Science.gov

Sample records for age-related learning deficits

  1. Age-related learning deficits can be reversible in honeybees Apis mellifera.

    PubMed

    Baker, Nicholas; Wolschin, Florian; Amdam, Gro V

    2012-10-01

    Many animals are characterized by declining brain function at advanced ages, including honeybees (Apis mellifera). Variation in honeybee social development, moreover, results in individual differences in the progression of aging that may be accelerated, delayed, and sometimes reversed by changes in behavior. Here, we combine manipulations of social development with a measurement of sensory sensitivity, Pavlovian (associative) learning, and a proteomic technique to study the brain of aged honeybees. First, we confirm that sensory sensitivity can remain intact during aging, and that age-associated learning deficits are specific to bees that forage, a behavior typically expressed after a period of nursing activity. These initial data go beyond previous findings by showing how foragers age in social groups of different age compositions and sizes. Thereafter, we establish that learning ability can recover in aged foragers that revert to nursing tasks. Finally, we use liquid chromatography coupled to tandem mass spectrometry (LC-MS(2)) to describe proteomic differences between central brains, from reverted former foragers that varied in recovery of learning performance, and from nurse bees that varied in learning ability but never foraged. We find that recovery is positively associated with levels of stress response/cellular maintenance proteins in the central brain, while variation in learning before aging is negatively associated with the amounts of metabolic enzymes in the brain tissue. Our work provides the strongest evidence, thus far, for reversibility of learning deficits in aged honeybees, and indicates that recovery-related brain plasticity is connected to cellular stress resilience, maintenance and repair processes.

  2. Age-Related Cognitive Deficits In Rhesus Monkeys Mirror Human Deficits on an Automated Test Battery

    PubMed Central

    Nagahara, Alan H.; Bernot, Tim; Tuszynski, Mark H.

    2010-01-01

    Aged non-human primates are a valuable model for gaining insight into mechanisms underlying neural decline with aging and during the course of neurodegenerative disorders. Behavioral studies are a valuable component of aged primate models, but are difficult to perform, time consuming, and often of uncertain relevance to human cognitive measures. We now report findings from an automated cognitive test battery in aged primates using equipment that is identical, and tasks that are similar, to those employed in human aging and Alzheimer’s disease studies. Young (7.1 ± 0.8 years) and aged (23.0 ± 0.5 years) rhesus monkeys underwent testing on a modified version of the Cambridge Automated Neuropsychological Test Battery (CANTAB), examining cognitive performance on separate tasks that sample features of visuospatial learning, spatial working memory, discrimination learning, and skilled motor performance. We find selective cognitive impairments among aged subjects in visuospatial learning and spatial working memory, but not in delayed recall of previously learned discriminations. Aged monkeys also exhibit slower speed in skilled motor function. Thus, aged monkeys behaviorally characterized on a battery of automated tests reveal patterns of age-related cognitive impairment that mirror in quality and severity those of aged humans, and differ fundamentally from more severe patterns of deficits observed in Alzheimer’s Disease. PMID:18760505

  3. Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system.

    PubMed

    Haider, Saida; Saleem, Sadia; Perveen, Tahira; Tabassum, Saiqa; Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Madiha, Syeda

    2014-06-01

    Oxidative stress from generation of increased reactive oxygen species or free radicals of oxygen has been reported to play an important role in the aging. To investigate the relationship between the oxidative stress and memory decline during aging, we have determined the level of lipid peroxidation, activities of antioxidant enzymes, and activity of acetylcholine esterase (AChE) in brain and plasma as well as biogenic amine levels in brain from Albino-Wistar rats at age of 4 and 24 months. The results showed that the level of lipid peroxidation in the brain and plasma was significantly higher in older than that in the young rats. The activities of antioxidant enzymes displayed an age-dependent decline in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly decreased in brain and plasma of aged rats. Superoxide dismutase (SOD) was also significantly decreased in plasma of aged rats; however, a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in aged rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM) and Elevated plus Maze (EPM) test. Short-term memory and long-term memory was impaired significantly in older rats, which was evident by a significant increase in the latency time in MWM and increase in transfer latency in EPM. Moreover, a marked decrease in biogenic amines (NA, DA, and 5-HT) was also found in the brain of aged rats. In conclusion, our data suggest that increased oxidative stress, decline of antioxidant enzyme activities, altered AChE activity, and decreased biogenic amines level in the brain of aged rats may potentially be involved in diminished memory function.

  4. Age-Related Deficits in Reality Monitoring of Action Memories

    PubMed Central

    McDaniel, Mark A.; Lyle, Keith B.; Butler, Karin M.; Dornburg, Courtney C.

    2008-01-01

    We describe three theoretical accounts of age-related increases in falsely remembering that imagined actions were performed (Thomas & Bulevich, 2006). To investigate these accounts and further explore age-related changes in reality monitoring of action memories, we used a new paradigm in which actions were (a) imagined-only (b) actually performed, or (c) both imagined and performed. Older adults were more likely than younger adults to misremember the source of imagined-only actions, with older adults’ more often specifying that the action was imagined and also that it was performed. For both age groups, as repetitions of the imagined-only events increased, illusions that the actions were only performed decreased. These patterns suggest that both older and younger adults utilize qualitative characteristics when making reality-monitoring judgments and that repeated imagination produces richer records of both sensory details and cognitive operations. However, sensory information derived from imagination appears to be more similar to that derived from performance for older than younger adults. PMID:18808253

  5. Short forms of the "reference-" and "working-memory" Morris water maze for assessing age-related deficits.

    PubMed

    Lindner, M D; Balch, A H; VanderMaelen, C P

    1992-09-01

    Short forms of the reference- and working-memory versions of the Morris water maze, each limited to 10 trials, were examined for their reliability and sensitivity to age-related deficits in 16- and 24-month F-344 rats, relative to 2- to 2.5-month young controls. The reference-memory task used long intertrial intervals of 23 h, but required learning only one target location, while the working-memory task used shorter intertrial intervals of 60 min but required learning many different target locations. The reference-memory task was very reliable, revealed large age-related deficits, and correctly identified almost all aged rats as impaired relative to young controls. The working-memory task was less reliable, revealed smaller deficits than the reference memory task at 24 months, and did not discriminate as well between 2.5- and 24-month rats. Furthermore, in the working-memory task 16- and 24-month rats had longer swim paths than 2- to 2.5-month rats on the first trial of each trial pair, which is suggestive of a deficit in processing spatial information and raises questions about the validity of this test as a specific test of working memory. Although the working-memory procedures may be preferable under certain conditions, perhaps as a measure specific to hippocampal dysfunction, the reference-memory task seems more sensitive to age-related deficits and more accurately identifies older rats as impaired. These results are consistent with previous reports that age-related deficits in acquiring spatial learning tasks are common and that the magnitude of the deficit increases as the length of the retention interval increases.

  6. Age-Related Differences in Learning Disabled and Skilled Readers' Working Memory.

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    2003-01-01

    Examined whether age-related working memory deficits in learning disabled (LD) readers across four age groups (7, 10, 13, and 20) reflected retrieval efficiency or storage capacity problems. Found that LD readers' working memory performance was inferior to skilled readers' on verbal and visual-spatial working memory tasks across all ages.…

  7. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  8. Dynamical network model for age-related health deficits and mortality

    NASA Astrophysics Data System (ADS)

    Taneja, Swadhin; Mitnitski, Arnold B.; Rockwood, Kenneth; Rutenberg, Andrew D.

    2016-02-01

    How long people live depends on their health, and how it changes with age. Individual health can be tracked by the accumulation of age-related health deficits. The fraction of age-related deficits is a simple quantitative measure of human aging. This quantitative frailty index (F ) is as good as chronological age in predicting mortality. In this paper, we use a dynamical network model of deficits to explore the effects of interactions between deficits, deficit damage and repair processes, and the connection between the F and mortality. With our model, we qualitatively reproduce Gompertz's law of increasing human mortality with age, the broadening of the F distribution with age, the characteristic nonlinear increase of the F with age, and the increased mortality of high-frailty individuals. No explicit time-dependence in damage or repair rates is needed in our model. Instead, implicit time-dependence arises through deficit interactions—so that the average deficit damage rates increase, and deficit repair rates decrease, with age. We use a simple mortality criterion, where mortality occurs when the most connected node is damaged.

  9. Nutritional interventions protect against age-related deficits in behavior: from animals to humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on motor and cognitive tasks. Similar changes in behavior occur in humans with age, and the development of methods to retard or reverse these age-related neuronal and behavioral deficits could increase healthy aging and decrease health care costs. In the present s...

  10. Does Strategy Training Reduce Age-Related Deficits in Working Memory?

    PubMed Central

    Bailey, Heather R.; Dunlosky, John; Hertzog, Christopher

    2014-01-01

    Background Older adults typically perform worse on measures of working memory (WM) than do young adults; however, age-related differences in WM performance might be reduced if older adults use effective encoding strategies (Bailey, Dunlosky, & Hertzog, 2009). Objective The purpose of the current experiment was to evaluate WM performance after training individuals to use effective encoding strategies. Methods Participants in the training group (older adults: n = 39; young adults: n = 41) were taught about various verbal encoding strategies and their differential effectiveness and were trained to use interactive imagery and sentence generation on a list-learning task. Participants in the control group (older: n=37; young: n=38) completed an equally engaging filler task. All participants completed a pre-training and post-training reading span task, which included self-reported strategy use, as well as two transfer tasks that differed in the affordance to use the trained strategies – a paired-associate recall task and the self-ordered pointing task. Results Both young and older adults were able to use the target strategies on the WM task and showed gains in WM performance after training. The age-related WM deficit was not greatly affected, however, and the training gains did not transfer to the other cognitive tasks. In fact, participants attempted to adapt the trained strategies for a paired-associate recall task, but the increased strategy use did not benefit their performance. Conclusions Strategy training can boost WM performance, and its benefits appear to arise from strategy-specific effects and not from domain-general gains in cognitive ability. PMID:24577079

  11. STABILITY OF AGE-RELATED DEFICITS IN THE MNEMONIC SIMILARITY TASK ACROSS TASK VARIATIONS

    PubMed Central

    Stark, Shauna M.; Stevenson, Rebecca; Wu, Claudia; Rutledge, Samantha; Stark, Craig E. L.

    2015-01-01

    Several studies in our lab and others have demonstrated age-related declines in mnemonic discrimination during a recognition memory paradigm using repeated items, similar lures, and novel foils. In particular, older adults exhibit a shift in lure discriminability, identifying similar lures as old items at a greater rate than young adults. This shift likely reflects deficits in pattern separation processing as a result of underlying changes in the dentate gyrus of the hippocampus. Here, we explored whether alterations in the task design could rescue the age-related impairment or whether it was ubiquitous as one might expect if the neurobiological mechanisms were truly disturbed by typical aging. Despite overt instructions to study item details during encoding, we replicated the age-related deficit in mnemonic discrimination. We established reliable effects with short lists of stimuli and with repeated testing. Altering the task design from a study/test to a continuous recognition paradigm replicated the age-related shift in lure discrimination as well. Modifying the task to an old/new response (rather than old/similar/new) showed the same effect and a d′ analysis showed that lure items were more akin to target items in older adults. Finally, we varied the test instructions in order to promote gist or veridical responses in the old/new task. Even these overt, veridical test instructions did not ameliorate older adults’ lure discrimination problems. Together, these findings demonstrate the robust nature of this age-related deficit and support the hypothesis that typical aging results in neurobiological changes that underlie this impairment. PMID:26030427

  12. Insulin-like growth factor-1 ameliorates age-related behavioral deficits.

    PubMed

    Markowska, A L; Mooney, M; Sonntag, W E

    1998-12-01

    Insulin-like growth factor-1 has been found to be involved in the regulation of several aspects of brain metabolism, neural transmission, neural growth and differentiation. Because decreased insulin-like growth factor-1 and/or its receptors are likely to contribute to age-related abnormalities in behavior, the strategy of replacing this protein is one potential therapeutic alternative. The present study was designed to assess whether cognitive deficits with ageing may be partially overcome by increasing the availability of insulin-like growth factor-1 in the brain. Fischer-344 x Brown Norway hybrid (F1) male rats of two ages (four-months-old and 32-months-old) were preoperatively trained in behavioral tasks and subsequently implanted with osmotic minipumps to infuse the insulin-like growth factor-1 (23.5 microg/pump) or a vehicle, i.c.v. Animals were retested at two weeks and four weeks after surgery. Insulin-like growth factor-1 improved working memory in the repeated acquisition task and in the object recognition task. An improvement was also observed in the place discrimination task, which assesses reference memory. Insulin-like growth factor-1 had no effect on sensorimotor skills nor exploration, but mildly reversed some age-related deficits in emotionality. These data indicate a potentially important role for insulin-like growth factor-1 in the reversal of age-related behavioral impairments in rodents.

  13. High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution

    PubMed Central

    Puccioni, Olga; Vallesi, Antonino

    2012-01-01

    Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors. PMID:23248595

  14. Age-related deficits of dual-task walking: the role of foot vision.

    PubMed

    Bock, Otmar; Beurskens, Rainer

    2011-02-01

    Previous studies found that age-related deficits of dual-task walking emerge with secondary tasks that require substantial visual processing, but are absent with tasks that require little or no visual processing. We evaluated whether this is so because visual tasks typically interfere with foot vision, on which older persons depend more heavily than young ones. Young (25±3 years) and older (69±5 years) subjects walked along a straight path and checked boxes on a handheld panel, separately or concurrently. The panel was either transparent or opaque, thus allowing or blocking vision of the feet, respectively. We quantified subjects' performance by spatial and temporal gait measures, and as the speed of checking. An analysis of variance revealed significant effects of age and of condition (single, dual) for several gait measures, as well as for checking speed. The dual-task costs (ǀdual-singleǀ/single) averaged 0.04±0.14 in younger and 0.33±0.30 in older subjects; this age difference was significant in a t-test (p<0.01). Most importantly, performance measures obtained with the transparent and with the opaque panel were not significantly different. In conclusion, our study confirms previous findings about age-related deficits of walking with a concurrent visual task, documents for the first time that these deficits influence the entire spatio-temporal gait structure, but provides no support for the notion that they reflect an increased dependence on foot vision.

  15. Procyanidins extracted from the lotus seedpod ameliorate age-related antioxidant deficit in aged rats.

    PubMed

    Xu, Jiqu; Rong, Shuang; Xie, Bijun; Sun, Zhida; Zhang, Li; Wu, Hailei; Yao, Ping; Hao, Liping; Liu, Liegang

    2010-03-01

    The alleviative effect of procyanidins extracted from the lotus seedpod (LSPC) on oxidative stress in various tissues was evaluated by determining the activities of the antioxidant enzymes and the content of reduced glutathione (GSH) in heart, liver, lung, kidney, skeletal muscle, and serum in aged rats. Aging led to antioxidant deficit in various tissues in this study, which is confirmed by remarkable increased lipid peroxidation, whereas the change patterns of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and GSH were diverse in various tissues of aged rats. LSPC treatment (50 and 100 mg/kg body weight) modified the activity of SOD, CAT, and GPx as well as GSH content alteration in these tissues, which reversed the age-related antioxidant deficit in aged rats. However, the regulatory patterns on the activities of these enzymes and GSH content by LSPC treatment were different according to the tissues in aged rats.

  16. Complex maze learning in rodents as a model of age-related memory impairment.

    PubMed

    Ingram, D K

    1988-01-01

    Research is reviewed concerning the age-related learning deficit observed in a 14-unit T-maze (Stone maze). Rats and mice of several strains representing different adult age groups are first trained to criterion in one-way active avoidance in a straight runway. Then training in the Stone maze is conducted which involves negotiation of five maze segments to avoid footshock. Results indicate a robust age-related impairment in acquisition observed in males and females, and in outbred, inbred, and hybrid strains. Pharmacological studies using the muscarinic antagonist, scopolamine, in young and aged rats indicate cholinergic involvement for accurate encoding during acquisition of this task. Retention aspects of storage and retrieval do not appear to be affected by scopolamine treatment. Bilateral electrolytic lesions to the fimbria-fornix of young rats also produce an acquisition deficit to implicate involvement of the septo-hippocampal cholinergic system in Stone maze learning. A salient feature of Stone maze performance is the tendency to demonstrate an alternation strategy in solving the maze. This strategy is exacerbated by impairment of cholinergic neurotransmission with either scopolamine treatment or fimbria-fornix lesions. Various models of hippocampal function are applied toward the psychological characterization of the Stone maze task without complete success. Future research is outlined to provide more thorough psychological characterization of maze performance, to analyze the specificity of cholinergic involvement in the task, and to test possible therapeutic interventions for alleviating the age-related impairments observed.

  17. Chronic [D-Ala2]-growth hormone-releasing hormone administration attenuates age-related deficits in spatial memory.

    PubMed

    Thornton, P L; Ingram, R L; Sonntag, W E

    2000-02-01

    The age-related decline in growth hormone is one of the most robust endocrine markers of biological aging and has been hypothesized to contribute to the physiological deficits observed in aged animals. However, there have been few studies of the impact of this hormonal decline on brain aging. In this study, the effect of long-term subcutaneous administration of [D-Ala2]-growth hormone-releasing hormone (GHRH) on one measure of brain function, memory, was investigated. Animals were injected daily with 2.3 microg of [D-Ala2]-GHRH or saline from 9 to 30 months of age, and the spatial learning and reference memory of animals were assessed by using the Morris water maze and compared with those of 6-month-old animals. Results indicated that spatial memory decreased with age and that chronic [D-Ala2]-GHRH prevented this age-related decrement (24% improvement in the annulus-40 time and 23% improvement in the number of platform crossings compared with saline treated, age-matched controls; p < .05 each). No changes were noted in sensorimotor performance. [D-Ala2]-GHRH attenuated the age-related decline in plasma concentrations of insulinlike growth factor-1 (IGF-1) (p <.05). These data suggest that growth hormone and IGF-1 have important effects on brain function, that the decline in growth hormone and IGF-1 with age contributes to impairments in reference memory, and that these changes can be reversed by the chronic administration of GHRH.

  18. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits.

    PubMed

    Oh, M Matthew; Simkin, Dina; Disterhoft, John F

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  19. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits

    PubMed Central

    Oh, M. Matthew; Simkin, Dina; Disterhoft, John F.

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  20. Age-related deficit in a bimanual joint position matching task is amplitude dependent

    PubMed Central

    Boisgontier, Matthieu P.; Swinnen, Stephan P.

    2015-01-01

    The cognitive load associated with joint position sense increases with age but does not necessarily result in impaired performance in a joint position matching task. It is still unclear which factors interact with age to predict matching performance. To test whether movement amplitude and direction are part of such predictors, young and older adults performed a bimanual wrist joint position matching task. Results revealed an age-related deficit when the target limb was positioned far from (25°) the neutral position, but not when close to (15°, 5°) the neutral joint position, irrespective of the direction. These results suggest that the difficulty associated with the comparison of two musculoskeletal states increases towards extreme joint amplitude and that older adults are more vulnerable to this increased difficulty. PMID:26347649

  1. Effects of semantic relatedness on age-related associative memory deficits: the role of theta oscillations.

    PubMed

    Crespo-Garcia, Maite; Cantero, Jose L; Atienza, Mercedes

    2012-07-16

    Growing evidence suggests that age-related deficits in associative memory are alleviated when the to-be-associated items are semantically related. Here we investigate whether this beneficial effect of semantic relatedness is paralleled by spatio-temporal changes in cortical EEG dynamics during incidental encoding. Young and older adults were presented with faces at a particular spatial location preceded by a biographical cue that was either semantically related or unrelated. As expected, automatic encoding of face-location associations benefited from semantic relatedness in the two groups of age. This effect correlated with increased power of theta oscillations over medial and anterior lateral regions of the prefrontal cortex (PFC) and lateral regions of the posterior parietal cortex (PPC) in both groups. But better-performing elders also showed increased brain-behavior correlation in the theta band over the right inferior frontal gyrus (IFG) as compared to young adults. Semantic relatedness was, however, insufficient to fully eliminate age-related differences in associative memory. In line with this finding, poorer-performing elders relative to young adults showed significant reductions of theta power in the left IFG that were further predictive of behavioral impairment in the recognition task. All together, these results suggest that older adults benefit less than young adults from executive processes during encoding mainly due to neural inefficiency over regions of the left ventrolateral prefrontal cortex (VLPFC). But this associative deficit may be partially compensated for by engaging preexistent semantic knowledge, which likely leads to an efficient recruitment of attentional and integration processes supported by the left PPC and left anterior PFC respectively, together with neural compensatory mechanisms governed by the right VLPFC.

  2. Age-related deficit accumulation and the risk of late-life dementia

    PubMed Central

    2014-01-01

    Introduction Many age-related health problems have been associated with dementia, leading to the hypothesis that late-life dementia may be determined less by specific risk factors, and more by the operation of multiple health deficits in the aggregate. Our study addressed (a) how the predictive value of dementia risk varies by the number of deficits considered and (b) how traditional (for example. vascular risks) and nontraditional risk factors (for example, foot problems, nasal congestion) compare in their predictive effects. Methods Older adults in the Canadian Study of Health and Aging who were cognitively healthy at baseline were analyzed (men, 2,902; women, 4,337). Over a 10-year period, 44.8% of men and 33.4% of women died; 7.4% of men and 9.1% of women without baseline cognitive impairment developed dementia. Self-rated health problems, including, but not restricted to, dementia risk factors, were coded as deficit present/absent. Different numbers of randomly selected variables were used to calculate various iterations of the index (that is, the proportion of deficits present in an individual. Risks for 10-year mortality and dementia outcomes were evaluated separately for men and women by using logistic regression, adjusted for age. The prediction accuracy was evaluated by using C-statistics. Results Age-adjusted odds ratios per additional deficit were 1.22 (95% confidence interval (CI), 1.18 to 1.26) in men and 1.14 (1.11 to 1.16) in women in relation to death, and 1.18 (1.12 to 1.25) in men and 1.08 (1.04 to 1.11) in women in relation to dementia. The predictive value increased with the number (n) of deficits considered, regardless of whether they were known dementia risks, and stabilized at n > 25. The all-factor index best predicted dementia (C-statistics, 0.67 ± 0.03). Conclusions The variety of items associated with dementias suggests that some part of the risk might relate more to aberrant repair processes, than to specifically toxic results

  3. Proactive interference and concurrent inhibitory processes do not differentially affect item and associative recognition: Implication for the age-related associative memory deficit.

    PubMed

    Guez, Jonathan; Naveh-Benjamin, Moshe

    2016-09-01

    Previous studies have suggested an associative deficit hypothesis [Naveh-Benjamin, M. ( 2000 ). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1170-1187] to explain age-related episodic memory declines. The hypothesis attributes part of the deficient episodic memory performance in older adults to a difficulty in creating and retrieving cohesive episodes. In this article, we further evaluate this hypothesis by testing two alternative processes that potentially mediate associative memory deficits in older adults. Four experiments are presented that assess whether failure of inhibitory processes (proactive interference in Experiments 1 and 2), and concurrent inhibition (in Experiments 3 and 4) are mediating factors in age-related associative deficits. The results suggest that creating conditions that require the operation of inhibitory processes, or that interfere with such processes, cannot simulate associative memory deficit in older adults. Instead, such results support the idea that associative memory deficits reflect a unique binding failure in older adults. This failure seems to be independent of other cognitive processes, including inhibitory and other resource-demanding processes.

  4. Age-related changes in learning across early childhood: a new imitation task.

    PubMed

    Dickerson, Kelly; Gerhardstein, Peter; Zack, Elizabeth; Barr, Rachel

    2013-11-01

    Imitation plays a critical role in social and cognitive development, but the social learning mechanisms contributing to the development of imitation are not well understood. We developed a new imitation task designed to examine social learning mechanisms across the early childhood period. The new task involves assembly of abstract-shaped puzzle pieces in an arbitrary sequence on a magnet board. Additionally, we introduce a new scoring system that extends traditional goal-directed imitation scoring to include measures of both children's success at copying gestures (sliding the puzzle pieces) and goals (connecting the puzzle pieces). In Experiment 1, we demonstrated an age-invariant baseline from 1.5 to 3.5 years of age, accompanied by age-related changes in success at copying goals and gestures from a live demonstrator. In Experiment 2, we applied our new task to learning following a video demonstration. Imitation performance in the video demonstration group lagged behind that of the live demonstration group, showing a protracted video deficit effect. Across both experiments, children were more likely to copy gestures at earlier ages, suggesting mimicry, and only later copy both goals and gestures, suggesting imitation. Taken together, the findings suggest that different social learning strategies may predominate in imitation learning dependent upon the degree of object affordance, task novelty, and task complexity. PMID:22786801

  5. Age-related spatial working memory deficits in homing pigeons (Columba livia).

    PubMed

    Coppola, Vincent J; Hough, Gerald; Bingman, Verner P

    2014-12-01

    The hippocampus is particularly susceptible to age-related degeneration that, like hippocampal lesions, is thought to lead to age-related decline in spatial memory and navigation. Lesions to the avian hippocampal formation (HF) also result in impaired spatial memory and navigation, but the relationship between aging and HF-dependent spatial cognition is unknown. To investigate possible age-related decline in avian spatial cognition, the current study investigated spatial working memory performance in older homing pigeons (10+ years of age). Pigeons completed a behavioral procedure nearly identical to the delayed spatial, win-shift procedure in a modified radial arm maze that has been previously used to study spatial working memory in rats and pigeons. The results revealed that the older pigeons required a greater number of choices to task completion and were less accurate with their first 4 choices as compared to younger pigeons (1-2 years of age). In addition, older pigeons were more likely to adopt a stereotyped sampling strategy, which explained in part their impaired performance. To the best of our knowledge, this study is the first to demonstrate an age-related impairment of HF-dependent, spatial memory in birds. Implications and future directions of the findings are discussed.

  6. An age-related deficit in spatial-feature reference memory in homing pigeons (Columba livia).

    PubMed

    Coppola, Vincent J; Flaim, Mary E; Carney, Samantha N; Bingman, Verner P

    2015-03-01

    Age-related memory decline in mammals has been well documented. By contrast, very little is known about memory decline in birds as they age. In the current study we trained younger and older homing pigeons on a reference memory task in which a goal location could be encoded by spatial and feature cues. Consistent with a previous working memory study, the results revealed impaired acquisition of combined spatial-feature reference memory in older compared to younger pigeons. Following memory acquisition, we used cue-conflict probe trials to provide an initial assessment of possible age-related differences in cue preference. Both younger and older pigeons displayed a similarly modest preference for feature over spatial cues.

  7. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits.

    PubMed

    Ward, Andrew M; Mormino, Elizabeth C; Huijbers, Willem; Schultz, Aaron P; Hedden, Trey; Sperling, Reisa A

    2015-01-01

    Advanced aging negatively impacts memory performance. Brain aging has been associated with shrinkage in medial temporal lobe structures essential for memory--including hippocampus and entorhinal cortex--and with deficits in default-mode network connectivity. Yet, whether and how these imaging markers are relevant to age-related memory deficits remains a topic of debate. Using a sample of 182 older (age 74.6 ± 6.2 years) and 66 young (age 22.2 ± 3.6 years) participants, this study examined relationships among memory performance, hippocampus volume, entorhinal cortex thickness, and default-mode network connectivity across aging. All imaging markers and memory were significantly different between young and older groups. Each imaging marker significantly mediated the relationship between age and memory performance and collectively accounted for most of the variance in age-related memory performance. Within older participants, default-mode connectivity and hippocampus volume were independently associated with memory. Structural equation modeling of cross-sectional data within older participants suggest that entorhinal thinning may occur before reduced default-mode connectivity and hippocampal volume loss, which in turn lead to deficits in memory performance. PMID:25113793

  8. Strategic white matter tracts for processing speed deficits in age-related small vessel disease

    PubMed Central

    Duering, Marco; Gesierich, Benno; Seiler, Stephan; Pirpamer, Lukas; Gonik, Mariya; Hofer, Edith; Jouvent, Eric; Duchesnay, Edouard; Chabriat, Hugues; Ropele, Stefan; Schmidt, Reinhold

    2014-01-01

    Objective: Cerebral small vessel disease is the most common cause of vascular cognitive impairment and typically manifests with slowed processing speed. We investigated the impact of lesion location on processing speed in age-related small vessel disease. Methods: A total of 584 community-dwelling elderly underwent brain MRI followed by segmentation of white matter hyperintensities. Processing speed was determined by the timed measure of the Trail Making Test part B. The impact of the location of white matter hyperintensities was assessed by voxel-based lesion-symptom mapping and graph-based statistical models on regional lesion volumes in major white matter tracts. Results: Voxel-based lesion-symptom mapping identified multiple voxel clusters where the presence of white matter hyperintensities was associated with slower performance on the Trail Making Test part B. Clusters were located bilaterally in the forceps minor and anterior thalamic radiation. Region of interest–based Bayesian network analyses on lesion volumes within major white matter tracts depicted the same tracts as direct predictors for an impaired Trail Making Test part B performance. Conclusions: Our findings highlight damage to frontal interhemispheric and thalamic projection fiber tracts harboring frontal-subcortical neuronal circuits as a predictor for processing speed performance in age-related small vessel disease. PMID:24793184

  9. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors.

    PubMed

    Luo, Yi; Zhou, Jun; Li, Ming-Xing; Wu, Peng-Fei; Hu, Zhuang-Li; Ni, Lan; Jin, You; Chen, Jian-Guo; Wang, Fang

    2015-04-01

    Aging-related emotional memory deficit is a well-known complication in Alzheimer's disease and normal aging. However, little is known about its molecular mechanism. To address this issue, we examined the role of norepinephrine (NE) and its relevant drug desipramine in the regulation of hippocampal long-term potentiation (LTP), surface expression of AMPA receptor, and associative fear memory in rats. We found that there was a defective regulation of NE content and AMPA receptor trafficking during fear conditioning, which were accompanied by impaired emotional memory and LTP in aged rats. Furthermore, we also found that the exogenous upregulation of NE ameliorated the impairment of LTP and emotional memory via enhancing AMPA receptor trafficking in aged rats, and the downregulation of NE impaired LTP in adult rats. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory in aged rats. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in aging rats and suggest that desipramine is a potential candidate for treating aging-related emotional memory deficit.

  10. Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP

    PubMed Central

    Distrutti, Eleonora; O’Reilly, Julie-Ann; McDonald, Claire; Cipriani, Sabrina; Renga, Barbara; Lynch, Marina A.; Fiorucci, Stefano

    2014-01-01

    The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut–brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function. PMID:25202975

  11. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice.

    PubMed

    Zhu, Xiaoxia; Vasilyeva, Olga N; Kim, Sunghee; Jacobson, Michael; Romney, Joshua; Waterman, Marjorie S; Tuttle, David; Frisina, Robert D

    2007-08-10

    The C57BL/6J mouse has been a useful model of presbycusis, as it displays an accelerated age-related peripheral hearing loss. The medial olivocochlear efferent feedback (MOC) system plays a role in suppressing cochlear outer hair cell (OHC) responses, particularly for background noise. Neurons of the MOC system are located in the superior olivary complex, particularly in the dorsomedial periolivary nucleus (DMPO) and in the ventral nucleus of the trapezoid body (VNTB). We previously discovered that the function of the MOC system declines with age prior to OHC degeneration, as measured by contralateral suppression (CS) of distortion product otoacoustic emissions (DPOAEs) in humans and CBA mice. The present study aimed to determine the time course of age changes in MOC function in C57s. DPOAE amplitudes and CS of DPOAEs were collected for C57s from 6 to 40 weeks of age. MOC responses were observed at 6 weeks but were gone at middle (15-30 kHz) and high (30-45 kHz) frequencies by 8 weeks. Quantitative stereological analyses of Nissl sections revealed smaller neurons in the DMPO and VNTB of young adult C57s compared with CBAs. These findings suggest that reduced neuron size may underlie part of the noteworthy rapid decline of the C57 efferent system. In conclusion, the C57 mouse has MOC function at 6 weeks, but it declines quickly, preceding the progression of peripheral age-related sensitivity deficits and hearing loss in this mouse strain.

  12. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults.

    PubMed

    King, Bradley R; Fogel, Stuart M; Albouy, Geneviève; Doyon, Julien

    2013-01-01

    As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning.

  13. Gene Expression Changes for Antioxidants Pathways in the Mouse Cochlea: Relations to Age-related Hearing Deficits

    PubMed Central

    Tadros, Sherif F.; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D.

    2014-01-01

    Age-related hearing loss – presbycusis – is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively) may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear – cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis. PMID:24587312

  14. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits.

    PubMed

    Tadros, Sherif F; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D

    2014-01-01

    Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively) may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.

  15. Student journals: a means of assessing transformative learning in aging related courses.

    PubMed

    Cohen, Adrienne L; Pitman Brown, Pamela; Morales, Justin P

    2015-01-01

    In courses where topics are sensitive or even considered taboo for discussion, it can be difficult to assess students' deeper learning. In addition, incorporating a wide variety of students' values and beliefs, designing instructional strategies and including varied assessments adds to the difficulty. Journal entries or response notebooks can highlight reflection upon others' viewpoints, class readings, and additional materials. These are useful across all educational levels in deep learning and comprehension strategies assessments. Journaling meshes with transformative learning constructs, allowing for critical self-reflection essential to transformation. Qualitative analysis of journals in a death and dying class reveals three transformative themes: awareness of others, questioning, and comfort. Students' journal entries demonstrate transformative learning via communication with others through increased knowledge/exposure to others' experiences and comparing/contrasting others' personal beliefs with their own. Using transformative learning within gerontology and geriatrics education, as well as other disciplined aging-related courses is discussed. PMID:25386895

  16. Age-related deficits in selective attention during encoding increase demands on episodic reconstruction during context retrieval: An ERP study.

    PubMed

    James, Taylor; Strunk, Jonathan; Arndt, Jason; Duarte, Audrey

    2016-06-01

    Previous event-related potential (ERP) and neuroimaging evidence suggests that directing attention toward single item-context associations compared to intra-item features at encoding improves context memory performance and reduces demands on strategic retrieval operations in young and older adults. In everyday situations, however, there are multiple event features competing for our attention. It is not currently known how selectively attending to one contextual feature while attempting to ignore another influences context memory performance and the processes that support successful retrieval in the young and old. We investigated this issue in the current ERP study. Young and older participants studied pictures of objects in the presence of two contextual features: a color and a scene, and their attention was directed to the object's relationship with one of those contexts. Participants made context memory decisions for both attended and unattended contexts and rated their confidence in those decisions. Behavioral results showed that while both groups were generally successful in applying selective attention during context encoding, older adults were less confident in their context memory decisions for attended features and showed greater dependence in context memory accuracy for attended and unattended contextual features (i.e., hyper-binding). ERP results were largely consistent between age groups but older adults showed a more pronounced late posterior negativity (LPN) implicated in episodic reconstruction processes. We conclude that age-related suppression deficits during encoding result in reduced selectivity in context memory, thereby increasing subsequent demands on episodic reconstruction processes when sought after details are not readily retrieved. PMID:27094851

  17. Age-related deficits in selective attention during encoding increase demands on episodic reconstruction during context retrieval: An ERP study.

    PubMed

    James, Taylor; Strunk, Jonathan; Arndt, Jason; Duarte, Audrey

    2016-06-01

    Previous event-related potential (ERP) and neuroimaging evidence suggests that directing attention toward single item-context associations compared to intra-item features at encoding improves context memory performance and reduces demands on strategic retrieval operations in young and older adults. In everyday situations, however, there are multiple event features competing for our attention. It is not currently known how selectively attending to one contextual feature while attempting to ignore another influences context memory performance and the processes that support successful retrieval in the young and old. We investigated this issue in the current ERP study. Young and older participants studied pictures of objects in the presence of two contextual features: a color and a scene, and their attention was directed to the object's relationship with one of those contexts. Participants made context memory decisions for both attended and unattended contexts and rated their confidence in those decisions. Behavioral results showed that while both groups were generally successful in applying selective attention during context encoding, older adults were less confident in their context memory decisions for attended features and showed greater dependence in context memory accuracy for attended and unattended contextual features (i.e., hyper-binding). ERP results were largely consistent between age groups but older adults showed a more pronounced late posterior negativity (LPN) implicated in episodic reconstruction processes. We conclude that age-related suppression deficits during encoding result in reduced selectivity in context memory, thereby increasing subsequent demands on episodic reconstruction processes when sought after details are not readily retrieved.

  18. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

    PubMed Central

    Bonasera, Stephen J.; Arikkath, Jyothi; Boska, Michael D.; Chaudoin, Tammy R.; DeKorver, Nicholas W.; Goulding, Evan H.; Hoke, Traci A.; Mojtahedzedah, Vahid; Reyelts, Crystal D.; Sajja, Balasrinivasa; Schenk, A. Katrin; Tecott, Laurence H.; Volden, Tiffany A.

    2016-01-01

    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits. PMID:27689748

  19. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status

    PubMed Central

    D’Angelo, Maria C.; Smith, Victoria M.; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A.; Barense, Morgan D.; Ryan, Jennifer D.

    2016-01-01

    ABSTRACT Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals’ failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA. PMID:27049878

  20. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status.

    PubMed

    D'Angelo, Maria C; Smith, Victoria M; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A; Barense, Morgan D; Ryan, Jennifer D

    2016-11-01

    Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals' failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA.

  1. The effect of normal aging and age-related macular degeneration on perceptual learning

    PubMed Central

    Astle, Andrew T.; Blighe, Alan J.; Webb, Ben S.; McGraw, Paul V.

    2015-01-01

    We investigated whether perceptual learning could be used to improve peripheral word identification speed. The relationship between the magnitude of learning and age was established in normal participants to determine whether perceptual learning effects are age invariant. We then investigated whether training could lead to improvements in patients with age-related macular degeneration (AMD). Twenty-eight participants with normal vision and five participants with AMD trained on a word identification task. They were required to identify three-letter words, presented 10° from fixation. To standardize crowding across each of the letters that made up the word, words were flanked laterally by randomly chosen letters. Word identification performance was measured psychophysically using a staircase procedure. Significant improvements in peripheral word identification speed were demonstrated following training (71% ± 18%). Initial task performance was correlated with age, with older participants having poorer performance. However, older adults learned more rapidly such that, following training, they reached the same level of performance as their younger counterparts. As a function of number of trials completed, patients with AMD learned at an equivalent rate as age-matched participants with normal vision. Improvements in word identification speed were maintained at least 6 months after training. We have demonstrated that temporal aspects of word recognition can be improved in peripheral vision with training across a range of ages and these learned improvements are relatively enduring. However, training targeted at other bottlenecks to peripheral reading ability, such as visual crowding, may need to be incorporated to optimize this approach. PMID:26605694

  2. A mid-life vitamin A supplementation prevents age-related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I.

    PubMed

    Touyarot, Katia; Bonhomme, Damien; Roux, Pascale; Alfos, Serge; Lafenêtre, Pauline; Richard, Emmanuel; Higueret, Paul; Pallet, Véronique

    2013-01-01

    Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions. PMID:23977218

  3. A Mid-Life Vitamin A Supplementation Prevents Age-Related Spatial Memory Deficits and Hippocampal Neurogenesis Alterations through CRABP-I

    PubMed Central

    Touyarot, Katia; Bonhomme, Damien; Roux, Pascale; Alfos, Serge; Lafenêtre, Pauline; Richard, Emmanuel; Higueret, Paul; Pallet, Véronique

    2013-01-01

    Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions. PMID:23977218

  4. Automated age-related macular degeneration classification in OCT using unsupervised feature learning

    NASA Astrophysics Data System (ADS)

    Venhuizen, Freerk G.; van Ginneken, Bram; Bloemen, Bart; van Grinsven, Mark J. J. P.; Philipsen, Rick; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I.

    2015-03-01

    Age-related Macular Degeneration (AMD) is a common eye disorder with high prevalence in elderly people. The disease mainly affects the central part of the retina, and could ultimately lead to permanent vision loss. Optical Coherence Tomography (OCT) is becoming the standard imaging modality in diagnosis of AMD and the assessment of its progression. However, the evaluation of the obtained volumetric scan is time consuming, expensive and the signs of early AMD are easy to miss. In this paper we propose a classification method to automatically distinguish AMD patients from healthy subjects with high accuracy. The method is based on an unsupervised feature learning approach, and processes the complete image without the need for an accurate pre-segmentation of the retina. The method can be divided in two steps: an unsupervised clustering stage that extracts a set of small descriptive image patches from the training data, and a supervised training stage that uses these patches to create a patch occurrence histogram for every image on which a random forest classifier is trained. Experiments using 384 volume scans show that the proposed method is capable of identifying AMD patients with high accuracy, obtaining an area under the Receiver Operating Curve of 0:984. Our method allows for a quick and reliable assessment of the presence of AMD pathology in OCT volume scans without the need for accurate layer segmentation algorithms.

  5. Age-Related Differences in the Relation between Motivation to Learn and Transfer of Training in Adult Continuing Education

    ERIC Educational Resources Information Center

    Gegenfurtner, Andreas; Vauras, Marja

    2012-01-01

    This meta-analysis (k = 38, N = 6977) examined age-related differences in the relation between motivation to learn and transfer of training, using data derived from the literature on adult continuing education of the past 25 years. Based on socioemotional selectivity theory, a lifespan approach to expectancy theory, and research on interest and…

  6. Long-term caloric restriction in mice may prevent age-related learning impairment via suppression of apoptosis.

    PubMed

    Ma, Lina; Wang, Rong; Dong, Wen; Li, Yun; Xu, Baolei; Zhang, Jingshuang; Zhao, Zhiwei

    2016-12-15

    Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. However, the underlying mechanisms have not yet been clearly defined. Therefore, we aimed to identify the underlying mechanisms of long-term CR on age-related learning impairment in C57/BL mice. Thirty six-week-old male C57/BL mice were randomly divided into three groups: normal control group (NC group, n=10), high energy group (HE group, n=10), and CR group (n=10). After 10 months, the Morris water maze test was performed to monitor learning abilities. Western blotting, immunohistochemistry and real-time polymerase chain reaction were used to monitor changes in protein and mRNA levels associated with apoptosis-related proteins in the hippocampus. The average escape latency was lower in the CR group compared with the NC group, and the average time taken to first cross the platform in the CR group was significantly shorter than the HE group. Both Bcl-2 protein and mRNA expression levels in the CR group were significantly higher than those of the NC group and HE group. The expression of Bax, Caspase-3 and PARP protein in the CR group was significantly lower than the NC group. Our findings demonstrate that long-term CR may prevent age-related learning impairments via suppressing apoptosis in mice. PMID:27452805

  7. Maternal inflammation linearly exacerbates offspring age-related changes of spatial learning and memory, and neurobiology until senectitude.

    PubMed

    Li, Xue-Wei; Cao, Lei; Wang, Fang; Yang, Qi-Gang; Tong, Jing-Jing; Li, Xue-Yan; Chen, Gui-Hai

    2016-06-01

    Maternal inflammation during pregnancy can elevate the risk of neurodegenerative disorders in offspring. However, how it affects age-related impairments of spatial learning and memory and changes in the neurobiological indictors in the offspring in later adulthood is still elusive. In this study, the CD-1 mice with maternal gestational inflammation due to receiving lipopolysaccharide (LPS, i.p. 50 or 25μg/kg) were divided into 3-, 12-, 18-, and 22-month-old groups. The spatial learning and memory were evaluated using a six-radial arm water maze and the levels of presynaptic proteins (synaptotagmin-1 and syntaxin-1) and histone acetylation (H3K9ac and H4K8ac) in the dorsal hippocampus were detected using the immunohistochemical method. The results indicated that there were significant age-related impairments of spatial learning and memory, decreased levels of H4K8ac, H3K9ac, and syntaxin-1, and increased levels of synaptotagmin-1 in the offspring mice from 12 months old to 22 months old compared to the same-age controls. Maternal LPS treatment significantly exacerbated the offspring impairments of spatial learning and memory, the reduction of H3K9ac, H4K8ac, and syntaxin-1, and the increment of synaptotagmin-1 from 12 months old to 22 months old compared to the same-age control groups. The changes in the neurobiological indicators significantly correlated with the impairments of spatial learning and memory. Furthermore, this correlation, besides the age and LPS-treatment effects, also showed a dose-dependent effect. Our results suggest that maternal inflammation during pregnancy could exacerbate age-related impairments of spatial learning and memory, and neurobiochemical indicators in the offspring CD-1 mice from midlife to senectitude.

  8. Difference Not Deficit: Reconceptualizing Mathematical Learning Disabilities

    ERIC Educational Resources Information Center

    Lewis, Katherine E.

    2014-01-01

    Mathematical learning disability (MLD) research often conflates low achievement with disabilities and focuses exclusively on deficits of students with MLDs. In this study, the author adopts an alternative approach using a response-to-intervention MLD classification model to identify the resources students draw on rather than the skills they lack.…

  9. Are There Age-Related Differences in the Ability to Learn Configural Responses?

    PubMed Central

    Clark, Rachel; Freedberg, Michael; Hazeltine, Eliot; Voss, Michelle W.

    2015-01-01

    Age is often associated with a decline in cognitive abilities that are important for maintaining functional independence, such as learning new skills. Many forms of motor learning appear to be relatively well preserved with age, while learning tasks that involve associative binding tend to be negatively affected. The current study aimed to determine whether age differences exist on a configural response learning task, which includes aspects of motor learning and associative binding. Young (M = 24 years) and older adults (M = 66.5 years) completed a modified version of a configural learning task. Given the requirement of associative binding in the configural relationships between responses, we predicted older adults would show significantly less learning than young adults. Older adults demonstrated lower performance (slower reaction time and lower accuracy). However, contrary to our prediction, older adults showed similar rates of learning as indexed by a configural learning score compared to young adults. These results suggest that the ability to acquire knowledge incidentally about configural response relationships is largely unaffected by cognitive aging. The configural response learning task provides insight into the task demands that constrain learning abilities in older adults. PMID:26317773

  10. Age-related changes in deterministic learning from positive versus negative performance feedback.

    PubMed

    van de Vijver, Irene; Ridderinkhof, K Richard; de Wit, Sanne

    2015-01-01

    Feedback-based learning declines with age. Because older adults are generally biased toward positive information ("positivity effect"), learning from positive feedback may be less impaired than learning from negative outcomes. The literature documents mixed results, due possibly to variability between studies in task design. In the current series of studies, we investigated the influence of feedback valence on reinforcement learning in young and older adults. We used nonprobabilistic learning tasks, to more systematically study the effects of feedback magnitude, learning of stimulus-response (S-R) versus stimulus-outcome (S-O) associations, and working-memory capacity. In most experiments, older adults benefitted more from positive than negative feedback, but only with large feedback magnitudes. Positivity effects were pronounced for S-O learning, whereas S-R learning correlated with working-memory capacity in both age groups. These results underline the context dependence of positivity effects in learning and suggest that older adults focus on high gains when these are informative for behavior.

  11. Age-related changes in consolidation of perceptual and muscle-based learning of motor skills.

    PubMed

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2013-01-01

    Improvements in motor sequence learning come about via goal-based learning of the sequence of visual stimuli and muscle-based learning of the sequence of movement responses. In young adults, consolidation of goal-based learning is observed after intervals of sleep but not following wake, whereas consolidation of muscle-based learning is greater following intervals with wake compared to sleep. While the benefit of sleep on motor sequence learning has been shown to decline with age, how sleep contributes to consolidation of goal-based vs. muscle-based learning in older adults (OA) has not been disentangled. We trained young (n = 62) and older (n = 50) adults on a motor sequence learning task and re-tested learning following 12 h intervals containing overnight sleep or daytime wake. To probe consolidation of goal-based learning of the sequence, half of the participants were re-tested in a configuration in which the stimulus sequence was the same but, due to a shift in stimulus-response mapping, the movement response sequence differed. To probe consolidation of muscle-based learning, the remaining participants were tested in a configuration in which the stimulus sequence was novel, but now the sequence of movements used for responding was unchanged. In young adults, there was a significant condition (goal-based vs. muscle-based learning) by interval (sleep vs. wake) interaction, F(1,58) = 6.58, p = 0.013: goal-based learning tended to be greater following sleep compared to wake, t(29) = 1.47, p = 0.072. Conversely, muscle-based learning was greater following wake than sleep, t(29) = 2.11, p = 0.021. Unlike young adults, this interaction was not significant in OA, F(1,46) = 0.04, p = 0.84, nor was there a main effect of interval, F(1,46) = 1.14, p = 0.29. Thus, OA do not preferentially consolidate sequence learning over wake or sleep.

  12. What can we learn about age-related macular degeneration from other retinal diseases?

    PubMed

    Zack, D J; Dean, M; Molday, R S; Nathans, J; Redmond, T M; Stone, E M; Swaroop, A; Valle, D; Weber, B H

    1999-11-01

    Age-related macular degeneration (AMD) is increasingly recognized as a complex genetic disorder in which one or more genes contribute to an individual's susceptibility for developing the condition. Twin and family studies as well as population-based genetic epidemiologic methods have convincingly demonstrated the importance of genetics in AMD, though the extent of heritability, the number of genes involved, and the phenotypic and genetic heterogeneity of the condition remain unresolved. The extent to which other hereditary macular dystrophies such as Stargardts disease, familial radial drusen (malattia leventinese), Best's disease, and peripherin/RDS-related dystrophy are related to AMD remains unclear. Alzheimer's disease, another late onset, heterogeneous degenerative disorder of the central nervous system, offers a valuable model for identifying the issues that confront AMD genetics.

  13. Age-related changes in the cerebral substrates of cognitive procedural learning.

    PubMed

    Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2009-04-01

    Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative, and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus, and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, the engagement of frontal and cingulate regions persisted in the older group as learning continued, whereas it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. PMID:18537110

  14. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis

    PubMed Central

    Baehr, Leslie M.; West, Daniel W.D.; Marcotte, George; Marshall, Andrea G.; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C.

    2016-01-01

    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. PMID:26826670

  15. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis.

    PubMed

    Baehr, Leslie M; West, Daniel W D; Marcotte, George; Marshall, Andrea G; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C

    2016-01-01

    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength.

  16. Ageing-Related Experiences of Adults with Learning Disability Resident in Rural Areas: One Australian Perspective

    ERIC Educational Resources Information Center

    Wark, Stuart; Canon-Vanry, Miranda; Ryan, Peta; Hussain, Rafat; Knox, Marie; Edwards, Meaghan; Parmenter, Marie; Parmenter, Trevor; Janicki, Matthew; Leggatt-Cook, Chez

    2015-01-01

    Background: Access to support services in rural areas is known to be problematic both in Australia, and in other countries around the world, but the majority of research on the population of people ageing with learning disability has so far focussed on metropolitan residents. The authors report about select aspects of the lived experience of older…

  17. Word learning in children with vocabulary deficits.

    PubMed

    Nash, Marysia; Donaldson, Morag L

    2005-04-01

    Word learning in 16 children with specific language impairment (SLI) was compared with that of chronological-age controls (CAC) and vocabulary-age controls (VAC), to examine the extent and nature of word-learning deficits in the children with SLI. The children were exposed to novel words in a story and an explicit teaching context. Five tasks assessed how much the children had learned about the words' phonological form and semantic properties after 6 repetitions (Time 1) and again after 12 repetitions (Time 2) of the words in each context. The SLI group performed significantly worse than the CAC group at both Time 1 and Time 2 on all measures of the words presented in both contexts. They performed similarly to the VAC group (who were on average 21/2 years younger) on Time 1 and Time 2 measures from both contexts, except for the Naming task at Time 2, on which their performance was significantly lower. These findings suggest that children with vocabulary deficits have difficulties with both phonological and semantic aspects of word learning.

  18. Age-Related Differences in Associative Learning of Landmarks and Heading Directions in a Virtual Navigation Task

    PubMed Central

    Zhong, Jimmy Y.; Moffat, Scott D.

    2016-01-01

    Previous studies have showed that spatial memory declines with age but have not clarified the relevance of different landmark cues for specifying heading directions among different age groups. This study examined differences between younger, middle-aged and older adults in route learning and memory tasks after they navigated a virtual maze that contained: (a) critical landmarks that were located at decision points (i.e., intersections) and (b) non-critical landmarks that were located at non-decision points (i.e., the sides of the route). Participants were given a recognition memory test for critical and non-critical landmarks and also given a landmark-direction associative learning task. Compared to younger adults, older adults committed more navigation errors during route learning and were poorer at associating the correct heading directions with both critical and non-critical landmarks. Notably, older adults exhibited a landmark-direction associative memory deficit at decision points; this was the first finding to show that an associative memory deficit exist among older adults in a navigational context for landmarks that are pertinent for reaching a goal, and suggest that older adults may expend more cognitive resources on the encoding of landmark/object features than on the binding of landmark and directional information. This study is also the first to show that older adults did not have a tendency to process non-critical landmarks, which were regarded as distractors/irrelevant cues for specifying the directions to reach the goal, to an equivalent or larger extent than younger adults. We explain this finding in view of the low number of non-critical cues in our virtual maze (relative to a real-world urban environment) that might not have evoked older adults’ usual tendency toward processing or encoding distractors. We explain the age differences in navigational and cognitive performance with regards to functional and structural changes in the hippocampus and

  19. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    PubMed

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  20. Psychosocial and Adaptive Deficits Associated with Learning Disability Subtypes

    ERIC Educational Resources Information Center

    Backenson, Erica M.; Holland, Sara C.; Kubas, Hanna A.; Fitzer, Kim R.; Wilcox, Gabrielle; Carmichael, Jessica A.; Fraccaro, Rebecca L.; Smith, Amanda D.; Macoun, Sarah J.; Harrison, Gina L.; Hale, James B.

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent…

  1. Preserved neuron number in the hippocampus of aged rats with spatial learning deficits.

    PubMed Central

    Rapp, P R; Gallagher, M

    1996-01-01

    Hippocampal neuron loss is widely viewed as a hallmark of normal aging. Moreover, neuronal degeneration is thought to contribute directly to age-related deficits in learning and memory supported by the hippocampus. By taking advantage of improved methods for quantifying neuron number, the present study reports evidence challenging these long-standing concepts. The status of hippocampal-dependent spatial learning was evaluated in young and aged Long-Evans rats using the Morris water maze, and the total number of neurons in the principal cell layers of the dentate gyrus and hippocampus was quantified according to the optical fractionator technique. For each of the hippocampal fields, neuron number was preserved in the aged subjects as a group and in aged individuals with documented learning and memory deficits indicative of hippocampal dysfunction. The findings demonstrate that hippocampal neuronal degeneration is not an inevitable consequence of normal aging and that a loss of principal neurons in the hippocampus fails to account for age-related learning and memory impairment. The observed preservation of neuron number represents an essential foundation for identifying the neurobiological effects of hippocampal aging that account for cognitive decline. Images Fig. 2 PMID:8790433

  2. The Prevention of Learning Disability through Deficit Centered Classroom Training.

    ERIC Educational Resources Information Center

    Sapir, Selma G.

    This document describes the development of an instrument to identify and diagnose developmental deficits at age 5 and the planning of a deficit centered training curriculum to prevent learning disabilities. An evaluation of the effectiveness of this curriculum, based on measures of the children's developmental growth and their academic achievement…

  3. An age-related numerical and functional deficit in CD19(+) CD24(hi) CD38(hi) B cells is associated with an increase in systemic autoimmunity.

    PubMed

    Duggal, Niharika A; Upton, Jane; Phillips, Anna C; Sapey, Elizabeth; Lord, Janet M

    2013-10-01

    Autoimmunity increases with aging indicative of reduced immune tolerance, but the mechanisms involved are poorly defined. In recent years, subsets of B cells with immunoregulatory properties have been identified in murine models of autoimmune disorders, and these cells downregulate immune responses via secretion of IL10. In humans, immature transitional B cells with a CD19(+) CD24(hi) CD38(hi) phenotype have been reported to regulate immune responses via IL10 production. We found the frequency and numbers of CD19(+) CD24(hi) CD38(hi) cells were reduced in the PBMC pool with age. IL10 expression and secretion following activation via either CD40, or Toll-like receptors was also impaired in CD19(+) CD24(hi) CD38(hi) B cells from healthy older donors. When investigating the mechanisms involved, we found that CD19(+) CD24(hi) CD38(hi) B-cell function was compromised by age-related effects on both T cells and B cells: specifically, CD40 ligand expression was lower in CD4 T cells from older donors following CD3 stimulation, and signalling through CD40 was impaired in CD19(+) CD24(hi) CD38(hi) B cells from elders as evidenced by reduced phosphorylation (Y705) and activation of STAT3. However, there was no age-associated change in expression of costimulatory molecules CD80 and CD86 on CD19(+) CD24(hi) CD38(hi) cells, suggesting IL10-dependent immune suppression is impaired, but contact-dependent suppressive capacity is intact with age. Finally, we found a negative correlation between CD19(+) CD24(hi) CD38(hi) B-cell IL10 production and autoantibody (Rheumatoid factor) levels in older adults. We therefore propose that an age-related decline in CD19(+) CD24(hi) CD38(hi) B cell number and function may contribute towards the increased autoimmunity and reduced immune tolerance seen with aging.

  4. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke.

    PubMed

    Suenaga, Jun; Hu, Xiaoming; Pu, Hongjian; Shi, Yejie; Hassan, Sulaiman Habib; Xu, Mingyue; Leak, Rehana K; Stetler, R Anne; Gao, Yanqin; Chen, Jun

    2015-10-01

    Most of the successes in experimental models of stroke have not translated well to the clinic. One potential reason for this failure is that stroke mainly afflicts the elderly and the majority of experimental stroke studies rely on data gathered from young adult animals. Therefore, in the present study we established a reliable, reproducible model of stroke with low mortality in aged (18month) male mice and contrasted their pathophysiological changes with those in young (2month) animals. To this end, mice were subjected to permanent tandem occlusion of the left distal middle cerebral artery (dMCAO) with ipsilateral common carotid artery occlusion (CCAO). Cerebral blood flow (CBF) was evaluated repeatedly during and after stroke. Reduction of CBF was more dramatic and sustained in aged mice. Aged mice exhibited more severe long-term sensorimotor deficits, as manifested by deterioration of performance in the Rotarod and hanging wire tests up to 35d after stroke. Aged mice also exhibited significantly worse long-term cognitive deficits after stroke, as measured by the Morris water maze test. Consistent with these behavioral observations, brain infarct size and neuronal tissue loss after dMCAO were significantly larger in aged mice at 2d and 14d, respectively. The young versus aged difference in neuronal tissue loss, however, did not persist until 35d after dMCAO. In contrast to the transient difference in neuronal tissue loss, we found significant and long lasting deterioration of white matter in aged animals, as revealed by the loss of myelin basic protein (MBP) staining in the striatum at 35d after dMCAO. We further examined the expression of M1 (CD16/CD32) and M2 (CD206) markers in Iba-1(+) microglia by double immunofluorescent staining. In both young and aged mice, the expression of M2 markers peaked around 7d after stroke whereas the expression of M1 markers peaked around 14d after stroke, suggesting a progressive M2-to-M1 phenotype shift in both groups. However

  5. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke

    PubMed Central

    Suenaga, Jun; Hu, Xiaoming; Pu, Hongjian; Shi, Yejie; Hassan, Sulaiman Habib; Xu, Mingyue; Leak, Rehana K.; Stetler, R. Anne; Gao, Yanqin; Chen, Jun

    2015-01-01

    Most of the successes in experimental models of stroke have not translated well to the clinic. One potential reason for this failure is that stroke mainly afflicts the elderly and the majority of experimental stroke studies rely on data gathered from young adult animals. Therefore, in the present study we established a reliable, reproducible model of stroke with low mortality in aged (18 month) male mice and contrasted their pathophysiological changes with those in young (2 month) animals. To this end, mice were subjected to permanent tandem occlusion of the left distal middle cerebral artery (dMCAO) with ipsilateral common carotid artery occlusion (CCAO). Cerebral blood flow (CBF) was evaluated repeatedly during and after stroke. Reduction of CBF was more dramatic and sustained in aged mice. Aged mice exhibited more severe long-term sensorimotor deficits, as manifested by deterioration of performance in the Rotarod and hanging wire tests up to 35d after stroke. Aged mice also exhibited significantly worse long-term cognitive deficits after stroke, as measured by the Morris water maze test. Consistent with these behavioral observations, brain infarct size and neuronal tissue loss after dMCAO were significantly larger in aged mice at 2d and 14d, respectively. The young versus aged difference in neuronal tissue loss, however, did not persist until 35d after dMCAO. In contrast to the transient difference in neuronal tissue loss, we found significant and long lasting deterioration of white matter in aged animals, as revealed by the loss of myelin basic protein (MBP) staining in the striatum at 35d after dMCAO. We further examined the expression of M1 (CD16/CD32) and M2 (CD206) markers in Iba-1+ microglia by double immunofluorescent staining. In both young and aged mice, the expression of M2 markers peaked around 7d after stroke whereas the expression of M1 markers peaked around 14d after stroke, suggesting a progressive M2-to-M1 phenotype shift in both groups. However

  6. ESTROGENS AND AGE-RELATED MEMORY DECLINE IN RODENTS: WHAT HAVE WE LEARNED AND WHERE DO WE GO FROM HERE?

    PubMed Central

    Frick, Karyn M.

    2009-01-01

    The question of whether ovarian hormone therapy can prevent or reduce age-related memory decline in menopausal women has been the subject of much recent debate. Although numerous studies have demonstrated a beneficial effect of estrogen and/or progestin therapy for certain types of memory in menopausal women, recent clinical trials suggest that such therapy actually increases the risk of cognitive decline and dementia. Because rodent models have been frequently used to examine the effects of age and/or ovarian hormone deficiency on mnemonic function, rodent models of age-related hormone and memory decline may be useful in helping to resolve this issue. This review will focus on evidence suggesting that estradiol modulates memory, particularly hippocampal-dependent memory, in young and aging female rats and mice. Various factors affecting the mnemonic response to estradiol in aging females will be highlighted to illustrate the complications inherent to studies of estrogen therapy in aging females. Avenues for future development of estradiol-based therapies will also be discussed, and it is argued that an approach to drug development based on identifying the molecular mechanisms underlying estrogenic modulation of memory may lead to promising future treatments for reducing age-related mnemonic decline. PMID:18835561

  7. Social Skills Deficits in Learning Disabilities: The Psychiatric Comorbidity Hypothesis.

    ERIC Educational Resources Information Center

    San Miguel, Stephanie K.; And Others

    1996-01-01

    This article explores the hypothesis that social skill deficits among children with learning disabilities are associated with high rates of undetected psychiatric diagnoses. The maladaptive social skills patterns of children with specific subtypes of learning disabilities appear to mimic the symptom patterns of children with attention deficit…

  8. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    PubMed

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits.

  9. Age-related decline in Kv3.1b expression in the mouse auditory brainstem correlates with functional deficits in the medial olivocochlear efferent system.

    PubMed

    Zettel, Martha L; Zhu, Xiaoxia; O'Neill, William E; Frisina, Robert D

    2007-06-01

    Kv3.1b channel protein is widely distributed in the mammalian auditory brainstem, but studies have focused mainly on regions critical for temporal processing, including the medial nucleus of the trapezoid body (MNTB) and anteroventral cochlear nucleus (AVCN). Because temporal processing declines with age, this study was undertaken to determine if the expression of Kv3.1b likewise declines, and if changes are specific to these nuclei. Immunocytochemistry using an anti-Kv3.1b antibody was performed, and the relative optical density of cells and neuropil was determined from CBA/CaJ mice of four age groups. Declines in expression in AVCN, MNTB, and lateral superior olive (35, 26, and 23%) were found, but changes were limited to neuropil. Interestingly, cellular optical density declines were found in superior paraolivary nucleus, ventral nucleus of the trapezoid body, and lateral nucleus of the trapezoid body (24, 29, and 26%), which comprise the medial olivocochlear (MOC) feedback system. All declines occurred by middle age (15 months old). No age-related changes were found in the remaining regions of cochlear nucleus or in the inferior colliculus. Contralateral suppression of distortion-product otoacoustic emission amplitudes of age-matched littermates also declined by middle age, suggesting a correlation between Kv3.1 expression and MOC function. In search of more direct evidence for such a correlation, Kv3.1b knockout mice were examined. Knockouts show poor MOC function as compared to +/+ and +/- genotypes. Thus, Kv3.1b expression declines in MOC neurons by middle age, and these changes appear to correlate with functional declines in efferent activity in both middle-aged CBA mice and Kv3.1b knockout mice.

  10. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    PubMed

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.

  11. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity

    PubMed Central

    Foster, Thomas C.

    2012-01-01

    In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca2+) regulation and Ca2+-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca2+ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca2+ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging. PMID:22307057

  12. Age-Related Wayfinding Differences in Real Large-Scale Environments: Detrimental Motor Control Effects during Spatial Learning Are Mediated by Executive Decline?

    PubMed Central

    Taillade, Mathieu; Sauzéon, Hélène; Arvind Pala, Prashant; Déjos, Marie; Larrue, Florian; Gross, Christian; N’Kaoua, Bernard

    2013-01-01

    The aim of this study was to evaluate motor control activity (active vs. passive condition) with regards to wayfinding and spatial learning difficulties in large-scale spaces for older adults. We compared virtual reality (VR)-based wayfinding and spatial memory (survey and route knowledge) performances between 30 younger and 30 older adults. A significant effect of age was obtained on the wayfinding performances but not on the spatial memory performances. Specifically, the active condition deteriorated the survey measure in all of the participants and increased the age-related differences in the wayfinding performances. Importantly, the age-related differences in the wayfinding performances, after an active condition, were further mediated by the executive measures. All of the results relative to a detrimental effect of motor activity are discussed in terms of a dual task effect as well as executive decline associated with aging. PMID:23843992

  13. The Best Time to Acquire New Skills: Age-Related Differences in Implicit Sequence Learning across the Human Lifespan

    ERIC Educational Resources Information Center

    Janacsek, Karolina; Fiser, Jozsef; Nemeth, Dezso

    2012-01-01

    Implicit skill learning underlies obtaining not only motor, but also cognitive and social skills through the life of an individual. Yet, the ontogenetic changes in humans' implicit learning abilities have not yet been characterized, and, thus, their role in acquiring new knowledge efficiently during development is unknown. We investigated such…

  14. Diazepam and learning: assessment of acquisition deficits.

    PubMed

    Hinrichs, J V; Mewaldt, S P; Ghoneim, M M; Berie, J L

    1982-07-01

    Subjects treated with diazepam (0.3 mg/kg) showed significant reductions in performance on multiple-trial free recall, paired-associate learning, and serial learning tasks compared to placebo control subjects. The free recall task showed the largest drug effect with diazepam subjects failing in six acquisition trials to attain the level of performance achieved by placebo subjects on the first trial. Serial position curves in the serial learning task were changed by the diazepam treatment from their usual skewed form to symmetrical functions. Results indicate that diazepam exerts its greatest memory influence on the acquisition of new information.

  15. Relationship between Learning Problems and Attention Deficit in Childhood

    ERIC Educational Resources Information Center

    Ponde, Milena Pereira; Cruz-Freire, Antonio Carlos; Silveira, Andre Almeida

    2012-01-01

    Objective: To assess the impact of attention deficit on learning problems in a sample of schoolchildren in the city of Salvador, Bahia, Brazil. Method: All students enrolled in selected elementary schools were included in this study, making a total of 774 children. Each child was assessed by his or her teacher using a standardized scale. "The…

  16. The Psychoeducational Link between Attention Deficit Disorder and Learning Disability.

    ERIC Educational Resources Information Center

    Cherkes-Julkowski, Miriam; And Others

    This paper examines cognitive processing problems associated with attention deficit disorders (ADD) and their relationship to learning disabilities in elementary and secondary students. Children with ADD, medicated (N=20) and unmedicated (N=21), were compared on the Raven test of Progressive Matrices and other tests with children who had been…

  17. Spatial Learning Deficits in Adult Children of Alcoholic Parents.

    ERIC Educational Resources Information Center

    Schandler, Steven L.; And Others

    1991-01-01

    Investigated whether visuospatial deficits displayed by chronic alcoholics are present in persons at risk for alcoholism. Compared 17 social drinkers who were children of alcoholics and 17 who had no family alcoholism history. Visuospatial learning of children of alcoholics was significantly poorer than that of subjects with no family alcoholism…

  18. Age-related behavioural and neurofunctional patterns of second language word learning: different ways of being successful.

    PubMed

    Marcotte, Karine; Ansaldo, Ana Inés

    2014-08-01

    This study aimed at investigating the neural basis of word learning as a function of age and word type. Ten young and ten elderly French-speaking participants were trained by means of a computerized Spanish word program. Both age groups reached a similar naming accuracy, but the elderly required significantly more time. Despite equivalent performance, distinct neural networks characterized the ceiling. While the young cohort showed subcortical activations, the elderly recruited the left inferior frontal gyrus, the left lingual gyrus and the precuneus. The learning trajectory of the elderly, the neuroimaging findings together with their performance on the Stroop suggest that the young adults relied on control processing areas whereas the elderly relied on episodic memory circuits, which may reflect resorting to better preserved cognitive resources. Finally, the recruitment of visual processing areas by the elderly may reflect the impact of the language training method used.

  19. Age-Related Benefits of Digital Noise Reduction for Short-Term Word Learning in Children with Hearing Loss

    ERIC Educational Resources Information Center

    Pittman, Andrea

    2011-01-01

    Purpose: To determine the rate of word learning for children with hearing loss (HL) in quiet and in noise compared to normal-hearing (NH) peers. The effects of digital noise reduction (DNR) were examined for children with HL. Method: Forty-one children with NH and 26 children with HL were grouped by age (8-9 years and 11-12 years). The children…

  20. Reinforcement learning deficits in people with schizophrenia persist after extended trials.

    PubMed

    Cicero, David C; Martin, Elizabeth A; Becker, Theresa M; Kerns, John G

    2014-12-30

    Previous research suggests that people with schizophrenia have difficulty learning from positive feedback and when learning needs to occur rapidly. However, they seem to have relatively intact learning from negative feedback when learning occurs gradually. Participants are typically given a limited amount of acquisition trials to learn the reward contingencies and then tested about what they learned. The current study examined whether participants with schizophrenia continue to display these deficits when given extra time to learn the contingences. Participants with schizophrenia and matched healthy controls completed the Probabilistic Selection Task, which measures positive and negative feedback learning separately. Participants with schizophrenia showed a deficit in learning from both positive feedback and negative feedback. These reward learning deficits persisted even if people with schizophrenia are given extra time (up to 10 blocks of 60 trials) to learn the reward contingencies. These results suggest that the observed deficits cannot be attributed solely to slower learning and instead reflect a specific deficit in reinforcement learning.

  1. [Management of learning disorders and attention deficit in children

    PubMed

    Araújo, Alexandra Prufer de Queiroz C

    2002-07-01

    OBJECTIVE: This review aims at providing pediatricians with an update on the main causes involved in low school achievement. A more detailed approach is given for the management and treatment of attention deficit hyperactive disorder. SOURCES: Data was obtained by a systematic review of published literature in Medline, through a search on Pubmed in the last five years. The key words used were learning disability, attention deficit, dyslexia (reading disorder) and dyscalculia (mathematical disorder). Studies focusing evaluation and management were retrieved. Governmental population educational data on literacy was also included. SUMMARY OF THE FINDINGS: Statistical medical Brazilian data on the subject is scarce. Hearing, visual and mental deficiency, together with attention deficit hyperactive disorder and specific learning disorders should be part of the differential diagnosis of children with poor school achievement. Development should be carefully followed until school entrance, particularly in children at risk. CONCLUSIONS: Therapy with stimulants, anti-depressive drugs or cloninidine with multimodal treatment improves school achievement in children with attention deficit hyperactive disorder. PMID:14676873

  2. Motor Skill Learning, Retention, and Control Deficits in Parkinson's Disease

    PubMed Central

    Pendt, Lisa Katharina; Reuter, Iris; Müller, Hermann

    2011-01-01

    Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance. PMID:21760898

  3. Career Development Needs among College and University Students with Learning Disabilities and Attention Deficit Disorder/Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Hennessey, Mary L.; Rumrill, Phillip D., Jr.; Roessler, Richard T.; Cook, Bryan G.

    2006-01-01

    The purpose of this study was to (a) examine the employment and career development concerns of postsecondary students with learning disabilities and Attention Deficit Disorder (ADD) or Attention Deficit/Hyperactivity Disorder (AD/HD) and (b) develop strategies for improving their post-graduation employment outcomes. Employing an established…

  4. Do children with developmental dyslexia have an implicit learning deficit?

    PubMed Central

    Vicari, S; Finzi, A; Menghini, D; Marotta, L; Baldi, S; Petrosini, L

    2005-01-01

    Objective: The purpose of this study was to investigate the effects of specific types of tasks on the efficiency of implicit procedural learning in the presence of developmental dyslexia (DD). Methods: Sixteen children with DD (mean (SD) age 11.6 (1.4) years) and 16 matched normal reader controls (mean age 11.4 (1.9) years) were administered two tests (the Serial Reaction Time test and the Mirror Drawing test) in which implicit knowledge was gradually acquired across multiple trials. Although both tests analyse implicit learning abilities, they tap different competencies. The Serial Reaction Time test requires the development of sequential learning and little (if any) procedural learning, whereas the Mirror Drawing test involves fast and repetitive processing of visuospatial stimuli but no acquisition of sequences. Results: The children with DD were impaired on both implicit learning tasks, suggesting that the learning deficit observed in dyslexia does not depend on the material to be learned (with or without motor sequence of response action) but on the implicit nature of the learning that characterises the tasks. Conclusion: Individuals with DD have impaired implicit procedural learning. PMID:16170083

  5. Nicotine attenuates spatial learning deficits induced by sodium metavanadate.

    PubMed

    Azami, Kian; Tabrizian, Kaveh; Hosseini, Rohollah; Seyedabadi, Mohammad; Shariatpanahi, Marjan; Noorbakhsh, Farshid; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Sharifzadeh, Mohammad

    2012-01-01

    Learning can be severely impaired as a consequence of exposure to environmental pollutants. Vanadium (V), a metalloid which is widely distributed in the environment, has been shown to exert toxic effects on a variety of biological systems including the nervous system. However, studies exploring the impact of vanadium on learning are limited. Herein, we investigated the effects of oral administration of sodium metavanadate (SMV) (15, 20 and 25mg/kg/day for 2weeks) on spatial learning using Morris water maze (MWM). Our results showed that pre-training administration of sodium metavanadate impaired learning in Morris water maze. Analyzing the role of cholinergic system in SMV-induced learning deficit, we found that bilateral intra-hippocampal infusion of nicotine (1μg/side) during training could significantly diminish the SMV-induced learning impairment. We next examined the expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) as cholinergic markers in CA1 region of hippocampus as well as in medial septal area (MSA). Our molecular analyses showed that vanadium administration decreased ChAT and VAChT protein expression, an effect that was attenuated by nicotine. Altogether, our results confirmed the toxic effects of SMV on spatial acquisition, while also pointing to the neuroprotective effects of nicotine on SMV-induced impairments in learning capabilities. These findings might open a new avenue for the prevention of vanadium adverse effects on spatial learning and memory through activation of cholinergic signaling pathway.

  6. Effects of glucocorticoids on age-related impairments of hippocampal structure and function in mice.

    PubMed

    He, Wen-Bin; Zhang, Jun-Long; Hu, Jin-Feng; Zhang, Yun; Machida, Takeo; Chen, Nai-Hong

    2008-02-01

    Effects of glucocorticoids (GCs) on maze-learning performances and hippocampal morphology were observed in male C57BL/6Cr mice. Correlations between aging, GCs and maze-learning performances were also studied. (2) Eight-arm radial maze was used in maze-learning tests. Learning performance was assessed by the parameters of time of getting all the bait, number of reentry errors into the already-entered arm with bait, and number of missed entries into an unbaited arm. Brain sections, 8 mum thick, were Nissl-stained with cresyl violet or stained immunocytochemically with antibodies against neurofilaments. (3) With aging, normal pyramidal cells decreased gradually in amount, and degenerating cells increased since the age of 18 months, accompanied with the maze-learning deficit. Here we have suggested that these changes were associated with the age-related deficits in adaptation tolerance of neurons to stress. In addition, the age-related deficits in plasticity of hippocampal neurons to GCs in young mice (3 months of age) resulted in an increase in plasma corticosterone (CORT) concentrations, degeneration of hippocampal pyramidal cells, as well as maze-learning deficits. (4) In conclusion, our data indicated that CORT caused the degeneration of hippocampal pyramidal cells and the impairment of memory.

  7. Neurodevelopmental Characteristics of Children with Learning Impairments Classified According to the Double-Deficit Hypothesis

    ERIC Educational Resources Information Center

    Waber, Deborah P.; Forbes, Peter W.; Wolff, Peter H.; Weiler, Michael D.

    2004-01-01

    The double-deficit model has been examined primarily in relation to reading. We investigated whether children classified according to the double-deficit model would exhibit differences in other neuropsychological domains. Children referred for learning problems (N = 188), ages 7 to 11, were classified by double-deficit subtype. Only three of the…

  8. Deficits of learning and memory in Hemojuvelin knockout mice.

    PubMed

    Li, Jinglong; Zhang, Peng; Liu, Hongju; Ren, Wei; Song, Jinjing; Rao, Elizabeth; Takahashi, Eiki; Zhou, Ying; Li, Weidong; Chen, Xiaoping

    2015-10-01

    Iron is involved in various physiological processes of the human body to maintain normal functions. Abnormal iron accumulation in brain has been reported as a pathogenesis of several neurodegenerative disorders and cognitive impairments. Hemojuvelin (HVJ) is a membrane-bound and soluble protein in mammals that is responsible for the iron overload condition known as juvenile hemochromatosis. Although iron accumulation in brain has been related to neurodegenerative diseases, it remains unknown the effect of mutation of HVJ gene on cognitive performance. In our studies, HJV(-/-) mice showed deficits in novel object recognition and Morris water maze tests. Furthermore, the expression ration of apoptotic marker Bax and anti-apoptotic marker Bcl-2 in the hippocampus and prefrontal cortex showed higher levels in HJV(-/-) mice. Our results suggested that deletion of HJV gene could increase apoptosis in brain which might contribute to learning and memory deficits in mutant mice. These results indicated that HJV(-/-) mice would be a useful model to study cognitive impairment induced by iron overload in brain.

  9. Scaffolding Instruction Where It Matters: Teachers' Shift from Deficit Approach to Developmental Model of Learning

    ERIC Educational Resources Information Center

    Zakaria, Zuraimi; Care, Esther; Griffin, Patrick

    2016-01-01

    This paper revolves on the premise that teachers' adoption of developmental model is more likely to improve student learning and performance as compared to the utilization of deficit approach. Deficit or clinical approach to learning has the tendency to focus on things that students cannot do, thus followed by teacher prescriptions of a…

  10. Controversial approaches to treating learning disabilities and attention deficit disorder.

    PubMed

    Silver, L B

    1986-10-01

    It is estimated that between 3% and 7% of children and adolescents in this country--up to 4 million--are learning disabled. Of this group, about 20% also have attention deficit disorder. Many professionals in multiple disciplines have proposed treatment approaches. When research has been done to support the approach, the reports and data may be published in journals not normally read by the practicing physician. When research data are not available, the information may be in a popular book, newspapers, or lay magazines or on television. Thus, parents may know of ideas and suggestions before the professional in clinical practice. These acceptable and controversial approaches to treatment are reviewed. It is understandable that a parent would seek out improved ways of helping his or her child. I reviewed the significant literature in an effort to assist the practicing physician in providing appropriate parental guidance and clinical interventions.

  11. Controversial approaches to treating learning disabilities and attention deficit disorder.

    PubMed

    Silver, L B

    1986-10-01

    It is estimated that between 3% and 7% of children and adolescents in this country--up to 4 million--are learning disabled. Of this group, about 20% also have attention deficit disorder. Many professionals in multiple disciplines have proposed treatment approaches. When research has been done to support the approach, the reports and data may be published in journals not normally read by the practicing physician. When research data are not available, the information may be in a popular book, newspapers, or lay magazines or on television. Thus, parents may know of ideas and suggestions before the professional in clinical practice. These acceptable and controversial approaches to treatment are reviewed. It is understandable that a parent would seek out improved ways of helping his or her child. I reviewed the significant literature in an effort to assist the practicing physician in providing appropriate parental guidance and clinical interventions. PMID:2875647

  12. Stability of computational deficits in math learning disability from second through fifth grades.

    PubMed

    Chong, Suet Ling; Siegel, Linda S

    2008-01-01

    This study utilized growth modeling to investigate the stability of two computational deficits that are strongly associated with math learning disability (MLD)-procedural deficits and fact fluency deficits. Math "deficit" was defined in two ways-having scores in the lower 10th percentile (MLD) and between the 11th and 25th percentiles (LA, low achieving). The longitudinal sample was composed of 214 children. Between the second and fifth grades, children who started at grade 2 with procedural deficits showed more rapid growth in procedural skills than typically achieving (TA) children. The procedural deficits group was able to narrow the initial gap in procedural skills and catch up with their normal peers. In contrast, children who started at grade 2 with fact fluency deficits showed the same growth in fact fluency skills as TA children. The fact fluency deficits group maintained their initial gap and was not able to catch up. This pattern of results held for both the MLD and LA criteria. Fact fluency deficits are more stable in the elementary years. Further results showed that fact fluency deficits may be associated with more pervasive and persistent cognitive deficits than procedural deficits. The fact fluency group showed persistent cognitive deficits in working memory, processing speed, and phonological processing, from grades 2-5. The group with procedural deficits at grade 2 showed persistent deficits in working memory and processing speed, but closed the gap in phonological skills. In addition, only the MLD procedural deficits group showed these cognitive deficits; the LA group was no different than the typical achievers. The present results support the hypothesis that fact fluency deficits and procedural deficits are dissociable and may represent distinct subgroups of MLD. PMID:18473201

  13. Reinforcement learning deficits in people with schizophrenia persist after extended trials.

    PubMed

    Cicero, David C; Martin, Elizabeth A; Becker, Theresa M; Kerns, John G

    2014-12-30

    Previous research suggests that people with schizophrenia have difficulty learning from positive feedback and when learning needs to occur rapidly. However, they seem to have relatively intact learning from negative feedback when learning occurs gradually. Participants are typically given a limited amount of acquisition trials to learn the reward contingencies and then tested about what they learned. The current study examined whether participants with schizophrenia continue to display these deficits when given extra time to learn the contingences. Participants with schizophrenia and matched healthy controls completed the Probabilistic Selection Task, which measures positive and negative feedback learning separately. Participants with schizophrenia showed a deficit in learning from both positive feedback and negative feedback. These reward learning deficits persisted even if people with schizophrenia are given extra time (up to 10 blocks of 60 trials) to learn the reward contingencies. These results suggest that the observed deficits cannot be attributed solely to slower learning and instead reflect a specific deficit in reinforcement learning. PMID:25172610

  14. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation.

    PubMed

    Shukitt-Hale, B; Casadesus, G; McEwen, J J; Rabin, B M; Joseph, J A

    2000-07-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  15. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; McEwen, J. J.; Rabin, B. M.; Joseph, J. A.

    2000-01-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  16. Auditory processing deficits among language-learning disordered children and adults

    NASA Astrophysics Data System (ADS)

    Wayland, Ratree; Lombardino, Linda

    2003-10-01

    It has been estimated that approximately 5%-9% of school-aged children in the United States are diagnosed with some kind of learning disorders. Moreover, previous research has established that many of these children exhibited perceptual deficits in response to auditory stimuli, suggesting that an auditory perceptual deficit may underlie their learning disabilities. The goal of this research is to examine the ability to auditorily process speech and nonspeech stimuli among language-learning disabled (LLD) children and adults. The two questions that will be addressed in this study are: (a) Are there subtypes of LLD children/adults based on their auditory processing deficit, and (b) Is there any relationship between types of auditory processing deficits and types of language deficits as measured by a battery of psychoeducational tests.

  17. Allocentric spatial learning and memory deficits in Down syndrome.

    PubMed

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  18. Allocentric spatial learning and memory deficits in Down syndrome

    PubMed Central

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  19. The Elimination of Learned Helplessness Deficits as a Function of Induced Self-Esteem.

    ERIC Educational Resources Information Center

    Orbach, Israel; Hadas, Ziva

    1982-01-01

    Tested efficiency of induced self-esteem in reducing various deficits caused by learned helplessness. Results indicated subjects who received induced self-esteem treatment showed significantly more deficit reversal. Results are discussed in relation to the usefulness of induced self-esteem as a form of treatment for helplessness depression.…

  20. Age-Related Declines in General Cognitive Abilities of Balb/C Mice and General Activity Are Associated with Disparities in Working Memory, Body Weight, and General Activity

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Grossman, Henya; Light, Kenneth; Townsend, David; Kolata, Stefan

    2008-01-01

    A defining characteristic of age-related cognitive decline is a deficit in general cognitive performance. Here we use a testing and analysis regimen that allows us to characterize the general learning abilities of young (3-5 mo old) and aged (19-21 mo old) male and female Balb/C mice. Animals' performance was assessed on a battery of seven diverse…

  1. Immunohistochemical and neurochemical correlates of learning deficits in aged rats.

    PubMed

    Stemmelin, J; Lazarus, C; Cassel, S; Kelche, C; Cassel, J C

    2000-01-01

    This study examined whether cholinergic and monoaminergic dysfunctions in the brain could be related to spatial learning capabilities in 26-month-old, as compared to three-month-old, Long-Evans female rats. Performances were evaluated in the water maze task and used to constitute subgroups with a cluster analysis statistical procedure. In the first experiment (histological approach), the first cluster contained young rats and aged unimpaired rats, the second one aged rats with moderate impairment and the third one aged rats with severe impairment. Aged rats showed a reduced number of choline acetyltransferase- and p75(NTR)-positive neurons in the nucleus basalis magnocellularis, and choline acetyltransferase-positive neurons in the striatum. In the second experiment (neurochemical approach), the three clusters comprised young rats, aged rats with moderate impairment and aged rats with severe impairment. Alterations related to aging consisted of reduced concentration of acetylcholine, norepinephrine and serotonin in the striatum, serotonin in the occipital cortex, dopamine and norepinephrine in the dorsal hippocampus, and norepinephrine in the ventral hippocampus. In the first experiment, there were significant correlations between water maze performance and the number of; (i) choline acetyltransferase- and p75(NTR)-positive neurons in the nucleus basalis magnocellularis; (ii) choline acetyltransferase-positive neurons in the striatum and; (iii) p75(NTR)-positive neurons in the medial septum. In the second experiment, water maze performance was correlated with the concentration of; (i) acetylcholine and serotonin in the striatum; (ii) serotonin and norepinephrine in the dorsal hippocampus; (iii) norepinephrine in the frontoparietal cortex and; (iv) with other functional markers such as the 5-hydroxyindoleacetic acid/serotonin ratio in the striatum, 3,4-dihydroxyphenylacetic acid/dopamine ratio in the dorsal hippocampus, 5-hydroxyindoleacetic acid/serotonin and

  2. Sequence-Specific Procedural Learning Deficits in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Hsu, Hsinjen Julie; Bishop, Dorothy V. M.

    2014-01-01

    This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger…

  3. Are Working Memory Deficits in Readers with Learning Disabilities Hard To Change?

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    2000-01-01

    A study compared 84 readers with learning disabilities, chronologically age-matched and reading level-matched, for the children's working memory performance for phonological, visual-spatial, and semantic information under initial, gain, and maintenance conditions. The working memory deficits of readers with learning disabilities were hard to…

  4. The Readiness of Adults with Attention Deficit Hyperactivity Disorder for Self-Directed Learning

    ERIC Educational Resources Information Center

    Wright, Melissa Sue

    2011-01-01

    This study investigated the readiness for self-directed learning of adults with Attention Deficit Hyperactivity Disorder (ADHD), as well as their overall educational experiences. Using Guglielmino's Self-Directed Learning Readiness Scale for Adults (SDLRS-A), the researcher investigated whether the following factors were significantly related to…

  5. Glutamatergic treatment strategies for age-related memory disorders.

    PubMed

    Müller, W E; Scheuer, K; Stoll, S

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7997073

  6. Dyslexic children show deficits in implicit sequence learning, but not in explicit sequence learning or contextual cueing.

    PubMed

    Jiménez-Fernández, Gracia; Vaquero, Joaquín M M; Jiménez, Luis; Defior, Sylvia

    2011-06-01

    Dyslexia is a specific learning disability characterized by difficulties with accurate and/or fluent word recognition and by poor spelling abilities. The absence of other high level cognitive deficits in the dyslexic population has led some authors to propose that non-strategical processes like implicit learning could be impaired in this population. Most studies have addressed this issue by using sequence learning tasks, but so far the results have not been conclusive. We test this hypothesis by comparing the performance of dyslexic children and good readers in both implicit and explicit versions of the sequence learning task, as well as in another implicit learning task not involving sequential information. The results showed that dyslexic children failed to learn the sequence when they were not informed about its presence (implicit condition). In contrast, they learned without significant differences in relation to the good readers group when they were encouraged to discover the sequence and to use it in order to improve their performance (explicit condition). Moreover, we observed that this implicit learning deficit was not extended to other forms of non-sequential, implicit learning such as contextual cueing. In this case, both groups showed similar implicit learning about the information provided by the visual context. These results help to clarify previous contradictory data, and they are discussed in relation to how the implicit sequence learning deficit could contribute to the understanding of dyslexia. PMID:21082295

  7. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease

    PubMed Central

    Crosson, Bruce; McGregor, Keith M.; Nocera, Joe R.; Drucker, Jonathan H.; Tran, Stella M.; Butler, Andrew J.

    2015-01-01

    The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered. PMID:26074807

  8. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision.

  9. Implicit Learning Deficits among Adults with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Kahta, Shani; Schiff, Rachel

    2016-01-01

    The aim of the present study was to investigate implicit learning processes among adults with developmental dyslexia (DD) using a visual linguistic artificial grammar learning (AGL) task. Specifically, it was designed to explore whether the intact learning reported in previous studies would also occur under conditions including minimal training…

  10. Working memory deficits in children with specific learning disorders.

    PubMed

    Schuchardt, Kirsten; Maehler, Claudia; Hasselhorn, Marcus

    2008-01-01

    This article examines working memory functioning in children with specific developmental disorders of scholastic skills as defined by ICD-10. Ninety-seven second to fourth graders with a minimum IQ of 80 are compared using a 2 x 2 factorial (dyscalculia vs. no dyscalculia; dyslexia vs. no dyslexia) design. An extensive test battery assesses the three subcomponents of working memory described by Baddeley (1986): phonological loop, visual-spatial sketchpad, and central executive. Children with dyscalculia show deficits in visual-spatial memory; children with dyslexia show deficits in phonological and central executive functioning. When controlling for the influence of the phonological loop on the performance of the central executive, however, the effect is no longer significant. Although children with both reading and arithmetic disorders are consistently outperformed by all other groups, there is no significant interaction between the factors dyscalculia and dyslexia. PMID:18625783

  11. A mouse model for the learning and memory deficits associated with neurofibromatosis type I.

    PubMed

    Silva, A J; Frankland, P W; Marowitz, Z; Friedman, E; Laszlo, G S; Cioffi, D; Jacks, T; Bourtchuladze, R; Lazlo, G

    1997-03-01

    Neurofibromatosis type I (NF1) is one of the most commonly inherited neurological disorders in humans, affecting approximately one in 4,000 individuals. NF1 results in a complex cluster of developmental and tumour syndromes that include benign neurofibromas, hyperpigmentation of melanocytes and hamartomas of the iris. Some NF1 patients may also show neurologic lesions, such as optic pathway gliomas, dural ectasia and aqueduct stenosis. Importantly, learning disabilities occur in 30% to 45% of patients with NF1, even in the absence of any apparent neural pathology. The learning disabilities may include a depression in mean IQ scores, visuoperceptual problems and impairments in spatial cognitive abilities. Spatial learning has been assessed with a variety of cognitive tasks and the most consistent spatial learning deficits have been observed with the Judgement of Line Orientation test. It is important to note that some of these deficits could be secondary to developmental abnormalities and other neurological problems, such as poor motor coordination and attentional deficits. Previous studies have suggested a role for neurofibromin in brain function. First, the expression of the Nf1 gene is largely restricted to neuronal tissues in the adult. Second, this GTPase activating protein may act as a negative regulator of neurotrophin-mediated signalling. Third, immunohistochemical studies suggest that activation of astrocytes may be common in the brain of NF1 patients. Here, we show that the Nf1+/- mutation also affects learning and memory in mice. As in humans, the learning and memory deficits of the Nf1+/- mice are restricted to specific types of learning, they are not fully penetrant, they can be compensated for with extended training, and they do not involve deficits in simple associative learning.

  12. Virus infection causes specific learning deficits in honeybee foragers

    PubMed Central

    Iqbal, Javaid; Mueller, Uli

    2007-01-01

    In both mammals and invertebrates, virus infections can impair a broad spectrum of physiological functions including learning and memory formation. In contrast to the knowledge on the conserved mechanisms underlying learning, the effects of virus infection on different aspects of learning are barely known. We use the honeybee (Apis mellifera), a well-established model system for studying learning, to investigate the impact of deformed wing virus (DWV) on learning. Injection of DWV into the haemolymph of forager leads to a RT-PCR detectable DWV signal after 3 days. The detailed behavioural analysis of DWV-infected honeybees shows an increased responsiveness to water and low sucrose concentrations, an impaired associative learning and memory formation, but intact non-associative learning like sensitization and habituation. This contradicts all present studies in non-infected bees, where increased sucrose responsiveness is linked to improved associative learning and to changes in non-associative learning. Thus, DWV seems to interfere with molecular mechanism of learning by yet unknown processes that may include viral effects on the immune system and on gene expression. PMID:17439851

  13. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  14. Low Calorie Diet Affects Aging-Related Factors

    MedlinePlus

    ... Issue Past Issues Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / Summer ... learn more about the effects of sustained low-calorie diets in humans on factors affecting aging. This ...

  15. Specific Deficit in Implicit Motor Sequence Learning following Spinal Cord Injury

    PubMed Central

    Bloch, Ayala; Tamir, Dror; Vakil, Eli; Zeilig, Gabi

    2016-01-01

    Background Physical and psychosocial rehabilitation following spinal cord injury (SCI) leans heavily on learning and practicing new skills. However, despite research relating motor sequence learning to spinal cord activity and clinical observations of impeded skill-learning after SCI, implicit procedural learning following spinal cord damage has not been examined. Objective To test the hypothesis that spinal cord injury (SCI) in the absence of concomitant brain injury is associated with a specific implicit motor sequence learning deficit that cannot be explained by depression or impairments in other cognitive measures. Methods Ten participants with SCI in T1-T11, unharmed upper limb motor and sensory functioning, and no concomitant brain injury were compared to ten matched control participants on measures derived from the serial reaction time (SRT) task, which was used to assess implicit motor sequence learning. Explicit generation of the SRT sequence, depression, and additional measures of learning, memory, and intelligence were included to explore the source and specificity of potential learning deficits. Results There was no between-group difference in baseline reaction time, indicating that potential differences between the learning curves of the two groups could not be attributed to an overall reduction in response speed in the SCI group. Unlike controls, the SCI group showed no decline in reaction time over the first six blocks of the SRT task and no advantage for the initially presented sequence over the novel interference sequence. Meanwhile, no group differences were found in explicit learning, depression, or any additional cognitive measures. Conclusions The dissociation between impaired implicit learning and intact declarative memory represents novel empirical evidence of a specific implicit procedural learning deficit following SCI, with broad implications for rehabilitation and adjustment. PMID:27355834

  16. Contributions from specific and general factors to unique deficits: two cases of mathematics learning difficulties.

    PubMed

    Haase, Vitor G; Júlio-Costa, Annelise; Lopes-Silva, Júlia B; Starling-Alves, Isabella; Antunes, Andressa M; Pinheiro-Chagas, Pedro; Wood, Guilherme

    2014-01-01

    Mathematics learning difficulties are a highly comorbid and heterogeneous set of disorders linked to several dissociable mechanisms and endophenotypes. Two of these endophenotypes consist of primary deficits in number sense and verbal numerical representations. However, currently acknowledged endophenotypes are underspecified regarding the role of automatic vs. controlled information processing, and their description should be complemented. Two children with specific deficits in number sense and verbal numerical representations and normal or above-normal intelligence and preserved visuospatial cognition illustrate this point. Child H.V. exhibited deficits in number sense and fact retrieval. Child G.A. presented severe deficits in orally presented problems and transcoding tasks. A partial confirmation of the two endophenotypes that relate to the number sense and verbal processing was obtained, but a much more clear differentiation between the deficits presented by H.V. and G.A. can be reached by looking at differential impairments in modes of processing. H.V. is notably competent in the use of controlled processing but has problems with more automatic processes, such as nonsymbolic magnitude processing, speeded counting and fact retrieval. In contrast, G.A. can retrieve facts and process nonsymbolic magnitudes but exhibits severe impairment in recruiting executive functions and the concentration that is necessary to accomplish transcoding tasks and word problem solving. These results indicate that typical endophenotypes might be insufficient to describe accurately the deficits that are observed in children with mathematics learning abilities. However, by incorporating domain-specificity and modes of processing into the assessment of the endophenotypes, individual deficit profiles can be much more accurately described. This process calls for further specification of the endophenotypes in mathematics learning difficulties. PMID:24592243

  17. Contributions from specific and general factors to unique deficits: two cases of mathematics learning difficulties

    PubMed Central

    Haase, Vitor G.; Júlio-Costa, Annelise; Lopes-Silva, Júlia B.; Starling-Alves, Isabella; Antunes, Andressa M.; Pinheiro-Chagas, Pedro; Wood, Guilherme

    2014-01-01

    Mathematics learning difficulties are a highly comorbid and heterogeneous set of disorders linked to several dissociable mechanisms and endophenotypes. Two of these endophenotypes consist of primary deficits in number sense and verbal numerical representations. However, currently acknowledged endophenotypes are underspecified regarding the role of automatic vs. controlled information processing, and their description should be complemented. Two children with specific deficits in number sense and verbal numerical representations and normal or above-normal intelligence and preserved visuospatial cognition illustrate this point. Child H.V. exhibited deficits in number sense and fact retrieval. Child G.A. presented severe deficits in orally presented problems and transcoding tasks. A partial confirmation of the two endophenotypes that relate to the number sense and verbal processing was obtained, but a much more clear differentiation between the deficits presented by H.V. and G.A. can be reached by looking at differential impairments in modes of processing. H.V. is notably competent in the use of controlled processing but has problems with more automatic processes, such as nonsymbolic magnitude processing, speeded counting and fact retrieval. In contrast, G.A. can retrieve facts and process nonsymbolic magnitudes but exhibits severe impairment in recruiting executive functions and the concentration that is necessary to accomplish transcoding tasks and word problem solving. These results indicate that typical endophenotypes might be insufficient to describe accurately the deficits that are observed in children with mathematics learning abilities. However, by incorporating domain-specificity and modes of processing into the assessment of the endophenotypes, individual deficit profiles can be much more accurately described. This process calls for further specification of the endophenotypes in mathematics learning difficulties. PMID:24592243

  18. Deficits in Tactile Learning in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Arnett, Megan T.; Herman, David H.; McGee, Aaron W.

    2014-01-01

    The fragile X mental retardation 1 mutant mouse (Fmr1 KO) recapitulates several of the neurologic deficits associated with Fragile X syndrome (FXS). As tactile hypersensitivity is a hallmark of FXS, we examined the sensory representation of individual whiskers in somatosensory barrel cortex of Fmr1 KO and wild-type (WT) mice and compared their performance in a whisker-dependent learning paradigm, the gap cross assay. Fmr1 KO mice exhibited elevated responses to stimulation of individual whiskers as measured by optical imaging of intrinsic signals. In the gap cross task, initial performance of Fmr1 KO mice was indistinguishable from WT controls. However, while WT mice improved significantly with experience at all gap distances, Fmr1 KO mice displayed significant and specific deficits in improvement at longer distances which rely solely on tactile information from whiskers. Thus, Fmr1 KO mice possess altered cortical responses to sensory input that correlates with a deficit in tactile learning. PMID:25296296

  19. Grammar predicts procedural learning and consolidation deficits in children with Specific Language Impairment.

    PubMed

    Hedenius, Martina; Persson, Jonas; Tremblay, Antoine; Adi-Japha, Esther; Veríssimo, João; Dye, Cristina D; Alm, Per; Jennische, Margareta; Bruce Tomblin, J; Ullman, Michael T

    2011-01-01

    The Procedural Deficit Hypothesis (PDH) posits that Specific Language Impairment (SLI) can be largely explained by abnormalities of brain structures that subserve procedural memory. The PDH predicts impairments of procedural memory itself, and that such impairments underlie the grammatical deficits observed in the disorder. Previous studies have indeed reported procedural learning impairments in SLI, and have found that these are associated with grammatical difficulties. The present study extends this research by examining consolidation and longer-term procedural sequence learning in children with SLI. The Alternating Serial Reaction Time (ASRT) task was given to children with SLI and typically developing (TD) children in an initial learning session and an average of three days later to test for consolidation and longer-term learning. Although both groups showed evidence of initial sequence learning, only the TD children showed clear signs of consolidation, even though the two groups did not differ in longer-term learning. When the children were re-categorized on the basis of grammar deficits rather than broader language deficits, a clearer pattern emerged. Whereas both the grammar impaired and normal grammar groups showed evidence of initial sequence learning, only those with normal grammar showed consolidation and longer-term learning. Indeed, the grammar-impaired group appeared to lose any sequence knowledge gained during the initial testing session. These findings held even when controlling for vocabulary or a broad non-grammatical language measure, neither of which were associated with procedural memory. When grammar was examined as a continuous variable over all children, the same relationships between procedural memory and grammar, but not vocabulary or the broader language measure, were observed. Overall, the findings support and further specify the PDH. They suggest that consolidation and longer-term procedural learning are impaired in SLI, but that these

  20. Learning and Memory Impairments in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Andersen, Per N.; Egeland, Jens; Øie, Merete

    2013-01-01

    There are relatively few studies on learning and delayed memory with attention-deficit/hyperactivity disorder (ADHD). The objective of the present study was to examine acquisition, free delayed memory, and recognition skills in medication naive children and adolescents aged 8-16 years with ADHD combined subtype (36 participants) and inattentive…

  1. MATERNAL HYPOTHYROXENEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN OFFSPRING.

    EPA Science Inventory

    MATERNAL HYPOTHYROXINEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN RAT OFFSPRING. M.E. Gilbert1 and Li Sui2, Neurotoxicology Division, 1US EPA and 2National Research Council, Research Triangle Pk, NC 27711.
    While severe hypothyroidis...

  2. Fact Retrieval Deficits in Low Achieving Children and Children with Mathematical Learning Disability

    ERIC Educational Resources Information Center

    Geary, David C.; Hoard, Mary K.; Bailey, Drew H.

    2012-01-01

    Using 4 years of mathematics achievement scores, groups of typically achieving children (n = 101) and low achieving children with mild (LA-mild fact retrieval; n = 97) and severe (LA-severe fact retrieval; n = 18) fact retrieval deficits and mathematically learning disabled children (MLD; n = 15) were identified. Multilevel models contrasted…

  3. Verbal Deficit in Learning Disabilities: Electrophysiological Evidence for Visuospatial Processing Predominance.

    ERIC Educational Resources Information Center

    Naour, Paul; Martin, Daniel

    Twelve learning disabled (9-12 years old) boys were identified according to special class placement, WISC-R (Wechsler Intelligence Scale for Children-Revised) and performance measures. A group demonstrating a verbal WISC-R deficit was sex- and age-matched with a normal group. Electroencephalograms (EEGs) were collected while these individuals…

  4. Selecting a College for Students with Learning Disabilities or Attention Deficit Hyperactivity Disorder (ADHD). ERIC Digest.

    ERIC Educational Resources Information Center

    Taymans, Juliana M.; West, Lynda L.

    This digest discusses how secondary students with learning disabilities or attention deficit hyperactivity disorder can investigate postsecondary programs and find the right college to meet their needs. It begins by exploring when students should begin their college planning and the role of transition plans in determining student goals and vision…

  5. Enhanced learning deficits in female rats following lifetime pb exposure combined with prenatal stress.

    PubMed

    Cory-Slechta, Deborah A; Stern, Sander; Weston, Doug; Allen, Joshua L; Liu, Sue

    2010-10-01

    Pb (lead) exposure and stress are co-occurring risk factors (particularly in low socioeconomic communities) that also act on common biological substrates and produce common adverse outcomes, including cognitive impairments. This study sought to determine whether lifetime Pb exposure combined with prenatal stress would enhance the cognitive deficits independently associated with each of these risk factors and to explore associated mechanisms of any observed impairments. Learning was evaluated using a multiple schedule of repeated learning and performance in female rats subjected to lifetime Pb exposure (0 or 50 ppm Pb in drinking water beginning in dams 2 months prior to breeding; blood Pb levels ∼10 μg/dl), to prenatal restraint stress on gestational days 16 and 17, or to both. Blood Pb, corticosterone levels, brain monoamines, and hippocampal nerve growth factor levels were also measured. Sequence-specific learning deficits produced by Pb, particularly the number of responses to correctly learn response sequences, were further enhanced by stress, whereas performance measures were unimpaired. Statistical analyses indicated significant relationships among corticosterone levels, frontal cortex dopamine (DA), nucleus accumbens dopamine turnover, and total responses required to learn sequences. This study demonstrates that Pb and stress can act together to produce selective and highly condition-dependent deficits in learning in female rats that may be related to glucocorticoid-mediated interactions with mesocorticolimbic regions of brain. These findings also underscore the critical need to evaluate toxicants in the context of other risk factors pertinent to human diseases and disorders.

  6. Spatial and nonspatial implicit motor learning in Korsakoff's amnesia: evidence for selective deficits.

    PubMed

    Van Tilborg, Ilse A D A; Kessels, Roy P C; Kruijt, Pauline; Wester, Arie J; Hulstijn, Wouter

    2011-10-01

    Patients with amnesia have deficits in declarative memory but intact memory for motor and perceptual skills, which suggests that explicit memory and implicit memory are distinct. However, the evidence that implicit motor learning is intact in amnesic patients is contradictory. This study investigated implicit sequence learning in amnesic patients with Korsakoff's syndrome (N = 20) and matched controls (N = 14), using the classical Serial Reaction Time Task and a newly developed Pattern Learning Task in which the planning and execution of the responses are more spatially demanding. Results showed that implicit motor learning occurred in both groups of participants; however, on the Pattern Learning Task, the percentage of errors did not increase in the Korsakoff group in the random test phase, which is indicative of less implicit learning. Thus, our findings show that the performance of patients with Korsakoff's syndrome is compromised on an implicit learning task with a strong spatial response component.

  7. Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride.

    PubMed

    Jetti, Raghu; Raghuveer, C V; Mallikarjuna, Rao C

    2016-01-01

    Fluoride is present in the ground water, World Health Organization permitted level of fluoride in the ground water is 0.5 ppm. Tooth pastes, mouth washes, tea and sea fish are the sources of fluoride. Exposure to these multiple sources results in several adverse effects in addition to the fluorosis. The present study aimed to test the effect of vitamin C and Ginkgo biloba against the behavioural deficits caused by fluoride. Rats were divided into five groups with six animals in each group (n = 6). Control group received ordinary tap water with 0.5 ppm of fluoride, the remaining groups received 100 ppm of fluoride for 30 days prior to fluoride exposure. Two groups of animals received 100 mg/kg body weight of vitamin C and G. biloba for 15 days prior to fluoride exposure. After 45 days, behavioural studies (T-Maze, passive avoidance) were conducted on the experimental animals. The results of the present study showed no behavioural deficits in the control group of animals however, the rats that received fluoride water exhibited impairment in their spatial learning and memory deficits. The deficits are not marked in the vitamin C and G. biloba groups. To conclude chronic exposure to high levels of fluoride causes severe impairment in the spatial learning and memory, these deficits can be ameliorated with the vitamin C and G. biloba.

  8. Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride.

    PubMed

    Jetti, Raghu; Raghuveer, C V; Mallikarjuna, Rao C

    2016-01-01

    Fluoride is present in the ground water, World Health Organization permitted level of fluoride in the ground water is 0.5 ppm. Tooth pastes, mouth washes, tea and sea fish are the sources of fluoride. Exposure to these multiple sources results in several adverse effects in addition to the fluorosis. The present study aimed to test the effect of vitamin C and Ginkgo biloba against the behavioural deficits caused by fluoride. Rats were divided into five groups with six animals in each group (n = 6). Control group received ordinary tap water with 0.5 ppm of fluoride, the remaining groups received 100 ppm of fluoride for 30 days prior to fluoride exposure. Two groups of animals received 100 mg/kg body weight of vitamin C and G. biloba for 15 days prior to fluoride exposure. After 45 days, behavioural studies (T-Maze, passive avoidance) were conducted on the experimental animals. The results of the present study showed no behavioural deficits in the control group of animals however, the rats that received fluoride water exhibited impairment in their spatial learning and memory deficits. The deficits are not marked in the vitamin C and G. biloba groups. To conclude chronic exposure to high levels of fluoride causes severe impairment in the spatial learning and memory, these deficits can be ameliorated with the vitamin C and G. biloba. PMID:24081631

  9. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients.

  10. Child Abuse: Growth Failure, IQ Deficit, and Learning Disability.

    ERIC Educational Resources Information Center

    Money, John

    1982-01-01

    The author reviews research on early deprivation and neglect and recounts his own experience with children whose dwarfism is attributed to abuse or neglect. The existence of specific learning disability and diminished IQ in many of these children is cited. The author suggests further attention to the problem. (CL)

  11. Nootropic drugs have different effects on kindling-induced learning deficits in rats.

    PubMed

    Becker, A; Grecksch, G

    1995-09-01

    Kindling represents an accepted model of human epileptogenesis. Furthermore, it has been demonstrated that kindled rats show a diminished learning performance in an active avoidance task. In our study we administered different nootropic drugs to kindled rats to test their effects on learning a two-way active avoidance task in the shuttle-box. Kindling was induced by repeated intraperitoneal injections of 45 mg kg-1 pentylenetetrazol (PTZ) once every 48 h. The substances vinpocetine (0.1 and 1.0 mg kg-1), methylglucamin orotate (225 and 450 mg kg-1), piracetam (100 mg kg-1), and meclofenoxate (100 mg kg-1) were administered during kindling development and after kindling completion prior to each session in the learning experiment. The nootropic drugs had little if any effect on severity of seizures. Concerning their effect on learning the substances each acted in a specific manner. Methylglucamin orotate enhanced the learning deficit induced by kindling. Meclofenoxate injected prior to the kindling stimulation was ineffective, whereas administration prior to the learning test improved the learning performance effectively. A complementary action was shown in experiments with vinpocetine. Only piracetam prevented the occurrence of kindling-induced learning deficits regardless the administration schedule.

  12. Humans with traumatic brain injuries show place-learning deficits in computer-generated virtual space.

    PubMed

    Skelton, R W; Bukach, C M; Laurance, H E; Thomas, K G; Jacobs, J W

    2000-04-01

    Spatial learning and memory has been linked to the hippocampus and temporal lobes and though these areas are often damaged in traumatic brain injury (TBI), spatial learning deficits after TBI have not received much attention. In the present study, a virtual environment was used to challenge people with TBI to solve a task comparable to the Morris water maze, which in turn has been shown to be highly sensitive to hippocampal and frontal lobe dysfunction in laboratory animals. A regular computer monitor was used to present 12 participants with TBI and 12 age- and sex-matched comparison participants with a computer-generated, three-dimensional "virtual arena maze," consisting of a large round arena within a very large square room. Participants were required to learn the place of an invisible target on the floor of the room based solely on distal cues on the walls of the room. Eight of the 12 participants with moderate to severe TBI showed substantial place-learning deficits in comparison to the uninjured participants. Performance in the virtual environment correlated with self-reported frequency of wayfinding problems in everyday life and with scores on a test of episodic memory, the Rivermead Behavioural Memory Task. These data confirm that deficits in spatial learning and memory follow TBI, and suggest that the virtual arena maze may provide a new method for objectively assessing them.

  13. Role of the basolateral amygdala dopamine receptors in arachidonylcyclopropylamide-induced fear learning deficits.

    PubMed

    Nasehi, Mohammad; Hajian, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-01-01

    There is much evidence suggesting that the mesoamygdala dopaminergic (DAergic) system plays a crucial role in the formation and expression of fear conditioning, with both D1 and D2 receptors being involved. In addition, cannabinoid CB1 receptor (CB1R) signaling modulates DAergic pathways. The present study sought to determine the involvement of basolateral amygdala (BLA) dopamine receptors in arachidonylcyclopropylamide (ACPA)-induced fear learning deficits. Context- and tone-dependent fear conditioning in adult male NMRI mice was evaluated. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing in context- or tone-dependent fear conditioning, suggesting an acquisition impairment. Pre-training intra-BLA microinjection of a subthreshold dose of SKF38393 (D1-like receptor agonist), SCH23390 (D1-like receptor antagonist), quinpirole (D2-like receptor agonist), or sulpiride (D2-like receptor antagonist) did not alter the context-dependent fear learning deficit induced by ACPA, while SKF38393 or quinpirole restored ACPA effect on tone-dependent fear learning. Moreover, SKF38393 (1 μg/mouse), SCH23390 (0.04 and 0.08 μg/mouse), or quinpirole (0.1 μg/mouse) all impaired context-dependent fear learning. It is concluded that D1 or D2 dopamine (DA) receptor activation restores tone- but not context-dependent fear learning deficit induced by CB1 activation using ACPA.

  14. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice.

    PubMed

    Tong, Jing-Jing; Chen, Gui-Hai; Wang, Fang; Li, Xue-Wei; Cao, Lei; Sui, Xu; Tao, Fei; Yan, Wen-Wen; Wei, Zhao-Jun

    2015-05-01

    The administration of maintaining the homeostasis of insulin/insulin-like growth factor 1 (IGF-1) signaling and/or glucose metabolism may reverse brain aging. In the present study, we investigated the effect of acarbose, an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. The SAMP8 mice were randomly divided into old control group and acarbose-treatment group. The mice in the acarbose group were administered acarbose (20 mg/kg/d, dissolved in drinking water) orally from 3 to 9 months of age when a new group of 3-month-old mice was added as young controls. The results showed that the aged controls exhibited declines in sensorimotor ability, open field anxiety, spatial and non-spatial memory abilities, decreased serum insulin levels, increased IGF-1 receptor and synaptotagmin 1 (Syt1) levels and decreased insulin receptor, brain-derived neurotrophic factor (BDNF) and syntaxin 1 (Stx1) levels in the hippocampal layers. The age-related behavioral deficits correlated with the serological and histochemical data. Chronic acarbose treatment relieved these age-related changes, especially with respect to learning and memory abilities. This protective effect of acarbose on age-related behavioral impairments might be related to changes in the insulin system and the levels of BDNF, IGF-1R, and the pre-synaptic proteins Syt1 and Stx1. In conclusion, long-term treatment with acarbose ameliorated the behavioral deficits and biochemical changes in old SAMP8 mice and promoted successful aging. This study provides insight into the potential of acarbose for the treatment of brain aging.

  15. Overcoming Age-Related Differences

    ERIC Educational Resources Information Center

    Agullo, Gloria Luque

    2006-01-01

    One of the most controversial issues in foreign language (FL) teaching is the age at which language learning should start. Nowadays it is recognized that in second language contexts maturational constraints make an early start advisable, but there is still disagreement regarding the problem of when to start or the best way to learn in foreign…

  16. Bangle (Zingiber purpureum) Improves Spatial Learning, Reduces Deficits in Memory, and Promotes Neurogenesis in the Dentate Gyrus of Senescence-Accelerated Mouse P8.

    PubMed

    Nakai, Megumi; Iizuka, Michiro; Matsui, Nobuaki; Hosogi, Kazuko; Imai, Akiko; Abe, Noriaki; Shiraishi, Hisashi; Hirata, Ayumu; Yagi, Yusuke; Jobu, Kohei; Yokota, Junko; Kato, Eishin; Hosoda, Shinya; Yoshioka, Saburo; Harada, Kenichi; Kubo, Miwa; Fukuyama, Yoshiyasu; Miyamura, Mitsuhiko

    2016-05-01

    Bangle (Zingiber purpureum) is a tropical ginger that is used as a spice in Southeast Asia. Phenylbutenoid dimers isolated from Bangle have exhibited neurotrophic effects in primary cultured rat cortical neurons and PC12 cells. Furthermore, chronic treatment with phenylbutenoid dimers enhances hippocampal neurogenesis in olfactory bulbectomized mice. In this study, we investigated the effects of Bangle extract on behavior and hippocampal neurogenesis in vivo. SAMP8 mice, which are an established model for accelerated aging, with age-related learning and memory impairments, were given a Bangle-containing diet for 1 month, and subsequent behavioral tests and immunohistochemistry for Ki67, a proliferating cell marker, were performed. We found that the Bangle-containing diet improved spatial learning and memory deficits in the Morris water maze and significantly increased the numbers of Ki67-positive cells in the dentate gyrus of the SAMP8 mice. In addition, the Bangle extract exhibited a neurotrophin-like activity as indicated by the induction of neurite sprouting in PC12 cells. Our results suggest that Bangle is beneficial for the prevention of age-related progression of cognitive impairment.

  17. Reversal of a trimethyltin-induced learning deficit by desglycinamide-8-arginine vasopressin

    SciTech Connect

    Sparber, S.B.; Cohen, C.A.; Messing, R.B.

    1988-01-01

    Trimethyltin (TMT) is an organometal neurotoxin which produces lesions primarily in the limbic system. Selectivity seems to depend upon the dose, but the hippocampus and related entorhinal cortical structures, of importance for learning and memory, are most often described as target sites. The authors have previously demonstrated that subjects treated with a moderate dose of TMT prior to acquisition sessions, are unable to learn a forward autoshaping task with a 6 sec delay of reinforcement, but are capable of acquiring the same task when no delay of reinforcement is used. These data suggested that the performance deficit is one of learning rather than of memory, retrieval, or sensorimotor impairment. To more rigorously test this hypothesis, we determined if performance of a task already learned would be impaired by the neurotoxin. Adult male Long Evans rats were given 10 acquisition sessions of 24 trials, following which TMT was administered. One month later, these rats performed the lever-touching behavior as well as controls, despite the fact that the same dose of TMT interfered with learning if given one month prior to acquisition sessions, thus confirming our hypothesis. In a second experiment we determined if the peptide analog of vasopressin, desglycinamide-8-arginine vasopressin (DGAVP), could reverse a learning deficit in a population of non-learners. Rats were treated with TMT or water vehicle one month prior to autoshaping. TMT significantly retarded acquisition. 36 references, 2 figures, 1 table.

  18. Temporal Processing Deficits of Language-Learning Impaired Children Ameliorated by Training

    NASA Astrophysics Data System (ADS)

    Merzenich, Michael M.; Jenkins, William M.; Johnston, Paul; Schreiner, Christoph; Miller, Steven L.; Tallal, Paula

    1996-01-01

    Children with language-based learning impairments (LLIs) have major deficits in their recognition of some rapidly successive phonetic elements and nonspeech sound stimuli. In the current study, LLI children were engaged in adaptive training exercises mounted as computer "games" designed to drive improvements in their "temporal processing" skills. With 8 to 16 hours of training during a 20-day period, LLI children improved markedly in their abilities to recognize brief and fast sequences of nonspeech and speech stimuli.

  19. Mechanisms of age-related macular degeneration

    PubMed Central

    Ambati, Jayakrishna; Fowler, Benjamin J.

    2012-01-01

    Age-related macular degeneration (AMD), a progressive condition that is untreatable in up to 90% of patients, is a leading cause of blindness in the elderly worldwide. The two forms of AMD, wet and dry, are classified based on the presence or absence of blood vessels that have disruptively invaded the retina, respectively. A detailed understanding of the molecular mechanisms underlying wet AMD has led to several robust FDA-approved therapies. In contrast, there are not any approved treatments for dry AMD. In this review, we provide insight into the critical effector pathways that mediate each form of disease. The interplay of immune and vascular systems for wet AMD, and the proliferating interest in hunting for gene variants to explain AMD pathogenesis, are placed in the context of the latest clinical and experimental data. Emerging models of dry AMD pathogenesis are presented, with a focus on DICER1 deficit and the toxic accumulation of retinal debris. A recurring theme that spans most aspects of AMD pathogenesis is defective immune modulation in the classically immune-privileged ocular haven. Interestingly, the latest advances in AMD research highlight common molecular disease pathways with other common neurodegenerations. Finally, the therapeutic potential of intervening at known mechanisms of AMD pathogenesis is discussed. PMID:22794258

  20. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease.

    PubMed

    Wang, Yunliang; Wang, Yutong; Li, Jinfeng; Hua, Linlin; Han, Bing; Zhang, Yuzhen; Yang, Xiaopeng; Zeng, Zhilei; Bai, Hongying; Yin, Honglei; Lou, Jiyu

    2016-09-01

    Caffeic acid is a type of phenolic acid and organic acid. It is found in food (such as tomatoes, carrots, strawberries, blueberries and wheat), beverages (such as wine, tea, coffee and apple juice) as well as Chinese herbal medicines. In the present study, we examined the effects of caffeic acid on learning deficits in a rat model of Alzheimer's disease (AD). The rats were randomly divided into three groups: i) control group, ii) AD model group and iii) caffeic acid group. Caffeic acid significantly rescued learning deficits and increased cognitive function in the rats with AD as demonstrated by the Morris water maze task. Furthermore, caffeic acid administration resulted in a significant decrease in acetylcholinesterase activity and nitrite generation in the rats with AD compared with the AD model group. Furthermore, caffeic acid suppressed oxidative stress, inflammation, nuclear factor‑κB‑p65 protein expression and caspase‑3 activity as well as regulating the protein expression of p53 and phosphorylated (p-)p38 MAPK expression in the rats with AD. These experimental results indicate that the beneficial effects of caffeic acid on learning deficits in a model of AD were due to the suppression of oxidative stress and inflammation through the p38 MAPK signaling pathway. PMID:27430591

  1. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice.

    PubMed

    Knoferle, Johanna; Yoon, Seo Yeon; Walker, David; Leung, Laura; Gillespie, Anna K; Tong, Leslie M; Bien-Ly, Nga; Huang, Yadong

    2014-10-15

    Apolipoprotein (apo) E4 is expressed in many types of brain cells, is associated with age-dependent decline of learning and memory in humans, and is the major genetic risk factor for AD. To determine whether the detrimental effects of apoE4 depend on its cellular sources, we generated human apoE knock-in mouse models in which the human APOE gene is conditionally deleted in astrocytes, neurons, or GABAergic interneurons. Here we report that deletion of apoE4 in astrocytes does not protect aged mice from apoE4-induced GABAergic interneuron loss and learning and memory deficits. In contrast, deletion of apoE4 in neurons does protect aged mice from both deficits. Furthermore, deletion of apoE4 in GABAergic interneurons is sufficient to gain similar protection. This study demonstrates a detrimental effect of endogenously produced apoE4 on GABAergic interneurons that leads to learning and memory deficits in mice and provides a novel target for drug development for AD related to apoE4.

  2. Spatial learning deficits in rats after injection of vincristine into the dorsal hippocampus.

    PubMed

    Eijkenboom, M; Van Der Staay, F J

    1999-01-01

    In the present study, performance in the Morris water escape task after bilateral lesioning of the dorsal hippocampus induced by the microtubule poison vincristine is discussed as a cognitive deficit model in rats. As we are especially interested in spontaneous or pharmacologically induced recovery processes after experimentally induced cognitive dysfunctions, the model should fulfil a number of criteria. Firstly, a clear dose-effect relationship between the dose of vincristine and the amount of spatial learning impairments should be present. Secondly, lesions must remain within the target area. Thirdly, there should be an observable behavioural recovery or compensation of the induced deficit. Two experiments evaluated the influence of the application volume (experiment 1) and the concentration of vincristine (experiment 2) on lesion location and size, and on spatial learning. The results of both experiments demonstrated that the effect of vincristine on the performance in the Morris water escape task seems to be characterized by an "all-or-none" relationship. Concentrations above a "threshold" value induced severe damage in the hippocampus and adjacent brain structures, whereas concentrations below the "threshold" value had marginal or no effects. The non-selective and highly toxic properties of vincristine make this neurotoxin an unsuitable tool for the establishment of a learning and memory deficit model.

  3. Age-related atrial fibrosis.

    PubMed

    Gramley, Felix; Lorenzen, Johann; Knackstedt, Christian; Rana, Obaida R; Saygili, Erol; Frechen, Dirk; Stanzel, Sven; Pezzella, Francesco; Koellensperger, Eva; Weiss, Christian; Münzel, Thomas; Schauerte, Patrick

    2009-03-01

    Many age-related diseases are associated with, and may be promoted by, cardiac fibrosis. Transforming growth factor (TGF)-beta, hypoxia-induced factor (HIF), and the matrix metalloproteinase (MMP) system have been implicated in fibrogenesis. Thus, we investigated whether age is related to these systems and to atrial fibrosis. Right atrial appendages (RAA) obtained during heart surgery (n = 115) were grouped according to patients' age (<50 years, 51-60 years, 61-70 years, or >70 years). Echocardiographic ejection fractions (EF) and fibrosis using Sirius-red-stained histological sections were determined. TGF-beta was determined by quantitative RT-PCR and hypoxia-related factors [HIF1 alpha, the vascular endothelial growth factor (VEGF)-receptor, CD34 (a surrogate marker for microvessel density), the factor inhibiting HIF (FIH), and prolyl hydroxylase 3 (PHD 3)] were detected by immunostaining. MMP-2 and -9 activity were determined zymographically, and mRNA levels of their common tissue inhibitor TIMP-1 were determined by RT-PCR. Younger patients (<50 years) had significantly less fibrosis (10.1% +/- 4.4% vs 16.6% +/- 8.3%) than older individuals (>70 years). While HIF1 alpha, FIH, the VEGF-receptor, and CD34 were significantly elevated in the young, TGF-beta and PHD3 were suppressed in these patients. MMP-2 and -9 activity was found to be higher while TIMP-1 levels were lower in older patients. Statistical analysis proved age to be the only factor influencing fibrogenesis. With increasing age, RAAs develop significantly more fibrosis. An increase of fibrotic and decrease of hypoxic signalling and microvessel density, coupled with differential expression of MMPs and TIMP-1 favouring fibrosis may have helped promote atrial fibrogenesis. PMID:19234766

  4. A perceptual learning deficit in Chinese developmental dyslexia as revealed by visual texture discrimination training.

    PubMed

    Wang, Zhengke; Cheng-Lai, Alice; Song, Yan; Cutting, Laurie; Jiang, Yuzheng; Lin, Ou; Meng, Xiangzhi; Zhou, Xiaolin

    2014-08-01

    Learning to read involves discriminating between different written forms and establishing connections with phonology and semantics. This process may be partially built upon visual perceptual learning, during which the ability to process the attributes of visual stimuli progressively improves with practice. The present study investigated to what extent Chinese children with developmental dyslexia have deficits in perceptual learning by using a texture discrimination task, in which participants were asked to discriminate the orientation of target bars. Experiment l demonstrated that, when all of the participants started with the same initial stimulus-to-mask onset asynchrony (SOA) at 300 ms, the threshold SOA, adjusted according to response accuracy for reaching 80% accuracy, did not show a decrement over 5 days of training for children with dyslexia, whereas this threshold SOA steadily decreased over the training for the control group. Experiment 2 used an adaptive procedure to determine the threshold SOA for each participant during training. Results showed that both the group of dyslexia and the control group attained perceptual learning over the sessions in 5 days, although the threshold SOAs were significantly higher for the group of dyslexia than for the control group; moreover, over individual participants, the threshold SOA negatively correlated with their performance in Chinese character recognition. These findings suggest that deficits in visual perceptual processing and learning might, in part, underpin difficulty in reading Chinese.

  5. Probabilistic Reversal Learning in Schizophrenia: Stability of Deficits and Potential Causal Mechanisms.

    PubMed

    Reddy, Lena Felice; Waltz, James A; Green, Michael F; Wynn, Jonathan K; Horan, William P

    2016-07-01

    Although individuals with schizophrenia show impaired feedback-driven learning on probabilistic reversal learning (PRL) tasks, the specific factors that contribute to these deficits remain unknown. Recent work has suggested several potential causes including neurocognitive impairments, clinical symptoms, and specific types of feedback-related errors. To examine this issue, we administered a PRL task to 126 stable schizophrenia outpatients and 72 matched controls, and patients were retested 4 weeks later. The task involved an initial probabilistic discrimination learning phase and subsequent reversal phases in which subjects had to adjust their responses to sudden shifts in the reinforcement contingencies. Patients showed poorer performance than controls for both the initial discrimination and reversal learning phases of the task, and performance overall showed good test-retest reliability among patients. A subgroup analysis of patients (n = 64) and controls (n = 49) with good initial discrimination learning revealed no between-group differences in reversal learning, indicating that the patients who were able to achieve all of the initial probabilistic discriminations were not impaired in reversal learning. Regarding potential contributors to impaired discrimination learning, several factors were associated with poor PRL, including higher levels of neurocognitive impairment, poor learning from both positive and negative feedback, and higher levels of indiscriminate response shifting. The results suggest that poor PRL performance in schizophrenia can be the product of multiple mechanisms. PMID:26884546

  6. Experience-Based Mitigation of Age-Related Performance Declines: Evidence from Air Traffic Control

    ERIC Educational Resources Information Center

    Nunes, Ashley; Kramer, Arthur F.

    2009-01-01

    Previous research has found age-related deficits in a variety of cognitive processes. However, some studies have demonstrated age-related sparing on tasks where individuals have substantial experience, often attained over many decades. Here, the authors examined whether decades of experience in a fast-paced demanding profession, air traffic…

  7. Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory.

    PubMed

    Carey, Amanda N; Lyons, Angela M; Shay, Christopher F; Dunton, Ocean; McLaughlin, Jay P

    2009-04-01

    We hypothesized that mice subjected to prolonged stress would demonstrate decreased performance in a learning and memory task attributable to the endogenous activation of the kappa opioid receptor (KOR). C57BL/6J mice were tested using the novel object recognition (NOR) assay at various time points after exposure to repeated forced swim stress (FSS). Unstressed mice demonstrated recognition of the novel object at the end of a procedure using three 10-min object interaction phases, with a recognition index (RI) for the novel object of 71.7+/-3.4%. However, 1 h after exposure to FSS, vehicle-pretreated mice displayed a significant deficit in performance (RI=58.2+/-4.1%) compared with unstressed animals. NOR was still significantly reduced 4 but not 24 h after FSS. Treatment with the KOR-selective antagonist norbinaltorphimine (10 mg/kg, i.p.) prevented the decline in learning and memory performance. Moreover, direct activation of the KOR induced performance deficits in NOR, as exogenous administration of the KOR agonist U50,488 [(+/-)-trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide] (0.3 mg/kg, i.p.) suppressed NOR (RI=56.0+/-3.9%). The effect of FSS on NOR performance was further examined in mice lacking the gene for the endogenous KOR agonist dynorphin (Dyn). Dyn gene-disrupted mice exposed to FSS did not show the subsequent learning and memory deficits (RI=66.8+/-3.8%) demonstrated by their wild-type littermates (RI=49.7+/-2.9%). Overall, these results suggest that stress-induced activation of the KOR may be both necessary and sufficient to produce subsequent deficits in novel object recognition.

  8. [Mathematical abilities and executive function in children with attention deficit hyperactivity disorder and learning disabilities in mathematics].

    PubMed

    Miranda Casas, Ana; Meliá de Alba, Amanda; Marco Taverner, Rafaela

    2009-02-01

    Mathematical abilities and executive function in children with attention deficit hyperactivity disorder and learning disabilities in mathematics. Even though 26% of children with attention deficit hyperactivity disorder (ADHD) show a specific mathematic learning difficulty (MLD), the studies have been scarce. The present study had the following goals: 1) to study the profile related to cognitive and metacognitive skills implied in calculation and problem-solving in children with ADHD+MLD, and to compare them in children with ADHD, children with MLD, and children without problems; 2) to study the severity of the deficit in executive function (EF) in children with ADHD+MLD. Comparing the groups MLD, ADHD, ADHD+MLD, and children without problems, the results highlighted that children with ADHD+MLD showed a cognitive and metacognitive deficit in mathematic achievement. Furthermore, results showed a more severe deficit in the EF in children with ADHD+MLD. PMID:19178858

  9. Age-related forgetting in locomotor adaptation

    PubMed Central

    Malone, Laura A.; Bastian, Amy J.

    2016-01-01

    The healthy aging process affects the ability to learn and remember new facts and tasks. Prior work has shown that motor learning can be adversely affected by non-motor deficits, such as time. Here we investigated how age, and a dual task influence the learning and forgetting of a new walking pattern. We studied healthy younger (<30 yo) and older adults (>50 yo) as they alternated between 5-minute bouts of split-belt treadmill walking and resting. Older subjects learned a new walking pattern at the same rate as younger subjects, but forgot some of the new pattern during the rest breaks. We tested if forgetting was due to reliance on a cognitive strategy that was not fully engaged after rest breaks. When older subjects performed a dual cognitive task to reduce strategic control of split-belt walking, their adaptation rate slowed, but they still forgot much of the new pattern during the rest breaks. Our results demonstrate that the healthy aging process weakens motor memories during rest breaks and that this phenomenon cannot be explained solely by reliance on a conscious strategy in older adults. PMID:26589520

  10. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse

    PubMed Central

    Carey, Amanda N.; Sypek, Elizabeth I.; Singh, Harminder D.; Kaufman, Marc J.; McLaughlin, Jay P.

    2012-01-01

    HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance, versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors. PMID:22197678

  11. Inflammation During Gestation Induced Spatial Memory and Learning Deficits: Attenuated by Physical Exercise in Juvenile Rats

    PubMed Central

    Thangarajan, Rajesh; Rai, Kiranmai. S.; Gopalakrishnan, Sivakumar; Perumal, Vivek

    2015-01-01

    Background Gestational infections induced inflammation (GIII) is a cause of various postnatal neurological deficits in developing countries. Such intra uterine insults could result in persistent learning-memory disabilities. There are no studies elucidating the efficacy of adolescence exercise on spatial learning- memory abilities of young adult rats pre-exposed to inflammatory insult during fetal life. Aims and Objectives The present study addresses the efficacy of physical (running) exercise during adolescent period in attenuating spatial memory deficits induced by exposure to GIII in rats. Materials and Methods Pregnant Wistar dams were randomly divided into control and lipopolysaccharide (LPS) groups, injected intra peritoneally (i.p) with saline (0.5ml) or lipopolysaccharide (LPS) (0.5mg/kg) on alternate days from gestation day 14 (GD 14) till delivery. After parturition, pups were divided into 3 groups (n=6/group) a) Sham control and LPS group divided into 2 subgroups- b) LPS and c) LPS exercise group. Running exercise was given only to LPS exercise group during postnatal days (PNDs) 30 to 60 (15min/day). Spatial learning and memory performance was assessed by Morris water maze test (MWM), on postnatal day 61 to 67 in all groups. Results Young rats pre-exposed to GIII and subjected to running exercise through juvenile period displayed significant decrease in latency to reach escape platform and spent significant duration in target quadrant in MWM test, compared to age matched LPS group. Results of the current study demonstrated that exercise through juvenile/adolescent period effectively mitigates gestational inflammation-induced cognitive deficits in young adult rats. Conclusion Inflammation during gestation impairs offspring’s spatial memory and learning abilities. Whereas, early postnatal physical exercise attenuates, to higher extent, cognitive impairment resulted from exposure to LPS induced inflammation during intrauterine growth period. PMID:26266117

  12. Training and transfer-of-learning effects in disabled and normal readers: evidence of specific deficits.

    PubMed

    Benson, N J; Lovett, M W; Kroeber, C L

    1997-03-01

    Two experiments were conducted to assess the specificity of training and transfer deficits in disabled readers, aged 7 to 9 years. Forty-eight children (reading disabled, age-matched normal controls, and reading-level-matched normal controls) participated in both a reading and a nonreading (music) acquisition paradigm. Children received instruction in grapheme-phoneme and symbol-note correspondence patterns, respectively. Posttraining tests (one day and one week) following rule training compared performance on trained exemplar items with performance on untrained transfer items. Results revealed that normal readers were able to transfer their rule knowledge in both the reading and nonreading (music) acquisition paradigms, while disabled readers were proficient only in the music task, and thus demonstrated transfer deficits specific to learning printed language. Transfer was optimally facilitated for all readers when training procedures included not only presentation of exemplars, but also cues for rule derivation and explicit statement of pattern invariances. PMID:9073377

  13. Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability.

    PubMed

    Geary, David C; Hoard, Mary K; Byrd-Craven, Jennifer; Nugent, Lara; Numtee, Chattavee

    2007-01-01

    Using strict and lenient mathematics achievement cutoff scores to define a learning disability, respective groups of children who are math disabled (MLD, n=15) and low achieving (LA, n=44) were identified. These groups and a group of typically achieving (TA, n=46) children were administered a battery of mathematical cognition, working memory, and speed of processing measures (M=6 years). The children with MLD showed deficits across all math cognition tasks, many of which were partially or fully mediated by working memory or speed of processing. Compared with the TA group, the LA children were less fluent in processing numerical information and knew fewer addition facts. Implications for defining MLD and identifying underlying cognitive deficits are discussed. PMID:17650142

  14. Tau Reduction Diminishes Spatial Learning and Memory Deficits after Mild Repetitive Traumatic Brain Injury in Mice

    PubMed Central

    Cheng, Jason S.; Craft, Ryan; Yu, Gui-Qiu; Ho, Kaitlyn; Wang, Xin; Mohan, Geetha; Mangnitsky, Sergey; Ponnusamy, Ravikumar; Mucke, Lennart

    2014-01-01

    Objective Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer's disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI). Methods We adapted a mild frontal impact model of TBI for wildtype C57Bl/6J mice and characterized the behavioral deficits it causes in these animals. The Barnes maze, Y maze, contextual and cued fear conditioning, elevated plus maze, open field, balance beam, and forced swim test were used to assess different behavioral functions. Magnetic resonance imaging (MRI, 7 Tesla) and histological analysis of brain sections were used to look for neuropathological alterations. We also compared the functional effects of this TBI model and of controlled cortical impact in mice with two, one or no Tau alleles. Results Repeated (2-hit), but not single (1-hit), mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact. Interpretation Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects. PMID:25551452

  15. Effect of the Corrective Reading Program for Special Needs Students with Learning Disabilities and Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Mallory-Knight, Gwendolyn

    2013-01-01

    Implementing effective reading instruction is critical for schools. This study examined the effects of the Corrective Reading (CR) program on junior high students with learning disabilities (LD) and students with learning disabilities and attention deficit/hyperactivity disorder (LD/ADHD). The research questions were: What differences exist…

  16. Academic Risk Factors and Deficits of Learned Hopelessness: A Longitudinal Study of Hong Kong Secondary School Students

    ERIC Educational Resources Information Center

    Au, Raymond C. P.; Watkins, David A.; Hattie, John A. C.

    2010-01-01

    The aim of the present study is to explore a causal model of academic achievement and learning-related personal variables by testing the nature of relationships between learned hopelessness, its risk factors and hopelessness deficits as proposed in major theories in this area. The model investigates affective-motivational characteristics of…

  17. Withdrawal from Cocaine Self-Administration Produces Long-Lasting Deficits in Orbitofrontal-Dependent Reversal Learning in Rats

    ERIC Educational Resources Information Center

    Calu, Donna J.; Stalnaker, Thomas A.; Franz, Theresa M.; Singh, Teghpal; Shaham, Yavin; Schoenbaum, Geoffrey

    2007-01-01

    Drug addicts make poor decisions. These decision-making deficits have been modeled in addicts and laboratory animals using reversal-learning tasks. However, persistent reversal-learning impairments have been shown in rats and monkeys only after noncontingent cocaine injections. Current thinking holds that to represent the human condition…

  18. Lack of strategy holding: a new pattern of learning deficit in cortical dementias.

    PubMed

    Benedet, María J; Lauro-Grotto, Rosapia; Giotti, Chiara

    2009-09-01

    The aim of this study was to demonstrate, by means of systematic research and qualitative data analysis, the presence, among a group of patients with fronto-temporal lobar degeneration of a subgroup that, at variance with the standard pattern, is able to devise and implement learning strategies, but appear impaired at carrying them on from a trial to the next. In order to provide evidence of the existence of a group of patients showing this type of learning disability, that we refer to as lack of strategy holding, we performed a stepwise hierarchical cluster analysis of a set of variables whose scores were selected from the subject's performance at the Test de Aprendizaje Verbal España-Complutense. Results substantiate the segregation of three groups of subjects characterized by the following patterns of performance: normal elderly individuals, who show a quite preserved ability to discover a semantic strategy along the learning trials and to carry it from a trial to the next, patients presenting with a deficit in implementing semantic learning strategies and possibly use of serial and/or phonological strategies to perform the task, and to patients who, although able to generate and implement appropriate learning strategies, appear unable to carry them over the learning trials. The presence of this new pattern raises a few questions that seem worth trying to address.

  19. Lack of strategy holding: a new pattern of learning deficit in cortical dementias.

    PubMed

    Benedet, María J; Lauro-Grotto, Rosapia; Giotti, Chiara

    2009-09-01

    The aim of this study was to demonstrate, by means of systematic research and qualitative data analysis, the presence, among a group of patients with fronto-temporal lobar degeneration of a subgroup that, at variance with the standard pattern, is able to devise and implement learning strategies, but appear impaired at carrying them on from a trial to the next. In order to provide evidence of the existence of a group of patients showing this type of learning disability, that we refer to as lack of strategy holding, we performed a stepwise hierarchical cluster analysis of a set of variables whose scores were selected from the subject's performance at the Test de Aprendizaje Verbal España-Complutense. Results substantiate the segregation of three groups of subjects characterized by the following patterns of performance: normal elderly individuals, who show a quite preserved ability to discover a semantic strategy along the learning trials and to carry it from a trial to the next, patients presenting with a deficit in implementing semantic learning strategies and possibly use of serial and/or phonological strategies to perform the task, and to patients who, although able to generate and implement appropriate learning strategies, appear unable to carry them over the learning trials. The presence of this new pattern raises a few questions that seem worth trying to address. PMID:19338728

  20. A Meta-Analysis of Working Memory Deficits in Children with Learning Difficulties: Is There a Difference between Verbal Domain and Numerical Domain?

    ERIC Educational Resources Information Center

    Peng, Peng; Fuchs, Douglas

    2016-01-01

    Children with learning difficulties suffer from working memory (WM) deficits. Yet the specificity of deficits associated with different types of learning difficulties remains unclear. Further research can contribute to our understanding of the nature of WM and the relationship between it and learning difficulties. The current meta-analysis…

  1. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  2. Early-life seizures result in deficits in social behavior and learning.

    PubMed

    Lugo, Joaquin N; Swann, John W; Anderson, Anne E

    2014-06-01

    Children with epilepsy show a high co-morbidity with psychiatric disorders and autism. One of the critical determinants of a child's behavioral outcome with autism and cognitive dysfunction is the age of onset of seizures. In order to examine whether seizures during postnatal days 7-11 result in learning and memory deficits and behavioral features of autism we administered the inhalant flurothyl to induce seizures in C57BL/6J mice. Mice received three seizures per day for five days starting on postnatal day 7. Parallel control groups consisted of similarly handled animals that were not exposed to flurothyl and naïve mice. Subjects were then processed through a battery of behavioral tests in adulthood: elevated-plus maze, nose-poke assay, marble burying, social partition, social chamber, fear conditioning, and Morris water maze. Mice with early-life seizures had learning and memory deficits in the training portion of the Morris water maze (p<0.05) and probe trial (p<0.01). Mice with seizures showed no differences in marble burying, the nose-poke assay, or elevated plus-maze testing compared to controls. However, they showed a significant difference in the social chamber and social partition tests. Mice with seizures during postnatal days 7-11 showed a significant decrease in social interaction in the social chamber test and had a significant impairment in social behavior in the social partition test. Together, these results indicate that early life seizures result in deficits in hippocampal-dependent memory tasks and produce long-term disruptions in social behavior.

  3. Chronic administration of quercetin prevent spatial learning and memory deficits provoked by chronic stress in rats.

    PubMed

    Mohammadi, Hadis Said; Goudarzi, Iran; Lashkarbolouki, Taghi; Abrari, Kataneh; Elahdadi Salmani, Mahmoud

    2014-08-15

    There are several reports that cognitive impairment is observed in stress related disorders and chronic stress impairs learning and memory. However, very few studies have looked into the possible ways of preventing this stress-induced deficit. This research study was conducted to evaluate the effects of quercetin, a natural flavonoid, with strong antioxidant and free radical scavenger properties, on chronic stress induced learning and memory deficits and oxidative stress in hippocampus. For chronic stress, rats were restrained daily for 6h/day (from 9:00 to 15:00) for 21 days in well-ventilated plexiglass tubes without access to food and water. The animals were injected with quercetin or vehicle 60 min before restraint stress over a period of 21 days. Then, rats trained with six trials per day for 6 consecutive days in the water maze. On day 28, a probe test was done to measure memory retention. In addition, oxidative stress markers in the hippocampus were evaluated. Results of this study demonstrated that chronic stress exposure rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. Quercetin (50mg/kg) treatment during restraint stress (21 days) markedly decreased escape latency and increased time spent in target quadrant during Morris water maze task. In comparison to vehicle treated group, chronic-stress group had significantly higher malondialdehyde (MDA) levels, significantly higher superoxide dismutase (SOD) activity and significantly lower glutathione peroxidase (GPx) activity in the hippocampus. Quercetin treatment caused a significant decrease in the hippocampus MDA levels and improves SOD and GPx activities in stressed animals. Finally, quercetin significantly decreased plasma corticosterone levels in stressed animals. Based on results of this study, chronic stress has detrimental effects on learning and memory and quercetin treatment

  4. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    PubMed Central

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  5. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  6. Ginsenoside Rh2 ameliorates scopolamine-induced learning deficit in mice.

    PubMed

    Yang, Jung-Hwa; Han, Sang-Jun; Ryu, Jong Hoon; Jang, Il-Sung; Kim, Dong-Hyun

    2009-10-01

    To understand memory-enhancing effect of red ginseng biotransformed by Bifidobacterium longum H-1 (RGB), which more potently improved scopolamine-induced learning deficit than red ginseng in the preliminary experiment, its main constituents, ginsenosides Rb1, Rg3 and Rh2, were isolated and their memory-enhancing effects investigated in scopolamine-treated mice by using passive avoidance and Y-maze tests. Among them, ginsenoside Rh2 most potently reversed memory impairment caused by scopolamine. Ginsenoside Rh2 also significantly shortened the escape latencies prolonged by scopolamine in the Morris water maze test (p<0.001) and increased the swimming time shorten by scopolamine within the platform quadrant (p<0.05). The ginsenoside Rh2 (3 muM) reversed scopolamine (10 muM)-induced suppression of long-term potentiation. It recovered field excitatory post synaptic potential (fEPSP) amplitude potentiation to 152.3+/-8.7% of the control (p<0.05). Based on these findings, RGB and its main constituent, ginsenoside Rh2, might improve learning deficits. Also the memory-enhancing effects of RGB may be dependent on the content of ginsenoside Rh2.

  7. Age-Related Impairment in the 250-Millisecond Delay Eyeblink Classical Conditioning Procedure in C57BL/6 Mice

    PubMed Central

    Vogel, Richard W.; Ewers, Michael; Ross, Charlene; Gould, Thomas J.; Woodruff-Pak, Diana S.

    2002-01-01

    In this study we tested 4-, 9-, 12-, and 18-month-old C57BL/6 mice in the 250-msec delay eyeblink classical conditioning procedure to study age-related changes in a form of associative learning. The short life expectancy of mice, complete knowledge about the mouse genome, and the availability of transgenic and knock-out mouse models of age-related impairments make the mouse an excellent species for expanding knowledge on the neurobiologically and behaviorally well-characterized eyeblink classical conditioning paradigm. Based on previous research with delay eyeblink conditioning in rabbits and humans, we predicted that mice would be impaired on this cerebellar-dependent associative learning task in middle-age, at ∼9 months. To fully examine age differences in behavior in mice, we used a battery of additional behavioral measures with which to compare young and older mice. These behaviors included the acoustic startle response, prepulse inhibition, rotorod, and the Morris water maze. Mice began to show impairment in cerebellar-dependent tasks such as rotorod and eyeblink conditioning at 9 to 12 months of age. Performance in hippocampally dependent tasks was not impaired in any group, including 18-month-old mice. These results in mice support results in other species, indicating that cerebellar-dependent tasks show age-related deficits earlier in adulthood than do hippocampally dependent tasks. PMID:12359840

  8. Learning a Living: A Guide to Planning Your Career and Finding a Job for People with Learning Disabilities, Attention Deficit Disorder, and Dyslexia.

    ERIC Educational Resources Information Center

    Brown, Dale S.

    This document is a guide to career planning and finding a job for high school and college students and graduates with learning disabilities, attention deficit disorder, and dyslexia. The guide, which is written from the perspective of an individual with firsthand experience with a learning disability, explains how individuals can find the best…

  9. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  10. Age-Related Changes in 1/f Neural Electrophysiological Noise.

    PubMed

    Voytek, Bradley; Kramer, Mark A; Case, John; Lepage, Kyle Q; Tempesta, Zechari R; Knight, Robert T; Gazzaley, Adam

    2015-09-23

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15-53 years) and scalp EEG data from healthy younger (20-30 years) and older (60-70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <-1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. Significance statement: Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise-induced deficits in

  11. Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning.

    PubMed

    Vollmayr, Barbara; Bachteler, Daniel; Vengeliene, Valentina; Gass, Peter; Spanagel, Rainer; Henn, Fritz

    2004-04-01

    Inbred rat strains for congenital learned helplessness (cLH) and for congenital resistance to learned helplessness (cNLH) were investigated as a model to study genetic predisposition to major depression. Congenitally helpless rats respond less to sucrose under a progressive ratio schedule. This is not confounded by locomotor hypoactivity: in contrast, cLH rats show a slight hyperactivity during the first 5 min of an open field test. cLH rats acquire operant responding to sucrose as readily as cNLH rats and exhibit normal memory acquisition and retrieval in the Morris water maze, thus ruling out general learning deficits as the cause of the decreased response to sucrose. Reduced total responses and reduced breaking points for sucrose in the cLH strain argue for anhedonia, which is an analogue to loss of pleasure essential for the diagnosis of major depressive episodes, and thus confirm the validity of congenitally learned helpless rats as a model of major depression.

  12. Effect of central muscarinic receptors on passive-avoidance learning deficits induced by prenatal pentylenetetrazol kindling in male offspring.

    PubMed

    Pourmotabbed, A; Mahmoodi, G; Mahmoodi, S; Mohammadi-Farani, A; Nedaei, S E; Pourmotabbed, T; Pourmotabbed, T

    2014-10-24

    Occurrence of the epileptic seizures during gestation might affect the neurodevelopment of the fetus resulting in cognitive problems for the child later in life. We have previously reported that prenatal pentylenetetrazol (PTZ)-kindling induces learning and memory deficits in the children born to kindled mothers, later in life but the mechanisms involved in this processes are unknown. The cholinergic system plays a major role in learning and memory. The present study was performed to investigate the possible involvement of central muscarinic cholinergic receptors on learning and memory deficits induced by prenatal PTZ-kindling in male offspring. Pregnant Wistar rats were kindled by repetitive i.p. injection of 25mg/kg of PTZ on day 13 of their pregnancy. The effect of intracerebroventricular (ICV) microinjection of scopolamine and pilocarpine, muscarinic cholinergic receptors antagonist and agonist, respectively on passive-avoidance learning of pups were tested at 12weeks of age using shuttle-box apparatus. Our data showed that the retention latencies of pups that received scopolamine (2 or 3μg) were significantly reduced compared to those received normal saline (p<0.05). Interestingly, post training ICV administration of pilocarpine (2μg) retrieved pups' memory deficits (p<0.001). These results demonstrate for the first time, the importance of the central muscarinic cholinergic receptors in learning and memory deficits in pups born to kindled dams and suggest a central mechanism for the cognitive and memory dysfunction, associated with seizures during pregnancy.

  13. Timosaponin AIII, a saponin isolated from Anemarrhena asphodeloides, ameliorates learning and memory deficits in mice.

    PubMed

    Lee, Bomi; Jung, Kangsik; Kim, Dong-Hyun

    2009-08-01

    Anemarrhena asphodeloides Bunge (AA, family Liliaceae), which primarily contains xantones, such as mangiferin, and steroidal saponins, such as timosaponin AIII and sarsasapogenin, has been used as an anti-pyretic, anti-inflammatory, anti-diabetic, anti-platelet aggregation, and anti-depressant agent in traditional Chinese medicine. In the present study, the memory-enhancing effects of these saponins were investigated in scopolamine-treated mice. Among saponins, timosaponin AIII (TA3) significantly reversed the scopolamine-induced deficits in a passive avoidance test and in the Morris water maze test. TA3 also increased hippocampal acetylcholine levels in scopolamine-treated mice and dose-dependently inhibited acetylcholinesterase (AChE) activity (IC(50) value, 35.4 microM). When TA3 (50 mg/kg) was orally administered to mice and its blood concentration was measured by liquid chromatography and tandem mass spectrometry, the C(max) of TA3 occurred 4-6 h after TA3 treatment. The memory-enhancing effect of TA3 was greater when it was administered 5 h before the acquisition trial than 1 h before. Scopolamine treatment in mice increased brain levels of TNF-alpha and IL-1beta expression. However, treatment with TA3 and scopolamine inhibited the increase of TNF-alpha and IL-1beta expression. These results suggest that scopolamine may cause learning and memory deficits that are further complicated by inflammation. TA3 also inhibited the activation of NF-kappaB signaling in BV-2 microglia and in SK-N-SH neuroblastoma cells induced with TNF-alpha or scopolamine. Nevertheless, TA3 may ameliorate memory deficits, mainly by inhibiting AChE. PMID:19426756

  14. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  15. Weaver mutant mice exhibit long-term learning deficits under several measures of instrumental behavior.

    PubMed

    Derenne, Adam; Arsenault, Matthew L; Austin, David P; Weatherly, Jeffrey N

    2007-12-01

    Homozygous weaver mutant mice (wv/wv) exhibit symptoms that parallel Parkinson's disease, including motor deficits and the destruction of dopaminergic neurons as well as degeneration in the cerebellum and hippocampus. To develop a more complete behavioral profile of these organisms, groups of wv/wv, wv/+ mice and C57BL/6 mice were observed on a within-subjects basis under a fixed-interval schedule of reinforcement, a differential-reinforcement-of-low-rate-of-responding schedule, and a discrimination task in which a saccharin solution and tap water were concurrently available from two food cups. Under both reinforcement schedules, the wv/wv mice responded as frequently as the comparison subjects, but they responded in a manner that was inappropriate to the contingencies. Rather than respond with increasing frequency as the upcoming reinforcer became temporally proximate, wv/wv mice responded with decreasing probability as a function of the time since the previous reinforcer. Under the discrimination task, the wv/wv mice, unlike the controls, obtained saccharin over tap water at the level of chance. The findings suggest that weaver mutant mice express learning deficits similar to those found in other dopamine-deficient organisms.

  16. Comorbidity of Learning Disorders and Attention Deficit Hyperactivity Disorder in a Sample of Omani Schoolchildren

    PubMed Central

    Al-Mamari, Watfa S.; Emam, Mahmoud M.; Al-Futaisi, Amna M.; Kazem, Ali M.

    2015-01-01

    Objectives: The estimated worldwide prevalence of learning disorders (LDs) is approximately 2–10% among school-aged children. LDs have variable clinical features and are often associated with other disorders. This study aimed to examine the comorbidity of LDs and attention deficit hyperactivity disorder (ADHD) among a sample of schoolchildren in Oman. Methods: This study was conducted between January 2014 and January 2015 at the Sultan Qaboos University, Muscat, Oman. The Learning Disabilities Diagnostic Inventory (LDDI) and the 28-item version of the Conners’ Teacher Rating Scale was completed by classroom teachers to determine the existence of LD and ADHD symptoms in 321 children in grades 1–4 who had been referred to a learning support unit for LDs from elementary schools in Muscat. Results: The mean age of the students was 8.5 years. Among the cohort, 30% were reported to have symptoms of ADHD, including conduct problems (24%), hyperactivity (24%) and inattentive-passive behaviours (41%). Male students reportedly exhibited greater conduct problems and hyperactivity than females. However, there were no gender differences noted between LDDI scores. Conclusion: This study suggests that Omani schoolchildren with LDs are likely to exhibit signs of ADHD. The early identification of this disorder is essential considering the chronic nature of ADHD. For interventional purposes, multidisciplinary teams are recommended, including general and special educators, clinical psychologists, school counsellors, developmental or experienced general paediatricians and child psychiatrists. PMID:26629382

  17. College students with dyslexia: persistent linguistic deficits and foreign language learning.

    PubMed

    Downey, D M; Snyder, L E; Hill, B

    2000-01-01

    The first of these two studies compared college students with dyslexia enrolled in modified Latin and Spanish classes and non-dyslexic students enrolled in regular foreign language classes on measures of foreign language aptitude, word decoding, spelling, phonological awareness and word repetition. The groups did not differ on age or grade point average. Analyses indicated that students with dyslexia performed significantly poorer on the foreign language aptitude measures as well as on both phonological tasks, reading and spelling. In the second study, students with learning disabilities who were enrolled in a modified Latin class were not significantly different from their peers in a regular Latin class on grade point average or on performance on a proficiency examination at the end of the second semester. The data suggest that while phonological processing deficits persist into adulthood, students with dyslexia are able to acquire appropriate skills and information to successfully complete the University's foreign language requirement in classes modified to meet their needs.

  18. An examination of learned helplessness among attention-deficit hyperactivity disordered boys.

    PubMed

    Milich, R; Okazaki, M

    1991-10-01

    We employed a learned helplessness paradigm to compare the performance of 23 boys with attention-deficit hyperactivity disorder (ADHD) and a comparable group of 22 nonreferred boys. The boys attempted to solve two different sets of 10 find-a-word puzzles, one set following exposure to solvable puzzles, and one set following exposure to insolvable puzzles. Results revealed that the ADHD boys solved significantly fewer puzzles than did the control boys. In addition, the ADHD boys gave up on significantly more puzzles, and this was especially true following the insolvable condition when it occurred during the second set of puzzles. The ADHD boys also reported being more frustrated by the task than were the control boys. Finally, among the control boys, support was obtained for Diener and Dweck's (1978) distinction between mastery-oriented and helpless children. However, this distinction did not appear to operate in the same fashion for the ADHD boys. PMID:1770188

  19. The ameliorative effect of ascorbic acid and Ginkgo biloba on learning and memory deficits associated with fluoride exposure

    PubMed Central

    Raghuveer, Vasudeva C.; Rao, Mallikarjuna C.; Somayaji, Nagabhooshana S.; Babu, Prakash B.

    2013-01-01

    Chronic exposure to fluoride causes dental and skeletal fluorosis. Fluoride exposure is also detrimental to soft tissues and organs. The present study aimed at evaluation of the effect of Ginkgo biloba and ascorbic acid on learning and memory deficits caused by fluoride exposure. Male Wistar rats were divided into five groups (n=6). Group 1 control. Groups 2 to 5 received 100 ppm of sodium fluoride over 30 days. Groups 3, 4 and 5 were further treated for 15 days receiving respectively 1% gum acacia solution, 100 mg/kg body weight ascorbic acid, and 100mg/kg body weight Ginkgo biloba extract. After 45 days, all animals were subjected to behavioural tests. The results showed that fluoride affected learning and memory. Fluoride causes oxidative stress and neurodegeneration, thereby affecting learning and memory. Ascorbic acid and Ginkgo biloba were found to augment the reversal of learning and memory deficits caused by fluoride ingestion. PMID:24678261

  20. Clove oil reverses learning and memory deficits in scopolamine-treated mice.

    PubMed

    Halder, Sumita; Mehta, Ashish Krishan; Kar, Rajarshi; Mustafa, Mohammad; Mediratta, Pramod Kumari; Sharma, Krishna Kishore

    2011-05-01

    The present study was performed to examine the effect of Eugenia caryophyllata (Myrtaceae) on learning and memory, and also evaluate whether it can modulate oxidative stress in mice. Passive avoidance step-down task and elevated plus-maze were used to assess learning and memory in scopolamine-treated mice. Oxidative stress parameters were also assessed in brain samples by estimating the malondialdehyde (MDA) and reduced glutathione (GSH) levels at the end of the study. Scopolamine (0.3 mg/kg, i. p.) produced impairment of acquisition memory as evidenced by a decrease in step-down latency and an increase in transfer latency on day 1, and also impairment of retention of memory on day 2. Pretreatment with clove oil (0.05 mL/kg and 0.1 mL/kg) for 3 weeks significantly reversed the increase in acquisition latency and all the doses (0.025, 0.05, 0.1 mL/kg, i. p.) reversed the increase in retention latency induced by scopolamine (0.3 mg/kg, i. p.) in elevated plus-maze. However, 0.05 mL/kg clove oil attenuated memory deficits in the passive avoidance step-down task. Brain samples showed a significant decrease in MDA levels in the group treated with clove oil (0.05 and 0.025 mL/kg). GSH levels were also increased in clove oil-treated mice though the results were not significant. Thus, it can be concluded that clove oil can reverse the short-term and long-term memory deficits induced by scopolamine (0.3 mg/kg, i. p.) and this effect can, to some extent, be attributed to decreased oxidative stress.

  1. Prenatal carbofuran exposure inhibits hippocampal neurogenesis and causes learning and memory deficits in offspring.

    PubMed

    Mishra, Divya; Tiwari, Shashi Kant; Agarwal, Swati; Sharma, Vinod Praveen; Chaturvedi, Rajnish Kumar

    2012-05-01

    Neurogenesis is a process of generation of new neurons in the hippocampus and associated with learning and memory. Carbofuran, a carbamate pesticide, elicits several neurochemical, neurophysiological, and neurobehavioral deficits. We evaluated whether chronic prenatal oral exposure of carbofuran during gestational days 7-21 alters postnatal hippocampal neurogenesis at postnatal day 21. We found carbofuran treatment significantly decreased bromodeoxyuridine (BrdU) positive cell proliferation and long-term survival in the hippocampus only but not in the cerebellum. We observed a reduced number of transcription factor SOX-2 and glial fibrillary acidic protein (GFAP) colabeled cells, decreased nestin messenger RNA (mRNA) expression, and decreased histone-H3 phosphorylation following carbofuran treatment, suggesting a decreased pool of neural progenitor cells (NPC). Colocalization of BrdU with doublecortin (DCX), neuronal nuclei (NeuN), and GFAP suggested decreased neuronal differentiation and increased glial differentiation by carbofuran. The number of DCX(+) and NeuN(+) neurons, NeuN protein levels, and fibers length of DCX(+) neurons were decreased by carbofuran. Carbofuran caused a significant downregulation of mRNA expression of the neurogenic genes/transcription factors such as neuregulin, neurogenin, and neuroD1 and upregulation of the gliogenic gene Stat3. Carbofuran exposure led to increased BrdU/caspase 3 colabeled cells, an increased number of degenerative neurons and profound deficits in learning and memory processes. The number and size of primary neurospheres derived from the hippocampus of carbofuran-treated rats were decreased. These results suggest that early gestational carbofuran exposure diminishes neurogenesis, reduces the NPC pool, produces neurodegeneration in the hippocampus, and causes cognitive impairments in rat offspring.

  2. The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.

    PubMed

    Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P

    2015-01-01

    Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.

  3. Positive Psychology and Self-Efficacy: Potential Benefits for College Students with Attention Deficit Hyperactivity Disorder and Learning Disabilities

    ERIC Educational Resources Information Center

    Costello, Carla A.; Stone, Sharon L. M.

    2012-01-01

    In this article, the authors examine strategies for supporting college students with learning disabilities (LD) and attention deficit hyperactivity disorder (ADHD) from the conceptual frameworks of positive psychology and self-efficacy theory. Higher education professionals can use principles taken from the relatively new field of positive…

  4. Using Color to Increase the Math Persistence of Children with Co-Occurring Learning Disabilities and Attentional Deficits

    ERIC Educational Resources Information Center

    Lee, David L.; Asplen, Jennifer

    2004-01-01

    Dealing with the behavioral and academic problems of children with co-occurring learning disabilities and attention-deficit/hyperactivity disorder (AD/HD) can be challenge for educators. One characteristic often associated with AD/HD is an inability to remain engaged in tasks for long periods of time. This lack of attentional focus often results…

  5. Support for Learning Goes beyond Academic Support: Voices of Students with Asperger's Disorder and Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Bolic Baric, Vedrana; Hellberg, Kristina; Kjellberg, Anette; Hemmingsson, Helena

    2016-01-01

    The purpose of this study was to describe and explore the experiences of support at school among young adults with Asperger's disorder and attention deficit hyperactivity disorder and also to examine what support they, in retrospect, described as influencing learning. Purposive sampling was used to enroll participants. Data were collected through…

  6. fMRI and sleep correlates of the age-related impairment in motor memory consolidation.

    PubMed

    Fogel, Stuart M; Albouy, Genevieve; Vien, Catherine; Popovicci, Romana; King, Bradley R; Hoge, Rick; Jbabdi, Saad; Benali, Habib; Karni, Avi; Maquet, Pierre; Carrier, Julie; Doyon, Julien

    2014-08-01

    Behavioral studies indicate that older adults exhibit normal motor sequence learning (MSL), but paradoxically, show impaired consolidation of the new memory trace. However, the neural and physiological mechanisms underlying this impairment are entirely unknown. Here, we sought to identify, through functional magnetic resonance imaging during MSL and electroencephalographic (EEG) recordings during daytime sleep, the functional correlates and physiological characteristics of this age-related motor memory deficit. As predicted, older subjects did not exhibit sleep-dependent gains in performance (i.e., behavioral changes that reflect consolidation) and had reduced sleep spindles compared with young subjects. Brain imaging analyses also revealed that changes in activity across the retention interval in the putamen and related brain regions were associated with sleep spindles. This change in striatal activity was increased in young subjects, but reduced by comparison in older subjects. These findings suggest that the deficit in sleep-dependent motor memory consolidation in elderly individuals is related to a reduction in sleep spindle oscillations and to an associated decrease of activity in the cortico-striatal network.

  7. fMRI and sleep correlates of the age-related impairment in motor memory consolidation.

    PubMed

    Fogel, Stuart M; Albouy, Genevieve; Vien, Catherine; Popovicci, Romana; King, Bradley R; Hoge, Rick; Jbabdi, Saad; Benali, Habib; Karni, Avi; Maquet, Pierre; Carrier, Julie; Doyon, Julien

    2014-08-01

    Behavioral studies indicate that older adults exhibit normal motor sequence learning (MSL), but paradoxically, show impaired consolidation of the new memory trace. However, the neural and physiological mechanisms underlying this impairment are entirely unknown. Here, we sought to identify, through functional magnetic resonance imaging during MSL and electroencephalographic (EEG) recordings during daytime sleep, the functional correlates and physiological characteristics of this age-related motor memory deficit. As predicted, older subjects did not exhibit sleep-dependent gains in performance (i.e., behavioral changes that reflect consolidation) and had reduced sleep spindles compared with young subjects. Brain imaging analyses also revealed that changes in activity across the retention interval in the putamen and related brain regions were associated with sleep spindles. This change in striatal activity was increased in young subjects, but reduced by comparison in older subjects. These findings suggest that the deficit in sleep-dependent motor memory consolidation in elderly individuals is related to a reduction in sleep spindle oscillations and to an associated decrease of activity in the cortico-striatal network. PMID:24302373

  8. Later developments: molecular keys to age-related memory impairment.

    PubMed

    Barad, Mark

    2003-01-01

    Age-related memory impairment, a cognitive decline not clearly related to any gross pathology, is progressive and widespread in the population, although not universal. While the mechanisms of learning and memory remain incompletely understood, the study of their molecular mechanisms is already yielding promising approaches toward therapy for such "normal" declines in the efficiency of learning. This review presents the rationale and results for two such approaches. One approach, partial inhibition of the type IV cAMP specific phosphodiesterase, appears to act indirectly. Although little evidence supports an age-related decline in this system, considerable evidence indicates that this approach can facilitate the transition from short-term to long-term memory and thus counterbalance defects in long-term memory, which may be due to other causes. A second approach, inhibition of l-type voltage gated calcium channels (LVGCCs) may be a specific corrective for a molecular pathology of aging, as substantial evidence indicates that an ongoing increase occurs throughout the lifespan in the density of these channels in hippocampal pyramidal cells, with a concomitant reduction in cellular excitability. Because LVGCCs are also crucial to extinction, a paradigm of inhibitory learning, age-related memory impairment may be an unfortunate side effect of a developmental process necessary to the maturation of the ability to suppress inappropriate behavior, an interpretation consistent with the antagonistic pleiotropy theory of aging.

  9. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10.

    PubMed

    Miyamoto, M

    1997-01-01

    Senescence-Accelerated Mouse (SAM), a murine model of accelerated senescence, has been established by Takeda et al. (1981). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. In 1991 there were eight different substrains in the P-series, which commonly exhibited accelerated aging with a shortened life span (Takeda et al., 1991). Among the P-series, we have found that SAMP8 mice show significant impairments in a variety of learning tasks when compared with SAMR1 mice (Miyamoto et al., 1986). Further studies suggest that SAMP8 exhibits an age-related emotional disorder characterized by reduced anxiety-like behavior (Miyamoto et al., 1992). On the other hand, it has been shown that SAMP10 exhibits brain atrophy and learning impairments in an avoidance task (Shimada et al., 1992, 1993). Here, characteristics of age-related deficits in learning and memory, changes in emotional behavior, and abnormality of circadian rhythms in SAMP8 and SAMP10 mice are described. In the experiments, SAMP8/Ta (SAMP8), SAMP10/(/)Ta (SAMP10) and SAMR1TA (SAMR1) reared under specific pathogen-free conditions at Takeda Chemical Industries were used. PMID:9088911

  10. Attention deficit and hyperactivity disorder (ADHD) and learning disabilities (LD): adolescents perspective.

    PubMed

    Brook, Uzi; Boaz, Mona

    2005-08-01

    Three hundred and eight pupils in the age group 12-18 years were interviewed and examined. They had been diagnosed as having attention deficit and hyperactivity disorder (ADHD) and learning disabilities (LD), and were attending a high school devoted to special education. Their classification into subgroups was as follows: ADHD - inattentive (I) = 22.1%, ADHD - hyperactivity/impulsivity (HI) = 12.3% and combined = 42.2%. Only 25% of them were treated by methylphenidate (Ritalin). Ninety-four percent of them were diagnosed with comorbidity of 'learning disabilities'. Thirty-four percent of them reported being severely stressed when going to school and sitting in class. Their complaints were: tiredness and excessive needs to sleep, frequent quarrelling with close friends, feeling different from other classmates and having low self-esteem (SE). They complaint that their parents don't understand them. Things that irritated them the most were being lied to and coercion by others. The authors suggest to consider ADHD/LD as neurobehavioral disability. It is mandatory to prepare them for adult life with proper social skills and a suitable occupation. PMID:16009295

  11. proBDNF Attenuates Hippocampal Neurogenesis and Induces Learning and Memory Deficits in Aged Mice.

    PubMed

    Chen, Jia; Li, Cheng-Ren; Yang, Heng; Liu, Juan; Zhang, Tao; Jiao, Shu-Sheng; Wang, Yan-Jiang; Xu, Zhi-Qiang

    2016-01-01

    Mature brain-derived neurotrophic factor has shown promotive effect on neural cells in rodents, including neural proliferation, differentiation, survival, and synaptic formation. Conversely, the precursor of brain-derived neurotrophic factor (proBDNF) has been emerging as a differing protein against its mature form, for its critical role in aging process and neurodegenerative diseases. In the present study, we investigated the role of proBDNF in neurogenesis in the hippocampal dentate gyrus of aged mice and examined the changes in mice learning and memory functions. The results showed that the newborn cells in the hippocampus revealed a significant decline in proBDNF-treated group compared with bovine serum albumin group, but an elevated level in anti-proBDNF group. During the maturation period, no significant change was observed in the proportions of phenotype of the newborn cells among the three groups. In water maze, proBDNF-treated mice had poorer scores in place navigation test and probe test, compared with those from any other group. Thus, we conclude that proBDNF attenuates neurogenesis in the hippocampus and induces the deficits in learning and memory functions of aged mice.

  12. Chronic postnatal ornithine administration to rats provokes learning deficit in the open field task.

    PubMed

    Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Tonin, Anelise Miotti; Grings, Mateus; Moura, Alana Pimentel; Ritter, Luciana; Zanatta, Angela; Knebel, Lisiane Aurélio; Lobato, Vannessa Araujo; Pettenuzzo, Letícia Ferreira; Vargas, Carmen Regla; Leipnitz, Guilhian; Wajner, Moacir

    2012-12-01

    Hyperornithinemia is the biochemical hallmark of hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, an inherited metabolic disease clinically characterized by mental retardation whose pathogenesis is still poorly known. In the present work, we produced a chemical animal model of hyperornithinemia induced by a subcutaneous injection of saline-buffered Orn (2-5 μmol/g body weight) to rats. High brain Orn concentrations were achieved, indicating that Orn is permeable to the blood brain barrier. We then investigated the effect of early chronic postnatal administration of Orn on physical development and on the performance of adult rats in the open field, the Morris water maze and in the step down inhibitory avoidance tasks. Chronic Orn treatment had no effect on the appearance of coat, eye opening or upper incisor eruption, nor on the free-fall righting reflex and on the adult rat performance in the Morris water maze and in the inhibitory avoidance tasks, suggesting that physical development, aversive and spatial localization were not changed by Orn. However, Orn-treated rats did not habituate to the open field apparatus, implying a deficit of learning/memory. Motor activity was the same for Orn- and saline- injected animals. We also verified that Orn subcutaneous injections provoked lipid peroxidation in the brain, as determined by a significant increase of thiobarbituric acid-reactive substances levels. Our results indicate that chronic early postnatal hyperornithinemia may impair the central nervous system, causing minor disabilities which result in specific learning deficiencies. PMID:22699997

  13. Effects of a Novel Cognition-Enhancing Agent on Fetal Ethanol-Induced Learning Deficits

    PubMed Central

    Savage, Daniel D.; Rosenberg, Martina J.; Wolff, Christina R.; Akers, Katherine G.; El-Emawy, Ahmed; Staples, Miranda C.; Varaschin, Rafael K.; Wright, Carrie A.; Seidel, Jessica L.; Caldwell, Kevin K.; Hamilton, Derek A.

    2013-01-01

    Background Drinking during pregnancy has been associated with learning disabilities in affected offspring. At present, there are no clinically effective pharmacotherapeutic interventions for these learning deficits. Here, we examined the effects of ABT-239, a histamine H3 receptor antagonist, on fetal ethanol-induced fear conditioning and spatial memory deficits. Methods and Results Long-Evans rat dams stably consumed a mean of 2.82 g ethanol/kg during a 4-hour period each day during pregnancy. This voluntary drinking pattern produced a mean peak serum ethanol level of 84 mg/dl. Maternal weight gain, litter size and birth weights were not different between the ethanol-consuming and control groups. Female adult offspring from the control and fetal alcohol-exposed (FAE) groups received saline or 1 mg ABT-239/kg 30 minutes prior to fear conditioning training. Three days later, freezing time to the context was significantly reduced in saline-treated FAE rats compared to control. Freezing time in ABT-239-treated FAE rats was not different than that in controls. In the spatial navigation study, adult male offspring received a single injection of saline or ABT-239 30 minutes prior to 12 training trials on a fixed platform version of the Morris Water Task. All rats reached the same performance asymptote on Trials 9 to 12 on Day 1. However, 4 days later, first-trial retention of platform location was significantly worse in the saline-treated FAE rats compared control offspring. Retention by ABT-239-treated FAE rats was similar to that by controls. ABT-239’s effect on spatial memory retention in FAE rats was dose dependent. Conclusions These results suggest that ABT-239 administered prior to training can improve retention of acquired information by FAE offspring on more challenging versions of hippocampal-sensitive learning tasks. Further, the differential effects of ABT-239 in FAE offspring compared to controls raises questions about the impact of fetal ethanol exposure

  14. Diphenyl diselenide diet intake improves spatial learning and memory deficits in hypothyroid female rats.

    PubMed

    Dias, Glaecir Roseni Mundstock; Vieira, Francielli Araújo; Dobrachinski, Fernando; Bridi, Jéssika Cristina; Balk, Rodrigo de Souza; Soares, Félix Antunes; Nogueira, Cristina Wayne; Barbosa, Nilda Berenice de Vargas

    2012-04-01

    Cognitive deficits have been observed in different animal models of adult-onset hypothyroidism. Thus, this study was delineated to evaluate whether diphenyl diselenide, an organoselenium compound with neuroprotective and antioxidant properties, could afford protection against the detrimental effects of hypothyroidism on behavioral parameters. Hypothyroidism condition was induced in female rats by continuous exposure to methimazole (MTZ) at 20 mg/100 ml in the drinking water, during 3 months. MTZ-induced hypothyroid rats were fed with either standard or a diet containing 5 ppm of diphenyl diselenide for 3 months. Behavioral assessments were performed monthly, in the following order: elevated plus maze, open field and Morris water maze. The levels of thyroid hormones in the animals exposed to MTZ were lower than control until the end of experimental period. The rats exposed to MTZ had a significant weight loss from the first month, which was not modified by diphenyl diselenide supplementation. In elevated plus maze test, MTZ exposure caused a reduction on the number of entries of animals in closed arms, which was avoided by diphenyl diselenide supplementation. In Morris water maze, the parameters latency to reach the platform and distance performed to find the escape platform in the test session were significantly greater in MTZ group when compared to control. These cognitive deficits observed in MTZ-induced hypothyroid rats were restored by dietary diphenyl diselenide. The group fed with diphenyl diselenide alone exhibited a better spatial learning and memory capability in some parameters of Morris water maze when compared to the control group. In summary, our data provide evidence of the effectiveness of dietary diphenyl diselenide in improving the performance of control and hypothyroid rats in the water maze test.

  15. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  16. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  17. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  18. Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection.

    PubMed

    Matamales, Miriam; Skrbis, Zala; Hatch, Robert J; Balleine, Bernard W; Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-04-20

    For goal-directed action to remain adaptive, new strategies are required to accommodate environmental changes, a process for which parafascicular thalamic modulation of cholinergic interneurons in the striatum (PF-to-CIN) appears critical. In the elderly, however, previously acquired experience frequently interferes with new learning, yet the source of this effect has remained unexplored. Here, combining sophisticated behavioral designs, cell-specific manipulation, and extensive neuronal imaging, we investigated the involvement of the PF-to-CIN pathway in this process. We found functional alterations of this circuit in aged mice that were consistent with their incapacity to update initial goal-directed learning, resulting in faulty activation of projection neurons in the striatum. Toxicogenetic ablation of CINs in young mice reproduced these behavioral and neuronal defects, suggesting that age-related deficits in PF-to-CIN function reduce the ability of older individuals to resolve conflict between actions, likely contributing to impairments in adaptive goal-directed action and executive control in aging. VIDEO ABSTRACT. PMID:27100198

  19. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS.

    PubMed

    Longoni, Giulia; Rocca, Maria A; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2015-01-01

    The hippocampus has a critical role in episodic memory and visuospatial learning and consolidation. We assessed the patterns of whole and regional hippocampal atrophy in a large group of multiple sclerosis (MS) patients, and their correlations with neuropsychological impairment. From 103 MS patients and 28 healthy controls (HC), brain dual-echo and high-resolution 3D T1-weighted images were acquired using a 3.0-Tesla scanner. All patients underwent a neuropsychological assessment of hippocampal-related cognitive functions, including Paired Associate Word Learning, Short Story, delayed recall of Rey-Osterrieth Complex Figure and Paced Auditory Serial Attention tests. The hippocampi were manually segmented and volumes derived. Regional atrophy distribution was assessed using a radial mapping analysis. Correlations between hippocampal atrophy and clinical, neuropsychological and MRI metrics were also evaluated. Hippocampal volume was reduced in MS patients vs HC (p < 0.001 for both right and hippocampus). In MS patients, radial atrophy affected CA1 subfield and subiculum of posterior hippocampus, bilaterally. The dentate hilus (DG:H) of the right hippocampal head was also affected. Regional hippocampal atrophy correlated with brain T2 and T1 lesion volumes, while no correlation was found with disability. Damage to the CA1 and subiculum was significantly correlated to the performances at hippocampal-targeted neuropsychological tests. These results show that hippocampal subregions have a different vulnerability to MS-related damage, with a relative sparing of the head of the left hippocampus. The assessment of regional hippocampal atrophy may help explain deficits of specific cognitive functions in MS patients, including memory and visuospatial abilities. PMID:24189776

  20. Immunology of age-related macular degeneration

    PubMed Central

    Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.

    2014-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979

  1. [Epidemiology of age related macular degeneration].

    PubMed

    Leveziel, N; Delcourt, C; Zerbib, J; Dollfus, H; Kaplan, J; Benlian, P; Coscas, G; Souied, E H; Soubrane, G

    2009-06-01

    Age-related macular degeneration (ARMD) is a multifactorial and polygenic disease and is the main cause of vision loss in developed countries. The environmental factors of ARMD can modify prevalence and incidence of this disease. This article is a review of the main environmental factors currently recognized as at risk or protective factor for ARMD. Modification of these factors is of crucial importance because it could delay the onset of exudative or atrophic forms of the disease. PMID:19515460

  2. Do Problems with Information Processing Affect the Process of Psychotherapy for Adults with Learning Disabilities or Attention Deficit/Hyperactivity Disorder?

    ERIC Educational Resources Information Center

    Cosden, Merith; Patz, Sarah; Smith, Steven

    2009-01-01

    Problems in processing information can affect psychosocial functioning. Psychotherapy can be used to address psychosocial problems; however, the same information-processing problems that contribute to disabilities, such as learning disabilities (LD) or attention deficit/hyperactivity disorder (ADHD), particularly deficits in auditory processing…

  3. Age differences in learning emerge from an insufficient representation of uncertainty in older adults.

    PubMed

    Nassar, Matthew R; Bruckner, Rasmus; Gold, Joshua I; Li, Shu-Chen; Heekeren, Hauke R; Eppinger, Ben

    2016-01-01

    Healthy aging can lead to impairments in learning that affect many laboratory and real-life tasks. These tasks often involve the acquisition of dynamic contingencies, which requires adjusting the rate of learning to environmental statistics. For example, learning rate should increase when expectations are uncertain (uncertainty), outcomes are surprising (surprise) or contingencies are more likely to change (hazard rate). In this study, we combine computational modelling with an age-comparative behavioural study to test whether age-related learning deficits emerge from a failure to optimize learning according to the three factors mentioned above. Our results suggest that learning deficits observed in healthy older adults are driven by a diminished capacity to represent and use uncertainty to guide learning. These findings provide insight into age-related cognitive changes and demonstrate how learning deficits can emerge from a failure to accurately assess how much should be learned. PMID:27282467

  4. Age differences in learning emerge from an insufficient representation of uncertainty in older adults

    PubMed Central

    Nassar, Matthew R.; Bruckner, Rasmus; Gold, Joshua I.; Li, Shu-Chen; Heekeren, Hauke R.; Eppinger, Ben

    2016-01-01

    Healthy aging can lead to impairments in learning that affect many laboratory and real-life tasks. These tasks often involve the acquisition of dynamic contingencies, which requires adjusting the rate of learning to environmental statistics. For example, learning rate should increase when expectations are uncertain (uncertainty), outcomes are surprising (surprise) or contingencies are more likely to change (hazard rate). In this study, we combine computational modelling with an age-comparative behavioural study to test whether age-related learning deficits emerge from a failure to optimize learning according to the three factors mentioned above. Our results suggest that learning deficits observed in healthy older adults are driven by a diminished capacity to represent and use uncertainty to guide learning. These findings provide insight into age-related cognitive changes and demonstrate how learning deficits can emerge from a failure to accurately assess how much should be learned. PMID:27282467

  5. Jordan-3: measuring visual reversals in children as symptoms of learning disability and attention-deficit/hyperactivity disorder.

    PubMed

    Jordan, Brian T; Martin, Nancy; Austin, J Sue

    2012-12-01

    The purpose of this research was to establish new norms for the Jordan-3 for children ages 5 to 18 years. The research also investigated the frequency of visual reversals in children previously identified as having reading disability, attention-deficit/hyperactivity disorder, and broader learning disabilities. Participants were regular education students, ages 5 through 18 years, and special education students previously diagnosed with attention-deficit/hyperactivity disorder, reading disability, or broader learning disability. Jordan-3 Accuracy and Error raw scores were compared to assess if there was a significant difference between the two groups. Mean Accuracy and Error scores were compared for males and females. Children with learning disability and attention-deficit/hyperactivity disorder had higher reversals when compared to regular education children, which lends continued support to the Jordan-3 as a valid and reliable measure of visual reversals in children and adolescents. This study illustrates the utility of the Jordan-3 when assessing children who may require remediation to reach their academic potential.

  6. Cognitive Patterns and Learning Disabilities in Cleft Palate Children with Verbal Deficits.

    ERIC Educational Resources Information Center

    Richman, Lynn C.

    1980-01-01

    The study examined patterns of cognitive ability in 57 cleft lip and palate children (ages 7 to 9) with verbal deficit, but without general intellectual retardation to evaluate whether the verbal disability displayed by these children was related primarily to a specific verbal expression deficit or a more general symbolic mediation problem.…

  7. Grammar Predicts Procedural Learning and Consolidation Deficits in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Hedenius, Martina; Persson, Jonas; Tremblay, Antoine; Adi-Japha, Esther; Verissimo, Joao; Dye, Cristina D.; Alm, Per; Jennische, Margareta; Tomblin, J. Bruce; Ullman, Michael T.

    2011-01-01

    The Procedural Deficit Hypothesis (PDH) posits that Specific Language Impairment (SLI) can be largely explained by abnormalities of brain structures that subserve procedural memory. The PDH predicts impairments of procedural memory itself, and that such impairments underlie the grammatical deficits observed in the disorder. Previous studies have…

  8. Support for learning goes beyond academic support: Voices of students with Asperger's disorder and attention deficit hyperactivity disorder.

    PubMed

    Bolic Baric, Vedrana; Hellberg, Kristina; Kjellberg, Anette; Hemmingsson, Helena

    2016-02-01

    The purpose of this study was to describe and explore the experiences of support at school among young adults with Asperger's disorder and attention deficit hyperactivity disorder and also to examine what support they, in retrospect, described as influencing learning. Purposive sampling was used to enroll participants. Data were collected through semi-structured interviews with 13 young adults aged between 20 and 29 years. A qualitative analysis, based on interpreting people's experiences, was conducted by grouping and searching for patterns in data. The findings indicate that the participants experienced difficulties at school that included academic, social, and emotional conditions, all of which could influence learning. Support for learning included small groups, individualized teaching methods, teachers who cared, and practical and emotional support. These clusters together confirm the overall understanding that support for learning aligns academic and psychosocial support. In conclusion, academic support combined with psychosocial support at school seems to be crucial for learning among students with Asperger's disorder and attention deficit hyperactivity disorder.

  9. Glabridin as a major active isoflavan from Glycyrrhiza glabra (licorice) reverses learning and memory deficits in diabetic rats.

    PubMed

    Hasanein, Parisa

    2011-06-01

    Cognitive impairment occurs in diabetes mellitus. Glabridin as a major active flavonoids in Glycyrrhiza glabra (licorice) improves learning and memory in mice. In the present study, we investigated the effect of chronic treatment with glabridin (5, 25 and 50 mg/kg, p.o.) on cognitive function in control and streptozotocin (STZ)-induced diabetic rats.Animals were divided into untreated control, glabridin-treated control (5, 25 and 50 mg/kg), untreated diabetic and glabridin treated diabetic (5, 25 and 50 mg/kg) groups. Treatments were begun at the onset of hyperglycemia. Passive avoidance learning (PAL) and memory was assessed 30 days later. Diabetes caused cognition deficits in the PAL and memory paradigm. While oral glabridin administration (25 and 50 mg/kg) improved learning and memory in non-diabetic rats, it reversed learning and memory deficits of diabetic rats. Low dose glabridin (5 mg/kg) did not alter cognitive function in non-diabetic and diabetic groups. Glabridin treatment partially improved the reduced body weight and hyperglycemia of diabetic rats although the differences were not significant. The combination of antioxidant, neuroprotective and anticholinesterase properties of glabridin may all be responsible for the observed effects. These results show that glabridin prevented the deleterious effects of diabetes on learning and memory in rats. Further studies are warranted for clinical use of glabridin in the management of demented diabetic patients.

  10. Genetic Markers in Biological Fluids for Aging-Related Major Neurocognitive Disorder

    PubMed Central

    Castro-Chavira, S.A.; Fernández, T.; Nicolini, H.; Diaz-Cintra, S.; Prado-Alcalá, R.A.

    2015-01-01

    Aging-related major neurocognitive disorder (NCD), formerly named dementia, comprises of the different acquired diseases whose primary deficit is impairment in cognitive functions such as complex attention, executive function, learning and memory, language, perceptual/motor skills, and social cognition, and that are related to specific brain regions and/or networks. According to its etiology, the most common subtypes of major NCDs are due to Alzheimer’s disease (AD), vascular disease (VaD), Lewy body disease (LBD), and frontotemporal lobar degeneration (FTLD). These pathologies are frequently present in mixed forms, i.e., AD plus VaD or AD plus LBD, thus diagnosed as due to multiple etiologies. In this paper, the definitions, criteria, pathologies, subtypes and genetic markers for the most common age-related major NCD subtypes are summarized. The current diagnostic criteria consider cognitive decline leading to major NCD or dementia as a progressive degenerative process with an underlying neuropathology that begins before the manifestation of symptoms. Biomarkers associated with this asymptomatic phase are being developed as accurate risk factor and biomarker assessments are fundamental to provide timely treatment since no treatments to prevent or cure NCD yet exist. Biological fluid assessment represents a safer, cheaper and less invasive method compared to contrast imaging studies to predict NCD appearance. Genetic factors particularly have a key role not only in predicting development of the disease but also the age of onset as well as the presentation of comorbidities that may contribute to the disease pathology and trigger synergistic mechanisms which may, in turn, accelerate the neurodegenerative process and its resultant behavioral and functional disorders. PMID:25731625

  11. Genetic markers in biological fluids for aging-related major neurocognitive disorder.

    PubMed

    Castro-Chavira, S A; Fernandez, T; Nicolini, H; Diaz-Cintra, S; Prado-Alcala, R A

    2015-01-01

    Aging-related major neurocognitive disorder (NCD), formerly named dementia, comprises of the different acquired diseases whose primary deficit is impairment in cognitive functions such as complex attention, executive function, learning and memory, language, perceptual/motor skills, and social cognition, and that are related to specific brain regions and/or networks. According to its etiology, the most common subtypes of major NCDs are due to Alzheimer' s disease (AD), vascular disease (VaD), Lewy body disease (LBD), and frontotemporal lobar degeneration (FTLD). These pathologies are frequently present in mixed forms, i.e., AD plus VaD or AD plus LBD, thus diagnosed as due to multiple etiologies. In this paper, the definitions, criteria, pathologies, subtypes and genetic markers for the most common age-related major NCD subtypes are summarized. The current diagnostic criteria consider cognitive decline leading to major NCD or dementia as a progressive degenerative process with an underlying neuropathology that begins before the manifestation of symptoms. Biomarkers associated with this asymptomatic phase are being developed as accurate risk factor and biomarker assessments are fundamental to provide timely treatment since no treatments to prevent or cure NCD yet exist. Biological fluid assessment represents a safer, cheaper and less invasive method compared to contrast imaging studies to predict NCD appearance. Genetic factors particularly have a key role not only in predicting development of the disease but also the age of onset as well as the presentation of comorbidities that may contribute to the disease pathology and trigger synergistic mechanisms which may, in turn, accelerate the neurodegenerative process and its resultant behavioral and functional disorders. PMID:25731625

  12. Deficits in social behavior and reversal learning are more prevalent in male offspring of VIP deficient female mice

    PubMed Central

    Stack, Conor M.; Lim, Maria A.; Cuasay, Katrina; Stone, Madeleine M.; Seibert, Kimberly. M.; Spivak-Pohis, Irit; Crawley, Jacqueline N.; Waschek, James A.; Hill, Joanna M.

    2008-01-01

    Blockage of vasoactive intestinal peptide (VIP) receptors during early embryogenesis in the mouse has been shown to result in developmental delays in neonates, and social behavior deficits selectively in adult male offspring. Offspring of VIP deficient mothers (VIP +/−) also exhibited developmental delays, and reductions in maternal affiliation and play behavior. In the current study, comparisons among the offspring of VIP deficient mothers (VIP +/−) mated to VIP +/− males with the offspring of wild type (WT) mothers mated to VIP +/− males allowed assessment of the contributions of both maternal and offspring VIP genotype to general health measures, social behavior, fear conditioning, and spatial learning and memory in the water maze. These comparisons revealed few differences in general health among offspring of WT and VIP deficient mothers, and all offspring exhibited normal responses in fear conditioning and in the acquisition phase of spatial discrimination in the water maze. WT mothers produced offspring that were normal in all tests; the reduced VIP in their VIP +/− offspring apparently did not contribute to any defects in the measures under study. However, regardless of their own VIP genotype, all male offspring of VIP deficient mothers exhibited severe deficits in social approach behavior and reversal learning. The deficits in these behaviors in the female offspring of VIP deficient mothers were less severe than in their male littermates, and the extent of their impairment was related to their own VIP genotype. This study has shown that intrauterine conditions had a greater influence on behavioral outcome than did genetic inheritance. In addition, the greater prevalence of deficits in social behavior and the resistance to change seen in reversal learning in the male offspring of VIP deficient mothers indicate a potential usefulness of the VIP knockout mouse in furthering the understanding of neurodevelopmental disorders such as autism. PMID

  13. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks

    PubMed Central

    Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/−) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/− mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/−, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/− mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey–Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/− mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/− failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/−. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/− mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome. PMID:26572653

  14. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks.

    PubMed

    Yang, Mu; Lewis, Freeman C; Sarvi, Michael S; Foley, Gillian M; Crawley, Jacqueline N

    2015-12-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/- mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/-, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/- mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey-Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/- mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/- failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/-. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/- mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome.

  15. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks.

    PubMed

    Yang, Mu; Lewis, Freeman C; Sarvi, Michael S; Foley, Gillian M; Crawley, Jacqueline N

    2015-12-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/- mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/-, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/- mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey-Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/- mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/- failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/-. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/- mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome. PMID:26572653

  16. Age-related hair pigment loss.

    PubMed

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. PMID:26370651

  17. [Age-related changes of the brain].

    PubMed

    Paltsyn, A A; Komissarova, S V

    2015-01-01

    The first morphological signs of aging of the brain are found in the white matter already at a young age (20-40 years), and later (40-50 years) in a gray matter. After the 40-50 years appear and in subsequently are becoming more pronounced functional manifestations of morphological changes: the weakening of sensory-motor and cognitive abilities. While in principle this dynamic of age-related changes is inevitable, the rate of their development to a large extent determined by the genetic characteristics and lifestyle of the individual. According to modem concepts age-related changes in the number of nerve cells are different in different parts of the brain. However, these changes are not large and are not the main cause of senile decline brain. The main processes that contribute to the degradation of the brain develop as in the bodies of neurons and in neuropil. In the bodies of neurons--it is a damage (usually decrease) of the level of expression of many genes, and especially of the genes determining cell communication. In neuropil: reduction in the number of synapses and the strength of synaptic connections, reduction in the number of dendritic spines and axonal buttons, reduction in the number and thickness of the dendritic branches, demyelination of axons. As the result of these events, it becomes a violation of the rate of formation and rebuilding neuronal circuits. It is deplete associative ability, brain plasticity, and memory. PMID:27116888

  18. Comparative Effect of Lisinopril and Fosinopril in Mitigating Learning and Memory Deficit in Scopolamine-Induced Amnesic Rats.

    PubMed

    Deb, Debasree; Bairy, K L; Nayak, Veena; Rao, Mohandas

    2015-01-01

    Lisinopril and fosinopril were compared on scopolamine-induced learning and memory deficits in rats. A total of eighty-four male Wistar rats were divided into seven groups. Group I received 2% gum acacia orally for 4 weeks, group II received normal saline, and group III received scopolamine (2 mg/kg/ip) as single dose. Groups IV and V received lisinopril ( 0.225 mg/kg and 0.45 mg/kg), while Groups VI and VII received fosinopril (0.90 mg/kg and 1.80 mg/kg), respectively, orally for four weeks, followed by scopolamine (2 mg/kg/ip) given 45 minutes prior to experimental procedure. Evaluation of learning and memory was assessed by using passive avoidance, Morris water maze, and elevated plus maze tests followed by analysis of hippocampal morphology and quantification of the number of surviving neurons. Scopolamine induced marked impairment of memory in behavioral tests which correlated with morphological changes in hippocampus. Pretreatment with fosinopril 1.80 mg/kg was found to significantly ameliorate the memory deficits and hippocampal degeneration induced by scopolamine. Fosinopril exhibits antiamnesic activity, indicating its possible role in preventing memory deficits seen in dementia though the precise mechanism underlying this effect needs to be further evaluated. PMID:26300914

  19. Knowledge and Attitudes About Attention-Deficit/Hyperactivity Disorder and Specific Learning Disorder in an Urban Indian Population.

    PubMed

    Mukherjee, Sayantani; Shah, Henal R; Ramanathan, Seethalakshmi; Dewan, Mantosh

    2016-06-01

    Attention-deficit/hyperactivity disorder (ADHD) and specific learning disorders (SLDs) are an important cause of scholastic backwardness among children and often go unrecognized. Few studies have examined knowledge and attitudes toward ADHD and SLD among school-aged children. To address this deficit, 120 school-aged children, attending a child guidance clinic in Mumbai, were interviewed using a questionnaire that examined children's knowledge and attitudes about ADHD and SLD. The results were compared both qualitatively and quantitatively with a frequently occurring medical illness, common cold. Approximately 80% to 100% of children were aware of their illness; however, a large variation was noted in the proportion of children (15%-80%) who could describe their symptoms, provide accurate attributions for their illness, and identify treatment modalities. Children with ADHD reported greater control over their illness. The study identified a significant lack of knowledge about ADHD and SLD among school-aged children in India and discusses implications of this finding.

  20. Age-related differences in associative memory: the role of sensory decline.

    PubMed

    Naveh-Benjamin, Moshe; Kilb, Angela

    2014-09-01

    Numerous studies show age-related decline in episodic memory. One of the explanations for this decline points to older adults' deficit in associative memory, reflecting the difficulties they have in binding features of episodes into cohesive entities and retrieving these bindings. Here, we evaluate the degree to which this deficit may be mediated by sensory loss associated with increased age. In 2 experiments, young adults studied word pairs that were degraded at encoding either visually (Experiment 1) or auditorily (Experiment 2). We then tested their memory for both the component words and the associations with recognition tests. For both experiments, young adults under nondegraded conditions showed an advantage in associative over item memory, relative to a group of older adults. In contrast, under perceptually degraded conditions younger adults performed similarly to the older adults who were tested under nondegraded conditions. More specifically, under perceptual degradation, young adults' associative memory declined and their component memory improved somewhat, resulting in an associative deficit, similar to that shown by older adults. This evidence is consistent with a sensory acuity decline in old age being one mediator in the associative deficit of older adults. These results broaden our understanding of age-related memory changes and how sensory and cognitive processes interact to shape these changes. The theoretical implications of these results are discussed with respect to mechanisms underlying age-related changes in episodic memory and resource tradeoffs in the encoding of component and associative memory.

  1. [Treatment options for age-related infertility].

    PubMed

    Belaisch-Allart, Joëlle

    2010-06-20

    There has been a consistent trend towards delayed childbearing in most Western countries. Treatment options for age-related infertility includes controlled ovarian hyperstimulation with intrauterine insemination and in vitro fertilization (IVF). A sharp decline in pregnancy rate with advancing female age is noted with assisted reproductive technologies (ART) including IVF. Evaluation and treatment of infertility should not be delayed in women 35 years and older. No treatment other than oocyte donation has been shown to be effective for women over 40 and for those with compromised ovarian reserve, but its pratice is not easy in France hence the procreative tourism. As an increasing number of couples choose to postpone childbearing, they should be informed that maternal age is an important risk factor for failure to conceive. PMID:20623902

  2. [Epidemiology of age-related macular degeneration].

    PubMed

    Brandl, C; Stark, K J; Wintergerst, M; Heinemann, M; Heid, I M; Finger, R P

    2016-09-01

    Age-related macular degeneration (AMD) is the main cause of blindness in industrialized societies. Population-based epidemiological investigations generate important data on prevalence, incidence, risk factors, and future trends. This review summarizes the most important epidemiological studies on AMD with a focus on their transferability to Germany including existing evidence for the main risk factors for AMD development and progression. Future tasks, such as the standardization of grading systems and the use of recent retinal imaging technology in epidemiological studies are discussed. In Germany, epidemiological data on AMD are scarce. However, the need for epidemiological research in ophthalmology is currently being addressed by several recently started population-based studies. PMID:27541733

  3. Inflammation in age-related macular degeneration.

    PubMed

    Ozaki, Ema; Campbell, Matthew; Kiang, Anna-Sophia; Humphries, Marian; Doyle, Sarah L; Humphries, Peter

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness in elderly individuals in the developed world, affecting 30-50 million people worldwide. AMD primarily affects the macular region of the retina that is responsible for the majority of central, color and daytime vision. The presence of drusen, extracellular protein aggregates that accumulate under the retinal pigment epithelium (RPE), is a major pathological hallmark in the early stages of the disease. The end stage 'dry' and 'wet' forms of the disease culminate in vision loss and are characterized by focal degeneration of the RPE and cone photoreceptors, and choroidal neovascularization (CNV), respectively. Being a multifactorial and genetically heterogeneous disease, the pathophysiology of AMD remains unclear, yet, there is ample evidence supporting immunological and inflammatory processes. Here, we review the recent literature implicating some of these immune processes in human AMD and in animal models. PMID:24664703

  4. Consequences of Age-Related Cognitive Declines

    PubMed Central

    Salthouse, Timothy

    2013-01-01

    Adult age differences in a variety of cognitive abilities are well documented, and many of those abilities have been found to be related to success in the workplace and in everyday life. However, increased age is seldom associated with lower levels of real-world functioning, and the reasons for this lab-life discrepancy are not well understood. This article briefly reviews research concerned with relations of age to cognition, relations of cognition to successful functioning outside the laboratory, and relations of age to measures of work performance and achievement. The final section discusses several possible explanations for why there are often little or no consequences of age-related cognitive declines in everyday functioning. PMID:21740223

  5. Medical bioremediation of age-related diseases

    PubMed Central

    Mathieu, Jacques M; Schloendorn, John; Rittmann, Bruce E; Alvarez, Pedro JJ

    2009-01-01

    Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods. PMID:19358742

  6. Age-related macular degeneration: current treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: Although important progress has been made in understanding age-related macular degeneration (AMD), management of the disease continues to be a challenge. AMD research has led to a widening of available treatment options and improved prognostic perspectives. This essay reviews these treatment options. Design: Interpretative essay. Methods: Literature review and interpretation. Results: Current treatments to preserve vision in patients with non-exudative AMD include antioxidant vitamins and mineral supplementations. Exudative AMD is currently most often treated monthly with anti-VEGF intravitreal injections. However, investigators are beginning to experiment with combination therapy and surgical approaches in an attempt to limit the number of treatment and reduce the financial burden on the health care system. Conclusion: By better understanding the basis and pathogenesis of AMD, newer therapies will continue to be developed that target specific pathways in patients with AMD, with the hoped for outcome of better management of the disease and improved visual acuity. PMID:19668560

  7. Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Prendergast, M. A.; Terry, A. V. Jr

    1999-01-01

    performance, or in tests of general locomotor activity. Furthermore, latencies to select a lever in the DSDT were not affected. These results suggest that PF-68 induced deficits in learning and memory without confounding peripheral motor, sensory, or motivational effects at the tested doses. Furthermore, none of the doses induced a conditioned taste aversion to a novel 0.1% saccharin solution indicating a lack of nausea or gastrointestinal malaise induced by the compound. The data indicate that increases in neuronal plasma membrane order may have significant effects on neurotransmitter function as well as learning and memory processes. Furthermore, compounds such as PF-68 may also offer novel tools for studying the role of neuronal PMO in mnemonic processes and changes in PMO resulting from age-related disorders such as AD.

  8. Age-Related Neurochemical Changes in the Vestibular Nuclei.

    PubMed

    Smith, Paul F

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa's ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  9. Age-Related Neurochemical Changes in the Vestibular Nuclei

    PubMed Central

    Smith, Paul F.

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa’s ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  10. A reversal learning task detects cognitive deficits in a Dachshund model of late-infantile neuronal ceroid lipofuscinosis

    PubMed Central

    Sanders, Douglas N.; Kanazono, Shinichi; Wininger, Fred A.; Whiting, Rebecca E.H.; Flournoy, Camille A.; Coates, Joan R.; Castaner, Lani J.; O’Brien, Dennis P.; Katz, Martin L.

    2011-01-01

    The neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive lysosomal storage diseases characterized by progressive neurodegeneration and by accumulation of autofluorescent storage material in the central nervous system and other tissues. One of the most prominent clinical signs of NCL is progressive decline in cognitive function. We previously described a frame shift mutation of TPP1 in miniature long-haired Dachshunds which causes an early-onset form of NCL analogous to classical late-infantile onset NCL (CLN2) in children. Dogs homozygous for the TPP1 mutation exhibit progressive neurological signs similar to those exhibited by human patients. In order to establish biomarkers for evaluating the efficacy of ongoing therapeutic studies in this canine model, we characterized phenotypic changes in 13 dogs through 9 months of age. Cognitive function was assessed using a T-maze reversal learning task. Cognitive dysfunction was detected in affected dogs as early as 6 months of age and worsened as the disease progressed. Physical and neurological examination, funduscopy, and electroretinography (ERG) were performed at regular intervals. Only changes in ERG responses revealed signs of disease progression earlier than the reversal learning task. In the later stages of the disease clinical signs of visual and motor deficits became evident. The visual and motor deficits were not severe enough to affect the performance of dogs in the T-maze. Declining performance on the reversal learning task is a sensitive measure of higher order cognitive dysfunction which can serve as a useful biomarker of disease progression. PMID:21745338

  11. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period.

    PubMed

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  12. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period

    PubMed Central

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  13. Improvement of Word Problem Solving and Basic Mathematics Competencies in Students with Attention Deficit/Hyperactivity Disorder and Mathematical Learning Difficulties

    ERIC Educational Resources Information Center

    González-Castro, Paloma; Cueli, Marisol; Areces, Débora; Rodríguez, Celestino; Sideridis, Georgios

    2016-01-01

    Problem solving represents a salient deficit in students with mathematical learning difficulties (MLD) primarily caused by difficulties with informal and formal mathematical competencies. This study proposes a computerized intervention tool, the integrated dynamic representation (IDR), for enhancing the early learning of basic mathematical…

  14. Involvement of dopamine D1 receptors of the hippocampal dentate gyrus in spatial learning and memory deficits in a rat model of vascular dementia.

    PubMed

    Wan, P; Wang, S; Zhang, Y; Lv, J; Jin, Q H

    2014-09-01

    We investigated the involvement of dopamine (DA) and its D1 receptors of the hippocampal dentate gyrus (DG) in spatial learning and memory deficits in a rat model of vascular dementia (VD) established by permanent bilateral carotid occlusion. Spatial learning and memory abilities of rats were measured by Morris water maze, and extracellular concentrations of DA in the DG were determined by in vivo microdialysis. The DA concentrations in the DG decreased in the VD rats compared with sham-operated group. Microinjection of SFK38393 (D1 receptor agonist) into the DG attenuates spatial learning and memory deficits in the VD rats. PMID:25272945

  15. Quantitative EEG neurofeedback for the treatment of pediatric attention-deficit/hyperactivity disorder, autism spectrum disorders, learning disorders, and epilepsy.

    PubMed

    Hurt, Elizabeth; Arnold, L Eugene; Lofthouse, Nicholas

    2014-07-01

    Neurofeedback (NF) using surface electroencephalographic signals has been used to treat various child psychiatric disorders by providing patients with video/audio information about their brain's electrical activity in real-time. Research data are reviewed and clinical recommendations are made regarding NF treatment of youth with attention deficit/hyperactivity disorder, autism, learning disorders, and epilepsy. Most NF studies are limited by methodological issues, such as failure to use or test the validity of a full-blind or sham NF. The safety of NF treatment has not been thoroughly investigated in youth or adults, although clinical experience suggests reasonable safety.

  16. DRYAD and ADH: Further comments on explaining age-related differences in memory.

    PubMed

    Naveh-Benjamin, Moshe; Smyth, Andrea C

    2016-02-01

    Recently, Smyth and Naveh-Benjamin (2016) questioned some of the main assumptions/hypotheses of DRYAD (or density of representations yields age-related deficits), a global-deficit model of aging and memory judgments (Benjamin, 2010; Benjamin et al., 2012). Smyth and Naveh-Benjamin (2016) provided empirical evidence that seems incompatible with DRYAD, but that fits the associative deficit hypothesis (ADH; Naveh-Benjamin, 2000), 1 specific-deficit theoretical view. In response, Aaron Benjamin (2016) offered a discussion of the complementary strengths and weaknesses of the DRYAD and the ADH, and the potential ways they might work together. We agree with many of his comments, but are not convinced that DRYAD is able to explain basic replicable empirical evidence of the type mentioned in Smyth and Naveh-Benjamin (2016). We discuss the reasons why we are not fully convinced by the demonstration of DRYAD's simulation of results presented in Benjamin (2016) and then present an implementation of ADH in a computationally based age-related impaired neuromodulation approach that was shown to simulate the basic empirical results of age-related associative memory deficits. We also discuss the issues of parsimony of theories and the appropriate type of representation, in the context of global versus specific deficits theoretical views. Finally, we show that the ADH's take on the distinction between items and associations has been adopted by some global computational models of memory. We believe that considerations of the above issues and others raised by Benjamin (2016) can lead to fruitful discussions that will benefit both theory development and existing knowledge of aging and memory.

  17. Using epsilon-greedy reinforcement learning methods to further understand ventromedial prefrontal patients' deficits on the Iowa Gambling Task.

    PubMed

    Kalidindi, Kiran; Bowman, Howard

    2007-08-01

    An important component of decision making is evaluating the expected result of a choice, using past experience. The way past experience is used to predict future rewards and punishments can have profound effects on decision making. The aim of this study is to further understand the possible role played by the ventromedial prefrontal cortex in decision making, using results from the Iowa Gambling Task (IGT). A number of theories in the literature offer potential explanations for the underlying cause of the deficit(s) found in bilateral ventromedial prefrontal lesion (VMF) patients on the IGT. An error-driven epsilon-greedy reinforcement learning method was found to produce a good match to both human normative and VMF patient groups from a number of studies. The model supports the theory that the VMF patients are less strategic (more explorative), which could be due to a working memory deficit, and are more reactive than healthy controls. This last aspect seems consistent with a 'myopia' for future consequences.

  18. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  19. Aging, frailty and age-related diseases.

    PubMed

    Fulop, T; Larbi, A; Witkowski, J M; McElhaney, J; Loeb, M; Mitnitski, A; Pawelec, G

    2010-10-01

    The concept of frailty as a medically distinct syndrome has evolved based on the clinical experience of geriatricians and is clinically well recognizable. Frailty is a nonspecific state of vulnerability, which reflects multisystem physiological change. These changes underlying frailty do not always achieve disease status, so some people, usually very elderly, are frail without a specific life threatening illness. Current thinking is that not only physical but also psychological, cognitive and social factors contribute to this syndrome and need to be taken into account in its definition and treatment. Together, these signs and symptoms seem to reflect a reduced functional reserve and consequent decrease in adaptation (resilience) to any sort of stressor and perhaps even in the absence of extrinsic stressors. The overall consequence is that frail elderly are at higher risk for accelerated physical and cognitive decline, disability and death. All these characteristics associated with frailty can easily be applied to the definition and characterization of the aging process per se and there is little consensus in the literature concerning the physiological/biological pathways associated with or determining frailty. It is probably true to say that a consensus view would implicate heightened chronic systemic inflammation as a major contributor to frailty. This review will focus on the relationship between aging, frailty and age-related diseases, and will highlight possible interventions to reduce the occurrence and effects of frailty in elderly people. PMID:20559726

  20. Physics of Age Related Macular Degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    2009-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer's disease, and Parkinson's disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. In this talk I will discuss a model of non-equilibrium cluster growth that we have developed for studying the formation and growth of lipofuscin in AMD [K.I. Mazzitello, C.M. Arizmendi, Fereydoon Family, H. E. Grossniklaus, Physical Review E (2009)]. I will also present an overview of our theoretical and computational efforts in modeling some other aspects of the physics of AMD, including CNV and the breakdown of Bruch's membrane [Ongoing collaboration with Abbas Shirinifard and James A. Glazier, Biocomplexity Institute and Department of Physics, Indiana University, Y. Jiang, Los Alamos, and Hans E. Grossniklaus, Department of Ophthalmology, Emory University].

  1. Age related degradation in operating nuclear plants

    SciTech Connect

    Hermann, R.A.; Davis, J.A.; Banic, M.J.

    1995-12-01

    The aging issues being addressed for today`s operating commercial nuclear power plants encompass a wide spectrum of components, complexities, and reasons for concern. Issues include such things as the intergranular stress corrosion cracking (IGSCC) of boiling water reactor (BWR) internals, the degradation of pressurized water reactor (PWR) Alloy 600 components by primary water stress corrosion cracking (PWSCC) to those associated with significant portions of piping systems, such as service water systems. a discussion of the regulatory activity and action associated with the above issues is provided. Proactive NRC/Industry programs for inspection and repair or replacement of affected components are essential for continued operation of these nuclear reactors. These programs are also essential as licensees consider license extensions for their facilities. These plants are licensed for 40 years and can be granted an extension for an additional 20 years of operation if all of the NRC rules and regulations are met. Proper handling of potential age related problems will be a key consideration in the granting of a license extension.

  2. Statistical physics of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer disease and Parkinson disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin in the aging RPE. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the RPE the larger ones become fixed and grow by aggregation.

  3. Evaluation of the Double-Deficit Hypothesis in College Students Referred for Learning Difficulties

    ERIC Educational Resources Information Center

    Cirino, Paul T.; Israelian, Marlyne K.; Morris, Mary K.; Morris, Robin D.

    2005-01-01

    The present study explored the double-deficit hypothesis (DDH) in a sample of 146 college students with and without reading disabilities (RD). The results indicated that although both phonological awareness (PA) and visual naming speed (VNS) contributed to performance on measures of decoding and comprehension, their relative contribution was…

  4. Learning to "Talk the Talk": The Relationship of Psychopathic Traits to Deficits in Empathy across Childhood

    ERIC Educational Resources Information Center

    Dadds, Mark R.; Hawes, David J.; Frost, Aaron D. J.; Vassallo, Shane; Bunn, Paul; Hunter, Kirsten; Merz, Sabine

    2009-01-01

    Background: Psychopathy is characterised by profound deficits in the human tendency to feel and care about what other people feel, often known as "affective empathy". On the other hand, the psychopath often has intact "cognitive" empathy skills, that is, he is able to describe what and why other people feel, even if he does not share or care about…

  5. Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures.

    PubMed

    Salas, C; Rodríguez, F; Vargas, J P; Durán, E; Torres, B

    1996-10-01

    The present work investigated whether the fish telencephalon is involved in spatial learning based on place strategies in a manner similar to mammalian hippocampus. Goldfish were trained in a 4-arm maze in a room with relevant spatial cues. Sham and to-be-ablated subjects were trained in each of 4 experimental procedures designed as follows: place, turn, place-turn, and control. After acquisition, complete ablations of both telencephalic hemispheres for the experimental groups were carried out. The results showed that ablation exclusively impaired performance in animals using place strategies; in these, accuracy fell to chance level during both postsurgery retraining and reversal periods. In the other groups, ablation of the telencephalon did not induce any significant deficit. These results suggest that the fish telencephalon plays a crucial role in complex place learning.

  6. Pairing Cholinergic Enhancement with Perceptual Training Promotes Recovery of Age-Related Changes in Rat Primary Auditory Cortex

    PubMed Central

    Voss, Patrice; Thomas, Maryse; Chou, You Chien; Cisneros-Franco, José Miguel; Ouellet, Lydia; de Villers-Sidani, Etienne

    2016-01-01

    We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible. PMID:27057359

  7. GENETICS OF HUMAN AGE RELATED DISORDERS.

    PubMed

    Srivastava, I; Thukral, N; Hasija, Y

    2015-01-01

    Aging is an inevitable biological phenomenon. The incidence of age related disorders (ARDs) such as cardiovascular diseases, cancer, arthritis, dementia, osteoporosis, diabetes, neurodegenerative diseases increase rapidly with aging. ARDs are becoming a key social and economic trouble for the world's elderly population (above 60 years), which is expected to reach 2 billion by 2050. Advancement in understanding of genetic associations, particularly through genome wide association studies (GWAS), has revealed a substantial contribution of genes to human aging and ARDs. In this review, we have focused on the recent understanding of the extent to which genetic predisposition may influence the aging process. Further analysis of the genetic association studies through pathway analysis several genes associated with multiple ARDs have been highlighted such as apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), cadherin 13 (CDH13), CDK5 regulatory subunit associated protein 1 (CDKAL-1), methylenetetrahydrofolate reductase (MTHFR), disrupted in schizophrenia 1 (DISC1), nitric oxide synthase 3 (NOS3), paraoxonase 1 (PON1), indicating that these genes could play a pivotal role in ARD causation. These genes were found to be significantly enriched in Jak-STAT signalling pathway, asthma and allograft rejection. Further, interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), estrogen receptor1 (ESR1), transforming growth factor, beta 1(TGFB1) and calmodulin 1 (CALM1) were found to be highly interconnected in network analysis. We believe that extensive research on the presence of common genetic variants among various ARDs may facilitate scientists to understand the biology behind ARDs causation. PMID:26856084

  8. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments

  9. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments.

  10. Dopamine-related deficit in reward learning after catecholamine depletion in unmedicated, remitted subjects with bulimia nervosa.

    PubMed

    Grob, Simona; Pizzagalli, Diego A; Dutra, Sunny J; Stern, Jair; Mörgeli, Hanspeter; Milos, Gabriella; Schnyder, Ulrich; Hasler, Gregor

    2012-07-01

    Disturbances in reward processing have been implicated in bulimia nervosa (BN). Abnormalities in processing reward-related stimuli might be linked to dysfunctions of the catecholaminergic neurotransmitter system, but findings have been inconclusive. A powerful way to investigate the relationship between catecholaminergic function and behavior is to examine behavioral changes in response to experimental catecholamine depletion (CD). The purpose of this study was to uncover putative catecholaminergic dysfunction in remitted subjects with BN who performed a reinforcement-learning task after CD. CD was achieved by oral alpha-methyl-para-tyrosine (AMPT) in 19 unmedicated female subjects with remitted BN (rBN) and 28 demographically matched healthy female controls (HC). Sham depletion administered identical capsules containing diphenhydramine. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were reward learning in a probabilistic reward task analyzed using signal-detection theory. Secondary outcome measures included self-report assessments, including the Eating Disorder Examination-Questionnaire. Relative to healthy controls, rBN subjects were characterized by blunted reward learning in the AMPT--but not in placebo--condition. Highlighting the specificity of these findings, groups did not differ in their ability to perceptually distinguish between stimuli. Increased CD-induced anhedonic (but not eating disorder) symptoms were associated with a reduced response bias toward a more frequently rewarded stimulus. In conclusion, under CD, rBN subjects showed reduced reward learning compared with healthy control subjects. These deficits uncover disturbance of the central reward processing systems in rBN related to altered brain catecholamine levels, which might reflect a trait-like deficit increasing vulnerability to BN.

  11. Dopamine-related deficit in reward learning after catecholamine depletion in unmedicated, remitted subjects with bulimia nervosa.

    PubMed

    Grob, Simona; Pizzagalli, Diego A; Dutra, Sunny J; Stern, Jair; Mörgeli, Hanspeter; Milos, Gabriella; Schnyder, Ulrich; Hasler, Gregor

    2012-07-01

    Disturbances in reward processing have been implicated in bulimia nervosa (BN). Abnormalities in processing reward-related stimuli might be linked to dysfunctions of the catecholaminergic neurotransmitter system, but findings have been inconclusive. A powerful way to investigate the relationship between catecholaminergic function and behavior is to examine behavioral changes in response to experimental catecholamine depletion (CD). The purpose of this study was to uncover putative catecholaminergic dysfunction in remitted subjects with BN who performed a reinforcement-learning task after CD. CD was achieved by oral alpha-methyl-para-tyrosine (AMPT) in 19 unmedicated female subjects with remitted BN (rBN) and 28 demographically matched healthy female controls (HC). Sham depletion administered identical capsules containing diphenhydramine. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were reward learning in a probabilistic reward task analyzed using signal-detection theory. Secondary outcome measures included self-report assessments, including the Eating Disorder Examination-Questionnaire. Relative to healthy controls, rBN subjects were characterized by blunted reward learning in the AMPT--but not in placebo--condition. Highlighting the specificity of these findings, groups did not differ in their ability to perceptually distinguish between stimuli. Increased CD-induced anhedonic (but not eating disorder) symptoms were associated with a reduced response bias toward a more frequently rewarded stimulus. In conclusion, under CD, rBN subjects showed reduced reward learning compared with healthy control subjects. These deficits uncover disturbance of the central reward processing systems in rBN related to altered brain catecholamine levels, which might reflect a trait-like deficit increasing vulnerability to BN. PMID:22491353

  12. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    PubMed

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear.

  13. Dopamine-Related Deficit in Reward Learning After Catecholamine Depletion in Unmedicated, Remitted Subjects with Bulimia Nervosa

    PubMed Central

    Grob, Simona; Pizzagalli, Diego A; Dutra, Sunny J; Stern, Jair; Mörgeli, Hanspeter; Milos, Gabriella; Schnyder, Ulrich; Hasler, Gregor

    2012-01-01

    Disturbances in reward processing have been implicated in bulimia nervosa (BN). Abnormalities in processing reward-related stimuli might be linked to dysfunctions of the catecholaminergic neurotransmitter system, but findings have been inconclusive. A powerful way to investigate the relationship between catecholaminergic function and behavior is to examine behavioral changes in response to experimental catecholamine depletion (CD). The purpose of this study was to uncover putative catecholaminergic dysfunction in remitted subjects with BN who performed a reinforcement-learning task after CD. CD was achieved by oral alpha-methyl-para-tyrosine (AMPT) in 19 unmedicated female subjects with remitted BN (rBN) and 28 demographically matched healthy female controls (HC). Sham depletion administered identical capsules containing diphenhydramine. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were reward learning in a probabilistic reward task analyzed using signal-detection theory. Secondary outcome measures included self-report assessments, including the Eating Disorder Examination-Questionnaire. Relative to healthy controls, rBN subjects were characterized by blunted reward learning in the AMPT—but not in placebo—condition. Highlighting the specificity of these findings, groups did not differ in their ability to perceptually distinguish between stimuli. Increased CD-induced anhedonic (but not eating disorder) symptoms were associated with a reduced response bias toward a more frequently rewarded stimulus. In conclusion, under CD, rBN subjects showed reduced reward learning compared with healthy control subjects. These deficits uncover disturbance of the central reward processing systems in rBN related to altered brain catecholamine levels, which might reflect a trait-like deficit increasing vulnerability to BN. PMID:22491353

  14. Inhibitory Effects of Eucommia ulmoides Oliv. Bark on Scopolamine-Induced Learning and Memory Deficits in Mice.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Joo, Hyun-Joong; Lee, Seok-Yong; Jang, Choon-Gon

    2013-11-01

    Eucommia ulmoides Oliv. Bark (EUE) is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia as well as to promote longevity. In this study, we tested the effects of EUE aqueous extract in graded doses to protect and enhance cognition in scopolamine-induced learning and memory impairments in mice. EUE significantly improved the impairment of short-term or working memory induced by scopolamine in the Y-maze and significantly reversed learning and memory deficits in mice as measured by the passive avoidance and Morris water maze tests. One day after the last trial session of the Morris water maze test (probe trial session), EUE dramatically increased the latency time in the target quadrant in a dose-dependent manner. Furthermore, EUE significantly inhibited acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus and frontal cortex in a dose-dependent manner. EUE also markedly increased brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP element binding protein (CREB) in the hippocampus of scopolamine-induced mice. Based on these findings, we suggest that EUE may be useful for the treatment of cognitive deficits, and that the beneficial effects of EUE are mediated, in part, by cholinergic signaling enhancement and/or protection.

  15. Endothelin-1-induced mini-stroke in the dorsal hippocampus or lateral amygdala results in deficits in learning and memory.

    PubMed

    Sheng, Tao; Zhang, Xueting; Wang, Shaoli; Zhang, Jingyun; Lu, Wei; Dai, Yifan

    2015-09-01

    Functional and structural alterations in brain connectivity associated with brain ischemia have been extensively studied. However, the mechanism whereby local ischemia in deep brain region affect brain functions is still unknown. Here, we first established a mini-stroke model by infusion of endothelin-1 (ET-1) into the dorsal hippocampus or the lateral amygdala, and then investigated how these mini-infarcts affected brain functions associated with these regions. We found that rats with ET-1 infusion showed deficit in recall of contextual fear memory, but not in learning process and recall of tone fear memory. In novel object task, ET-1 in the hippocampus also eliminated object identity memory. ET-1 in the lateral amygdale affected acquisition of fear conditioning and disrupted retention of tone-conditioned fear, but did not impair retention of contextual fear. These findings suggest that ET-1-induced mini-infarct in deep brain area leads to functional deficits in learning and memory associated with these regions. PMID:26445569

  16. Age-related decline of precision and binding in visual working memory.

    PubMed

    Peich, Muy-Cheng; Husain, Masud; Bays, Paul M

    2013-09-01

    Working memory declines with normal aging, but the nature of this impairment is debated. Studies based on detecting changes to arrays of visual objects have identified two possible components to age-related decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations (bindings) between individual object features. However, some investigations have reported intact binding with aging, and specific deficits arising only in Alzheimer's disease. Here, using a recently developed continuous measure of recall fidelity, we tested the precision with which adults of different ages could reproduce from memory the orientation and color of a probed array item. The results reveal a further component of cognitive decline: an age-related decrease in the resolution with which visual information can be maintained in working memory. This increase in recall variability with age was strongest under conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older participants were more likely to incorrectly report one of the unprobed items in memory, consistent with an age-related increase in misbinding. These results indicate a systematic decline with age in working memory resources that can be recruited to store visual information. The paradigm presented here provides a sensitive index of both memory resolution and feature binding, with the potential for assessing their modulation by interventions. The findings have implications for understanding the mechanisms underpinning working memory deficits in both health and disease. PMID:23978008

  17. Association of Age Related Macular Degeneration and Age Related Hearing Impairment

    PubMed Central

    Ghasemi, Hassan; Pourakbari, Malihe Shahidi; Entezari, Morteza; Yarmohammadi, Mohammad Ebrahim

    2016-01-01

    Purpose: To evaluate the association between age-related macular degeneration (ARMD) and sensory neural hearing impairment (SHI). Methods: In this case-control study, hearing status of 46 consecutive patients with ARMD were compared with 46 age-matched cases without clinical ARMD as a control group. In all patients, retinal involvements were confirmed by clinical examination, fluorescein angiography (FA) and optical coherence tomography (OCT). All participants were examined with an otoscope and underwent audiological tests including pure tone audiometry (PTA), speech reception threshold (SRT), speech discrimination score (SDS), tympanometry, reflex tests and auditory brainstem response (ABR). Results: A significant (P = 0.009) association was present between ARMD, especially with exudative and choroidal neovascularization (CNV) components, and age-related hearing impairment primarily involving high frequencies. Patients had higher SRT and lower SDS against anticipated presbycusis than control subjects. Similar results were detected in exudative, CNV and scar patterns supporting an association between late ARMD with SRT and SDS abnormalities. ABR showed significantly prolonged wave I and IV latency times in ARMD (P = 0.034 and 0.022, respectively). Average latency periods for wave I in geographic atrophy (GA) and CNV, and that for wave IV in drusen patterns of ARMD were significantly higher than controls (P = 0.030, 0.007 and 0.050, respectively). Conclusion: The association between ARMD and age-related SHI may be attributed to common anatomical components such as melanin in these two sensory organs. PMID:27195086

  18. Learning deficits and suppression of the cell proliferation in the hippocampal dentate gyrus of offspring are attenuated by maternal chewing during prenatal stress.

    PubMed

    Onishi, Mika; Iinuma, Mitsuo; Tamura, Yasuo; Kubo, Kin-Ya

    2014-02-01

    Prenatal stress in dams induces learning deficits and suppresses neurogenesis in the hippocampal dentate gyrus (DG) of offspring via increasing corticosterone levels in the dam. Chewing under stressful conditions prevents stress-induced behavioral impairments and morphologic changes. Here, we examined whether chewing during prenatal stress prevents the stress-induced learning deficits and the suppression of cell proliferation in the hippocampal DG in adult offspring. Pregnant mice were exposed to restraint stress beginning on day 12 of pregnancy and continuing until delivery. Half of the dams were given a wooden stick to chew on during restraint. The pups were raised to adulthood, and learning ability and cell proliferation in the hippocampal DG were assessed. In dams, chewing during prenatal stress attenuated the stress-induced increase in plasma corticosterone levels. In the adult offspring, prenatal stress impaired learning and decreased cell proliferation in the DG, whereas maternal chewing during prenatal stress significantly attenuated the prenatal stress-induced learning deficits and decreased cell proliferation in the DG in their offspring. These findings suggest that maternal chewing during prenatal stress is an effective stress-coping method for the dam to prevent learning deficits and suppression of cell proliferation in offspring.

  19. Age-Related Changes in the Misinformation Effect.

    ERIC Educational Resources Information Center

    Sutherland, Rachel; Hayne, Harlene

    2001-01-01

    Two experiments examined relation between age-related changes in retention and age-related changes in the misinformation effect. Found large age-related retention differences when participants were interviewed immediately and after 1 day, but after 6 weeks, differences were minimal. Exposure to misleading information increased commission errors.…

  20. Attention deficits and hyperactivity–impulsivity: What have we learned, what next?

    PubMed Central

    NIGG, JOEL T.

    2015-01-01

    The domains of self-regulation, self-control, executive function, inattention, and impulsivity cut across broad swathes of normal and abnormal development. Attention-deficit/hyperactivity disorder is a common syndrome that encompasses a portion of these domains. In the past 25 years research on attention-deficit/hyperactivity disorder has been characterized by dramatic advances in genetic, neural, and neuropsychological description of the syndrome as well as clarification of its multidimensional phenotypic structure. The limited clinical applicability of these research findings poses the primary challenge for the next generation. It is likely that clinical breakthroughs will require further refinement in describing heterogeneity or clinical/biological subgroups, renewed focus on the environment in the form of etiological events as well as psychosocial contexts of development, and integration of both with biological understanding. PMID:24342852

  1. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  2. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  3. Deficits in Positive Reinforcement Learning and Uncertainty-Driven Exploration are Associated with Distinct Aspects of Negative Symptoms in Schizophrenia

    PubMed Central

    Strauss, Gregory P.; Frank, Michael J.; Waltz, James A.; Kasanova, Zuzana; Herbener, Ellen S.; Gold, James M.

    2011-01-01

    Background Negative symptoms are core features of schizophrenia; however, the cognitive and neural basis for individual negative symptom domains remains unclear. Converging evidence suggests a role for striatal and prefrontal dopamine in reward learning and the exploration of actions that might produce outcomes that are better than the status quo. The current study examines whether deficits in reinforcement learning and uncertainty-driven exploration predict specific negative symptoms domains. Methods We administered a temporal decision making task, which required trial-by-trial adjustment of reaction time (RT) to maximize reward receipt, to 51 patients with schizophrenia and 39 age-matched healthy controls. Task conditions were designed such that expected value (probability * magnitude) increased (IEV), decreased (DEV), or remained constant (CEV) with increasing response times. Computational analyses were applied to estimate the degree to which trial-by-trial responses are influenced by reinforcement history. Results Individuals with schizophrenia showed impaired Go learning, but intact NoGo learning relative to controls. These effects were pronounced as a function of global measures of negative symptom. Uncertainty-based exploration was substantially reduced in individuals with schizophrenia, and selectively correlated with clinical ratings of anhedonia. Conclusions Schizophrenia patients, particularly those with high negative symptoms, failed to speed RT's to increase positive outcomes and showed reduced tendency to explore when alternative actions could lead to better outcomes than the status quo. Results are interpreted in the context of current computational, genetic, and pharmacological data supporting the roles of striatal and prefrontal dopamine in these processes. PMID:21168124

  4. Reversal learning deficit in a spatial task but not in a cued one after telencephalic ablation in goldfish.

    PubMed

    López, J C; Broglio, C; Rodríguez, F; Thinus-Blanc, C; Salas, C

    2000-04-01

    The fish telencephalon seems to be involved in spatial learning and memory in a similar manner to the hippocampus of the land vertebrates. For instance, telencephalon ablated goldfish are impaired in the post-operative retention of a 'spatial constancy' task, which requires the use of mapping strategies, but not in a directly cued task in which responses are based in a guidance strategy. In this regard, previous experiments showed that intact goldfish trained in the spatial constancy task presented considerable behavioral flexibility, as they showed fast reversal learning, that is, they required less training compared with animals trained in the directly cued task and made a lower number of errors to master the reversal than in acquisition. The purpose of the present work was to investigate if the goldfish telencephalon is involved in the faster reversal learning of the animals trained in the spatial constancy task. Goldfish with bilateral telencephalic ablation, sham operated or intact, were trained in the spatial constancy task or in the directly cued task. Telencephalic ablation selectively impaired reversal learning in the animals trained in the spatial constancy procedure. Ablated animals in this procedure reversed more slowly than control animals. By contrast, telencephalic ablation did not produce any significant deficit during reversal in the animals trained in the directly cued task. These results provide additional evidence that the fish telencephalon, as the land vertebrate hippocampus, plays a crucial role in the use of flexible spatial representations.

  5. Association between dietary behaviors and attention-deficit/hyperactivity disorder and learning disabilities in school-aged children.

    PubMed

    Park, Subin; Cho, Soo-Churl; Hong, Yun-Chul; Oh, Se-Young; Kim, Jae-Won; Shin, Min-Sup; Kim, Boong-Nyun; Yoo, Hee-Jeong; Cho, In-Hee; Bhang, Soo-Young

    2012-08-15

    We aimed to comprehensively investigate the associations between a wide range of measures of dietary behaviors and learning disabilities and attention-deficit/hyperactivity disorder (ADHD) in community-dwelling Korean children in order to generate hypotheses for future work. The present study included 986 children [507 boys, 479 girls; mean (S.D.) age=9.1 (0.7) years] recruited from five South Korean cities. Children's dietary behaviors were assessed by the mini-dietary assessment (MDA) for Koreans. It consists of ten items to assess the level of intake of dairy products, high-protein foods, vegetables, fried foods, fatty meats, salt, and sweetened desserts and whether the subject is eating three regular meals and has a balanced diet. Learning disability was assessed via the Learning Disability Evaluation Scale (LDES). ADHD was assessed via the Diagnostic Interview Schedule for Children version-IV and the ADHD rating scale, and ADHD-related behavioral problems were assessed via the Child Behavior Checklist. After adjusting for potential confounders, a high intake of sweetened desserts, fried food, and salt is associated with more learning, attention, and behavioral problems, whereas a balanced diet, regular meals, and a high intake of dairy products and vegetables is associated with less learning, attention, and behavioral problems. Our data suggest that existing encouraged dietary habits mostly have beneficial effects on learning, attention, and behavioral problems in Korean children. These findings are in general the same results in other studies on ADHD children in other countries. However, the cross-sectional study design prevents our ability to assess causal relationships. PMID:22999993

  6. Preserved motor learning after stroke is related to the degree of proprioceptive deficit

    PubMed Central

    Vidoni, Eric D; Boyd, Lara A

    2009-01-01

    Background Most motor learning theories posit that proprioceptive sensation serves an important role in acquiring and performing movement patterns. However, we recently demonstrated that experimental disruption of proprioception peripherally altered motor performance but not motor learning in humans. Little work has considered humans with central nervous system damage. The purpose of the present study was to specifically consider the relationship between proprioception and motor learning at the level of the central nervous system in humans. Methods Individuals with chronic (> 6mo) stroke and similarly aged healthy participants performed a continuous tracking task with an embedded repeating segment over two days and returned on a third day for retention testing. A limb-position matching task was used to quantify proprioception. Results Individuals with chronic stroke demonstrated the ability to learn to track a repeating segment; however, the magnitude of behavioral change associated with repeated segment-specific learning was directly related to the integrity of central proprioceptive processing as indexed by our limb-position matching task. Conclusion These results support the importance of central sensory processing for motor learning. The confirmation of central sensory processing dependent motor learning in humans is discussed in the context of our prior report of preserved motor learning when sensation is disrupted peripherally. PMID:19715593

  7. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    ERIC Educational Resources Information Center

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  8. Effect of pyritinol, a cerebral protector, on learning and memory deficits induced by prenatal undernutrition and environmental impoverishment in young rats.

    PubMed

    Jaiswal, A K; Upadhyay, S N; Bhattacharya, S K

    1990-07-01

    The study was conducted on 64 CF strain albino rats, which were equally distributed into 8 evenly matched groups following a 2 x 2 x 2 factorial design, by varying three independent factors at two levels: nutrition--normal and undernutrition; environment--enrichment and impoverishment, and drug treatment--vehicle and pyritinol (100 mg/kg, ip). Prenatal undernutrition was induced by restricting the mother's food intake. The environmental enrichment/impoverishment and the vehicle/pyritinol treatments were given during the postweaning period of the pups. The rats were subjected to original and subsequent reversal brightness discrimination learning tests in a single unit T-maze at 8-9 weeks of age. Thereafter, the animals were tested for the passive avoidance learning. The results indicate that undernutrition caused significant original discrimination learning deficits whereas environmental deprivation attenuated both the original and reversal learning performance. Environmental impoverishment attenuated the retention of passive avoidance behaviour but undernutrition had no effect on this paradigm. Pyritinol treatment improved the learning and retention performance of normally reared rats and also attenuated the original and reversal learning deficits induced by parental undernutrition and postweaning environmental impoverishment. The results indicate that pyritinol may be useful in learning and memory deficits induced by malnutrition and environmental deprivation.

  9. The detection of faked deficits on the Rey Auditory Verbal Learning Test: the effect of serial position.

    PubMed

    Bernard, L C

    1991-01-01

    The ability of subjects to fake deficits on the Rey Auditory Verbal Learning Test (AVLT) was evaluated. Subjects were randomly assigned to one of two malingering groups - one with a financial incentive (N = 30) and one without (N = 28) - or a control group (C) (N = 28), and a group of closed head injury patients (CHI) (N = 18) was matched on age, sex, and education level. The two malingering groups did not differ significantly and were combined into a single malingering group (M) (N = 57). There was a significant serial position (the pattern of "recency" and "primacy" effects in recall) by group interaction effect, which may be the most promising indicator of deliberate distortion. When only level of performance was examined, the M group could fake believable deficits, but when the serial position effect was examined, it revealed that this was accomplished by suppression of recall from the first third of the word list (reducing the "primacy effect"), a recall pattern which did not occur in either the C or CHI group and may be an indication of malingering.

  10. Vascular Risk Factors and Diseases Modulate Deficits of Reward-Based Reversal Learning in Acute Basal Ganglia Stroke

    PubMed Central

    Wicking, Manon; Bellebaum, Christian; Hermann, Dirk M.

    2016-01-01

    Background Besides motor function, the basal ganglia have been implicated in feedback learning. In patients with chronic basal ganglia infarcts, deficits in reward-based reversal learning have previously been described. Methods We re-examined the acquisition and reversal of stimulus-stimulus-reward associations and acquired equivalence in eleven patients with acute basal ganglia stroke (8 men, 3 women; 57.8±13.3 years), whose performance was compared eleven healthy subjects of comparable age, sex distribution and education, who were recruited outside the hospital. Eleven hospitalized patients with a similar vascular risk profile as the stroke patients but without stroke history served as clinical control group. Results In a neuropsychological assessment 7±3 days post-stroke, verbal and spatial short-term and working memory and inhibition control did not differ between groups. Compared with healthy subjects, control patients with vascular risk factors exhibited significantly reduced performance in the reversal phase (F[2,30] = 3.47; p = 0.044; post-hoc comparison between risk factor controls and healthy controls: p = 0.030), but not the acquisition phase (F[2,30] = 1.01; p = 0.376) and the acquired equivalence (F[2,30] = 1.04; p = 0.367) tasks. In all tasks, the performance of vascular risk factor patients closely resembled that of basal ganglia stroke patients. Correlation studies revealed a significant association of the number of vascular risk factors with reversal learning (r = -0.33, p = 0.012), but not acquisition learning (r = -0.20, p = 0.121) or acquired equivalence (r = -0.22, p = 0.096). Conclusions The previously reported impairment of reward-based learning may be attributed to vascular risk factors and associated diseases, which are enriched in stroke patients. This study emphasizes the necessity of appropriate control subjects in cognition studies. PMID:27163585

  11. Age-related decline in global form suppression.

    PubMed

    Wiegand, Iris; Finke, Kathrin; Töllner, Thomas; Starman, Kornelija; Müller, Hermann J; Conci, Markus

    2015-12-01

    Visual selection of illusory 'Kanizsa' figures, an assembly of local elements that induce the percept of a whole object, is facilitated relative to configurations composed of the same local elements that do not induce a global form--an instance of 'global precedence' in visual processing. Selective attention, i.e., the ability to focus on relevant and ignore irrelevant information, declines with increasing age; however, how this deficit affects selection of global vs. local configurations remains unknown. On this background, the present study examined for age-related differences in a global-local task requiring selection of either a 'global' Kanizsa- or a 'local' non-Kanizsa configuration (in the presence of the respectively other configuration) by analyzing event-related lateralizations (ERLs). Behaviorally, older participants showed a more pronounced global-precedence effect. Electrophysiologically, this effect was accompanied by an early (150-225 ms) 'positivity posterior contralateral' (PPC), which was elicited for older, but not younger, participants, when the target was a non-Kanizsa configuration and the Kanizsa figure a distractor (rather than vice versa). In addition, timing differences in the subsequent (250-500 ms) posterior contralateral negativity (PCN) indicated that attentional resources were allocated faster to Kanizsa, as compared to non-Kanizsa, targets in both age groups, while the allocation of spatial attention seemed to be generally delayed in older relative to younger age. Our results suggest that the enhanced global-local asymmetry in the older age group originated from less effective suppression of global distracter forms on early processing stages--indicative of older observers having difficulties with disengaging from a global default selection mode and switching to the required local state of attentional resolution. PMID:26498865

  12. Ear2 deletion causes early memory and learning deficits in APP/PS1 mice.

    PubMed

    Kummer, Markus P; Hammerschmidt, Thea; Martinez, Ana; Terwel, Dick; Eichele, Gregor; Witten, Anika; Figura, Stefanie; Stoll, Monika; Schwartz, Stephanie; Pape, Hans-Christian; Schultze, Joachim L; Weinshenker, David; Heneka, Michael T; Urban, Inga

    2014-06-25

    To assess the consequences of locus ceruleus (LC) degeneration and subsequent noradrenaline (NA) deficiency in early Alzheimer's disease (AD), mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were crossed with Ear2(-/-) mice that have a severe loss of LC neurons projecting to the hippocampus and neocortex. Testing spatial memory and hippocampal long-term potentiation revealed an impairment in APP/PS1 Ear2(-/-) mice, whereas APP/PS1 or Ear2(-/-) mice showed only minor changes. These deficits were associated with distinct synaptic changes including reduced expression of the NMDA 2A subunit and increased levels of NMDA receptor 2B in APP/PS1 Ear2(-/-) mice. Acute pharmacological replacement of NA by L-threo-DOPS partially restored phosphorylation of β-CaMKII and spatial memory performance in APP/PS1 Ear2(-/-) mice. These changes were not accompanied by altered APP processing or amyloid β peptide (Aβ) deposition. Thus, early LC degeneration and subsequent NA reduction may contribute to cognitive deficits via CaMKII and NMDA receptor dysfunction independent of Aβ and suggests that NA supplementation could be beneficial in treating AD.

  13. Decision-making deficits in patients with chronic schizophrenia: Iowa Gambling Task and Prospect Valence Learning model

    PubMed Central

    Kim, Myung-Sun; Kang, Bit-Na; Lim, Jae Young

    2016-01-01

    Purpose Decision-making is the process of forming preferences for possible options, selecting and executing actions, and evaluating the outcome. This study used the Iowa Gambling Task (IGT) and the Prospect Valence Learning (PVL) model to investigate deficits in risk-reward related decision-making in patients with chronic schizophrenia, and to identify decision-making processes that contribute to poor IGT performance in these patients. Materials and methods Thirty-nine patients with schizophrenia and 31 healthy controls participated. Decision-making was measured by total net score, block net scores, and the total number of cards selected from each deck of the IGT. PVL parameters were estimated with the Markov chain Monte Carlo sampling scheme in OpenBugs and BRugs, its interface to R, and the estimated parameters were analyzed with the Mann–Whitney U-test. Results The schizophrenia group received significantly lower total net scores compared to the control group. In terms of block net scores, an interaction effect of group × block was observed. The block net scores of the schizophrenia group did not differ across the five blocks, whereas those of the control group increased as the blocks progressed. The schizophrenia group obtained significantly lower block net scores in the fourth and fifth blocks of the IGT and selected cards from deck D (advantageous) less frequently than the control group. Additionally, the schizophrenia group had significantly lower values on the utility-shape, loss-aversion, recency, and consistency parameters of the PVL model. Conclusion These results indicate that patients with schizophrenia experience deficits in decision-making, possibly due to failure in learning the expected value of each deck, and incorporating outcome experiences of previous trials into expectancies about options in the present trial. PMID:27175079

  14. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  15. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    ERIC Educational Resources Information Center

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  16. How Do Students with Attention-Deficit/Hyperactivity Disorders and Writing Learning Disabilities Differ from Their Nonlabeled Peers in the Ability to Compose Texts?

    ERIC Educational Resources Information Center

    Rodríguez, Celestino; Grünke, Matthias; González-Castro, Paloma; García, Trinidad; Álvarez-García, David

    2015-01-01

    This comparative study investigated the productivity and the process of written composition in students with and without disabilities between 8 and 16 years of age. Participants were assigned to four groups as follows: (a) 59 with both attention-deficit/hyperactivity disorders (ADHD) and writing learning disabilities (WLD), (b) 40 with ADHD, (c)…

  17. Attributional Style as a Predictor of Academic Success for Students with Learning Disabilities and/or Attention Deficit Disorder in Postsecondary Education.

    ERIC Educational Resources Information Center

    Tominey, Matthew F.

    This report discusses a study of 31 postsecondary students (20 males and 11 females) with learning disabilities (LD) and/or with attention deficit hyperactivity disorder (ADHD) that examined college achievement and attributional styles. Students completed a combined Academic Attributional Style and Coping with Academic Failures Questionnaire.…

  18. Cognitive Performance Is Highly Sensitive to Prior Experience in Mice with a Learning and Memory Deficit: Failure Leads to More Failure

    ERIC Educational Resources Information Center

    Hebda-Bauer, Elaine K.; Watson, Stanley J.; Akil, Huda

    2005-01-01

    The impact of a previously successful or unsuccessful experience on the subsequent acquisition of a related task is not well understood. The nature of past experience may have even greater impact in individuals with learning deficits, as their cognitive processes can be easily disrupted. Mice with a targeted disruption of the [alpha] and [delta]…

  19. Victimization by Bullying and Attachment to Parents and Teachers among Students Who Report Learning Disorders and/or Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Klomek, A. Brunstein; Kopelman-Rubin, D.; Al-Yagon, M.; Berkowitz, Ruth; Apter, A.; Mikulincer, M.

    2016-01-01

    This is the first study examining the association between victimization by bullying and attachment to both parents and teachers among students who report Learning Disorders (LD) and/or Attention Deficit Hyperactivity Disorder (ADHD). A total of 1,691 seventh- and eighth-grade students in six junior high schools completed questionnaires about…

  20. Theory of Planned Behavior Predicts Graduation Intentions of Canadian and Israeli Postsecondary Students with and without Learning Disabilities/Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Fichten, Catherine S.; Heiman, Tali; Jorgensen, Mary; Nguyen, Mai Nhu; Havel, Alice; King, Laura; Budd, Jillian; Amsel, Rhonda

    2016-01-01

    We tested the ability of Ajzen's Theory of Planned Behavior (TPB) model to predict intention to graduate among Canadian and Israeli students with and without a learning disability/attention deficit hyperactivity disorder (LD/ADHD). Results based on 1486 postsecondary students show that the model's predictors (i.e., attitude, subjective norms,…

  1. Diagnosed Attention Deficit Hyperactivity Disorder and Learning Disability: United States, 2004-2006. Data from the National Health Interview Survey. Vital and Health Statistics. Series 10, Number 237

    ERIC Educational Resources Information Center

    Pastor, Patricia N.; Reuben, Cynthia A.

    2008-01-01

    Objectives: This report presents national estimates of the prevalence of diagnosed attention deficit hyperactivity disorder (ADHD) and learning disability (LD) in U.S. children 6-17 years of age and describes the prevalence of these conditions for children with selected characteristics. The use of educational and health care services and the…

  2. Differentiating Children with Attention-Deficit/Hyperactivity Disorder, Conduct Disorder, Learning Disabilities and Autistic Spectrum Disorders by Means of Their Motor Behavior Characteristics

    ERIC Educational Resources Information Center

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N = 22), Conduct Disorder (CD; N = 17), Learning Disabilities (LD; N = 24) and Autistic Spectrum Disorders (ASD; N = 20).…

  3. South African Teachers' Attitudes toward Learners with Barriers to Learning: Attention-Deficit and Hyperactivity Disorder and Little or No Functional Speech

    ERIC Educational Resources Information Center

    Bornman, Juan; Donohue, Dana K.

    2013-01-01

    This study examined teachers' attitudes toward learners with two types of barriers to learning: a learner with attention-deficit and hyperactivity disorder (ADHD), and a learner with little or no functional speech (LNFS). The results indicated that although teachers reported that the learner with ADHD would be more disruptive in class and…

  4. Older farmers' prevalence, capital, health, age-related limitations, and adaptations.

    PubMed

    Cole, Henry P; Donovan, Teresa A

    2008-01-01

    A major reduction in the proportion of older farmers in the farm population has been predicted for nearly 50 years. Not only has the proportion of older farmers increased but the proportion of younger farmers has decreased dramatically. In 2002, principal operators age >or= 65 years of age comprised 26.2% of US farmers. These older farmers and farm landlords combined owned 34% of all farm assets. In addition to their economic capital, older farmers have large stocks of social and cultural capital that contribute to their communities and the nation. A large majority of older people in the US population, and older farmers in particular, remain healthy and active. All older adults experience normal age-related deficits in sensory, motor, and cognitive functioning. However, age-related adaptations of healthy older adults, including their experience and compensatory behavioral and information processing strategies, minimize many age-related deficits. These factors allow perhaps 80% or more of older farmers to continue working safely and productively well past typical retirement age. PMID:19042700

  5. Implicit motor sequence learning in children with learning disabilities: deficits limited to a subgroup with low perceptual organization.

    PubMed

    Overvelde, Anneloes; Hulstijn, Wouter

    2012-01-01

    This study tested whether deficiencies in implicit motor sequence learning occurred exclusively in a subgroup of children with learning disabilities (LD). An experimental motor sequence task showed that LD children with low Perceptual Organization did not learn the sequence through implicit training, whereas they improved considerably after a few explicit test trials. In contrast, children with low Freedom From Distractibility (or sequencing) experienced the same benefit from implicit training as the control children. These results suggest that training motor skills (e.g., writing) should be adapted to suit the visuospatial abilities of a child with LD.

  6. Emotionally unskilled, unaware, and uninterested in learning more: reactions to feedback about deficits in emotional intelligence.

    PubMed

    Sheldon, Oliver J; Dunning, David; Ames, Daniel R

    2014-01-01

    Despite the importance of self-awareness for managerial success, many organizational members hold overly optimistic views of their expertise and performance-a phenomenon particularly prevalent among those least skilled in a given domain. We examined whether this same pattern extends to appraisals of emotional intelligence (EI), a critical managerial competency. We also examined why this overoptimism tends to survive explicit feedback about performance. Across 3 studies involving professional students, we found that the least skilled had limited insight into deficits in their performance. Moreover, when given concrete feedback, low performers disparaged either the accuracy or the relevance of that feedback, depending on how expediently they could do so. Consequently, they expressed more reluctance than top performers to pursue various paths to self-improvement, including purchasing a book on EI or paying for professional coaching. Paradoxically, it was top performers who indicated a stronger desire to improve their EI following feedback. PMID:23957689

  7. Voluntary exercise does not ameliorate spatial learning and memory deficits induced by chronic administration of nandrolone decanoate in rats.

    PubMed

    Tanehkar, Fatemeh; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Sameni, Hamid Reza; Haghighi, Saeed; Miladi-Gorji, Hossien; Motamedi, Fereshteh; Akhavan, Maziar Mohammad; Bavarsad, Kowsar

    2013-01-01

    Chronic exposure to the anabolic androgenic steroids (AAS) nandrolone decanoate (ND) in supra-physiological doses is associated with learning and memory impairments. Given the well-known beneficial effects of voluntary exercise on cognitive functions, we examined whether voluntary exercise would improve the cognitive deficits induced by chronic administration of ND. We also investigated the effects of ND and voluntary exercise on hippocampal BDNF levels. The rats were randomly distributed into 4 experimental groups: the vehicle-sedentary group, the ND-sedentary group, the vehicle-exercise group, and the ND-exercise group. The vehicle-exercise and the ND-exercise groups were allowed to freely exercise in a running wheel for 15 days. The vehicle-sedentary and the ND-sedentary groups were kept sedentary for the same period. Vehicle or ND injections were started 14 days prior to the voluntary exercise and continued throughout the 15 days of voluntary exercise. After the 15-day period, the rats were trained and tested on a water maze spatial task using four trials per day for 5 consecutive days followed by a probe trial two days later. Exercise significantly improved performance during both the training and retention of the water maze task, and enhanced hippocampal BDNF. ND impaired spatial learning and memory, and this effect was not rescued by exercise. ND also potentiated the exercise-induced increase in hippocampal BDNF levels. These results seem to indicate that voluntary exercise is unable to improve the disruption of cognitive functions by chronic ND. Moreover, increased levels of BDNF may play a role in ND-induced impairments in learning and memory. The harmful effects of ND and other AAS on learning and memory should be taken into account when athletes decide to use AAS for performance or body image improvement.

  8. Rats bred for helplessness exhibit positive reinforcement learning deficits which are not alleviated by an antidepressant dose of the MAO-B inhibitor deprenyl.

    PubMed

    Schulz, Daniela; Henn, Fritz A; Petri, David; Huston, Joseph P

    2016-08-01

    Principles of negative reinforcement learning may play a critical role in the etiology and treatment of depression. We examined the integrity of positive reinforcement learning in congenitally helpless (cH) rats, an animal model of depression, using a random ratio schedule and a devaluation-extinction procedure. Furthermore, we tested whether an antidepressant dose of the monoamine oxidase (MAO)-B inhibitor deprenyl would reverse any deficits in positive reinforcement learning. We found that cH rats (n=9) were impaired in the acquisition of even simple operant contingencies, such as a fixed interval (FI) 20 schedule. cH rats exhibited no apparent deficits in appetite or reward sensitivity. They reacted to the devaluation of food in a manner consistent with a dose-response relationship. Reinforcer motivation as assessed by lever pressing across sessions with progressively decreasing reward probabilities was highest in congenitally non-helpless (cNH, n=10) rats as long as the reward probabilities remained relatively high. cNH compared to wild-type (n=10) rats were also more resistant to extinction across sessions. Compared to saline (n=5), deprenyl (n=5) reduced the duration of immobility of cH rats in the forced swimming test, indicative of antidepressant effects, but did not restore any deficits in the acquisition of a FI 20 schedule. We conclude that positive reinforcement learning was impaired in rats bred for helplessness, possibly due to motivational impairments but not deficits in reward sensitivity, and that deprenyl exerted antidepressant effects but did not reverse the deficits in positive reinforcement learning. PMID:27163379

  9. Rats bred for helplessness exhibit positive reinforcement learning deficits which are not alleviated by an antidepressant dose of the MAO-B inhibitor deprenyl.

    PubMed

    Schulz, Daniela; Henn, Fritz A; Petri, David; Huston, Joseph P

    2016-08-01

    Principles of negative reinforcement learning may play a critical role in the etiology and treatment of depression. We examined the integrity of positive reinforcement learning in congenitally helpless (cH) rats, an animal model of depression, using a random ratio schedule and a devaluation-extinction procedure. Furthermore, we tested whether an antidepressant dose of the monoamine oxidase (MAO)-B inhibitor deprenyl would reverse any deficits in positive reinforcement learning. We found that cH rats (n=9) were impaired in the acquisition of even simple operant contingencies, such as a fixed interval (FI) 20 schedule. cH rats exhibited no apparent deficits in appetite or reward sensitivity. They reacted to the devaluation of food in a manner consistent with a dose-response relationship. Reinforcer motivation as assessed by lever pressing across sessions with progressively decreasing reward probabilities was highest in congenitally non-helpless (cNH, n=10) rats as long as the reward probabilities remained relatively high. cNH compared to wild-type (n=10) rats were also more resistant to extinction across sessions. Compared to saline (n=5), deprenyl (n=5) reduced the duration of immobility of cH rats in the forced swimming test, indicative of antidepressant effects, but did not restore any deficits in the acquisition of a FI 20 schedule. We conclude that positive reinforcement learning was impaired in rats bred for helplessness, possibly due to motivational impairments but not deficits in reward sensitivity, and that deprenyl exerted antidepressant effects but did not reverse the deficits in positive reinforcement learning.

  10. Contingency learning in chronic schizophrenia and its relevance to social motivation deficit.

    PubMed

    Mitchell, W S

    1978-12-01

    The present study investigates the ability of chronic schizophrenic patients to learn to obtain social rewards when the incentive value of the contingent social event is known. From a group of 40 chronic patients tested for responsivity to social rewards, socially responsive and socially unresponsive patients were selected and compared on a learning task. Patients who were highly motivated to obtain social reinforcement did not emit the reinforced response during 300 learning trials any more frequently than did patients who were not motivated by social rewards. It was only when the experimental contingency was specified that responsive and unresponsive patients could be differentiated. The implications of these findings for social motivation theories of schizophrenia are discussed.

  11. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions.

    PubMed

    Delplace, Vianney; Payne, Samantha; Shoichet, Molly

    2015-12-10

    Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery.

  12. Spatial learning deficits after the development of dorsomedial telencephalon lesions in goldfish.

    PubMed

    Saito, Kotaro; Watanabe, Shigeru

    2004-12-22

    The effects of lesions in the dorsal area of the caudal telencephalon (Carassius auratus) on the retention of spatial learning in goldfish were examined. The experimental paradigm was similar to the dry version of the Morris water maze for rodents. After being trained to reach a criterion, goldfish underwent surgery and were then retrained. In the retraining, dorsomedial lesions resulted in poor performance, while dorsolateral lesions did not. In a landmark task in which a small circular colored cue was set at a food location, dorsomedial lesions did not produce impairment during retraining. These results suggest that dorsomedial lesions selectively caused impairment in the retention of spatial learning.

  13. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus

    PubMed Central

    Lemaire, V.; Koehl, M.; Le Moal, M.; Abrous, D. N.

    2000-01-01

    Early experiences such as prenatal stress significantly influence the development of the brain and the organization of behavior. In particular, prenatal stress impairs memory processes but the mechanism for this effect is not known. Hippocampal granule neurons are generated throughout life and are involved in hippocampal-dependent learning. Here, we report that prenatal stress in rats induced lifespan reduction of neurogenesis in the dentate gyrus and produced impairment in hippocampal-related spatial tasks. Prenatal stress blocked the increase of learning-induced neurogenesis. These data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for psychopathological vulnerabilities in aging. PMID:11005874

  14. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus.

    PubMed

    Lemaire, V; Koehl, M; Le Moal, M; Abrous, D N

    2000-09-26

    Early experiences such as prenatal stress significantly influence the development of the brain and the organization of behavior. In particular, prenatal stress impairs memory processes but the mechanism for this effect is not known. Hippocampal granule neurons are generated throughout life and are involved in hippocampal-dependent learning. Here, we report that prenatal stress in rats induced lifespan reduction of neurogenesis in the dentate gyrus and produced impairment in hippocampal-related spatial tasks. Prenatal stress blocked the increase of learning-induced neurogenesis. These data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for psychopathological vulnerabilities in aging. PMID:11005874

  15. Histone deacetylase inhibitor, trichostatin A, improves learning and memory in high-fat diet-induced cognitive deficits in mice.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev; Ramagiri, Shruti

    2015-05-01

    Metabolic syndrome is increasingly recognized for its effects on cognitive health. Recent studies have highlighted the role of histone deacetylases (HDACs) in metabolic syndrome and cognitive functions. The present study was designed to investigate the possible therapeutic role of a HDAC inhibitor, trichostatin A (TSA), in cognitive impairment associated with metabolic syndrome. To ascertain the mechanisms involved, we fed mice with high-fat diet (HFD) for 4 weeks and examined changes in behavioral and biochemical/oxidative stress markers. Mice subjected to HFD exhibited characteristic features of metabolic disorder, viz., hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and lower high-density lipoprotein (HDL) cholesterol levels. Moreover, these mice showed severe deficits in learning and memory as assessed by the Morris water maze and passive avoidance tasks along with elevated oxidative stress and inflammatory markers in brain homogenates. The observed changes occurred concurrently with reduced brain-derived neurotrophic factor (BDNF). In contrast, the mice treated with the HDAC inhibitor, TSA (0.5 and 1 mg/kg, i.p.), showed a significant and dose-dependent reduction in serum glucose, triglycerides, and total cholesterol along with improvement in HDL-cholesterol levels and learning and memory performance. TSA treatment also results in alleviation of oxidative stress and neuroinflammatory markers. Moreover, TSA significantly augmented the BDNF levels in HFD-fed mice. Thus, based upon these observations, it may be suggested that HDAC inhibition could be a novel therapeutic strategy to combat cognitive impairment associated with metabolic syndrome.

  16. KAOLIN-INDUCED VENTRICULOMEGALY AT WEANING PRODUCES LONG-TERM LEARNING, MEMORY, AND MOTOR DEFICITS IN RATS

    PubMed Central

    Williams, Michael T.; Braun, Amanda A.; Amos-Kroohs, Robyn; McAllister, James P.; Lindquist, Diana M.; Mangano, Francesco T.; Vorhees, Charles V.; Yuan, Weihong

    2014-01-01

    Ventriculomegaly occurs when there is imbalance between creation and absorption of cerebrospinal fluid (CSF); even when treated, long-term behavioral changes occur. Kaolin injection in the cisterna magna of rats produces an obstruction of CSF outflow and models one type of hydrocephalus. Previous research with this model shows that neonatal onset has mixed effects on Morris water maze (MWM) and motoric performance; we hypothesized that this might be because the severity of ventricular enlargement was not taken into consideration. In the present experiment, rats were injected with kaolin or saline on postnatal day (P)21 and analyzed in subgroups based on Evan's ratios (ER) of the severity of ventricular enlargement at the end of testing to create 4 subgroups from least to most severe: ER0.4–0.5, ER0.51-0.6, ER0.61-0.7, and ER0.71-0.82, respectively. Locomotor activity (dry land and swimming), acoustic startle with prepulse inhibition (PPI), and MWM performance were tested starting on P28 (122 cm maze) and again on P42 (244 cm maze). Kaolin-treated animals weighed significantly less than controls at all times. Differences in locomotor activity were seen at P42 but not P28. On P28 there was an increase in PPI for all but the least severe kaolin-treated group, but no difference at P42 compared with controls. In the MWM at P28, all kaolin-treated groups had longer path lengths than controls, but comparable swim speeds. With the exception of the least severe group, probe trial performance was worse in the kaolin-treated animals. On P42, only the most severely affected kaolin-treated group showed deficits compared with control animals. This group showed no MWM learning and no memory for the platform position during probe trial testing. Swim speed was unaffected, indicating motor deficits were not responsible for impaired learning and memory. These findings indicate that kaolin-induced ventriculomegaly in rats interferes with cognition regardless of the final enlargement

  17. Kaolin-induced ventriculomegaly at weaning produces long-term learning, memory, and motor deficits in rats.

    PubMed

    Williams, Michael T; Braun, Amanda A; Amos-Kroohs, Robyn M; McAllister, James P; Lindquist, Diana M; Mangano, Francesco T; Vorhees, Charles V; Yuan, Weihong

    2014-06-01

    Ventriculomegaly occurs when there is imbalance between creation and absorption of cerebrospinal fluid (CSF); even when treated, long-term behavioral changes occur. Kaolin injection in the cisterna magna of rats produces an obstruction of CSF outflow and models one type of hydrocephalus. Previous research with this model shows that neonatal onset has mixed effects on Morris water maze (MWM) and motoric performance; we hypothesized that this might be because the severity of ventricular enlargement was not taken into consideration. In the present experiment, rats were injected with kaolin or saline on postnatal day (P)21 and analyzed in subgroups based on Evan's ratios (ERs) of the severity of ventricular enlargement at the end of testing to create 4 subgroups from least to most severe: ER0.4-0.5, ER0.51-0.6, ER0.61-0.7, and ER0.71-0.82, respectively. Locomotor activity (dry land and swimming), acoustic startle with prepulse inhibition (PPI), and MWM performance were tested starting on P28 (122cm maze) and again on P42 (244cm maze). Kaolin-treated animals weighed significantly less than controls at all times. Differences in locomotor activity were seen at P42 but not P28. On P28 there was an increase in PPI for all but the least severe kaolin-treated group, but no difference at P42 compared with controls. In the MWM at P28, all kaolin-treated groups had longer path lengths than controls, but comparable swim speeds. With the exception of the least severe group, probe trial performance was worse in the kaolin-treated animals. On P42, only the most severely affected kaolin-treated group showed deficits compared with control animals. This group showed no MWM learning and no memory for the platform position during probe trial testing. Swim speed was unaffected, indicating motor deficits were not responsible for impaired learning and memory. These findings indicate that kaolin-induced ventriculomegaly in rats interferes with cognition regardless of the final enlargement of

  18. Working Memory Deficits in ADHD: The Contribution of Age, Learning/Language Difficulties, and Task Parameters

    ERIC Educational Resources Information Center

    Sowerby, Paula; Seal, Simon; Tripp, Gail

    2011-01-01

    Objective: To further define the nature of working memory (WM) impairments in children with combined-type ADHD. Method: A total of 40 Children with ADHD and an age and gender-matched control group (n = 40) completed two measures of visuo-spatial WM and two measures of verbal WM. The effects of age and learning/language difficulties on performance…

  19. A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer’s disease

    PubMed Central

    Kang, Jing

    2016-01-01

    A small molecule named ISRIB has recently been described to enhance memory in rodents. In this study we aimed to test whether ISRIB would reverse learning and memory deficits in the J20 mouse model of human amyloid precursor protein (hAPP) overexpression, a model that simulates many aspects of Alzheimer’s disease in which memory deficits are a hallmark feature. We did not observe a significant rescue effect with ISRIB treatment on spatial learning and memory as assessed in the Morris water maze in J20 mice. We also did not observe a significant enhancement of spatial learning or memory in nontransgenic mice with ISRIB treatment, although a trend emerged for memory enhancement in one cohort of mice. Future preclinical studies with ISRIB would benefit from additional robust markers of target engagement in the brain. PMID:27781164

  20. Characterization of learning and memory deficits in C57BL/6 mice infected with LP-BM5, a murine model of AIDS.

    PubMed

    Iida, R; Yamada, K; Mamiya, T; Saito, K; Seishima, M; Nabeshima, T

    1999-03-01

    Mice infected with an immunosuppressive murine leukemia virus mixture, LP-BM5 show a profound immunosuppression described as murine acquired immune deficiency syndrome (AIDS). In the present study, we characterized learning and memory deficits in C57BL/6 mice infected with LP-BM5. Spontaneous alternation behavior in a Y-maze and latent learning (spatial attention) in a water-finding test, as well as spatial reference and reversal learning in a water maze test, were significantly impaired in the mice infected with LP-BM5. These deficits appeared in the absence of any motoric and visual impairment as assessed by open-field, rotarod and visual water maze tests. These results suggest that cognitive functions are impaired in the mice infected with LP-BM5. Furthermore, LP-BM5-infected mice may be useful as a model for the AIDS dementia complex.

  1. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index. PMID:26572116

  2. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index.

  3. Insulin potentiates the therapeutic effect of memantine against central STZ-induced spatial learning and memory deficit.

    PubMed

    Bahramian, Abbas; Rastegar, Karim; Namavar, Mohammad Reza; Moosavi, Maryam

    2016-09-15

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Memantine has been approved for moderate to severe AD, but evidence indicates that it does not modify disease progression. Recently insulin has been found to exert some beneficial effects on cognition. This study aimed to compare the protective effects of memantine and insulin in an animal model of memory deficit. It also evaluated the effects of combination therapy of these drugs. Adult male Sprague-Dawely rats approximately 8-10 weeks old were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3mg/kg in divided doses) and Memantine (5 or 10mg/kg/ip) or/and Insulin (3 or 6mU/icv) were started from day 4 and continued till day 13. The animal's learning and memory capability was assessed on days 14-16 using Morris water maze. On day 17 a visible platform test was done to assess the animals' visuomotor ability. After completion of behavioral studies the brain sections were stained with hematoxylin and eosin for routine histological evaluation. The results show that memantine in doses 5 and 10mg/kg improved memory at day 3 of training and memantine 5mg/kg was more potent than memantine 10mg/kg. Insulin in dose 3mU, but not 6 mU, reversed STZ-induced memory deficit from day 2 of training. When insulin was added to memantine, it increased the potency of memantine 5mg/kg in preventing a memory deficit, but surprisingly was not successful in impeding STZ-induced amnesia, in combination with memantine 10mg/kg. This research work revealed that insulin act more efficiently than memantine in reversing STZ-induced memory impairment. Additionally combination of insulin and memantine seems to act better than memantine alone, providing that a dose adjustment has been done. This study suggests considering the combination therapy of memantine and insulin in dementia and AD. PMID:27233828

  4. Evaluation of the effect of Cyperus rotundus L. in scopolamine-induced learning deficit in mice

    PubMed Central

    Rabbani, Mohammed; Ghannadi, Alireza; Malekian, Nahid

    2014-01-01

    Background: Cyperus rotundus L. was used in traditional Iranian medicine to treat memory and cognition disorders. The present study was aimed at investigating the effect of the extract and essential oil of C. rotundus on memory dysfunction. Materials and Methods: Cognition was evaluated using the object recognition task that was composed of a square wooden open field box with different shape objects. The test was consisted of three sections: 15 min exploration, first trial for 12 min and second one for 5 min. In the second trial the difference in exploration between a previously seen object and novel one, was considered as an index of memory performance (recognition index). Memory deficit was induced by scopolamine (0.5 mg/kg) before injection of plant extracts and essential oil. Results: Rivastigmine at 0.6 mg/kg reversed the scopolamine induced memory dysfunction in mice (P < 0.05). On the contrary, neither the hydroalcholic extracts (100, 200, 400 mg/kg) nor the polyphenolic extract (50, 100, 200 mg/kg) and essential oil (10, 20, 40 mg/kg) of C. rotundus produced significant improvement of memory dysfunction. The fact that rivastigmine reversed the scopolamine-induced memory dysfunction confirms the validity of this memory paradigm. Conclusion: Using the current method of the memory evaluation, none of the tested doses of the plant extract or essential oil changed the memory status of the animals, indicating either a lack of effective ingredient or unsuitable method for evaluation. PMID:25371874

  5. Slowing Down: Age-Related Neurobiological Predictors of Processing Speed

    PubMed Central

    Eckert, Mark A.

    2011-01-01

    Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging. PMID:21441995

  6. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.

    PubMed

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-08-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline.

  7. Kv4.2 Knockout Mice Have Hippocampal-Dependent Learning and Memory Deficits

    ERIC Educational Resources Information Center

    Lugo, Joaquin N.; Brewster, Amy L.; Spencer, Corinne M.; Anderson, Anne E.

    2012-01-01

    Kv4.2 channels contribute to the transient, outward K[superscript +] current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit…

  8. Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity.

    PubMed

    Mark, Melanie D; Krause, Martin; Boele, Henk-Jan; Kruse, Wolfgang; Pollok, Stefan; Kuner, Thomas; Dalkara, Deniz; Koekkoek, Sebastiaan; De Zeeuw, Chris I; Herlitze, Stefan

    2015-06-10

    Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that a CT fragment of the Cav2.1 channel, which is detected specifically in cytosolic and nuclear fractions in SCA6 patients, is associated with the SCA6 pathogenesis. To test this hypothesis, we expressed P/Q-type channel protein fragments from two different human CT splice variants, as predicted from SCA6 patients, in PCs of mice using viral and transgenic approaches. These splice variants represent a short (CT-short without polyQs) and a long (CT-long with 27 polyQs) CT fragment. Our results show that the different splice variants of the CTs differentially distribute within PCs, i.e., the short CTs reveal predominantly nuclear inclusions, whereas the long CTs prominently reveal both nuclear and cytoplasmic aggregates. Postnatal expression of CTs in PCs in mice reveals that only CT-long causes SCA6-like symptoms, i.e., deficits in eyeblink conditioning (EBC), ataxia, and PC degeneration. The physiological phenotypes associated specifically with the long CT fragment can be explained by an impairment of LTD and LTP at the parallel fiber-to-PC synapse and alteration in spontaneous PC activity. Thus, our results suggest that the polyQ carrying the CT fragment of the P/Q-type channel is sufficient to cause SCA6 pathogenesis in mice and identifies EBC as a new diagnostic strategy to evaluate Ca(2+) channel-mediated human diseases.

  9. Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats.

    PubMed

    Jeong, Hye Im; Ji, Eun-Sang; Kim, Su-Hyun; Kim, Tae-Wook; Baek, Sang-Bin; Choi, Seung Wook

    2014-06-01

    Attention-deficit/hyperactivity disorder (ADHD) patients show learning difficulty and impulsiveness. Exercise is known to improve learning ability and memory function. In the present study, we investigated the duration-dependence of the effect of treadmill exercise on spatial learning ability in relation with brain-derived neurotrophic factor (BDNF) expression in ADHD rats. For this study, radial 8-arm maze test and western blot for BDNF and tyrosine kinase B (TrkB) were performed. Spontaneous hypertensive rats were used as the ADHD rats and Wistar-Kyoto rats were used as the control rats. The rats in the exercise groups were forced to run on a treadmill for 10 min, 30 min, and 60 min once a day for 28 consecutive days. ADHD rats displayed impairment of spatial learning ability, in contrast treadmill exercise ameliorated impairment of spatial learning ability. Treadmill exercise for 30 min per day showed most potent ameliorating effect on impairment of spatial learning ability. BDNF and TrkB expressions in the hippocampus were decreased in the ADHD rats, in contrast treadmill exercise enhanced BDNF and TrkB expressions. Treadmill exercise for 30 min and for 60 min per day showed enhancing effects on BDNF and TrkB expressions. Treadmill exercise alleviated deficits in the spatial learning ability through enhancing BDNF and TrkB expressions in the ADHD rats. Treadmill exercise for 30 min per day can be considered as the most effective therapeutic modality for the ADHD symptoms. PMID:25061595

  10. Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats.

    PubMed

    Jeong, Hye Im; Ji, Eun-Sang; Kim, Su-Hyun; Kim, Tae-Wook; Baek, Sang-Bin; Choi, Seung Wook

    2014-06-01

    Attention-deficit/hyperactivity disorder (ADHD) patients show learning difficulty and impulsiveness. Exercise is known to improve learning ability and memory function. In the present study, we investigated the duration-dependence of the effect of treadmill exercise on spatial learning ability in relation with brain-derived neurotrophic factor (BDNF) expression in ADHD rats. For this study, radial 8-arm maze test and western blot for BDNF and tyrosine kinase B (TrkB) were performed. Spontaneous hypertensive rats were used as the ADHD rats and Wistar-Kyoto rats were used as the control rats. The rats in the exercise groups were forced to run on a treadmill for 10 min, 30 min, and 60 min once a day for 28 consecutive days. ADHD rats displayed impairment of spatial learning ability, in contrast treadmill exercise ameliorated impairment of spatial learning ability. Treadmill exercise for 30 min per day showed most potent ameliorating effect on impairment of spatial learning ability. BDNF and TrkB expressions in the hippocampus were decreased in the ADHD rats, in contrast treadmill exercise enhanced BDNF and TrkB expressions. Treadmill exercise for 30 min and for 60 min per day showed enhancing effects on BDNF and TrkB expressions. Treadmill exercise alleviated deficits in the spatial learning ability through enhancing BDNF and TrkB expressions in the ADHD rats. Treadmill exercise for 30 min per day can be considered as the most effective therapeutic modality for the ADHD symptoms.

  11. The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression.

    PubMed

    Bhagya, V; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2015-01-01

    Depression is a major psychiatric illness that is associated with cognitive dysfunctions. The underlying mechanism of depression-associated memory impairment is unclear. Previously, we showed altered hippocampal synaptic plasticity in an animal model of depression. Although several antidepressants are beneficial in the treatment of depression, very little is known about the effects of these drugs on depression-associated learning and memory deficits. Prolonged antidepressant treatment might contribute to neuroplastic changes required for clinical outcomes. Accordingly, we evaluated the effect of chronic reboxetine (a selective noradrenergic reuptake inhibitor) treatment on depression-induced reduced hippocampal synaptic plasticity, neurotransmitter levels, and spatial learning and memory impairments. Depression was induced in male Wistar rats by the administration of clomipramine from postnatal days 8 to 21, and these rats were treated with reboxetine in adulthood. The neonatal clomipramine administration resulted in impaired hippocampal long-term potentiation (LTP), decreased hippocampal cholinergic activity and monoamine levels, and poor performance in a partially baited eight-arm radial maze task. Chronic reboxetine treatment restored the hippocampal LTP, acetylcholinesterase activity, and levels of biogenic amines and ameliorated spatial learning and memory deficits in the depressed state. Thus, restoration of hippocampal synaptic plasticity might be a cellular mechanism underlying the beneficial effect of reboxetine in depression-associated cognitive deficits. This study furthers the existing understanding of the effects of antidepressants on learning, memory, and synaptic plasticity and could ultimately assist in the development of better therapeutic strategies to treat depression and associated cognitive impairments.

  12. Long-term moderate dose exogenous erythropoietin treatment protects from intermittent hypoxia-induced spatial learning deficits and hippocampal oxidative stress in young rats.

    PubMed

    Al-Qahtani, Jobran M; Abdel-Wahab, Basel A; Abd El-Aziz, Samy M

    2014-01-01

    Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.

  13. Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer's disease induced by aβ1-42.

    PubMed

    Zhang, Lu; Fang, Yu; Lian, Yajun; Chen, Yuan; Wu, Tianwen; Zheng, Yake; Zong, Huili; Sun, Limin; Zhang, Ruifang; Wang, Zhenhua; Xu, Yuming

    2015-01-01

    An emerging body of data suggests that the early onset of Alzheimer's disease (AD) is associated with decreased brain-derived neurotrophic factor (BDNF). Because BDNF plays a critical role in the regulation of high-frequency synaptic transmission and long-term potentiation in the hippocampus, the up-regulation of BDNF may rescue cognitive impairments and learning deficits in AD. In the present study, we investigated the effects of hippocampal BDNF in a rat model of AD produced by a ventricle injection of amyloid-β1-42 (Aβ1-42). We found that a ventricle injection of Aβ1-42 caused learning deficits in rats subjected to the Morris water maze and decreased BDNF expression in the hippocampus. Chronic intra-hippocampal BDNF administration rescued learning deficits in the water maze, whereas infusions of NGF and NT-3 did not influence the behavioral performance of rats injected with Aβ1-42. Furthermore, the BDNF-related improvement in learning was ERK-dependent because the inhibition of ERK, but not JNK or p38, blocked the effects of BDNF on cognitive improvement in rats injected with Aβ1-42. Together, our data suggest that the up-regulation of BDNF in the hippocampus via activation of the ERK signaling pathway can ameliorate Aβ1-42-induced learning deficits, thus identifying a novel pathway through which BDNF protects against AD-related cognitive impairments. The results of this research may shed light on a feasible therapeutic approach to control the progression of AD.

  14. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration.

    PubMed

    Ali, Yousuf O; Escala, Wilfredo; Ruan, Kai; Zhai, R Grace

    2011-03-11

    Advances in genetic methods have enabled the study of genes involved in human neurodegenerative diseases using Drosophila as a model system. Most of these diseases, including Alzheimer's, Parkinson's and Huntington's disease are characterized by age-dependent deterioration in learning and memory functions and movement coordination. Here we use behavioral assays, including the negative geotaxis assay and the aversive phototaxic suppression assay (APS assay), to show that some of the behavior characteristics associated with human neurodegeneration can be recapitulated in flies. In the negative geotaxis assay, the natural tendency of flies to move against gravity when agitated is utilized to study genes or conditions that may hinder locomotor capacities. In the APS assay, the learning and memory functions are tested in positively-phototactic flies trained to associate light with aversive bitter taste and hence avoid this otherwise natural tendency to move toward light. Testing these trained flies 6 hours post-training is used to assess memory functions. Using these assays, the contribution of any genetic or environmental factors toward developing neurodegeneration can be easily studied in flies.

  15. A controlled study of Tourette syndrome. I. Attention-deficit disorder, learning disorders, and school problems.

    PubMed

    Comings, D E; Comings, B G

    1987-11-01

    Tourette syndrome (TS) is a common, hereditary, neurobehavioral disorder of childhood. To determine the frequency of various behavioral manifestations, we have compared 47 random normal controls to 246 patients with TS, 17 with attention-deficit disorder (ADD), and 15 with ADD secondary to a TS gene (ADD 2(0) TS). All subjects were examined prospectively with a 425-item questionnaire based on the Diagnostic Interview Schedule and the Diagnostic and Statistical Manual of Mental Disorders (DSM III). The TS patients were divided into grade 1 (too mild to treat [17.5%]), grade 2 (requiring treatment [58.9%]), and grade 3 (severe [23.6%]). Patients in all three grades of TS were significantly different from controls for DSM III symptoms of inattention, impulsivity, and hyperactivity. Sixty-two percent of TS patients had ADD, compared with 6.3% of controls; and 48.8% had ADD with hyperactivity (ADDH), compared with 4.2% of controls. In the majority of TS patients, the natural history of the disease was to start with ADDH and 2.4 years later develop motor and vocal tics. Among TS patients, 39% had previously received medication for ADDH or behavior problems, compared with 2% of the controls. Although stimulants can occasionally exacerbate tics, there was no evidence that stimulants cause TS and they are often a valuable adjunct to the treatment of TS. It is estimated that 10%-30% of ADDH is due to or associated with the presence of a TS gene. TS patients had a significantly increased frequency of (1) attending classes for the educationally handicapped, (2) placement in classes for the severely emotionally disturbed, (3) attending any special classes, (4) severe test anxiety, (5) stuttering, (6) letter, number, or word reversal, (7) reading very slowly, and (8) poor retention of material read. A reading-problem score (dyslexia) greater than or equal to 3 was present in 26.8% of TS patients, compared with 4.2% of controls. Number reversal, word reversal, and poor retention

  16. Do Immediate Memory Deficits in Students with Learning Disabilities in Reading Reflect a Developmental Lag or Deficit?: A Selective Meta-Analysis of the Literature.

    ERIC Educational Resources Information Center

    O'Shaughnessy, Tam E.; Swanson, H. Lee

    1998-01-01

    A study synthesized findings of 41 studies that compared children with and without learning disabilities in reading on immediate-memory performance. Results indicate children with learning disabilities were distinctly disadvantaged compared to average readers when memory manipulations required the naming of visual information and task conditions…

  17. Intermittent swim stress causes Morris water maze performance deficits in a massed-learning trial procedure that are exacerbated by reboxetine.

    PubMed

    Warner, Timothy A; Stafford, Nathaniel P; Rompala, Gregory R; Van Hoogenstyn, Andrew J; Elgert, Emily; Drugan, Robert C

    2013-11-15

    Various animal models of depression have been used to seek a greater understanding of stress-related disorders. However, there is still a great need for research in this area, as many unanswered questions remain. Therefore, we sought to employ a novel animal model of depression known as intermittent swim stress (ISS). In this model, the animal experiences 100 trials of cold water swim stress. ISS has already shown subsequent immobility in the forced swim test (FST), deficits in instrumental and spatial (spaced-trial procedure), and responsiveness to norepinephrine. We are now examining how this will translate in the Morris water maze for rats in a massed-learning trial procedure, and further assessing ISS sensitivity toward norepinephrine selective anti-depressant drugs. The results indicated no difference in cued learning when the platform was visible in the water maze, but a hidden platform task revealed poorer spatial learning for ISS-exposed rats versus controls. In terms of spatial memory, there was a notable ISS-induced deficit 1h after the learning trials, regardless of performance on the previous platform task. Interestingly, the administration of reboxetine interfered with the spatial learning and memory trials for both ISS and CC groups. As a result, ISS exposure compromised spatial learning and memory in the Morris water maze, and norepinephrine does not appear to be a mediator of this deficit. The results demonstrate a key difference in the effects of reboxetine in a massed- vs. spaced-learning trial procedure in the Morris water maze following ISS exposure.

  18. Deficits in Adult Neurogenesis, Contextual Fear Conditioning, and Spatial Learning in a Gfap Mutant Mouse Model of Alexander Disease

    PubMed Central

    Paylor, Richard; Messing, Albee

    2013-01-01

    Glial fibrillary acidic protein (GFAP) is the major intermediate filament of mature astrocytes in the mammalian CNS. Dominant gain of function mutations in GFAP lead to the fatal neurodegenerative disorder, Alexander disease (AxD), which is characterized by cytoplasmic protein aggregates known as Rosenthal fibers along with variable degrees of leukodystrophy and intellectual disability. The mechanisms by which mutant GFAP leads to these pleiotropic effects are unknown. In addition to astrocytes, GFAP is also expressed in other cell types, particularly neural stem cells that form the reservoir supporting adult neurogenesis in the hippocampal dentate gyrus and subventricular zone of the lateral ventricles. Here, we show that mouse models of AxD exhibit significant pathology in GFAP-positive radial glia-like cells in the dentate gyrus, and suffer from deficits in adult neurogenesis. In addition, they display impairments in contextual learning and spatial memory. This is the first demonstration of cognitive phenotypes in a model of primary astrocyte disease. PMID:24259590

  19. Protective Effect of Porcine Cerebral Hydrolysate Peptides on Learning and Memory Deficits and Oxidative Stress in Lead-Exposed Mice.

    PubMed

    Zou, Ye; Feng, Weiwei; Wang, Wei; Chen, Yao; Zhou, Zhaoxiang; Li, Qian; Zhao, Ting; Mao, Guanghua; Wu, Xiangyang; Yang, Liuqing

    2015-12-01

    In this study, lead acetate solution and porcine cerebral hydrolysate peptides (PCHPs) were administered to developing mice. Porcine cerebral protein pretreated by ultrasound was hydrolyzed with alcalase, and 11 peptide fragments were obtained by Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of PCHPs. Our data showed that PCHPs significantly decreased Pb2+-induced spontaneous locomotor activity, latencies to reach the platform, and the time in target quadrant. It also decreased the accumulation of lead in the blood and brain of Pb2+-exposed developing mice. Co-administration of PCHPs and dimercaptosuccinic acid (DMSA) did not only reduce the accumulation of lead in blood but also increased the absorption of zinc and iron in Pb2+-exposed mice. Administration of PCHPs individually significantly enhanced hematopoietic parameters compared with the Pb2+-exposed group. PCHPs significantly reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) but increased glutathione (GSH) content and anti-oxidant enzymes and nitric oxide synthase (NOS) activities in Pb2+-exposed brain. Our findings suggest that PCHPs have the ability to protect against Pb2+-exposed learning and memory deficits and oxidative damage.

  20. Pretreatment with 5-hydroxymethyl-2-furaldehyde blocks scopolamine-induced learning deficit in contextual and spatial memory in male mice.

    PubMed

    Lee, Younghwan; Gao, Qingtao; Kim, Eunji; Lee, Younghwa; Park, Se Jin; Lee, Hyung Eun; Jang, Dae Sik; Ryu, Jong Hoon

    2015-07-01

    5-Hydroxymethyl-2-furaldehyde (5-HMF) is a compound derived from the dehydration of certain sugars. The aim of the present study was to evaluate the effect of 5-HMF on the cognitive impairment induced by scopolamine, a muscarinic receptor antagonist. To measure various cognitive functions, we conducted the step-through passive avoidance task, the Y-maze task and the Morris water maze task. A single administration of 5-HMF (5 or 10mg/kg, p.o.) significantly attenuates scopolamine-induced cognitive impairment in these behavioral tasks without changes in locomotor activity, and the effect of 5-HMF on scopolamine-induced cognitive impairment was significantly reversed by a sub-effective dose of MK-801, an NMDA receptor antagonist. In addition, a single administration of 5-HMF (10mg/kg, p.o.) enhanced the cognitive performance of normal naïve mice in the passive avoidance task. Furthermore, Western blot analysis revealed that the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II-α (CaMKII) and extracellular signal-regulated kinases (ERK) were significantly enhanced by the single administration of 5-HMF in the hippocampal tissues. Taken together, the present study suggests that 5-HMF may block scopolamine-induced learning deficit and enhance cognitive function via the activation of NMDA receptor signaling, including CaMKII and ERK, and would be an effective candidate against cognitive disorders, such as Alzheimer's disease.

  1. Isolation rearing-induced deficits in contextual fear learning do not require CRF(2) receptors.

    PubMed

    Gresack, Jodi E; Risbrough, Victoria B; Scott, Christine N; Coste, Sarah; Stenzel-Poore, Mary; Geyer, Mark A; Powell, Susan B

    2010-05-01

    Post-weaning social isolation of rodents is used to model developmental stressors linked to neuropsychiatric disorders including schizophrenia as well as anxiety and mood disorders. Isolation rearing produces alterations in emotional memory and hippocampal neuropathology. Corticotropin releasing factor (CRF) signaling has recently been shown to be involved in behavioral effects of isolation rearing. Activation of the CRF(2) receptor is linked to stress-induced alterations in fear learning and may also be involved in long-term adaptation to stress. Here we tested the hypothesis that CRF(2) contributes to isolation rearing effects on emotional memory. At weaning, mice were housed either in groups of three or individually in standard mouse cages. In adulthood, isolation-reared mice exhibited significant reductions in context-specific, but not cue-specific, freezing. Isolation-reared mice exhibited no significant changes in locomotor exploration during brief exposure to a novel environment, suggesting that the reduced freezing in response to context cues was not due to activity confounds. Isolation rearing also disrupted context fear memory in mice with a CRF(2) gene null mutation, indicating that the CRF(2) receptor is not required for isolation effects on fear memory. Thus, isolation rearing disrupts hippocampal-dependent fear learning as indicated by consistent reductions in context-conditioned freezing in two separate cohorts of mice, and these effects are via a CRF(2)-independent mechanism. These findings may be clinically relevant because they suggest that isolation rearing in mice may be a useful model of developmental perturbations linked to disruptions in emotional memory in a variety of neuropsychiatric disorders.

  2. A novel radial water tread maze tracks age-related cognitive decline in mice

    PubMed Central

    Pettan-Brewer, Christina; Touch, Dylan V.; Wiley, Jesse C.; Hopkins, Heather C.; Rabinovitch, Peter S.; Ladiges, Warren C.

    2013-01-01

    There is currently no treatment and cure for age-related dementia and cognitive impairment in humans. Mice suffer from age-related cognitive decline just as people do, but assessment is challenging because of cumbersome and at times stressful performance tasks. We developed a novel radial water tread (RWT) maze and tested male C57BL/6 (B6) and C57BL/6 x Balb/c F1 (CB6F1) mice at ages 4, 12, 20, and 28 months. B6 mice showed a consistent learning experience and memory retention that gradually decreased with age. CB6F1 mice showed a moderate learning experience in the 4 and 12 month groups, which was not evident in the 20 and 28 month groups. In conclusion, CB6F1 mice showed more severe age-related cognitive impairment compared to B6 mice and might be a suitable model for intervention studies. In addition, the RWT maze has a number of operational advantages compared to currently accepted tasks and can be used to assess age-related cognition impairment in B6 and CB6F1 mice as early as 12 months of age. PMID:24106580

  3. New Clues to Age-Related Hearing Loss

    MedlinePlus

    ... gov/news/fullstory_161359.html New Clues to Age-Related Hearing Loss Older people's brains have a ... the brain's ability to process speech declines with age. For the study, Alessandro Presacco and colleagues divided ...

  4. Maternal obesity caused by overnutrition exposure leads to reversal learning deficits and striatal disturbance in rats.

    PubMed

    Wu, Ting; Deng, Shining; Li, Wei-Guang; Yu, Yongguo; Li, Fei; Mao, Meng

    2013-01-01

    Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life. PMID:24223863

  5. Maternal Obesity Caused by Overnutrition Exposure Leads to Reversal Learning Deficits and Striatal Disturbance in Rats

    PubMed Central

    Wu, Ting; Deng, Shining; Li, Wei-Guang; Yu, Yongguo; Li, Fei; Mao, Meng

    2013-01-01

    Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life. PMID:24223863

  6. Post-weaning mice fed exclusively milk have deficits in induction of long-term depression in the CA1 hippocampal region and spatial learning and memory.

    PubMed

    Nishie, Hideaki; Miyata, Ryouhei; Fujikawa, Ryu; Kinoshita, Ken-ichi; Muroi, Yoshikage; Ishii, Toshiaki

    2012-08-01

    Previously, we have found that post-weaning mice fed exclusively milk display low-frequency exploratory behavior compared to mice fed a food pellet diet (Ishii et al., 2005a). Because cognitive functions play a key role in animal exploration, in the present study we examined the effect of an exclusively milk formula diet on spatial learning and memory in a water maze and also on induction of long-term potentiation (LTP) and long-term depression (LTD) at the Schaffer collateral-CA1 synapse in the hippocampus. Exclusively milk-fed mice exhibited slower learning and memory deficits in hidden water maze tests as compared with pellet-fed mice. Moreover, milk-fed mice showed a significant inhibition of LTD but a normal induction of LTP. Despite these functional deficits, adult neurogenesis in the dentate gyrus of the hippocampus, which has been proposed to have a causal relationship to spatial memory, was stimulated in milk-fed mice. These result suggest that an exclusively milk formula diet after weaning leads to a stimulation of hippocampal neurogenesis but causes deficits in the induction of LTD in the CA1 hippocampal region and impairment of spatial learning and memory.

  7. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms.

    PubMed

    Hasanein, Parisa; Felehgari, Zhila; Emamjomeh, Abbasali

    2016-05-27

    Learning and memory impairment occurs in diabetes. Salvia officinalis L. (SO) has been used in Iranian traditional medicine as a remedy against diabetes. We hypothesized that chronic administration of SO (400, 600 and 800mg/kg, p.o.) and its principal constituent, rosmarinic acid, would affect on passive avoidance learning (PAL) and memory in streptozocin-induced diabetic and non-diabetic rats. We also explored hypoglycemic and antioxidant activities of SO as the possible mechanisms. Treatments were begun at the onset of hyperglycemia. PAL was assessed 30days later. Retention test was done 24h after training. At the end, animals were weighed and blood samples were drawn for further analyzing of glucose and oxidant/antioxidant markers. Diabetes induced deficits in acquisition and retrieval processes. SO (600 and 800mg/kg) and rosmarinic acid reversed learning and memory deficits induced by diabetes and improved cognition of healthy rats. While the dose of 400mg/kg had no effect, the higher doses and rosmarinic acid inhibited hyperglycemia and lipid peroxidation as well as enhanced the activity of antioxidant enzymes superoxide dismutase and catalase. SO prevented diabetes-induced acquisition and memory deficits through inhibiting hyperglycemia, lipid peroxidation as well as enhancing antioxidant defense systems. Therefore, SO and its principal constituent rosmarinic acid represent a potential therapeutic option against diabetic memory impairment which deserves consideration and further examination.

  8. Cognitive Function of Children and Adolescents with Attention Deficit Hyperactivity Disorder and Learning Difficulties: A Developmental Perspective

    PubMed Central

    Huang, Fang; Sun, Li; Qian, Ying; Liu, Lu; Ma, Quan-Gang; Yang, Li; Cheng, Jia; Cao, Qing-Jiu; Su, Yi; Gao, Qian; Wu, Zhao-Min; Li, Hai-Mei; Qian, Qiu-Jin; Wang, Yu-Feng

    2016-01-01

    Background: The cognitive function of children with either attention deficit hyperactivity disorder (ADHD) or learning disabilities (LDs) is known to be impaired. However, little is known about the cognitive function of children with comorbid ADHD and LD. The present study aimed to explore the cognitive function of children and adolescents with ADHD and learning difficulties in comparison with children with ADHD and healthy controls in different age groups in a large Chinese sample. Methods: Totally, 1043 participants with ADHD and learning difficulties (the ADHD + learning difficulties group), 870 with pure ADHD (the pure ADHD group), and 496 healthy controls were recruited. To investigate the difference in cognitive impairment using a developmental approach, all participants were divided into three age groups (6–8, 9–11, and 12–14 years old). Measurements were the Chinese-Wechsler Intelligence Scale for Children, the Stroop Color-Word Test, the Trail-Making Test, and the Behavior Rating Inventory of Executive Function-Parents (BRIEF). Multivariate analysis of variance was used. Results: The results showed that after controlling for the effect of ADHD symptoms, the ADHD + learning difficulties group was still significantly worse than the pure ADHD group, which was, in turn, worse than the control group on full intelligence quotient (98.66 ± 13.87 vs. 105.17 ± 14.36 vs. 112.93 ± 13.87, P < 0.001). The same relationship was also evident for shift function (shifting time of the Trail-Making Test, 122.50 [62.00, 194.25] s vs. 122.00 [73.00, 201.50] s vs. 66.00 [45.00, 108.00] s, P < 0.001) and everyday life executive function (BRIEF total score, 145.71 ± 19.35 vs. 138.96 ± 18.00 vs. 122.71 ± 20.45, P < 0.001) after controlling for the effect of the severity of ADHD symptoms, intelligence quotient, age, and gender. As for the age groups, the differences among groups became nonsignificant in the 12–14 years old group for inhibition (meaning interference of

  9. Age-related structural and functional changes in the cochlear nucleus.

    PubMed

    Frisina, Robert D; Walton, Joseph P

    2006-01-01

    Presbycusis - age-related hearing loss - is a key communication disorder and chronic medical condition of our aged population. The cochlear nucleus is the major site of projections from the auditory portion of the inner ear. Relative to other levels of the peripheral and central auditory systems, relatively few studies have been conducted examining age-related changes in the cochlear nucleus. The neurophysiological investigations suggest declines in glycine-mediated inhibition, reflected in increased firing rates in cochlear nucleus neurons from old animals relative to young adults. Biochemical investigations of glycine inhibition in the cochlear nucleus are consistent with the functional aging declines of this inhibitory neurotransmitter system that affect complex sound processing. Anatomical reductions in neurons of the cochlear nucleus and their output pathways can occur due to aging changes in the brain, as well as due to age-dependent plasticity of the cochlear nucleus in response to the age-related loss of inputs from the cochlea, particularly from the basal, high-frequency regions. Novel preventative and curative biomedical interventions in the future aimed at alleviating the hearing loss that comes with age, will likely emanate from increasing our knowledge and understanding of its neural and molecular bases. To the extent that this sensory deficit resides in the central auditory system, including the cochlear nucleus, future neural therapies will be able to improve hearing in the elderly.

  10. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  11. Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: role of buspirone and risperidone in ameliorating these cognitive deficits.

    PubMed

    Rapanelli, Maximiliano; Frick, Luciana Romina; Bernardez-Vidal, Micaela; Zanutto, Bonifacio Silvano

    2013-11-15

    Blockade of N-methyl-d-aspartate receptor (NMDA) by the noncompetitive NMDA receptor (NMDAR) antagonist MK-801 produces behavioral abnormalities and alterations in prefrontal cortex (PFC) functioning. Due to the critical role of the PFC in operant conditioning task learning, we evaluated the effects of acute, repeated postnatal injections of MK-801 (0.1mg/kg) on learning performance. We injected Long-Evans rats i.p. with MK-801 (0.1mg/kg) using three different administration schedules: injection 40 min before beginning the task (during) (n=12); injection twice daily for six consecutive days prior to beginning the experimental procedures (prior) (n=12); or twice daily subcutaneous injections from postnatal day 7 to 11 (postnatal) (n=12). Next, we orally administered risperidone (serotonin receptor 2A and dopamine receptor 2 antagonist, 1mg/kg) or buspirone (serotonin receptor 1A partial agonist, 10mg/kg) to animals treated with the MK-801 schedule described above. The postnatal and prior administration schedules produced severe learning deficits, whereas injection of MK-801 just before training sessions had only mild effects on acquisition of an operant conditioning. Risperidone was able to reverse the detrimental effect of MK-801 in the animals that were treated with MK-801 during and prior training sessions. In contrast, buspirone was only effective at mitigating the cognitive deficits induced by MK-801 when administered during the training procedures. The data demonstrates that NMDA antagonism disrupts basic mechanisms of learning in a simple PFC-mediated operant conditioning task, and that buspirone and risperidone failed to attenuate the learning deficits when NMDA neurotransmission was blocked in the early stages of the postnatal period.

  12. Prefrontal cortical volume loss is associated with stress-related deficits in verbal learning and memory in HIV-infected women.

    PubMed

    Rubin, Leah H; Meyer, Vanessa J; J Conant, Rhoda; Sundermann, Erin E; Wu, Minjie; Weber, Kathleen M; Cohen, Mardge H; Little, Deborah M; Maki, Pauline M

    2016-08-01

    Deficits in verbal learning and memory are a prominent feature of neurocognitive function in HIV-infected women, and are associated with high levels of perceived stress. To understand the neurobiological factors contributing to this stress-related memory impairment, we examined the association between stress, verbal memory, and brain volumes in HIV-infected women. Participants included 38 HIV-infected women (Mean age=43.9years) from the Chicago Consortium of the Women's Interagency HIV Study (WIHS). Participants underwent structural magnetic resonance imaging (MRI) and completed standardized measures of verbal learning and memory and stress (Perceived Stress Scale-10; PSS-10). Brain volumes were evaluated in a priori regions of interest, including the medial temporal lobe (MTL) and prefrontal cortex (PFC). Compared to HIV-infected women with lower stress (PSS-10 scores in lower two tertiles), HIV-infected women with higher stress (scores in the top tertile), performed worse on measures of verbal learning and memory and showed smaller volumes bilaterally in the parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, and inferior frontal gyrus (p's<0.05). Reduced volumes in the inferior frontal gyrus, middle frontal gyrus, and superior frontal gyrus (all right hemisphere) were negatively associated with verbal learning and memory performance. Prefrontal cortical atrophy is associated with stress-related deficits in verbal learning and memory in HIV-infected women. The time course of these volume losses in relation to memory deficits has yet to be elucidated, but the magnitude of the volumetric differences between women with higher versus lower stress suggests a prolonged vulnerability due to chronic stress and/or early life trauma.

  13. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    PubMed

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  14. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.

  15. The ties to unbind: age-related differences in feature (un)binding in working memory for emotional faces.

    PubMed

    Pehlivanoglu, Didem; Jain, Shivangi; Ariel, Robert; Verhaeghen, Paul

    2014-01-01

    In the present study, we investigated age-related differences in the processing of emotional stimuli. Specifically, we were interested in whether older adults would show deficits in unbinding emotional expression (i.e., either no emotion, happiness, anger, or disgust) from bound stimuli (i.e., photographs of faces expressing these emotions), as a hyper-binding account of age-related differences in working memory would predict. Younger and older adults completed different N-Back tasks (side-by-side 0-Back, 1-Back, 2-Back) under three conditions: match/mismatch judgments based on either the identity of the face (identity condition), the face's emotional expression (expression condition), or both identity and expression of the face (both condition). The two age groups performed more slowly and with lower accuracy in the expression condition than in the both condition, indicating the presence of an unbinding process. This unbinding effect was more pronounced in older adults than in younger adults, but only in the 2-Back task. Thus, older adults seemed to have a specific deficit in unbinding in working memory. Additionally, no age-related differences were found in accuracy in the 0-Back task, but such differences emerged in the 1-Back task, and were further magnified in the 2-Back task, indicating independent age-related differences in attention/STM and working memory. Pupil dilation data confirmed that the attention/STM version of the task (1-Back) is more effortful for older adults than younger adults. PMID:24795660

  16. Age-related differences in gap detection: Effects of task difficulty and cognitive ability

    PubMed Central

    Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2009-01-01

    location remained constant across trials. Taken together, these results suggest that age-related differences in complex measures of auditory temporal processing may be explained, in part, by age-related deficits in processing speed and attention. PMID:19800958

  17. Pathophysiology of ageing, longevity and age related diseases

    PubMed Central

    Bürkle, Alexander; Caselli, Graziella; Franceschi, Claudio; Mariani, Erminia; Sansoni, Paolo; Santoni, Angela; Vecchio, Giancarlo; Witkowski, Jacek M; Caruso, Calogero

    2007-01-01

    On April 18, 2007 an international meeting on Pathophysiology of Ageing, Longevity and Age-Related Diseases was held in Palermo, Italy. Several interesting topics on Cancer, Immunosenescence, Age-related inflammatory diseases and longevity were discussed. In this report we summarize the most important issues. However, ageing must be considered an unavoidable end point of the life history of each individual, nevertheless the increasing knowledge on ageing mechanisms, allows envisaging many different strategies to cope with, and delay it. So, a better understanding of pathophysiology of ageing and age-related disease is essential for giving everybody a reasonable chance for living a long and enjoyable final part of the life. PMID:17683521

  18. Mouse models of age-related mitochondrial neurosensory hearing loss.

    PubMed

    Han, Chul; Someya, Shinichi

    2013-07-01

    Hearing loss is the most common sensory disorder in the elderly population. Overall, 10% of the population has a hearing loss in the US, and this age-related hearing disorder is projected to afflict more than 28 million Americans by 2030. Age-related hearing loss is associated with loss of sensory hair cells (sensory hearing loss) and/or spiral ganglion neurons (neuronal hearing loss) in the cochlea of the inner ear. Many lines of evidence indicate that oxidative stress and associated mitochondrial dysfunction play a central role in age-related neurodegenerative diseases and are a cause of age-related neurosensory hearing loss. Yet, the molecular mechanisms of how oxidative stress and/or mitochondrial dysfunction lead to hearing loss during aging remain unclear, and currently there is no treatment for this age-dependent disorder. Several mouse models of aging and age-related diseases have been linked to age-related mitochondrial neurosensory hearing loss. Evaluation of these animal models has offered basic knowledge of the mechanism underlying hearing loss associated with oxidative stress, mitochondrial dysfunction, and aging. Here we review the evidence that specific mutations in the mitochondrial DNA or nuclear DNA that affect mitochondrial function result in increased oxidative damage and associated loss of sensory hair cells and/or spiral ganglion neurons in the cochlea during aging, thereby causing hearing loss in these mouse models. Future studies comparing these models will provide further insight into fundamental knowledge about the disordered process of hearing and treatments to improve the lives of individuals with communication disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.

  19. Age-related differences in human skin proteoglycans

    PubMed Central

    Carrino, David A; Calabro, Anthony; Darr, Aniq B; Dours-Zimmermann, Maria T; Sandy, John D; Zimmermann, Dieter R; Sorrell, J Michael; Hascall, Vincent C; Caplan, Arnold I

    2011-01-01

    Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human skin. PMID:20947661

  20. A complementary role of intracortical inhibition in age-related tactile degradation and its remodelling in humans.

    PubMed

    Pleger, Burkhard; Wilimzig, Claudia; Nicolas, Volkmar; Kalisch, Tobias; Ragert, Patrick; Tegenthoff, Martin; Dinse, Hubert R

    2016-01-01

    Many attempts are currently underway to restore age-related degraded perception, however, the link between restored perception and remodeled brain function remains elusive. To understand remodeling of age-related cortical reorganization we combined functional magnetic resonance imaging (fMRI) with assessments of tactile acuity, perceptual learning, and computational modeling. We show that aging leads to tactile degradation parallel to enhanced activity in somatosensory cortex. Using a neural field model we reconciled the empirical age-effects by weakening of cortical lateral inhibition. Using perceptual learning, we were able to partially restore tactile acuity, which however was not accompanied by the expected attenuation of cortical activity, but by a further enhancement. The neural field model reproduced these learning effects solely through a weakening of the amplitude of inhibition. These findings suggest that the restoration of age-related degraded tactile acuity on the cortical level is not achieved by re-strengthening lateral inhibition but by further weakening intracortical inhibition.

  1. Age-related decline in emotional prosody discrimination: acoustic correlates.

    PubMed

    Mitchell, Rachel L C; Kingston, Rachel A

    2014-01-01

    It is now accepted that older adults have difficulty recognizing prosodic emotion cues, but it is not clear at what processing stage this ability breaks down. We manipulated the acoustic characteristics of tones in pitch, amplitude, and duration discrimination tasks to assess whether impaired basic auditory perception coexisted with our previously demonstrated age-related prosodic emotion perception impairment. It was found that pitch perception was particularly impaired in older adults, and that it displayed the strongest correlation with prosodic emotion discrimination. We conclude that an important cause of age-related impairment in prosodic emotion comprehension exists at the fundamental sensory level of processing.

  2. Principal Component Analysis of the Effects of Environmental Enrichment and (-)-epigallocatechin-3-gallate on Age-Associated Learning Deficits in a Mouse Model of Down Syndrome

    PubMed Central

    Catuara-Solarz, Silvina; Espinosa-Carrasco, Jose; Erb, Ionas; Langohr, Klaus; Notredame, Cedric; Gonzalez, Juan R.; Dierssen, Mara

    2015-01-01

    Down syndrome (DS) individuals present increased risk for Alzheimer's disease (AD) neuropathology and AD-type dementia. Here, we investigated the use of green tea extracts containing (-)-epigallocatechin-3-gallate (EGCG), as co-adjuvant to enhance the effects of environmental enrichment (EE) in Ts65Dn mice, a segmental trisomy model of DS that partially mimics DS/AD pathology, at the age of initiation of cognitive decline. Classical repeated measures ANOVA showed that combined EE-EGCG treatment was more efficient than EE or EGCG alone to improve specific spatial learning related variables. Using principal component analysis (PCA) we found that several spatial learning parameters contributed similarly to a first PC and explained a large proportion of the variance among groups, thus representing a composite learning measure. This PC1 revealed that EGCG or EE alone had no significant effect. However, combined EE-EGCG significantly ameliorated learning alterations of middle age Ts65Dn mice. Interestingly, PCA revealed an increased variability along learning sessions with good and poor learners in Ts65Dn, and this stratification did not disappear upon treatments. Our results suggest that combining EE and EGCG represents a viable therapeutic approach for amelioration of age-related cognitive decline in DS, although its efficacy may vary across individuals. PMID:26696850

  3. Principal Component Analysis of the Effects of Environmental Enrichment and (-)-epigallocatechin-3-gallate on Age-Associated Learning Deficits in a Mouse Model of Down Syndrome.

    PubMed

    Catuara-Solarz, Silvina; Espinosa-Carrasco, Jose; Erb, Ionas; Langohr, Klaus; Notredame, Cedric; Gonzalez, Juan R; Dierssen, Mara

    2015-01-01

    Down syndrome (DS) individuals present increased risk for Alzheimer's disease (AD) neuropathology and AD-type dementia. Here, we investigated the use of green tea extracts containing (-)-epigallocatechin-3-gallate (EGCG), as co-adjuvant to enhance the effects of environmental enrichment (EE) in Ts65Dn mice, a segmental trisomy model of DS that partially mimics DS/AD pathology, at the age of initiation of cognitive decline. Classical repeated measures ANOVA showed that combined EE-EGCG treatment was more efficient than EE or EGCG alone to improve specific spatial learning related variables. Using principal component analysis (PCA) we found that several spatial learning parameters contributed similarly to a first PC and explained a large proportion of the variance among groups, thus representing a composite learning measure. This PC1 revealed that EGCG or EE alone had no significant effect. However, combined EE-EGCG significantly ameliorated learning alterations of middle age Ts65Dn mice. Interestingly, PCA revealed an increased variability along learning sessions with good and poor learners in Ts65Dn, and this stratification did not disappear upon treatments. Our results suggest that combining EE and EGCG represents a viable therapeutic approach for amelioration of age-related cognitive decline in DS, although its efficacy may vary across individuals. PMID:26696850

  4. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  5. PPARα agonist, fenofibrate, ameliorates age-related renal injury.

    PubMed

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Kim, Hyung Wook; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-08-01

    The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney. PMID:27130813

  6. Nutritional antioxidants and age-related cataract and maculopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of vision is the second greatest, next to death, fear among the elderly. Age-related cataract (ARC) and maculopathy (ARM) are two major causes of blindness worldwide. There are several important reasons to study relationships between risk for ARC/ARM and nutrition: (1) because it is likely that...

  7. [Impact of thymic function in age-related immune deterioration].

    PubMed

    Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles

    2013-01-01

    Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline.

  8. Age-Related Differences in Idiom Production in Adulthood

    ERIC Educational Resources Information Center

    Conner, Peggy S.; Hyun, Jungmoon; O'Connor Wells, Barbara; Anema, Inge; Goral, Mira; Monereau-Merry, Marie-Michelle; Rubino, Daniel; Kuckuk, Raija; Obler, Loraine K.

    2011-01-01

    To investigate whether idiom production was vulnerable to age-related difficulties, we asked 40 younger (ages 18-30) and 40 older healthy adults (ages 60-85) to produce idiomatic expressions in a story-completion task. Younger adults produced significantly more correct idiom responses (73%) than did older adults (60%). When older adults generated…

  9. Age-Related Factors in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Twyford, Charles William

    The convergence of several lines of psycholinguistic and sociolinguistic research suggests possible explanations for age-related influences on language acquisition. These factors, which include cognitive development, sociocultural context, affective factors, and language input, can be helpful to language educators. By being alert to the cognitive…

  10. A Context for Teaching Aging-Related Public Policy.

    ERIC Educational Resources Information Center

    Brown, David K.

    1999-01-01

    Describes two points of view regarding age-related public programs (Medicaid, Medicare, Social Security): that of devolutionists who would curtail them and safety netters who maintain the government's role is indispensable. Uses Relative Deprivation theory as a framework for teaching public policy about aging. (SK)

  11. Age-Related Differences in the Production of Textual Descriptions

    ERIC Educational Resources Information Center

    Marini, Andrea; Boewe, Anke; Caltagirone, Carlo; Carlomagno, Sergio

    2005-01-01

    Narratives produced by 69 healthy Italian adults were analyzed for age-related changes of microlinguistic, macrolinguistic and informative aspects. The participants were divided into five age groups (20-24, 25-39, 40-59, 60-74, 75-84). One single-picture stimulus and two cartoon sequences were used to elicit three stories per subject. Age-related…

  12. Managed care implications of age-related ocular conditions.

    PubMed

    Cardarelli, William J; Smith, Roderick A

    2013-05-01

    The economic costs of age-related ocular diseases and vision loss are increasing rapidly as our society ages. In addition to the direct costs of treating age-related eye diseases, elderly persons with vision loss are at significantly increased risk for falls and fractures, experiencing social isolation, and suffering from an array of comorbid medical conditions compared with individuals with normal vision. Recent studies estimate the total economic burden (direct and indirect costs) of adult vision impairment in the United States at $51.4 billion. This figure is expected to increase as the baby boomer generation continues to age. While a number of highly effective new therapies have caused a paradigm shift in the management of several major age-related ocular diseases in recent years, these treatments come at a substantial cost. This article reviews the economic burdens and treatment-related costs of 4 major ocular diseases of aging-glaucoma, age-related macular degeneration, diabetic retinopathy, and dry eye disease-and the implications for managed care.

  13. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  14. The Experience of Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Wong, Elaine Y. H.; Guymer, Robyn H.; Hassell, Jennifer B.; Keeffe, Jill E.

    2004-01-01

    This qualitative article describes the impact of age-related macular degeneration (ARMD) among 15 participants: how a person makes sense of ARMD, the effect of ARMD on the person's quality of life, the psychological disturbances associated with the limitations of ARMD, and the influence of ARMD on social interactions. Such in-depth appreciation of…

  15. Nutritional influences on epigenetics and age-related disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  16. Age-Related Differences in Moral Identity across Adulthood

    ERIC Educational Resources Information Center

    Krettenauer, Tobias; Murua, Lourdes Andrea; Jia, Fanli

    2016-01-01

    In this study, age-related differences in adults' moral identity were investigated. Moral identity was conceptualized a context-dependent self-structure that becomes differentiated and (re)integrated in the course of development and that involves a broad range of value-orientations. Based on a cross-sectional sample of 252 participants aged 14 to…

  17. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  18. Nutritional modulation of age-related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated wi...

  19. Age-Related Health Stereotypes and Illusory Correlation

    ERIC Educational Resources Information Center

    Madey, Scott F.; Chasteen, Alison L.

    2004-01-01

    This experiment investigated how age-related health stereotypes affect people's judgments of younger and older patients' medical compliance. Previous research has shown that stereotypes of young adults include healthy components, but stereotypes of older adults include both healthy and unhealthy components (Hummert, 1990). We predicted that…

  20. Abnormal differentiation of newborn granule cells in age-related working memory impairments.

    PubMed

    Nyffeler, Myriel; Yee, Benjamin K; Feldon, Joram; Knuesel, Irene

    2010-11-01

    Age-related declines in spatial memory have been linked to abnormal functional properties and connectivity of newborn granule cells. However, the relationship between adult neurogenesis, aging, and cognitive performance seems more complex than previously anticipated, likely due to the difficulty of disentangling alterations related to training as such and those associated with cognitive performance. Here, we investigated how different aspects of adult neurogenesis might be related to training, age and cognitive performance amongst aged subjects by comparing behaviourally naïve and tested rats of 3, 6, 24mo of age. We separated aged rats into learning-impaired and -unimpaired groups based on their performance in the Morris water maze to investigate neurogenesis-related morphological and neurochemical changes. We report an age-related decline in cell proliferation and maturation independent of cognitive performance and testing. We confirm an age-related altered differentiation of newborn neurons which was particularly prominent in learning-impaired rats. This was associated with an abnormally prolonged expression of the early progenitor marker Nestin, potentially also affecting maturation, survival/integration of newborn neurons into existing neuronal networks, which might underlie the individual differences in cognitive performance during aging.

  1. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression

    PubMed Central

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F.; Buss, Eric W.; Richter, Hannah; Oh, M. Matthew

    2015-01-01

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29–32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K+ channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. SIGNIFICANCE STATEMENT Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  2. What's the Point of Lifelong Learning if Lifelong Learning Has No Point? On the Democratic Deficit of Policies for Lifelong Learning

    ERIC Educational Resources Information Center

    Biesta, Gert

    2006-01-01

    This article provides an analysis of shifts that have taken place in policy discourses on lifelong learning by organisations such as the United Nations Educational, Scientific and cultural Organisation, the Organisation for Economic Cooperation and Development and the European Union. The article documents the shifts in these discourses over time,…

  3. Stem cell transplantation improves aging-related diseases

    PubMed Central

    Ikehara, Susumu; Li, Ming

    2014-01-01

    Aging is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. The number of patients with age-associated diseases such as type 2 diabetes mellitus (T2DM), osteoporosis, Alzheimer's disease (AD), Parkinson's disease, atherosclerosis, and cancer has increased recently. Aging-related diseases are related to a deficiency of the immune system, which results from an aged thymus and bone marrow cells. Intra bone marrow-bone marrow transplantation (IBM-BMT) is a useful method to treat intractable diseases. This review summarizes findings that IBM-BMT can improve and treat aging-related diseases, including T2DM, osteoporosis and AD, in animal models. PMID:25364723

  4. Veterans have less age-related cognitive decline.

    PubMed

    McLay, R N; Lyketsos, C G

    2000-08-01

    Military service involves exposure to a number of stresses, both psychological and physical. On the other hand, military personnel generally maintain excellent fitness, and veterans have increased access to education and health care. The overall effect on age-related cognitive decline, whether for good or ill, of having served in the armed forces has not been investigated previously. In this study, we examined a diverse population of 208 veterans and 1,216 civilians followed as part of the Epidemiologic Catchment Area Study in 1981, 1982, and 1993 to 1996. We examined change in Mini-Mental State Examination (MMSE) score after a median of 11.5 years. Veterans were found to have significantly less decrease in MMSE scores at follow-up even after sex, race, and education were taken into account. These results suggest an overall positive effect of military service on the rate of age-related cognitive decline. PMID:10957857

  5. Age-related cochlear hair cell loss in the chinchilla.

    PubMed

    Bhattacharyya, T K; Dayal, V S

    1985-01-01

    The spiral organ of the chinchilla was studied by the surface-preparation technique in four different age groups: 1 month, 6 months, 1 year, and 4 years, to assess age-related hair cell loss. Decrease in hair cell population is linearly related to age, and damage rate of outer hair cells is greater than that of inner hair cells. The mean percentage of damaged total outer hair cells was 0.60%, 1.16%, 1.71%, and 7.07% in animals in 1 month, 6 months, 1 year, and 4 years of age, respectively. Outer hair cell loss was greatest in the apex of the cochlea and, of these cells, the outermost row was the most affected. Damage to inner hair cells also increases with age. Age-related apical cochlear cell loss in the chinchilla is comparable to that observed in other laboratory animals. PMID:3970507

  6. The suprachiasmatic nucleus: age-related decline in biological rhythms.

    PubMed

    Nakamura, Takahiro J; Takasu, Nana N; Nakamura, Wataru

    2016-09-01

    Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging. Furthermore, we have previously observed age-related infertility in female mice, caused by a mismatch between environmental light-dark cycles and the intrinsic, internal biological clocks. In this review, we address regulatory mechanisms underlying circadian rhythms in mammals and summarize recent literature describing the effects of aging on the circadian system.

  7. Ageism, age relations, and garment industry work in Montreal.

    PubMed

    McMullin, J A; Marshall, V W

    2001-02-01

    This study examined the complexities of age relations at work. Garment workers believed that their fate was linked to ageism and that their work experience was discounted by management. Managers wanted to be rid of older workers because they commanded higher wages than younger workers. The issue was cost reduction, and age was implicated unintendedly. Still, managers seemed to use stereotypical images to discourage older workers and they did not organize work routines to facilitate the adaptation of them. Instead, they subcontracted the easy jobs, relying on the experience of the older employees for difficult work while not adapting the workplace. Theoretically, the authors argue that ageism and age discrimination can best be understood through a recognition of the importance of structured age relations and human agency.

  8. Smoking and Age-Related Macular Degeneration: Review and Update

    PubMed Central

    Velilla, Sara; García-Medina, José Javier; García-Layana, Alfredo; Pons-Vázquez, Sheila; Pinazo-Durán, M. Dolores; Gómez-Ulla, Francisco; Arévalo, J. Fernando; Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto

    2013-01-01

    Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health. PMID:24368940

  9. Age-related changes in ultra-triathlon performances

    PubMed Central

    2012-01-01

    Background The age-related decline in performance has been investigated in swimmers, runners and triathletes. No study has investigated the age-related performance decline in ultra-triathletes. The purpose of this study was to analyse the age-related declines in swimming, cycling, running and overall race time for both Triple Iron ultra-triathlon (11.4-km swimming, 540-km cycling and 126.6-km running) and Deca Iron ultra-triathlon (38-km swimming, 1,800-km cycling and 420-km running). Methods The age and performances of 423 male Triple Iron ultra-triathletes and 119 male Deca Iron ultra-triathletes were analysed from 1992 to 2010 using regression analyses and ANOVA. Results The mean age of the finishers was significantly higher for Deca Iron ultra-triathletes (41.3 ± 3.1 years) compared to a Triple Iron ultra-triathletes (38.5 ± 3.3 years) (P < 0.05). For both ultra-distances, the fastest overall race times were achieved between the ages of 25 and 44 years. Deca Iron ultra-triathletes achieved the same level of performance in swimming and cycling between 25 and 54 years of age. Conclusions The magnitudes of age-related declines in performance in the three disciplines of ultra-triathlon differ slightly between Triple and Deca Iron ultra-triathlon. Although the ages of Triple Iron ultra-triathletes were on average younger compared to Deca Iron ultra-triathletes, the fastest race times were achieved between 25 and 44 years for both distances. Further studies should investigate the motivation and training of ultra-triathletes to gain better insights in ultra-triathlon performance. PMID:23849327

  10. Age-Related Hyperkyphosis: Its Causes, Consequences, and Management

    PubMed Central

    Katzman, Wendy B.; Wanek, Linda; Shepherd, John A.; Sellmeyer, Deborah E.

    2010-01-01

    Age-related postural hyperkyphosis is an exaggerated anterior curvature of the thoracic spine, sometimes referred to as Dowager’s hump or gibbous deformity. This condition impairs mobility,2,31 and increases the risk of falls33 and fractures.26 The natural history of hyperkyphosis is not firmly established. Hyperkyphosis may develop from either muscle weakness and degenerative disc disease, leading to vertebral fractures and worsening hyperkyphosis, or from initial vertebral fractures that precipitate its development. PMID:20511692

  11. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-01

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip. PMID:27444019

  12. Age related alterations of adrenoreceptor activity in erythrocyte membrane.

    PubMed

    Lomsadze, G; Khetsuriani, R; Arabuli, M; Intskirveli, N; Sanikidze, T

    2011-06-01

    The aim of the study was the investigation of age-related functional alterations of adrenoreceptors and the effect of agonist and antagonist drugs on age related adrenoreceptor activity in erythrocyte membrane. The impact of isopropanol and propanol on functional activity β- adrenergic receptors in red blood cell membrane were studied in 50 practically healthy men--volunteers. (I group--75-89 years old, II group--22-30 years old). The EPR signals S1 and S2 were registered in red blood cell membrane samples after incubation with isopropanol and propanol respectively. It was found that decreasing sensitivity (functional activity) of red blood cells membrane adrenoreceptors comes with aging (S1oldage-related hypertension, heart failure, type II diabetes and other diseases, The findings suggests that the erythrocyte could be a new therapeutic marker in the treatment different diseases.

  13. Telomere length variations in aging and age-related diseases.

    PubMed

    Rizvi, Saliha; Raza, Syed Tasleem; Mahdi, Farzana

    2014-01-01

    Telomeres are gene sequences present at chromosomal ends and are responsible for maintaining genome integrity. Telomere length is maximum at birth and decreases progressively with advancing age and thus is considered as a biomarker of chronological aging. This age associated decrease in the length of telomere is linked to various ageing associated diseases like diabetes, hypertension, Alzheimer's disease, cancer etc. and their associated complications. Telomere length is a result of combined effect of oxidative stress, inflammation and repeated cell replication on it, and thus forming an association between telomere length and chronological aging and related diseases. Thus, decrease in telomere length was found to be important in determining both, the variations in longevity and age-related diseases in an individual. Ongoing and progressive research in the field of telomere length dynamics has proved that aging and age-related diseases apart from having a synergistic effect on telomere length were also found to effect telomere length independently also. Here a short description about telomere length variations and its association with human aging and age-related diseases is reviewed.

  14. Adverse environmental conditions influence age-related innate immune responsiveness

    PubMed Central

    May, Linda; van den Biggelaar, Anita HJ; van Bodegom, David; Meij, Hans J; de Craen, Anton JM; Amankwa, Joseph; Frölich, Marijke; Kuningas, Maris; Westendorp, Rudi GJ

    2009-01-01

    Background- The innate immune system plays an important role in the recognition and induction of protective responses against infectious pathogens, whilst there is increasing evidence for a role in mediating chronic inflammatory diseases at older age. Despite indications that environmental conditions can influence the senescence process of the adaptive immune system, it is not known whether the same holds true for the innate immune system. Therefore we studied whether age-related innate immune responses are similar or differ between populations living under very diverse environmental conditions. Methods- We compared cross-sectional age-related changes in ex vivo innate cytokine responses in a population living under affluent conditions in the Netherlands (age 20–68 years old, n = 304) and a population living under adverse environmental conditions in Ghana (age 23–95 years old, n = 562). Results- We found a significant decrease in LPS-induced Interleukin (IL)-10 and Tumor Necrosis Factor (TNF) production with age in the Dutch population. In Ghana a similar age-related decline in IL-10 responses to LPS, as well as to zymosan, or LPS plus zymosan, was observed. TNF production, however, did not show an age-associated decline, but increased significantly with age in response to co-stimulation with LPS and zymosan. Conclusion- We conclude that the decline in innate cytokine responses is an intrinsic ageing phenomenon, while pathogen exposure and/or selective survival drive pro-inflammatory responses under adverse living conditions. PMID:19480711

  15. Soybean β-Conglycinin Prevents Age-Related Hearing Impairment.

    PubMed

    Tanigawa, Tohru; Shibata, Rei; Kondo, Kazuhisa; Katahira, Nobuyuki; Kambara, Takahiro; Inoue, Yoko; Nonoyama, Hiroshi; Horibe, Yuichiro; Ueda, Hiromi; Murohara, Toyoaki

    2015-01-01

    Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG), one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months) were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV), which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress.

  16. Aging-related gains and losses associated with word production in connected speech.

    PubMed

    Dennis, Paul A; Hess, Thomas M

    2016-11-01

    Older adults have been observed to use more nonnormative, or atypical, words than younger adults in connected speech. We examined whether aging-related losses in word-finding abilities or gains in language expertise underlie these age differences. Sixty younger and 60 older adults described two neutral photographs. These descriptions were processed into word types, and textual analysis was used to identify interrupted speech (e.g., pauses), reflecting word-finding difficulty. Word types were assessed for normativeness, with nonnormative word types defined as those used by six (5%) or fewer participants to describe a particular picture. Accuracy and precision ratings were provided by another sample of 48 high-vocabulary younger and older adults. Older adults produced more interrupted and, as predicted, nonnormative words than younger adults. Older adults were more likely than younger adults to use nonnormative language via interrupted speech, suggesting a compensatory process. However, older adults' nonnormative words were more precise and trended for having higher accuracy, reflecting expertise. In tasks offering response flexibility, like connected speech, older adults may be able to offset instances of aging-related deficits by maximizing their expertise in other instances. PMID:26963869

  17. Aging-related gains and losses associated with word production in connected speech.

    PubMed

    Dennis, Paul A; Hess, Thomas M

    2016-11-01

    Older adults have been observed to use more nonnormative, or atypical, words than younger adults in connected speech. We examined whether aging-related losses in word-finding abilities or gains in language expertise underlie these age differences. Sixty younger and 60 older adults described two neutral photographs. These descriptions were processed into word types, and textual analysis was used to identify interrupted speech (e.g., pauses), reflecting word-finding difficulty. Word types were assessed for normativeness, with nonnormative word types defined as those used by six (5%) or fewer participants to describe a particular picture. Accuracy and precision ratings were provided by another sample of 48 high-vocabulary younger and older adults. Older adults produced more interrupted and, as predicted, nonnormative words than younger adults. Older adults were more likely than younger adults to use nonnormative language via interrupted speech, suggesting a compensatory process. However, older adults' nonnormative words were more precise and trended for having higher accuracy, reflecting expertise. In tasks offering response flexibility, like connected speech, older adults may be able to offset instances of aging-related deficits by maximizing their expertise in other instances.

  18. Age-related motor dysfunction and neuropathology in a transgenic mouse model of multiple system atrophy.

    PubMed

    Fernagut, P O; Meissner, W G; Biran, M; Fantin, M; Bassil, F; Franconi, J M; Tison, F

    2014-03-01

    Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by a progressive degeneration of the striatonigral, olivo-ponto-cerebellar, and autonomic systems. Glial cytoplasmic inclusions (GCIs) containing alpha-synuclein represent the hallmark of MSA and are recapitulated in mice expressing alpha-synuclein in oligodendrocytes. To assess if oligodendroglial expression of human wild-type alpha-synuclein in mice (proteolipid promoter, PLP-SYN) could be associated with age-related deficits, PLP-SYN and wild-type mice were assessed for motor function, brain morphometry, striatal levels of dopamine and metabolites, dopaminergic loss, and distribution of GCIs. PLP-SYN displayed age-related impairments on a beam-traversing task. MRI revealed a significantly smaller brain volume in PLP-SYN mice at 12 months, which further decreased at 18 months together with increased volume of ventricles and cortical atrophy. The distribution of GCIs was reminiscent of MSA with a high burden in the basal ganglia. Mild dopaminergic cell loss was associated with decreased dopamine turnover at 18 months. These data indicate that PLP-SYN mice may recapitulate some of the progressive features of MSA and deliver endpoints for the evaluation of therapeutic strategies.

  19. Age-Related Neurochemical Changes in the Rhesus Macaque Superior Olivary Complex

    PubMed Central

    Gray, Daniel T.; Engle, James R.; Recanzone, Gregg H.

    2014-01-01

    Positive immunoreactivity to the calcium-binding protein parvalbumin (PV) and nitric oxide synthase NADPH-diaphorase (NADPHd) is well documented within neurons of the central auditory system of both rodents and primates. These proteins are thought to play roles in the regulation of auditory processing. Studies examining the age-related changes in expression of these proteins have been conducted primarily in rodents but are sparse in primate models. In the brainstem, the superior olivary complex (SOC) is crucial for the computation of sound source localization in azimuth, and one hallmark of age-related hearing deficits is a reduced ability to localize sounds. To investigate how these histochemical markers change as a function of age and hearing loss, we studied eight rhesus macaques ranging in age from 12 to 35 years. Auditory brainstem responses (ABRs) were obtained in anesthetized animals for click and tone stimuli. The brainstems of these same animals were then stained for PV and NADPHd reactivity. Reactive neurons in the three nuclei of the SOC were counted, and the densities of each cell type were calculated. We found that PV and NADPHd expression increased with both age and ABR thresholds in the medial superior olive but not in either the medial nucleus of the trapezoid body or the lateral superior olive. Together these results suggest that the changes in protein expression employed by the SOC may compensate for the loss of efficacy of auditory sensitivity in the aged primate. PMID:25232570

  20. Protective effect of myostatin gene deletion on aging-related muscle metabolic decline.

    PubMed

    Chabi, B; Pauly, M; Carillon, J; Carnac, G; Favier, F B; Fouret, G; Bonafos, B; Vanterpool, F; Vernus, B; Coudray, C; Feillet-Coudray, C; Bonnieu, A; Lacan, D; Koechlin-Ramonatxo, C

    2016-06-01

    While myostatin gene deletion is a promising therapy to fight muscle loss during aging, this approach induces also skeletal muscle metabolic changes such as mitochondrial deficits, redox alteration and increased fatigability. In the present study, we evaluated the effects of aging on these features in aged wild-type (WT) and mstn knockout (KO) mice. Moreover, to determine whether an enriched-antioxidant diet may be useful to prevent age-related disorders, we orally administered to the two genotypes a melon concentrate rich in superoxide dismutase for 12 weeks. We reported that mitochondrial functional abnormalities persisted (decreased state 3 and 4 of respiration; p<0.05) in skeletal muscle from aged KO mice; however, differences with WT mice were attenuated at old age in line with reduced difference on running endurance between the two genotypes. Interestingly, we showed an increase in glutathione levels, associated with lower lipid peroxidation levels in KO muscle. Enriched antioxidant diet reduced the aging-related negative effects on maximal aerobic velocity and running limit time (p<0.05) in both groups, with systemic adaptations on body weight. The redox status and the hypertrophic phenotype appeared to be beneficial to KO mice, mitigating the effect of aging on the skeletal muscle metabolic remodeling.

  1. Age-related decline in bottom-up processing and selective attention in the very old.

    PubMed

    Zhuravleva, Tatyana Y; Alperin, Brittany R; Haring, Anna E; Rentz, Dorene M; Holcomb, Philip J; Daffner, Kirk R

    2014-06-01

    Previous research demonstrating age-related deficits in selective attention have not included old-old adults, an increasingly important group to study. The current investigation compared event-related potentials in 15 young-old (65-79 years old) and 23 old-old (80-99 years old) subjects during a color-selective attention task. Subjects responded to target letters in a specified color (Attend) while ignoring letters in a different color (Ignore) under both low and high loads. There were no group differences in visual acuity, accuracy, reaction time, or latency of early event-related potential components. The old-old group showed a disruption in bottom-up processing, indexed by a substantially diminished posterior N1 (smaller amplitude). They also demonstrated markedly decreased modulation of bottom-up processing based on selected visual features, indexed by the posterior selection negativity (SN), with similar attenuation under both loads. In contrast, there were no group differences in frontally mediated attentional selection, measured by the anterior selection positivity (SP). There was a robust inverse relationship between the size of the SN and SP (the smaller the SN, the larger the SP), which may represent an anteriorly supported compensatory mechanism. In the absence of a decline in top-down modulation indexed by the SP, the diminished SN may reflect age-related degradation of early bottom-up visual processing in old-old adults.

  2. Age-related changes of auditory brainstem responses in nonhuman primates.

    PubMed

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R; Recanzone, Gregg H

    2015-07-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  3. Age-related changes of auditory brainstem responses in nonhuman primates

    PubMed Central

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R.

    2015-01-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  4. GlyT-1 Inhibition Attenuates Attentional But Not Learning or Motivational Deficits of the Sp4 Hypomorphic Mouse Model Relevant to Psychiatric Disorders.

    PubMed

    Young, Jared W; Kamenski, Mary E; Higa, Kerin K; Light, Gregory A; Geyer, Mark A; Zhou, Xianjin

    2015-11-01

    Serious mental illness occurs in 25% of the general population, with many disorders being neurodevelopmental, lifelong, and debilitating. The wide variation and overlap in symptoms across disorders increases the difficulty of research and treatment development. The NIMH Research Domain of Criteria initiative aims to improve our understanding of the molecular and behavioral consequences of specific neurodevelopmental mechanisms across disorders, enabling targeted treatment development. The transcription factor Specificity Protein 4 (SP4) is important for neurodevelopment and is genetically associated with both schizophrenia and bipolar disorder. Reduced Sp4 expression in mice (hypomorphic) reproduces several characteristics of psychiatric disorders. We further tested the utility of Sp4 hypomorphic mice as a model organism relevant to psychiatric disorders by assessing cognitive control plus effort and decision-making aspects of approach motivation using cross-species-relevant tests. Sp4 hypomorphic mice exhibited impaired attention as measured by the 5-Choice Continuous Performance Test, an effect that was attenuated by glycine type-1 transporter (GlyT-1) inhibition. Hypomorphic mice also exhibited reduced motivation to work for a reward and impaired probabilistic learning. These deficits may stem from affected anticipatory reward, analogous to anhedonia in patients with schizophrenia and other psychiatric disorders. Neither positive valence deficit was attenuated by GlyT-1 treatment, suggesting that these and the attentional deficits stem from different underlying mechanisms. Given the association of SP4 gene with schizophrenia and bipolar disorder, the present studies provide support that personalized GlyT-1 inhibition may treat attentional deficits in neuropsychiatric patients with low SP4 levels.

  5. Emotional and Behavioral Problems in Children with Attention Deficit-Hyperactivity Disorder: Impact of Age and Learning Disabilities

    ERIC Educational Resources Information Center

    Miranda, Ana; Soriano, Manuel; Fernandez, Inmaculada; Melia, Amanda

    2008-01-01

    Comorbidity with other psychological problems (PP) complicates the course of attention deficit-hyperactivity disorder (ADHD) and makes treatment more difficult. The purpose of the present study was to (a) study the correspondence between the perceptions of parents and teachers about PP, (b) determine which PP predict the severity of the…

  6. Descriptions of Personal Experiences: Effects on Students' Learning and Behavioral Intentions toward Peers with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Saecker, Lee B.; Skinner, Amy L.; Skinner, Christopher H.; Rowland, Emily; Kirk, Emily

    2010-01-01

    High-school students were shown an educational video designed to dispel 12 common myths regarding Attention-Deficit/Hyperactivity Disorder (ADHD) by describing each myth and then presenting accurate information. The experimental group viewed a video that was supplemented by the speaker acknowledging that he had ADHD and providing descriptions of…

  7. 16p11.2 Deletion Mice Display Cognitive Deficits in Touchscreen Learning and Novelty Recognition Tasks

    ERIC Educational Resources Information Center

    Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…

  8. Effect of osmotic-release oral system methylphenidate on learning skills in adolescents with attention-deficit/hyperactivity disorder: an open-label study.

    PubMed

    Na, Kyoung-Sae; Lee, Soyoung Irene; Hong, Sungdo David; Kim, Ji-Hoon; Shim, Se-Hoon; Choi, Jeewook; Yang, Jaewon; Lee, Moon-Soo; Joung, Yoo-Sook; Kim, Eui-Jung; Park, Joon-Ho

    2013-07-01

    We evaluated the effect of osmotic-release oral system (OROS) methylphenidate on learning skills in adolescents with attention-deficit/hyperactivity disorder (ADHD). In an open-label study, 121 adolescents with ADHD were administered flexible doses of OROS methylphenidate for 12 weeks. The efficacy of methylphenidate on ADHD symptoms was evaluated by ADHD Rating Scale (ARS) and Clinical Global Impression Scale (CGI). Learning Skills Test (LST) was used to measure the learning skills of the participants at the baseline and the endpoint. Continuous performance test, visuospatial and verbal working memory, verbal fluency, and inhibition were evaluated before and after the 12 weeks of treatment. The mean total and subscores of LST were significantly increased after the 12-week treatment with OROS methylphenidate. Executive functions were also improved during the trial, with the exception of inhibition measured by the Stroop Test. To the best of our knowledge, this is the first study to examine the influence of OROS methylphenidate on learning skill. As a result, OROS methylphenidate was effective in enhancing learning skills in adolescents with ADHD.

  9. Prenatal stress induces learning deficits and is associated with a decrease in granules and CA3 cell dendritic tree size in rat hippocampus.

    PubMed

    Hosseini-Sharifabad, Mohammad; Hadinedoushan, Hossein

    2007-12-01

    Exposure to gestational stress impairs hippocampal-dependent learning in offspring. In spite of the known decisive role of hippocampal dendritic architecture in learning and memory, there has been no study to date that examines the effect of prenatal stress on the morphology of the hippocampal neurons. Therefore we performed a quantitative morphological analysis of the dendritic architecture of Golgi-impregnated hippocampal neurons in prenatally stressed rats. Subjects included male rat offspring (2 months old) for which the mothers had been restrained for 1 h/day during the last week of gestation. Spatial learning performance levels using Morris water maze and changes in the morphology of hippocampal dendritic trees were studied. Results indicated that the study group had lower spatial learning capabilities along with decreased length and number of dendritic segments, branching of granules and cornu ammonis (CA)3 pyramidal cells. There was no change in the dendritic morphology of CA1 pyramidal cells. These results suggest that prenatal stress in rat results in spatial learning deficits and profound alterations in the neurites of the hippocampal cells of male offspring.

  10. Use of Games as a Learner-Centered Strategy in Gerontology, Geriatrics, and Aging-Related Courses

    ERIC Educational Resources Information Center

    Schmall, Vicki; Grabinski, C. Joanne; Bowman, Sally

    2008-01-01

    Based on their experience as designers and/or users of games as a learner-centered strategy in gerontology, geriatric, and aging-related courses and training programs, the authors note multiple advantages of using games as a learning tool, list six relevant games (including order information), and suggest a variety of ways games can be used. They…

  11. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets

    PubMed Central

    Matsumoto, Yukihisa; Matsumoto, Chihiro S.; Takahashi, Toshihumi; Mizunami, Makoto

    2016-01-01

    Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes. PMID:27616985

  12. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets

    PubMed Central

    Matsumoto, Yukihisa; Matsumoto, Chihiro S.; Takahashi, Toshihumi; Mizunami, Makoto

    2016-01-01

    Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes.

  13. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets.

    PubMed

    Matsumoto, Yukihisa; Matsumoto, Chihiro S; Takahashi, Toshihumi; Mizunami, Makoto

    2016-01-01

    Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes. PMID:27616985

  14. Construct validity of the item-specific deficit approach to the California verbal learning test (2nd Ed) in HIV infection.

    PubMed

    Cattie, Jordan E; Woods, Steven Paul; Arce, Miguel; Weber, Erica; Delis, Dean C; Grant, Igor

    2012-01-01

    Impairment in list learning and recall is prevalent in HIV-infected individuals and is strongly predictive of everyday functioning outcomes. Consistent with its predominant frontostriatal pathology, the memory profile associated with HIV infection is best characterized as a mixed encoding/retrieval profile. The Item-Specific Deficit Approach (ISDA) was developed by Wright et al. (2009) to elicit indices of Encoding, Consolidation, and Retrieval from the well-validated California Verbal Learning Test (CVLT; Delis, Kramer, Kaplan, & Ober, 1987, 2000). The current study evaluated construct validity of the ISDA for the CVLT-II in 40 persons with HIV-associated neurocognitive disorders (HIV+/HAND+), 103 HIV-infected persons without HAND (HIV+/HAND-), and 43 seronegative comparison participants (HIV-). Results provided mixed support for the construct validity of ISDA indices. HIV+/HAND+ individuals performed significantly more poorly than persons in the HIV+/HAND- and HIV- groups on ISDA Encoding, Consolidation, and Retrieval deficit indices, which demonstrated adequate classification accuracy for diagnosing HIV+/HAND+ participants and evidence of both convergent (e.g., episodic memory) and divergent (e.g., motor skills) correlations in the HIV+/HAND+ participants. However, highly intercorrelated ISDA indices and traditional CVLT-II measures showed comparable between-groups effect sizes, classification accuracy, and correlations to other memory tests, thereby raising uncertainties about the incremental value of the ISDA approach in clinical neuroAIDS research. PMID:22394206

  15. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression.

    PubMed

    Darcet, Flavie; Gardier, Alain M; David, Denis J; Guilloux, Jean-Philippe

    2016-03-11

    Cognitive disturbances are often reported as serious invalidating symptoms in patients suffering from major depression disorders (MDD) and are not fully corrected by classical monoaminergic antidepressant drugs. If the role of 5-HT4 receptor agonists as cognitive enhancers is well established in naïve animals or in animal models of cognitive impairment, their cognitive effects in the context of stress need to be examined. Using a mouse model of anxiety/depression (CORT model), we reported that a chronic 5-HT4 agonist treatment (RS67333, 1.5mg/kg/day) restored chronic corticosterone-induced cognitive deficits, including episodic-like, associative and spatial learning and memory impairments. On the contrary, a chronic monoaminergic antidepressant drug treatment with fluoxetine (18mg/kg/day) only partially restored spatial learning and memory deficits and had no effect in the associative/contextual task. These results suggest differential mechanisms underlying cognitive effects of these drugs. Finally, the present study highlights 5-HT4 receptor stimulation as a promising therapeutic mechanism to alleviate cognitive symptoms related to MDD. PMID:26850572

  16. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline.

    PubMed

    Müller, Nils C J; Genzel, Lisa; Konrad, Boris N; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel; Dresler, Martin

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience-in our case piano skills-increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  17. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline

    PubMed Central

    Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  18. Enriched childhood experiences moderate age-related motor and cognitive decline.

    PubMed

    Metzler, Megan J; Saucier, Deborah M; Metz, Gerlinde A

    2013-01-01

    Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks.

  19. Enriched childhood experiences moderate age-related motor and cognitive decline

    PubMed Central

    Metzler, Megan J.; Saucier, Deborah M.; Metz, Gerlinde A.

    2012-01-01

    Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks. PMID:23423702

  20. Student Teacher Experiences in a Service-Learning Project for Children with Attention-Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Wilkinson, Shawn; Harvey, William J.; Bloom, Gordon A.; Joober, Ridha; Grizenko, Natalie

    2013-01-01

    Background: Service learning (SL) is a collaborative relationship between university professors, their students, and community partners who combine academic learning and active participation to address community issues. Previous studies in SL and physical education teacher education (PETE) found SL projects increased opportunities for learning and…

  1. Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector.

    PubMed

    Poe, B H; Linville, C; Brunso-Bechtold, J

    2001-10-01

    The synapse, as the site of functional neural interaction, has been suggested as a possible substrate for age-related impairment of cognitive ability. Using the physical disector probe with tissue prepared for ultrastructural analysis, we find an age-related decline in the numerical density of presumptive inhibitory synapses in layer 2 of the sensorimotor cortex of the Brown Norway x Fisher 344 rat. This age-related decline in presumptive inhibitory synapses is maintained when the density of synapses is combined with the numerical density of neurons quantified from the same anatomical space to arrive at a ratio of synapses per neuron. The numerical density of these synapses declines between middle-aged (18 months) and old (29 months) animals by 36% whereas numerical density of neurons does not change between these ages, resulting in a decline in the ratio of presumptive inhibitory synapses per neuron in this cortical area. This study demonstrates a deficit in the intrinsic inhibitory circuitry of the aging neocortex, which suggests an anatomical substrate for age-related cognitive impairment.

  2. Age-related degradation of Westinghouse 480-volt circuit breakers

    SciTech Connect

    Subudhi, M.; Shier, W.; MacDougall, E. )

    1990-07-01

    An aging assessment of Westinghouse DS-series low-voltage air circuit breakers was performed as part of the Nuclear Plant Aging Research (NPAR) program. The objectives of this study are to characterize age-related degradation within the breaker assembly and to identify maintenance practices to mitigate their effect. Since this study has been promulgated by the failures of the reactor trip breakers at the McGuire Nuclear Station in July 1987, results relating to the welds in the breaker pole lever welds are also discussed. The design and operation of DS-206 and DS-416 breakers were reviewed. Failure data from various national data bases were analyzed to identify the predominant failure modes, causes, and mechanisms. Additional operating experiences from one nuclear station and two industrial breaker-service companies were obtained to develop aging trends of various subcomponents. The responses of the utilities to the NRC Bulletin 88-01, which discusses the center pole lever welds, were analyzed to assess the final resolution of failures of welds in the reactor trips. Maintenance recommendations, made by the manufacturer to mitigate age-related degradation were reviewed, and recommendations for improving the monitoring of age-related degradation are discussed. As described in Volume 2 of this NUREG, the results from a test program to assess degradation in breaker parts through mechanical cycling are also included. The testing has characterized the cracking of center-pole lever welds, identified monitoring techniques to determine aging in breakers, and provided information to augment existing maintenance programs. Recommendations to improve breaker reliability using effective maintenance, testing, and inspection programs are suggested. 13 refs., 21 figs., 8 tabs.

  3. Age-related changes in the meibomian gland.

    PubMed

    Nien, Chyong Jy; Paugh, Jerry R; Massei, Salina; Wahlert, Andrew J; Kao, Winston W; Jester, James V

    2009-12-01

    The purpose of this study was to characterize the age-related changes of the mouse meibomian gland. Eyelids from adult C57Bl/6 mice at 2, 6, 12 and 24 months of age were stained with specific antibodies against peroxisome proliferator activated receptor gamma (PPARgamma) to identify differentiating meibocytes, Oil Red O (ORO) to identify lipid, Ki67 nuclear antigen to identify cycling cells, B-lymphocyte-induced maturation protein-1 (Blimp1) to identify potential stem cells and CD45 to identify immune cells. Meibomian glands from younger mice (2 and 6 months) showed cytoplasmic and perinuclear staining with anti-PPARgamma antibodies with abundant ORO staining of small, intracellular lipid droplets. Meibomian glands from older mice (12 and 24 months) showed only nuclear PPARgamma localization with less ORO staining and significantly reduced acinar tissue (p < 0.04). Acini of older mice also showed significantly reduced (p < 0.004) numbers of Ki67 stained nuclei. While Blimp1 appeared to diffusely stain the superficial ductal epithelium, isolated cells were occasionally stained within the meibomian gland duct and acini of older mice that also stained with CD45 antibodies, suggesting the presence of infiltrating plasmacytoid cells. These findings suggest that there is altered PPARgamma receptor signaling in older mice that may underlie changes in cell cycle entry/proliferation, lipid synthesis and gland atrophy during aging. These results are consistent with the hypothesis that mouse meibomian glands undergo age-related changes similar to those identified in humans and may be used as a model for age-related meibomian gland dysfunction.

  4. Age-Related Deterioration of Rod Vision in Mice

    PubMed Central

    Kolesnikov, Alexander V.; Fan, Jie; Crouch, Rosalie K.; Kefalov, Vladimir J.

    2010-01-01

    Even in healthy individuals, aging leads to deterioration in visual acuity, contrast sensitivity, visual field, and dark adaptation. Little is known about the neural mechanisms that drive the age-related changes of the retina and more specifically of photoreceptors. According to one hypothesis, the age-related deterioration in rod function is due to the limited availability of 11-cis-retinal for rod pigment formation. To determine how aging affects rod photoreceptors and to test the retinoid deficiency hypothesis, we compared the morphological and functional properties of rods of adult and aged B6D2F1/J mice. We found that the number of rods and the length of their outer segments were significantly reduced in 2.5 year-old mice compared to 4 month-old animals. Aging also resulted in a 2-fold reduction in the total level of opsin in the retina. Behavioral tests revealed that scotopic visual acuity and contrast sensitivity were decreased by 2-fold in aged mice, and rod ERG recordings demonstrated reduced amplitudes of both a- and b-waves. Sensitivity of aged rods determined from single-cell recordings was also decreased by 1.5-fold, corresponding to not more than 1% free opsin in these photoreceptors, and kinetic parameters of dim flash response were not altered. Notably, the rate of rod dark adaptation was unaffected by age. Thus, our results argue against age-related deficiency of 11-cis-retinal in the B6D2F1/J mouse rod visual cycle. Surprisingly, the level of cellular dark noise was increased in aged rods providing an alternative mechanism for their desensitization. PMID:20720130

  5. Age-related differences in updating working memory.

    PubMed

    Van der Linden, M; Brédart, S; Beerten, A

    1994-02-01

    Age-related differences in updating working memory were investigated in two experiments using a running memory task. In the first experiment, the task of the young and elderly subjects was to watch strings of four to 10 consonants and then to recall serially the four most recent items. Results revealed no age effect. A second experiment was then carried out using a memory load that was close to memory span: lists of six to 12 consonants were presented and subjects had to recall the last six items. Age interacted with list length but not with serial position. This dissociation is discussed in terms of Baddeley's (1986) model.

  6. [Diagnostic Criteria for Atrophic Age-related Macular Degeneration].

    PubMed

    Takahashi, Kanji; Shiraga, Fumio; Ishida, Susumu; Kamei, Motohiro; Yanagi, Yasuo; Yoshimura, Nagahisa

    2015-10-01

    Diagnostic criteria for dry age-related macular degeneration is described. Criteria include visual acuity, fundscopic findings, diagnostic image findings, exclusion criteria and classification of severity grades. Essential findings to make diagnosis as "geographic atrophy" are, 1) at least 250 μm in diameter, 2) round/oval/cluster-like or geographic in shape, 3) sharp delineation, 4) hypopigmentation or depigmentation in retinal pigment epithelium, 5) choroidal vessels are more visible than in surrounding area. Severity grades were classified as mild, medium and severe by relation of geographic atrophy to the fovea and attendant findings. PMID:26571627

  7. Effects of Vitreomacular Adhesion on Age-Related Macular Degeneration

    PubMed Central

    Kang, Eui Chun; Koh, Hyoung Jun

    2015-01-01

    Herein, we review the association between vitreomacular adhesion (VMA) and neovascular age-related macular degeneration (AMD). Meta-analyses have shown that eyes with neovascular AMD are twice as likely to have VMA as normal eyes. VMA in neovascular AMD may induce inflammation, macular traction, decrease in oxygenation, sequestering of vascular endothelial growth factor (VEGF), and other cytokines or may directly stimulate VEGF production. VMA may also interfere with the treatment effects of anti-VEGF therapy, which is the standard treatment for neovascular AMD, and releasing VMA can improve the treatment response to anti-VEGF treatment in neovascular AMD. We also reviewed currently available methods of relieving VMA. PMID:26425354

  8. [Glaucoma and age-related macular degeneration intricacy].

    PubMed

    Valtot, F

    2008-07-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness among the elderly in Western nations. Age is also a well-known and well-evidenced risk factor for glaucoma. With increasing longevity and the rising prevalence of older people around the world, more and more patients will have glaucoma and AMD. Clinical evaluation of these patients still poses problems for clinicians. It is very important to order the right tests at the right time to distinguish glaucomatous defects from those caused by retinal lesions, because appropriate therapy has a beneficial effect on slowing or halting damage. PMID:18957915

  9. Age-Related Macular Degeneration: Advances in Management and Diagnosis

    PubMed Central

    Yonekawa, Yoshihiro; Miller, Joan W.; Kim, Ivana K.

    2015-01-01

    Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment in older populations in industrialized nations. AMD is a late-onset deterioration of photoreceptors and retinal pigment epithelium in the central retina caused by various environmental and genetic factors. Great strides in our understanding of AMD pathogenesis have been made in the past several decades, which have translated into revolutionary therapeutic agents in recent years. In this review, we describe the clinical and pathologic features of AMD and present an overview of current diagnosis and treatment strategies. PMID:26239130

  10. Squalamine lactate for exudative age-related macular degeneration.

    PubMed

    Connolly, Brian; Desai, Avinash; Garcia, Charles A; Thomas, Edgar; Gast, Michael J

    2006-09-01

    Squalamine lactate inhibits angiogenesis by a long-lived, intracellular mechanism of action. The drug is taken up into activated endothelial cells through caveolae, small invaginations in the cellular membrane. Subsequently, the drug binds to and "chaperones" calmodulin to an intracellular membrane compartment and blocks angiogenesis at several levels. A series of basic investigations, preclinical studies, and human clinical trials have begun to establish the proof of concept, efficacy, and safety parameters for use of squalamine lactate as a therapeutic agent for exudative age-related macular degeneration and several types of malignancies. PMID:16935213

  11. Cognitive aging explains age-related differences in face-based recognition of basic emotions except for anger and disgust.

    PubMed

    Suzuki, Atsunobu; Akiyama, Hiroko

    2013-01-01

    This study aimed at a detailed understanding of the possible dissociable influences of cognitive aging on the recognition of facial expressions of basic emotions (happiness, surprise, fear, anger, disgust, and sadness). The participants were 36 older and 36 young adults. They viewed 96 pictures of facial expressions and were asked to choose one emotion that best described each. Four cognitive tasks measuring the speed of processing and fluid intelligence were also administered, the scores of which were used to compute a composite measure of general cognitive ability. A series of hierarchical regression analyses revealed that age-related deficits in identifying happiness, surprise, fear, and sadness were statistically explained by general cognitive ability, while the differences in anger and disgust were not. This provides clear evidence that age-related cognitive impairment remarkably and differentially affects the recognition of basic emotions, contrary to the common view that cognitive aging has a uniformly minor effect.

  12. Not all water mazes are created equal: cyclin D2 knockout mice with constitutively suppressed adult hippocampal neurogenesis do show specific spatial learning deficits.

    PubMed

    Garthe, A; Huang, Z; Kaczmarek, L; Filipkowski, R K; Kempermann, G

    2014-04-01

    Studies using the Morris water maze to assess hippocampal function in animals, in which adult hippocampal neurogenesis had been suppressed, have yielded seemingly contradictory results. Cyclin D2 knockout (Ccnd2(-/-)) mice, for example, have constitutively suppressed adult hippocampal neurogenesis but had no overt phenotype in the water maze. In other paradigms, however, ablation of adult neurogenesis was associated with specific deficits in the water maze. Therefore, we hypothesized that the neurogenesis-related phenotype might also become detectable in Ccnd2(-/-) mice, if we used the exact setup and protocol that in our previous study had revealed deficits in mice with suppressed adult neurogenesis. Ccnd2(-/-) mice indeed learned the task and developed a normal preference for the goal quadrant, but were significantly less precise for the exact goal position and were slower in acquiring efficient and spatially more precise search strategies. Upon goal reversal (when the hidden platform was moved to a new position) Ccnd2(-/-) mice showed increased perseverance at the former platform location, implying that they were less flexible in updating the previously learned information. Both with respect to adult neurogenesis and behavioral performance, Ccnd2(+/-) mice ranged between wild types and knockouts. Importantly, hippocampus-dependent learning was not generally impaired by the mutation, but specifically functional aspects relying on precise and flexible encoding were affected. Whether ablation of adult neurogenesis causes a specific behavioral phenotype thus also depends on the actual task demands. The test parameters appear to be important variables influencing whether a task can pick up a contribution of adult neurogenesis to test performance.

  13. Attenuated response to methamphetamine sensitization and deficits in motor learning and memory after selective deletion of β-catenin in dopamine neurons.

    PubMed

    Diaz-Ruiz, Oscar; Zhang, Yajun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R; Tagliaferro, Adriana; Brusco, Alicia; Bäckman, Cristina M

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of β-catenin in DA neurons (DA-βcat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-βcat KO mice showed significant deficits in their ability to form long-term memories and displayed reduced expression of methamphetamine-induced behavioral sensitization after subsequent challenge doses with this drug, suggesting that motor learning and drug-induced learning plasticity are altered in these mice. Morphological analyses showed no changes in the number or distribution of tyrosine hydroxylase-labeled neurons in the ventral midbrain. While electrochemical measurements in the striatum determined no changes in acute DA release and uptake, a small but significant decrease in DA release was detected in mutant animals after prolonged repetitive stimulation, suggesting a possible deficit in the DA neurotransmitter vesicle reserve pool. However, electron microscopy analyses did not reveal significant differences in the content of synaptic vesicles per terminal, and striatal DA levels were unchanged in DA-βcat KO animals. In contrast, striatal mRNA levels for several markers known to regulate synaptic plasticity and DA neurotransmission were altered in DA-βcat KO mice. This study demonstrates that ablation of β-catenin in DA neurons leads to alterations of motor and reward-associated memories and to adaptations of the DA neurotransmitter system and suggests that β-catenin signaling in DA neurons is required to facilitate the synaptic remodeling underlying the consolidation of long-term memories. PMID:22822182

  14. Epinephrine and glucose modulate training-related CREB phosphorylation in old rats: relationships to age-related memory impairments.

    PubMed

    Morris, Ken A; Gold, Paul E

    2013-02-01

    Epinephrine enhances memory in young adult rats, in part, by increasing blood glucose levels needed to modulate memory. In old rats, epinephrine is deficient at raising blood glucose levels and thus is only moderately effective at enhancing memory. In contrast, systemic glucose injections improve memory in old rats, with resulting memory performance equal to that of young rats. The diminished response of glucose to training in old rats may blunt downstream neurochemical and molecular mechanisms needed to upregulate memory processes. In the first experiment, young adult and old rats were trained on an inhibitory avoidance task with immediate post-training injections of aCSF or glucose into the dorsal hippocampus. Old rats had significant memory impairments compared to young rats 7 days after training. Intrahippocampal injections of glucose reversed age-related deficits, improving memory scores in old rats to values seen in young rats. A second experiment examined age-related changes in activation of the transcription factor CREB, which is widely implicated in memory formation and may act downstream of hormonal and metabolic signals. Activation was assessed in response to training with systemic injections of epinephrine and glucose at doses known to enhance memory. Young adult and old rats were trained on inhibitory avoidance with immediate post-training systemic injections of saline, epinephrine, or glucose. After training, old rats had significant impairments in CREB phosphorylation in area CA1 and the dentate gyrus region of the hippocampus, and in the basolateral and lateral amygdala. Epinephrine and glucose attenuated age-related deficits in CREB phosphorylation, but were more effective in the amygdala and hippocampus, respectively. Together, these results support the view that age-related changes in blood glucose responses to epinephrine contribute to memory impairments, which may be related to alterations in regional patterns of CREB phosphorylation.

  15. Current therapeutic developments in atrophic age-related macular degeneration.

    PubMed

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age-Related Eye Disease Study (AREDS) formulation, which has been demonstrated to slow down the progression of dry AMD. This review summarises recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem cell-based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  16. Long noncoding RNAs in aging and age-related diseases.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-03-01

    Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process.

  17. Exploring age-related brain degeneration in meditation practitioners.

    PubMed

    Luders, Eileen

    2014-01-01

    A growing body of research suggests that meditation practices are associated with substantial psychological as well as physiological benefits. In searching for the biological mechanisms underlying the beneficial impact of meditation, studies have revealed practice-induced alterations of neurotransmitters, brain activity, and cognitive abilities, just to name a few. These findings not only imply a close link between meditation and brain structure, but also suggest possible modulating effects of meditation on age-related brain atrophy. Given that normal aging is associated with significant loss of brain tissue, meditation-induced growth and/or preservation might manifest as a seemingly reduced brain age in meditators (i.e., cerebral measures characteristic of younger brains). Surprisingly, there are only three published studies that have addressed the question of whether meditation diminishes age-related brain degeneration. This paper reviews these three studies with respect to the brain attributes studied, the analytical strategies applied, and the findings revealed. The review concludes with an elaborate discussion on the significance of existing studies, implications and directions for future studies, as well as the overall relevance of this field of research.

  18. Long noncoding RNAs in aging and age-related diseases.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-03-01

    Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process. PMID:26655093

  19. Curcumin, inflammation, ageing and age-related diseases.

    PubMed

    Sikora, E; Scapagnini, Giovanni; Barbagallo, Mario

    2010-01-17

    A Symposium regarding the Pathophysiology of Successful and Unsuccessful Ageing was held in Palermo, Italy between April 7 and 8th 2009. Here the lecture by Sikora with some input from the chairpersons Scapagnini and Barbagallo is summarized. Ageing is manifested by the decreasing health status and increasing probability to acquire age-related disease such as cancer, Alzheimer's disease, atherosclerosis, metabolic disorders and others. They are likely caused by low grade inflammation driven by oxygen stress and manifested by the increased level of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-alpha, encoded by genes activated by the transcription factor NF-kappaB. It is believed that ageing is plastic and can be slowed down by caloric restriction as well as by some nutraceuticals. Accordingly, slowing down ageing and postponing the onset of age-related diseases might be achieved by blocking the NF-kappaB-dependent inflammation. In this review we consider the possibility of the spice curcumin, a powerful antioxidant and anti-inflammatory agent possibly capable of improving the health status of the elderly.

  20. Current Therapeutic Development for Atrophic Age-related Macular Degeneration

    PubMed Central

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age Related Eye Disease Study (AREDS) formulation which has been demonstrated to slow down the progression of dry AMD. This review summarizes recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem-cell based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  1. Age-related changes to the production of linguistic prosody

    NASA Astrophysics Data System (ADS)

    Barnes, Daniel R.

    The production of speech prosody (the rhythm, pausing, and intonation associated with natural speech) is critical to effective communication. The current study investigated the impact of age-related changes to physiology and cognition in relation to the production of two types of linguistic prosody: lexical stress and the disambiguation of syntactically ambiguous utterances. Analyses of the acoustic correlates of stress: speech intensity (or sound-pressure level; SPL), fundamental frequency (F0), key word/phrase duration, and pause duration revealed that both young and older adults effectively use these acoustic features to signal linguistic prosody, although the relative weighting of cues differed by group. Differences in F0 were attributed to age-related physiological changes in the laryngeal subsystem, while group differences in duration measures were attributed to relative task complexity and the cognitive-linguistic load of these respective tasks. The current study provides normative acoustic data for older adults which informs interpretation of clinical findings as well as research pertaining to dysprosody as the result of disease processes.

  2. Age-Related Loss of Muscle Mass and Strength

    PubMed Central

    Goldspink, Geoffrey

    2012-01-01

    Age-related muscle wasting and increased frailty are major socioeconomic as well as medical problems. In the quest to extend quality of life it is important to increase the strength of elderly people sufficiently so they can carry out everyday tasks and to prevent them falling and breaking bones that are brittle due to osteoporosis. Muscles generate the mechanical strain that contributes to the maintenance of other musculoskeletal tissues, and a vicious circle is established as muscle loss results in bone loss and weakening of tendons. Molecular and proteomic approaches now provide strategies for preventing age-related muscle wasting. Here, attention is paid to the role of the GH/IGF-1 axis and the special role of the IGFI-Ec (mechano growth factor/MGF) which is derived from the IGF-I gene by alternative splicing. During aging MGF levels decline but when administered MGF activates the muscle satellite (stem) cells that “kick start” local muscle repair and induces hypertrophy. PMID:22506111

  3. Age-related preferences and age weighting health benefits.

    PubMed

    Tsuchiya, A

    1999-01-01

    This paper deals with the relevance of age in the paradigm of quality adjusted life years (QALYs). The first section outlines two rationales for incorporating age weights into QALYs. One of them is based on efficiency concerns; and the other on equity concerns. Both of these are theoretical constructs. The main purpose of this paper is to examine the extent of published empirical support for such age weighting. The second section is a brief survey of nine empirical studies that elicited age-related preferences from the general public. Six of these quantified the strength of the preferences, and these are discussed in more detail in the third section. The analysis distinguishes three kinds of age-related preference: productivity ageism, utilitarian ageism and egalitarian ageism. The relationship between them and their relevance to the two different rationales for age weighting are then explored. It is concluded that, although there is strong prima facie evidence of public support for both types of age weighting, the empirical evidence to support any particular set of weights is at present weak. PMID:10048783

  4. Auditory white noise reduces age-related fluctuations in balance.

    PubMed

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-01

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. PMID:27495013

  5. Age-related deficiencies in complex I endogenous substrate availability and reserve capacity of complex IV in cortical neuron electron transport

    PubMed Central

    Jones, Torrie T.; Brewer, Gregory J.

    2009-01-01

    Summary Respiratory enzyme complex dysfunction is mechanistically involved in mitochondrial failure leading to neurodegenerative disease, but the pathway is unclear. Here, age-related differences in mitochondrial respiration were measured in both whole and permeabilized neurons from 9-month and 24-month adult rat cortex cultured in common conditions. After permeabilization, respiration increased in both ages of neurons with excess substrates. To dissect specific deficiencies in the respiratory chain, inhibitors for each respiratory chain complex were used to isolate their contributions. Relative to neurons from 9-month rats, in neurons isolated from 24-month rats, complexes I, III, and IV were more sensitive to selective inhibition. Flux control point analysis identified complex I in neurons isolated from 24-month rats as the most sensitive to endogenous substrate availability. The greatest age-related deficit in flux capacity occurred at complex IV with a 29% decrease in neurons isolated from 24-month rats relative to those from 9-month rats. The deficits in complexes I and III may contribute to a redox shift in the quinone pool within the electron transport chain, further extending these age-related deficits. Together these changes could lead to an age-related catastrophic decline in energy production and neuronal death. PMID:19799853

  6. Online feedback enhances early consolidation of motor sequence learning and reverses recall deficit from transcranial stimulation of motor cortex.

    PubMed

    Wilkinson, Leonora; Steel, Adam; Mooshagian, Eric; Zimmermann, Trelawny; Keisler, Aysha; Lewis, Jeffrey D; Wassermann, Eric M

    2015-10-01

    Feedback and monetary reward can enhance motor skill learning, suggesting reward system involvement. Continuous theta burst (cTBS) transcranial magnetic stimulation (TMS) of the primary motor area (M1) disrupts processing, reduces excitability and impairs motor learning. To see whether feedback and reward can overcome the learning impairment associated with M1 cTBS, we delivered real or sham stimulation to two groups of participants before they performed a motor sequence learning task with and without feedback. Participants were trained on two intermixed sequences, one occurring 85% of the time (the "probable" sequence) and the other 15% of the time (the "improbable" sequence). We measured sequence learning as the difference in reaction time (RT) and error rate between probable and improbable trials (RT and error difference scores). Participants were also tested for sequence recall with the same indices of learning 60 min after cTBS. Real stimulation impaired initial sequence learning and sequence knowledge recall as measured by error difference scores and impaired sequence knowledge recall as measured by RT difference score. Relative to non-feedback learning, the introduction of feedback during sequence learning improved subsequent sequence knowledge recall indexed by RT difference score, in both real and sham stimulation groups and feedback reversed the RT difference score based sequence knowledge recall impairment from real cTBS that we observed in the non-feedback learning condition. Only the real cTBS group in the non-feedback condition showed no evidence of explicit sequence knowledge when tested at the end of the study. Feedback improves recall of implicit and explicit motor sequence knowledge and can protect sequence knowledge against the effect of M1 inhibition. Adding feedback and monetary reward/punishment to motor skill learning may help overcome retention impairments or accelerate training in clinical and other settings.

  7. Acoustic noise improves motor learning in spontaneously hypertensive rats, a rat model of attention deficit hyperactivity disorder.

    PubMed

    Söderlund, Göran B W; Eckernäs, Daniel; Holmblad, Olof; Bergquist, Filip

    2015-03-01

    The spontaneously hypertensive (SH) rat model of ADHD displays impaired motor learning. We used this characteristic to study if the recently described acoustic noise benefit in learning in children with ADHD is also observed in the SH rat model. SH rats and a Wistar control strain were trained in skilled reach and rotarod running under either ambient noise or in 75 dBA white noise. In other animals the effect of methylphenidate (MPH) on motor learning was assessed with the same paradigms. To determine if acoustic noise influenced spontaneous motor activity, the effect of acoustic noise was also determined in the open field activity paradigm. We confirm impaired motor learning in the SH rat compared to Wistar SCA controls. Acoustic noise restored motor learning in SH rats learning the Montoya reach test and the rotarod test, but had no influence on learning in Wistar rats. Noise had no effect on open field activity in SH rats, but increased corner time in Wistar. MPH completely restored rotarod learning and performance but did not improve skilled reach in the SH rat. It is suggested that the acoustic noise benefit previously reported in children with ADHD is shared by the SH rat model of ADHD, and the effect is in the same range as that of stimulant treatment. Acoustic noise may be useful as a non-pharmacological alternative to stimulant medication in the treatment of ADHD.

  8. Understanding Social Skill Deficits of Mainstreamed Learning Disabled Students and Specialized Strategies Teachers Can Use To Foster Greater Social Acceptance.

    ERIC Educational Resources Information Center

    Polirstok, Susan Rovet

    Utilizing specialized classroom strategies to foster greater social acceptance of mainstreamed learning disabled students may be more efficient than having school personnel constantly involved in resolving student-to-student conflicts and assuaging hurt student feelings. Learning disabled students assigned to mainstream classes often present…

  9. Addressing Knowledge Deficits in Tutoring and the Role of Teaching Experience: Benefits for Learning and Summative Assessment

    ERIC Educational Resources Information Center

    Herppich, Stephanie; Wittwer, Jörg; Nückles, Matthias; Renkl, Alexander

    2014-01-01

    In the course of tutoring, tutors have the opportunity to formatively assess a tutee's understanding. The information gathered by engaging in formative assessment can be used by tutors not only to adapt instruction in order to enhance learning but also to form a summative judgment in order to document a tutee's learning after tutoring.…

  10. Age-related priming effects in social judgments.

    PubMed

    Hess, T M; McGee, K A; Woodburn, S M; Bolstad, C A

    1998-03-01

    Two experiments investigated adult age differences in the impact of previously activated (and thus easily accessible) trait-related information on judgments about people. The authors hypothesized that age-related declines in the efficiency of controlled processing mechanisms during adulthood would be associated with increased susceptibility to judgment biases associated with such information. In each study, different-aged adults made impression judgments about a target, and assimilation of these judgments to trait constructs activated in a previous, unrelated task were examined. Consistent with the authors' hypotheses, older adults were likely to form impressions that were biased toward the primed trait constructs. In contrast, younger adults exhibited greater awareness of the primed information and were more likely to correct for its perceived influence, especially when distinctive contextual cues regarding the source of the primes were available. PMID:9533195

  11. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  12. Age-related changes in human vitreous structure.

    PubMed

    Sebag, J

    1987-01-01

    Changes in vitreous structure that occur with aging are important in the pathogenesis of vitreous liquefaction (synchisis senilis), vitreous detachment, and retinal disease. Vitreous morphology was studied in 59 human eyes post-mortem using dark-field horizontal slit illumination of the entire dissected vitreous. In many individuals younger than 30 years, the vitreous was homogeneous in structure. Middle-aged individuals had macroscopic fibers in the central vitreous, which coursed anteroposteriorly and inserted into the vitreous base and the vitreous cortex, posteriorly. During senescence, the vitreous volume was reduced, the vitreous body was collapsed (syneresis), and the fibers were thickened, tortuous, and surrounded by liquid vitreous. This sequence of age-related changes probably results from a progressive reorganization of the hyaluronic acid and collagen molecular networks. Characterization of the molecular events underlying these changes will elucidate the mechanisms of the phenomena of synchisis, syneresis, and detachment, and may provide methods with which to prevent or induce vitreous detachment prophylactically.

  13. Sex- and age-related differences in mathematics.

    PubMed

    Rustemeyer, Ruth; Fischer, Natalie

    2005-08-01

    This study examined sex differences and age-related changes in mathematics based on Eccles's 1985 expectancy-value model of "achievement-related choices" and Dweck's 1986 motivation-process model. We have assessed motivational variables and performance in mathematics for youth in Grades 5, 7, and 9 in a German comprehensive secondary school. Significant sex differences in Grades 7 and 9 were observed even when school marks were controlled for. Furthermore, the results indicated differences between Grade 7 and Grade 9 on most of the motivational variables. Older students show a less favorable motivational pattern. Our results give evidence of the importance of motivational encouragement in mathematics classes, especially for girls and low achieving learners. PMID:16279324

  14. Age-Related Differences in Multiple Task Monitoring

    PubMed Central

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  15. Gene-Diet Interactions in Age-Related Macular Degeneration.

    PubMed

    Rowan, Sheldon; Taylor, Allen

    2016-01-01

    Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50 % of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation is the only available treatment option for the dry form of the disease known to slow progression of AMD. Despite an excellent understanding of genes and nutrition in AMD, there is remarkably little known about gene-diet interactions that may identify efficacious approaches to treat individuals. This review will summarize our current understanding of gene-diet interactions in AMD with a focus on animal models and human epidemiological studies.

  16. Age-related responses to mild restraint in the rat.

    PubMed

    Rattner, B A; Michael, S D; Altland, P D

    1983-11-01

    Immature, postpubertal, young adult, and middle-aged rats were lightly restrained for 4 h. Relative to untreated controls, restraint uniformly reduced body weight and plasma luteinizing hormone concentration and elevated plasma corticosterone concentration in all age groups. However, restraint increased activities of plasma alanine and aspartate aminotransferase, creatine phosphokinase, and fructose-diphosphate aldolase in only immature and middle-aged animals. This age-related release of tissue enzymes is hypothesized to reflect enhanced responsiveness to catecholamines in immature rats, and possible ischemia related to diminished vasodilatory activity in middle-aged rats. On the basis of these changes, tolerance to restraint in postpubertal and young adults appears to be slightly greater than that of immature and middle-aged rats.

  17. A Revised Hemodynamic Theory of Age-Related Macular Degeneration.

    PubMed

    Gelfand, Bradley D; Ambati, Jayakrishna

    2016-08-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  18. MicroRNAs in age-related diseases.

    PubMed

    Dimmeler, Stefanie; Nicotera, Pierluigi

    2013-02-01

    Aging is a complex process that is linked to an increased incidence of major diseases such as cardiovascular and neurodegenerative disease, but also cancer and immune disorders. MicroRNAs (miRNAs) are small non-coding RNAs, which post-transcriptionally control gene expression by inhibiting translation or inducing degradation of targeted mRNAs. MiRNAs target up to hundreds of mRNAs, thereby modulating gene expression patterns. Many miRNAs appear to be dysregulated during cellular senescence, aging and disease. However, only few miRNAs have been so far linked to age-related changes in cellular and organ functions. The present article will discuss these findings, specifically focusing on the cardiovascular and neurological systems.

  19. Molecular pathology of age-related macular degeneration

    PubMed Central

    Ding, Xiaoyan; Patel, Mrinali; Chan, Chi-Chao

    2009-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. Although the etiology and pathogenesis of AMD remain largely unclear, a complex interaction of genetic and environmental factors is thought to exist. AMD pathology is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium, and Bruch’s membrane, as well as, in some cases, alterations in choroidal capillaries. Recent research on the genetic and molecular underpinnings of AMD brings to light several basic molecular pathways and pathophysiological processes that might mediate AMD risk, progression, and/or response to therapy. This review summarizes, in detail, the molecular pathological findings in both humans and animal models, including genetic variations in CFH, CX3CR1, and ARMS2/HtrA1, as well as the role of numerous molecules implicated in inflammation, apoptosis, cholesterol trafficking, angiogenesis, and oxidative stress. PMID:19026761

  20. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  1. Translational strategies in aging and age-related disease.

    PubMed

    Armanios, Mary; de Cabo, Rafael; Mannick, Joan; Partridge, Linda; van Deursen, Jan; Villeda, Saul

    2015-12-01

    Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine.

  2. Targeting MAPK Signaling in Age-Related Macular Degeneration

    PubMed Central

    Kyosseva, Svetlana V.

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease. PMID:27385915

  3. Translational strategies in aging and age-related disease.

    PubMed

    Armanios, Mary; de Cabo, Rafael; Mannick, Joan; Partridge, Linda; van Deursen, Jan; Villeda, Saul

    2015-12-01

    Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine. PMID:26646495

  4. Complement factor H polymorphism and age-related macular degeneration.

    PubMed

    Edwards, Albert O; Ritter, Robert; Abel, Kenneth J; Manning, Alisa; Panhuysen, Carolien; Farrer, Lindsay A

    2005-04-15

    Age-related macular degeneration (AMD) is a common, late-onset, and complex trait with multiple risk factors. Concentrating on a region harboring a locus for AMD on 1q25-31, the ARMD1 locus, we tested single-nucleotide polymorphisms for association with AMD in two independent case-control populations. Significant association (P = 4.95 x 10(-10)) was identified within the regulation of complement activation locus and was centered over a tyrosine-402 --> histidine-402 protein polymorphism in the gene encoding complement factor H. Possession of at least one histidine at amino acid position 402 increased the risk of AMD 2.7-fold and may account for 50% of the attributable risk of AMD.

  5. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  6. The genetics of age-related macular degeneration.

    PubMed

    Gorin, M B; Breitner, J C; De Jong, P T; Hageman, G S; Klaver, C C; Kuehn, M H; Seddon, J M

    1999-11-01

    Age-related macular degeneration (AMD) is increasingly recognized as a complex genetic disorder in which one or more genes contribute to an individual's susceptibility for developing the condition. Twin and family studies as well as population-based genetic epidemiologic methods have convincingly demonstrated the importance of genetics in AMD, though the extent of heritability, the number of genes involved, and the phenotypic and genetic heterogeneity of the condition remain unresolved. The extent to which other hereditary macular dystrophies such as Stargardts disease, familial radial drusen (malattia leventinese), Best's disease, and peripherin/RDS-related dystrophy are related to AMD remains unclear. Alzheimer's disease, another late onset, heterogeneous degenerative disorder of the central nervous system, offers a valuable model for identifying the issues that confront AMD genetics.

  7. Age-related differences in arithmetic strategy sequential effects.

    PubMed

    Lemaire, Patrick

    2016-03-01

    In this article, I review a series of new findings concerning how age-related changes in strategic variations are modulated by sequential effects. Sequential effects refer to how strategy selection and strategy execution on current problems are influenced by which strategy is used on immediately preceding problems. Two sequential effects during strategy selection (i.e., strategy revisions and strategy perseverations) and during strategy execution (i.e., strategy switch costs and modulations of poorer strategy effects) are presented. I also discuss how these effects change with age during adulthood. These phenomena are important, as they shed light on arithmetic processes and how these processes change with age during adulthood. In particular, they speak to the role of executive control while participants select and execute arithmetic strategies. Finally, I discuss the implications of sequential effects for theories of strategies and of arithmetic.

  8. Age-related macular degeneration and the complement system.

    PubMed

    Khandhadia, S; Cipriani, V; Yates, J R W; Lotery, A J

    2012-02-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. It is a complex multifactorial disease, and despite new advances in treatment, many patients still succumb to visual impairment. The complement pathway has been implicated in the pathogenesis of many diseases, and recently variants in several genes encoding complement pathway proteins have been associated with AMD. Complement proteins have been found in histological specimens of eyes with AMD. Altered levels of both intrinsic complement proteins and activated products have been found in the circulation of patients with AMD. Complement activation may be triggered by oxidative stress, resulting from retinal exposure to incoming light; indeed an inter-play between these two pathological processes seems to exist. Finally, complement inhibitors are currently being evaluated in clinical trials. This article reviews the role of the complement system in AMD, and the potential of complement inhibition in preventing the devastating blindness resulting from this disease.

  9. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension.

  10. Dietary folate improves age-related decreases in lymphocyte function.

    PubMed

    Field, Catherine J; Van Aerde, Arne; Drager, Kelly L; Goruk, Susan; Basu, Tapan

    2006-01-01

    Although low folate status is thought to be fairly common in the older population, its implication on immunity has not been adequately investigated. Using 11-month-old and 23-month-old male rats (Fisher 344), the present study was undertaken to examine the modifying effects of feeding a control diet (NIH-07) supplemented with folate (35.7 mg/kg) for 3 weeks on the immune cells of spleen and mesenteric lymph node (MLN) origin. The serum concentrations of folate along with vitamin B(12) were elevated in response to the folate supplementation (P<.05). These results were accompanied by an improved proliferative response (stimulation index) to mitogens in both the spleen and MLNs (P<.05). The proportion of T cells in the MLNs, but not in the spleen, was significantly increased in rats fed a diet supplemented with folate. In the spleen, the folate-supplemented diet prevented the age-associated decrease (P<.05) in the production of interferon (IFN)alpha by unstimulated cells and the decrease in T-helper (Th)1/Th2-type response after stimulation with phorbol myristate acetate and ionomycin. In the MLNs, on the other hand, the folate-supplemented diet failed to influence any age-related increase in interleukin (IL)-2, tumor necrosis factor alpha and IFNgamma following stimulation but did result in a significantly increased production of IL-4 (P<.05). Overall, this study provides data suggesting that aging is associated with changes in the proportion of T cells, the ability of immune cells to proliferate and the production of cytokines after stimulation. Supplementing a folate-sufficient diet with additional folate improves proliferative response to mitogens, the distribution of T cells in the MLNs and the age-related changes in cytokine production in the spleen. These results suggest that the dietary folate requirement may be higher in the older population than in the younger population to support immune functions.

  11. Age-related macular degeneration: Evidence of a major gene

    SciTech Connect

    Bhatt, S.; Warren, C.; Yang, H.

    1994-09-01

    Age-related macular degeneration is a major cause of blindness in developing countries. It remains a very poorly understood disorder. Although environmental and genetic factors have been implicated in its pathogenesis, none have been firmly implicated. The purpose of this study was to use pedigree analysis to evaluate the possible role of a major gene as a determinant of familial aggregation. Information was collected regarding occupation, smoking, sun exposure, associated medical problems and family history. 50 probands with age-related macular degeneration (ARMD) and 39 age, race and sex-matched controls were included in the study. In the ARMD group 15/50 (30%) of probands reported a positive family history; 22 out of 222 first degree relatives over age 60 were reported to be affected. In the control groups, none of the 138 first degree relatives over age 50 had a history of ARMD. This difference is statistically significant (p = 0.0003), indicating that genetic factors may play an important role in the pathogenesis of ARMD. In the ARMD group more siblings as compared to parents (16/127 vs. 5/82) were affected. 5/50 (10%) of the ARMD probands also gave a history of a second degree relative affected with ARMD, compared to none known among the relatives of controls. Data from 50 pedigrees were analyzed by complex segregation analysis under a class A regressive logistic model using the REGD program implemented in the SAGE package. Preliminary results allow rejection of a polygenic model and suggest there is a major gene for ARMD in these families. The inheritance model most compatible with the observed familial aggregation is autosomal recessive. In conclusion, these results are suggestive of a major gene effect in the etiology of ARMD. Identification of a major gene effect is a first step to further pursue linkage analysis and to search for the gene(s) involved in the causation of ARMD.

  12. Age-related vascular stiffening: causes and consequences

    PubMed Central

    Kohn, Julie C.; Lampi, Marsha C.; Reinhart-King, Cynthia A.

    2015-01-01

    Arterial stiffening occurs with age and is closely associated with the progression of cardiovascular disease. Stiffening is most often studied at the level of the whole vessel because increased stiffness of the large arteries can impose increased strain on the heart leading to heart failure. Interestingly, however, recent evidence suggests that the impact of increased vessel stiffening extends beyond the tissue scale and can also have deleterious microscale effects on cellular function. Altered extracellular matrix (ECM) architecture has been recognized as a key component of the pre-atherogenic state. Here, the underlying causes of age-related vessel stiffening are discussed, focusing on age-related crosslinking of the ECM proteins as well as through increased matrix deposition. Methods to measure vessel stiffening at both the macro- and microscale are described, spanning from the pulse wave velocity measurements performed clinically to microscale measurements performed largely in research laboratories. Additionally, recent work investigating how arterial stiffness and the changes in the ECM associated with stiffening contributed to endothelial dysfunction will be reviewed. We will highlight how changes in ECM protein composition contribute to atherosclerosis in the vessel wall. Lastly, we will discuss very recent work that demonstrates endothelial cells (ECs) are mechano-sensitive to arterial stiffening, where changes in stiffness can directly impact EC health. Overall, recent studies suggest that stiffening is an important clinical target not only because of potential deleterious effects on the heart but also because it promotes cellular level dysfunction in the vessel wall, contributing to a pathological atherosclerotic state. PMID:25926844

  13. Genetic risk factors and age-related macular degeneration (AMD)

    PubMed Central

    Mousavi, Maryam; Armstrong, Richard A.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make lifestyle choices that may reduce the risk of disease. Collaboration between geneticists, ophthalmologists, and optometrists suggests that genetic risk factors play a more significant role in AMD than previously thought. The most important genes are associated with immune system modulation and the complement system, e.g., complement factor H (CFH), factor B (CFB), factor C3, and serpin peptidase inhibitor (SERPING1). Genes associated with membrane transport, e.g., ATP-binding cassette protein (ABCR) and voltage-dependent calcium channel gamma 3 (CACNG3), the vascular system, e.g., fibroblast growth factor 2 (FGF2), fibulin-5, lysyl oxidase-like gene (LOXL1) and selectin-P (SELP), and with lipid metabolism, e.g., apolipoprotein E (APOE) and hepatic lipase (LIPC) have also been implicated. In addition, several other genes exhibit some statistical association with AMD, e.g., age-related maculopathy susceptibility protein 2 (ARMS2) and DNA excision repair protein gene (ERCC6) but more research is needed to establish their significance. Modifiable risk factors for AMD should be discussed with patients whose lifestyle and/or family history place them in an increased risk category. Furthermore, calculation of AMD risk using current models should be recommended as a tool for patient education. It is likely that AMD management in future will be increasingly influenced by assessment of genetic risk as such screening methods become more widely available.

  14. Age-related modifications in neural cardiovascular control.

    PubMed

    Ferrari, A U

    1992-09-01

    Integrated cardiovascular responses to a range of different stimuli, as well as the overall, spontaneously occurring variability in blood pressure and heart rate, undergo complex changes with aging. A general trend is that homeostatic control mechanisms lose part of their ability to modulate heart rate and to buffer the concomitant blood pressure variations; the two phenomena are possibly linked by a cause-effect relationship. A detailed analysis of the age-related changes in the major reflex systems reveals a clear-cut impairment in arterial baroreceptor control of the heart rate, but much less pronounced changes in its control of blood pressure, on the other hand, both the hemodynamic and humoral components of the cardiopulmonary reflex appear to be markedly attenuated. The experimental evidence of the mechanisms underlying these changes is still largely incomplete, and it appears that the gaps will have to be filled by a systematic, detailed analysis, i.e., that no generalizations or extrapolations will be possible. Indeed, the data available so far indicate that the age-related alterations are highly non-uniform, some functions undergoing a definite impairment but others being much better preserved and some being even enhanced; thus aging is by no means associated with a generalized decline in cardiovascular functions and should instead be viewed as a complex, highly selective process. These peculiar biological features of the aging phenomena merit further investigation in both the cardiovascular and the other organ systems, in order to verify the possibility that currently unrecognized homeostatic potentials in the elderly subject may be exploited to advance his/her clinical management in health and disease.

  15. Age-Related Tissue Stiffening: Cause and Effect

    PubMed Central

    Sherratt, Michael J.

    2013-01-01

    Significance Tissue elasticity is severely compromised in aging skin, lungs, and blood vessels. In the vascular and pulmonary systems, respectively, loss of mechanical function is linked to hypertension, which in turn is a risk factor for heart and renal failure, stroke, and aortic aneurysms, and to an increased risk of mortality as a result of acute lung infections. Recent Advances Although cellular mechanisms were thought to play an important role in mediating tissue aging, the reason for the apparent sensitivity of elastic fibers to age-related degradation remained unclear. We have recently demonstrated that compared with type I collagen, a key component of the elastic fiber system, the cysteine-rich fibrillin microfibril is highly susceptible to direct UV exposure in a cell-free environment. We hypothesized therefore that, as a consequence of both their remarkable longevity and cysteine-rich composition, many elastic fiber-associated components will be susceptible to the accumulation of damage by both direct UV radiation and reactive oxygen species-mediated oxidation. Critical Issues Although elastic fiber remodeling is a common feature of aging dynamic tissues, the inaccessibility of most human tissues has hampered attempts to define the molecular causes. Clinical Care Relevance Although, currently, the localized repair of damaged elastic fibers may be effected by the topical application of retinoids and some cosmetic products, future studies may extend the application of systemic transforming growth factor β antagonists, which can prevent cardiovascular remodeling in murine Marfan syndrome, to aging humans. Acellular mechanisms may be key mediators of elastic fiber remodeling and hence age-related tissue stiffening. PMID:24527318

  16. Gastrodia elata Bl. Attenuated learning deficits induced by forced-swimming stress in the inhibitory avoidance task and Morris water maze.

    PubMed

    Chen, Pei-Ju; Liang, Keng-Chen; Lin, Hui-Chen; Hsieh, Ching-Liang; Su, Kuan-Pin; Hung, Mei-Chu; Sheen, Lee-Yan

    2011-06-01

    This study adopted the forced-swimming paradigm to induce depressive symptoms in rats and evaluated the effects on learning and memory processing. Furthermore, the effects of the water extract of Gastrodia elata Bl., a well-known Chinese traditional medicine, on amnesia in rats subjected to the forced-swimming procedure were studied. Rats were subjected to the forced-swimming procedure, and the inhibitory avoidance task and Morris water maze were used to assess learning and memory performance. The acquisition of the two tasks was mostly impaired after the 15-minute forced-swimming procedure. Administration of the water extract of G. elata Bl. for 21 consecutive days at a dosage of 0.5 or 1.0 g/kg of body weight significantly improved retention in the inhibitory avoidance test, and the lower dose showed a better effect than the higher one and the antidepressant fluoxetine (18 mg/kg of body weight). In the Morris water maze, the lower dose of the water extract of G. elata Bl. significantly improved retention by shortening escape latency in the first test session and increasing the time in searching the target zone during the probe test. These findings suggest that water extracts of G. elata Bl. ameliorate the learning and memory deficits induced by forced swimming.

  17. Rule-based and information-integration category learning in normal aging.

    PubMed

    Maddox, W Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M

    2010-08-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated processes, whereas information-integration is thought to involve implicit, striatally mediated processes. As a group, older adults showed rule-based and information-integration deficits. A series of models were applied that provided insights onto the type of strategy used to solve the task. Interestingly, when the analyses focused only on participants who used the task appropriate strategy in the final block of trials, the age-related rule-based deficit disappeared whereas the information-integration deficit remained. For this group of individuals, the final block information-integration deficit was due to less consistent application of the task appropriate strategy by older adults, and over the course of learning these older adults shifted from an explicit hypothesis-testing strategy to the task appropriate strategy later in learning. In addition, the use of the task appropriate strategy was associated with less interference and better inhibitory control for rule-based and information-information learning, whereas use of the task appropriate strategy was associated with greater working memory and better new verbal learning only for the rule-based task. These results suggest that normal aging impacts both forms of category learning and that there are some important similarities and differences in the explanatory locus of these deficits. The data also support a two-component model of information-integration category learning that includes a striatal component that mediated procedural-based learning, and a prefrontal cortical component that mediates the transition from hypothesis-testing to procedural-based strategies

  18. The effect of a skipped dose (placebo) of methylphenidate on the learning and retention of a motor skill in adolescents with Attention Deficit Hyperactivity Disorder.

    PubMed

    Fox, Orly; Adi-Japha, Esther; Karni, Avi

    2014-03-01

    Individuals with Attention Deficit Hyperactivity Disorder (ADHD) have difficulties in achieving optimal performance in many everyday and academic tasks, deficits attributed to impaired skill acquisition and procedural memory consolidation. We tested the effect of a skipped dose of methylphenidate (MPH) on learning a movement sequence and its subsequent consolidation into procedural memory in adolescents with ADHD. A crossover double-blind design with placebo was used. Sixteen male adolescents, 16-18 years-old, with ADHD and taking MPH formulations on a daily basis, were trained on performing a 5-element sequence of finger-to-thumb opposition movements. Participants took part in two study conditions, 2 months apart. In each condition a different movement sequence was trained and tested. Participants trained on the task either with active medication or placebo on the day of training, crossed-over between study conditions. Learning effects, speed and accuracy, were assessed within-session, during a 24-h memory consolidation phase. Retention was tested by 2 weeks post-training. There were robust gains in performance both within-session and during the 24-h consolidation phase, in both conditions. However, the discontinuation of MPH on the day of training significantly reduced performance speed, with no loss of accuracy. By 2 weeks, post-training performance was comparable. Adolescents with ADHD who are treated daily but skip a dose of MPH show significant slowing of performance relative to their own performance on medication. However, on a background of daily treatment a skipped dose has no deleterious effect on memory consolidation and retention.

  19. Theta-band oscillatory activity differs between gamblers and nongamblers comorbid with attention-deficit hyperactivity disorder in a probabilistic reward-learning task.

    PubMed

    Abouzari, Mehdi; Oberg, Scott; Tata, Matthew

    2016-10-01

    Problemgambling is thought to be comorbid with attention-deficit hyperactivity disorder (ADHD). We tested whether gamblers and ADHD patients exhibit similar reward-related brain activity in response to feedback in a gambling task. A series of brain electrical responses can be observed in the electroencephalogram (EEG) and the stimulus-locked event-related potentials (ERP), when participants in a gambling task are given feedback regardless of winning or losing the previous bet. Here, we used a simplified computerized version of the Iowa Gambling Task (IGT) to assess differences in reinforcement-driven choice adaptation between unmedicated ADHD patients with or without problem gambling traits and contrasted with a sex- and age-matched control group. EEG was recorded from the participants while they were engaged in the task which contained two choice options with different net payouts and win/loss probabilities. Learning trend which shows the ability to acquire and use knowledge of the reward outcomes to obtain a positive financial outcome was not observed in ADHD gamblers versus nongamblers. Induced theta-band (4-8Hz) power over frontal cortex was significantly higher in gamblers versus nongamblers in all different high-risk/low-risk win/lose conditions. Whereas induced low alpha (9-11Hz) power at frontal electrodes could only differentiate high-risk lose between gamblers and nongamblers but not the other three conditions between the two groups. The results indicate that ADHD nongamblers do not share with problem gamblers underlying deficits in reward learning. These pilot data highlight the need for studies of ADHD in gambling to elucidate how motivational states are represented during feedback processing.

  20. Theta-band oscillatory activity differs between gamblers and nongamblers comorbid with attention-deficit hyperactivity disorder in a probabilistic reward-learning task.

    PubMed

    Abouzari, Mehdi; Oberg, Scott; Tata, Matthew

    2016-10-01

    Problemgambling is thought to be comorbid with attention-deficit hyperactivity disorder (ADHD). We tested whether gamblers and ADHD patients exhibit similar reward-related brain activity in response to feedback in a gambling task. A series of brain electrical responses can be observed in the electroencephalogram (EEG) and the stimulus-locked event-related potentials (ERP), when participants in a gambling task are given feedback regardless of winning or losing the previous bet. Here, we used a simplified computerized version of the Iowa Gambling Task (IGT) to assess differences in reinforcement-driven choice adaptation between unmedicated ADHD patients with or without problem gambling traits and contrasted with a sex- and age-matched control group. EEG was recorded from the participants while they were engaged in the task which contained two choice options with different net payouts and win/loss probabilities. Learning trend which shows the ability to acquire and use knowledge of the reward outcomes to obtain a positive financial outcome was not observed in ADHD gamblers versus nongamblers. Induced theta-band (4-8Hz) power over frontal cortex was significantly higher in gamblers versus nongamblers in all different high-risk/low-risk win/lose conditions. Whereas induced low alpha (9-11Hz) power at frontal electrodes could only differentiate high-risk lose between gamblers and nongamblers but not the other three conditions between the two groups. The results indicate that ADHD nongamblers do not share with problem gamblers underlying deficits in reward learning. These pilot data highlight the need for studies of ADHD in gambling to elucidate how motivational states are represented during feedback processing. PMID:27318102

  1. Prefrontal Cortical GABAergic Dysfunction Contributes to Age-Related Working Memory Impairment

    PubMed Central

    Bañuelos, Cristina; Beas, B. Sofia; McQuail, Joseph A.; Gilbert, Ryan J.; Frazier, Charles J.; Setlow, Barry

    2014-01-01

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions. PMID:24599447

  2. Closed-loop rehabilitation of age-related cognitive disorders.

    PubMed

    Mishra, Jyoti; Gazzaley, Adam

    2014-11-01

    Cognitive deficits are common in older adults, as a result of both the natural aging process and neurodegenerative disease. Although medical advancements have successfully prolonged the human lifespan, the challenge of remediating cognitive aging remains. The authors discuss the current state of cognitive therapeutic interventions and then present the need for development and validation of more powerful neurocognitive therapeutics. They propose that the next generation of interventions be implemented as closed-loop systems that target specific neural processing deficits, incorporate quantitative feedback to the individual and clinician, and are personalized to the individual's neurocognitive capacities using real-time performance-adaptive algorithms. This approach should be multimodal and seamlessly integrate other treatment approaches, including neurofeedback and transcranial electrical stimulation. This novel approach will involve the generation of software that engages the individual in an immersive and enjoyable game-based interface, integrated with advanced biosensing hardware, to maximally harness plasticity and assure adherence. Introducing such next-generation closed-loop neurocognitive therapeutics into the mainstream of our mental health care system will require the combined efforts of clinicians, neuroscientists, bioengineers, software game developers, and industry and policy makers working together to meet the challenges and opportunities of translational neuroscience in the 21st century. PMID:25520029

  3. Learning and generalization deficits in patients with memory impairments due to anterior communicating artery aneurysm rupture or hypoxic brain injury.

    PubMed

    Myers, Catherine E; Hopkins, Ramona O; Hopkins, Romona O; DeLuca, John; Moore, Nancy B; Wolansky, Leo J; Sumner, Jennifer M; Gluck, Mark A

    2008-09-01

    Human anterograde amnesia can result from a variety of etiologies, including hypoxic brain injury and anterior communicating artery (ACoA) aneurysm rupture. Although each etiology can cause a similarly severe disruption in declarative memory for verbal and visual material, there may be differences in incrementally acquired, feedback-based learning, as well as generalization. Here, 6 individuals who survived hypoxic brain injury, 7 individuals who survived ACoA aneurysm rupture, and 13 matched controls were tested on 2 tasks that included a feedback-based learning phase followed by a transfer phase in which familiar information is presented in new ways. In both tasks, the ACoA group was slow on initial learning, but those patients who completed the learning phase went on to transfer as well as controls. In the hypoxic group, 1 patient failed to complete either task; the remaining hypoxic group did not differ from controls during learning of either task, but was impaired on transfer. These results highlight a difference in feedback-based learning in 2 amnesic etiologies, despite similar levels of declarative memory impairment.

  4. Age-related Shifts in Distortion Product Otoacoustic Emissions Peak-ratios and Amplitude Modulation Spectra

    PubMed Central

    Lai, Jesyin; Bartlett, Edward L.

    2015-01-01

    Amplitude modulation (AM) is an important temporal cue for precise speech and complex sound recognition. However, functional decline of the auditory periphery as well as degradation of central auditory processing due to aging can reduce the salience and resolution of temporal cues. Age-related deficits in central temporal processing have previously been observed at more rapid AM frequencies and various AM depths. These centrally observed changes result from cochlear changes compounded with changes along the ascending auditory pathway. In fact, a decrease in ability to detect temporally modulated sounds accurately could originate from changes in cochlear filtering properties and in cochlear mechanics due to aging. Nonetheless, few studies have examined cochlear mechanisms in AM detection. To assess integrity of the mechanical properties of the auditory periphery, distortion product otoacoustic emissions (DPOAEs) are a tool commonly used in clinics and in research. In this study, we measured DPOAEs to reveal age-related changes in peak f2/f1 ratio and degradation in AM detection by basilar membrane vibration. Two tones (f1 and f2, f2>f1) at various f2/f1 ratios and simultaneous presentation of one AM and one pure tone were used as stimuli to evoke DPOAEs. In addition of observing reduced DPOAE amplitudes and steeper slopes in the input-output DPOAE functions, higher peak f2/f1 ratios and broader f2/f1 tuning were also observed in aged animals. Aged animals generally had lower distortion product (DP) and first sideband (SB 1) responses evoked by an f1 pure tone and an f2 AM tone, regardless of whether the AM frequency was 45 Hz or 128 Hz. SB 1 thresholds, which corresponds to the smallest stimulus AM depth that can induce cochlear vibrations at the DP generator locus, were higher in aged animals as well. The results suggest that age-related changes in peak f2/f1 ratio and AM detection by basilar membrane vibration are consistent with a reduction in endocochlear

  5. Age-related alterations in the neural coding of envelope periodicities.

    PubMed

    Walton, Joseph P; Simon, Henry; Frisina, Robert D

    2002-08-01

    This research was guided by the working hypothesis that the aging auditory system progressively loses its ability to process rapid acoustic transients efficiently, and in elderly listeners, this results in difficulties in speech perception. Neural correlates of age-related deficits in temporal processing were investigated by recording from inferior colliculus (IC) neurons from young adult and old CBA mice. Single-unit responses were recorded to sinusoidally amplitude-modulated (SAM) noise carriers, presented at 65-80 dB SPL, having modulation frequencies (MFs) that ranged from 10 to 800 Hz. Because phasic-type temporal response patterns dominate responses to tone and noise in mammalian IC, we limited our analyses to only phasic units. Modulation transfer functions (MTF) for both rate (rMTF) and synchronization (sMTF) measures were used to derive respective best modulation frequencies (rBMF and sBMF). The main age-related finding was that there was an overall increase in response rate to SAM noise carriers and a decrease in the median upper cutoff frequency in units from old mice. At rBMF, the median spike count from units from old animals was 1.63 times greater, and at the sBMF, the median spike count was 2.29 times greater than the young adult sample. We explored whether the increase in driven activity was due to a change in the transient (first cycle response) or periodic (remaining response) component of the response to SAM noise. Median spike counts of the transient component decreased with increasing MF for both young adult and old units, with median counts consistently greater in the old sample as compared with young. Median spike counts for the periodic response remained relatively constant as a function of MF; however, there was a significantly greater (3 times) response for older units in a restricted range of MFs. The greater median spike counts found for the transient and periodic response was also evident when we analyzed the cycle-by-cycle response

  6. Progress on retinal image analysis for age related macular degeneration.

    PubMed

    Kanagasingam, Yogesan; Bhuiyan, Alauddin; Abràmoff, Michael D; Smith, R Theodore; Goldschmidt, Leonard; Wong, Tien Y

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in those over the age of 50 years in the developed countries. The number is expected to increase by ∼1.5 fold over the next ten years due to an increase in aging population. One of the main measures of AMD severity is the analysis of drusen, pigmentary abnormalities, geographic atrophy (GA) and choroidal neovascularization (CNV) from imaging based on color fundus photograph, optical coherence tomography (OCT) and other imaging modalities. Each of these imaging modalities has strengths and weaknesses for extracting individual AMD pathology and different imaging techniques are used in combination for capturing and/or quantification of different pathologies. Current dry AMD treatments cannot cure or reverse vision loss. However, the Age-Related Eye Disease Study (AREDS) showed that specific anti-oxidant vitamin supplementation reduces the risk of progression from intermediate stages (defined as the presence of either many medium-sized drusen or one or more large drusen) to late AMD which allows for preventative strategies in properly identified patients. Thus identification of people with early stage AMD is important to design and implement preventative strategies for late AMD, and determine their cost-effectiveness. A mass screening facility with teleophthalmology or telemedicine in combination with computer-aided analysis for large rural-based communities may identify more individuals suitable for early stage AMD prevention. In this review, we discuss different imaging modalities that are currently being considered or used for screening AMD. In addition, we look into various automated and semi-automated computer-aided grading systems and related retinal image analysis techniques for drusen, geographic atrophy and choroidal neovascularization detection and/or quantification for measurement of AMD severity using these imaging modalities. We also review the existing telemedicine studies which

  7. Combined stimulation of the glycine and polyamine sites of the NMDA receptor attenuates NMDA blockade-induced learning deficits of rats in a 14-unit T-maze.

    PubMed

    Meyer, R C; Knox, J; Purwin, D A; Spangler, E L; Ingram, D K

    1998-02-01

    The present study examined the effects of multi-site activation of the glycine and polyamine sites of the NMDA receptor on memory formation in rats learning a 14-unit T-maze task. The competitive NMDA receptor antagonist, (+/-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP, 9 mg/kg), was used to impair learning. The objectives were two-fold: (1) to investigate the effects of independent stimulation of the strychnine-insensitive glycine site or the polyamine site; (2) to investigate the effects of simultaneous activation of these two sites. Male, Fischer-344 rats were pretrained to a criterion of 13 out of 15 shock avoidances in a straight runway, and 24 h later were trained in a 14-unit T-maze that also required shock avoidance. Prior to maze training, rats received intraperitoneal (i.p.) injections of saline, saline plus CPP, CPP plus the glycine agonist, D-cycloserine (DCS, 30 or 40 mg/kg), CPP plus the polyamine agonist, spermine (SPM, 2.5 or 5 mg/kg), or CPP plus a combination of DCS (7.5 mg/kg) and SPM (0.625 mg/kg). Individual administration of either DCS or SPM attenuated the CPP-induced maze learning impairment in a dose-dependent manner. However, the combined treatment with both DCS and SPM completely reversed the learning deficit at doses five-fold less than either drug given alone. These findings provide additional evidence that the glycine and polyamine modulatory sites of the NMDA receptor are involved in memory formation. Furthermore, the potent synergistic effect resulting from combined activation of the glycine and polyamine sites would suggest a stronger interaction between these two sites than previously considered, and might provide new therapeutic approaches for enhancing glutamatergic function. PMID:9498733

  8. Ergothioneine and melatonin attenuate oxidative stress and protect against learning and memory deficits in C57BL/6J mice treated with D-galactose.

    PubMed

    Song, T-Y; Lin, H-C; Chen, C-L; Wu, J-H; Liao, J-W; Hu, M-L

    2014-09-01

    Male C57BL/6J mice treated with D-galactose (DG) were used to examine the effects of ergothioneine (EGT), melatonin (MEL), or their combination (EGT+MEL) on learning and memory abilities. The mice were divided into five groups and injected subcutaneously with DG (0.3 mL of 1% DG/mouse) except for group 1 (normal controls). Group 3 was orally supplemented with EGT [0.5 mg/kg body weight (bw)], group 4 with MEL (10 mg/kg bw, p.o.), and group 5 with EGT+MEL. EGT and MEL were provided daily for 88 days, while DG was provided between days 7 to 56. Active avoidance task and Morris water-maze task were used to evaluate learning and memory abilities. DG treatment markedly increased escape latency and decreased the number of avoidance in the active avoidance test, whereas EGT and MEL alone significantly improved the performance. DG also impaired the learning and memory abilities in the water-maze task, and EGT and MEL alone also significantly improved the performance. EGT+MEL produced the strongest effects in both tasks. EGT and MEL alone markedly decreased β-amyloid protein accumulation in the hippocampus and significantly inhibited lipid peroxidation and maintained glutathione/glutathione disulfide ratio and superoxide dismutase activity in brain tissues of DG-treated mice. MEL alone completely prevented the rise in brain acetylcholine esterase activity induced by DG, whereas EGT and EGT+MEL were only partially effective. Overall, EGT, MEL, and, in particular, the combination of EGT and MEL effectively protect against learning and memory deficits in C57BL/6J mice treated with DG, possibly through attenuation of oxidative damage.

  9. Age-related declines in the fidelity of newly acquired category representations.

    PubMed

    Davis, Tyler; Love, Bradley C; Maddox, W Todd

    2012-01-01

    We present a theory suggesting that the ability to build category representations that reflect the nuances of category structures in the environment depends upon clustering mechanisms instantiated in an MTL-PFC-based circuit. Because function in this circuit declines with age, we predict that the ability to build category representations will be impaired in older adults. Consistent with this prediction, we find that older adults are impaired relative to younger adults at learning nuanced category structures that contain exceptions to the rule. Model-based analysis reveals that this deficit arises from older adults' failure to engage clustering mechanisms to separate exception and rule-following items in memory. PMID:22815536

  10. The Role of Inhibition in Age-related Off-Topic Verbosity: Not Access but Deletion and Restraint Functions

    PubMed Central

    Yin, Shufei; Peng, Huamao

    2016-01-01

    The speech of older adults is commonly described as verbose and off-topic, which is thought to influence their social communication. This study investigated the role of inhibition in age-related off-topic verbosity (OTV). Inhibition consists of three functions: access, deletion, and restraint. The access function is responsible for preventing irrelevant information from accessing the attention center (pre-mechanism of inhibition); The deletion function is responsible for deleting previously relevant but currently irrelevant information from working memory, and the restraint function is responsible for restraining strong but inappropriate responses (post-mechanisms of inhibition). A referential communication task was used to determine whether OTV was influenced by the pre-mechanism of inhibition. A self-involved event interview task was used to investigate the effect of the post-mechanisms of inhibition on OTV. Results showed that the OTV of the elderly participants was associated with an age-related decline in the post-mechanisms of inhibition, while the OTV exhibited by young adults was most likely due to deficits in the pre-mechanism function of inhibition. This research contributed to fill gaps in the existing knowledge about the potential relationship between specific functions of inhibition and age-related OTV. PMID:27199793

  11. Age-related changes in deformability of human erythrocytes.

    PubMed

    Sutera, S P; Gardner, R A; Boylan, C W; Carroll, G L; Chang, K C; Marvel, J S; Kilo, C; Gonen, B; Williamson, J R

    1985-02-01

    The present study was designed to further the characterization of age-related changes in the deformability of human erythrocytes. The top (approximately young) and bottom (approximately old) 10% fractions of density-separated red cells from ten normal donors were subjected to graded levels of shear stress in a rheoscope. Measurements were made of steady-state elongation (cells tank treading in a state of dynamic equilibrium) and the time course of shape recovery following abrupt cessation of shear. In parallel with the rheologic experiments, several physical and chemical properties were assayed to determine correlates of mechanical properties. These included mean cell volume, mean corpuscular hemoglobin concentration, type A1 hemoglobin, glucosylation of membrane proteins, and membrane phospholipid and protein concentration. The microrheologic observations revealed that only about 90% of the old cells retained their capacity to tank tread. However, the tank-treading cells elongated less than their younger counterparts at corresponding levels of shear stress, thus demonstrating a reduced level of deformability. Further analysis of the data indicates that increases in membrane viscosity and elastic modulus along with a significant loss in excess surface area contribute to the limitation of the ability of the older cells to change shape.

  12. Aging-related differences in chondrocyte viscoelastic properties.

    PubMed

    Steklov, Nikolai; Srivastava, Ajay; Sung, K L P; Chen, Peter C; Lotz, Martin K; D'Lima, Darryl D

    2009-06-01

    The biomechanical properties of articular cartilage change profoundly with aging. These changes have been linked with increased potential for cartilage degeneration and osteoarthritis. However, less is known about the change in biomechanical properties of chondrocytes with increasing age. Cell stiffness can affect mechanotransduction pathways and may alter cell function. We measured aging-related changes in the biomechanical properties of chondrocytes. Human chondrocytes were isolated from knee articular cartilage within 48 hours after death or from osteochondral specimens obtained from knee arthroplasty. Cells were divided into two age groups: between 18 and 35 years (18 - 35); and greater than 55 years (55+) of age. The 55+ group was further subdivided based on visual grade of osteoarthritis: normal (N) or osteoarthritic (OA). The viscoelastic properties of the cell were measured using the previously described micropipette cell aspiration technique. The equilibrium modulus, instantaneous modulus, and apparent viscosity were significantly higher in the 55+ year age group than in the 18 - 35 age group. On the other hand, no differences were found in the equilibrium modulus, instantaneous modulus, or apparent viscosity between the N and OA groups. The increase in cell stiffness can be attributed to altered mechanical properties of the cell membrane, the cytoplasm, or the cytoskeleton. Increased stiffness has been reported in osteoarthritic chondrocytes, which in turn has been attributed to the actin cytoskeleton. A similar mechanism may be responsible for our finding of increased stiffness in aging chondrocytes. With advancing age, changes in the biomechanical properties of the cell could alter molecular and biochemical responses.

  13. Age-Related Macular Degeneration: A Scientometric Analysis

    PubMed Central

    Ramin, Shahrokh; Soheilian, Masoud; Habibi, Gholamreza; Ghazavi, Roghayeh; Gharebaghi, Reza; Heidary, Fatemeh

    2015-01-01

    Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject. The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993–2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic’s structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed. The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research. Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning. PMID:26060829

  14. Promising new treatments for neovascular age-related macular degeneration.

    PubMed

    Michels, Stephan; Schmidt-Erfurth, Ursula; Rosenfeld, Philip J

    2006-07-01

    Angiogenesis, the growth of new blood vessels from existing blood vessels, is responsible for vision loss in a variety of ophthalmic diseases. In neovascular age-related macular degeneration (AMD), the leading cause for legal blindness in many industrialised countries, abnormal blood vessels grow in the macula and cause blindness. There are a number of factors important in the angiogenic cascade but VEGF-A has been implicated in recent years as the major factor responsible for neovascular and exudative diseases of the eye. Numerous antiangiogenic drugs are in development but anti-VEGF drugs have shown great promise in treating neovascular AMD and other ocular diseases, and many of these drugs have been adopted from oncology where antiangiogenic therapy is gaining wide acceptance. For the first time in neovascular AMD, anti-VEGF drugs have brought the hope of vision improvement to a significant proportion of patients. This review provides an overview on angiogenic mechanisms, potential antiangiogenic treatment strategies and different antiangiogenic drugs with special focus on neovascular AMD.

  15. Radiation therapy for neovascular age-related macular degeneration

    PubMed Central

    Petrarca, Robert; Jackson, Timothy L

    2011-01-01

    Antivascular endothelial growth factor (anti-VEGF) therapies represent the standard of care for most patients presenting with neovascular (wet) age-related macular degeneration (neovascular AMD). Anti-VEGF drugs require repeated injections and impose a considerable burden of care, and not all patients respond. Radiation targets the proliferating cells that cause neovascular AMD, including fibroblastic, inflammatory, and endothelial cells. Two new neovascular AMD radiation treatments are being investigated: epimacular brachytherapy and stereotactic radiosurgery. Epimacular brachytherapy uses beta radiation, delivered to the lesion via a pars plana vitrectomy. Stereotactic radiosurgery uses low voltage X-rays in overlapping beams, directed onto the lesion. Feasibility data for epimacular brachytherapy show a greatly reduced need for anti-VEGF therapy, with a mean vision gain of 8.9 ETDRS letters at 12 months. Pivotal trials are underway (MERLOT, CABERNET). Preliminary stereotactic radiosurgery data suggest a mean vision gain of 8 to 10 ETDRS letters at 12 months. A large randomized sham controlled stereotactic radiosurgery feasibility study is underway (CLH002), with pivotal trials to follow. While it is too early to conclude on the safety and efficacy of epimacular brachytherapy and stereotactic radiosurgery, preliminary results are positive, and these suggest that radiation offers a more durable therapeutic effect than intraocular injections. PMID:21311657

  16. Review of nutrient actions on age-related macular degeneration.

    PubMed

    Zampatti, Stefania; Ricci, Federico; Cusumano, Andrea; Marsella, Luigi Tonino; Novelli, Giuseppe; Giardina, Emiliano

    2014-02-01

    The actions of nutrients and related compounds on age-related macular degeneration (AMD) are explained in this review. The findings from 80 studies published since 2003 on the association between diet and supplements in AMD were reviewed. Antioxidants and other nutrients with an effect on AMD susceptibility include carotenoids (lutein and zeaxanthin, β-carotene), vitamins (vitamin A, E, C, D, B), mineral supplements (zinc, copper, selenium), dietary fatty acids [monounsaturated fatty acids, polyunsaturated fatty acids (PUFA both omega-3 PUFA and omega-6 PUFA), saturated fatty acids and cholesterol], and dietary carbohydrates. The literature revealed that many of these antioxidants and nutrients exert a protective role by functioning synergistically. Specifically, the use of dietary supplements with targeted actions can provide minimal benefits on the onset or progression of AMD; however, this does not appear to be particularly beneficial in healthy people. Furthermore, some supplements or nutrients have demonstrated discordant effects on AMD in some studies. Since intake of dietary supplements, as well as exposure to damaging environmental factors, is largely dependent on population habits (including dietary practices) and geographical localization, an overall healthy diet appears to be the best strategy in reducing the risk of developing AMD. As of now, the precise mechanism of action of certain nutrients in AMD prevention remains unclear. Thus, future studies are required to examine the effects that nutrients have on AMD and to determine which factors are most strongly correlated with reducing the risk of AMD or preventing its progression. PMID:24461310

  17. Age-related changes in skin topography and microcirculation.

    PubMed

    Li, Li; Mac-Mary, Sophie; Marsaut, David; Sainthillier, Jean Marie; Nouveau, Stéphanie; Gharbi, Tijani; de Lacharriere, Olivier; Humbert, Philippe

    2006-03-01

    Skin topography and microvasculature undergo characteristic changes with age. Although several non-invasive bioengineering methods are currently available to measure them quantitatively, few publications have referred to their relationship with age in different anatomical sites. This study was carried out to observe the age-related changes of the skin topography and skin microcirculation. The microrelief was assessed with special processing software from scanning by interference fringe profilometry of silicone replicas performed on two sites (volar forearm and back of hand) on 50 female volunteers (aged 20-74 years who consisted of ten probands in each decade). The superficial vascular network of both sites was assessed by videocapillaroscopy, and the subpapillary vascular plexus was studied with laser Doppler flowmetry. Skin color, which is affected by blood flow, was observed by colorimeter. The skin roughness and the mean height between peak and valley increased with age. There were statistically significant differences between the evaluated sites. This study also shows that the capillary loops in the dermal papillae decrease but the subpapillary plexus increase with age. The interference fringe profilometry associated with videocapillaroscopy may be useful and accurate to measure the efficacy of medical or cosmetic products to delay skin aging.

  18. Age related microsatellite instability in T cells from healthy individuals.

    PubMed

    Krichevsky, Svetlana; Pawelec, Graham; Gural, Alexander; Effros, Rita B; Globerson, Amiela; Yehuda, Dina Ben; Yehuda, Arie Ben

    2004-04-01

    Many immune functions decline with age and may jeopardize the elderly, as illustrated, for example by the significantly higher mortality rate from influenza in old age. Although innate and humoral immunity are affected by aging, it is the T cell compartment, which manifests most alterations. The mechanisms behind these alterations are still unclear, and several explanations have been offered including thymic involution and Telomere attrition leading to cell senescence. Age related accumulation of mutations has been documented and could serve as an additional mechanism of T cell dysfunction. One effective repair mechanism capable of rectifying errors in DNA replications is the mismatch repair (MMR) system. We previously reported a comparative examination of individual DNA samples from blood cells obtained at 10 year intervals from young and old subjects. We showed significantly higher rates of microsatellite instability (MSI), an indicator of MMR dysfunction in older subjects, compared to young. In the present study we confirm this result, using direct automated sequencing and in addition, we demonstrate that as CD8 lymphocytes from aged individuals, undergo repeated population doublings (PDs) in culture, they develop MSI. CD4 clones that also undergo repeated PDs in culture develop significant MSI as well. Elucidation of this previously unexplored facet of lymphocyte dynamics in relation to aging may help identify novel mechanisms of immunosenescence and pathways that could serve as targets for interventions to restore immune function.

  19. The Theory Behind the Age-Related Positivity Effect

    PubMed Central

    Reed, Andrew E.; Carstensen, Laura L.

    2012-01-01

    The “positivity effect” refers to an age-related trend that favors positive over negative stimuli in cognitive processing. Relative to their younger counterparts, older people attend to and remember more positive than negative information. Since the effect was initially identified and the conceptual basis articulated (Mather and Carstensen, 2005) scores of independent replications and related findings have appeared in the literature. Over the same period, a number of investigations have failed to observe age differences in the cognitive processing of emotional material. When findings are considered in theoretical context, a reliable pattern of evidence emerges that helps to refine conceptual tenets. In this article we articulate the operational definition and theoretical foundations of the positivity effect and review the empirical evidence based on studies of visual attention, memory, decision making, and neural activation. We conclude with a discussion of future research directions with emphasis on the conditions where a focus on positive information may benefit and/or impair cognitive performance in older people. PMID:23060825

  20. The Chromospheric Activity-Age Relation for M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Silvestri, N. M.; Oswalt, T. D.; Hawley, S. L.

    2000-12-01

    We present preliminary results from our study in which we use moderate resolution spectroscopy to determine the correlation between the chromospheric activity and age of M dwarf stars in wide binary systems. We have observed ~50 M dwarf stars from our sample with the Apache Point Observatory 3.5-m telescope. We measure the ratio of Hα luminosity to the bolometric luminosity (LHα /Lbol) of the M dwarf---a measure of activity that is proven to correlate well with age. This project is unique in that it will extend the chromospheric activity-age relation of low-mass main sequence stars beyond the ages provided by cluster methods. The ages so determined are also independent of the uncertainties in cluster age determinations. The technique has the potential to improve by at least a factor of two the precision and the range over which ages can currently be determined for main sequence stars. Work on this project is supported by the NASA Graduate Student Researchers Program grant NGT-50290 (N.M.S.).

  1. Age related changes in steroid receptors on cultured lung fibroblasts

    SciTech Connect

    Barile, F.A.; Bienkowski, R.S.

    1986-03-05

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with (/sup 3/H)-dexamethasone ((/sup 3/H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol (/sup 3/H)Dex/10/sup 6/ cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms.

  2. Age-related neural changes in autobiographical remembering and imagining.

    PubMed

    Addis, Donna Rose; Roberts, Reece P; Schacter, Daniel L

    2011-11-01

    Numerous neuroimaging studies have revealed that in young adults, remembering the past and imagining the future engage a common core network. Although it has been observed that older adults engage a similar network during these tasks, it is unclear whether or not they activate this network in a similar manner to young adults. Young and older participants completed two autobiographical tasks (imagining future events and recalling past events) in addition to a semantic-visuospatial control task. Spatiotemporal Partial Least Squares analyses examined whole brain patterns of activity across both the construction and elaboration of autobiographical events. These analyses revealed that that both age groups activated a similar network during the autobiographical tasks. However, some key age-related differences in the activation of this network emerged. During the construction of autobiographical events, older adults showed less activation relative to younger adults, in regions supporting episodic detail such as the medial temporal lobes and the precuneus. Later in the trial, older adults showed differential recruitment of medial and lateral temporal regions supporting the elaboration of autobiographical events, and possibly reflecting an increased role of conceptual information when older adults describe their pasts and their futures.

  3. Parabiosis for the study of age-related chronic disease

    PubMed Central

    Eggel, Alexander; Wyss-Coray, Tony

    2014-01-01

    Summary Modern medicine wields the power to treat large numbers of diseases and injuries most of us would have died from just a hundred years ago. In view of this tremendous achievement, it can seem as if progress has slowed, and we have been unable to impact the most devastating diseases of our time. Chronic diseases of age such as cardiovascular disease, diabetes, osteoarthritis, or Alzheimer’s disease turn out to be of a complexity that may require transformative ideas and paradigms to understand and treat them. Parabiosis, which mimics aspects of the naturally occurring shared blood supply in conjoined twins in humans and certain animals, may just have the power to be such a transformative experimental paradigm. Forgotten and now shunned in many countries, it has contributed to major breakthroughs in tumor biology, endocrinology, and transplantation research in the past century, and a set of new studies in the US and Britain report stunning advances in stem cell biology and tissue regeneration using parabiosis between young and old mice. We review here briefly the history of parabiosis and discuss its utility to study physiological and pathophysiological processes. We argue that parabiosis is a technique that should enjoy wider acceptance and application, and that policies should be revisited especially if one is to study complex age-related, chronic disorders. PMID:24496774

  4. eNOS-uncoupling in age-related erectile dysfunction.

    PubMed

    Johnson, J M; Bivalacqua, T J; Lagoda, G A; Burnett, A L; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH(4)) on erectile function in the aged rats. Male Fischer 344 'young' (4-month-old) and 'aged' (19-month-old) rats were treated with a BH(4) precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  5. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  6. Automatic age-related macular degeneration detection and staging

    NASA Astrophysics Data System (ADS)

    van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.

    2013-03-01

    Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.

  7. Age-related hearing loss increases cross-modal distractibility.

    PubMed

    Puschmann, Sebastian; Sandmann, Pascale; Bendixen, Alexandra; Thiel, Christiane M

    2014-10-01

    Recent electrophysiological studies have provided evidence that changes in multisensory processing in auditory cortex cannot only be observed following extensive hearing loss, but also in moderately hearing-impaired subjects. How the reduced auditory input affects audio-visual interactions is however largely unknown. Here we used a cross-modal distraction paradigm to investigate multisensory processing in elderly participants with an age-related high-frequency hearing loss as compared to young and elderly subjects with normal hearing. During the experiment, participants were simultaneously presented with independent streams of auditory and visual input and were asked to categorize either the auditory or visual information while ignoring the other modality. Unisensory sequences without any cross-modal input served as control conditions to assure that all participants were able to perform the task. While all groups performed similarly in these unisensory conditions, hearing-impaired participants showed significantly increased error rates when confronted with distracting cross-modal stimulation. This effect could be observed in both the auditory and the visual task. Supporting these findings, an additional regression analysis indicted that the degree of high-frequency hearing loss significantly modulates cross-modal visual distractibility in the auditory task. These findings provide new evidence that already a moderate sub-clinical hearing loss, a common phenomenon in the elderly population, affects the processing of audio-visual information.

  8. Modifiable risk factors for age-related macular degeneration.

    PubMed

    Guymer, Robyn H; Chong, Elaine Wei-Tinn

    2006-05-01

    Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in Australia and other Western countries. As there is no cure for AMD, and treatments to stop its progression have met with limited success, there is an interest in identifying modifiable risk factors to prevent or slow disease progression. To date, smoking is the only proven modifiable risk factor for AMD. Other factors under study include (i) cardiovascular risk factors such as hypertension, body mass index, and atherosclerosis; and (ii) dietary risk factors including fat and antioxidant intake, but so far these studies have produced conflicting results. Dietary fat in relation to AMD has recently attracted media attention. Despite very limited work supporting an association between vegetable fat and AMD, widespread publicity advocating margarine as a cause of AMD and encouraging use of butter instead has caused confusion and anxiety among sufferers of AMD and the general public, as well as concern among health professionals. The antioxidant carotenoids--lutein and zeaxanthin--found in dark green or yellow vegetables exist in high concentrations in the macula and are hypothesised to play a protective role. Of nine controlled trials of supplementation with carotenoids and other antioxidants, three suggested that various combinations of antioxidants and carotenoids were protective. While a low-fat diet rich in dark green and yellow vegetables is advocated in general, any specific recommendations regarding certain fats or antioxidant supplementation and AMD are not based on consistent findings at this stage. PMID:16646746

  9. Eye Conditions in Older Adults: Age-Related Macular Degeneration.

    PubMed

    Iroku-Malize, Tochi; Kirsch, Scott

    2016-06-01

    Age-related macular degeneration (AMD) causes a progressive loss of photoreceptors in the macula. It is the most common cause of legal blindness in the United States, and some form of AMD is thought to affect more than 9 million individuals. Risk factors include older age, smoking, dyslipidemia, obesity, white race, female sex, and a family history of AMD. There are two types of advanced AMD: nonexudative (dry or geographic atrophy) and exudative (wet or neovascular). Both cause progressive central vision loss with intact peripheral vision. Nonexudative AMD accounts for 80% to 90% of all advanced cases, and more than 90% of patients with severe vision loss have exudative AMD. On ophthalmoscopic examination, early findings include drusen (ie, yellow deposits in the retina). Prominent choroidal vessels, subretinal edema, and/or hemorrhage are seen in wet AMD. Regular eye examinations, visual field testing, fluorescein angiography, and optical coherence tomography are used for diagnosis and to guide management. There is no specific therapy for dry AMD, but antioxidant supplementation may be helpful. Intravitreal injection of a vascular endothelial growth factor inhibitor is the treatment of choice for wet AMD. Optical aids and devices can help to maximize function for patients with AMD. PMID:27348529

  10. Age-related carbonyl stress and erythrocyte membrane protein carbonylation.

    PubMed

    Li, Guolin; Liu, Li; Hu, Hui; Zhao, Qiong; Xie, Fuxia; Chen, Keke; Liu, Shenglin; Chen, Yaqin; Shi, Wang; Yin, Dazhong

    2010-01-01

    Reactive carbonyl species (RCS) have been widely used as indicators of oxidative stress. However, the associations of carbonyl stress with aging process and biochemical alteration of erythrocyte are still poorly understood. Fresh blood samples in vacutainer tubes containing sodium heparinate were obtained from 874 volunteers who were divided into young, adult and old groups based on their age. Plasma RCS and thiols concentrations between different age groups and erythrocyte membrane protein carbonylation in the adult group were detected within 24h of the blood sampling. Results showed that the plasma thiols concentration decreased gradually during aging process, and the p-values between all three groups are less than 0.05. The plasma RCS concentration in different age groups showed a nonlinear association with age. The levels in the young group were slightly higher than the adult group (not significant) and lower than the old group (p < 0.01). The protein carbonylation of erythrocyte membrane was positively correlated with plasma RCS concentration (p < 0.01), but not plasma thiols concentration. We conclude that higher levels of RCS, not lower levels of thiols, in plasma are a direct risk factor for the protein carbonylation of erythrocyte membrane. Owing to the decrease of thiols levels and increase of RCS levels during aging process, a shift from RCS-related redox allostasis to carbonyl stress would contribute to age-related biological dysfunction and even aging process.

  11. Seven New Loci Associated with Age-Related Macular Degeneration

    PubMed Central

    2013-01-01

    Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate understanding of AMD biology and help design new therapies, we executed a collaborative genomewide association study, examining >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with AMD with p<5×10−8 and enriched for genes involved in regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching p<5×10−8 for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all loci displayed similar good ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD. PMID:23455636

  12. Defining the boundary: age-related changes in childhood amnesia.

    PubMed

    Tustin, Karen; Hayne, Harlene

    2010-09-01

    Childhood amnesia refers to the inability of adults to recall events that occurred during their infancy and early childhood. Although it is generally assumed that children and adolescents also experience childhood amnesia, with limited exceptions, most empirical research on the phenomenon has focused exclusively on adults. Here, we developed a new Timeline procedure to directly compare the early memories reported by children, adolescents, and adults. Overall, the proportion of memories reported before the age of 3 years was greater for the children and adolescents relative to the adults. In addition, the single earliest memory reported by children and adolescents was at a younger age than that reported by adults. In fact, the earliest memories reported by the children and adolescents, but not the adults, were significantly younger than the traditional 3 (1/2)-year-old boundary of childhood amnesia. Regardless of the age of the rememberer, participants' early memories had the same episodic characteristics. We conclude that the boundary and the density of childhood amnesia may increase over the course of human development and that age-related changes in basic memory mechanisms make an important contribution to our understanding of the source of childhood amnesia.

  13. Epigenetic modification of PKMζ rescues aging-related cognitive impairment.

    PubMed

    Chen, Chen; Meng, Shi-Qiu; Xue, Yan-Xue; Han, Ying; Sun, Cheng-Yu; Deng, Jia-Hui; Chen, Na; Bao, Yan-Ping; Zhang, Fei-Long; Cao, Lin-Lin; Zhu, Wei-Guo; Shi, Jie; Song, Wei-Hong; Lu, Lin

    2016-03-01

    Cognition is impacted by aging. However, the mechanisms that underlie aging-associated cognitive impairment are unclear. Here we showed that cognitive decline in aged rats was associated with changes in DNA methylation of protein kinase Mζ (PKMζ) in the prelimbic cortex (PrL). PKMζ is a crucial molecule involved in the maintenance of long-term memory. Using different behavioral models, we confirmed that aged rats exhibited cognitive impairment in memory retention test 24 h after training, and overexpression of PKMζ in the PrL rescued cognitive impairment in aged rats. After fear conditioning, the protein levels of PKMζ and the membrane expression of GluR2 increased in the PrL in young and adult rats but not in aged rats, and the levels of methylated PKMζ DNA in the PrL decreased in all age groups, whereas the levels of unmethylated PKMζ DNA increased only in young and adult rats. We also found that environmentally enriched housing reversed the hypermethylation of PKMζ and restored cognitive performance in aged rats. Inactivation of PKMζ prevented the potentiating effects of environmental enrichment on memory retention in aged rats. These results indicated that PKMζ might be a potential target for the treatment of aging-related cognitive impairment, suggesting a potential therapeutic avenue.

  14. Age-Related Macular Degeneration: A Scientometric Analysis.

    PubMed

    Ramin, Shahrokh; Soheilian, Masoud; Habibi, Gholamreza; Ghazavi, Roghayeh; Gharebaghi, Reza; Heidary, Fatemeh

    2015-01-01

    Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject. The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993-2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic's structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed. The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research. Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning. PMID:26060829

  15. Age-related impairment of mesenchymal progenitor cell function.

    PubMed

    Stolzing, Alexandra; Scutt, Andrew

    2006-06-01

    In most mesenchymal tissues a subcompartment of multipotent progenitor cells is responsible for the maintenance and repair of the tissue following trauma. With increasing age, the ability of tissues to repair themselves is diminished, which may be due to reduced functional capacity of the progenitor cells. The purpose of this study was to investigate the effect of aging on rat mesenchymal progenitor cells. Mesenchymal progenitor cells were isolated from Wistar rats aged 3, 7, 12 and 56 weeks. Viability, capacity for differentiation and cellular aging were examined. Cells from the oldest group accumulated raised levels of oxidized proteins and lipids and showed decreased levels of antioxidative enzyme activity. This was reflected in decreased fibroblast colony-forming unit (CFU-f) numbers, increased levels of apoptosis and reduced proliferation and potential for differentiation. These data suggest that the reduced ability to maintain mesenchymal tissue homeostasis in aged mammals is not purely due to a decline in progenitor cells numbers but also to a loss of progenitor functionality due to the accumulation of oxidative damage, which may in turn be a causative factor in a number of age-related pathologies such as arthritis, tendinosis and osteoporosis.

  16. Age-Related Macular Degeneration: A Scientometric Analysis.

    PubMed

    Ramin, Shahrokh; Soheilian, Masoud; Habibi, Gholamreza; Ghazavi, Roghayeh; Gharebaghi, Reza; Heidary, Fatemeh

    2015-01-01

    Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject. The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993-2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic's structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed. The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research. Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning.

  17. Nutritional Risk Factors for Age-Related Macular Degeneration

    PubMed Central

    Ersoy, Lebriz; Lechanteur, Yara T.; Hoyng, Carel B.; Kirchhof, Bernd; den Hollander, Anneke I.

    2014-01-01

    Purpose. To evaluate the role of nutritional factors, serum lipids, and lipoproteins in late age-related macular degeneration (late AMD). Methods. Intake of red meat, fruit, fish, vegetables, and alcohol, smoking status, and body mass index (BMI) were ascertained questionnaire-based in 1147 late AMD cases and 1773 controls from the European Genetic Database. Serum levels of lipids and lipoproteins were determined. The relationship between nutritional factors and late AMD was assessed using logistic regression. Based on multivariate analysis, area-under-the-curve (AUC) was calculated by receiver-operating-characteristics (ROC). Results. In a multivariate analysis, besides age and smoking, obesity (odds ratio (OR): 1.44, P = 0.014) and red meat intake (daily: OR: 2.34, P = 8.22 × 10−6; 2–6x/week: OR: 1.67, P = 7.98 × 10−5) were identified as risk factors for developing late AMD. Fruit intake showed a protective effect (daily: OR: 0.52, P = 0.005; 2–6x/week: OR: 0.58, P = 0.035). Serum lipid and lipoprotein levels showed no significant association with late AMD. ROC for nutritional factors, smoking, age, and BMI revealed an AUC of 0.781. Conclusion. Red meat intake and obesity were independently associated with increased risk for late AMD, whereas fruit intake was protective. A better understanding of nutritional risk factors is necessary for the prevention of AMD. PMID:25101280

  18. Breed- and age-related differences in canine mammary tumors.

    PubMed

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-04-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted. PMID:27127342

  19. Oxidative modification of proteins: age-related changes.

    PubMed

    Chakravarti, Bulbul; Chakravarti, Deb N

    2007-01-01

    Aging is a complex biological phenomenon which involves progressive loss of different physiological functions of various tissues of living organisms. It is the inevitable fate of life and is a major risk factor for death and different pathological disorders. Based on a wide variety of studies performed in humans as well as in various animal models and microbial systems, reactive oxygen species (ROS) are believed to play a key role in the aging process. The production of ROS is influenced by cellular metabolic activities as well as environmental factors. ROS can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since, in general, proteins are the key molecules that play the ultimate role in various structural and functional aspects of living organisms, this review will focus on the age-related oxidative modifications of proteins as well as on mechanism for removal or repair of the oxidized proteins. The topics covered include protein oxidation as a marker of oxidative stress, experimental evidence indicating the role of ROS in protein oxidation, protein carbonyl content, enzymatic degradation of oxidized proteins, and effects of caloric restriction on protein oxidation in the context of aging. Finally, we will discuss different strategies which have been or can be undertaken to slow down the oxidative damage of proteins and the aging process.

  20. Endocrine causes of age-related bone loss and osteoporosis.

    PubMed

    Riggs, B Lawrence

    2002-01-01

    Women have an early postmenopausal phase of rapid bone loss that lasts for 5-10 years after menopause, whereas both ageing women and men have a slow continuous phase of bone loss that lasts indefinitely. In women, the rapid phase is mediated mainly by loss of the direct restraining effect of oestrogen on bone cell function, whereas the slow phase is mediated mainly by the loss of oestrogen action on extraskeletal calcium homeostasis leading to net calcium wasting and secondary hyperparathyroidism. Because elderly men have low serum bioavailable oestrogen and testosterone levels, and because recent data suggest that oestrogen is the main sex steroid regulating bone metabolism in men, oestrogen deficiency may also be the principal cause of bone loss in elderly men. Decreased bone formation contributes to bone loss in both genders and may be caused by a decreased production of growth hormone and IGF1 as well as oestrogen and testosterone deficiency. Other changes in endocrine secretion, although present in the elderly, seem less important in the pathophysiology of age-related bone loss and osteoporosis. PMID:11855691