they learn significantly less from a televised demonstration than they learn from a live demonstration. We predicted that repeated exposure to televised demonstrations would increase imitation from television, thereby reducing the video deficit effect. Independent…

  16. Genetic Markers in Biological Fluids for Aging-Related Major Neurocognitive Disorder

    PubMed Central

    Castro-Chavira, S.A.; Fernández, T.; Nicolini, H.; Diaz-Cintra, S.; Prado-Alcalá, R.A.

    2015-01-01

    Aging-related major neurocognitive disorder (NCD), formerly named dementia, comprises of the different acquired diseases whose primary deficit is impairment in cognitive functions such as complex attention, executive function, learning and memory, language, perceptual/motor skills, and social cognition, and that are related to specific brain regions and/or networks. According to its etiology, the most common subtypes of major NCDs are due to Alzheimer’s disease (AD), vascular disease (VaD), Lewy body disease (LBD), and frontotemporal lobar degeneration (FTLD). These pathologies are frequently present in mixed forms, i.e., AD plus VaD or AD plus LBD, thus diagnosed as due to multiple etiologies. In this paper, the definitions, criteria, pathologies, subtypes and genetic markers for the most common age-related major NCD subtypes are summarized. The current diagnostic criteria consider cognitive decline leading to major NCD or dementia as a progressive degenerative process with an underlying neuropathology that begins before the manifestation of symptoms. Biomarkers associated with this asymptomatic phase are being developed as accurate risk factor and biomarker assessments are fundamental to provide timely treatment since no treatments to prevent or cure NCD yet exist. Biological fluid assessment represents a safer, cheaper and less invasive method compared to contrast imaging studies to predict NCD appearance. Genetic factors particularly have a key role not only in predicting development of the disease but also the age of onset as well as the presentation of comorbidities that may contribute to the disease pathology and trigger synergistic mechanisms which may, in turn, accelerate the neurodegenerative process and its resultant behavioral and functional disorders. PMID:25731625

  17. Genetic markers in biological fluids for aging-related major neurocognitive disorder.

    PubMed

    Castro-Chavira, S A; Fernandez, T; Nicolini, H; Diaz-Cintra, S; Prado-Alcala, R A

    2015-01-01

    Aging-related major neurocognitive disorder (NCD), formerly named dementia, comprises of the different acquired diseases whose primary deficit is impairment in cognitive functions such as complex attention, executive function, learning and memory, language, perceptual/motor skills, and social cognition, and that are related to specific brain regions and/or networks. According to its etiology, the most common subtypes of major NCDs are due to Alzheimer' s disease (AD), vascular disease (VaD), Lewy body disease (LBD), and frontotemporal lobar degeneration (FTLD). These pathologies are frequently present in mixed forms, i.e., AD plus VaD or AD plus LBD, thus diagnosed as due to multiple etiologies. In this paper, the definitions, criteria, pathologies, subtypes and genetic markers for the most common age-related major NCD subtypes are summarized. The current diagnostic criteria consider cognitive decline leading to major NCD or dementia as a progressive degenerative process with an underlying neuropathology that begins before the manifestation of symptoms. Biomarkers associated with this asymptomatic phase are being developed as accurate risk factor and biomarker assessments are fundamental to provide timely treatment since no treatments to prevent or cure NCD yet exist. Biological fluid assessment represents a safer, cheaper and less invasive method compared to contrast imaging studies to predict NCD appearance. Genetic factors particularly have a key role not only in predicting development of the disease but also the age of onset as well as the presentation of comorbidities that may contribute to the disease pathology and trigger synergistic mechanisms which may, in turn, accelerate the neurodegenerative process and its resultant behavioral and functional disorders. PMID:25731625

  18. Support for learning goes beyond academic support: Voices of students with Asperger's disorder and attention deficit hyperactivity disorder.

    PubMed

    Bolic Baric, Vedrana; Hellberg, Kristina; Kjellberg, Anette; Hemmingsson, Helena

    2016-02-01

    The purpose of this study was to describe and explore the experiences of support at school among young adults with Asperger's disorder and attention deficit hyperactivity disorder and also to examine what support they, in retrospect, described as influencing learning. Purposive sampling was used to enroll participants. Data were collected through semi-structured interviews with 13 young adults aged between 20 and 29 years. A qualitative analysis, based on interpreting people's experiences, was conducted by grouping and searching for patterns in data. The findings indicate that the participants experienced difficulties at school that included academic, social, and emotional conditions, all of which could influence learning. Support for learning included small groups, individualized teaching methods, teachers who cared, and practical and emotional support. These clusters together confirm the overall understanding that support for learning aligns academic and psychosocial support. In conclusion, academic support combined with psychosocial support at school seems to be crucial for learning among students with Asperger's disorder and attention deficit hyperactivity disorder. PMID:25911093

  19. Age-related eye disease and gender.

    PubMed

    Zetterberg, Madeleine

    2016-01-01

    Worldwide, the prevalence of moderate to severe visual impairment and blindness is 285 millions, with 65% of visually impaired and 82% of all blind people being 50 years and older. Meta-analyses have shown that two out of three blind people are women, a gender discrepancy that holds true for both developed and developing countries. Cataract accounts for more than half of all blindness globally and gender inequity in access to cataract surgery is the major cause of the higher prevalence of blindness in women. In addition to gender differences in cataract surgical coverage, population-based studies on the prevalence of lens opacities indicate that women have a higher risk of developing cataract. Laboratory as well as epidemiologic studies suggest that estrogen may confer antioxidative protection against cataractogenesis, but the withdrawal effect of estrogen in menopause leads to increased risk of cataract in women. For the other major age-related eye diseases; glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy, data are inconclusive. Due to anatomic factors, angle closure glaucoma is more common in women, whereas the dominating glaucoma type; primary open-angle glaucoma (POAG), is more prevalent in men. Diabetic retinopathy also has a male predominance and vascular/circulatory factors have been implied both in diabetic retinopathy and in POAG. For AMD, data on gender differences are conflicting although some studies indicate increased prevalence of drusen and neovascular AMD in women. To conclude, both biologic and socioeconomic factors must be considered when investigating causes of gender differences in the prevalence of age-related eye disease. PMID:26508081

  20. Cognitive Patterns and Learning Disabilities in Cleft Palate Children with Verbal Deficits.

    ERIC Educational Resources Information Center

    Richman, Lynn C.

    1980-01-01

    The study examined patterns of cognitive ability in 57 cleft lip and palate children (ages 7 to 9) with verbal deficit, but without general intellectual retardation to evaluate whether the verbal disability displayed by these children was related primarily to a specific verbal expression deficit or a more general symbolic mediation problem.…

  1. Age-related hair pigment loss.

    PubMed

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. PMID:26370651

  2. Risk Factors for Age-Related Maculopathy

    PubMed Central

    Connell, Paul P.; Keane, Pearse A.; O'Neill, Evelyn C.; Altaie, Rasha W.; Loane, Edward; Neelam, Kumari; Nolan, John M.; Beatty, Stephen

    2009-01-01

    Age-related maculopathy (ARM) is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition. PMID:20339564

  3. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks

    PubMed Central

    Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/−) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/− mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/−, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/− mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey–Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/− mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/− failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/−. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/− mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome. PMID:26572653

  4. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks.

    PubMed

    Yang, Mu; Lewis, Freeman C; Sarvi, Michael S; Foley, Gillian M; Crawley, Jacqueline N

    2015-12-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/- mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/-, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/- mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey-Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/- mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/- failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/-. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/- mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome. PMID:26572653

  5. Comparative Effect of Lisinopril and Fosinopril in Mitigating Learning and Memory Deficit in Scopolamine-Induced Amnesic Rats

    PubMed Central

    Deb, Debasree; Bairy, K. L.; Nayak, Veena; Rao, Mohandas

    2015-01-01

    Lisinopril and fosinopril were compared on scopolamine-induced learning and memory deficits in rats. A total of eighty-four male Wistar rats were divided into seven groups. Group I received 2% gum acacia orally for 4 weeks, group II received normal saline, and group III received scopolamine (2 mg/kg/ip) as single dose. Groups IV and V received lisinopril ( 0.225 mg/kg and 0.45 mg/kg), while Groups VI and VII received fosinopril (0.90 mg/kg and 1.80 mg/kg), respectively, orally for four weeks, followed by scopolamine (2 mg/kg/ip) given 45 minutes prior to experimental procedure. Evaluation of learning and memory was assessed by using passive avoidance, Morris water maze, and elevated plus maze tests followed by analysis of hippocampal morphology and quantification of the number of surviving neurons. Scopolamine induced marked impairment of memory in behavioral tests which correlated with morphological changes in hippocampus. Pretreatment with fosinopril 1.80 mg/kg was found to significantly ameliorate the memory deficits and hippocampal degeneration induced by scopolamine. Fosinopril exhibits antiamnesic activity, indicating its possible role in preventing memory deficits seen in dementia though the precise mechanism underlying this effect needs to be further evaluated. PMID:26300914

  6. Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats.

    PubMed

    de Castro Vasques, Vilson; de Boer, Melissa Avila; Diligenti, Felipe; Brinco, Fabrício; Mallmann, Fabrício; Mello, Carlos Fernando; Wajner, Moacir

    2004-01-01

    Learning disability is a common feature of patients affected by maple syrup urine disease (MSUD). However, the pathomechanisms underlying learning deficit in this disorder are poorly known. In the present study, we investigated the effect of acute administration of the alpha-keto acids accumulating in MSUD into the hippocampus on the behavior of rats in the open field and in the inhibitory avoidance tasks. Adult male Wistar rats received intrahippocampal injections of alpha-ketoisocaproic acid (KIC, 8 micromol), alpha-ketoisovaleric acid (KIV, 5 micromol), alpha-keto-beta-methylvaleric acid (KMV, 5 micromol), or NaCl (8 micromol) (controls) immediately after or 10 min before training. Testing session was performed 24 h later. Posttraining administration of the keto acids had no effect on learning in the open-field task. In contrast, pretraining administration of KIV and KMV impaired habituation in the open field. Similarly, pretraining administration of KIC, KIV, and KMV affected rat performance in the inhibitory avoidance task, suggesting disruption of acquisition. The results indicate that the alpha-keto acids accumulating in MSUD induce learning deficits in aversive and nonaversive tasks. We therefore suggest that these findings may be related to the psychomotor delay/mental retardation observed in MSUD, and may indicate the contribution of increased brain concentrations of these organic acids to the pathophysiology of the neurological dysfunction of MSUD patients. PMID:14724056

  7. Distraction can reduce age-related forgetting.

    PubMed

    Biss, Renée K; Ngo, K W Joan; Hasher, Lynn; Campbell, Karen L; Rowe, Gillian

    2013-04-01

    In three experiments, we assessed whether older adults' generally greater tendency to process distracting information can be used to minimize widely reported age-related differences in forgetting. Younger and older adults studied and recalled a list of words on an initial test and again on a surprise test after a 15-min delay. In the middle (Experiments 1a and 2) or at the end (Experiment 3) of the delay, participants completed a 1-back task in which half of the studied words appeared as distractors. Across all experiments, older adults reliably forgot unrepeated words; however, older adults rarely or never forgot the words that had appeared as distractors, whereas younger adults forgot words in both categories. Exposure to distraction may serve as a rehearsal episode for older adults, and thus as a method by which general distractibility may be co-opted to boost memory. PMID:23426890

  8. Consequences of Age-Related Cognitive Declines

    PubMed Central

    Salthouse, Timothy

    2013-01-01

    Adult age differences in a variety of cognitive abilities are well documented, and many of those abilities have been found to be related to success in the workplace and in everyday life. However, increased age is seldom associated with lower levels of real-world functioning, and the reasons for this lab-life discrepancy are not well understood. This article briefly reviews research concerned with relations of age to cognition, relations of cognition to successful functioning outside the laboratory, and relations of age to measures of work performance and achievement. The final section discusses several possible explanations for why there are often little or no consequences of age-related cognitive declines in everyday functioning. PMID:21740223

  9. [Age-related changes of sensory system].

    PubMed

    Iwamoto, Toshihiko; Hanyu, Haruo; Umahara, Takahiko

    2013-10-01

    Pathological processes usually superimpose on physiological aging even in the sensory system including visual, hearing, olfactory, taste and somatosensory functions. Representative changes of age-related changes are presbyopia, cataracts, and presbyacusis. Reduced sense of smell is seen in normal aging, but the prominent reduction detected by the odor stick identification test is noticed especially in early stage of Alzheimer or Parkinson disease. Reduced sense of taste is well-known especially in salty sense, while the changes of sweet, bitter, and sour tastes are different among individuals. Finally, deep sensation of vibration and proprioception is decreased with age as well as superficial sensation (touch, temperature, pain). As a result, impaired sensory system could induce deterioration of the activities of daily living and quality of life in the elderly. PMID:24261198

  10. Macular carotenoids and age-related maculopathy.

    PubMed

    O'Connell, Eamonn; Neelam, Kumari; Nolan, John; Au Eong, Kah-Guan; Beatty, Stephan

    2006-11-01

    Lutein (L) and zeaxanthin (Z) are concentrated at the macula, where they are collectively known as macular pigment (MP), and where they are believed to play a major role in protecting retinal tissues against oxidative stress. Whilst the exact pathogenesis of age-related maculopathy (ARM) remains unknown, the disruption of cellular processes by oxidative stress may play an important role. Manipulation of dietary intake of L and Z has been shown to augment MP, thereby raising hopes that dietary supplementation with these carotenoids might prevent, delay, or modify the course of ARM. This article discusses the scientific rationale supporting the hypothesis that L and Z are protective against ARM, and presents the recent evidence germane to this theory. PMID:17160199

  11. Medical bioremediation of age-related diseases

    PubMed Central

    Mathieu, Jacques M; Schloendorn, John; Rittmann, Bruce E; Alvarez, Pedro JJ

    2009-01-01

    Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods. PMID:19358742

  12. [Epidemiology of age-related macular degeneration].

    PubMed

    Brandl, C; Stark, K J; Wintergerst, M; Heinemann, M; Heid, I M; Finger, R P

    2016-09-01

    Age-related macular degeneration (AMD) is the main cause of blindness in industrialized societies. Population-based epidemiological investigations generate important data on prevalence, incidence, risk factors, and future trends. This review summarizes the most important epidemiological studies on AMD with a focus on their transferability to Germany including existing evidence for the main risk factors for AMD development and progression. Future tasks, such as the standardization of grading systems and the use of recent retinal imaging technology in epidemiological studies are discussed. In Germany, epidemiological data on AMD are scarce. However, the need for epidemiological research in ophthalmology is currently being addressed by several recently started population-based studies. PMID:27541733

  13. Age-related macular degeneration: current treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: Although important progress has been made in understanding age-related macular degeneration (AMD), management of the disease continues to be a challenge. AMD research has led to a widening of available treatment options and improved prognostic perspectives. This essay reviews these treatment options. Design: Interpretative essay. Methods: Literature review and interpretation. Results: Current treatments to preserve vision in patients with non-exudative AMD include antioxidant vitamins and mineral supplementations. Exudative AMD is currently most often treated monthly with anti-VEGF intravitreal injections. However, investigators are beginning to experiment with combination therapy and surgical approaches in an attempt to limit the number of treatment and reduce the financial burden on the health care system. Conclusion: By better understanding the basis and pathogenesis of AMD, newer therapies will continue to be developed that target specific pathways in patients with AMD, with the hoped for outcome of better management of the disease and improved visual acuity. PMID:19668560

  14. Knowledge and Attitudes About Attention-Deficit/Hyperactivity Disorder and Specific Learning Disorder in an Urban Indian Population.

    PubMed

    Mukherjee, Sayantani; Shah, Henal R; Ramanathan, Seethalakshmi; Dewan, Mantosh

    2016-06-01

    Attention-deficit/hyperactivity disorder (ADHD) and specific learning disorders (SLDs) are an important cause of scholastic backwardness among children and often go unrecognized. Few studies have examined knowledge and attitudes toward ADHD and SLD among school-aged children. To address this deficit, 120 school-aged children, attending a child guidance clinic in Mumbai, were interviewed using a questionnaire that examined children's knowledge and attitudes about ADHD and SLD. The results were compared both qualitatively and quantitatively with a frequently occurring medical illness, common cold. Approximately 80% to 100% of children were aware of their illness; however, a large variation was noted in the proportion of children (15%-80%) who could describe their symptoms, provide accurate attributions for their illness, and identify treatment modalities. Children with ADHD reported greater control over their illness. The study identified a significant lack of knowledge about ADHD and SLD among school-aged children in India and discusses implications of this finding. PMID:27101024

  15. Age-Related Neurochemical Changes in the Vestibular Nuclei

    PubMed Central

    Smith, Paul F.

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa’s ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  16. Age-Related Neurochemical Changes in the Vestibular Nuclei.

    PubMed

    Smith, Paul F

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa's ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  17. Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Prendergast, M. A.; Terry, A. V. Jr

    1999-01-01

    performance, or in tests of general locomotor activity. Furthermore, latencies to select a lever in the DSDT were not affected. These results suggest that PF-68 induced deficits in learning and memory without confounding peripheral motor, sensory, or motivational effects at the tested doses. Furthermore, none of the doses induced a conditioned taste aversion to a novel 0.1% saccharin solution indicating a lack of nausea or gastrointestinal malaise induced by the compound. The data indicate that increases in neuronal plasma membrane order may have significant effects on neurotransmitter function as well as learning and memory processes. Furthermore, compounds such as PF-68 may also offer novel tools for studying the role of neuronal PMO in mnemonic processes and changes in PMO resulting from age-related disorders such as AD.

  18. Plasma Membrane Ordering Agent Pluronic F-68 (PF-68) Reduces Neurotransmitter Uptake and Release and Produces Learning and Memory Deficits in Rats

    PubMed Central

    Clarke, Mark S.F.; Prendergast, Mark A.; Terry, Alvin V.

    1999-01-01

    performance, or in tests of general locomotor activity. Furthermore, latencies to select a lever in the DSDT were not affected. These results suggest that PF-68 induced deficits in learning and memory without confounding peripheral motor, sensory, or motivational effects at the tested doses. Furthermore, none of the doses induced a conditioned taste aversion to a novel 0.1% saccharin solution indicating a lack of nausea or gastrointestinal malaise induced by the compound. The data indicate that increases in neuronal plasma membrane order may have significant effects on neurotransmitter function as well as learning and memory processes. Furthermore, compounds such as PF-68 may also offer novel tools for studying the role of neuronal PMO in mnemonic processes and changes in PMO resulting from age-related disorders such as AD. PMID:10641767

  19. DRYAD and ADH: Further comments on explaining age-related differences in memory.

    PubMed

    Naveh-Benjamin, Moshe; Smyth, Andrea C

    2016-02-01

    Recently, Smyth and Naveh-Benjamin (2016) questioned some of the main assumptions/hypotheses of DRYAD (or density of representations yields age-related deficits), a global-deficit model of aging and memory judgments (Benjamin, 2010; Benjamin et al., 2012). Smyth and Naveh-Benjamin (2016) provided empirical evidence that seems incompatible with DRYAD, but that fits the associative deficit hypothesis (ADH; Naveh-Benjamin, 2000), 1 specific-deficit theoretical view. In response, Aaron Benjamin (2016) offered a discussion of the complementary strengths and weaknesses of the DRYAD and the ADH, and the potential ways they might work together. We agree with many of his comments, but are not convinced that DRYAD is able to explain basic replicable empirical evidence of the type mentioned in Smyth and Naveh-Benjamin (2016). We discuss the reasons why we are not fully convinced by the demonstration of DRYAD's simulation of results presented in Benjamin (2016) and then present an implementation of ADH in a computationally based age-related impaired neuromodulation approach that was shown to simulate the basic empirical results of age-related associative memory deficits. We also discuss the issues of parsimony of theories and the appropriate type of representation, in the context of global versus specific deficits theoretical views. Finally, we show that the ADH's take on the distinction between items and associations has been adopted by some global computational models of memory. We believe that considerations of the above issues and others raised by Benjamin (2016) can lead to fruitful discussions that will benefit both theory development and existing knowledge of aging and memory. PMID:26866588

  20. Procedural learning deficits in specific language impairment (SLI): a meta-analysis of serial reaction time task performance.

    PubMed

    Lum, Jarrad A G; Conti-Ramsden, Gina; Morgan, Angela T; Ullman, Michael T

    2014-02-01

    Meta-analysis and meta-regression were used to evaluate whether evidence to date demonstrates deficits in procedural memory in individuals with specific language impairment (SLI), and to examine reasons for inconsistencies of findings across studies. The Procedural Deficit Hypothesis (PDH) proposes that SLI is largely explained by abnormal functioning of the frontal-basal ganglia circuits that support procedural memory. It has also been suggested that declarative memory can compensate for at least some of the problems observed in individuals with SLI. A number of studies have used Serial Reaction Time (SRT) tasks to investigate procedural learning in SLI. In this report, results from eight studies that collectively examined 186 participants with SLI and 203 typically-developing peers were submitted to a meta-analysis. The average mean effect size was .328 (CI95: .071, .584) and was significant. This suggests SLI is associated with impairments of procedural learning as measured by the SRT task. Differences among individual study effect sizes, examined with meta-regression, indicated that smaller effect sizes were found in studies with older participants, and in studies that had a larger number of trials on the SRT task. The contributions of age and SRT task characteristics to learning are discussed with respect to impaired and compensatory neural mechanisms in SLI. PMID:24315731

  1. The utility of math difficulties, internalized psychopathology, and visual-spatial deficits to identify children with the nonverbal learning disability syndrome: evidence for a visualspatial disability.

    PubMed

    Forrest, Bonny J

    2004-06-01

    This study examined the criteria currently employed to identify children with the nonverbal learning disability syndrome (NVLD). The most widely accepted definition of NVLD relies on deficits in visual-spatial-organizational, tactile-perceptual, psychomotor, and nonverbal problem-solving skills. These deficits are believed to coexist with strengths in rote verbal learning, phoneme-grapheme matching, verbal output, and verbal classification. The combination of these assets and deficits has been hypothesized to lead to psychosocial and academic problems, including difficulties with mathematics and increased rates of psychopathology. This study compared performance of three groups of children: those with NVLD, those with verbal learning disabilities (VLD), and controls. The results show that the criteria currently employed to identify children with NVLD may not adequately differentiate them. In contrast to previous findings, the study reveals that children with NVLD can demonstrate good math abilities when performing certain types of math tasks, especially those that draw on their robust verbal skills. Also in contrast to most previous findings, in this study children with NVLD (and normal controls) demonstrated lower rates of psychopathology than children with VLD. Finally, for children with NVLD it appears that their visual-perceptual deficits may include a primary deficit in locating objects in space. Based in part on the findings of this study, it may be helpful for diagnostic and treatment purposes to reserve the term Nonverbal Learning Disability for children whose visual-spatial deficits are primary and severe enough to affect academic performance in subjects such as written mathematics. Given the integral nature of social relations in children's lives, a separate category (e.g., social processing disorder) could be created for children whose social skills deficits are primary and impair their social interactions. A broader nonverbal learning model or syndrome

  2. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period

    PubMed Central

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  3. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period.

    PubMed

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  4. Improvement of Word Problem Solving and Basic Mathematics Competencies in Students with Attention Deficit/Hyperactivity Disorder and Mathematical Learning Difficulties

    ERIC Educational Resources Information Center

    González-Castro, Paloma; Cueli, Marisol; Areces, Débora; Rodríguez, Celestino; Sideridis, Georgios

    2016-01-01

    Problem solving represents a salient deficit in students with mathematical learning difficulties (MLD) primarily caused by difficulties with informal and formal mathematical competencies. This study proposes a computerized intervention tool, the integrated dynamic representation (IDR), for enhancing the early learning of basic mathematical…

  5. Involvement of dopamine D1 receptors of the hippocampal dentate gyrus in spatial learning and memory deficits in a rat model of vascular dementia.

    PubMed

    Wan, P; Wang, S; Zhang, Y; Lv, J; Jin, Q H

    2014-09-01

    We investigated the involvement of dopamine (DA) and its D1 receptors of the hippocampal dentate gyrus (DG) in spatial learning and memory deficits in a rat model of vascular dementia (VD) established by permanent bilateral carotid occlusion. Spatial learning and memory abilities of rats were measured by Morris water maze, and extracellular concentrations of DA in the DG were determined by in vivo microdialysis. The DA concentrations in the DG decreased in the VD rats compared with sham-operated group. Microinjection of SFK38393 (D1 receptor agonist) into the DG attenuates spatial learning and memory deficits in the VD rats. PMID:25272945

  6. Age-related macular degeneration: choroidal ischaemia?

    PubMed Central

    Coleman, D Jackson; Silverman, Ronald H; Rondeau, Mark J; Lloyd, Harriet O; Khanifar, Aziz A; Chan, R V Paul

    2013-01-01

    Aim Our aim is to use ultrasound to non-invasively detect differences in choroidal microarchitecture possibly related to ischaemia among normal eyes and those with wet and dry age-related macular degeneration (AMD). Design Prospective case series of subjects with dry AMD, wet AMD and age-matched controls. Methods Digitised 20 MHz B-scan radiofrequency ultrasound data of the region of the macula were segmented to extract the signal from the retina and choroid. This signal was processed by a wavelet transform, and statistical modelling was applied to the wavelet coefficients to examine differences among dry, wet and non-AMD eyes. Receiver operating characteristic (ROC) analysis was used to evaluate a multivariate classifier. Results In the 69 eyes of 52 patients, 18 did not have AMD, 23 had dry AMD and 28 had wet AMD. Multivariate models showed statistically significant differences between groups. Multiclass ROC analysis of the best model showed an excellent volume-under-curve of 0.892±0.17. The classifier is consistent with ischaemia in dry AMD. Conclusions Wavelet augmented ultrasound is sensitive to the organisational elements of choroidal microarchitecture relating to scatter and fluid tissue boundaries such as seen in ischaemia and inflammation, allowing statistically significant differentiation of dry, wet and non-AMD eyes. This study further supports the association of ischaemia with dry AMD and provides a rationale for treating dry AMD with pharmacological agents to increase choroidal perfusion. ClinicalTrials.gov registration NCT00277784. PMID:23740965

  7. Statistical physics of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer disease and Parkinson disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin in the aging RPE. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the RPE the larger ones become fixed and grow by aggregation.

  8. Physics of Age Related Macular Degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    2009-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer's disease, and Parkinson's disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. In this talk I will discuss a model of non-equilibrium cluster growth that we have developed for studying the formation and growth of lipofuscin in AMD [K.I. Mazzitello, C.M. Arizmendi, Fereydoon Family, H. E. Grossniklaus, Physical Review E (2009)]. I will also present an overview of our theoretical and computational efforts in modeling some other aspects of the physics of AMD, including CNV and the breakdown of Bruch's membrane [Ongoing collaboration with Abbas Shirinifard and James A. Glazier, Biocomplexity Institute and Department of Physics, Indiana University, Y. Jiang, Los Alamos, and Hans E. Grossniklaus, Department of Ophthalmology, Emory University].

  9. Age-related crosslink in skin collagen

    SciTech Connect

    Yamauchi, M.; Mechanic, G.

    1986-05-01

    A stable crosslinking amino acid was isolated from mature bovine skin collagen and its structure was identified as histidinohydroxylysinonorleucine (HHL) using fast atom bombardment mass spectrometry and /sup 1/H, /sup 13/C-NMR. This newly identified crosslink has a linkage between C-2 histidine and C-6 of lysine in the latter's portion of hydroxylysinonorleucine. Quantitative studies using various aged samples of cow and human skin collagen indicated that this acid-heat stable nonreducible compound was the major age-related crosslink. In case of cow skin collagen, for example, during early embryonic development (3 and 5 month old embryos) the content of HHL stayed less than 0.01 residue/mole of collagen, however from the middle of gestation period (7 month old embryo) through the maturation stage it showed rapid increase with age and reached approximately 0.5 residues/mole of collagen in the 3 year old animal. Small increments (up to 0.65 res/mole of collagen) were observed in the 9 year old cow. The amounts of the crosslink unlike pyridinoline do not decrease with aging. Similar patterns were observed in human skin collagen.

  10. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  11. Pairing Cholinergic Enhancement with Perceptual Training Promotes Recovery of Age-Related Changes in Rat Primary Auditory Cortex

    PubMed Central

    Voss, Patrice; Thomas, Maryse; Chou, You Chien; Cisneros-Franco, José Miguel; Ouellet, Lydia; de Villers-Sidani, Etienne

    2016-01-01

    We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible. PMID:27057359

  12. Pairing Cholinergic Enhancement with Perceptual Training Promotes Recovery of Age-Related Changes in Rat Primary Auditory Cortex.

    PubMed

    Voss, Patrice; Thomas, Maryse; Chou, You Chien; Cisneros-Franco, José Miguel; Ouellet, Lydia; de Villers-Sidani, Etienne

    2016-01-01

    We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible. PMID:27057359

  13. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments

  14. GENETICS OF HUMAN AGE RELATED DISORDERS.

    PubMed

    Srivastava, I; Thukral, N; Hasija, Y

    2015-01-01

    Aging is an inevitable biological phenomenon. The incidence of age related disorders (ARDs) such as cardiovascular diseases, cancer, arthritis, dementia, osteoporosis, diabetes, neurodegenerative diseases increase rapidly with aging. ARDs are becoming a key social and economic trouble for the world's elderly population (above 60 years), which is expected to reach 2 billion by 2050. Advancement in understanding of genetic associations, particularly through genome wide association studies (GWAS), has revealed a substantial contribution of genes to human aging and ARDs. In this review, we have focused on the recent understanding of the extent to which genetic predisposition may influence the aging process. Further analysis of the genetic association studies through pathway analysis several genes associated with multiple ARDs have been highlighted such as apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), cadherin 13 (CDH13), CDK5 regulatory subunit associated protein 1 (CDKAL-1), methylenetetrahydrofolate reductase (MTHFR), disrupted in schizophrenia 1 (DISC1), nitric oxide synthase 3 (NOS3), paraoxonase 1 (PON1), indicating that these genes could play a pivotal role in ARD causation. These genes were found to be significantly enriched in Jak-STAT signalling pathway, asthma and allograft rejection. Further, interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), estrogen receptor1 (ESR1), transforming growth factor, beta 1(TGFB1) and calmodulin 1 (CALM1) were found to be highly interconnected in network analysis. We believe that extensive research on the presence of common genetic variants among various ARDs may facilitate scientists to understand the biology behind ARDs causation. PMID:26856084

  15. Age-related decline of precision and binding in visual working memory.

    PubMed

    Peich, Muy-Cheng; Husain, Masud; Bays, Paul M

    2013-09-01

    Working memory declines with normal aging, but the nature of this impairment is debated. Studies based on detecting changes to arrays of visual objects have identified two possible components to age-related decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations (bindings) between individual object features. However, some investigations have reported intact binding with aging, and specific deficits arising only in Alzheimer's disease. Here, using a recently developed continuous measure of recall fidelity, we tested the precision with which adults of different ages could reproduce from memory the orientation and color of a probed array item. The results reveal a further component of cognitive decline: an age-related decrease in the resolution with which visual information can be maintained in working memory. This increase in recall variability with age was strongest under conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older participants were more likely to incorrectly report one of the unprobed items in memory, consistent with an age-related increase in misbinding. These results indicate a systematic decline with age in working memory resources that can be recruited to store visual information. The paradigm presented here provides a sensitive index of both memory resolution and feature binding, with the potential for assessing their modulation by interventions. The findings have implications for understanding the mechanisms underpinning working memory deficits in both health and disease. PMID:23978008

  16. Work Injury Risk Among Young People With Learning Disabilities and Attention-Deficit/Hyperactivity Disorder in Canada

    PubMed Central

    Pole, Jason D.

    2009-01-01

    Objectives. We sought to gain a better understanding of the relationship between learning disabilities, attention-deficit/hyperactivity disorder (ADHD), and risk of occupational injury among young workers. Methods. We assessed 15- to 24-year-old workers (n = 14 379) from cycle 2.1 of the Canadian Community Health Survey (CCHS). We gathered data on demographic characteristics, work-related factors, and presence of learning disabilities or ADHD. We conducted a multivariate logistic regression analysis to assess occurrences of medically attended work injuries. Results. There was an 89% adjusted increase in work injury risk among workers with self-reported dyslexia (a type of learning disability) relative to workers reporting no learning disabilities, although this result did not meet traditional statistical significance criteria. Being out of school, either with or without a high school diploma, was associated with a significantly increased risk of work injury, even after control for a number of demographic and work-related variables. Conclusions. Our findings underscore the notion that individual differences salient in the education system (e.g., learning disabilities, school dropout) need to be integrated into conceptual models of injury risk among young workers. PMID:19542044

  17. Evaluation of the Double-Deficit Hypothesis in College Students Referred for Learning Difficulties

    ERIC Educational Resources Information Center

    Cirino, Paul T.; Israelian, Marlyne K.; Morris, Mary K.; Morris, Robin D.

    2005-01-01

    The present study explored the double-deficit hypothesis (DDH) in a sample of 146 college students with and without reading disabilities (RD). The results indicated that although both phonological awareness (PA) and visual naming speed (VNS) contributed to performance on measures of decoding and comprehension, their relative contribution was…

  18. Learning to "Talk the Talk": The Relationship of Psychopathic Traits to Deficits in Empathy across Childhood

    ERIC Educational Resources Information Center

    Dadds, Mark R.; Hawes, David J.; Frost, Aaron D. J.; Vassallo, Shane; Bunn, Paul; Hunter, Kirsten; Merz, Sabine

    2009-01-01

    Background: Psychopathy is characterised by profound deficits in the human tendency to feel and care about what other people feel, often known as "affective empathy". On the other hand, the psychopath often has intact "cognitive" empathy skills, that is, he is able to describe what and why other people feel, even if he does not share or care about…

  19. Touchscreen-Based Cognitive Tasks Reveal Age-Related Impairment in a Primate Aging Model, the Grey Mouse Lemur (Microcebus murinus)

    PubMed Central

    2014-01-01

    Mouse lemurs are suggested to represent promising novel non-human primate models for aging research. However, standardized and cross-taxa cognitive testing methods are still lacking. Touchscreen-based testing procedures have proven high stimulus control and reliability in humans and rodents. The aim of this study was to adapt these procedures to mouse lemurs, thereby exploring the effect of age. We measured appetitive learning and cognitive flexibility of two age groups by applying pairwise visual discrimination (PD) and reversal learning (PDR) tasks. On average, mouse lemurs needed 24 days of training before starting with the PD task. Individual performances in PD and PDR tasks correlate significantly, suggesting that individual learning performance is unrelated to the respective task. Compared to the young, aged mouse lemurs showed impairments in both PD and PDR tasks. They needed significantly more trials to reach the task criteria. A much higher inter-individual variation in old than in young adults was revealed. Furthermore, in the PDR task, we found a significantly higher perseverance in aged compared to young adults, indicating an age-related deficit in cognitive flexibility. This study presents the first touchscreen-based data on the cognitive skills and age-related dysfunction in mouse lemurs and provides a unique basis to study mechanisms of inter-individual variation. It furthermore opens exciting perspectives for comparative approaches in aging, personality, and evolutionary research. PMID:25299046

  20. Inhibitory Effects of Eucommia ulmoides Oliv. Bark on Scopolamine-Induced Learning and Memory Deficits in Mice

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Joo, Hyun-Joong; Lee, Seok-Yong; Jang, Choon-Gon

    2013-01-01

    Eucommia ulmoides Oliv. Bark (EUE) is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia as well as to promote longevity. In this study, we tested the effects of EUE aqueous extract in graded doses to protect and enhance cognition in scopolamine-induced learning and memory impairments in mice. EUE significantly improved the impairment of short-term or working memory induced by scopolamine in the Y-maze and significantly reversed learning and memory deficits in mice as measured by the passive avoidance and Morris water maze tests. One day after the last trial session of the Morris water maze test (probe trial session), EUE dramatically increased the latency time in the target quadrant in a dose-dependent manner. Furthermore, EUE significantly inhibited acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus and frontal cortex in a dose-dependent manner. EUE also markedly increased brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP element binding protein (CREB) in the hippocampus of scopolamine-induced mice. Based on these findings, we suggest that EUE may be useful for the treatment of cognitive deficits, and that the beneficial effects of EUE are mediated, in part, by cholinergic signaling enhancement and/or protection. PMID:24404337

  1. Changes in striatal procedural memory coding correlate with learning deficits in a mouse model of Huntington disease.

    PubMed

    Cayzac, Sebastien; Delcasso, Sebastien; Paz, Vietminh; Jeantet, Yannick; Cho, Yoon H

    2011-05-31

    In hereditary neurodegenerative Huntington disease (HD), early cognitive impairments before motor deficits have been hypothesized to result from dysfunction in the striatum and cortex before degeneration. To test this hypothesis, we examined the firing properties of single cells and local field activity in the striatum and cortex of pre-motor-symptomatic R6/1 transgenic mice while they were engaged in a procedural learning task, the performance on which typically depends on the integrity of striatum and basal ganglia. Here, we report that a dramatically diminished recruitment of the vulnerable striatal projection cells, but not local interneurons, of R6/1 mice in coding for the task, compared with WT littermates, is associated with severe deficits in procedural learning. In addition, both the striatum and cortex in these mice showed a unique oscillation at high γ-frequency. These data provide crucial information on the in vivo cellular processes in the corticostriatal pathway through which the HD mutation exerts its effects on cognitive abilities in early HD. PMID:21576479

  2. Endothelin-1-induced mini-stroke in the dorsal hippocampus or lateral amygdala results in deficits in learning and memory.

    PubMed

    Sheng, Tao; Zhang, Xueting; Wang, Shaoli; Zhang, Jingyun; Lu, Wei; Dai, Yifan

    2015-09-01

    Functional and structural alterations in brain connectivity associated with brain ischemia have been extensively studied. However, the mechanism whereby local ischemia in deep brain region affect brain functions is still unknown. Here, we first established a mini-stroke model by infusion of endothelin-1 (ET-1) into the dorsal hippocampus or the lateral amygdala, and then investigated how these mini-infarcts affected brain functions associated with these regions. We found that rats with ET-1 infusion showed deficit in recall of contextual fear memory, but not in learning process and recall of tone fear memory. In novel object task, ET-1 in the hippocampus also eliminated object identity memory. ET-1 in the lateral amygdale affected acquisition of fear conditioning and disrupted retention of tone-conditioned fear, but did not impair retention of contextual fear. These findings suggest that ET-1-induced mini-infarct in deep brain area leads to functional deficits in learning and memory associated with these regions. PMID:26445569

  3. Association of Age Related Macular Degeneration and Age Related Hearing Impairment

    PubMed Central

    Ghasemi, Hassan; Pourakbari, Malihe Shahidi; Entezari, Morteza; Yarmohammadi, Mohammad Ebrahim

    2016-01-01

    Purpose: To evaluate the association between age-related macular degeneration (ARMD) and sensory neural hearing impairment (SHI). Methods: In this case-control study, hearing status of 46 consecutive patients with ARMD were compared with 46 age-matched cases without clinical ARMD as a control group. In all patients, retinal involvements were confirmed by clinical examination, fluorescein angiography (FA) and optical coherence tomography (OCT). All participants were examined with an otoscope and underwent audiological tests including pure tone audiometry (PTA), speech reception threshold (SRT), speech discrimination score (SDS), tympanometry, reflex tests and auditory brainstem response (ABR). Results: A significant (P = 0.009) association was present between ARMD, especially with exudative and choroidal neovascularization (CNV) components, and age-related hearing impairment primarily involving high frequencies. Patients had higher SRT and lower SDS against anticipated presbycusis than control subjects. Similar results were detected in exudative, CNV and scar patterns supporting an association between late ARMD with SRT and SDS abnormalities. ABR showed significantly prolonged wave I and IV latency times in ARMD (P = 0.034 and 0.022, respectively). Average latency periods for wave I in geographic atrophy (GA) and CNV, and that for wave IV in drusen patterns of ARMD were significantly higher than controls (P = 0.030, 0.007 and 0.050, respectively). Conclusion: The association between ARMD and age-related SHI may be attributed to common anatomical components such as melanin in these two sensory organs. PMID:27195086

  4. Age-Related Changes in the Misinformation Effect.

    ERIC Educational Resources Information Center

    Sutherland, Rachel; Hayne, Harlene

    2001-01-01

    Two experiments examined relation between age-related changes in retention and age-related changes in the misinformation effect. Found large age-related retention differences when participants were interviewed immediately and after 1 day, but after 6 weeks, differences were minimal. Exposure to misleading information increased commission errors.…

  5. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  6. Attention deficits and hyperactivity–impulsivity: What have we learned, what next?

    PubMed Central

    NIGG, JOEL T.

    2015-01-01

    The domains of self-regulation, self-control, executive function, inattention, and impulsivity cut across broad swathes of normal and abnormal development. Attention-deficit/hyperactivity disorder is a common syndrome that encompasses a portion of these domains. In the past 25 years research on attention-deficit/hyperactivity disorder has been characterized by dramatic advances in genetic, neural, and neuropsychological description of the syndrome as well as clarification of its multidimensional phenotypic structure. The limited clinical applicability of these research findings poses the primary challenge for the next generation. It is likely that clinical breakthroughs will require further refinement in describing heterogeneity or clinical/biological subgroups, renewed focus on the environment in the form of etiological events as well as psychosocial contexts of development, and integration of both with biological understanding. PMID:24342852

  7. Association between dietary behaviors and attention-deficit/hyperactivity disorder and learning disabilities in school-aged children.

    PubMed

    Park, Subin; Cho, Soo-Churl; Hong, Yun-Chul; Oh, Se-Young; Kim, Jae-Won; Shin, Min-Sup; Kim, Boong-Nyun; Yoo, Hee-Jeong; Cho, In-Hee; Bhang, Soo-Young

    2012-08-15

    We aimed to comprehensively investigate the associations between a wide range of measures of dietary behaviors and learning disabilities and attention-deficit/hyperactivity disorder (ADHD) in community-dwelling Korean children in order to generate hypotheses for future work. The present study included 986 children [507 boys, 479 girls; mean (S.D.) age=9.1 (0.7) years] recruited from five South Korean cities. Children's dietary behaviors were assessed by the mini-dietary assessment (MDA) for Koreans. It consists of ten items to assess the level of intake of dairy products, high-protein foods, vegetables, fried foods, fatty meats, salt, and sweetened desserts and whether the subject is eating three regular meals and has a balanced diet. Learning disability was assessed via the Learning Disability Evaluation Scale (LDES). ADHD was assessed via the Diagnostic Interview Schedule for Children version-IV and the ADHD rating scale, and ADHD-related behavioral problems were assessed via the Child Behavior Checklist. After adjusting for potential confounders, a high intake of sweetened desserts, fried food, and salt is associated with more learning, attention, and behavioral problems, whereas a balanced diet, regular meals, and a high intake of dairy products and vegetables is associated with less learning, attention, and behavioral problems. Our data suggest that existing encouraged dietary habits mostly have beneficial effects on learning, attention, and behavioral problems in Korean children. These findings are in general the same results in other studies on ADHD children in other countries. However, the cross-sectional study design prevents our ability to assess causal relationships. PMID:22999993

  8. Age-related decline in global form suppression.

    PubMed

    Wiegand, Iris; Finke, Kathrin; Töllner, Thomas; Starman, Kornelija; Müller, Hermann J; Conci, Markus

    2015-12-01

    Visual selection of illusory 'Kanizsa' figures, an assembly of local elements that induce the percept of a whole object, is facilitated relative to configurations composed of the same local elements that do not induce a global form--an instance of 'global precedence' in visual processing. Selective attention, i.e., the ability to focus on relevant and ignore irrelevant information, declines with increasing age; however, how this deficit affects selection of global vs. local configurations remains unknown. On this background, the present study examined for age-related differences in a global-local task requiring selection of either a 'global' Kanizsa- or a 'local' non-Kanizsa configuration (in the presence of the respectively other configuration) by analyzing event-related lateralizations (ERLs). Behaviorally, older participants showed a more pronounced global-precedence effect. Electrophysiologically, this effect was accompanied by an early (150-225 ms) 'positivity posterior contralateral' (PPC), which was elicited for older, but not younger, participants, when the target was a non-Kanizsa configuration and the Kanizsa figure a distractor (rather than vice versa). In addition, timing differences in the subsequent (250-500 ms) posterior contralateral negativity (PCN) indicated that attentional resources were allocated faster to Kanizsa, as compared to non-Kanizsa, targets in both age groups, while the allocation of spatial attention seemed to be generally delayed in older relative to younger age. Our results suggest that the enhanced global-local asymmetry in the older age group originated from less effective suppression of global distracter forms on early processing stages--indicative of older observers having difficulties with disengaging from a global default selection mode and switching to the required local state of attentional resolution. PMID:26498865

  9. Deficits in hippocampal-dependent transfer generalization learning accompany synaptic dysfunction in a mouse model of amyloidosis.

    PubMed

    Montgomery, Karienn S; Edwards, George; Levites, Yona; Kumar, Ashok; Myers, Catherine E; Gluck, Mark A; Setlow, Barry; Bizon, Jennifer L

    2016-04-01

    Elevated β-amyloid and impaired synaptic function in hippocampus are among the earliest manifestations of Alzheimer's disease (AD). Most cognitive assessments employed in both humans and animal models, however, are insensitive to this early disease pathology. One critical aspect of hippocampal function is its role in episodic memory, which involves the binding of temporally coincident sensory information (e.g., sights, smells, and sounds) to create a representation of a specific learning epoch. Flexible associations can be formed among these distinct sensory stimuli that enable the "transfer" of new learning across a wide variety of contexts. The current studies employed a mouse analog of an associative "transfer learning" task that has previously been used to identify risk for prodromal AD in humans. The rodent version of the task assesses the transfer of learning about stimulus features relevant to a food reward across a series of compound discrimination problems. The relevant feature that predicts the food reward is unchanged across problems, but an irrelevant feature (i.e., the context) is altered. Experiment 1 demonstrated that C57BL6/J mice with bilateral ibotenic acid lesions of hippocampus were able to discriminate between two stimuli on par with control mice; however, lesioned mice were unable to transfer or apply this learning to new problem configurations. Experiment 2 used the APPswe PS1 mouse model of amyloidosis to show that robust impairments in transfer learning are evident in mice with subtle β-amyloid-induced synaptic deficits in the hippocampus. Finally, Experiment 3 confirmed that the same transfer learning impairments observed in APPswePS1 mice were also evident in the Tg-SwDI mouse, a second model of amyloidosis. Together, these data show that the ability to generalize learned associations to new contexts is disrupted even in the presence of subtle hippocampal dysfunction and suggest that, across species, this aspect of hippocampal

  10. Developmental mercury exposure elicits acute hippocampal cell death, reductions in neurogenesis, and severe learning deficits during puberty.

    PubMed

    Falluel-Morel, Anthony; Sokolowski, Katie; Sisti, Helene M; Zhou, Xiaofeng; Shors, Tracey J; Dicicco-Bloom, Emanuel

    2007-12-01

    Normal brain development requires coordinated regulation of several processes including proliferation, differentiation, and cell death. Multiple factors from endogenous and exogenous sources interact to elicit positive as well as negative regulation of these processes. In particular, the perinatal rat brain is highly vulnerable to specific developmental insults that produce later cognitive abnormalities. We used this model to examine the developmental effects of an exogenous factor of great concern, methylmercury (MeHg). Seven-day-old rats received a single injection of MeHg (5 microg/gbw). MeHg inhibited DNA synthesis by 44% and reduced levels of cyclins D1, D3, and E at 24 h in the hippocampus, but not the cerebellum. Toxicity was associated acutely with caspase-dependent programmed cell death. MeHg exposure led to reductions in hippocampal size (21%) and cell numbers 2 weeks later, especially in the granule cell layer (16%) and hilus (50%) of the dentate gyrus defined stereologically, suggesting that neurons might be particularly vulnerable. Consistent with this, perinatal exposure led to profound deficits in juvenile hippocampal-dependent learning during training on a spatial navigation task. In aggregate, these studies indicate that exposure to one dose of MeHg during the perinatal period acutely induces apoptotic cell death, which results in later deficits in hippocampal structure and function. PMID:17760861

  11. Learning Disabilities and Attention-Deficit/Hyperactivity Disorder in Intelligent Well Educated Adults

    ERIC Educational Resources Information Center

    Guyer, Kenneth E.; Guyer, Barbara P.; Banks, Steven R.

    2008-01-01

    This retrospective study examined scores for 111 adult participants on the Wechsler Adult Intelligence Scale-Revised, the Wide Range Achievement Test-III and the Nelson-Denny Reading Test. All participants were referred to a university clinic for learning problems. The participants were diagnosed with a learning disability, an…

  12. Preserved motor learning after stroke is related to the degree of proprioceptive deficit

    PubMed Central

    Vidoni, Eric D; Boyd, Lara A

    2009-01-01

    Background Most motor learning theories posit that proprioceptive sensation serves an important role in acquiring and performing movement patterns. However, we recently demonstrated that experimental disruption of proprioception peripherally altered motor performance but not motor learning in humans. Little work has considered humans with central nervous system damage. The purpose of the present study was to specifically consider the relationship between proprioception and motor learning at the level of the central nervous system in humans. Methods Individuals with chronic (> 6mo) stroke and similarly aged healthy participants performed a continuous tracking task with an embedded repeating segment over two days and returned on a third day for retention testing. A limb-position matching task was used to quantify proprioception. Results Individuals with chronic stroke demonstrated the ability to learn to track a repeating segment; however, the magnitude of behavioral change associated with repeated segment-specific learning was directly related to the integrity of central proprioceptive processing as indexed by our limb-position matching task. Conclusion These results support the importance of central sensory processing for motor learning. The confirmation of central sensory processing dependent motor learning in humans is discussed in the context of our prior report of preserved motor learning when sensation is disrupted peripherally. PMID:19715593

  13. Toward a Reconceptualization of Mathematical Learning Disabilities: A Focus on Difference Rather than Deficit

    ERIC Educational Resources Information Center

    Lewis, Katherine Elizabeth

    2011-01-01

    Students with mathematical learning disabilities (MLDs) experience persistent challenges learning even the most elementary mathematics. While prior research on MLDs has classified students on the basis of test scores and documented performance differences between groups, this dissertation focuses on the qualitative differences in individual…

  14. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    ERIC Educational Resources Information Center

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  15. Isolating Metamemory Deficits in the Self-Regulated Learning of Adults with ADHD

    ERIC Educational Resources Information Center

    Knouse, Laura E.; Anastopoulos, Arthur D.; Dunlosky, John

    2012-01-01

    ADHD in adulthood is associated with chronic academic impairments and problems with strategic memory encoding on standardized memory assessments, but little is known about self-regulated learning that might guide intervention. Objective: Examine the contribution of metamemory judgment accuracy and use of learning strategies to self-regulated…

  16. Learning Disabilities and Foreign-Language Difficulties: Deficit in Listening Skills?

    ERIC Educational Resources Information Center

    Ganschow, Leonore; Sparks, Richard

    1986-01-01

    Examination of case studies of four learning-disabled college students experiencing severe problems learning a foreign language suggested that all subjects had deficiencies in listening comprehension and concomitant difficulties with the audiolingual teaching method. Other characteristics of these students which may have caused learning…

  17. ABT-724 alleviated hyperactivity and spatial learning impairment in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder.

    PubMed

    Yin, Ping; Cao, Ai-Hua; Yu, Lin; Guo, Liang-Jing; Sun, Ruo-Peng; Lei, Ge-Fei

    2014-09-19

    Dysfunction of dopamine D4 receptor (D4R) is linked to attention-deficit/hyperactivity disorder (ADHD) as well as ADHD associated cognitive impairment. Here, we tested the possible therapeutic benefit of the D4R-selective agonist ABT-724 in adolescent spontaneously hypertensive rats (SHRs). ABT-724-treated SHRs were administered ABT-724 (0.04mg/kg, 0.16mg/kg or 0.64mg/kg) from postnatal day (P) 28 to P32. Control SHRs and Sprague-Dawley (SD) rats were injected with saline. Then two cohorts of rats were tested in the open field and Làt maze that measured locomotion and non-selective attention (NSA), respectively. Another cohort of rats was subjected to water maze task for evaluation of spatial learning and memory. We found that control SHRs displayed hyperactivity as well as impaired NSA and spatial learning compared with normotensive SD rats. ABT-724 (0.16 and 0.64mg/kg) treatment alleviated hyperactivity and spatial learning impairment in SHRs. No dose of ABT-724 tested altered NSA in SHRs. Our results raise the possibility that ABT-724 may be used as a therapeutic intervention for ADHD patients during adolescence. PMID:25128216

  18. Vascular Risk Factors and Diseases Modulate Deficits of Reward-Based Reversal Learning in Acute Basal Ganglia Stroke

    PubMed Central

    Wicking, Manon; Bellebaum, Christian; Hermann, Dirk M.

    2016-01-01

    Background Besides motor function, the basal ganglia have been implicated in feedback learning. In patients with chronic basal ganglia infarcts, deficits in reward-based reversal learning have previously been described. Methods We re-examined the acquisition and reversal of stimulus-stimulus-reward associations and acquired equivalence in eleven patients with acute basal ganglia stroke (8 men, 3 women; 57.8±13.3 years), whose performance was compared eleven healthy subjects of comparable age, sex distribution and education, who were recruited outside the hospital. Eleven hospitalized patients with a similar vascular risk profile as the stroke patients but without stroke history served as clinical control group. Results In a neuropsychological assessment 7±3 days post-stroke, verbal and spatial short-term and working memory and inhibition control did not differ between groups. Compared with healthy subjects, control patients with vascular risk factors exhibited significantly reduced performance in the reversal phase (F[2,30] = 3.47; p = 0.044; post-hoc comparison between risk factor controls and healthy controls: p = 0.030), but not the acquisition phase (F[2,30] = 1.01; p = 0.376) and the acquired equivalence (F[2,30] = 1.04; p = 0.367) tasks. In all tasks, the performance of vascular risk factor patients closely resembled that of basal ganglia stroke patients. Correlation studies revealed a significant association of the number of vascular risk factors with reversal learning (r = -0.33, p = 0.012), but not acquisition learning (r = -0.20, p = 0.121) or acquired equivalence (r = -0.22, p = 0.096). Conclusions The previously reported impairment of reward-based learning may be attributed to vascular risk factors and associated diseases, which are enriched in stroke patients. This study emphasizes the necessity of appropriate control subjects in cognition studies. PMID:27163585

  19. Prenatal choline supplementation attenuates spatial learning deficits of offspring rats exposed to low-protein diet during fetal period.

    PubMed

    Zhu, Cui-Hong; Wu, Ting; Jin, Yu; Huang, Bi-Xia; Zhou, Rui-Fen; Wang, Yi-Qin; Luo, Xiao-Lin; Zhu, Hui-Lian

    2016-06-01

    Prenatal intake of choline has been reported to lead to enhanced cognitive function in offspring, but little is known about the effects on spatial learning deficits. The present study examined the effects of prenatal choline supplementation on developmental low-protein exposure and its potential mechanisms. Pregnant female rats were fed either a normal or low-protein diet containing sufficient choline (1.1g/kg choline chloride) or supplemented choline (5.0g/kg choline chloride) until delivery. The Barnes maze test was performed at postnatal days 31-37. Choline and its metabolites, the synaptic structural parameters of the CA1 region in the brain of the newborn rat, were measured. The Barnes maze test demonstrated that prenatal low-protein pups had significantly greater error scale values, hole deviation scores, strategy scores and spatial search strategy and had lesser random search strategy values than normal protein pups (all P<.05). These alterations were significantly reversed by choline supplementation. Choline supplementation increased the brain levels of choline, betaine, phosphatidylethanolamine and phosphatidylcholine of newborns by 51.35% (P<.05), 33.33% (P<.001), 28.68% (P<.01) and 23.58% (P<.05), respectively, compared with the LPD group. Prenatal choline supplementation reversed the increased width of the synaptic cleft (P<.05) and decreased the curvature of the synaptic interface (P<.05) induced by a low-protein diet. Prenatal choline supplementation could attenuate the spatial learning deficits caused by prenatal protein malnutrition by increasing brain choline, betaine and phospholipids and by influencing the hippocampus structure. PMID:27142732

  20. Decision-making deficits in patients with chronic schizophrenia: Iowa Gambling Task and Prospect Valence Learning model

    PubMed Central

    Kim, Myung-Sun; Kang, Bit-Na; Lim, Jae Young

    2016-01-01

    Purpose Decision-making is the process of forming preferences for possible options, selecting and executing actions, and evaluating the outcome. This study used the Iowa Gambling Task (IGT) and the Prospect Valence Learning (PVL) model to investigate deficits in risk-reward related decision-making in patients with chronic schizophrenia, and to identify decision-making processes that contribute to poor IGT performance in these patients. Materials and methods Thirty-nine patients with schizophrenia and 31 healthy controls participated. Decision-making was measured by total net score, block net scores, and the total number of cards selected from each deck of the IGT. PVL parameters were estimated with the Markov chain Monte Carlo sampling scheme in OpenBugs and BRugs, its interface to R, and the estimated parameters were analyzed with the Mann–Whitney U-test. Results The schizophrenia group received significantly lower total net scores compared to the control group. In terms of block net scores, an interaction effect of group × block was observed. The block net scores of the schizophrenia group did not differ across the five blocks, whereas those of the control group increased as the blocks progressed. The schizophrenia group obtained significantly lower block net scores in the fourth and fifth blocks of the IGT and selected cards from deck D (advantageous) less frequently than the control group. Additionally, the schizophrenia group had significantly lower values on the utility-shape, loss-aversion, recency, and consistency parameters of the PVL model. Conclusion These results indicate that patients with schizophrenia experience deficits in decision-making, possibly due to failure in learning the expected value of each deck, and incorporating outcome experiences of previous trials into expectancies about options in the present trial. PMID:27175079

  1. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  2. Epigenetics: the neglected key to minimize learning and memory deficits in Down syndrome.

    PubMed

    Dekker, Alain D; De Deyn, Peter P; Rots, Marianne G

    2014-09-01

    Down syndrome (DS) is the most common genetic intellectual disability, caused by the triplication of the human chromosome 21 (HSA21). Although this would theoretically lead to a 1.5 fold increase in gene transcription, transcript levels of many genes significantly deviate. Surprisingly, the underlying cause of this gene expression variation has been largely neglected so far. Epigenetic mechanisms, including DNA methylation and post-translational histone modifications, regulate gene expression and as such might play a crucial role in the development of the cognitive deficits in DS. Various overexpressed HSA21 proteins affect epigenetic mechanisms and DS individuals are thus likely to present epigenetic aberrations. Importantly, epigenetic marks are reversible, offering a huge therapeutic potential to alleviate or cure certain genetic deficits. Current epigenetic therapies are already used for cancer and epilepsy, and might provide novel possibilities for cognition-enhancing treatment in DS as well. To that end, this review discusses the still limited knowledge on epigenetics in DS and describes the potential of epigenetic therapies to reverse dysregulated gene expression. PMID:24858130

  3. Theory of Planned Behavior Predicts Graduation Intentions of Canadian and Israeli Postsecondary Students with and without Learning Disabilities/Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Fichten, Catherine S.; Heiman, Tali; Jorgensen, Mary; Nguyen, Mai Nhu; Havel, Alice; King, Laura; Budd, Jillian; Amsel, Rhonda

    2016-01-01

    We tested the ability of Ajzen's Theory of Planned Behavior (TPB) model to predict intention to graduate among Canadian and Israeli students with and without a learning disability/attention deficit hyperactivity disorder (LD/ADHD). Results based on 1486 postsecondary students show that the model's predictors (i.e., attitude, subjective norms,…

  4. How Do Students with Attention-Deficit/Hyperactivity Disorders and Writing Learning Disabilities Differ from Their Nonlabeled Peers in the Ability to Compose Texts?

    ERIC Educational Resources Information Center

    Rodríguez, Celestino; Grünke, Matthias; González-Castro, Paloma; García, Trinidad; Álvarez-García, David

    2015-01-01

    This comparative study investigated the productivity and the process of written composition in students with and without disabilities between 8 and 16 years of age. Participants were assigned to four groups as follows: (a) 59 with both attention-deficit/hyperactivity disorders (ADHD) and writing learning disabilities (WLD), (b) 40 with ADHD, (c)…

  5. Asynchronous Online Access as an Accommodation on Students with Learning Disabilities and/or Attention-Deficit Hyperactivity Disorders in Postsecondary STEM Courses

    ERIC Educational Resources Information Center

    Graves, Laura; Asunda, Paul A.; Plant, Stacey J.; Goad, Chester

    2011-01-01

    The purpose of this study was to investigate whether asynchronous online access of course recordings was beneficial to students with learning disabilities (LD) and/or Attention Deficit/Hyperactivity Disorder (ADHD) enrolled in science, technology, engineering, and mathematics (STEM) courses. Data were collected through semi-structured interviews…

  6. Victimization by Bullying and Attachment to Parents and Teachers among Students Who Report Learning Disorders and/or Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Klomek, A. Brunstein; Kopelman-Rubin, D.; Al-Yagon, M.; Berkowitz, Ruth; Apter, A.; Mikulincer, M.

    2016-01-01

    This is the first study examining the association between victimization by bullying and attachment to both parents and teachers among students who report Learning Disorders (LD) and/or Attention Deficit Hyperactivity Disorder (ADHD). A total of 1,691 seventh- and eighth-grade students in six junior high schools completed questionnaires about…

  7. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    ERIC Educational Resources Information Center

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  8. Cognitive Performance Is Highly Sensitive to Prior Experience in Mice with a Learning and Memory Deficit: Failure Leads to More Failure

    ERIC Educational Resources Information Center

    Hebda-Bauer, Elaine K.; Watson, Stanley J.; Akil, Huda

    2005-01-01

    The impact of a previously successful or unsuccessful experience on the subsequent acquisition of a related task is not well understood. The nature of past experience may have even greater impact in individuals with learning deficits, as their cognitive processes can be easily disrupted. Mice with a targeted disruption of the [alpha] and [delta]…

  9. Mothers' Voices on the Internet: Stress, Support and Perceptions of Mothers of Children with Learning Disabilities and Attention Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Margalit, Malka; Raskind, Marshall H.; Higgins, Eleanor L.; Russo-Netzer, Pninit

    2010-01-01

    The goal of this study was to explore maternal stressors, needs, supports, perceptions, and self-identity as expressed by mothers of children with learning disabilities and/or attention deficit/ hyperactivity disorder (ADHD) in electronic messages posted on an Internet discussion board. The sample consisted of 316 mothers of children with learning…

  10. Diagnosed Attention Deficit Hyperactivity Disorder and Learning Disability: United States, 2004-2006. Data from the National Health Interview Survey. Vital and Health Statistics. Series 10, Number 237

    ERIC Educational Resources Information Center

    Pastor, Patricia N.; Reuben, Cynthia A.

    2008-01-01

    Objectives: This report presents national estimates of the prevalence of diagnosed attention deficit hyperactivity disorder (ADHD) and learning disability (LD) in U.S. children 6-17 years of age and describes the prevalence of these conditions for children with selected characteristics. The use of educational and health care services and the…

  11. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions.

    PubMed

    Delplace, Vianney; Payne, Samantha; Shoichet, Molly

    2015-12-10

    Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery. PMID:26435454

  12. Rats bred for helplessness exhibit positive reinforcement learning deficits which are not alleviated by an antidepressant dose of the MAO-B inhibitor deprenyl.

    PubMed

    Schulz, Daniela; Henn, Fritz A; Petri, David; Huston, Joseph P

    2016-08-01

    Principles of negative reinforcement learning may play a critical role in the etiology and treatment of depression. We examined the integrity of positive reinforcement learning in congenitally helpless (cH) rats, an animal model of depression, using a random ratio schedule and a devaluation-extinction procedure. Furthermore, we tested whether an antidepressant dose of the monoamine oxidase (MAO)-B inhibitor deprenyl would reverse any deficits in positive reinforcement learning. We found that cH rats (n=9) were impaired in the acquisition of even simple operant contingencies, such as a fixed interval (FI) 20 schedule. cH rats exhibited no apparent deficits in appetite or reward sensitivity. They reacted to the devaluation of food in a manner consistent with a dose-response relationship. Reinforcer motivation as assessed by lever pressing across sessions with progressively decreasing reward probabilities was highest in congenitally non-helpless (cNH, n=10) rats as long as the reward probabilities remained relatively high. cNH compared to wild-type (n=10) rats were also more resistant to extinction across sessions. Compared to saline (n=5), deprenyl (n=5) reduced the duration of immobility of cH rats in the forced swimming test, indicative of antidepressant effects, but did not restore any deficits in the acquisition of a FI 20 schedule. We conclude that positive reinforcement learning was impaired in rats bred for helplessness, possibly due to motivational impairments but not deficits in reward sensitivity, and that deprenyl exerted antidepressant effects but did not reverse the deficits in positive reinforcement learning. PMID:27163379

  13. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing.

    PubMed

    Tolfsen, Christina C; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V

    2011-04-15

    Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism. PMID:21430210

  14. Voluntary exercise does not ameliorate spatial learning and memory deficits induced by chronic administration of nandrolone decanoate in rats.

    PubMed

    Tanehkar, Fatemeh; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Sameni, Hamid Reza; Haghighi, Saeed; Miladi-Gorji, Hossien; Motamedi, Fereshteh; Akhavan, Maziar Mohammad; Bavarsad, Kowsar

    2013-01-01

    Chronic exposure to the anabolic androgenic steroids (AAS) nandrolone decanoate (ND) in supra-physiological doses is associated with learning and memory impairments. Given the well-known beneficial effects of voluntary exercise on cognitive functions, we examined whether voluntary exercise would improve the cognitive deficits induced by chronic administration of ND. We also investigated the effects of ND and voluntary exercise on hippocampal BDNF levels. The rats were randomly distributed into 4 experimental groups: the vehicle-sedentary group, the ND-sedentary group, the vehicle-exercise group, and the ND-exercise group. The vehicle-exercise and the ND-exercise groups were allowed to freely exercise in a running wheel for 15 days. The vehicle-sedentary and the ND-sedentary groups were kept sedentary for the same period. Vehicle or ND injections were started 14 days prior to the voluntary exercise and continued throughout the 15 days of voluntary exercise. After the 15-day period, the rats were trained and tested on a water maze spatial task using four trials per day for 5 consecutive days followed by a probe trial two days later. Exercise significantly improved performance during both the training and retention of the water maze task, and enhanced hippocampal BDNF. ND impaired spatial learning and memory, and this effect was not rescued by exercise. ND also potentiated the exercise-induced increase in hippocampal BDNF levels. These results seem to indicate that voluntary exercise is unable to improve the disruption of cognitive functions by chronic ND. Moreover, increased levels of BDNF may play a role in ND-induced impairments in learning and memory. The harmful effects of ND and other AAS on learning and memory should be taken into account when athletes decide to use AAS for performance or body image improvement. PMID:23068768

  15. The Therapeutic Effect of the Aqueous Extract of Boswellia Serrata on the Learning Deficit in Kindled Rats

    PubMed Central

    Jalili, Cyrus; Salahshoor, Mohammad Reza; Moradi, Sima; Pourmotabbed, Ali; Motaghi, Moslem

    2014-01-01

    Background: It has been reported that epilepsy is a disorder of the central nervous system that causes memory impairment. This study examines the role of the aqueous extract of Boswellia on the learning disability of the pentylenetetrazol (PTZ)-induced kindled rats. Methods: In this experimental study, 64 male rats were used. Kindling seizures were induced by three injections of 25 mg/kg of PTZ every 15 min. Control animals received normal saline instead. To evaluate the therapeutic effect of Boswellia extract on the PTZ-induced cognitive deficits, the aqueous extract (0, 0.1, 0.5 or 1 g/kg, i.p.) were administrated to all animals for three consecutive days. At 24 h later, passive avoidance learning of animals was examined using shuttle box apparatus, respectively. The time required for the animal stepping through the dark chamber was determined as step-through latency (STL). Data were subjected to the t-test and analysis of variance and followed by Tukey's test for multiple comparisons. Results: The STL of the kindled rats was significantly reduced compared with control ones (22/375 ± 4/19 for kindled and 295 ± 15/71 for control groups, respectively). Aqueous extract of Boswellia improved passive-avoidance learning ability in both control and PTZ-kindled animals (P < 0.05). Conclusions: The results can be stated that the Boswellia extract is offset by harmful effects of seizures on cognitive function and consumption of Boswellia extract increases the learning ability in epileptic animals. PMID:24932387

  16. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats.

    PubMed

    Deshmukh, Rahul; Kaundal, Madhu; Bansal, Vikas; Samardeep

    2016-07-01

    Oxidative stress has been implicated in cognitive decline as seen during normal aging and in sporadic Alzheimer's disease (AD). Caffeic acid, a polyphenolic compound, has been reported to possess potent antioxidant and neuroprotective properties. The role of caffeic acid in experimental dementia is not fully understood. Thus the present study was designed to investigate the therapeutic potential of caffeic acid in streptozotocin (STZ)-induced experimental dementia of Alzheimer's type in rats. Streptozotocin (STZ) was administered intracerebroventrically (ICV) on day 1 and 3 (3mg/kg, ICV bilaterally) in Wistar rats. Caffeic acid was administered (10, 20 and 40mg/kg/day p.o.) 1h following STZ infusion upto 21st day. Morris water maze and object recognition task were used to assess learning and memory in rats. Terminally, acetylcholinesterase (AChE) activity and the levels of oxido-nitrosative stress markers were determined in cortical and hippocampal brain regions of rats. STZ produced significant (p<0.001) learning and memory impairment, oxido-nitrosative stress and cholinergic deficit in rats. Whereas, caffeic acid treatment significantly (p<0.001) and dose dependently attenuated STZ induced behavioral and biochemical abnormalities in rats. The observed cognitive improvement following caffeic acid in STZ treated rats may be due to its antioxidant activity and restoration of cholinergic functions. Our results suggest the therapeutic potential of caffeic acid in cognitive disorders such as AD. PMID:27261577

  17. Kaolin-induced ventriculomegaly at weaning produces long-term learning, memory, and motor deficits in rats.

    PubMed

    Williams, Michael T; Braun, Amanda A; Amos-Kroohs, Robyn M; McAllister, James P; Lindquist, Diana M; Mangano, Francesco T; Vorhees, Charles V; Yuan, Weihong

    2014-06-01

    Ventriculomegaly occurs when there is imbalance between creation and absorption of cerebrospinal fluid (CSF); even when treated, long-term behavioral changes occur. Kaolin injection in the cisterna magna of rats produces an obstruction of CSF outflow and models one type of hydrocephalus. Previous research with this model shows that neonatal onset has mixed effects on Morris water maze (MWM) and motoric performance; we hypothesized that this might be because the severity of ventricular enlargement was not taken into consideration. In the present experiment, rats were injected with kaolin or saline on postnatal day (P)21 and analyzed in subgroups based on Evan's ratios (ERs) of the severity of ventricular enlargement at the end of testing to create 4 subgroups from least to most severe: ER0.4-0.5, ER0.51-0.6, ER0.61-0.7, and ER0.71-0.82, respectively. Locomotor activity (dry land and swimming), acoustic startle with prepulse inhibition (PPI), and MWM performance were tested starting on P28 (122cm maze) and again on P42 (244cm maze). Kaolin-treated animals weighed significantly less than controls at all times. Differences in locomotor activity were seen at P42 but not P28. On P28 there was an increase in PPI for all but the least severe kaolin-treated group, but no difference at P42 compared with controls. In the MWM at P28, all kaolin-treated groups had longer path lengths than controls, but comparable swim speeds. With the exception of the least severe group, probe trial performance was worse in the kaolin-treated animals. On P42, only the most severely affected kaolin-treated group showed deficits compared with control animals. This group showed no MWM learning and no memory for the platform position during probe trial testing. Swim speed was unaffected, indicating motor deficits were not responsible for impaired learning and memory. These findings indicate that kaolin-induced ventriculomegaly in rats interferes with cognition regardless of the final enlargement of

  18. KAOLIN-INDUCED VENTRICULOMEGALY AT WEANING PRODUCES LONG-TERM LEARNING, MEMORY, AND MOTOR DEFICITS IN RATS

    PubMed Central

    Williams, Michael T.; Braun, Amanda A.; Amos-Kroohs, Robyn; McAllister, James P.; Lindquist, Diana M.; Mangano, Francesco T.; Vorhees, Charles V.; Yuan, Weihong

    2014-01-01

    Ventriculomegaly occurs when there is imbalance between creation and absorption of cerebrospinal fluid (CSF); even when treated, long-term behavioral changes occur. Kaolin injection in the cisterna magna of rats produces an obstruction of CSF outflow and models one type of hydrocephalus. Previous research with this model shows that neonatal onset has mixed effects on Morris water maze (MWM) and motoric performance; we hypothesized that this might be because the severity of ventricular enlargement was not taken into consideration. In the present experiment, rats were injected with kaolin or saline on postnatal day (P)21 and analyzed in subgroups based on Evan's ratios (ER) of the severity of ventricular enlargement at the end of testing to create 4 subgroups from least to most severe: ER0.4–0.5, ER0.51-0.6, ER0.61-0.7, and ER0.71-0.82, respectively. Locomotor activity (dry land and swimming), acoustic startle with prepulse inhibition (PPI), and MWM performance were tested starting on P28 (122 cm maze) and again on P42 (244 cm maze). Kaolin-treated animals weighed significantly less than controls at all times. Differences in locomotor activity were seen at P42 but not P28. On P28 there was an increase in PPI for all but the least severe kaolin-treated group, but no difference at P42 compared with controls. In the MWM at P28, all kaolin-treated groups had longer path lengths than controls, but comparable swim speeds. With the exception of the least severe group, probe trial performance was worse in the kaolin-treated animals. On P42, only the most severely affected kaolin-treated group showed deficits compared with control animals. This group showed no MWM learning and no memory for the platform position during probe trial testing. Swim speed was unaffected, indicating motor deficits were not responsible for impaired learning and memory. These findings indicate that kaolin-induced ventriculomegaly in rats interferes with cognition regardless of the final enlargement

  19. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index. PMID:26572116

  20. LEARNING AND MEMORY DEFICITS IN RATS FOLLOWING EXPOSURE TO 3,3'-IMINODIPROPIONITRILE

    EPA Science Inventory

    The effects on learning and memory produced by B,B' iminodipropionitrile (IDPN) were examined in rats 4 weeks after dosing. DPN (600 mg/kg) prevented acquisition of a olfactory discrimination task and disrupted performance of passive avoidance conditioning in separate groups of a...

  1. Individualized Diagnosis and Program Planning for Process Learning Deficits in Mathematics.

    ERIC Educational Resources Information Center

    Kratochwill, Thomas R.; Severson, Roger A.

    Discussed in a paper which was presented at the 1974 Annual Meeting of the American Educational Research Association are diagnostic procedures for instructional planning to be used with learning disabled elementary school children handicapped in the area of mathematics. Traditional diagnostic approaches such as intelligence tests are criticized.…

  2. Working Memory Deficits in ADHD: The Contribution of Age, Learning/Language Difficulties, and Task Parameters

    ERIC Educational Resources Information Center

    Sowerby, Paula; Seal, Simon; Tripp, Gail

    2011-01-01

    Objective: To further define the nature of working memory (WM) impairments in children with combined-type ADHD. Method: A total of 40 Children with ADHD and an age and gender-matched control group (n = 40) completed two measures of visuo-spatial WM and two measures of verbal WM. The effects of age and learning/language difficulties on performance…

  3. Learning Disabilities, Language Deficits and WISC-'s: The Tale of a Preventable Misdiagnosis.

    ERIC Educational Resources Information Center

    Stracher, Dorothy A.

    1996-01-01

    Presents a case study of a college student with a learning disability who was wrongly diagnosed as borderline retarded by her high school. Discusses probable reasons for and consequences of the misdiagnosis and describes postsecondary level strategies used that enabled the student to succeed. (27 citations) (MAB)

  4. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.

    PubMed

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-08-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline. PMID:25866202

  5. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline

    PubMed Central

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-01-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer’s disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline. PMID:25866202

  6. CONTINUOUS KYNURENINE ADMINISTRATION DURING THE PRENATAL PERIOD, BUT NOT DURING ADOLESCENCE, CAUSES LEARNING AND MEMORY DEFICITS IN ADULT RATS

    PubMed Central

    Pocivavsek, Ana; Thomas, Marian A. R.; Elmer, Greg I.; Bruno, John P.; Schwarcz, Robert

    2014-01-01

    Rationale Cognitive dysfunctions, including deficits in hippocampus-mediated learning and memory, are core features of the psychopathology of schizophrenia (SZ). Increased levels of kynurenic acid (KYNA), an astrocyte-derived tryptophan metabolite and antagonist of α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors, have been implicated in these cognitive impairments. Objectives Following recent suggestive evidence, the present study was designed to narrow the critical time period for KYNA elevation to induce subsequent cognitive deficits. Methods KYNA levels were experimentally increased in rats (1) prenatally (embryonic day [ED] 15 to ED 22) or (2) during adolescence (postnatal day [PD] 42 to PD 49). The KYNA precursor kynurenine was added daily to wet mash fed to (1) dams (100 mg/day; control: ECon; kynurenine-treated: EKyn) or (2) adolescent rats (300 mg/kg/day; control: AdCon; kynurenine-treated: AdKyn). Upon termination of the treatment, all animals were fed normal chow until biochemical analysis and behavioral testing in adulthood. Results On the last day of continuous kynurenine treatment, forebrain KYNA levels were significantly elevated (EKyn: +472%; AdKyn: +470%). KYNA levels remained increased in the hippocampus of adult EKyn animals (+54%), but were unchanged in adult AdKyn rats. Prenatal, but not adolescent, kynurenine treatment caused significant impairments in two hippocampus-mediated behavioral tasks, passive avoidance and Morris water maze. Conclusions Collectively, these studies provide evidence that a continuous increase in brain KYNA levels during the late prenatal period, but not during adolescence, induces hippocampus-related cognitive dysfunctions later in life. Such increases may play a significant role in illnesses with known hippocampal pathophysiology, including SZ. PMID:24590052

  7. Comparative behavioral and neurochemical analysis of phenytoin and valproate treatment on epilepsy induced learning and memory deficit: Search for add on therapy.

    PubMed

    Mishra, Awanish; Goel, Rajesh Kumar

    2015-08-01

    Our previous work demonstrated, chronic epilepsy affects learning and memory of rodents along with peculiar neurochemical changes in discrete brain parts. Most commonly used antiepileptic drugs (phenytoin and sodium valproate) also worsen learning and memory in the patients with epilepsy. Therefore this study was designed to carry out comparison of behavioral and neurochemical changes with phenytoin and sodium valproate treatment in pentylenetetrazole-kindling induced learning and memory deficit to devise add on therapy for this menace. For the experimental epilepsy, animals were kindled using PTZ (35 mg/kg; i.p., at 48 ± 2 h intervals) and successful kindled animals were involved in the study. These kindled animals were treated with saline, phenytoin (30 mg/kg/day, i.p.) and sodium valproate (300 mg/kg/day, i.p.) for 20 days. These animals were challenged with PTZ challenging dose (35 mg/kg) on day 5, 10, 15 and 20 to evaluate the effect on seizure severity score on different days. Effect on learning and memory was evaluated using elevated plus maze and passive shock avoidance paradigm. On day 20, after behavioral evaluations, animals were sacrificed to analyze glutamate, GABA, norepinephrine, dopamine, serotonin, total nitrite level and acetylcholinesterase level in cortex and hippocampus. Behavioral evaluations suggested that phenytoin and sodium valproate treatment significantly reduced seizure severity in the kindled animals, while sodium valproate treatment controls seizures with least memory deficit in comparison to phenytoin. Neurochemical findings revealed that elevated cortical acetylcholinesterase level could be one of the responsible factors leading to memory deficit in phenytoin treated animals. However sodium valproate treatment reduced cortical acetylcholinesterase level and had least debilitating consequences on memory deficit. Therefore, attenuation of elevated AChE activity can be one of add-on approach for management of memory deficit

  8. Insulin potentiates the therapeutic effect of memantine against central STZ-induced spatial learning and memory deficit.

    PubMed

    Bahramian, Abbas; Rastegar, Karim; Namavar, Mohammad Reza; Moosavi, Maryam

    2016-09-15

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Memantine has been approved for moderate to severe AD, but evidence indicates that it does not modify disease progression. Recently insulin has been found to exert some beneficial effects on cognition. This study aimed to compare the protective effects of memantine and insulin in an animal model of memory deficit. It also evaluated the effects of combination therapy of these drugs. Adult male Sprague-Dawely rats approximately 8-10 weeks old were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3mg/kg in divided doses) and Memantine (5 or 10mg/kg/ip) or/and Insulin (3 or 6mU/icv) were started from day 4 and continued till day 13. The animal's learning and memory capability was assessed on days 14-16 using Morris water maze. On day 17 a visible platform test was done to assess the animals' visuomotor ability. After completion of behavioral studies the brain sections were stained with hematoxylin and eosin for routine histological evaluation. The results show that memantine in doses 5 and 10mg/kg improved memory at day 3 of training and memantine 5mg/kg was more potent than memantine 10mg/kg. Insulin in dose 3mU, but not 6 mU, reversed STZ-induced memory deficit from day 2 of training. When insulin was added to memantine, it increased the potency of memantine 5mg/kg in preventing a memory deficit, but surprisingly was not successful in impeding STZ-induced amnesia, in combination with memantine 10mg/kg. This research work revealed that insulin act more efficiently than memantine in reversing STZ-induced memory impairment. Additionally combination of insulin and memantine seems to act better than memantine alone, providing that a dose adjustment has been done. This study suggests considering the combination therapy of memantine and insulin in dementia and AD. PMID:27233828

  9. 2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice

    PubMed Central

    Gandhi, Réno M.; Kogan, Cary S.; Messier, Claude

    2014-01-01

    Fragile X Syndrome (FXS) is caused by the lack of expression of the fragile X mental retardation protein (FMRP), which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectrum disorder and can therefore provide insight into its pathophysiology. Lack of FMRP results in altered group I metabotropic glutamate receptor (mGluR) signaling, which is a target for putative treatments. The Hebb-Williams (H-W) mazes are a set of increasingly complex spatial navigation problems that depend on intact hippocampal and thus mGluR-5 functioning. In the present investigation, we examined whether an antagonist of mGluR-5 would reverse previously described behavioral deficits in fragile X mental retardation 1 knock-out (Fmr1 KO) mice. Mice were trained on a subset of the H-W mazes and then treated with either 20 mg/kg of an mGluR-5 antagonist, 2-Methyl-6-(phenylethynyl) pyridine (MPEP; n = 11) or an equivalent dose of saline (n = 11) prior to running test mazes. Latency and errors were dependent variables recorded during the test phase. Immediately after completing each test, marble-burying behavior was assessed, which confirmed that the drug treatment was pharmacologically active during maze learning. Although latency was not statistically different between the groups, MPEP treated Fmr1 KO mice made significantly fewer errors on mazes deemed more difficult suggesting a reversal of the behavioral deficit. MPEP treated mice were also less perseverative and impulsive when navigating mazes. Furthermore, MPEP treatment reversed post-synaptic density-95 (PSD-95) protein deficits in Fmr1 KO treated mice, whereas levels of a control protein (β-tubulin) remained unchanged. These data further validate MPEP as a potentially beneficial treatment for FXS. Our findings also suggest that adapted H-W mazes may be a useful tool to document alterations in

  10. Evaluation of the effect of Cyperus rotundus L. in scopolamine-induced learning deficit in mice

    PubMed Central

    Rabbani, Mohammed; Ghannadi, Alireza; Malekian, Nahid

    2014-01-01

    Background: Cyperus rotundus L. was used in traditional Iranian medicine to treat memory and cognition disorders. The present study was aimed at investigating the effect of the extract and essential oil of C. rotundus on memory dysfunction. Materials and Methods: Cognition was evaluated using the object recognition task that was composed of a square wooden open field box with different shape objects. The test was consisted of three sections: 15 min exploration, first trial for 12 min and second one for 5 min. In the second trial the difference in exploration between a previously seen object and novel one, was considered as an index of memory performance (recognition index). Memory deficit was induced by scopolamine (0.5 mg/kg) before injection of plant extracts and essential oil. Results: Rivastigmine at 0.6 mg/kg reversed the scopolamine induced memory dysfunction in mice (P < 0.05). On the contrary, neither the hydroalcholic extracts (100, 200, 400 mg/kg) nor the polyphenolic extract (50, 100, 200 mg/kg) and essential oil (10, 20, 40 mg/kg) of C. rotundus produced significant improvement of memory dysfunction. The fact that rivastigmine reversed the scopolamine-induced memory dysfunction confirms the validity of this memory paradigm. Conclusion: Using the current method of the memory evaluation, none of the tested doses of the plant extract or essential oil changed the memory status of the animals, indicating either a lack of effective ingredient or unsuitable method for evaluation. PMID:25371874

  11. Molecular aspects of age-related cognitive decline: the role of GABA signaling

    PubMed Central

    McQuail, Joseph A.; Frazier, Charles J.; Bizon, Jennifer L.

    2015-01-01

    Alterations in inhibitory interneurons contribute to cognitive deficits associated with several psychiatric and neurological diseases. Phasic and tonic inhibition imparted by γ-amino-butyric acid (GABA) receptors regulates neural activity and helps to establish the appropriate network dynamics in cortical circuits that support normal cognition. This review highlights basic science demonstrating that inhibitory signaling is altered in aging, and discusses the impact of age-related shifts in inhibition on different forms of memory function, including hippocampus-dependent spatial reference memory and prefrontal cortex (PFU)-dependent working memory. The clinical appropriateness and tractability of select therapeutic candidates for cognitive aging that target receptors mediating inhibition are also discussed. PMID:26070271

  12. Effects of lithium and lamotrigine on oxidative-nitrosative stress and spatial learning deficit after global cerebral ischemia.

    PubMed

    Ozkul, Ayca; Sair, Ahmet; Akyol, Ali; Yenisey, Cigdem; Dost, Turhan; Tataroglu, Canten

    2014-05-01

    Lithium (Li) and lamotrigine (LTG) have neuroprotective properties. However, the exact therapeutic mechanisms of these drugs have not been well understood. We investigated the antioxidant properties of Li (40 and 80 mg/kg/day) and LTG (20 and 40 mg/kg/day) in a rat model of global cerebral ischemia based on permanent bilateral occlusion of the common carotid arteries (BCAO). Nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), glutathione reductase (GSH-R), catalase (CAT) and superoxide dismutase (SOD) levels were measured as an indicator of oxidative-nitrosative stress in both prefrontal cortex (PFC) and hippocampus after 28 days of treatment. The spatial learning disability was also assessed at the end of the study by Morris water maze (MWM) test. All oxidative-nitrosative parameters were found to be higher in the groups under treatment than in sham. Both drugs caused a decrease in PFC NO and MDA elevation, meanwhile the increase in GSH, GSH-R, CAT and SOD levels was significantly more evident in treated groups. We also found higher PFC GSH-R and hippocampal SOD levels in BCAO + Li (80 mg/day) treated group when compared with BCAO + LTG 40 mg/day. MWM test data showed a similar increase in spatial learning ability in all groups under treatment. We found no other statistical difference in comparison of treated groups with different dosages. Our findings suggested that Li and LTG treatments may decrease spatial learning memory deficits accompanied by lower oxidative-nitrosative stress in global cerebral ischemia. Both drugs may have potential benefits for the treatment of vascular dementia in clinical practice. PMID:24664417

  13. Kv4.2 Knockout Mice Have Hippocampal-Dependent Learning and Memory Deficits

    ERIC Educational Resources Information Center

    Lugo, Joaquin N.; Brewster, Amy L.; Spencer, Corinne M.; Anderson, Anne E.

    2012-01-01

    Kv4.2 channels contribute to the transient, outward K[superscript +] current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit…

  14. Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats

    PubMed Central

    Jeong, Hye Im; Ji, Eun-Sang; Kim, Su-Hyun; Kim, Tae-Wook; Baek, Sang-Bin; Choi, Seung Wook

    2014-01-01

    Attention-deficit/hyperactivity disorder (ADHD) patients show learning difficulty and impulsiveness. Exercise is known to improve learning ability and memory function. In the present study, we investigated the duration-dependence of the effect of treadmill exercise on spatial learning ability in relation with brain-derived neurotrophic factor (BDNF) expression in ADHD rats. For this study, radial 8-arm maze test and western blot for BDNF and tyrosine kinase B (TrkB) were performed. Spontaneous hypertensive rats were used as the ADHD rats and Wistar-Kyoto rats were used as the control rats. The rats in the exercise groups were forced to run on a treadmill for 10 min, 30 min, and 60 min once a day for 28 consecutive days. ADHD rats displayed impairment of spatial learning ability, in contrast treadmill exercise ameliorated impairment of spatial learning ability. Treadmill exercise for 30 min per day showed most potent ameliorating effect on impairment of spatial learning ability. BDNF and TrkB expressions in the hippocampus were decreased in the ADHD rats, in contrast treadmill exercise enhanced BDNF and TrkB expressions. Treadmill exercise for 30 min and for 60 min per day showed enhancing effects on BDNF and TrkB expressions. Treadmill exercise alleviated deficits in the spatial learning ability through enhancing BDNF and TrkB expressions in the ADHD rats. Treadmill exercise for 30 min per day can be considered as the most effective therapeutic modality for the ADHD symptoms. PMID:25061595

  15. Double dissociation of pharmacologically induced deficits in visual recognition and visual discrimination learning

    PubMed Central

    Turchi, Janita; Buffalari, Deanne; Mishkin, Mortimer

    2008-01-01

    Monkeys trained in either one-trial recognition at 8- to 10-min delays or multi-trial discrimination habits with 24-h intertrial intervals received systemic cholinergic and dopaminergic antagonists, scopolamine and haloperidol, respectively, in separate sessions. Recognition memory was impaired markedly by scopolamine but not at all by haloperidol, whereas habit formation was impaired markedly by haloperidol but only minimally by scopolamine. These differential drug effects point to differences in synaptic modification induced by the two neuromodulators that parallel the contrasting properties of the two types of learning, namely, fast acquisition but weak retention of memories versus slow acquisition but durable retention of habits. PMID:18685146

  16. Double dissociation of pharmacologically induced deficits in visual recognition and visual discrimination learning.

    PubMed

    Turchi, Janita; Buffalari, Deanne; Mishkin, Mortimer

    2008-08-01

    Monkeys trained in either one-trial recognition at 8- to 10-min delays or multi-trial discrimination habits with 24-h intertrial intervals received systemic cholinergic and dopaminergic antagonists, scopolamine and haloperidol, respectively, in separate sessions. Recognition memory was impaired markedly by scopolamine but not at all by haloperidol, whereas habit formation was impaired markedly by haloperidol but only minimally by scopolamine. These differential drug effects point to differences in synaptic modification induced by the two neuromodulators that parallel the contrasting properties of the two types of learning, namely, fast acquisition but weak retention of memories versus slow acquisition but durable retention of habits. PMID:18685146

  17. The neural architecture of age-related dual-task interferences

    PubMed Central

    Chmielewski, Witold X.; Yildiz, Ali; Beste, Christian

    2014-01-01

    In daily life elderly adults exhibit deficits when dual-tasking is involved. So far these deficits have been verified on a behavioral level in dual-tasking. Yet, the neuronal architecture of these deficits in aging still remains to be explored especially when late-middle aged individuals around 60 years of age are concerned. Neuroimaging studies in young participants concerning dual-tasking were, among others, related to activity in middle frontal (MFG) and superior frontal gyrus (SFG) and the anterior insula (AI). According to the frontal lobe hypothesis of aging, alterations in these frontal regions (i.e., SFG and MFG) might be responsible for cognitive deficits. We measured brain activity using fMRI, while examining age-dependent variations in dual-tasking by utilizing the PRP (psychological refractory period) test. Behavioral data showed an increasing PRP effect in late-middle aged adults. The results suggest the age-related deteriorated performance in dual-tasking, especially in conditions of risen complexity. These effects are related to changes in networks involving the AI, the SFG and the MFG. The results suggest that different cognitive subprocesses are affected that mediate the observed dual-tasking problems in late-middle aged individuals. PMID:25132818

  18. Clonidine reverses spatial learning deficits and reinstates theta frequencies in rats with partial fornix section.

    PubMed

    Ammassari-Teule, M; Maho, C; Sara, S J

    1991-10-25

    Rats received knife-cuts to the dorsal fornix or sham-operations. Half of the animals from each group were injected with clonidine (0.01 mg/kg) and the others with saline before each daily trail of a 10-trial radial 8-arm maze task. The number of choices before the first repetition and the run time were used as performance indices. Lesioned rats were significantly impaired in the acquisition of this task. Clonidine-treated rats, lesioned or not, had an acquisition profile indistinguishable from that of sham-operated saline-injected rats, in spite of their increased run time. When tested one week after the last learning trial in a no-drug condition, lesioned rats treated with clonidine throughout learning maintained a high level of performance during the 5-day retraining phase. A parallel analysis of theta rhythms recorded in an independent group of rats placed in equivalent treatment and/or lesion conditions was then performed. Preoperatively, clonidine injections decreased theta frequency during both alert immobility and movement. Partial fornix lesions produced an increase in theta frequency. Finally, clonidine in fornix-damaged rats decreased theta frequency, thus reinstating the postoperative values at a level statistically no different from that recorded preoperatively. The role of clonidine in restoring the function of the septo-hippocampal input in partially fornix-damaged rats through a noradrenergic modulation of hippocampal acetylcholine release is discussed. PMID:1662515

  19. Treatment-induced prevention of learning deficits in newborn mice with brain lesions.

    PubMed

    Bouslama, M; Chauvière, L; Fontaine, R H; Matrot, B; Gressens, P; Gallego, J

    2006-08-25

    Perinatal brain injuries often result in irreversible learning disabilities, which manifest in early childhood. The molecular and cellular mechanisms of these injuries and potential pharmacological treatments are emerging, chiefly from studies in newborn rodents. In newborn mice, experimentally induced lesions can be dramatically reduced by appropriate neuroprotective treatments. However, the early effectiveness of these treatments in preserving cognition remained unknown. Here, we addressed this issue by using intracerebral ibotenate to induce excitotoxic brain lesions in 5-day-old mice (postnatal day 5). On postnatal days 6-7, we tested spontaneous preference for maternal odors, as an index of odor memory, and conditioned preference for an artificial odor previously paired with stroking, as an index of associative learning. Brain-lesioned newborn mice showed normal general status and preference for maternal odors. In contrast, odor conditioning was severely impaired. A previous study showed that fructose 1,6-biphosphate acted as a neuroprotective agent which significantly reduced neocortical lesion size. In the present study, treating the newborn mice with fructose 1,6-biphosphate 15 min before the ibotenate injection reduced neocortical lesion size and restored conditioning. This demonstrates, for the first time, that neuroprotective treatment can protect some features of early cognition. PMID:16713117

  20. A controlled study of Tourette syndrome. I. Attention-deficit disorder, learning disorders, and school problems.

    PubMed Central

    Comings, D E; Comings, B G

    1987-01-01

    Tourette syndrome (TS) is a common, hereditary, neurobehavioral disorder of childhood. To determine the frequency of various behavioral manifestations, we have compared 47 random normal controls to 246 patients with TS, 17 with attention-deficit disorder (ADD), and 15 with ADD secondary to a TS gene (ADD 2(0) TS). All subjects were examined prospectively with a 425-item questionnaire based on the Diagnostic Interview Schedule and the Diagnostic and Statistical Manual of Mental Disorders (DSM III). The TS patients were divided into grade 1 (too mild to treat [17.5%]), grade 2 (requiring treatment [58.9%]), and grade 3 (severe [23.6%]). Patients in all three grades of TS were significantly different from controls for DSM III symptoms of inattention, impulsivity, and hyperactivity. Sixty-two percent of TS patients had ADD, compared with 6.3% of controls; and 48.8% had ADD with hyperactivity (ADDH), compared with 4.2% of controls. In the majority of TS patients, the natural history of the disease was to start with ADDH and 2.4 years later develop motor and vocal tics. Among TS patients, 39% had previously received medication for ADDH or behavior problems, compared with 2% of the controls. Although stimulants can occasionally exacerbate tics, there was no evidence that stimulants cause TS and they are often a valuable adjunct to the treatment of TS. It is estimated that 10%-30% of ADDH is due to or associated with the presence of a TS gene. TS patients had a significantly increased frequency of (1) attending classes for the educationally handicapped, (2) placement in classes for the severely emotionally disturbed, (3) attending any special classes, (4) severe test anxiety, (5) stuttering, (6) letter, number, or word reversal, (7) reading very slowly, and (8) poor retention of material read. A reading-problem score (dyslexia) greater than or equal to 3 was present in 26.8% of TS patients, compared with 4.2% of controls. Number reversal, word reversal, and poor retention

  1. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging.

    PubMed

    Maimaiti, Shaniya; Anderson, Katie L; DeMoll, Chris; Brewer, Lawrence D; Rauh, Benjamin A; Gant, John C; Blalock, Eric M; Porter, Nada M; Thibault, Olivier

    2016-01-01

    Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP. PMID:25659889

  2. Mathematical Cognition Deficits in Children With Learning Disabilities and Persistent Low Achievement: A Five-Year Prospective Study

    PubMed Central

    Geary, David C.; Hoard, Mary K.; Nugent, Lara; Bailey, Drew H.

    2016-01-01

    First- to fifth-grade mathematics and word reading achievement were assessed for children with mathematical learning disability (MLD, n = 16), persistent low achievement (LA, n = 29), and typical achievement (n = 132). Intelligence, working memory, processing speed, and in-class attention were assessed in 2 or more grades, and mathematical cognition was assessed with experimental tasks in all grades. The MLD group was characterized by low school-entry mathematics achievement and poor word reading skills. The former was mediated by poor fluency in processing or accessing quantities associated with small sets of objects and corresponding Arabic numerals, whereas the latter was mediated by slow automatized naming of letters and numbers. Both the MLD and LA groups showed slow across-grade growth in mathematics achievement. Group differences in growth were mediated by deficits or delays in fluency of number processing, the ability to retrieve basic facts from long-term memory and to decompose numbers to aid in problem solving, and by the central executive component of working memory and in-class attention. PMID:27158154

  3. Protective Effect of Porcine Cerebral Hydrolysate Peptides on Learning and Memory Deficits and Oxidative Stress in Lead-Exposed Mice.

    PubMed

    Zou, Ye; Feng, Weiwei; Wang, Wei; Chen, Yao; Zhou, Zhaoxiang; Li, Qian; Zhao, Ting; Mao, Guanghua; Wu, Xiangyang; Yang, Liuqing

    2015-12-01

    In this study, lead acetate solution and porcine cerebral hydrolysate peptides (PCHPs) were administered to developing mice. Porcine cerebral protein pretreated by ultrasound was hydrolyzed with alcalase, and 11 peptide fragments were obtained by Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of PCHPs. Our data showed that PCHPs significantly decreased Pb2+-induced spontaneous locomotor activity, latencies to reach the platform, and the time in target quadrant. It also decreased the accumulation of lead in the blood and brain of Pb2+-exposed developing mice. Co-administration of PCHPs and dimercaptosuccinic acid (DMSA) did not only reduce the accumulation of lead in blood but also increased the absorption of zinc and iron in Pb2+-exposed mice. Administration of PCHPs individually significantly enhanced hematopoietic parameters compared with the Pb2+-exposed group. PCHPs significantly reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) but increased glutathione (GSH) content and anti-oxidant enzymes and nitric oxide synthase (NOS) activities in Pb2+-exposed brain. Our findings suggest that PCHPs have the ability to protect against Pb2+-exposed learning and memory deficits and oxidative damage. PMID:25956150

  4. Defining and classifying learning disabilities and attention-deficit/hyperactivity disorder.

    PubMed

    Shaywitz, B A; Fletcher, J M; Shaywitz, S E

    1995-01-01

    This paper provides an overview of current conceptualizations of learning disabilities and ADHD, a conceptual framework critical for defining and classifying each disorder and for distinguishing each disorder from the other and from other, less common problems of childhood. At a most basic level, reading disability or dyslexia (the most common and best defined of the learning disabilities) and ADHD represent two distinct disorders that may frequently cooccur in the same unfortunate child but that can be clearly distinguished from one another. Reading disability represents a disorder of cognitive functioning. In contrast, ADHD is defined by the child's behavior as perceived by the child's parents and teachers; ADHD thus refers to a disorder affecting primarily the behavioral domain. Within the last decade, considerable progress has been made in our understanding of reading and reading disability. Converging evidence from several lines of investigation now indicates that reading ability conforms to a normal distribution model, so that there is a continuum of reading ability and reading disability. Children along this continuum differ by degree but not in kind. Cutoff points may be instituted to segment this continuous distribution, but these will be arbitrary and will not reflect any natural joints in nature; there is no second mode or "hump" in the distribution of reading ability. The normal model of reading and reading disability indicates that reading disability is related to normal reading ability, that there is a seamless transition from good to poor reading ability. Awareness of this relationship is critical to our approach to understanding the basis of reading disability.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7751555

  5. Age-related changes in the misinformation effect.

    PubMed

    Sutherland, R; Hayne, H

    2001-08-01

    In these experiments, we examined the relation between age-related changes in retention and age-related changes in the misinformation effect. Children (5- and 6- and 11- and 12-year-olds) and adults viewed a video, and their memory was assessed immediately, 1 day, or 6 weeks later (Experiment 1). There were large age-related differences in retention when participants were interviewed immediately and after 1 day, but after the 6-week delay, age-related differences in retention were minimal. In Experiment 2, 11- and 12-year-olds and adults were exposed to neutral, leading, and misleading postevent information 1 day or 6 weeks after they viewed the video. Exposure to misleading information increased the number of commission errors, particularly when participants were asked about peripheral aspects of the video. At both retention intervals, children were more likely than adults to incorporate the misleading postevent information into their subsequent verbal accounts. These findings indicate that age-related changes in the misinformation effect are not predicted by age-related changes in retention. PMID:11511130

  6. Age-related changes in neurochemical components and retinal projections of rat intergeniculate leaflet.

    PubMed

    Fiuza, Felipe P; Silva, Kayo D A; Pessoa, Renata A; Pontes, André L B; Cavalcanti, Rodolfo L P; Pires, Raquel S; Soares, Joacil G; Nascimento Júnior, Expedito S; Costa, Miriam S M O; Engelberth, Rovena C G J; Cavalcante, Jeferson S

    2016-02-01

    Aging leads to several anatomical and functional deficits in circadian timing system. In previous works, we observed morphological alterations with age in hypothalamic suprachiasmatic nuclei, one central component of this system. However, there are few data regarding aging effects on other central components of this system, such as thalamic intergeniculate leaflet (IGL). In this context, we studied possible age-related alterations in neurochemical components and retinal projections of rat IGL. For this goal, young (3 months), adult (13 months), and aged (23 months) Wistar rats were submitted to an intraocular injection of neural tracer, cholera toxin subunit b (CTb), 5 days before a tissue fixation process by paraformaldehyde perfusion. Optical density measurements and cell count were performed at digital pictures of brain tissue slices processed by immunostaining for glutamic acid decarboxylase (GAD), enkephalin (ENK), neuropeptide Y (NPY) and CTb, characteristic markers of IGL and its retinal terminals. We found a significant age-related loss in NPY immunoreactive neurons, but not in immunoreactivity to GAD and ENK. We also found a decline of retinal projections to IGL with age. We conclude aging impairs both a photic environmental clue afferent to IGL and a neurochemical expression which has an important modulatory circadian function, providing strong anatomical correlates to functional deficits of the aged biological clock. PMID:26718202

  7. Dual systems of speech category learning across the lifespan

    PubMed Central

    Maddox, W. Todd; Chandrasekaran, Bharath; Smayda, Kirsten; Yi, Han-Gyol

    2013-01-01

    Although categorization is fundamental to speech processing, little is known about the learning systems that mediate auditory categorization and even less is known about changes across the lifespan. Vision research supports dual-learning systems that are grounded in neuroscience and are partially-dissociable. The reflective, rule-based system is prefrontally mediated and uses working memory and executive attention to develop and test rules for classifying in an explicit fashion. The reflexive, information-integration system is striatally mediated and operates by implicitly associating perception with actions that lead to reinforcement. We examine the extent to which dual-learning systems mediate auditory and speech learning in younger and older adults. We examined auditory category learning when a rule-based strategy (Experiment 1) or information-integration strategy (Experiment 2) was optimal, and found an age-related rule-based deficit, but intact information-integration learning. Experiment 3 examined natural auditory category learning, and found an age-related performance deficit. Computational modeling suggested that this was due to older adults’ persistent reliance on sub-optimal, uni-dimensional strategies when two-dimensional strategies were optimal. Working memory capacity was also found to be associated with improved rule-based and natural auditory category learning, but not information-integration category learning. These results suggest that dual-learning systems are operative in speech category learning across the lifespan, and that performance deficits, when present are due to deficiencies in frontally-mediated, rule-based processes. PMID:24364408

  8. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume.

    PubMed

    Erickson, Kirk I; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D; Martin, Stephen A; Vieira, Victoria J; Woods, Jeffrey A; McAuley, Edward; Kramer, Arthur F

    2010-04-14

    Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain-derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age, and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958

  9. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms.

    PubMed

    Hasanein, Parisa; Felehgari, Zhila; Emamjomeh, Abbasali

    2016-05-27

    Learning and memory impairment occurs in diabetes. Salvia officinalis L. (SO) has been used in Iranian traditional medicine as a remedy against diabetes. We hypothesized that chronic administration of SO (400, 600 and 800mg/kg, p.o.) and its principal constituent, rosmarinic acid, would affect on passive avoidance learning (PAL) and memory in streptozocin-induced diabetic and non-diabetic rats. We also explored hypoglycemic and antioxidant activities of SO as the possible mechanisms. Treatments were begun at the onset of hyperglycemia. PAL was assessed 30days later. Retention test was done 24h after training. At the end, animals were weighed and blood samples were drawn for further analyzing of glucose and oxidant/antioxidant markers. Diabetes induced deficits in acquisition and retrieval processes. SO (600 and 800mg/kg) and rosmarinic acid reversed learning and memory deficits induced by diabetes and improved cognition of healthy rats. While the dose of 400mg/kg had no effect, the higher doses and rosmarinic acid inhibited hyperglycemia and lipid peroxidation as well as enhanced the activity of antioxidant enzymes superoxide dismutase and catalase. SO prevented diabetes-induced acquisition and memory deficits through inhibiting hyperglycemia, lipid peroxidation as well as enhancing antioxidant defense systems. Therefore, SO and its principal constituent rosmarinic acid represent a potential therapeutic option against diabetic memory impairment which deserves consideration and further examination. PMID:27113201

  10. Cognitive Function of Children and Adolescents with Attention Deficit Hyperactivity Disorder and Learning Difficulties: A Developmental Perspective

    PubMed Central

    Huang, Fang; Sun, Li; Qian, Ying; Liu, Lu; Ma, Quan-Gang; Yang, Li; Cheng, Jia; Cao, Qing-Jiu; Su, Yi; Gao, Qian; Wu, Zhao-Min; Li, Hai-Mei; Qian, Qiu-Jin; Wang, Yu-Feng

    2016-01-01

    Background: The cognitive function of children with either attention deficit hyperactivity disorder (ADHD) or learning disabilities (LDs) is known to be impaired. However, little is known about the cognitive function of children with comorbid ADHD and LD. The present study aimed to explore the cognitive function of children and adolescents with ADHD and learning difficulties in comparison with children with ADHD and healthy controls in different age groups in a large Chinese sample. Methods: Totally, 1043 participants with ADHD and learning difficulties (the ADHD + learning difficulties group), 870 with pure ADHD (the pure ADHD group), and 496 healthy controls were recruited. To investigate the difference in cognitive impairment using a developmental approach, all participants were divided into three age groups (6–8, 9–11, and 12–14 years old). Measurements were the Chinese-Wechsler Intelligence Scale for Children, the Stroop Color-Word Test, the Trail-Making Test, and the Behavior Rating Inventory of Executive Function-Parents (BRIEF). Multivariate analysis of variance was used. Results: The results showed that after controlling for the effect of ADHD symptoms, the ADHD + learning difficulties group was still significantly worse than the pure ADHD group, which was, in turn, worse than the control group on full intelligence quotient (98.66 ± 13.87 vs. 105.17 ± 14.36 vs. 112.93 ± 13.87, P < 0.001). The same relationship was also evident for shift function (shifting time of the Trail-Making Test, 122.50 [62.00, 194.25] s vs. 122.00 [73.00, 201.50] s vs. 66.00 [45.00, 108.00] s, P < 0.001) and everyday life executive function (BRIEF total score, 145.71 ± 19.35 vs. 138.96 ± 18.00 vs. 122.71 ± 20.45, P < 0.001) after controlling for the effect of the severity of ADHD symptoms, intelligence quotient, age, and gender. As for the age groups, the differences among groups became nonsignificant in the 12–14 years old group for inhibition (meaning interference of

  11. Effects of risperidone, clozapine and the 5-HT6 antagonist GSK-742457 on PCP-induced deficits in reversal learning in the two-lever operant task in male Sprague Dawley rats.

    PubMed

    de Bruin, N M W J; van Drimmelen, M; Kops, M; van Elk, J; Wetering, M Middelveld-van de; Schwienbacher, I

    2013-05-01

    Reasoning and problem solving deficits have been reported in schizophrenic patients. In the present study, we have tested rats in a two-lever reversal learning task in a Skinner box to model these deficits. In other studies using the Skinner box, atypical antipsychotics fully reversed phencyclidine (PCP)-induced impairments in reversal learning which is in contrast to clinical observations where antipsychotics lack the ability to fully reverse cognitive deficits in schizophrenia. Therefore, it can be argued that the outcome of these tests may lack predictive value. In the present study, after training on a spatial discrimination between two levers, rats were exposed to a reversal of the previously learned stimulus-response contingency during 5 days. We first investigated the effects of sub-chronic treatment with the non-competitive N-methyl-d-aspartate (NMDA) antagonists dizocilpine (MK-801) and PCP on reversal learning and extinction in male Sprague Dawley rats. Subsequently, we studied the effects of different PCP treatment regimes. Then, we investigated whether the atypical antipsychotics risperidone and clozapine and the 5-hydroxytryptamine6 (5-HT6) antagonist GSK-742457 could reverse the PCP-induced deficits. All drugs were administered subcutaneously (s.c.). MK-801 did not impair reversal learning, while PCP (1.0 and 2.0 mg/kg) induced a clear deficit in reversal learning. Both compounds, however, disrupted extinction at all tested doses. Risperidone and clozapine were both ineffective in significantly ameliorating the PCP-induced deficit in reversal learning which fits well with the clinical observations. The lowest dose of clozapine (1.25 mg/kg) had an intermediate effect in ameliorating the deficit in reversal learning induced by PCP (not different from control or PCP-treated rats). The lowest dose of GSK-742457 (0.63 mg/kg) fully reversed the PCP-induced deficits while the higher dose (5.0 mg/kg) had an intermediate effect. PMID:23384714

  12. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    PubMed

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  13. AGE-RELATED, MULTIPLE-SYSTEM EFFECTS FROM ENVIRONMENTAL EXPOSURE TO AIRBORNE MANGANESE (MN)

    EPA Science Inventory

    Past research has tentatively associated excessive manganese (Mn) exposure with Parkinson-like effects in older adults, violent and aggressive behavior in young adults, and learning and neurobehavioral deficits in elementary school children. Our recent EPA/University of Quebec at...

  14. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  15. Review: Axon pathology in age-related neurodegenerative disorders.

    PubMed

    Adalbert, R; Coleman, M P

    2013-02-01

    'Dying back' axon degeneration is a prominent feature of many age-related neurodegenerative disorders and is widespread in normal ageing. Although the mechanisms of disease- and age-related losses may differ, both contribute to symptoms. Here, we review recent advances in understanding axon pathology in age-related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. In particular, we highlight the importance of axonal transport, autophagy, traumatic brain injury and mitochondrial quality control. We then place these disease mechanisms in the context of changes to axons and dendrites that occur during normal ageing. We discuss what makes ageing such an important risk factor for many neurodegenerative disorders and conclude that the processes of normal ageing and disease combine at the molecular, cellular or systems levels in a range of disorders to produce symptoms. Pathology identical to disease also occurs at the cellular level in most elderly individuals. Thus, normal ageing and age-related disease are inextricably linked and the term 'healthy ageing' downplays the important contributions of cellular pathology. For a full understanding of normal ageing or age-related disease we must study both processes. PMID:23046254

  16. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration. PMID:26292978

  17. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline

    PubMed Central

    VanGuilder, Heather D.; Farley, Julie A.; Yan, Han; Van Kirk, Colleen A.; Mitschelen, Matthew; Sonntag, William E.; Freeman, Willard M.

    2011-01-01

    Age-related cognitive decline occurs without frank neurodegeneration and is the most common cause of memory impairment in aging individuals. With increasing longevity, cognitive deficits, especially in hippocampus-dependent memory processes, are increasing in prevalence. Nevertheless, the neurobiological basis of age-related cognitive decline remains unknown. While concerted efforts have led to the identification of neurobiological changes with aging, few age-related alterations have been definitively correlated to behavioral measures of cognitive decline. In this work, adult (12 Months) and aged (28 months) rats were categorized by Morris water maze performance as Adult cognitively Intact, Aged cognitively Intact or Aged cognitively Impaired, and protein expression was examined in hippocampal synaptosome preparations. Previously described differences in synaptic expression of neurotransmission-associated proteins (Dnm1, Hpca, Stx1, Syn1, Syn2, Syp, SNAP25, VAMP2 and 14-3-3 eta, gamma, and zeta) were confirmed between Adult and Aged rats, with no further dysregulation associated with cognitive impairment. Proteins related to synaptic structural stability (MAP2, drebrin, Nogo-A) and activity-dependent signaling (PSD-95, 14-3-3θ, CaMKIIα) were up- and down-regulated, respectively, with cognitive impairment but were not altered with increasing age. Localization of MAP2, PSD-95, and CaMKIIα demonstrated protein expression alterations throughout the hippocampus. The altered expression of activity- and structural stability-associated proteins suggests that impaired synaptic plasticity is a distinct phenomenon that occurs with age-related cognitive decline, and demonstrates that cognitive decline is not simply an exacerbation of the aging phenotype. PMID:21440628

  18. Prefrontal cortical volume loss is associated with stress-related deficits in verbal learning and memory in HIV-infected women.

    PubMed

    Rubin, Leah H; Meyer, Vanessa J; J Conant, Rhoda; Sundermann, Erin E; Wu, Minjie; Weber, Kathleen M; Cohen, Mardge H; Little, Deborah M; Maki, Pauline M

    2016-08-01

    Deficits in verbal learning and memory are a prominent feature of neurocognitive function in HIV-infected women, and are associated with high levels of perceived stress. To understand the neurobiological factors contributing to this stress-related memory impairment, we examined the association between stress, verbal memory, and brain volumes in HIV-infected women. Participants included 38 HIV-infected women (Mean age=43.9years) from the Chicago Consortium of the Women's Interagency HIV Study (WIHS). Participants underwent structural magnetic resonance imaging (MRI) and completed standardized measures of verbal learning and memory and stress (Perceived Stress Scale-10; PSS-10). Brain volumes were evaluated in a priori regions of interest, including the medial temporal lobe (MTL) and prefrontal cortex (PFC). Compared to HIV-infected women with lower stress (PSS-10 scores in lower two tertiles), HIV-infected women with higher stress (scores in the top tertile), performed worse on measures of verbal learning and memory and showed smaller volumes bilaterally in the parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, and inferior frontal gyrus (p's<0.05). Reduced volumes in the inferior frontal gyrus, middle frontal gyrus, and superior frontal gyrus (all right hemisphere) were negatively associated with verbal learning and memory performance. Prefrontal cortical atrophy is associated with stress-related deficits in verbal learning and memory in HIV-infected women. The time course of these volume losses in relation to memory deficits has yet to be elucidated, but the magnitude of the volumetric differences between women with higher versus lower stress suggests a prolonged vulnerability due to chronic stress and/or early life trauma. PMID:26408051

  19. Age-related differences in gap detection: Effects of task difficulty and cognitive ability

    PubMed Central

    Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2009-01-01

    location remained constant across trials. Taken together, these results suggest that age-related differences in complex measures of auditory temporal processing may be explained, in part, by age-related deficits in processing speed and attention. PMID:19800958

  20. Pathophysiology of ageing, longevity and age related diseases

    PubMed Central

    Bürkle, Alexander; Caselli, Graziella; Franceschi, Claudio; Mariani, Erminia; Sansoni, Paolo; Santoni, Angela; Vecchio, Giancarlo; Witkowski, Jacek M; Caruso, Calogero

    2007-01-01

    On April 18, 2007 an international meeting on Pathophysiology of Ageing, Longevity and Age-Related Diseases was held in Palermo, Italy. Several interesting topics on Cancer, Immunosenescence, Age-related inflammatory diseases and longevity were discussed. In this report we summarize the most important issues. However, ageing must be considered an unavoidable end point of the life history of each individual, nevertheless the increasing knowledge on ageing mechanisms, allows envisaging many different strategies to cope with, and delay it. So, a better understanding of pathophysiology of ageing and age-related disease is essential for giving everybody a reasonable chance for living a long and enjoyable final part of the life. PMID:17683521

  1. Administration of D,L-fenfluramine to rats produces learning deficits in the Cincinnati water maze but not the Morris water maze: relationship to adrenal cortical output.

    PubMed

    Williams, Michael T; Morford, LaRonda L; McCrea, Anne E; Wood, Sandra L; Vorhees, Charles V

    2002-01-01

    Fenfluramine (FEN) is an amphetamine derivative with anorectic properties similar to amphetamine, but without the stimulatory or abuse potential. Administration of FEN produces an immediate release of serotonin as well as inhibits reuptake; ultimately FEN produces a decrease in serotonin stores in the central nervous system. We have previously shown that the administration of FEN to rats results in increased adrenal cortical hormones under resting conditions, without simultaneous elevations in adrenocorticotropin hormone (ACTH). We hypothesized that the adrenal output would be altered following stress and that the altered adrenal output would affect learning and memory, since the adrenal hormones influence learning and memory capability. In this series of experiments, we administered D,L-FEN (15 mg/kg) four times every 2 h on a single day to rats and investigated the effect on hormonal output following forced swim and the effect on sequential learning in the Cincinnati water maze and spatial learning in the Morris maze beginning 3 days after FEN administration. Animals that received FEN had increased corticosterone and aldosterone titers following forced swim relative to control animals, although no differences in ACTH or testosterone were noted. Animals exposed to FEN had lasting deficits in the Cincinnati water maze but not in the Morris water maze, regardless of testing order. These deficits in the Cincinnati water maze appear to be mediated by the elevation in adrenal output since adrenalectomy abolished the effect of FEN. Corticosterone levels were shown to be elevated during the behavioral testing period in animals exposed to FEN. PMID:12460661

  2. Principal Component Analysis of the Effects of Environmental Enrichment and (-)-epigallocatechin-3-gallate on Age-Associated Learning Deficits in a Mouse Model of Down Syndrome

    PubMed Central

    Catuara-Solarz, Silvina; Espinosa-Carrasco, Jose; Erb, Ionas; Langohr, Klaus; Notredame, Cedric; Gonzalez, Juan R.; Dierssen, Mara

    2015-01-01

    Down syndrome (DS) individuals present increased risk for Alzheimer's disease (AD) neuropathology and AD-type dementia. Here, we investigated the use of green tea extracts containing (-)-epigallocatechin-3-gallate (EGCG), as co-adjuvant to enhance the effects of environmental enrichment (EE) in Ts65Dn mice, a segmental trisomy model of DS that partially mimics DS/AD pathology, at the age of initiation of cognitive decline. Classical repeated measures ANOVA showed that combined EE-EGCG treatment was more efficient than EE or EGCG alone to improve specific spatial learning related variables. Using principal component analysis (PCA) we found that several spatial learning parameters contributed similarly to a first PC and explained a large proportion of the variance among groups, thus representing a composite learning measure. This PC1 revealed that EGCG or EE alone had no significant effect. However, combined EE-EGCG significantly ameliorated learning alterations of middle age Ts65Dn mice. Interestingly, PCA revealed an increased variability along learning sessions with good and poor learners in Ts65Dn, and this stratification did not disappear upon treatments. Our results suggest that combining EE and EGCG represents a viable therapeutic approach for amelioration of age-related cognitive decline in DS, although its efficacy may vary across individuals. PMID:26696850

  3. Principal Component Analysis of the Effects of Environmental Enrichment and (-)-epigallocatechin-3-gallate on Age-Associated Learning Deficits in a Mouse Model of Down Syndrome.

    PubMed

    Catuara-Solarz, Silvina; Espinosa-Carrasco, Jose; Erb, Ionas; Langohr, Klaus; Notredame, Cedric; Gonzalez, Juan R; Dierssen, Mara

    2015-01-01

    Down syndrome (DS) individuals present increased risk for Alzheimer's disease (AD) neuropathology and AD-type dementia. Here, we investigated the use of green tea extracts containing (-)-epigallocatechin-3-gallate (EGCG), as co-adjuvant to enhance the effects of environmental enrichment (EE) in Ts65Dn mice, a segmental trisomy model of DS that partially mimics DS/AD pathology, at the age of initiation of cognitive decline. Classical repeated measures ANOVA showed that combined EE-EGCG treatment was more efficient than EE or EGCG alone to improve specific spatial learning related variables. Using principal component analysis (PCA) we found that several spatial learning parameters contributed similarly to a first PC and explained a large proportion of the variance among groups, thus representing a composite learning measure. This PC1 revealed that EGCG or EE alone had no significant effect. However, combined EE-EGCG significantly ameliorated learning alterations of middle age Ts65Dn mice. Interestingly, PCA revealed an increased variability along learning sessions with good and poor learners in Ts65Dn, and this stratification did not disappear upon treatments. Our results suggest that combining EE and EGCG represents a viable therapeutic approach for amelioration of age-related cognitive decline in DS, although its efficacy may vary across individuals. PMID:26696850

  4. The Experience of Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Wong, Elaine Y. H.; Guymer, Robyn H.; Hassell, Jennifer B.; Keeffe, Jill E.

    2004-01-01

    This qualitative article describes the impact of age-related macular degeneration (ARMD) among 15 participants: how a person makes sense of ARMD, the effect of ARMD on the person's quality of life, the psychological disturbances associated with the limitations of ARMD, and the influence of ARMD on social interactions. Such in-depth appreciation of…

  5. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  6. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  7. Age-Related Differences in Moral Identity across Adulthood

    ERIC Educational Resources Information Center

    Krettenauer, Tobias; Murua, Lourdes Andrea; Jia, Fanli

    2016-01-01

    In this study, age-related differences in adults' moral identity were investigated. Moral identity was conceptualized a context-dependent self-structure that becomes differentiated and (re)integrated in the course of development and that involves a broad range of value-orientations. Based on a cross-sectional sample of 252 participants aged 14 to…

  8. Neuroimaging explanations of age-related differences in task performance

    PubMed Central

    Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov

    2014-01-01

    Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance. PMID:24672481

  9. Glycosaminoglycans in the Human Cornea: Age-Related Changes

    PubMed Central

    Pacella, Elena; Pacella, Fernanda; De Paolis, Giulio; Parisella, Francesca Romana; Turchetti, Paolo; Anello, Giulia; Cavallotti, Carlo

    2015-01-01

    AIM To investigate possible age-related changes in glycosaminoglycans (GAGs) in the human cornea. The substances today called GAGs were previously referred to as mucopolysaccharides. METHODS Samples of human cornea were taken from 12 younger (age 21 ± 1.2) and 12 older (age 72 ± 1.6) male subjects. Samples were weighed, homogenized, and used for biochemical and molecular analyses. All the quantitative results were statistically analyzed. RESULTS The human cornea appears to undergo age-related changes, as evidenced by our biochemical and molecular results. The total GAG and hyaluronic acid counts were significantly higher in the younger subjects than in the older subjects. The sulfated heavy GAGs, such as chondroitin, dermatan, keratan, and heparan sulfate, were lower in the younger subjects than in the older subjects. DISCUSSION GAGs of the human cornea undergo numerous age-related changes. Their quantity is significantly altered in the elderly in comparison with younger subjects. GAGs play an important role in age-related diseases of the human cornea. PMID:25674020

  10. PPARα agonist, fenofibrate, ameliorates age-related renal injury.

    PubMed

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Kim, Hyung Wook; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-08-01

    The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney. PMID:27130813

  11. Age-Related Differences in the Production of Textual Descriptions

    ERIC Educational Resources Information Center

    Marini, Andrea; Boewe, Anke; Caltagirone, Carlo; Carlomagno, Sergio

    2005-01-01

    Narratives produced by 69 healthy Italian adults were analyzed for age-related changes of microlinguistic, macrolinguistic and informative aspects. The participants were divided into five age groups (20-24, 25-39, 40-59, 60-74, 75-84). One single-picture stimulus and two cartoon sequences were used to elicit three stories per subject. Age-related…

  12. APOLIPOPROTEIN E GENE AND EARLY AGE-RELATED MACULOPATHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVE: To examine the association between the apolipoprotein E (APOE) gene and early age-related maculopathy (ARM) in middle-aged persons. DESIGN: Population-based cross-sectional study. PARTICIPANTS: Participants from the Atherosclerosis Risk in Communities Study (n = 10139; age range, 49-73 ye...

  13. Nutritional antioxidants and age-related cataract and maculopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of vision is the second greatest, next to death, fear among the elderly. Age-related cataract (ARC) and maculopathy (ARM) are two major causes of blindness worldwide. There are several important reasons to study relationships between risk for ARC/ARM and nutrition: (1) because it is likely that...

  14. Nutritional modulation of age-related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated wi...

  15. Age-Related Factors in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Twyford, Charles William

    The convergence of several lines of psycholinguistic and sociolinguistic research suggests possible explanations for age-related influences on language acquisition. These factors, which include cognitive development, sociocultural context, affective factors, and language input, can be helpful to language educators. By being alert to the cognitive…

  16. Nutritional influences on epigenetics and age-related disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  17. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression.

    PubMed

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F; Buss, Eric W; Richter, Hannah; Oh, M Matthew; Nicholson, Daniel A; Disterhoft, John F

    2015-09-23

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29-32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K(+) channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. Significance statement: Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  18. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression

    PubMed Central

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F.; Buss, Eric W.; Richter, Hannah; Oh, M. Matthew

    2015-01-01

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29–32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K+ channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. SIGNIFICANCE STATEMENT Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  19. Dietary compound score and risk of age-related macular degeneration in the Age-Related Eye Disease Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Because foods provide many nutrients, which may interact with each other to modify risk for multifactorial diseases such as age-related macular degeneration (AMD), we sought to develop a composite scoring system to summarize the combined effect of multiple dietary nutrients on AMD risk. Th...

  20. Protein tyrosine phosphatase alpha (PTP alpha) knockout mice show deficits in Morris water maze learning, decreased locomotor activity, and decreases in anxiety.

    PubMed

    Skelton, Matthew R; Ponniah, Sathivel; Wang, Dennis Z-M; Doetschman, Thomas; Vorhees, Charles V; Pallen, Catherine J

    2003-09-12

    Receptor PTPalpha is a widely expressed transmembrane enzyme enriched in brain. PTPalpha knockout (PTPalpha(-/-)) mice are viable and display no gross abnormalities. Brain and embryo derived fibroblast src and fyn activity is reduced to <50% in PTPalpha(-/-) mice. These protein kinases are implicated in multiple aspects of neuronal development and function. However, the effect of the loss of function of the PTPalpha gene on behavior has yet to be investigated. PTPalpha(-/-) and WT mice were tested for anxiety, swimming ability, spatial learning, cued learning, locomotor activity, and novel object recognition (NOR). PTPalpha(-/-) mice were indistinguishable from WT in swimming ability, cued learning and novel object recognition. Knockout mice showed decreased anxiety without an increase in head dips and stretch-attend movements. During Morris water maze (MWM) learning, PTPalpha(-/-) mice had increased latencies to reach the goal compared to WT on acquisition, but no memory deficit on probe trials. On reversal learning, knockout mice showed no significant effects. PTPalpha(-/-) mice showed decreased exploratory locomotor activity, but responded normally to a challenge dose of D-methamphetamine. The data suggest that PTPalpha serves a regulatory function in learning and other forms of neuroplasticity. PMID:12932834

  1. Defensive copers show a deficit in passive avoidance learning on Newman's go/no-go task: implications for self-deception and socialization.

    PubMed

    Shane, Matthew S; Peterson, Jordan B

    2004-10-01

    The present study investigated whether passive avoidance learning was retarded by defensive coping strategies designed to minimize exposure to negatively valenced stimuli. High-anxious individuals, low-anxious individuals, and defensive copers completed a computerized go/no-go task, in which they learned when to press or not to press a button, in response to contingent positive and negative feedback. The duration that feedback remained onscreen was self-regulated. Defensive copers showed preferential reflection away from negative feedback, committed more passive-avoidance errors, and were characterized by impaired learning, overall. Further, the ratio of reflection on negative feedback to reflection on positive feedback directly mediated both passive-avoidance errors and overall learning. Defensive coping strategies, therefore, appear to interfere with passive avoidance learning, thereby fostering perseverative, dysfunctional action patterns by reducing knowledge gained from previous mistakes. Implications for the learning of effective socialization strategies, and for psychopathy-which is commonly characterized by similar passive-avoidance deficits-are subsequently considered. PMID:15335333

  2. The suprachiasmatic nucleus: age-related decline in biological rhythms.

    PubMed

    Nakamura, Takahiro J; Takasu, Nana N; Nakamura, Wataru

    2016-09-01

    Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging. Furthermore, we have previously observed age-related infertility in female mice, caused by a mismatch between environmental light-dark cycles and the intrinsic, internal biological clocks. In this review, we address regulatory mechanisms underlying circadian rhythms in mammals and summarize recent literature describing the effects of aging on the circadian system. PMID:26915078

  3. Age-related percutaneous penetration part 1: skin factors.

    PubMed

    Konda, S; Meier-Davis, S R; Cayme, B; Shudo, J; Maibach, H I

    2012-05-01

    Changes in the skin that occur in the elderly may put them at increased risk for altered percutaneous penetration from pharmacotherapy along with potential adverse effects. Skin factors that may have a role in age-related percutaneous penetration include blood flow, pH, skin thickness, hair and pore density, and the content and structure of proteins, glycosaminoglycans (GAGs), water, and lipids. Each factor is examined as a function of increasing age along with its potential impact on percutaneous penetration. Additionally, topical drugs that successfully overcome the barrier function of the skin can still fall victim to cutaneous metabolism, thereby producing metabolites that may have increased or decreased activity. This overview discusses the current data and highlights the importance of further studies to evaluate the impact of skin factors in age-related percutaneous penetration. PMID:22622279

  4. Veterans have less age-related cognitive decline.

    PubMed

    McLay, R N; Lyketsos, C G

    2000-08-01

    Military service involves exposure to a number of stresses, both psychological and physical. On the other hand, military personnel generally maintain excellent fitness, and veterans have increased access to education and health care. The overall effect on age-related cognitive decline, whether for good or ill, of having served in the armed forces has not been investigated previously. In this study, we examined a diverse population of 208 veterans and 1,216 civilians followed as part of the Epidemiologic Catchment Area Study in 1981, 1982, and 1993 to 1996. We examined change in Mini-Mental State Examination (MMSE) score after a median of 11.5 years. Veterans were found to have significantly less decrease in MMSE scores at follow-up even after sex, race, and education were taken into account. These results suggest an overall positive effect of military service on the rate of age-related cognitive decline. PMID:10957857

  5. Genetic and Environmental Underpinnings to Age-Related Ocular Diseases

    PubMed Central

    Seddon, Johanna M.

    2013-01-01

    Age-related macular degeneration (AMD), cataract, glaucoma and diabetic retinopathy are common causes of visual loss. Both environmental and genetic factors contribute to the development of these diseases. The modifiable factors related to some of these age-related and visually threatening diseases are smoking, obesity, and dietary factors, and a cardiovascular risk profile. Many common and a few rare genetic factors are associated with AMD. The role of genetic variants for the other diseases are less clear. Interactions between environmental, therapeutic, and genetic factors are being explored. Knowledge of genetic risk and environmental factors, especially for AMD, has grown markedly over the past 2.5 decades and has led to some sight-saving approaches in preventive management. PMID:24335064

  6. Idiom understanding in adulthood: examining age-related differences.

    PubMed

    Hung, Pei-Fang; Nippold, Marilyn A

    2014-03-01

    Idioms are figurative expressions such as hold your horses, kick the bucket, and lend me a hand, which commonly occur in everyday spoken and written language. Hence, the understanding of these expressions is essential for daily communication. In this study, we examined idiom understanding in healthy adults in their 20s, 40s, 60s and 80s (n=30 per group) to determine if performance would show an age-related decline. Participants judged their own familiarity with a set of 20 idioms, explained the meaning of each, described a situation in which the idiom could be used, and selected the appropriate interpretation from a set of choices. There was no evidence of an age-related decline on any tasks. Rather, the 60s group reported greater familiarity and offered better explanations than did the 20s group. Moreover, greater familiarity with idioms was associated with better understanding in adults. PMID:24405225

  7. Age-Related Hyperkyphosis: Its Causes, Consequences, and Management

    PubMed Central

    Katzman, Wendy B.; Wanek, Linda; Shepherd, John A.; Sellmeyer, Deborah E.

    2010-01-01

    Age-related postural hyperkyphosis is an exaggerated anterior curvature of the thoracic spine, sometimes referred to as Dowager’s hump or gibbous deformity. This condition impairs mobility,2,31 and increases the risk of falls33 and fractures.26 The natural history of hyperkyphosis is not firmly established. Hyperkyphosis may develop from either muscle weakness and degenerative disc disease, leading to vertebral fractures and worsening hyperkyphosis, or from initial vertebral fractures that precipitate its development. PMID:20511692

  8. Dietary Approaches that Delay Age-Related Diseases

    PubMed Central

    Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G

    2006-01-01

    Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2–15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet—disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood

  9. Smoking and Age-Related Macular Degeneration: Review and Update

    PubMed Central

    Velilla, Sara; García-Medina, José Javier; García-Layana, Alfredo; Pons-Vázquez, Sheila; Pinazo-Durán, M. Dolores; Gómez-Ulla, Francisco; Arévalo, J. Fernando; Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto

    2013-01-01

    Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health. PMID:24368940

  10. Dietary approaches that delay age-related diseases.

    PubMed

    Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G

    2006-01-01

    Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2-15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet-disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood and

  11. Age-related changes of auditory brainstem responses in nonhuman primates.

    PubMed

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R; Recanzone, Gregg H

    2015-07-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  12. Age-related changes of auditory brainstem responses in nonhuman primates

    PubMed Central

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R.

    2015-01-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  13. Age-Related Neurochemical Changes in the Rhesus Macaque Superior Olivary Complex

    PubMed Central

    Gray, Daniel T.; Engle, James R.; Recanzone, Gregg H.

    2014-01-01

    Positive immunoreactivity to the calcium-binding protein parvalbumin (PV) and nitric oxide synthase NADPH-diaphorase (NADPHd) is well documented within neurons of the central auditory system of both rodents and primates. These proteins are thought to play roles in the regulation of auditory processing. Studies examining the age-related changes in expression of these proteins have been conducted primarily in rodents but are sparse in primate models. In the brainstem, the superior olivary complex (SOC) is crucial for the computation of sound source localization in azimuth, and one hallmark of age-related hearing deficits is a reduced ability to localize sounds. To investigate how these histochemical markers change as a function of age and hearing loss, we studied eight rhesus macaques ranging in age from 12 to 35 years. Auditory brainstem responses (ABRs) were obtained in anesthetized animals for click and tone stimuli. The brainstems of these same animals were then stained for PV and NADPHd reactivity. Reactive neurons in the three nuclei of the SOC were counted, and the densities of each cell type were calculated. We found that PV and NADPHd expression increased with both age and ABR thresholds in the medial superior olive but not in either the medial nucleus of the trapezoid body or the lateral superior olive. Together these results suggest that the changes in protein expression employed by the SOC may compensate for the loss of efficacy of auditory sensitivity in the aged primate. PMID:25232570

  14. Calorie Restriction Alleviates Age-Related Decrease in Neural Progenitor Cell Division in the Aging Brain

    PubMed Central

    Park, June-Hee; Glass, Zachary; Sayed, Kasim; Michurina, Tatyana V.; Lazutkin, Alexander; Mineyeva, Olga; Velmeshev, Dmitry; Ward, Walter F.; Richardson, Arlan; Enikolopov, Grigori

    2013-01-01

    Production of new neurons from stem cells is important for cognitive function, and the reduction of neurogenesis in the aging brain may contribute to the accumulation of age-related cognitive deficits. Restriction of calorie intake and prolonged treatment with rapamycin have been shown to extend the lifespan of animals and delay the onset of age-related decline in tissue and organ function. Using a reporter line in which neural stem and progenitor cells are marked by the expression of GFP, we examined the effect of prolonged exposure to calorie restriction (CR) or rapamycin on hippocampal neural stem and progenitor cell proliferation in aging mice. We show that CR increases the number of dividing cells in the dentate gyrus (DG) of female mice. The majority of these cells corresponded to Nestin-GFP-expressing neural stem or progenitor cells; however, this increased proliferative activity of stem and progenitor cells did not result in a significant increase in the number of doublecortin-positive newborn neurons. Our results suggest that restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the aging brain of females. PMID:23773068

  15. Age-related changes in Egr1 transcription and DNA methylation within the hippocampus.

    PubMed

    Penner, M R; Parrish, R R; Hoang, L T; Roth, T L; Lubin, F D; Barnes, C A

    2016-08-01

    Aged animals show functional alterations in hippocampal neurons that lead to deficits in synaptic plasticity and changes in cognitive function. Transcription of immediate-early genes (IEGs), including Egr1, is necessary for processes such as long-term potentiation and memory consolidation. Here, we show an age-related reduction in the transcription of Egr1 in the dentate gyrus following spatial behavior, whereas in the area CA1, Egr1 is reduced at rest, but its transcription can be effectively driven by spatial behavior to levels equivalent to those observed in adult animals. One mechanism possibly contributing to these aging-related changes is an age-associated, CpG site-specific change in methylation in DNA associated with the promoter region of the Egr1 gene. Our results add to a growing body of work demonstrating that complex transcriptional and epigenetic changes in the hippocampus significantly contribute to brain and cognitive aging. © 2016 Wiley Periodicals, Inc. PMID:26972614

  16. Aging-related gains and losses associated with word production in connected speech.

    PubMed

    Dennis, Paul A; Hess, Thomas M

    2016-11-01

    Older adults have been observed to use more nonnormative, or atypical, words than younger adults in connected speech. We examined whether aging-related losses in word-finding abilities or gains in language expertise underlie these age differences. Sixty younger and 60 older adults described two neutral photographs. These descriptions were processed into word types, and textual analysis was used to identify interrupted speech (e.g., pauses), reflecting word-finding difficulty. Word types were assessed for normativeness, with nonnormative word types defined as those used by six (5%) or fewer participants to describe a particular picture. Accuracy and precision ratings were provided by another sample of 48 high-vocabulary younger and older adults. Older adults produced more interrupted and, as predicted, nonnormative words than younger adults. Older adults were more likely than younger adults to use nonnormative language via interrupted speech, suggesting a compensatory process. However, older adults' nonnormative words were more precise and trended for having higher accuracy, reflecting expertise. In tasks offering response flexibility, like connected speech, older adults may be able to offset instances of aging-related deficits by maximizing their expertise in other instances. PMID:26963869

  17. Protective effect of myostatin gene deletion on aging-related muscle metabolic decline.

    PubMed

    Chabi, B; Pauly, M; Carillon, J; Carnac, G; Favier, F B; Fouret, G; Bonafos, B; Vanterpool, F; Vernus, B; Coudray, C; Feillet-Coudray, C; Bonnieu, A; Lacan, D; Koechlin-Ramonatxo, C

    2016-06-01

    While myostatin gene deletion is a promising therapy to fight muscle loss during aging, this approach induces also skeletal muscle metabolic changes such as mitochondrial deficits, redox alteration and increased fatigability. In the present study, we evaluated the effects of aging on these features in aged wild-type (WT) and mstn knockout (KO) mice. Moreover, to determine whether an enriched-antioxidant diet may be useful to prevent age-related disorders, we orally administered to the two genotypes a melon concentrate rich in superoxide dismutase for 12 weeks. We reported that mitochondrial functional abnormalities persisted (decreased state 3 and 4 of respiration; p<0.05) in skeletal muscle from aged KO mice; however, differences with WT mice were attenuated at old age in line with reduced difference on running endurance between the two genotypes. Interestingly, we showed an increase in glutathione levels, associated with lower lipid peroxidation levels in KO muscle. Enriched antioxidant diet reduced the aging-related negative effects on maximal aerobic velocity and running limit time (p<0.05) in both groups, with systemic adaptations on body weight. The redox status and the hypertrophic phenotype appeared to be beneficial to KO mice, mitigating the effect of aging on the skeletal muscle metabolic remodeling. PMID:26944368

  18. Age-related decline in bottom-up processing and selective attention in the very old

    PubMed Central

    Zhuravleva, T. Y.; Alperin, B. R.; Haring, A. E.; Rentz, D. M.; Holcomb, P. J.; Daffner, K. R.

    2014-01-01

    Previous research demonstrating age-related deficits in selective attention have not included old-old adults, an increasingly important group to study. The current investigation compared event-related potentials (ERPs) in 15 young-old (65–79) and 23 old-old (80–99) subjects during a color-selective attention task. Subjects responded to target letters in a specified color (Attend) while ignoring letters in a different color (Ignore) under both low and high load. There were no group differences in visual acuity, accuracy, reaction time, or latency of early ERP components. The old-old group showed a disruption in bottom-up processing, indexed by a substantially diminished posterior N1 (smaller amplitude). They also demonstrated markedly decreased modulation of bottom-up processing based on selected visual features, indexed by the posterior selection negativity (SN), with similar attenuation under both loads. In contrast, there were no group differences in frontally-mediated attentional selection, measured by the anterior selection positivity (SP). There was a robust inverse relationship between the size of the SN and SP (the smaller the SN, the larger the SP), which may represent an anteriorly-supported compensatory mechanism. In the absence of a decline in top-down modulation indexed by the SP, the diminished SN may reflect age-related degradation of early bottom-up visual processing in old-old adults. PMID:24887611

  19. Age-Related Changes in Hepatic Function: An Update on Implications for Drug Therapy.

    PubMed

    Tan, Joseph L; Eastment, Jacques G; Poudel, Arjun; Hubbard, Ruth E

    2015-12-01

    The accumulation of deficits with increasing age results in a decline in the functional capacity of multiple organs and systems. These changes can have a significant influence on the pharmacokinetics and pharmacodynamics of prescribed drugs. Although alterations in body composition and worsening renal clearance are important considerations, for most drugs the liver has the greatest effect on metabolism. Age-related change in hepatic function thereby causes much of the variability in older people's responses to medication. In this review, we propose that a decline in the ability of the liver to inactivate toxins may contribute to a proinflammatory state in which frailty can develop. Since inflammation also downregulates drug metabolism, medication prescribed to frail older people in accordance with disease-specific guidelines may undergo reduced systemic clearance, leading to adverse drug reactions, further functional decline and increasing polypharmacy, exacerbating rather than ameliorating frailty status. We also describe how increasing chronological age and frailty status impact liver size, blood flow and protein binding and enzymes of drug metabolism. This is used to contextualise our discussion of appropriate prescribing practices. For example, while the general axiom of 'start low, go slow' should underpin the initiation of medication (titrating to a defined therapeutic goal), it is important to consider whether drug clearance is flow or capacity-limited. By summarising the effect of age-related changes in hepatic function on medications commonly used in older people, we aim to provide a guide that will have high clinical utility for practising geriatricians. PMID:26547855

  20. Age-related motor dysfunction and neuropathology in a transgenic mouse model of multiple system atrophy.

    PubMed

    Fernagut, P O; Meissner, W G; Biran, M; Fantin, M; Bassil, F; Franconi, J M; Tison, F

    2014-03-01

    Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by a progressive degeneration of the striatonigral, olivo-ponto-cerebellar, and autonomic systems. Glial cytoplasmic inclusions (GCIs) containing alpha-synuclein represent the hallmark of MSA and are recapitulated in mice expressing alpha-synuclein in oligodendrocytes. To assess if oligodendroglial expression of human wild-type alpha-synuclein in mice (proteolipid promoter, PLP-SYN) could be associated with age-related deficits, PLP-SYN and wild-type mice were assessed for motor function, brain morphometry, striatal levels of dopamine and metabolites, dopaminergic loss, and distribution of GCIs. PLP-SYN displayed age-related impairments on a beam-traversing task. MRI revealed a significantly smaller brain volume in PLP-SYN mice at 12 months, which further decreased at 18 months together with increased volume of ventricles and cortical atrophy. The distribution of GCIs was reminiscent of MSA with a high burden in the basal ganglia. Mild dopaminergic cell loss was associated with decreased dopamine turnover at 18 months. These data indicate that PLP-SYN mice may recapitulate some of the progressive features of MSA and deliver endpoints for the evaluation of therapeutic strategies. PMID:24243499

  1. Age-related changes in the adaptability of neuromuscular output.

    PubMed

    Morrison, Steven; Sosnoff, Jacob J

    2009-05-01

    The aging process is associated with a general decline in biological function. One characteristic that researchers believe represents this diminished functioning of the aging neuromuscular system is increased physiological tremor. The present study is constructed to assess what age-related differences exist in the dynamics of tremor and forearm muscle activity under postural conditions in which the number of arm segments involved in the task was altered. The authors predicted that any alteration in the tremor or electromyographic (EMG) output of these two groups would provide a clearer understanding of the differential effects of aging or task dynamics on physiological function. Results reveal no age-related differences in finger tremor or forearm extensor muscle EMG activity under conditions in which participants were only required to extend their index finger against gravity. However, when participants had to hold their entire upper limb steady against gravity, the authors observed significant increases in forearm EMG activity, finger-tremor amplitude, power in the 8-12-Hz range, and signal regularity between the 2 age groups. The selective changes in signal regularity, EMG activity, and 8-12-Hz tremor amplitude under more challenging postural demands support the view that the age-related changes in neuromuscular dynamics are not fully elucidated when single task demands are utilized. PMID:19366659

  2. Soybean β-Conglycinin Prevents Age-Related Hearing Impairment

    PubMed Central

    Tanigawa, Tohru; Shibata, Rei; Kondo, Kazuhisa; Katahira, Nobuyuki; Kambara, Takahiro; Inoue, Yoko; Nonoyama, Hiroshi; Horibe, Yuichiro; Ueda, Hiromi; Murohara, Toyoaki

    2015-01-01

    Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG), one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months) were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV), which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress. PMID:26348726

  3. Topography of age-related changes in sleep spindles.

    PubMed

    Martin, Nicolas; Lafortune, Marjolaine; Godbout, Jonathan; Barakat, Marc; Robillard, Rebecca; Poirier, Gaétan; Bastien, Célyne; Carrier, Julie

    2013-02-01

    Aging induces multiple changes to sleep spindles, which may hinder their alleged functional role in memory and sleep protection mechanisms. Brain aging in specific cortical regions could affect the neural networks underlying spindle generation, yet the topography of these age-related changes is currently unknown. In the present study, we analyzed spindle characteristics in 114 healthy volunteers aged between 20 and 73 years over 5 anteroposterior electroencephalography scalp derivations. Spindle density, amplitude, and duration were higher in young subjects than in middle-aged and elderly subjects in all derivations, but the topography of age effects differed drastically. Age-related decline in density and amplitude was more prominent in anterior derivations, whereas duration showed a posterior prominence. Age groups did not differ in all-night spindle frequency for any derivation. These results show that age-related changes in sleep spindles follow distinct topographical patterns that are specific to each spindle characteristic. This topographical specificity may provide a useful biomarker to localize age-sensitive changes in underlying neural systems during normal and pathological aging. PMID:22809452

  4. Hypermnesia: age-related differences between young and older adults.

    PubMed

    Widner, R L; Otani, H; Smith, A D

    2000-06-01

    Hypermnesia is a net improvement in memory performance that occurs across tests in a multitest paradigm with only one study session. Our goal was to identify possible age-related differences in hypermnesic recall. We observed hypermnesia for young adults using verbal (Experiment 1) as well as pictorial (Experiment 2) material, but no hypermnesia for older adults in either experiment. We found no age-related difference in reminiscence (Experiments 1 and 2), though there was a substantial difference in intertest forgetting (Experiments 1 and 2). Older, relative to young, adults produced more forgetting, most of which occurred between Tests 1 and 2 (Experiments 1 and 2). Furthermore, older, relative to young, adults produced more intrusions. We failed to identify a relationship between intrusions and intertest forgetting. We suggest that the age-related difference in intertest forgetting may be due to less efficient reinstatement of cues at test by older adults. The present findings reveal that intertest forgetting plays a critical role in hypermnesic recall, particularly for older adults. PMID:10946539

  5. Age-related differences in working memory updating components.

    PubMed

    Linares, Rocío; Bajo, M Teresa; Pelegrina, Santiago

    2016-07-01

    The aim of this study was to investigate possible age-related changes throughout childhood and adolescence in different component processes of working memory updating (WMU): retrieval, transformation, and substitution. A set of numerical WMU tasks was administered to four age groups (8-, 11-, 14-, and 21-year-olds). To isolate the effect of each of the WMU components, participants performed different versions of a task that included different combinations of the WMU components. The results showed an expected overall decrease in response times and an increase in accuracy performance with age. Most important, specific age-related changes in the retrieval component were found, demonstrating that the effect of retrieval on accuracy was larger in children than in adolescents or young adults. These findings indicate that the availability of representations from outside the focus of attention may change with age. Thus, the retrieval component of updating could contribute to the age-related changes observed in the performance of many updating tasks. PMID:26985577

  6. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-01

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip. PMID:27444019

  7. Senescent cells: SASPected drivers of age-related pathologies.

    PubMed

    Ovadya, Yossi; Krizhanovsky, Valery

    2014-12-01

    The progression of physiological ageing is driven by intracellular aberrations including telomere attrition, genomic instability, epigenetic alterations and loss of proteostasis. These in turn damage cells and compromise their functionality. Cellular senescence, a stable irreversible cell-cycle arrest, is elicited in damaged cells and prevents their propagation in the organism. Under normal conditions, senescent cells recruit the immune system which facilitates their removal from tissues. Nevertheless, during ageing, tissue-residing senescent cells tend to accumulate, and might negatively impact their microenvironment via profound secretory phenotype with pro-inflammatory characteristics, termed senescence-associated secretory phenotype (SASP). Indeed, senescent cells are mostly abundant at sites of age-related pathologies, including degenerative disorders and malignancies. Interestingly, studies on progeroid mice indicate that selective elimination of senescent cells can delay age-related deterioration. This suggests that chronic inflammation induced by senescent cells might be a main driver of these pathologies. Importantly, senescent cells accumulate as a result of deficient immune surveillance, and their removal is increased upon the use of immune stimulatory agents. Insights into mechanisms of senescence surveillance could be combined with current approaches for cancer immunotherapy to propose new preventive and therapeutic strategies for age-related diseases. PMID:25217383

  8. Molecular Mechanism for Age-Related Memory Loss: The Histone-Binding Protein RbAp48

    PubMed Central

    Pavlopoulos, Elias; Jones, Sidonie; Kosmidis, Stylianos; Close, Maggie; Kim, Carla; Kovalerchik, Olga; Small, Scott A.; Kandel, Eric R.

    2016-01-01

    To distinguish age-related memory loss more explicitly from Alzheimer’s disease (AD), we have explored its molecular underpinning in the dentate gyrus (DG), a subregion of the hippocampal formation thought to be targeted by aging. We carried out a gene expression study in human postmortem tissue harvested from both DG and entorhinal cortex (EC), a neighboring subregion unaffected by aging and known to be the site of onset of AD. Using expression in the EC for normalization, we identified 17 genes that manifested reliable age-related changes in the DG. The most significant change was an age-related decline in RbAp48, a histone-binding protein that modifies histone acetylation. To test whether the RbAp48 decline could be responsible for age-related memory loss, we turned to mice and found that, consistent with humans, RbAp48 was less abundant in the DG of old than in young mice. We next generated a transgenic mouse that expressed a dominant-negative inhibitor of RbAp48 in the adult forebrain. Inhibition of RbAp48 in young mice caused hippocampus-dependent memory deficits similar to those associated with aging, as measured by novel object recognition and Morris water maze tests. Functional magnetic resonance imaging studies showed that within the hippocampal formation, dysfunction was selectively observed in the DG, and this corresponded to a regionally selective decrease in histone acetylation. Up-regulation of RbAp48 in the DG of aged wild-type mice ameliorated age-related hippocampus-based memory loss and age-related abnormalities in histone acetylation. Together, these findings show that the DG is a hippocampal subregion targeted by aging, and identify molecular mechanisms of cognitive aging that could serve as valid targets for therapeutic intervention. PMID:23986399

  9. Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48.

    PubMed

    Pavlopoulos, Elias; Jones, Sidonie; Kosmidis, Stylianos; Close, Maggie; Kim, Carla; Kovalerchik, Olga; Small, Scott A; Kandel, Eric R

    2013-08-28

    To distinguish age-related memory loss more explicitly from Alzheimer's disease (AD), we have explored its molecular underpinning in the dentate gyrus (DG), a subregion of the hippocampal formation thought to be targeted by aging. We carried out a gene expression study in human postmortem tissue harvested from both DG and entorhinal cortex (EC), a neighboring subregion unaffected by aging and known to be the site of onset of AD. Using expression in the EC for normalization, we identified 17 genes that manifested reliable age-related changes in the DG. The most significant change was an age-related decline in RbAp48, a histone-binding protein that modifies histone acetylation. To test whether the RbAp48 decline could be responsible for age-related memory loss, we turned to mice and found that, consistent with humans, RbAp48 was less abundant in the DG of old than in young mice. We next generated a transgenic mouse that expressed a dominant-negative inhibitor of RbAp48 in the adult forebrain. Inhibition of RbAp48 in young mice caused hippocampus-dependent memory deficits similar to those associated with aging, as measured by novel object recognition and Morris water maze tests. Functional magnetic resonance imaging studies showed that within the hippocampal formation, dysfunction was selectively observed in the DG, and this corresponded to a regionally selective decrease in histone acetylation. Up-regulation of RbAp48 in the DG of aged wild-type mice ameliorated age-related hippocampus-based memory loss and age-related abnormalities in histone acetylation. Together, these findings show that the DG is a hippocampal subregion targeted by aging, and identify molecular mechanisms of cognitive aging that could serve as valid targets for therapeutic intervention. PMID:23986399

  10. GlyT-1 Inhibition Attenuates Attentional But Not Learning or Motivational Deficits of the Sp4 Hypomorphic Mouse Model Relevant to Psychiatric Disorders.

    PubMed

    Young, Jared W; Kamenski, Mary E; Higa, Kerin K; Light, Gregory A; Geyer, Mark A; Zhou, Xianjin

    2015-11-01

    Serious mental illness occurs in 25% of the general population, with many disorders being neurodevelopmental, lifelong, and debilitating. The wide variation and overlap in symptoms across disorders increases the difficulty of research and treatment development. The NIMH Research Domain of Criteria initiative aims to improve our understanding of the molecular and behavioral consequences of specific neurodevelopmental mechanisms across disorders, enabling targeted treatment development. The transcription factor Specificity Protein 4 (SP4) is important for neurodevelopment and is genetically associated with both schizophrenia and bipolar disorder. Reduced Sp4 expression in mice (hypomorphic) reproduces several characteristics of psychiatric disorders. We further tested the utility of Sp4 hypomorphic mice as a model organism relevant to psychiatric disorders by assessing cognitive control plus effort and decision-making aspects of approach motivation using cross-species-relevant tests. Sp4 hypomorphic mice exhibited impaired attention as measured by the 5-Choice Continuous Performance Test, an effect that was attenuated by glycine type-1 transporter (GlyT-1) inhibition. Hypomorphic mice also exhibited reduced motivation to work for a reward and impaired probabilistic learning. These deficits may stem from affected anticipatory reward, analogous to anhedonia in patients with schizophrenia and other psychiatric disorders. Neither positive valence deficit was attenuated by GlyT-1 treatment, suggesting that these and the attentional deficits stem from different underlying mechanisms. Given the association of SP4 gene with schizophrenia and bipolar disorder, the present studies provide support that personalized GlyT-1 inhibition may treat attentional deficits in neuropsychiatric patients with low SP4 levels. PMID:25907107

  11. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets

    PubMed Central

    Matsumoto, Yukihisa; Matsumoto, Chihiro S.; Takahashi, Toshihumi; Mizunami, Makoto

    2016-01-01

    Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes. PMID:27616985

  12. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets.

    PubMed

    Matsumoto, Yukihisa; Matsumoto, Chihiro S; Takahashi, Toshihumi; Mizunami, Makoto

    2016-01-01

    Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes. PMID:27616985

  13. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline.

    PubMed

    Müller, Nils C J; Genzel, Lisa; Konrad, Boris N; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel; Dresler, Martin

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience-in our case piano skills-increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  14. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline

    PubMed Central

    Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  15. Descriptions of Personal Experiences: Effects on Students' Learning and Behavioral Intentions toward Peers with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Saecker, Lee B.; Skinner, Amy L.; Skinner, Christopher H.; Rowland, Emily; Kirk, Emily

    2010-01-01

    High-school students were shown an educational video designed to dispel 12 common myths regarding Attention-Deficit/Hyperactivity Disorder (ADHD) by describing each myth and then presenting accurate information. The experimental group viewed a video that was supplemented by the speaker acknowledging that he had ADHD and providing descriptions of…

  16. 16p11.2 Deletion Mice Display Cognitive Deficits in Touchscreen Learning and Novelty Recognition Tasks

    ERIC Educational Resources Information Center

    Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…

  17. Emotional and Behavioral Problems in Children with Attention Deficit-Hyperactivity Disorder: Impact of Age and Learning Disabilities

    ERIC Educational Resources Information Center

    Miranda, Ana; Soriano, Manuel; Fernandez, Inmaculada; Melia, Amanda

    2008-01-01

    Comorbidity with other psychological problems (PP) complicates the course of attention deficit-hyperactivity disorder (ADHD) and makes treatment more difficult. The purpose of the present study was to (a) study the correspondence between the perceptions of parents and teachers about PP, (b) determine which PP predict the severity of the…

  18. 7-nitroindazole attenuates 6-hydroxydopamine-induced spatial learning deficits and dopamine neuron loss in a presymptomatic animal model of Parkinson's disease.

    PubMed

    Haik, Kristi L; Shear, Deborah A; Hargrove, Chad; Patton, Jared; Mazei-Robison, Michelle; Sandstrom, Michael I; Dunbar, Gary L

    2008-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder in which loss of dopaminergic (DA) neurons (>50%) in the substantia nigra (SN) precedes most of the overt motor symptoms, making early diagnosis and treatment interventions difficult. Because PD has been associated with free radicals generated by nitric oxide, this study tested whether treatments of 7-nitroindazole (7NI), a nitric-oxide-synthase inhibitor, could reduce cognitive deficits that often emerge before overt motor symptoms in a presymptomatic rat model of PD. Rats were given intraperitoneal injections of 50 mg/kg 7NI (or vehicle) just before receiving bilateral, intrastriatal injections of the DA-toxin, 6-hydroxydopamine (6-OHDA). The rats were then given a battery of motor tasks, and their learning ability was assessed using a spatial reversal task in a water-T maze. Results indicate that 7NI treatments attenuate 6-OHDA-induced spatial learning deficits and protect against DA cell loss in the SN, suggesting that 7NI may have potential as an early, presymptomatic pharmacotherapy for PD. PMID:18489022

  19. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression.

    PubMed

    Darcet, Flavie; Gardier, Alain M; David, Denis J; Guilloux, Jean-Philippe

    2016-03-11

    Cognitive disturbances are often reported as serious invalidating symptoms in patients suffering from major depression disorders (MDD) and are not fully corrected by classical monoaminergic antidepressant drugs. If the role of 5-HT4 receptor agonists as cognitive enhancers is well established in naïve animals or in animal models of cognitive impairment, their cognitive effects in the context of stress need to be examined. Using a mouse model of anxiety/depression (CORT model), we reported that a chronic 5-HT4 agonist treatment (RS67333, 1.5mg/kg/day) restored chronic corticosterone-induced cognitive deficits, including episodic-like, associative and spatial learning and memory impairments. On the contrary, a chronic monoaminergic antidepressant drug treatment with fluoxetine (18mg/kg/day) only partially restored spatial learning and memory deficits and had no effect in the associative/contextual task. These results suggest differential mechanisms underlying cognitive effects of these drugs. Finally, the present study highlights 5-HT4 receptor stimulation as a promising therapeutic mechanism to alleviate cognitive symptoms related to MDD. PMID:26850572

  20. Neurologic deficit

    MedlinePlus

    ... neurologic deficit refers to abnormal function of a body area due to weaker function of the brain, spinal cord, muscles, or nerves. Examples include: Abnormal reflexes Inability to speak Decreased sensation Loss of balance ...

  1. Age-related changes in mouse bone permeability.

    PubMed

    Rodriguez-Florez, Naiara; Oyen, Michelle L; Shefelbine, Sandra J

    2014-03-21

    The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling. PMID:24433671

  2. Pathogenesis of Age-Related Bone Loss in Humans

    PubMed Central

    2013-01-01

    Background. Although data from rodent systems are extremely useful in providing insights into possible mechanisms of age-related bone loss, concepts evolving from animal models need to ultimately be tested in humans. Methods. This review provides an update on mechanisms of age-related bone loss in humans based on the author’s knowledge of the field and focused literature reviews. Results. Novel imaging, experimental models, biomarkers, and analytic techniques applied directly to human studies are providing new insights into the patterns of bone mass acquisition and loss as well as the role of sex steroids, in particular estrogen, on bone metabolism and bone loss with aging in women and men. These studies have identified the onset of trabecular bone loss at multiple sites that begins in young adulthood and remains unexplained, at least based on current paradigms of the mechanisms of bone loss. In addition, estrogen appears to be a major regulator of bone metabolism not only in women but also in men. Studies assessing mechanisms of estrogen action on bone in humans have identified effects of estrogen on RANKL expression by several different cell types in the bone microenvironment, a role for TNF-α and IL-1β in mediating effects of estrogen deficiency on bone, and possible regulation of the Wnt inhibitor, sclerostin, by estrogen. Conclusions. There have been considerable advances in our understanding of age-related bone loss in humans. However, there are also significant gaps in knowledge, particularly in defining cell autonomous changes in bone in human studies to test or validate concepts emerging from studies in rodents. Decision Editor: Luigi Ferrucci, MD, PhD PMID:22923429

  3. Age-Related Changes in Skeletal Muscle of Cattle.

    PubMed

    Costagliola, A; Wojcik, S; Pagano, T B; De Biase, D; Russo, V; Iovane, V; Grieco, E; Papparella, S; Paciello, O

    2016-03-01

    Sarcopenia, the age-related loss of muscle mass and strength, is a multifactorial condition that represents a major healthcare concern for the elderly population. Although its morphologic features have been extensively studied in humans, animal models, and domestic and wild animals, only a few reports about spontaneous sarcopenia exist in other long-lived animals. In this work, muscle samples from 60 healthy Podolica-breed old cows (aged 15-23 years) were examined and compared with muscle samples from 10 young cows (3-6 years old). Frozen sections were studied through standard histologic and histoenzymatic procedures, as well as by immunohistochemistry, immunofluorescence, and Western blot analysis. The most prominent age-related myopathic features seen in the studied material included angular fiber atrophy (90% of cases), mitochondrial alterations (ragged red fibers, 70%; COX-negative fibers, 60%), presence of vacuolated fibers (75%), lymphocytic (predominantly CD8+) inflammation (40%), and type II selective fiber atrophy (40%). Immunohistochemistry revealed increased expression of major histocompatibility complex I in 36 cases (60%) and sarcoplasmic accumulations of β-amyloid precursor protein-positive material in 18 cases (30%). In aged cows, muscle atrophy was associated with accumulation of myostatin. Western blot analysis indicated increased amount of both proteins-myostatin and β-amyloid precursor protein-in muscles of aged animals compared with controls. These findings confirm the presence of age-related morphologic changes in cows similar to human sarcopenia and underline the possible role of amyloid deposition and subsequent inflammation in muscle senescence. PMID:26869152

  4. Age-Related Macular Degeneration: Advances in Management and Diagnosis.

    PubMed

    Yonekawa, Yoshihiro; Miller, Joan W; Kim, Ivana K

    2015-01-01

    Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment in older populations in industrialized nations. AMD is a late-onset deterioration of photoreceptors and retinal pigment epithelium in the central retina caused by various environmental and genetic factors. Great strides in our understanding of AMD pathogenesis have been made in the past several decades, which have translated into revolutionary therapeutic agents in recent years. In this review, we describe the clinical and pathologic features of AMD and present an overview of current diagnosis and treatment strategies. PMID:26239130

  5. Age-related macular degeneration: Complement in action.

    PubMed

    van Lookeren Campagne, Menno; Strauss, Erich C; Yaspan, Brian L

    2016-06-01

    The complement system plays a key role in host-defense against common pathogens but must be tightly controlled to avoid inflammation and tissue damage. Polymorphisms in genes encoding two important negative regulators of the alternative complement pathway, complement factor H (CFH) and complement factor I (CFI), are associated with the risk for Age-Related Macular Degeneration (AMD), a leading cause of vision impairment in the ageing population. In this review, we will discuss the genetic basis of AMD and the potential impact of complement de-regulation on disease pathogenesis. Finally, we will highlight recent therapeutic approaches aimed at controlling complement activation in patients with AMD. PMID:26742632

  6. Effects of Vitreomacular Adhesion on Age-Related Macular Degeneration

    PubMed Central

    Kang, Eui Chun; Koh, Hyoung Jun

    2015-01-01

    Herein, we review the association between vitreomacular adhesion (VMA) and neovascular age-related macular degeneration (AMD). Meta-analyses have shown that eyes with neovascular AMD are twice as likely to have VMA as normal eyes. VMA in neovascular AMD may induce inflammation, macular traction, decrease in oxygenation, sequestering of vascular endothelial growth factor (VEGF), and other cytokines or may directly stimulate VEGF production. VMA may also interfere with the treatment effects of anti-VEGF therapy, which is the standard treatment for neovascular AMD, and releasing VMA can improve the treatment response to anti-VEGF treatment in neovascular AMD. We also reviewed currently available methods of relieving VMA. PMID:26425354

  7. Present and Possible Therapies for Age-Related Macular Degeneration

    PubMed Central

    Kamal, Ahmed

    2014-01-01

    Age-related macular degeneration (AMD) is the most common cause of blindness in the elderly population worldwide and is defined as a chronic, progressive disorder characterized by changes occurring within the macula reflective of the ageing process. At present, the prevalence of AMD is currently rising and is estimated to increase by a third by 2020. Although our understanding of the several components underpinning the pathogenesis of this condition has increased significantly, the treatment options for this condition remain substantially limited. In this review, we outline the existing arsenal of therapies available for AMD and discuss the additional role of further novel therapies currently under investigation for this debilitating disease. PMID:25097787

  8. The role of mitochondria in age-related hearing loss.

    PubMed

    Chen, Hengchao; Tang, Jianguo

    2014-02-01

    Age-related hearing loss (ARHL), the hearing loss associated with aging, is a vital problem in present society. The severity of hearing loss is possibly associated with the degeneration of cochlear cells. Mitochondria play a key role in the energy supply, cellular redox homeostasis, signaling, and regulation of programmed cell death. In this review, we focus on the central role of mitochondria in ARHL. The mitochondrial redox imbalance and mitochondrial DNA mutation might collaboratively involve in the process of cochlear senescence in response to the aging stress. Subsequent responses, including alteration of mitochondrial biogenesis, mitophagy, apoptosis and paraptosis, participate in the aging process from different respects. PMID:24202185

  9. [Diagnostic Criteria for Atrophic Age-related Macular Degeneration].

    PubMed

    Takahashi, Kanji; Shiraga, Fumio; Ishida, Susumu; Kamei, Motohiro; Yanagi, Yasuo; Yoshimura, Nagahisa

    2015-10-01

    Diagnostic criteria for dry age-related macular degeneration is described. Criteria include visual acuity, fundscopic findings, diagnostic image findings, exclusion criteria and classification of severity grades. Essential findings to make diagnosis as "geographic atrophy" are, 1) at least 250 μm in diameter, 2) round/oval/cluster-like or geographic in shape, 3) sharp delineation, 4) hypopigmentation or depigmentation in retinal pigment epithelium, 5) choroidal vessels are more visible than in surrounding area. Severity grades were classified as mild, medium and severe by relation of geographic atrophy to the fovea and attendant findings. PMID:26571627

  10. [Glaucoma and age-related macular degeneration intricacy].

    PubMed

    Valtot, F

    2008-07-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness among the elderly in Western nations. Age is also a well-known and well-evidenced risk factor for glaucoma. With increasing longevity and the rising prevalence of older people around the world, more and more patients will have glaucoma and AMD. Clinical evaluation of these patients still poses problems for clinicians. It is very important to order the right tests at the right time to distinguish glaucomatous defects from those caused by retinal lesions, because appropriate therapy has a beneficial effect on slowing or halting damage. PMID:18957915

  11. Age-Related Macular Degeneration: Advances in Management and Diagnosis

    PubMed Central

    Yonekawa, Yoshihiro; Miller, Joan W.; Kim, Ivana K.

    2015-01-01

    Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment in older populations in industrialized nations. AMD is a late-onset deterioration of photoreceptors and retinal pigment epithelium in the central retina caused by various environmental and genetic factors. Great strides in our understanding of AMD pathogenesis have been made in the past several decades, which have translated into revolutionary therapeutic agents in recent years. In this review, we describe the clinical and pathologic features of AMD and present an overview of current diagnosis and treatment strategies. PMID:26239130

  12. Squalamine lactate for exudative age-related macular degeneration.

    PubMed

    Connolly, Brian; Desai, Avinash; Garcia, Charles A; Thomas, Edgar; Gast, Michael J

    2006-09-01

    Squalamine lactate inhibits angiogenesis by a long-lived, intracellular mechanism of action. The drug is taken up into activated endothelial cells through caveolae, small invaginations in the cellular membrane. Subsequently, the drug binds to and "chaperones" calmodulin to an intracellular membrane compartment and blocks angiogenesis at several levels. A series of basic investigations, preclinical studies, and human clinical trials have begun to establish the proof of concept, efficacy, and safety parameters for use of squalamine lactate as a therapeutic agent for exudative age-related macular degeneration and several types of malignancies. PMID:16935213

  13. Student Teacher Experiences in a Service-Learning Project for Children with Attention-Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Wilkinson, Shawn; Harvey, William J.; Bloom, Gordon A.; Joober, Ridha; Grizenko, Natalie

    2013-01-01

    Background: Service learning (SL) is a collaborative relationship between university professors, their students, and community partners who combine academic learning and active participation to address community issues. Previous studies in SL and physical education teacher education (PETE) found SL projects increased opportunities for learning and…

  14. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty.

    PubMed Central

    Glenn, Charles F.; Chow, David K.; Gami, Minaxi S.; Iser, Wendy B.; Hanselman, Keaton B.; Wolkow, Catherine A.; David, Lawrence; Goldberg, Ilya G.; Cooke, Carol A.

    2005-01-01

    Many behavioral responses require the coordination of sensory inputs with motor outputs. Aging is associated with progressive declines in both motor function and muscle structure. However, the consequences of age-related motor deficits upon behavior have not been clearly defined. Here, we examined the effects of aging on behavior in the nematode, Caenorhabditis elegans. As animals aged, mild locomotory deficits appeared that were sufficient to impair behavioral responses to sensory cues. In contrast, sensory ability appeared well-maintained during aging. Age-related behavioral declines were delayed in animals with mutations in the daf-2/insulin-like pathway governing longevity. A decline in muscle tissue integrity was correlated with the onset of age-related behavioral deficits, although significant muscle deterioration did not. Treatment with a muscarinic agonist significantly improved locomotory behavior in aged animals, indicating that improved neuromuscular signaling may be one strategy for reducing the severity of age-related behavioral impairments. PMID:15699524

  15. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty.

    PubMed

    Glenn, Charles F; Chow, David K; David, Lawrence; Cooke, Carol A; Gami, Minaxi S; Iser, Wendy B; Hanselman, Keaton B; Goldberg, Ilya G; Wolkow, Catherine A

    2004-12-01

    Many behavioral responses require the coordination of sensory inputs with motor outputs. Aging is associated with progressive declines in both motor function and muscle structure. However, the consequences of age-related motor deficits on behavior have not been clearly defined. Here, we examined the effects of aging on behavior in the nematode, Caenorhabditis elegans. As animals aged, mild locomotory deficits appeared that were sufficient to impair behavioral responses to sensory cues. In contrast, sensory ability appeared well maintained during aging. Age-related behavioral declines were delayed in animals with mutations in the daf-2/insulin-like pathway governing longevity. A decline in muscle tissue integrity was correlated with the onset of age-related behavioral deficits, although significant muscle deterioration was not. Treatment with a muscarinic agonist significantly improved locomotory behavior in aged animals, indicating that improved neuromuscular signaling may be one strategy for reducing the severity of age-related behavioral impairments. PMID:15699524

  16. Of goals and habits: age-related and individual differences in goal-directed decision-making

    PubMed Central

    Eppinger, Ben; Walter, Maik; Heekeren, Hauke R.; Li, Shu-Chen

    2013-01-01

    In this study we investigated age-related and individual differences in habitual (model-free) and goal-directed (model-based) decision-making. Specifically, we were interested in three questions. First, does age affect the balance between model-based and model-free decision mechanisms? Second, are these age-related changes due to age differences in working memory (WM) capacity? Third, can model-based behavior be affected by manipulating the distinctiveness of the reward value of choice options? To answer these questions we used a two-stage Markov decision task in in combination with computational modeling to dissociate model-based and model-free decision mechanisms. To affect model-based behavior in this task we manipulated the distinctiveness of reward probabilities of choice options. The results show age-related deficits in model-based decision-making, which are particularly pronounced if unexpected reward indicates the need for a shift in decision strategy. In this situation younger adults explore the task structure, whereas older adults show perseverative behavior. Consistent with previous findings, these results indicate that older adults have deficits in the representation and updating of expected reward value. We also observed substantial individual differences in model-based behavior. In younger adults high WM capacity is associated with greater model-based behavior and this effect is further elevated when reward probabilities are more distinct. However, in older adults we found no effect of WM capacity. Moreover, age differences in model-based behavior remained statistically significant, even after controlling for WM capacity. Thus, factors other than decline in WM, such as deficits in the in the integration of expected reward value into strategic decisions may contribute to the observed impairments in model-based behavior in older adults. PMID:24399925

  17. Parainflammation, chronic inflammation and age-related macular degeneration

    PubMed Central

    Chen, Mei; Xu, Heping

    2016-01-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978

  18. Fertility preservation for age-related fertility decline.

    PubMed

    Stoop, Dominic; Cobo, Ana; Silber, Sherman

    2014-10-01

    Cryopreservation of eggs or ovarian tissue to preserve fertility for patients with cancer has been studied since 1994 with R G Gosden's paper describing restoration of fertility in oophorectomised sheep, and for decades previously by others in smaller mammals. Clinically this approach has shown great success. Many healthy children have been born from eggs cryopreserved with the Kuwayama egg vitrification technique for non-medical (social) indications, but until now very few patients with cancer have achieved pregnancy with cryopreserved eggs. Often, oncologists do not wish to delay cancer treatment while the patient goes through multiple ovarian stimulation cycles to retrieve eggs, and the patient can only start using the oocytes after full recovery from cancer. Ovarian stimulation and egg retrieval is not a barrier for patients without cancer who wish to delay childbearing, which makes oocyte cryopreservation increasingly popular to overcome an age-related decline in fertility. Cryopreservation of ovarian tissue is an option if egg cryopreservation is ruled out. More than 35 babies have been born so far with cryopreserved ovarian tissue in patients with cancer who have had a complete return of hormonal function, and fertility to baseline. Both egg and ovarian tissue cryopreservation might be ready for application to the preservation of fertility not only in patients with cancer but also in countering the increasing incidence of age-related decline in female fertility. PMID:25283572

  19. Age-related mutations and chronic myelomonocytic leukemia.

    PubMed

    Mason, C C; Khorashad, J S; Tantravahi, S K; Kelley, T W; Zabriskie, M S; Yan, D; Pomicter, A D; Reynolds, K R; Eiring, A M; Kronenberg, Z; Sherman, R L; Tyner, J W; Dalley, B K; Dao, K-H; Yandell, M; Druker, B J; Gotlib, J; O'Hare, T; Deininger, M W

    2016-04-01

    Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy nearly confined to the elderly. Previous studies to determine incidence and prognostic significance of somatic mutations in CMML have relied on candidate gene sequencing, although an unbiased mutational search has not been conducted. As many of the genes commonly mutated in CMML were recently associated with age-related clonal hematopoiesis (ARCH) and aged hematopoiesis is characterized by a myelomonocytic differentiation bias, we hypothesized that CMML and aged hematopoiesis may be closely related. We initially established the somatic mutation landscape of CMML by whole exome sequencing followed by gene-targeted validation. Genes mutated in ⩾10% of patients were SRSF2, TET2, ASXL1, RUNX1, SETBP1, KRAS, EZH2, CBL and NRAS, as well as the novel CMML genes FAT4, ARIH1, DNAH2 and CSMD1. Most CMML patients (71%) had mutations in ⩾2 ARCH genes and 52% had ⩾7 mutations overall. Higher mutation burden was associated with shorter survival. Age-adjusted population incidence and reported ARCH mutation rates are consistent with a model in which clinical CMML ensues when a sufficient number of stochastically acquired age-related mutations has accumulated, suggesting that CMML represents the leukemic conversion of the myelomonocytic-lineage-biased aged hematopoietic system. PMID:26648538

  20. Current therapeutic developments in atrophic age-related macular degeneration.

    PubMed

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age-Related Eye Disease Study (AREDS) formulation, which has been demonstrated to slow down the progression of dry AMD. This review summarises recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem cell-based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  1. Age-related Cardiac Disease Model of Drosophila

    PubMed Central

    Ocorr, Karen; Akasaka, Takeshi; Bodmer, Rolf

    2007-01-01

    We have begun to study the genetic basis of deterioration of cardiac function in the fruit fly Drosophila melanogaster as an age-related cardiac disease model. For this purpose we have developed heart function assays in Drosophila and found that the fly's cardiac performance, as that of the human heart, deteriorates with age: aging fruit flies exhibit a progressive increase in electrical pacing-induced heart failure as well as in arrhythmias. The insulin receptor and associated pathways have a dramatic and heart-autonomous influence on age-related cardiac performance in flies, suggestive of potentially similar mechanisms in regulating cardiac aging in vertebrates. Compromised KCNQ and KATP ion channel functions also seem to contribute to the decline in heart performance in aging flies, suggesting that the corresponding vertebrate gene functions may similarly decline with age, in addition to their conserved role in protecting against arrhythmias and hypoxia/ischemia, respectively. The fly heart is thus emerging as a promising genetic model for studying the age-dependent decline in organ function. PMID:17125816

  2. Long noncoding RNAs in aging and age-related diseases.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-03-01

    Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process. PMID:26655093

  3. Age-related differences in electroencephalogram connectivity and network topology.

    PubMed

    Knyazev, Gennady G; Volf, Nina V; Belousova, Ludmila V

    2015-05-01

    To better understand age-related differences in brain function and behavior, connectivity between brain regions was estimated from electroencephalogram source time series in eyes closed versus eyes open resting condition. In beta band, decrease of connectivity upon eyes opening was more pronounced in younger than in older participants. The extent of this decrease was associated with reaction time in attention tasks, and this relationship was fully mediated by participants' age, implying that physiological processes, which lead to age-related slowing, include changes in beta reactivity. Graph-theoretical analysis showed a decrease of modularity and clustering in beta and gamma band networks in older adults, implying that age makes brain networks more random. The overall number of nodes identified as hubs in posterior cortical regions decreased in older participants. At the same time, increase of connectedness of anterior nodes, probably reflecting compensatory activation of the anterior attentional system, was observed in beta-band network of older adults. These findings show that normal aging mostly affects interactions in beta band, which are probably involved in attentional processes. PMID:25766772

  4. Age-related changes to the production of linguistic prosody

    NASA Astrophysics Data System (ADS)

    Barnes, Daniel R.

    The production of speech prosody (the rhythm, pausing, and intonation associated with natural speech) is critical to effective communication. The current study investigated the impact of age-related changes to physiology and cognition in relation to the production of two types of linguistic prosody: lexical stress and the disambiguation of syntactically ambiguous utterances. Analyses of the acoustic correlates of stress: speech intensity (or sound-pressure level; SPL), fundamental frequency (F0), key word/phrase duration, and pause duration revealed that both young and older adults effectively use these acoustic features to signal linguistic prosody, although the relative weighting of cues differed by group. Differences in F0 were attributed to age-related physiological changes in the laryngeal subsystem, while group differences in duration measures were attributed to relative task complexity and the cognitive-linguistic load of these respective tasks. The current study provides normative acoustic data for older adults which informs interpretation of clinical findings as well as research pertaining to dysprosody as the result of disease processes.

  5. Age-related preferences and age weighting health benefits.

    PubMed

    Tsuchiya, A

    1999-01-01

    This paper deals with the relevance of age in the paradigm of quality adjusted life years (QALYs). The first section outlines two rationales for incorporating age weights into QALYs. One of them is based on efficiency concerns; and the other on equity concerns. Both of these are theoretical constructs. The main purpose of this paper is to examine the extent of published empirical support for such age weighting. The second section is a brief survey of nine empirical studies that elicited age-related preferences from the general public. Six of these quantified the strength of the preferences, and these are discussed in more detail in the third section. The analysis distinguishes three kinds of age-related preference: productivity ageism, utilitarian ageism and egalitarian ageism. The relationship between them and their relevance to the two different rationales for age weighting are then explored. It is concluded that, although there is strong prima facie evidence of public support for both types of age weighting, the empirical evidence to support any particular set of weights is at present weak. PMID:10048783

  6. Current Therapeutic Development for Atrophic Age-related Macular Degeneration

    PubMed Central

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age Related Eye Disease Study (AREDS) formulation which has been demonstrated to slow down the progression of dry AMD. This review summarizes recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem-cell based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  7. Age-related differences in moral identity across adulthood.

    PubMed

    Krettenauer, Tobias; Murua, Lourdes Andrea; Jia, Fanli

    2016-06-01

    In this study, age-related differences in adults' moral identity were investigated. Moral identity was conceptualized a context-dependent self-structure that becomes differentiated and (re)integrated in the course of development and that involves a broad range of value-orientations. Based on a cross-sectional sample of 252 participants aged 14 to 65 years (148 women, M = 33.5 years, SD = 16.9) and a modification of the Good Self-Assessment, it was demonstrated that mean-level of moral identity (averaged across the contexts of family, school/work, and community) significantly increased in the adult years, whereas cross-context differentiation showed a nonlinear trend peaking at the age of 25 years. Value-orientations that define individuals' moral identity shifted so that self-direction and rule-conformity became more important with age. Age-related differences in moral identity were associated with, but not fully attributable to changes in personality traits. Overall, findings suggest that moral identity development is a lifelong process that starts in adolescence but expands well into middle age. (PsycINFO Database Record PMID:27124654

  8. Attenuated response to methamphetamine sensitization and deficits in motor learning and memory after selective deletion of β-catenin in dopamine neurons

    PubMed Central

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Bäckman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of β-catenin in DA neurons (DA-βcat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-βcat KO mice showed significant deficits in their ability to form long-term memories and displayed reduced expression of methamphetamine-induced behavioral sensitization after subsequent challenge doses with this drug, suggesting that motor learning and drug-induced learning plasticity are altered in these mice. Morphological analyses showed no changes in the number or distribution of tyrosine hydroxylase-labeled neurons in the ventral midbrain. While electrochemical measurements in the striatum determined no changes in acute DA release and uptake, a small but significant decrease in DA release was detected in mutant animals after prolonged repetitive stimulation, suggesting a possible deficit in the DA neurotransmitter vesicle reserve pool. However, electron microscopy analyses did not reveal significant differences in the content of synaptic vesicles per terminal, and striatal DA levels were unchanged in DA-βcat KO animals. In contrast, striatal mRNA levels for several markers known to regulate synaptic plasticity and DA neurotransmission were altered in DA-βcat KO mice. This study demonstrates that ablation of β-catenin in DA neurons leads to alterations of motor and reward-associated memories and to adaptations of the DA neurotransmitter system and suggests that β-catenin signaling in DA neurons is required to facilitate the synaptic remodeling underlying the consolidation of long-term memories. PMID:22822182

  9. Not all water mazes are created equal: cyclin D2 knockout mice with constitutively suppressed adult hippocampal neurogenesis do show specific spatial learning deficits

    PubMed Central

    Garthe, A; Huang, Z; Kaczmarek, L; Filipkowski, R K; Kempermann, G

    2014-01-01

    Studies using the Morris water maze to assess hippocampal function in animals, in which adult hippocampal neurogenesis had been suppressed, have yielded seemingly contradictory results. Cyclin D2 knockout (Ccnd2−/−) mice, for example, have constitutively suppressed adult hippocampal neurogenesis but had no overt phenotype in the water maze. In other paradigms, however, ablation of adult neurogenesis was associated with specific deficits in the water maze. Therefore, we hypothesized that the neurogenesis-related phenotype might also become detectable in Ccnd2−/− mice, if we used the exact setup and protocol that in our previous study had revealed deficits in mice with suppressed adult neurogenesis. Ccnd2−/− mice indeed learned the task and developed a normal preference for the goal quadrant, but were significantly less precise for the exact goal position and were slower in acquiring efficient and spatially more precise search strategies. Upon goal reversal (when the hidden platform was moved to a new position) Ccnd2−/− mice showed increased perseverance at the former platform location, implying that they were less flexible in updating the previously learned information. Both with respect to adult neurogenesis and behavioral performance, Ccnd2+/− mice ranged between wild types and knockouts. Importantly, hippocampus-dependent learning was not generally impaired by the mutation, but specifically functional aspects relying on precise and flexible encoding were affected. Whether ablation of adult neurogenesis causes a specific behavioral phenotype thus also depends on the actual task demands. The test parameters appear to be important variables influencing whether a task can pick up a contribution of adult neurogenesis to test performance. PMID:24602283

  10. Attenuated response to methamphetamine sensitization and deficits in motor learning and memory after selective deletion of β-catenin in dopamine neurons.

    PubMed

    Diaz-Ruiz, Oscar; Zhang, Yajun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R; Tagliaferro, Adriana; Brusco, Alicia; Bäckman, Cristina M

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of β-catenin in DA neurons (DA-βcat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-βcat KO mice showed significant deficits in their ability to form long-term memories and displayed reduced expression of methamphetamine-induced behavioral sensitization after subsequent challenge doses with this drug, suggesting that motor learning and drug-induced learning plasticity are altered in these mice. Morphological analyses showed no changes in the number or distribution of tyrosine hydroxylase-labeled neurons in the ventral midbrain. While electrochemical measurements in the striatum determined no changes in acute DA release and uptake, a small but significant decrease in DA release was detected in mutant animals after prolonged repetitive stimulation, suggesting a possible deficit in the DA neurotransmitter vesicle reserve pool. However, electron microscopy analyses did not reveal significant differences in the content of synaptic vesicles per terminal, and striatal DA levels were unchanged in DA-βcat KO animals. In contrast, striatal mRNA levels for several markers known to regulate synaptic plasticity and DA neurotransmission were altered in DA-βcat KO mice. This study demonstrates that ablation of β-catenin in DA neurons leads to alterations of motor and reward-associated memories and to adaptations of the DA neurotransmitter system and suggests that β-catenin signaling in DA neurons is required to facilitate the synaptic remodeling underlying the consolidation of long-term memories. PMID:22822182

  11. Benzodiazepine-induced spatial learning deficits in rats are regulated by the degree of modulation of α1 GABA(A) receptors.

    PubMed

    Joksimović, Srđan; Divljaković, Jovana; Van Linn, Michael L; Varagic, Zdravko; Brajković, Gordana; Milinković, Marija M; Yin, Wenyuan; Timić, Tamara; Sieghart, Werner; Cook, James M; Savić, Miroslav M

    2013-05-01

    Despite significant advances in understanding the role of benzodiazepine (BZ)-sensitive populations of GABAA receptors, containing the α1, α2, α3 or α5 subunit, factual substrates of BZ-induced learning and memory deficits are not yet fully elucidated. It was shown that α1-subunit affinity-selective antagonist β-CCt almost completely abolished spatial learning deficits induced by diazepam (DZP) in the Morris water maze. We examined a novel, highly (105 fold) α1-subunit selective ligand-WYS8 (0.2, 1 and 10 mg/kg), on its own and in combination with the non-selective agonist DZP (2 mg/kg) or β-CCt (5 mg/kg) in the water maze in rats. The in vitro efficacy study revealed that WYS8 acts as α1-subtype selective weak partial positive modulator (40% potentiation at 100nM). Measurement of concentrations of WYS8 and DZP in rat serum and brain tissues suggested that they did not substantially cross-influence the respective disposition. In the water maze, DZP impaired spatial learning (acquisition trials) and memory (probe trial). WYS8 caused no effect per se, did not affect the overall influence of DZP on the water-maze performance and was devoid of any activity in this task when combined with β-CCt. Nonetheless, an additional analysis of the latency to reach the platform and the total distance swam suggested that WYS8 addition attenuated the run-down of the spatial impairment induced by DZP at the end of acquisition trials. These results demonstrate a clear difference in the influence of an α1 subtype-selective antagonist and a partial agonist on the effects of DZP on the water-maze acquisition. PMID:22633616

  12. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: Relationship with spatial impairment

    PubMed Central

    Bañuelos, C.; LaSarge, C. L.; McQuail, J. A.; Hartman, J. J.; Gilbert, R. J.; Ormerod, B. K.; Bizon, J. L.

    2013-01-01

    Both cholinergic and GABAergic projections from the rostral basal forebrain have been implicated in hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in co-distributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase (ChAT) immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 (GAD67) immunopositive) neurons, and total (NeuN immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline. PMID:22817834

  13. Age-related differences in memory and in the memory effects of nootropic drugs.

    PubMed

    Petkov, V D; Mosharrof, A H; Petkov, V V; Kehayov, R A

    1990-01-01

    In experiments of 2-, 5-, 10- and 22-month old rats, using active avoidance with punishment reinforcement (maze and shuttle-box) and passive avoidance (step-down), we found that acquisition and retention in aged rats were impaired significantly or only as a trend. The nootropics adafenoxate, meclofenoxate, citicholine, aniracetam and the standardized ginseng extract administered orally for 7 to 10 days usually facilitated learning and improved memory in the rats of all ages. By some of the indices used the drugs gave more pronounced favourable effects in old rats, while by others better effects were observed in young or adult rats. The results demonstrate significant age-related differences in learning and memory in rats and in the effects of nootropic drugs on these processes. PMID:2281798

  14. Inflammatory networks in ageing, age-related diseases and longevity.

    PubMed

    Vasto, Sonya; Candore, Giuseppina; Balistreri, Carmela Rita; Caruso, Marco; Colonna-Romano, Giuseppina; Grimaldi, Maria Paola; Listi, Florinda; Nuzzo, Domenico; Lio, Domenico; Caruso, Calogero

    2007-01-01

    Inflammation is considered a response set by the tissues in response to injury elicited by trauma or infection. It is a complex network of molecular and cellular interactions that facilitates a return to physiological homeostasis and tissue repair. The individual response against infection and trauma is also determined by gene variability. Ageing is accompanied by chronic low-grade inflammation state clearly showed by 2-4-fold increase in serum levels of inflammatory mediators. A wide range of factors has been claimed to contribute to this state; however, the most important role seems to be played by the chronic antigenic stress, which affects immune system thorough out life with a progressive activation of macrophages and related cells. This pro-inflammatory status, interacting with the genetic background, potentially triggers the onset of age-related inflammatory diseases as atherosclerosis. Thus, the analysis of polymorphisms of the genes that are key nodes of the natural immunity response might clarify the patho-physiology of age-related inflammatory diseases as atherosclerosis. On the other hand, centenarians are characterized by marked delay or escape from age-associated diseases that, on average, cause mortality at earlier ages. In addition, centenarian offspring have increased likelihood of surviving to 100 years and show a reduced prevalence of age-associated diseases, as cardiovascular disease (CVD) and less prevalence of cardiovascular risk factors. So, genes involved in CVD may play an opposite role in human longevity. Thus, the model of centenarians can be used to understand the role of these genes in successful and unsuccessful ageing. Accordingly, we report the results of several studies in which the frequencies of pro-inflammatory alleles were significantly higher in patients affected by infarction and lower in centenarians whereas age-related controls displayed intermediate values. These findings point to a strong relationship between the genetics

  15. Progressive Age-Related Changes Similar to Age-Related Macular Degeneration in a Transgenic Mouse Model

    PubMed Central

    Rakoczy, Piroska Elizabeth; Zhang, Dan; Robertson, Terry; Barnett, Nigel L.; Papadimitriou, John; Constable, Ian Jeffrey; Lai, Chooi-May

    2002-01-01

    Age-related macular degeneration (AMD) is the major cause of blindness in the developed world. Its pathomechanism is unknown and its late onset, complex genetics and strong environmental components have all hampered investigations. Here we demonstrate the development of an animal model for AMD that reproduces features associated with geographic atrophy; a transgenic mouse line (mcd/mcd) expressing a mutated form of cathepsin D that is enzymatically inactive thus impairing processing of phagocytosed photoreceptor outer segments in the retinal pigment epithelial (RPE) cells. Pigmentary changes indicating RPE cell atrophy and a decreased response to flash electroretinograms were observed in 11- to 12-month-old mcd/mcd mice. Histological studies showed RPE cell proliferation, photoreceptor degeneration, shortening of photoreceptor outer segments, and accumulation of immunoreactive photoreceptor breakdown products in the RPE cells. An accelerated photoreceptor cell death was detected in 12-month-old mcd/mcd mice. Transmission electron microscopy demonstrated presence of basal laminar and linear deposits that are considered to be the hallmarks of AMD. Small hard drusen associated with human age-related maculopathy were absent in the mcd/mcd mouse model at the ages analyzed. In summary, this model presents several features of AMD, thus providing a valuable tool for investigating the underlying biological processes and pathomechanism of AMD. PMID:12368224

  16. Rule-based and information-integration category learning in normal aging.

    PubMed

    Maddox, W Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M

    2010-08-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated processes, whereas information-integration is thought to involve implicit, striatally mediated processes. As a group, older adults showed rule-based and information-integration deficits. A series of models were applied that provided insights onto the type of strategy used to solve the task. Interestingly, when the analyses focused only on participants who used the task appropriate strategy in the final block of trials, the age-related rule-based deficit disappeared whereas the information-integration deficit remained. For this group of individuals, the final block information-integration deficit was due to less consistent application of the task appropriate strategy by older adults, and over the course of learning these older adults shifted from an explicit hypothesis-testing strategy to the task appropriate strategy later in learning. In addition, the use of the task appropriate strategy was associated with less interference and better inhibitory control for rule-based and information-information learning, whereas use of the task appropriate strategy was associated with greater working memory and better new verbal learning only for the rule-based task. These results suggest that normal aging impacts both forms of category learning and that there are some important similarities and differences in the explanatory locus of these deficits. The data also support a two-component model of information-integration category learning that includes a striatal component that mediated procedural-based learning, and a prefrontal cortical component that mediates the transition from hypothesis-testing to procedural-based strategies

  17. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  18. Age-related priming effects in social judgments.

    PubMed

    Hess, T M; McGee, K A; Woodburn, S M; Bolstad, C A

    1998-03-01

    Two experiments investigated adult age differences in the impact of previously activated (and thus easily accessible) trait-related information on judgments about people. The authors hypothesized that age-related declines in the efficiency of controlled processing mechanisms during adulthood would be associated with increased susceptibility to judgment biases associated with such information. In each study, different-aged adults made impression judgments about a target, and assimilation of these judgments to trait constructs activated in a previous, unrelated task were examined. Consistent with the authors' hypotheses, older adults were likely to form impressions that were biased toward the primed trait constructs. In contrast, younger adults exhibited greater awareness of the primed information and were more likely to correct for its perceived influence, especially when distinctive contextual cues regarding the source of the primes were available. PMID:9533195

  19. Modulation of cell death in age-related diseases.

    PubMed

    Tezil, Tugsan; Basaga, Huveyda

    2014-01-01

    Aging is a stage of life of all living organisms. According to the free-radical theory, aging cells gradually become unable to maintain cellular homeostasis due to the adverse effects of reactive oxygen species (ROS). ROS can cause irreversible DNA mutations, protein and lipid damage which are increasingly accumulated in the course of time if cells could not overcome these effects by the antioxidant defence system. Accrued damaged molecules in cells may either induce cellular death or contribute to develop various pathologies. Hence, programmed cell death mechanisms, apoptosis and autophagy, play a vital role in the aging process. Although they are strictly controlled by various interconnected signalling pathways, alterations in their regulations may contribute to severe pathologies including cancer, Alzheimer's and Parkinson's diseases. In this review, we summarized our current understanding and hypotheses regarding oxidative stress and age-related dysregulation of cell death signalling pathways. PMID:24079770

  20. Molecular pathology of age-related macular degeneration

    PubMed Central

    Ding, Xiaoyan; Patel, Mrinali; Chan, Chi-Chao

    2009-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. Although the etiology and pathogenesis of AMD remain largely unclear, a complex interaction of genetic and environmental factors is thought to exist. AMD pathology is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium, and Bruch’s membrane, as well as, in some cases, alterations in choroidal capillaries. Recent research on the genetic and molecular underpinnings of AMD brings to light several basic molecular pathways and pathophysiological processes that might mediate AMD risk, progression, and/or response to therapy. This review summarizes, in detail, the molecular pathological findings in both humans and animal models, including genetic variations in CFH, CX3CR1, and ARMS2/HtrA1, as well as the role of numerous molecules implicated in inflammation, apoptosis, cholesterol trafficking, angiogenesis, and oxidative stress. PMID:19026761

  1. Complement Factor H Polymorphism in Age-Related Macular Degeneration

    PubMed Central

    Klein, Robert J.; Zeiss, Caroline; Chew, Emily Y.; Tsai, Jen-Yue; Sackler, Richard S.; Haynes, Chad; Henning, Alice K.; SanGiovanni, John Paul; Mane, Shrikant M.; Mayne, Susan T.; Bracken, Michael B.; Ferris, Frederick L.; Ott, Jurg; Barnstable, Colin; Hoh., Josephine

    2006-01-01

    Age-related macular degeneration (AMD) is a major cause of blindness in the elderly. We report a genome-wide screen of 96 cases and 50 controls for polymorphisms associated with AMD. Among 116,204 single-nucleotide polymorphisms genotyped, an intronic and common variant in the complement factor H gene (CFH) is strongly associated with AMD (nominal P value <10−7). In individuals homozygous for the risk allele, the likelihood of AMD is increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing revealed a polymorphism in linkage disequilibrium with the risk allele representing a tyrosine-histidine change at amino acid 402. This polymorphism is in a region of CFH that binds heparin and C-reactive protein. The CFH gene is located on chromosome 1 in a region repeatedly linked to AMD in family-based studies. PMID:15761122

  2. Translational strategies in aging and age-related disease.

    PubMed

    Armanios, Mary; de Cabo, Rafael; Mannick, Joan; Partridge, Linda; van Deursen, Jan; Villeda, Saul

    2015-12-01

    Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine. PMID:26646495

  3. Retinal phagocytes in age-related macular degeneration

    PubMed Central

    Kim, Soo-Young

    2015-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in industrial countries. Vision loss caused by AMD results from geographic atrophy (dry AMD) and/or choroidal neovascularization (wet AMD). Presently, the etiology and pathogenesis of AMD is not fully understood and there is no effective treatment. Oxidative stress in retinal pigment epithelial (RPE) cells is considered to be one of the major factors contributing to the pathogenesis of AMD. Also retinal glia, as scavengers, are deeply related with diseases and could play a role. Therefore, therapeutic approaches for microglia and Müller glia, as well as RPE, may lead to new strategies for AMD treatment. This review summarizes the pathological findings observed in RPE cells, microglia and Müller glia of AMD murine models. PMID:26052551

  4. Treatment of neovascular age-related macular degeneration: Current therapies

    PubMed Central

    Augustin, Albert J; Scholl, Stefan; Kirchhof, Janna

    2009-01-01

    Choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD) is now the leading cause of blindness and severe vision loss among people over the age of 40 in the Western world. Its prevalence is certain to increase substantially as the population ages. Treatments currently available for the disease include laser photocoagulation, verteporfin photodynamic therapy, and intravitreal injections of corticosteroids and anti-angiogenic agents. Many studies have reported the benefits of each of these treatments, although none is without its risks. No intervention actually cures AMD, nor the neovascularization associated with it. However, its symptoms are treated with varying degrees of success. Some treatments stabilize or arrest the progress of the disease. Others have been shown to reverse some of the damage that has already been done. These treatments can even lead to visual improvement. This paper will review the major classes of drugs and therapies designed to treat this condition. PMID:19668562

  5. Targeting MAPK Signaling in Age-Related Macular Degeneration

    PubMed Central

    Kyosseva, Svetlana V.

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease. PMID:27385915

  6. A Revised Hemodynamic Theory of Age-Related Macular Degeneration.

    PubMed

    Gelfand, Bradley D; Ambati, Jayakrishna

    2016-08-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  7. Complement factor H polymorphism and age-related macular degeneration.

    PubMed

    Edwards, Albert O; Ritter, Robert; Abel, Kenneth J; Manning, Alisa; Panhuysen, Carolien; Farrer, Lindsay A

    2005-04-15

    Age-related macular degeneration (AMD) is a common, late-onset, and complex trait with multiple risk factors. Concentrating on a region harboring a locus for AMD on 1q25-31, the ARMD1 locus, we tested single-nucleotide polymorphisms for association with AMD in two independent case-control populations. Significant association (P = 4.95 x 10(-10)) was identified within the regulation of complement activation locus and was centered over a tyrosine-402 --> histidine-402 protein polymorphism in the gene encoding complement factor H. Possession of at least one histidine at amino acid position 402 increased the risk of AMD 2.7-fold and may account for 50% of the attributable risk of AMD. PMID:15761121

  8. Age-Related Macular Degeneration: Insights into Inflammatory Genes

    PubMed Central

    Ragazzo, Michele; Missiroli, Filippo; Borgiani, Paola; Angelucci, Francesco; Marsella, Luigi Tonino; Cusumano, Andrea; Novelli, Giuseppe; Ricci, Federico; Giardina, Emiliano

    2014-01-01

    Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old). AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension). In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species) have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2) that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines), immune cells (macrophages), and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression. PMID:25478207

  9. Age-related differences in arithmetic strategy sequential effects.

    PubMed

    Lemaire, Patrick

    2016-03-01

    In this article, I review a series of new findings concerning how age-related changes in strategic variations are modulated by sequential effects. Sequential effects refer to how strategy selection and strategy execution on current problems are influenced by which strategy is used on immediately preceding problems. Two sequential effects during strategy selection (i.e., strategy revisions and strategy perseverations) and during strategy execution (i.e., strategy switch costs and modulations of poorer strategy effects) are presented. I also discuss how these effects change with age during adulthood. These phenomena are important, as they shed light on arithmetic processes and how these processes change with age during adulthood. In particular, they speak to the role of executive control while participants select and execute arithmetic strategies. Finally, I discuss the implications of sequential effects for theories of strategies and of arithmetic. (PsycINFO Database Record PMID:26372058

  10. Gene Therapies for Neovascular Age-Related Macular Degeneration.

    PubMed

    Pechan, Peter; Wadsworth, Samuel; Scaria, Abraham

    2015-07-01

    Pathological neovascularization is a key component of the neovascular form (also known as the wet form) of age-related macular degeneration (AMD) and proliferative diabetic retinopathy. Several preclinical studies have shown that antiangiogenesis strategies are effective for treating neovascular AMD in animal models. Vascular endothelial growth factor (VEGF) is one of the main inducers of ocular neovascularization, and several clinical trials have shown the benefits of neutralizing VEGF in patients with neovascular AMD or diabetic macular edema. In this review, we summarize several preclinical and early-stage clinical trials with intraocular gene therapies, which have the potential to reduce or eliminate the repeated intravitreal injections that are currently required for the treatment of neovascular AMD. PMID:25524721

  11. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  12. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  13. Age-related macular degeneration: Evidence of a major gene

    SciTech Connect

    Bhatt, S.; Warren, C.; Yang, H.

    1994-09-01

    Age-related macular degeneration is a major cause of blindness in developing countries. It remains a very poorly understood disorder. Although environmental and genetic factors have been implicated in its pathogenesis, none have been firmly implicated. The purpose of this study was to use pedigree analysis to evaluate the possible role of a major gene as a determinant of familial aggregation. Information was collected regarding occupation, smoking, sun exposure, associated medical problems and family history. 50 probands with age-related macular degeneration (ARMD) and 39 age, race and sex-matched controls were included in the study. In the ARMD group 15/50 (30%) of probands reported a positive family history; 22 out of 222 first degree relatives over age 60 were reported to be affected. In the control groups, none of the 138 first degree relatives over age 50 had a history of ARMD. This difference is statistically significant (p = 0.0003), indicating that genetic factors may play an important role in the pathogenesis of ARMD. In the ARMD group more siblings as compared to parents (16/127 vs. 5/82) were affected. 5/50 (10%) of the ARMD probands also gave a history of a second degree relative affected with ARMD, compared to none known among the relatives of controls. Data from 50 pedigrees were analyzed by complex segregation analysis under a class A regressive logistic model using the REGD program implemented in the SAGE package. Preliminary results allow rejection of a polygenic model and suggest there is a major gene for ARMD in these families. The inheritance model most compatible with the observed familial aggregation is autosomal recessive. In conclusion, these results are suggestive of a major gene effect in the etiology of ARMD. Identification of a major gene effect is a first step to further pursue linkage analysis and to search for the gene(s) involved in the causation of ARMD.

  14. Genetic risk factors and age-related macular degeneration (AMD)

    PubMed Central

    Mousavi, Maryam; Armstrong, Richard A.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make lifestyle choices that may reduce the risk of disease. Collaboration between geneticists, ophthalmologists, and optometrists suggests that genetic risk factors play a more significant role in AMD than previously thought. The most important genes are associated with immune system modulation and the complement system, e.g., complement factor H (CFH), factor B (CFB), factor C3, and serpin peptidase inhibitor (SERPING1). Genes associated with membrane transport, e.g., ATP-binding cassette protein (ABCR) and voltage-dependent calcium channel gamma 3 (CACNG3), the vascular system, e.g., fibroblast growth factor 2 (FGF2), fibulin-5, lysyl oxidase-like gene (LOXL1) and selectin-P (SELP), and with lipid metabolism, e.g., apolipoprotein E (APOE) and hepatic lipase (LIPC) have also been implicated. In addition, several other genes exhibit some statistical association with AMD, e.g., age-related maculopathy susceptibility protein 2 (ARMS2) and DNA excision repair protein gene (ERCC6) but more research is needed to establish their significance. Modifiable risk factors for AMD should be discussed with patients whose lifestyle and/or family history place them in an increased risk category. Furthermore, calculation of AMD risk using current models should be recommended as a tool for patient education. It is likely that AMD management in future will be increasingly influenced by assessment of genetic risk as such screening methods become more widely available.

  15. Inflammation and its role in age-related macular degeneration.

    PubMed

    Kauppinen, Anu; Paterno, Jussi J; Blasiak, Janusz; Salminen, Antero; Kaarniranta, Kai

    2016-05-01

    Inflammation is a cellular response to factors that challenge the homeostasis of cells and tissues. Cell-associated and soluble pattern-recognition receptors, e.g. Toll-like receptors, inflammasome receptors, and complement components initiate complex cellular cascades by recognizing or sensing different pathogen and damage-associated molecular patterns, respectively. Cytokines and chemokines represent alarm messages for leukocytes and once activated, these cells travel long distances to targeted inflamed tissues. Although it is a crucial survival mechanism, prolonged inflammation is detrimental and participates in numerous chronic age-related diseases. This article will review the onset of inflammation and link its functions to the pathogenesis of age-related macular degeneration (AMD), which is the leading cause of severe vision loss in aged individuals in the developed countries. In this progressive disease, degeneration of the retinal pigment epithelium (RPE) results in the death of photoreceptors, leading to a loss of central vision. The RPE is prone to oxidative stress, a factor that together with deteriorating functionality, e.g. decreased intracellular recycling and degradation due to attenuated heterophagy/autophagy, induces inflammation. In the early phases, accumulation of intracellular lipofuscin in the RPE and extracellular drusen between RPE cells and Bruch's membrane can be clinically detected. Subsequently, in dry (atrophic) AMD there is geographic atrophy with discrete areas of RPE loss whereas in the wet (exudative) form there is neovascularization penetrating from the choroid to retinal layers. Elevations in levels of local and systemic biomarkers indicate that chronic inflammation is involved in the pathogenesis of both disease forms. PMID:26852158

  16. Age-related oxidative modifications of transthyretin modulate its amyloidogenicity

    PubMed Central

    Zhao, Lei; Buxbaum, Joel N; Reixach, Natàlia

    2013-01-01

    The transthyretin amyloidoses are diseases of protein misfolding characterized by the extracellular deposition of fibrils and other aggregates of the homotetrameric protein transthyretin (TTR) in peripheral nerves, heart and other tissues. Age is the major risk factor for the development of these diseases. We hypothesized that an age-associated increase in protein oxidation could be involved in the onset of the senile forms of the TTR amyloidoses. To test this hypothesis we have produced and characterized relevant age-related oxidative modifications of wild type (WT) and the Val122Ile (V122I) TTR variant, both involved in cardiac TTR deposition in the elderly. Our studies show that methionine/cysteine oxidized TTR and carbonylated TTR either from WT or the V122I variant, are thermodynamically less stable than their non-oxidized counterparts. Moreover, carbonylated WT and carbonylated V122I TTR have a greater propensity to form aggregates and fibrils than WT and V122I TTR, respectively, at physiologically attainable pH. It is well known that TTR tetramer dissociation, the limiting step for aggregation and amyloid fibril formation, can be prevented by small molecules that bind the TTR tetramer interface. Here, we report that carbonylated WT TTR is less amenable to resveratrol-mediated tetramer stabilization than WT TTR. All the oxidized forms of TTR tested are cytotoxic to a human cardiomyocyte cell line known to be a target for cardiac-specific TTR variants. Overall these studies demonstrate that age-related oxidative modifications of TTR can contribute to the onset of the senile forms of the TTR amyloidoses. PMID:23414091

  17. Age-related oxidative modifications of transthyretin modulate its amyloidogenicity.

    PubMed

    Zhao, Lei; Buxbaum, Joel N; Reixach, Natàlia

    2013-03-19

    The transthyretin amyloidoses are diseases of protein misfolding characterized by the extracellular deposition of fibrils and other aggregates of the homotetrameric protein transthyretin (TTR) in peripheral nerves, heart, and other tissues. Age is the major risk factor for the development of these diseases. We hypothesized that an age-associated increase in the level of protein oxidation could be involved in the onset of the senile forms of the TTR amyloidoses. To test this hypothesis, we have produced and characterized relevant age-related oxidative modifications of the wild type (WT) and the Val122Ile (V122I) TTR variant, both involved in cardiac TTR deposition in the elderly. Our studies show that methionine/cysteine-oxidized TTR and carbonylated TTR from either the WT or the V122I variant are thermodynamically less stable than their nonoxidized counterparts. Moreover, carbonylated WT and carbonylated V122I TTR have a stronger propensity to form aggregates and fibrils than WT and V122I TTR, respectively, at physiologically attainable pH values. It is well-known that TTR tetramer dissociation, the limiting step for aggregation and amyloid fibril formation, can be prevented by small molecules that bind the TTR tetramer interface. Here, we report that carbonylated WT TTR is less amenable to resveratrol-mediated tetramer stabilization than WT TTR. All the oxidized forms of TTR tested are cytotoxic to a human cardiomyocyte cell line known to be a target for cardiac-specific TTR variants. Overall, these studies demonstrate that age-related oxidative modifications of TTR can contribute to the onset of the senile forms of the TTR amyloidoses. PMID:23414091

  18. Age-related vascular stiffening: causes and consequences

    PubMed Central

    Kohn, Julie C.; Lampi, Marsha C.; Reinhart-King, Cynthia A.

    2015-01-01

    Arterial stiffening occurs with age and is closely associated with the progression of cardiovascular disease. Stiffening is most often studied at the level of the whole vessel because increased stiffness of the large arteries can impose increased strain on the heart leading to heart failure. Interestingly, however, recent evidence suggests that the impact of increased vessel stiffening extends beyond the tissue scale and can also have deleterious microscale effects on cellular function. Altered extracellular matrix (ECM) architecture has been recognized as a key component of the pre-atherogenic state. Here, the underlying causes of age-related vessel stiffening are discussed, focusing on age-related crosslinking of the ECM proteins as well as through increased matrix deposition. Methods to measure vessel stiffening at both the macro- and microscale are described, spanning from the pulse wave velocity measurements performed clinically to microscale measurements performed largely in research laboratories. Additionally, recent work investigating how arterial stiffness and the changes in the ECM associated with stiffening contributed to endothelial dysfunction will be reviewed. We will highlight how changes in ECM protein composition contribute to atherosclerosis in the vessel wall. Lastly, we will discuss very recent work that demonstrates endothelial cells (ECs) are mechano-sensitive to arterial stiffening, where changes in stiffness can directly impact EC health. Overall, recent studies suggest that stiffening is an important clinical target not only because of potential deleterious effects on the heart but also because it promotes cellular level dysfunction in the vessel wall, contributing to a pathological atherosclerotic state. PMID:25926844

  19. Age-related changes in the tiger salamander retina.

    PubMed

    Townes-Anderson, E; Colantonio, A; St Jules, R S

    1998-05-01

    Tiger salamanders have been used in visual science because of the large size of their cells and the ease of preparation and maintenance of in vitro retinal preparations. We have found that salamanders over 27 cm in length show a variety of visual abnormalities. Compared to smaller animals (15-23 cm), large animals exhibited a decrease in visual responses determined by tests of the optomotor reflex. Small animals responded correctly an average of 84.5% of the time in visual testing at three light levels compared to an average of 68.4% for the large animals with the poorest visual performance at the lowest level of illumination. In addition, large animals contained (i) histological degeneration of the outer retina, in particular, loss and disruption of outer segments and abnormalities of the retinal pigmented epithelium, (ii) loss of cells, including photoreceptors, by apoptosis as evaluated with the TUNEL technique, and (iii) an increase in the number of macrophages and lymphocytes within the retina as determined by morphological examination. These histological changes were present in all large animals and all quadrants of their retinas. In contrast, small animals showed virtually no retinal degeneration, no TUNEL-positive cells, and few immune-like cells in the retina. Since large animals are also older animals. the visual changes are age-related. Loss of visual function and histological degeneration in the outer retina also typify aged human eyes. Thus, we propose that large salamanders serve as an animal model for age-related retinal degeneration. In addition to providing a source of aging retina that is readily accessible to experimental manipulation, the salamander provides a pigmented retina with a mixed (2:1, rod:cone) population of photoreceptors, similar to the degeneration-prone parafoveal region of the human eye. PMID:9631666

  20. Age-Related Tissue Stiffening: Cause and Effect

    PubMed Central

    Sherratt, Michael J.

    2013-01-01

    Significance Tissue elasticity is severely compromised in aging skin, lungs, and blood vessels. In the vascular and pulmonary systems, respectively, loss of mechanical function is linked to hypertension, which in turn is a risk factor for heart and renal failure, stroke, and aortic aneurysms, and to an increased risk of mortality as a result of acute lung infections. Recent Advances Although cellular mechanisms were thought to play an important role in mediating tissue aging, the reason for the apparent sensitivity of elastic fibers to age-related degradation remained unclear. We have recently demonstrated that compared with type I collagen, a key component of the elastic fiber system, the cysteine-rich fibrillin microfibril is highly susceptible to direct UV exposure in a cell-free environment. We hypothesized therefore that, as a consequence of both their remarkable longevity and cysteine-rich composition, many elastic fiber-associated components will be susceptible to the accumulation of damage by both direct UV radiation and reactive oxygen species-mediated oxidation. Critical Issues Although elastic fiber remodeling is a common feature of aging dynamic tissues, the inaccessibility of most human tissues has hampered attempts to define the molecular causes. Clinical Care Relevance Although, currently, the localized repair of damaged elastic fibers may be effected by the topical application of retinoids and some cosmetic products, future studies may extend the application of systemic transforming growth factor β antagonists, which can prevent cardiovascular remodeling in murine Marfan syndrome, to aging humans. Acellular mechanisms may be key mediators of elastic fiber remodeling and hence age-related tissue stiffening. PMID:24527318

  1. Green Tea Extract Ameliorates Learning and Memory Deficits in Ischemic Rats via Its Active Component Polyphenol Epigallocatechin-3-gallate by Modulation of Oxidative Stress and Neuroinflammation

    PubMed Central

    Wu, Kuo-Jen; Hsieh, Ming-Tsuen; Wu, Chi-Rei; Wood, W. Gibson; Chen, Yuh-Fung

    2012-01-01

    Ischemic stroke results in brain damage and behavioral deficits including memory impairment. Protective effects of green tea extract (GTex) and its major functional polyphenol (−)-epigallocatechin gallate (EGCG) on memory were examined in cerebral ischemic rats. GTex and EGCG were administered 1 hr before middle cerebral artery ligation in rats. GTex, EGCG, and pentoxifylline (PTX) significantly improved ishemic-induced memory impairment in a Morris water maze test. Malondialdehyde (MDA) levels, glutathione (GSH), and superoxide dismutase (SOD) activity in the cerebral cortex and hippocampus were increased by long-term treatment with GTex and EGCG. Both compounds were also associated with reduced cerebral infraction breakdown of MDA and GSH in the hippocampus. In in vitro experiments, EGCG had anti-inflammatory effects in BV-2 microglia cells. EGCG inhibited lipopolysaccharide- (LPS-) induced nitric oxide production and reduced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV-2 cells. GTex and its active polyphenol EGCG improved learning and memory deficits in a cerebral ischemia animal model and such protection may be due to the reduction of oxidative stress and neuroinflammation. PMID:22919410

  2. Glycoconjugate changes in aging and age-related diseases.

    PubMed

    Ando, Susumu

    2014-01-01

    The significance of glycosphingolipids and glycoproteins is discussed in their relation to normal aging and pathological aging, aging with diseases. Healthy myelin that looks stable is found to be gradually degraded and reconstructed throughout life for remodeling. An exciting finding is that myelin P0 protein is located in neurons and glycosylated in aging brains. In pathological aging, the roles of glycosphingolipids and glycoproteins as risk factors or protective agents for Alzheimer's and Parkinson's diseases are discussed. Intensive studies have been performed aiming to remove the risks from and to restore the functional deficits of the brain. Some of them are expected to be translated to therapeutic means. PMID:25151390

  3. Investigation of age-related differences in an adapted Hayling task.

    PubMed

    Tournier, Isabelle; Postal, Virginie; Mathey, Stéphanie

    2014-01-01

    The Hayling task is traditionally used to assess activation and inhibitory processes efficiency among various populations, such as elderly adults. However, the classical design of the task may also involve the influence of strategy use and efficiency of sentence processing in the possible differences between individuals. Therefore, the present study investigated activation and inhibitory processes in aging with two formats of an adapted Hayling task designed to reduce the involvement of these alternative factors. Thirty young adults (M=20.7 years) and 31 older adults (M=69.6 years) performed an adapted Hayling task including a switching block (i.e., unblocked design) in addition to the classical task (i.e., blocked design), and the selection of the response between two propositions. The results obtained with the classical blocked design showed age-related deficits in the suppression sections of the task but also in the initiation ones. These findings can be explained by a co-impairment of both inhibition and activation processes in aging. The results of the unblocked Hayling task, in which strategy use would be reduced, confirmed this age-related decline in both activation and inhibition processes. Moreover, significant correlations between the unblocked design and the Trail Making Test revealed that flexibility is equally involved in the completion of both sections of this design. Finally, the use of a forced-response choice offers a format that is easy to administer to people with normal or pathological aging. This seems particularly relevant for these populations in whom the production of an unrelated word often poses problems. PMID:25139228

  4. Theta-band oscillatory activity differs between gamblers and nongamblers comorbid with attention-deficit hyperactivity disorder in a probabilistic reward-learning task.

    PubMed

    Abouzari, Mehdi; Oberg, Scott; Tata, Matthew

    2016-10-01

    Problemgambling is thought to be comorbid with attention-deficit hyperactivity disorder (ADHD). We tested whether gamblers and ADHD patients exhibit similar reward-related brain activity in response to feedback in a gambling task. A series of brain electrical responses can be observed in the electroencephalogram (EEG) and the stimulus-locked event-related potentials (ERP), when participants in a gambling task are given feedback regardless of winning or losing the previous bet. Here, we used a simplified computerized version of the Iowa Gambling Task (IGT) to assess differences in reinforcement-driven choice adaptation between unmedicated ADHD patients with or without problem gambling traits and contrasted with a sex- and age-matched control group. EEG was recorded from the participants while they were engaged in the task which contained two choice options with different net payouts and win/loss probabilities. Learning trend which shows the ability to acquire and use knowledge of the reward outcomes to obtain a positive financial outcome was not observed in ADHD gamblers versus nongamblers. Induced theta-band (4-8Hz) power over frontal cortex was significantly higher in gamblers versus nongamblers in all different high-risk/low-risk win/lose conditions. Whereas induced low alpha (9-11Hz) power at frontal electrodes could only differentiate high-risk lose between gamblers and nongamblers but not the other three conditions between the two groups. The results indicate that ADHD nongamblers do not share with problem gamblers underlying deficits in reward learning. These pilot data highlight the need for studies of ADHD in gambling to elucidate how motivational states are represented during feedback processing. PMID:27318102

  5. Closed-Loop Rehabilitation of Age-Related Cognitive Disorders

    PubMed Central

    Mishra, Jyoti; Gazzaley, Adam

    2015-01-01

    Cognitive deficits are common in older adults, as a result of both the natural aging process and neurodegenerative disease. Although medical advancements have successfully prolonged the human lifespan, the challenge of remediating cognitive aging remains. The authors discuss the current state of cognitive therapeutic interventions and then present the need for development and validation of more powerful neurocognitive therapeutics. They propose that the next generation of interventions be implemented as closed-loop systems that target specific neural processing deficits, incorporate quantitative feedback to the individual and clinician, and are personalized to the individual’s neurocognitive capacities using real-time performance-adaptive algorithms. This approach should be multimodal and seamlessly integrate other treatment approaches, including neurofeedback and transcranial electrical stimulation. This novel approach will involve the generation of software that engages the individual in an immersive and enjoyable game-based interface, integrated with advanced biosensing hardware, to maximally harness plasticity and assure adherence. Introducing such next-generation closed-loop neurocognitive therapeutics into the mainstream of our mental health care system will require the combined efforts of clinicians, neuroscientists, bioengineers, software game developers, and industry and policy makers working together to meet the challenges and opportunities of translational neuroscience in the 21st century. PMID:25520029

  6. Closed-loop rehabilitation of age-related cognitive disorders.

    PubMed

    Mishra, Jyoti; Gazzaley, Adam

    2014-11-01

    Cognitive deficits are common in older adults, as a result of both the natural aging process and neurodegenerative disease. Although medical advancements have successfully prolonged the human lifespan, the challenge of remediating cognitive aging remains. The authors discuss the current state of cognitive therapeutic interventions and then present the need for development and validation of more powerful neurocognitive therapeutics. They propose that the next generation of interventions be implemented as closed-loop systems that target specific neural processing deficits, incorporate quantitative feedback to the individual and clinician, and are personalized to the individual's neurocognitive capacities using real-time performance-adaptive algorithms. This approach should be multimodal and seamlessly integrate other treatment approaches, including neurofeedback and transcranial electrical stimulation. This novel approach will involve the generation of software that engages the individual in an immersive and enjoyable game-based interface, integrated with advanced biosensing hardware, to maximally harness plasticity and assure adherence. Introducing such next-generation closed-loop neurocognitive therapeutics into the mainstream of our mental health care system will require the combined efforts of clinicians, neuroscientists, bioengineers, software game developers, and industry and policy makers working together to meet the challenges and opportunities of translational neuroscience in the 21st century. PMID:25520029

  7. Deficits in a lateralized associative learning task in dopamine-depleted rats with functional recovery by dopamine-rich transplants.

    PubMed

    Dowd, Eilís; Dunnett, Stephen B

    2004-10-01

    Experimental therapies for Parkinson's disease (PD) are commonly validated in unilateral animal models using simple tests of motor asymmetry such as rotation, stepping and cylinder tests. However, the human disorder is considerably more complex than this, and alternative tests that permit a more complete evaluation of the efficacy and mechanism of action of novel treatments are needed. In this study, an operant task that assesses the selection, initiation and execution of lateralized movements was used to investigate the effects of embryonic dopamine cell transplants in the unilateral medial forebrain bundle (MFB) lesion model of PD. Lesioned Lister Hooded rats had a pronounced contralateral selection and initiation deficit, as well as an impairment in execution of movements bilaterally. They also attempted fewer trials and made more procedural errors than unlesioned rats. Transplantation of fetal dopaminergic neurons to the striatum led to a marked improvement in specific parameters and a more modest improvement in others. The graft improved the contralateral selection deficit and the execution of movements bilaterally, but had no effect on the initiation of contralateral movements. Transplanted rats also attempted more trials and made fewer errors. In contrast, the more commonly used stepping and cylinder tests revealed no functional effect of the graft. This data suggests that this operant task may be a powerful tool for validating and elucidating the mechanism of action of experimental brain repair therapies prior to entering the clinic. PMID:15380018

  8. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.

    PubMed

    Lai, Jesyin; Bartlett, Edward L

    2015-09-01

    Amplitude modulation (AM) is an important temporal cue for precise speech and complex sound recognition. However, functional decline of the auditory periphery as well as degradation of central auditory processing due to aging can reduce the salience and resolution of temporal cues. Age-related deficits in central temporal processing have previously been observed at more rapid AM frequencies and various AM depths. These centrally observed changes result from cochlear changes compounded with changes along the ascending auditory pathway. In fact, a decrease in ability to detect temporally modulated sounds accurately could originate from changes in cochlear filtering properties and in cochlear mechanics due to aging. Nonetheless, few studies have examined cochlear mechanisms in AM detection. To assess integrity of the mechanical properties of the auditory periphery, distortion product otoacoustic emissions (DPOAEs) are a tool commonly used in clinics and in research. In this study, we measured DPOAEs to reveal age-related changes in peak f2/f1 ratio and degradation in AM detection by basilar membrane vibration. Two tones (f1 and f2, f2 > f1) at various f2/f1 ratios and simultaneous presentation of one AM and one pure tone were used as stimuli to evoke DPOAEs. In addition of observing reduced DPOAE amplitudes and steeper slopes in the input-output DPOAE functions, higher peak f2/f1 ratios and broader f2/f1 tuning were also observed in aged animals. Aged animals generally had lower distortion product (DP) and first sideband (SB 1) responses evoked by an f1 pure tone and an f2 AM tone, regardless of whether the AM frequency was 45 Hz or 128 Hz. SB 1 thresholds, which corresponds to the smallest stimulus AM depth that can induce cochlear vibrations at the DP generator locus, were higher in aged animals as well. The results suggest that age-related changes in peak f2/f1 ratio and AM detection by basilar membrane vibration are consistent with a reduction in endocochlear

  9. Age-related Shifts in Distortion Product Otoacoustic Emissions Peak-ratios and Amplitude Modulation Spectra

    PubMed Central

    Lai, Jesyin; Bartlett, Edward L.

    2015-01-01

    Amplitude modulation (AM) is an important temporal cue for precise speech and complex sound recognition. However, functional decline of the auditory periphery as well as degradation of central auditory processing due to aging can reduce the salience and resolution of temporal cues. Age-related deficits in central temporal processing have previously been observed at more rapid AM frequencies and various AM depths. These centrally observed changes result from cochlear changes compounded with changes along the ascending auditory pathway. In fact, a decrease in ability to detect temporally modulated sounds accurately could originate from changes in cochlear filtering properties and in cochlear mechanics due to aging. Nonetheless, few studies have examined cochlear mechanisms in AM detection. To assess integrity of the mechanical properties of the auditory periphery, distortion product otoacoustic emissions (DPOAEs) are a tool commonly used in clinics and in research. In this study, we measured DPOAEs to reveal age-related changes in peak f2/f1 ratio and degradation in AM detection by basilar membrane vibration. Two tones (f1 and f2, f2>f1) at various f2/f1 ratios and simultaneous presentation of one AM and one pure tone were used as stimuli to evoke DPOAEs. In addition of observing reduced DPOAE amplitudes and steeper slopes in the input-output DPOAE functions, higher peak f2/f1 ratios and broader f2/f1 tuning were also observed in aged animals. Aged animals generally had lower distortion product (DP) and first sideband (SB 1) responses evoked by an f1 pure tone and an f2 AM tone, regardless of whether the AM frequency was 45 Hz or 128 Hz. SB 1 thresholds, which corresponds to the smallest stimulus AM depth that can induce cochlear vibrations at the DP generator locus, were higher in aged animals as well. The results suggest that age-related changes in peak f2/f1 ratio and AM detection by basilar membrane vibration are consistent with a reduction in endocochlear

  10. Age-related decline of peripheral visual processing: the role of eye movements.

    PubMed

    Beurskens, Rainer; Bock, Otmar

    2012-03-01

    Earlier work suggests that the area of space from which useful visual information can be extracted (useful field of view, UFoV) shrinks in old age. We investigated whether this shrinkage, documented previously with a visual search task, extends to a bimanual tracking task. Young and elderly subjects executed two concurrent tracking tasks with their right and left arms. The separation between tracking displays varied from 3 to 35 cm. Subjects were asked to fixate straight ahead (condition FIX) or were free to move their eyes (condition FREE). Eye position was registered. In FREE, young subjects tracked equally well at all display separations. Elderly subjects produced higher tracking errors, and the difference between age groups increased with display separation. Eye movements were comparable across age groups. In FIX, elderly and young subjects tracked less well at large display separations. Seniors again produced higher tracking errors in FIX, but the difference between age groups did not increase reliably with display separation. However, older subjects produced a substantial number of illicit saccades, and when the effect of those saccades was factored out, the difference between young and older subjects' tracking did increase significantly with display separation in FIX. We conclude that the age-related shrinkage of UFoV, previously documented with a visual search task, is observable with a manual tracking task as well. Older subjects seem to partly compensate their deficit by illicit saccades. Since the deficit is similar in both conditions, it may be located downstream from the convergence of retinal and oculomotor signals. PMID:22179529

  11. Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization.

    PubMed

    Musel, Benoit; Hera, Ruxandra; Chokron, Sylvie; Alleysson, David; Chiquet, Christophe; Romanet, Jean-Paul; Guyader, Nathalie; Peyrin, Carole

    2011-11-01

    Age-related macular degeneration (AMD) is characterized by a central vision loss. We explored the relationship between the retinal lesions in AMD patients and the processing of spatial frequencies in natural scene categorization. Since the lesion on the retina is central, we expected preservation of low spatial frequency (LSF) processing and the impairment of high spatial frequency (HSF) processing. We conducted two experiments that differed in the set of scene stimuli used and their exposure duration. Twelve AMD patients and 12 healthy age-matched participants in Experiment 1 and 10 different AMD patients and 10 healthy age-matched participants in Experiment 2 performed categorization tasks of natural scenes (Indoors vs. Outdoors) filtered in LSF and HSF. Experiment 1 revealed that AMD patients made more no-responses to categorize HSF than LSF scenes, irrespective of the scene category. In addition, AMD patients had longer reaction times to categorize HSF than LSF scenes only for indoors. Healthy participants' performance was not differentially affected by spatial frequency content of the scenes. In Experiment 2, AMD patients demonstrated the same pattern of errors as in Experiment 1. Furthermore, AMD patients had longer reaction times to categorize HSF than LSF scenes, irrespective of the scene category. Again, spatial frequency processing was equivalent for healthy participants. The present findings point to a specific deficit in the processing of HSF information contained in photographs of natural scenes in AMD patients. The processing of LSF information is relatively preserved. Moreover, the fact that the deficit is more important when categorizing HSF indoors, may lead to new perspectives for rehabilitation procedures in AMD. PMID:22192508

  12. The Role of Inhibition in Age-related Off-Topic Verbosity: Not Access but Deletion and Restraint Functions.

    PubMed

    Yin, Shufei; Peng, Huamao

    2016-01-01

    The speech of older adults is commonly described as verbose and off-topic, which is thought to influence their social communication. This study investigated the role of inhibition in age-related off-topic verbosity (OTV). Inhibition consists of three functions: access, deletion, and restraint. The access function is responsible for preventing irrelevant information from accessing the attention center (pre-mechanism of inhibition); The deletion function is responsible for deleting previously relevant but currently irrelevant information from working memory, and the restraint function is responsible for restraining strong but inappropriate responses (post-mechanisms of inhibition). A referential communication task was used to determine whether OTV was influenced by the pre-mechanism of inhibition. A self-involved event interview task was used to investigate the effect of the post-mechanisms of inhibition on OTV. Results showed that the OTV of the elderly participants was associated with an age-related decline in the post-mechanisms of inhibition, while the OTV exhibited by young adults was most likely due to deficits in the pre-mechanism function of inhibition. This research contributed to fill gaps in the existing knowledge about the potential relationship between specific functions of inhibition and age-related OTV. PMID:27199793

  13. Age-related changes in attentional selection: quality of task set or degradation of task set across time?

    PubMed

    Jackson, Jonathan D; Balota, David A

    2013-09-01

    The present study explores the nature of attentional selection in younger and older adults. Following R. De Jong, E. Berendsen, and R. Cools (1999, Acta Psychologica, Vol. 101, pp. 379-394), we manipulated the response to stimulus interval (RSI) in two attentional selection paradigms to examine if there are age-related differences in the quality of task set and/or the maintenance of task set across time. In Experiment 1, we found that the interference effect in a spatial interference task was (a) overall larger in older adults compared with younger adults, and (b) smaller at the short RSI (200 ms) compared with the long RSI (2000 ms), and (c) not associated with an interaction between age and RSI. The second experiment explored the same variables in a Stroop color interference paradigm. Again, older adults produced a disproportionately larger interference effect than younger adults, the interference effect was smaller at the short RSI compared with the long RSI, and there was no evidence of an interaction between age and RSI. In both experiments, the larger interference effect could not be attributed to age-related general slowing and there was evidence from Vincentile analyses of increasing interference and age effects at the slower response latencies. These results indicate that attentional selection deficits in these two experiments were due to a breakdown in the quality of the task set as opposed to age-related differences in the maintenance of the task set across time. PMID:23834491

  14. The Role of Inhibition in Age-related Off-Topic Verbosity: Not Access but Deletion and Restraint Functions

    PubMed Central

    Yin, Shufei; Peng, Huamao

    2016-01-01

    The speech of older adults is commonly described as verbose and off-topic, which is thought to influence their social communication. This study investigated the role of inhibition in age-related off-topic verbosity (OTV). Inhibition consists of three functions: access, deletion, and restraint. The access function is responsible for preventing irrelevant information from accessing the attention center (pre-mechanism of inhibition); The deletion function is responsible for deleting previously relevant but currently irrelevant information from working memory, and the restraint function is responsible for restraining strong but inappropriate responses (post-mechanisms of inhibition). A referential communication task was used to determine whether OTV was influenced by the pre-mechanism of inhibition. A self-involved event interview task was used to investigate the effect of the post-mechanisms of inhibition on OTV. Results showed that the OTV of the elderly participants was associated with an age-related decline in the post-mechanisms of inhibition, while the OTV exhibited by young adults was most likely due to deficits in the pre-mechanism function of inhibition. This research contributed to fill gaps in the existing knowledge about the potential relationship between specific functions of inhibition and age-related OTV. PMID:27199793

  15. Foreign language training as cognitive therapy for age-related cognitive decline: A hypothesis for future research

    PubMed Central

    Antoniou, Mark; Gunasekera, Geshri; Wong, Patrick C. M.

    2014-01-01

    Over the next fifty years, the number of older adults is set to reach record levels. Protecting older adults from the age-related effects of cognitive decline is one of the greatest challenges of the next few decades as it places increasing pressure on families, health systems, and economies on a global scale. The disease-state of age-related cognitive decline—Alzheimer's disease and other dementias—hijacks our consciousness and intellectual autonomy. However, there is evidence that cognitively stimulating activities protect against the adverse effects of cognitive decline. Similarly, bilingualism is also considered to be a safeguard. We propose that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. It is recommended that future research should test this potentially fruitful hypothesis. PMID:24051310

  16. Combined stimulation of the glycine and polyamine sites of the NMDA receptor attenuates NMDA blockade-induced learning deficits of rats in a 14-unit T-maze.

    PubMed

    Meyer, R C; Knox, J; Purwin, D A; Spangler, E L; Ingram, D K

    1998-02-01

    The present study examined the effects of multi-site activation of the glycine and polyamine sites of the NMDA receptor on memory formation in rats learning a 14-unit T-maze task. The competitive NMDA receptor antagonist, (+/-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP, 9 mg/kg), was used to impair learning. The objectives were two-fold: (1) to investigate the effects of independent stimulation of the strychnine-insensitive glycine site or the polyamine site; (2) to investigate the effects of simultaneous activation of these two sites. Male, Fischer-344 rats were pretrained to a criterion of 13 out of 15 shock avoidances in a straight runway, and 24 h later were trained in a 14-unit T-maze that also required shock avoidance. Prior to maze training, rats received intraperitoneal (i.p.) injections of saline, saline plus CPP, CPP plus the glycine agonist, D-cycloserine (DCS, 30 or 40 mg/kg), CPP plus the polyamine agonist, spermine (SPM, 2.5 or 5 mg/kg), or CPP plus a combination of DCS (7.5 mg/kg) and SPM (0.625 mg/kg). Individual administration of either DCS or SPM attenuated the CPP-induced maze learning impairment in a dose-dependent manner. However, the combined treatment with both DCS and SPM completely reversed the learning deficit at doses five-fold less than either drug given alone. These findings provide additional evidence that the glycine and polyamine modulatory sites of the NMDA receptor are involved in memory formation. Furthermore, the potent synergistic effect resulting from combined activation of the glycine and polyamine sites would suggest a stronger interaction between these two sites than previously considered, and might provide new therapeutic approaches for enhancing glutamatergic function. PMID:9498733

  17. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.

    PubMed

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-06-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts--in which circulatory systems of young and aged animals are connected--identified synaptic plasticity-related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  18. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice

    PubMed Central

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-01-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging1,2. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts—in which circulatory systems of young and aged animals are connected—identified synaptic plasticity–related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  19. Design of Alarm Sound of Home Care Equipment Based on Age-related Auditory Sense

    NASA Astrophysics Data System (ADS)

    Shibano, Jun-Ichi; Tadano, Shigeru; Kaneko, Hirotaka

    A wide variety of home care equipment has been developed to support the independent lifestyle and care taking of elderly persons. Almost all of the equipment has an alarm designed to alert a care person or to sound a warning in case of an emergency. Due to the fact that aging human beings' senses physiologically, weaken and deteriorate, each alarm's sound must be designed to account for the full range of elderly person's hearing loss. Since the alarms are usually heard indoors, it is also necessary to evaluate the relationship between the basic characteristics of the sounds and living area's layout. In this study, we investigated the sounds of various alarms of the home care equipment based on both the age-related hearing characteristics of elderly persons and the propagation property of the sounds indoors. As a result, it was determined that the hearing characteristics of elderly persons are attuned to sounds which have a frequency from 700Hz to 1kHz, and it was learned that the indoor absorption ratio of sound is smallest when the frequency is 1kHz. Therefore, a frequency of 1kHz is good for the alarm sound of home care equipment. A flow chart to design the alarm sound of home care equipment was proposed, taking into account the extent of age-related auditory sense deterioration.

  20. Automatic age-related macular degeneration detection and staging

    NASA Astrophysics Data System (ADS)

    van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.

    2013-03-01

    Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.

  1. Age-related thermal response: the cellular resilience of juveniles.

    PubMed

    Clark, M S; Thorne, M A S; Burns, G; Peck, L S

    2016-01-01

    Understanding species' responses to environmental challenges is key to predicting future biodiversity. However, there is currently little data on how developmental stages affect responses and also whether universal gene biomarkers to environmental stress can be identified both within and between species. Using the Antarctic clam, Laternula elliptica, as a model species, we examined both the tissue-specific and age-related (juvenile versus mature adult) gene expression response to acute non-lethal warming (12 h at 3 °C). In general, there was a relatively muted response to this sub-lethal thermal challenge when the expression profiles of treated animals, of either age, were compared with those of 0 °C controls, with none of the "classical" stress response genes up-regulated. The expression profiles were very variable between the tissues of all animals, irrespective of age with no single transcript emerging as a universal biomarker of thermal stress. However, when the expression profiles of treated animals of the different age groups were directly compared, a very different pattern emerged. The profiles of the younger animals showed significant up-regulation of chaperone and antioxidant transcripts when compared with those of the older animals. Thus, the younger animals showed evidence of a more robust cellular response to warming. These data substantiate previous physiological analyses showing a more resilient juvenile population. PMID:26364303

  2. Ocular Surface Temperature in Age-Related Macular Degeneration

    PubMed Central

    Sodi, Andrea; Giacomelli, Giovanni; Corvi, Andrea; Menchini, Ugo

    2014-01-01

    Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD) eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320). The ocular surface temperature (OST) of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA) test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272). OST in AMD patients was significantly lower than in controls (P > 0.05). Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD. PMID:25436140

  3. Age-Related Macular Degeneration: A Scientometric Analysis

    PubMed Central

    Ramin, Shahrokh; Soheilian, Masoud; Habibi, Gholamreza; Ghazavi, Roghayeh; Gharebaghi, Reza; Heidary, Fatemeh

    2015-01-01

    Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject. The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993–2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic’s structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed. The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research. Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning. PMID:26060829

  4. Cellular models and therapies for age-related macular degeneration

    PubMed Central

    Forest, David L.; Johnson, Lincoln V.; Clegg, Dennis O.

    2015-01-01

    ABSTRACT Age-related macular degeneration (AMD) is a complex neurodegenerative visual disorder that causes profound physical and psychosocial effects. Visual impairment in AMD is caused by the loss of retinal pigmented epithelium (RPE) cells and the light-sensitive photoreceptor cells that they support. There is currently no effective treatment for the most common form of this disease (dry AMD). A new approach to treating AMD involves the transplantation of RPE cells derived from either human embryonic or induced pluripotent stem cells. Multiple clinical trials are being initiated using a variety of cell therapies. Although many animal models are available for AMD research, most do not recapitulate all aspects of the disease, hampering progress. However, the use of cultured RPE cells in AMD research is well established and, indeed, some of the more recently described RPE-based models show promise for investigating the molecular mechanisms of AMD and for screening drug candidates. Here, we discuss innovative cell-culture models of AMD and emerging stem-cell-based therapies for the treatment of this vision-robbing disease. PMID:26035859

  5. Proinflammatory cytokines, aging, and age-related diseases.

    PubMed

    Michaud, Martin; Balardy, Laurent; Moulis, Guillaume; Gaudin, Clement; Peyrot, Caroline; Vellas, Bruno; Cesari, Matteo; Nourhashemi, Fati

    2013-12-01

    Inflammation is a physiological process that repairs tissues in response to endogenous or exogenous aggressions. Nevertheless, a chronic state of inflammation may have detrimental consequences. Aging is associated with increased levels of circulating cytokines and proinflammatory markers. Aged-related changes in the immune system, known as immunosenescence, and increased secretion of cytokines by adipose tissue, represent the major causes of chronic inflammation. This phenomenon is known as "inflamm-aging." High levels of interleukin (IL)-6, IL-1, tumor necrosis factor-α, and C-reactive protein are associated in the older subject with increased risk of morbidity and mortality. In particular, cohort studies have indicated TNF-α and IL-6 levels as markers of frailty. The low-grade inflammation characterizing the aging process notably concurs at the pathophysiological mechanisms underlying sarcopenia. In addition, proinflammatory cytokines (through a variety of mechanisms, such as platelet activation and endothelial activation) may play a major role in the risk of cardiovascular events. Dysregulation of the inflammatory pathway may also affect the central nervous system and be involved in the pathophysiological mechanisms of neurodegenerative disorders (eg, Alzheimer disease).The aim of the present review was to summarize different targets of the activity of proinflammatory cytokines implicated in the risk of pathological aging. PMID:23792036

  6. Mechanism of Inflammation in Age-Related Macular Degeneration

    PubMed Central

    Parmeggiani, Francesco; Romano, Mario R.; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease. PMID:23209345

  7. Mathematical morphologic analysis of aging-related epidermal changes.

    PubMed

    Moragas, A; Castells, C; Sans, M

    1993-04-01

    Fractographic techniques based on mathematical morphology were used to study aging-related epidermal changes in abdominal skin samples obtained from 96 autopsy cases. Three linear roughness indices were evaluated for the rete peg profile and the shrinkage effect on the basal layer and interface between the granular and horny layers. Elderly subjects had a 36.3% decrease in rete peg-related roughness index when compared with younger subjects. This roughness index has been corrected, with shrinkage due to skin elasticity taken into account. For females, fitting of a logistic decay function yielded a curve with right and left asymptotes and a steeper descent between 40 and 60 years. Half value time--i.e., the time when half rete peg profile flattening occurred--was 46.8 years. In contrast, males showed almost monotonical decay. Epidermal thickness measured between rete pegs showed the same exponential decline for both sexes, with values from 22.6 to 11.4 microns. Skin shrinkage in elderly subjects decreased 22% in superficial layers and only 6% in the lower epidermis. In both cases shrinkage had a linear relation with age, and no sex differences were found. PMID:8318130

  8. Seven New Loci Associated with Age-Related Macular Degeneration

    PubMed Central

    2013-01-01

    Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate understanding of AMD biology and help design new therapies, we executed a collaborative genomewide association study, examining >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with AMD with p<5×10−8 and enriched for genes involved in regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching p<5×10−8 for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all loci displayed similar good ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD. PMID:23455636

  9. Pachychoroid neovasculopathy and age-related macular degeneration

    PubMed Central

    Miyake, Masahiro; Ooto, Sotaro; Yamashiro, Kenji; Takahashi, Ayako; Yoshikawa, Munemitsu; Akagi-Kurashige, Yumiko; Ueda-Arakawa, Naoko; Oishi, Akio; Nakanishi, Hideo; Tamura, Hiroshi; Tsujikawa, Akitaka; Yoshimura, Nagahisa

    2015-01-01

    Pachychoroid neovasculopathy is a recently proposed clinical entity of choroidal neovascularization (CNV). As it often masquerades as neovascular age-related macular degeneration (AMD), it is currently controversial whether pachychoroid neovasculopathy should be distinguished from neovascular AMD. This is because its characteristics have yet to be well described. To estimate the relative prevalence of pachychoroid neovasculopathy in comparison with neovascular AMD and to investigate the phenotypic/genetic differences of the two diseases, we evaluated 200 consecutive Japanese patients who agreed to participate in the genetic study and diagnosed with pachychoroid neovasculopathy or neovascular AMD. Pachychoroid neovasculopathy was observed in 39 individuals (19.5%), which corresponds to one fourth of neovascular AMD. Patients with pachychoroid neovasculopathy were significantly younger (p = 5.1 × 10−5) and showed a greater subfoveal choroidal thickness (p = 3.4 × 10−14). Their genetic susceptibility to AMD was significantly lower than that of neovascular AMD; ARMS2 rs10490924 (p = 0.029), CFH rs800292 (p = 0.013) and genetic risk score calculated from 11 AMD susceptibility genes (p = 3.8 × 10−3). Current results implicate that the etiologies of the two conditions must be different. Thus, it will be necessary to distinguish these two conditions in future studies. PMID:26542071

  10. Angiofluorographic aspects in age-related macular degeneration

    PubMed Central

    Tomi, A; Marin, I

    2014-01-01

    Although AMD (age-related macular degeneration) has been described for over 100 years, there is neither a standard agreement on the definition of specific lesions nor a generally accepted classification system. For example, the age limits for AMD varied widely in different clinical studies; the methods used for examination also vary (visual acuity, perimetry, contrast sensitivity, slit lamp examination of the fundus, retinal photography, fluorescein angiography, indocyanine green angiography). We described the multitude of angiofluorographic aspects in patients with AMD and conceived a classification to be easily used in clinical practice. Although a detailed ophthalmoscopy can often identify the characteristic lesions of AMD, a complete picture is obtained by fluorescein angiography. The angiographic classification of AMD is structured similarly to the clinical one. It has two main patterns, non-exudative and exudative lesions, but it provides more information about the nature of the lesions. In the last three decades, an impressive amount of information regarding the prevalence, progression and risk factors for AMD has been published. The source of this information is mainly represented by the large population studies that are often multicenter studies. Recognizing the clinical signs of AMD and classifying them into different stages is important for the prognosis and the therapeutical decision, but also for conceiving study protocols. PMID:27057244

  11. Age-Related Changes in Demand-Withdraw Communication Behaviors.

    PubMed

    Holley, Sarah R; Haase, Claudia M; Levenson, Robert W

    2013-08-01

    Demand-withdraw communication is a set of conflict-related behaviors in which one partner blames or pressures while the other partner withdraws or avoids. The present study examined age-related changes in these behaviors longitudinally over the course of later life stages. One hundred twenty-seven middle-aged and older long-term married couples were observed at 3 time points across 13 years as they engaged in a conversation about an area of relationship conflict. Husbands' and wives' demand-withdraw behaviors (i.e., blame, pressure, withdrawal, avoidance) were objectively rated by trained coders at each time point. Data were analyzed using dyad-level latent growth curve models in a structural equation modeling framework. For both husbands and wives, the results showed a longitudinal pattern of increasing avoidance behavior over time and stability in all other demand and withdraw behaviors. This study supports the notion that there is an important developmental shift in the way that conflict is handled in later life. PMID:23913982

  12. Age-related somatic mutations in the cancer genome

    PubMed Central

    Milholland, Brandon; Auton, Adam; Suh, Yousin; Vijg, Jan

    2015-01-01

    Aging is associated with an increased risk of cancer, possibly in part because of an age-related increase in mutations in normal tissues. Due to their extremely low abundance, somatic mutations in normal tissues frequently escape detection. Tumors, as clonal expansions of single cells, can provide information about the somatic mutations present in these cells prior to tumorigenesis. Here, we used data from The Cancer Genome Atlas (TCGA), to systematically study the frequency and spectrum of somatic mutations in a total of 6,969 patients and 34 different tumor types as a function of the age of the patient. After using linear modeling to control for the age structure of different tumor types, we found that the number of identified somatic mutations increases exponentially with age. Using additional data from the literature, we found that accumulation of somatic mutations is associated with cell division rate, cancer risk and cigarette smoking, with the latter also associated with a distinct spectrum of mutations. Our results confirm that aging is associated with the accumulation of somatic mutations, and strongly suggest that the level of genome instability of normal cells, modified by both endogenous and environmental factors, is the main risk factor for cancer. PMID:26384365

  13. Prevalence of age-related macular degeneration among the elderly

    PubMed Central

    Rasoulinejad, Seyed Ahmad; Zarghami, Amin; Hosseini, Seyed Reza; Rajaee, Neda; Rasoulinejad, Seyed Elahe; Mikaniki, Ebrahim

    2015-01-01

    Background: Age-related macular degeneration (AMD) is the leading cause of visual impairment and blindness in elderly population in the developing countries. Previous epidemiological studies revealed various potential modifiable risk factors for this disease. The purpose of this study was to evaluate the prevalence of AMD among elderly living in Babol, North of Iran. Methods: The study population of this cross-sectional study came from the Amirkola Health and Ageing Project (AHAP), the first comprehensive cohort study of the health of people aged 60 years and over in Amirkola, North of Iran. The prevalence of AMD was estimated and its risk was determined using logistic regression analysis (LRA) with regard to variables such as smoking, hyperlipidemia, hypertension and diabetes. Results: Five hundred and five participants with mean age of 71.55±5.9 (ranged 60-89) years entered the study. The prevalence of AMD was 17.6%. There was a significant association between AMD and smoking (P<0.001) but no association was seen with AMD and age, level of education, history of hyperlipidemia, hypertension and diabetes. Multiple LRAs revealed that smoking increased AMD by odds ratio of 5.03 (95% confidence interval 2.47-10.23 p<0.001) as compared to nonsmokers Conclusion: According to our findings, the prevalence of AMD was relatively high and smoking increased the risk of AMD in the elderly population. PMID:26644880

  14. Functional Visual Acuity in Age-Related Macular Degeneration

    PubMed Central

    Tomita, Yohei; Nagai, Norihiro; Suzuki, Misa; Shinoda, Hajime; Uchida, Atsuro; Mochimaru, Hiroshi; Izumi-Nagai, Kanako; Sasaki, Mariko; Tsubota, Kazuo; Ozawa, Yoko

    2016-01-01

    ABSTRACT Purpose We evaluated whether a functional visual acuity (FVA) system can detect subtle changes in central visual acuity that reflect pathological findings associated with age-related macular degeneration (AMD). Methods Twenty-eight patients with unilateral AMD and logMAR monocular best corrected VA better than 0 in both eyes, as measured by conventional chart examination, were analyzed between November 2012 and April 2013. After measuring conventional VA, FVA, and contrast VA with best correction, routine eye examinations including spectral domain–optical coherence tomography were performed. Standard Schirmer test was performed, and corneal and lens densities were measured. Results The FVA score (p < 0.001) and visual maintenance ratio (p < 0.001) measured by the FVA system, contrast VA (p < 0. 01), and conventional VA (p < 0.01) were significantly worse in the AMD-affected eyes than in the fellow eyes. No significant differences were observed in the anterior segment conditions. Forward stepwise regression analysis demonstrated that the length of interdigitation zone disruption, as visualized by optical coherence tomography imaging, correlated with the FVA score (p < 0.01) but not with any other parameters investigated. Conclusions The FVA system detects subtle changes in best corrected VA in AMD-affected eyes and reflects interdigitation zone disruption, an anatomical change in the retina recorded by optical coherence tomography. Further studies are required to understand the value of the FVA system in detecting subtle changes in AMD. PMID:26583795

  15. Flavonoids and Age Related Disease: Risk, benefits and critical windows

    PubMed Central

    Prasain, JK; Carlson, SH; Wyss, JM

    2010-01-01

    Plant derived products are consumed by a large percentage of the population to prevent, delay and ameliorate disease burden; however, relatively little is known about the efficacy, safety and underlying mechanisms of these traditional health products, especially when taken in concert with pharmaceutical agents. The flavonoids are a group of plant metabolites that are common in the diet and appear to provide some health benefits. While flavonoids are primarily derived from soy, many are found in fruits, nuts and more exotic sources, e.g., kudzu. Perhaps the strongest evidence for the benefits of flavonoids in diseases of aging relates to their effect on components of the metabolic syndrome. Flavonoids from soy, grape seed, kudzu and other sources all lower arterial pressure in hypertensive animal models and in a limited number of tests in humans. They also decrease the plasma concentration of lipids and buffer plasma glucose. The underlying mechanisms appear to include antioxidant actions, central nervous system effects, gut transport alterations, fatty acid sequestration and processing, PPAR activation and increases in insulin sensitivity. In animal models of disease, dietary flavonoids also demonstrate a protective effect against cognitive decline, cancer and metabolic disease. However, research also indicates that the flavonoids can be detrimental in some settings and, therefore, are not universally safe. Thus, as the population ages, it is important to determine the impact of these agents on prevention/attenuation of disease, including optimal exposure (intake, timing/duration) and potential contraindications. PMID:20181448

  16. Ocular surface temperature in age-related macular degeneration.

    PubMed

    Sodi, Andrea; Matteoli, Sara; Giacomelli, Giovanni; Finocchio, Lucia; Corvi, Andrea; Menchini, Ugo

    2014-01-01

    Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD) eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320). The ocular surface temperature (OST) of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA) test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272). OST in AMD patients was significantly lower than in controls (P > 0.05). Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD. PMID:25436140

  17. Age related susceptibility of pigs to Cryptosporidium scrofarum infection.

    PubMed

    Kváč, Martin; Němejc, Karel; Kestřánová, Michaela; Květoňová, Dana; Wagnerová, Pavla; Kotková, Michaela; Rost, Michael; Samková, Eva; McEvoy, John; Sak, Bohumil

    2014-05-28

    Piglets from 4 to 8 weeks of age originated from a Cryptosporidium-free research breed were orally inoculated with 1 × 10(6) infectious oocysts of Cryptosporidium scrofarum. The number of shed oocysts per gram of faeces served to describe the infection intensity and prepatent period. In addition, faecal samples collected daily and tissue samples of the small and large intestine collected at 30 days post-inoculation were examined for the C. scrofarum small subunit ribosomal RNA gene using PCR. The piglets inoculated at 4-weeks of age remained uninfected, whereas 5-week-old and older animals were fully susceptible with a prepatent period ranging from 4 to 8 days. Susceptible pigs shed oocysts intermittently, and shedding intensity, reaching a mean maximum of 6000 oocysts per gram, did not differ significantly among infected animals. This study demonstrates that pigs become susceptible to C. scrofarum infection as late as 5-weeks of age. The mechanisms of age related susceptibility remain unknown. PMID:24630710

  18. Parabiosis for the study of age-related chronic disease

    PubMed Central

    Eggel, Alexander; Wyss-Coray, Tony

    2014-01-01

    Summary Modern medicine wields the power to treat large numbers of diseases and injuries most of us would have died from just a hundred years ago. In view of this tremendous achievement, it can seem as if progress has slowed, and we have been unable to impact the most devastating diseases of our time. Chronic diseases of age such as cardiovascular disease, diabetes, osteoarthritis, or Alzheimer’s disease turn out to be of a complexity that may require transformative ideas and paradigms to understand and treat them. Parabiosis, which mimics aspects of the naturally occurring shared blood supply in conjoined twins in humans and certain animals, may just have the power to be such a transformative experimental paradigm. Forgotten and now shunned in many countries, it has contributed to major breakthroughs in tumor biology, endocrinology, and transplantation research in the past century, and a set of new studies in the US and Britain report stunning advances in stem cell biology and tissue regeneration using parabiosis between young and old mice. We review here briefly the history of parabiosis and discuss its utility to study physiological and pathophysiological processes. We argue that parabiosis is a technique that should enjoy wider acceptance and application, and that policies should be revisited especially if one is to study complex age-related, chronic disorders. PMID:24496774

  19. Modifiable risk factors for age-related macular degeneration.

    PubMed

    Guymer, Robyn H; Chong, Elaine Wei-Tinn

    2006-05-01

    Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in Australia and other Western countries. As there is no cure for AMD, and treatments to stop its progression have met with limited success, there is an interest in identifying modifiable risk factors to prevent or slow disease progression. To date, smoking is the only proven modifiable risk factor for AMD. Other factors under study include (i) cardiovascular risk factors such as hypertension, body mass index, and atherosclerosis; and (ii) dietary risk factors including fat and antioxidant intake, but so far these studies have produced conflicting results. Dietary fat in relation to AMD has recently attracted media attention. Despite very limited work supporting an association between vegetable fat and AMD, widespread publicity advocating margarine as a cause of AMD and encouraging use of butter instead has caused confusion and anxiety among sufferers of AMD and the general public, as well as concern among health professionals. The antioxidant carotenoids--lutein and zeaxanthin--found in dark green or yellow vegetables exist in high concentrations in the macula and are hypothesised to play a protective role. Of nine controlled trials of supplementation with carotenoids and other antioxidants, three suggested that various combinations of antioxidants and carotenoids were protective. While a low-fat diet rich in dark green and yellow vegetables is advocated in general, any specific recommendations regarding certain fats or antioxidant supplementation and AMD are not based on consistent findings at this stage. PMID:16646746

  20. Eye Conditions in Older Adults: Age-Related Macular Degeneration.

    PubMed

    Iroku-Malize, Tochi; Kirsch, Scott

    2016-06-01

    Age-related macular degeneration (AMD) causes a progressive loss of photoreceptors in the macula. It is the most common cause of legal blindness in the United States, and some form of AMD is thought to affect more than 9 million individuals. Risk factors include older age, smoking, dyslipidemia, obesity, white race, female sex, and a family history of AMD. There are two types of advanced AMD: nonexudative (dry or geographic atrophy) and exudative (wet or neovascular). Both cause progressive central vision loss with intact peripheral vision. Nonexudative AMD accounts for 80% to 90% of all advanced cases, and more than 90% of patients with severe vision loss have exudative AMD. On ophthalmoscopic examination, early findings include drusen (ie, yellow deposits in the retina). Prominent choroidal vessels, subretinal edema, and/or hemorrhage are seen in wet AMD. Regular eye examinations, visual field testing, fluorescein angiography, and optical coherence tomography are used for diagnosis and to guide management. There is no specific therapy for dry AMD, but antioxidant supplementation may be helpful. Intravitreal injection of a vascular endothelial growth factor inhibitor is the treatment of choice for wet AMD. Optical aids and devices can help to maximize function for patients with AMD. PMID:27348529

  1. Seven new loci associated with age-related macular degeneration.

    PubMed

    Fritsche, Lars G; Chen, Wei; Schu, Matthew; Yaspan, Brian L; Yu, Yi; Thorleifsson, Gudmar; Zack, Donald J; Arakawa, Satoshi; Cipriani, Valentina; Ripke, Stephan; Igo, Robert P; Buitendijk, Gabriëlle H S; Sim, Xueling; Weeks, Daniel E; Guymer, Robyn H; Merriam, Joanna E; Francis, Peter J; Hannum, Gregory; Agarwal, Anita; Armbrecht, Ana Maria; Audo, Isabelle; Aung, Tin; Barile, Gaetano R; Benchaboune, Mustapha; Bird, Alan C; Bishop, Paul N; Branham, Kari E; Brooks, Matthew; Brucker, Alexander J; Cade, William H; Cain, Melinda S; Campochiaro, Peter A; Chan, Chi-Chao; Cheng, Ching-Yu; Chew, Emily Y; Chin, Kimberly A; Chowers, Itay; Clayton, David G; Cojocaru, Radu; Conley, Yvette P; Cornes, Belinda K; Daly, Mark J; Dhillon, Baljean; Edwards, Albert O; Evangelou, Evangelos; Fagerness, Jesen; Ferreyra, Henry A; Friedman, James S; Geirsdottir, Asbjorg; George, Ronnie J; Gieger, Christian; Gupta, Neel; Hagstrom, Stephanie A; Harding, Simon P; Haritoglou, Christos; Heckenlively, John R; Holz, Frank G; Hughes, Guy; Ioannidis, John P A; Ishibashi, Tatsuro; Joseph, Peronne; Jun, Gyungah; Kamatani, Yoichiro; Katsanis, Nicholas; N Keilhauer, Claudia; Khan, Jane C; Kim, Ivana K; Kiyohara, Yutaka; Klein, Barbara E K; Klein, Ronald; Kovach, Jaclyn L; Kozak, Igor; Lee, Clara J; Lee, Kristine E; Lichtner, Peter; Lotery, Andrew J; Meitinger, Thomas; Mitchell, Paul; Mohand-Saïd, Saddek; Moore, Anthony T; Morgan, Denise J; Morrison, Margaux A; Myers, Chelsea E; Naj, Adam C; Nakamura, Yusuke; Okada, Yukinori; Orlin, Anton; Ortube, M Carolina; Othman, Mohammad I; Pappas, Chris; Park, Kyu Hyung; Pauer, Gayle J T; Peachey, Neal S; Poch, Olivier; Priya, Rinki Ratna; Reynolds, Robyn; Richardson, Andrea J; Ripp, Raymond; Rudolph, Guenther; Ryu, Euijung; Sahel, José-Alain; Schaumberg, Debra A; Scholl, Hendrik P N; Schwartz, Stephen G; Scott, William K; Shahid, Humma; Sigurdsson, Haraldur; Silvestri, Giuliana; Sivakumaran, Theru A; Smith, R Theodore; Sobrin, Lucia; Souied, Eric H; Stambolian, Dwight E; Stefansson, Hreinn; Sturgill-Short, Gwen M; Takahashi, Atsushi; Tosakulwong, Nirubol; Truitt, Barbara J; Tsironi, Evangelia E; Uitterlinden, André G; van Duijn, Cornelia M; Vijaya, Lingam; Vingerling, Johannes R; Vithana, Eranga N; Webster, Andrew R; Wichmann, H-Erich; Winkler, Thomas W; Wong, Tien Y; Wright, Alan F; Zelenika, Diana; Zhang, Ming; Zhao, Ling; Zhang, Kang; Klein, Michael L; Hageman, Gregory S; Lathrop, G Mark; Stefansson, Kari; Allikmets, Rando; Baird, Paul N; Gorin, Michael B; Wang, Jie Jin; Klaver, Caroline C W; Seddon, Johanna M; Pericak-Vance, Margaret A; Iyengar, Sudha K; Yates, John R W; Swaroop, Anand; Weber, Bernhard H F; Kubo, Michiaki; Deangelis, Margaret M; Léveillard, Thierry; Thorsteinsdottir, Unnur; Haines, Jonathan L; Farrer, Lindsay A; Heid, Iris M; Abecasis, Gonçalo R

    2013-04-01

    Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 loci associated at P < 5 × 10(-8). These loci show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include seven loci with associations reaching P < 5 × 10(-8) for the first time, near the genes COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9 and B3GALTL. A genetic risk score combining SNP genotypes from all loci showed similar ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD. PMID:23455636

  2. Epigenetic modification of PKMζ rescues aging-related cognitive impairment

    PubMed Central

    Chen, Chen; Meng, Shi-Qiu; Xue, Yan-Xue; Han, Ying; Sun, Cheng-Yu; Deng, Jia-Hui; Chen, Na; Bao, Yan-Ping; Zhang, Fei-Long; Cao, Lin-Lin; Zhu, Wei-Guo; Shi, Jie; Song, Wei-Hong; Lu, Lin

    2016-01-01

    Cognition is impacted by aging. However, the mechanisms that underlie aging-associated cognitive impairment are unclear. Here we showed that cognitive decline in aged rats was associated with changes in DNA methylation of protein kinase Mζ (PKMζ) in the prelimbic cortex (PrL). PKMζ is a crucial molecule involved in the maintenance of long-term memory. Using different behavioral models, we confirmed that aged rats exhibited cognitive impairment in memory retention test 24 h after training, and overexpression of PKMζ in the PrL rescued cognitive impairment in aged rats. After fear conditioning, the protein levels of PKMζ and the membrane expression of GluR2 increased in the PrL in young and adult rats but not in aged rats, and the levels of methylated PKMζ DNA in the PrL decreased in all age groups, whereas the levels of unmethylated PKMζ DNA increased only in young and adult rats. We also found that environmentally enriched housing reversed the hypermethylation of PKMζ and restored cognitive performance in aged rats. Inactivation of PKMζ prevented the potentiating effects of environmental enrichment on memory retention in aged rats. These results indicated that PKMζ might be a potential target for the treatment of aging-related cognitive impairment, suggesting a potential therapeutic avenue. PMID:26926225

  3. Nutritional Risk Factors for Age-Related Macular Degeneration

    PubMed Central

    Ersoy, Lebriz; Lechanteur, Yara T.; Hoyng, Carel B.; Kirchhof, Bernd; den Hollander, Anneke I.

    2014-01-01

    Purpose. To evaluate the role of nutritional factors, serum lipids, and lipoproteins in late age-related macular degeneration (late AMD). Methods. Intake of red meat, fruit, fish, vegetables, and alcohol, smoking status, and body mass index (BMI) were ascertained questionnaire-based in 1147 late AMD cases and 1773 controls from the European Genetic Database. Serum levels of lipids and lipoproteins were determined. The relationship between nutritional factors and late AMD was assessed using logistic regression. Based on multivariate analysis, area-under-the-curve (AUC) was calculated by receiver-operating-characteristics (ROC). Results. In a multivariate analysis, besides age and smoking, obesity (odds ratio (OR): 1.44, P = 0.014) and red meat intake (daily: OR: 2.34, P = 8.22 × 10−6; 2–6x/week: OR: 1.67, P = 7.98 × 10−5) were identified as risk factors for developing late AMD. Fruit intake showed a protective effect (daily: OR: 0.52, P = 0.005; 2–6x/week: OR: 0.58, P = 0.035). Serum lipid and lipoprotein levels showed no significant association with late AMD. ROC for nutritional factors, smoking, age, and BMI revealed an AUC of 0.781. Conclusion. Red meat intake and obesity were independently associated with increased risk for late AMD, whereas fruit intake was protective. A better understanding of nutritional risk factors is necessary for the prevention of AMD. PMID:25101280

  4. Radiation therapy for neovascular age-related macular degeneration

    PubMed Central

    Petrarca, Robert; Jackson, Timothy L

    2011-01-01

    Antivascular endothelial growth factor (anti-VEGF) therapies represent the standard of care for most patients presenting with neovascular (wet) age-related macular degeneration (neovascular AMD). Anti-VEGF drugs require repeated injections and impose a considerable burden of care, and not all patients respond. Radiation targets the proliferating cells that cause neovascular AMD, including fibroblastic, inflammatory, and endothelial cells. Two new neovascular AMD radiation treatments are being investigated: epimacular brachytherapy and stereotactic radiosurgery. Epimacular brachytherapy uses beta radiation, delivered to the lesion via a pars plana vitrectomy. Stereotactic radiosurgery uses low voltage X-rays in overlapping beams, directed onto the lesion. Feasibility data for epimacular brachytherapy show a greatly reduced need for anti-VEGF therapy, with a mean vision gain of 8.9 ETDRS letters at 12 months. Pivotal trials are underway (MERLOT, CABERNET). Preliminary stereotactic radiosurgery data suggest a mean vision gain of 8 to 10 ETDRS letters at 12 months. A large randomized sham controlled stereotactic radiosurgery feasibility study is underway (CLH002), with pivotal trials to follow. While it is too early to conclude on the safety and efficacy of epimacular brachytherapy and stereotactic radiosurgery, preliminary results are positive, and these suggest that radiation offers a more durable therapeutic effect than intraocular injections. PMID:21311657

  5. Age-related changes in angiogenesis in human dermis.

    PubMed

    Gunin, Andrei G; Petrov, Vadim V; Golubtzova, Natalia N; Vasilieva, Olga V; Kornilova, Natalia K

    2014-07-01

    Present research is aimed to examine the number of dermal blood vessels, vascular endothelial growth factor (VEGF), delta-like ligand 4(Dll4) and Jagged-1 (Jag-1) in dermal blood vessels of human from 20weeks of pregnancy to 85years old. Numbers and proliferative activity of dermal fibroblast-like cells were also examined. Blood vessels were viewed with immunohistochemical staining for von Willebrand factor or CD31. VEGF, Dll4, Jag-1, and proliferating cell nuclear antigen (PCNA) were detected immunohistochemically. Results showed that the numbers of fibroblast-like cells, PCNA positive fibroblast-like cells, von Willebrand factor positive or CD31 positive blood vessels in dermis are dramatically decreased with age. The intensity of immunohistochemical staining for VEGF or Jag-1 in blood vessels of dermis is increased from antenatal to deep old period. The degree of immunohistochemical staining of dermal blood vessels for Dll4 has gone up from 20-40weeks of pregnancy to early life period (0-20years), and further decreased below antenatal values. Age-related decrease in the number of dermal blood vessels is suggested to be due to an impairment of VEGF signaling and to be mediated by Dll4 and Jag-1. It may be supposed that diminishing in blood supply of dermis occurring with age is a cause of a decrease in the number and proliferative pool of dermal fibroblasts. PMID:24768823

  6. Age-Related Changes in Demand–Withdraw Communication Behaviors

    PubMed Central

    Holley, Sarah R.; Haase, Claudia M.; Levenson, Robert W.

    2013-01-01

    Demand–withdraw communication is a set of conflict-related behaviors in which one partner blames or pressures while the other partner withdraws or avoids. The present study examined age-related changes in these behaviors longitudinally over the course of later life stages. One hundred twenty-seven middle-aged and older long-term married couples were observed at 3 time points across 13 years as they engaged in a conversation about an area of relationship conflict. Husbands’ and wives’ demand–withdraw behaviors (i.e., blame, pressure, withdrawal, avoidance) were objectively rated by trained coders at each time point. Data were analyzed using dyad-level latent growth curve models in a structural equation modeling framework. For both husbands and wives, the results showed a longitudinal pattern of increasing avoidance behavior over time and stability in all other demand and withdraw behaviors. This study supports the notion that there is an important developmental shift in the way that conflict is handled in later life. PMID:23913982

  7. The Theory Behind the Age-Related Positivity Effect

    PubMed Central

    Reed, Andrew E.; Carstensen, Laura L.

    2012-01-01

    The “positivity effect” refers to an age-related trend that favors positive over negative stimuli in cognitive processing. Relative to their younger counterparts, older people attend to and remember more positive than negative information. Since the effect was initially identified and the conceptual basis articulated (Mather and Carstensen, 2005) scores of independent replications and related findings have appeared in the literature. Over the same period, a number of investigations have failed to observe age differences in the cognitive processing of emotional material. When findings are considered in theoretical context, a reliable pattern of evidence emerges that helps to refine conceptual tenets. In this article we articulate the operational definition and theoretical foundations of the positivity effect and review the empirical evidence based on studies of visual attention, memory, decision making, and neural activation. We conclude with a discussion of future research directions with emphasis on the conditions where a focus on positive information may benefit and/or impair cognitive performance in older people. PMID:23060825

  8. Age-related changes in serological susceptibility patterns to measles

    PubMed Central

    Xiong, Yongzhen; Wang, Dong; Lin, Weiyan; Tang, Hao; Chen, Shaoli; Ni, Jindong

    2014-01-01

    The present study was performed to determine the seroprevalence of IgG measles antibodies in Dongguan residents (irrespective of vaccination status), to analyze the changes in age-related serological susceptibility patterns. A total of 1960 residents aged 0–60 years and 315 mother–infant pairs were studied. Serum IgG antibodies against measles virus were measured by ELISA. The overall seroprevalence was 93.4% in the general population in Dongguan, China. In subgroups aged 1–29 years who were likely vaccinated, there was a declining trend of seropositivity with age from 98.6% at 1–4 years to 85.7% at 20–29 years (P < 0.0001). Seroprevalence were near or >95% in the older population (30–39 years and ≥40 years) who had not been immunized against measles. Age and sex were independent factors associated with seropositivity. Seroprevalence in pregnant women and their newborns was 87.0% and 84.1%, respectively. Our results suggest that the waning vaccine-induced immunity may be the main cause of increased serological susceptibility in young adults and young infants. An additional vaccination strategy that targets young adults is important for elimination of measles. PMID:24448194

  9. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice

    PubMed Central

    Zhang, Yingpei; Padalecki, Susan S; Chaudhuri, Asish R; Waal, Eric De; Goins, Beth A; Grubbs, Barry; Ikeno, Yuji; Richardson, Arlan; Mundy, Gregory R; Herman, Brian

    2007-01-01

    Alteration of apoptotic activity has been observed in a number of tissues in aging mammals, but it remains unclear whether and/or how apoptosis may affect aging. Caspase-2 is a member of the cysteine protease family that plays a critical role in apoptosis. To understand the impact of compromised apoptosis function on mammalian aging, we conducted a comparative study on caspase-2 deficient mice and their wild-type littermates with a specific focus on the aging-related traits at advanced ages. We found that caspase-2 deficiency enhanced a number of traits commonly seen in premature aging animals. Loss of caspase-2 was associated with shortened maximum lifespan, impaired hair growth, increased bone loss, and reduced body fat content. In addition, we found that the livers of caspase-2 deficient mice had higher levels of oxidized proteins than those of age-matched wild-type mice, suggesting that caspase-2 deficiency compromised the animal's ability to clear oxidatively damaged cells. Collectively, these results suggest that caspase-2 deficiency affects aging in the mice. This study thus demonstrates for the first time that disruption of a key apoptotic gene has a significant impact on aging. PMID:17188333

  10. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  11. Melanization and phagocytosis: implications for age related macular degeneration.

    PubMed

    Sarangarajan, Rangaprasad; Apte, Shireesh P

    2005-01-01

    Signaling pathways that upregulate melanization in the retinal pigment epithelium (RPE) may also be implicated in the downregulation of rod outer segment (ROS) phagocytosis by the RPE. Melanization activating pathways may also modulate oxygen consumption by the photoreceptors, apolipoprotein E4 levels, and the rate of photoisomerization events such that the net effect may be a reduction in drusen and/or lipofuscin accumulation. An increase in melanin at the apical microvilli of the RPE may shield ROS from light thereby contributing in part to the decrease in the rate of ROS phagocytosis. This decrease in ROS phagocytosis by the RPE may serve to maintain a balance between ingestion and degradation/recycling thereby avoiding an increase to its already substantial metabolic load. Several experimental drugs for age related macular degeneration (ARMD) coincidentally are also capable of decreasing the rate of ROS phagocytosis. This review attempts to identify the signaling pathways that may link the upregulation of melanization to the downregulation of ROS phagocytosis. Phagocytic pathways that are modulated by melanization need to be studied in isolation to determine what role, if any, they possess in ameliorating the onset and progression of ARMD. Many more empirical studies are needed to unravel specific pathways and mechanisms that seem to link melanization with ARMD. PMID:16030499

  12. Effect of NCAM on aged-related deterioration in vision.

    PubMed

    Luke, Margaret Po-Shan; LeVatte, Terry L; O'Reilly, Amanda M; Smith, Benjamin J; Tremblay, François; Brown, Richard E; Clarke, David B

    2016-05-01

    The neural cell adhesion molecule (NCAM) is involved in developmental processes and age-associated cognitive decline; however, little is known concerning the effects of NCAM in the visual system during aging. Using anatomical, electrophysiological, and behavioral assays, we analyzed age-related changes in visual function of NCAM deficient (-/-) and wild-type mice. Anatomical analyses indicated that aging NCAM -/- mice had fewer retinal ganglion cells, thinner retinas, and fewer photoreceptor cell layers than age-matched controls. Electroretinogram testing of retinal function in young adult NCAM -/- mice showed a 2-fold increase in a- and b-wave amplitude compared with wild-type mice, but the retinal activity dropped dramatically to control levels when the animals reached 10 months. In behavioral tasks, NCAM -/- mice had no visual pattern discrimination ability and showed premature loss of vision as they aged. Together, these findings demonstrate that NCAM plays significant roles in the adult visual system in establishing normal retinal anatomy, physiology and function, and in maintaining vision during aging. PMID:27103522

  13. Age related changes in steroid receptors on cultured lung fibroblasts

    SciTech Connect

    Barile, F.A.; Bienkowski, R.S.

    1986-03-05

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with (/sup 3/H)-dexamethasone ((/sup 3/H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol (/sup 3/H)Dex/10/sup 6/ cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms.

  14. Promising new treatments for neovascular age-related macular degeneration.

    PubMed

    Michels, Stephan; Schmidt-Erfurth, Ursula; Rosenfeld, Philip J

    2006-07-01

    Angiogenesis, the growth of new blood vessels from existing blood vessels, is responsible for vision loss in a variety of ophthalmic diseases. In neovascular age-related macular degeneration (AMD), the leading cause for legal blindness in many industrialised countries, abnormal blood vessels grow in the macula and cause blindness. There are a number of factors important in the angiogenic cascade but VEGF-A has been implicated in recent years as the major factor responsible for neovascular and exudative diseases of the eye. Numerous antiangiogenic drugs are in development but anti-VEGF drugs have shown great promise in treating neovascular AMD and other ocular diseases, and many of these drugs have been adopted from oncology where antiangiogenic therapy is gaining wide acceptance. For the first time in neovascular AMD, anti-VEGF drugs have brought the hope of vision improvement to a significant proportion of patients. This review provides an overview on angiogenic mechanisms, potential antiangiogenic treatment strategies and different antiangiogenic drugs with special focus on neovascular AMD. PMID:16787141

  15. Age-related macular degeneration: experimental and emerging treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: This essay reviews the experimental treatments and new imaging modalities that are currently being explored by investigators to help treat patients with age-related macular degeneration (AMD). Design: Interpretative essay. Methods: Literature review and interpretation. Results: Experimental treatments to preserve vision in patients with exudative AMD include blocking vascular endothelial growth factor (VEGF), binding VEGF, and modulating the VEGF receptors. Investigators are also attempting to block signal transduction with receptor tyrosine kinase inhibitors. Experimental treatments for non-exudative AMD include agents that target inflammation, oxidative stress, and implement immune-modulation. The effectiveness of these newer pharmacologic agents has the potential to grow exponentially when used in combination with new and improved imaging modalities that can help identify disease earlier and follow treatment response more precisely. Conclusion: With a better understanding, at the genetic and molecular level, of AMD and the development of superior imaging modalities, investigators are able to offer treatment options that may offer unprecedented visual gains while reducing the need for repetitive treatments. PMID:19668561

  16. Nitroxide pharmaceutical development for age-related degeneration and disease

    PubMed Central

    Zarling, Jacob A.; Brunt, Vienna E.; Vallerga, Anne K.; Li, Weixing; Tao, Albert; Zarling, David A.; Minson, Christopher T.

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed. PMID:26594225

  17. The effect of old age on the learning of supraspan sequences.

    PubMed

    Turcotte, Josée; Gagnon, Sylvain; Poirier, Marie

    2005-06-01

    Two experiments examined age-related differences in sequence learning using computerized versions of the D. O. Hebb (1961) paradigm. In this learning task, the participant executes immediate serial recall of 24 supraspan sequences. Without the participants' knowledge, 1 sequence is presented several times. Repetition leads to improved recall of this repeated sequence relative to random sequences. Results showed a dissociation in age-related learning deficits depending on the nature of the to-be-remembered material. The effect of repetition is similar for younger and older adults with familiar and unfamiliar verbal material (words and pseudowords) but is significantly reduced in older adults when learning is assessed with a visuospatial version of Hebb's supraspan learning task (P. M. Corsi, 1972). PMID:16029089

  18. Delayed intensive acquisition training alleviates the lesion-induced place learning deficits after fimbria-fornix transection in the rat.

    PubMed

    Malá, Hana; Rodríguez Castro, María; Pearce, Hadley; Kingod, Siff Camilla; Nedergaard, Signe Kjær; Scharff, Zakaryiah; Zandersen, Maja; Mogensen, Jesper

    2012-03-22

    This study evaluates the effects of two learning paradigms, intensive vs. baseline, on the posttraumatic acquisition of a water maze based place learning task. Rats were subjected either to a control operation (Sham) or to a fimbria-fornix (FF) transection, which renders the hippocampus dysfunctional and disrupts the acquisition of allocentric place learning. All animals were administered 30 post-lesion acquisition sessions, which spanned either 10 or 30days. The acquisition period was followed by a 7day pause after which a retention probe was administered. The lesioned animals were divided into 3 groups: i) Baseline Acquisition Paradigm (BAP) once daily for 30days starting 1week post-surgery; ii) Early Intensive Acquisition Paradigm (EIAP) 3 times daily for 10days starting 1week post-surgery; and iii) Late Intensive Acquisition Paradigm (LIAP) 3 times daily for 10days starting 3weeks post-surgery. Within the control animals, one group followed the schedule of BAP, and one group followed the schedule of Intensive Acquisition Paradigm (IAP). All lesioned animals showed an impaired task acquisition. LIAP was beneficial in FF animals, in that it led to a better acquisition of the place learning task than the two other acquisition paradigms. The FF/EIAP group did not show improved acquisition compared to the FF/BAP group. The control animals were not differentially affected by the two learning schedules. The findings have implications for cognitive rehabilitation after brain injury and support the assumption that intensive treatment can lead to an improved learning, even when the neural structures underlying such a process are compromised. However, the timing of intensive treatment needs to be considered further. PMID:22322151

  19. A complementary role of intracortical inhibition in age-related tactile degradation and its remodelling in humans.

    PubMed

    Pleger, Burkhard; Wilimzig, Claudia; Nicolas, Volkmar; Kalisch, Tobias; Ragert, Patrick; Tegenthoff, Martin; Dinse, Hubert R

    2016-01-01

    Many attempts are currently underway to restore age-related degraded perception, however, the link between restored perception and remodeled brain function remains elusive. To understand remodeling of age-related cortical reorganization we combined functional magnetic resonance imaging (fMRI) with assessments of tactile acuity, perceptual learning, and computational modeling. We show that aging leads to tactile degradation parallel to enhanced activity in somatosensory cortex. Using a neural field model we reconciled the empirical age-effects by weakening of cortical lateral inhibition. Using perceptual learning, we were able to partially restore tactile acuity, which however was not accompanied by the expected attenuation of cortical activity, but by a further enhancement. The neural field model reproduced these learning effects solely through a weakening of the amplitude of inhibition. These findings suggest that the restoration of age-related degraded tactile acuity on the cortical level is not achieved by re-strengthening lateral inhibition but by further weakening intracortical inhibition. PMID:27302219

  20. A complementary role of intracortical inhibition in age-related tactile degradation and its remodelling in humans

    PubMed Central

    Pleger, Burkhard; Wilimzig, Claudia; Nicolas, Volkmar; Kalisch, Tobias; Ragert, Patrick; Tegenthoff, Martin; Dinse, Hubert R.

    2016-01-01

    Many attempts are currently underway to restore age-related degraded perception, however, the link between restored perception and remodeled brain function remains elusive. To understand remodeling of age-related cortical reorganization we combined functional magnetic resonance imaging (fMRI) with assessments of tactile acuity, perceptual learning, and computational modeling. We show that aging leads to tactile degradation parallel to enhanced activity in somatosensory cortex. Using a neural field model we reconciled the empirical age-effects by weakening of cortical lateral inhibition. Using perceptual learning, we were able to partially restore tactile acuity, which however was not accompanied by the expected attenuation of cortical activity, but by a further enhancement. The neural field model reproduced these learning effects solely through a weakening of the amplitude of inhibition. These findings suggest that the restoration of age-related degraded tactile acuity on the cortical level is not achieved by re-strengthening lateral inhibition but by further weakening intracortical inhibition. PMID:27302219