Science.gov

Sample records for age-related metabolic dysfunction

  1. Energy metabolism, proteotoxic stress and age-related dysfunction - protection by carnosine.

    PubMed

    Hipkiss, Alan R

    2011-08-01

    This review will discuss the relationship between energy metabolism, protein dysfunction and the causation and modulation of age-related proteotoxicity and disease. It is proposed that excessive glycolysis, rather than aerobic (mitochondrial) activity, could be causal to proteotoxic stress and age-related pathology, due to the generation of endogenous glycating metabolites: the deleterious role of methylglyoxal (MG) is emphasized. It is suggested that TOR inhibition, exercise, fasting and increased mitochondrial activity suppress formation of MG (and other deleterious low molecular weight carbonyl compounds) which could control onset and progression of proteostatic dysfunction. Possible mechanisms by which the endogenous dipeptide, carnosine, which, by way of its putative aldehyde-scavenging activity, may control age-related proteotoxicity, cellular dysfunction and pathology, including cancer, are also considered. Whether carnosine could be regarded as a rapamycin mimic is briefly discussed.

  2. Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders.

    PubMed

    Bhatti, J S; Kumar, S; Vijayan, M; Bhatti, G K; Reddy, P H

    2017-01-01

    Mitochondria are complex, intercellular organelles present in the cells and are involved in multiple roles including ATP formation, free radicals generation and scavenging, calcium homeostasis, cellular differentiation, and cell death. Many studies depicted the involvement of mitochondrial dysfunction and oxidative damage in aging and pathogenesis of age-related metabolic disorders and neurodegenerative diseases. Remarkable advancements have been made in understanding the structure, function, and physiology of mitochondria in metabolic disorders such as diabetes, obesity, cardiovascular diseases, and stroke. Further, much progress has been done in the improvement of therapeutic strategies, including lifestyle interventions, pharmacological, and mitochondria-targeted therapeutic approaches. These strategies were mainly focused to reduce the mitochondrial dysfunction caused by oxidative stress and to retain the mitochondrial health in various diseases. In this chapter, we have highlighted the involvement of mitochondrial dysfunction in the pathophysiology of various disorders and recent progress in the development of mitochondria-targeted molecules as therapeutic measures for metabolic disorders.

  3. 17α-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization

    PubMed Central

    Stout, Michael B.; Steyn, Frederik J.; Jurczak, Michael J.; Camporez, Joao-Paulo G.; Zhu, Yi; Hawse, John R.; Jurk, Diana; Palmer, Allyson K.; Xu, Ming; Pirtskhalava, Tamar; Evans, Glenda L.; de Souza Santos, Roberta; Frank, Aaron P.; White, Thomas A.; Monroe, David G.; Singh, Ravinder J.; Casaclang-Verzosa, Grace; Miller, Jordan D.; Clegg, Deborah J.; LeBrasseur, Nathan K.; von Zglinicki, Thomas; Shulman, Gerald I.; Tchkonia, Tamara

    2017-01-01

    Aging is associated with visceral adiposity, metabolic disorders, and chronic low-grade inflammation. 17α-estradiol (17α-E2), a naturally occurring enantiomer of 17β-estradiol (17β-E2), extends life span in male mice through unresolved mechanisms. We tested whether 17α-E2 could alleviate age-related metabolic dysfunction and inflammation. 17α-E2 reduced body mass, visceral adiposity, and ectopic lipid deposition without decreasing lean mass. These declines were associated with reductions in energy intake due to the activation of hypothalamic anorexigenic pathways and direct effects of 17α-E2 on nutrient-sensing pathways in visceral adipose tissue. 17α-E2 did not alter energy expenditure or excretion. Fasting glucose, insulin, and glycosylated hemoglobin were also reduced by 17α-E2, and hyperinsulinemic-euglycemic clamps revealed improvements in peripheral glucose disposal and hepatic glucose production. Inflammatory mediators in visceral adipose tissue and the circulation were reduced by 17α-E2. 17α-E2 increased AMPKα and reduced mTOR complex 1 activity in visceral adipose tissue but not in liver or quadriceps muscle, which is in contrast to the generalized systemic effects of caloric restriction. These beneficial phenotypic changes occurred in the absence of feminization or cardiac dysfunction, two commonly observed deleterious effects of exogenous estrogen administration. Thus, 17α-E2 holds potential as a novel therapeutic for alleviating age-related metabolic dysfunction through tissue-specific effects. PMID:26809497

  4. Mitochondrial aging and age-related dysfunction of mitochondria.

    PubMed

    Chistiakov, Dimitry A; Sobenin, Igor A; Revin, Victor V; Orekhov, Alexander N; Bobryshev, Yuri V

    2014-01-01

    Age-related changes in mitochondria are associated with decline in mitochondrial function. With advanced age, mitochondrial DNA volume, integrity and functionality decrease due to accumulation of mutations and oxidative damage induced by reactive oxygen species (ROS). In aged subjects, mitochondria are characterized by impaired function such as lowered oxidative capacity, reduced oxidative phosphorylation, decreased ATP production, significant increase in ROS generation, and diminished antioxidant defense. Mitochondrial biogenesis declines with age due to alterations in mitochondrial dynamics and inhibition of mitophagy, an autophagy process that removes dysfunctional mitochondria. Age-dependent abnormalities in mitochondrial quality control further weaken and impair mitochondrial function. In aged tissues, enhanced mitochondria-mediated apoptosis contributes to an increase in the percentage of apoptotic cells. However, implementation of strategies such as caloric restriction and regular physical training may delay mitochondrial aging and attenuate the age-related phenotype in humans.

  5. Glial dysfunction causes age-related memory impairment in Drosophila.

    PubMed

    Yamazaki, Daisuke; Horiuchi, Junjiro; Ueno, Kohei; Ueno, Taro; Saeki, Shinjiro; Matsuno, Motomi; Naganos, Shintaro; Miyashita, Tomoyuki; Hirano, Yukinori; Nishikawa, Hiroyuki; Taoka, Masato; Yamauchi, Yoshio; Isobe, Toshiaki; Honda, Yoshiko; Kodama, Tohru; Masuda, Tomoko; Saitoe, Minoru

    2014-11-19

    Several aging phenotypes, including age-related memory impairment (AMI), are thought to be caused by cumulative oxidative damage. In Drosophila, age-related impairments in 1 hr memory can be suppressed by reducing activity of protein kinase A (PKA). However, the mechanism for this effect has been unclear. Here we show that decreasing PKA suppresses AMI by reducing activity of pyruvate carboxylase (PC), a glial metabolic enzyme whose amounts increase upon aging. Increased PC activity causes AMI through a mechanism independent of oxidative damage. Instead, increased PC activity is associated with decreases in D-serine, a glia-derived neuromodulator that regulates NMDA receptor activity. D-serine feeding suppresses both AMI and memory impairment caused by glial overexpression of dPC, indicating that an oxidative stress-independent dysregulation of glial modulation of neuronal activity contributes to AMI in Drosophila.

  6. Understanding Age-Related Changes in Skeletal Muscle Metabolism: Differences Between Females and Males.

    PubMed

    Gheller, Brandon J F; Riddle, Emily S; Lem, Melinda R; Thalacker-Mercer, Anna E

    2016-07-17

    Skeletal muscle is the largest metabolic organ system in the human body. As such, metabolic dysfunction occurring in skeletal muscle impacts whole-body nutrient homeostasis. Macronutrient metabolism changes within the skeletal muscle with aging, and these changes are associated in part with age-related skeletal muscle remodeling. Moreover, age-related changes in skeletal muscle metabolism are affected differentially between males and females and are likely driven by changes in sex hormones. Intrinsic and extrinsic factors impact observed age-related changes and sex-related differences in skeletal muscle metabolism. Despite some support for sex-specific differences in skeletal muscle metabolism with aging, more research is necessary to identify underlying differences in mechanisms. Understanding sex-specific aging skeletal muscle will assist with the development of therapies to attenuate adverse metabolic and functional outcomes.

  7. Influence of Age-Related Versus Non-Age-Related Renal Dysfunctionon Survival in Patients with Left Ventricular Dysfunction

    PubMed Central

    Testani, Jeffrey M.; Brisco, Meredith A.; Han, Gang; Laur, Olga; Kula, Alexander J.; Cheng, Susan J.; Tang, W. H. Wilson; Parikh, Chirag R.

    2013-01-01

    Normal aging results in a predictable decline in glomerular filtration rate (GFR) and low GFR is associated with worsened survival. If this survival disadvantage is directly caused by the low GFR, as opposed to the disease causing the low GFR, the risk should be similar regardless of the underlying mechanism. Our objective was to determine if age related declines in estimated GFR (eGFR) carry the same prognostic importance as disease attributable losses in patients with ventricular dysfunction. We analyzed the Studies Of Left Ventricular Dysfunction (SOLVD) limited data set (n=6337). The primary analysis focused on determining if the eGFR mortality relationship differed by the extent the eGFR was consistent with normal ageing. Mean eGFR was 65.7 ± 19.0ml/min/1.73m2. Across the range of age in the population (27 to 80 years), baseline eGFR decreased by 0.67 ml/min/1.73m2 per year (95% CI 0.63 to 0.71). The risk of death associated with eGFR was strongly modified by the degree to which the low eGFR could be explained by aging (p interaction <0.0001). For example, in a model incorporating the interaction, uncorrected eGFR was no longer significantly related to mortality (adjusted HR=1.0 per 10 ml/min/1.73m2, 95% CI 0.97–1.1, p=0.53) whereas a disease attributable decrease in eGFR above the median carried significant risk (adjusted HR=2.8, 95% CI 1.6–4.7, p<0.001). In conclusion, in the setting of LV dysfunction, renal dysfunction attributable to normal aging had a limited risk for mortality, suggesting that the mechanism underlying renal dysfunction is critical in determining prognosis. PMID:24216124

  8. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice.

    PubMed

    Stout, Michael B; Tchkonia, Tamara; Pirtskhalava, Tamar; Palmer, Allyson K; List, Edward O; Berryman, Darlene E; Lubbers, Ellen R; Escande, Carlos; Spong, Adam; Masternak, Michal M; Oberg, Ann L; LeBrasseur, Nathan K; Miller, Richard A; Kopchick, John J; Bartke, Andrzej; Kirkland, James L

    2014-07-01

    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible.

  9. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice

    PubMed Central

    Pirtskhalava, Tamar; Palmer, Allyson K.; List, Edward O.; Berryman, Darlene E.; Lubbers, Ellen R.; Escande, Carlos; Spong, Adam; Masternak, Michal M.; Oberg, Ann L.; LeBrasseur, Nathan K.; Miller, Richard A.; Kopchick, John J.; Bartke, Andrzej; Kirkland, James L.

    2014-01-01

    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible. PMID:25063774

  10. Red ginseng delays age-related hearing and vestibular dysfunction in C57BL/6 mice.

    PubMed

    Tian, Chunjie; Kim, Yeon Ju; Lim, Hye Jin; Kim, Young Sun; Park, Hun Yi; Choung, Yun-Hoon

    2014-09-01

    Since Korean red ginseng (KRG) has been proven to protect against gentamicin-induced vestibular and hearing dysfunction, the effects of KRG on age-related inner ear disorder in C57BL/6 mice were investigated. While age-related hearing loss was detected at the age of 6months (32kHz) and 9months (16kHz) in the control group, it was significantly delayed (p<0.05) in the 150mg/kg KRG-treated group. Vestibular dysfunction was observed in the tail-hanging and swimming tests, with significantly different severity scores and swimming times detected between the control and 150mg/kg KRG-treated group at the age of 12months (p<0.05). Mice treated with 500mg/kg KRG exhibited irritability and aggravated inner ear dysfunction. Histological observation supported the findings of hearing and vestibular function defects. In conclusion, C57BL/6 mice showed early-onset hearing loss and progressive vestibular dysfunction with aging, which were delayed by treatment with 150mg/kg KRG. However, 500mg/kg KRG treatment may induce aggressive behavior.

  11. Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress.

    PubMed

    Gavilán, Elena; Pintado, Cristina; Gavilan, Maria P; Daza, Paula; Sánchez-Aguayo, Inmaculada; Castaño, Angélica; Ruano, Diego

    2015-05-01

    Autophagy plays a key role in the maintenance of cellular homeostasis, and autophagy deregulation gives rise to severe disorders. Many of the signaling pathways regulating autophagy under stress conditions are still poorly understood. Using a model of proteasome stress in rat hippocampus, we have characterized the functional crosstalk between the ubiquitin proteasome system and the autophagy-lysosome pathway, identifying also age-related modifications in the crosstalk between both proteolytic systems. Under proteasome inhibition, both autophagy activation and resolution were efficiently induced in young but not in aged rats, leading to restoration of protein homeostasis only in young pyramidal neurons. Importantly, proteasome stress inhibited glycogen synthase kinase-3β in young but activated in aged rats. This age-related difference could be because of a dysfunction in the signaling pathway of the insulin growth factor-1 under stress situations. Present data highlight the potential role of glycogen synthase kinase-3β in the coordination of both proteolytic systems under stress situation, representing a key molecular target to sort out this deleterious effect.

  12. Absence of ductal hyper-keratinization in Mouse age-related meibomian gland dysfunction (ARMGD)

    PubMed Central

    Parfitt, Geraint J.; Xie, Yilu; Geyfman, Mikhail; Brown, Donald J.; Jester, James V.

    2013-01-01

    Meibomian gland dysfunction (MGD) is frequent with aging and is the primary cause of dry eye disease, the most prevalent ocular complaint. We used a novel 3-D reconstruction technique, immunofluorescent computed tomography (ICT), to characterize meibomian gland keratinization and cell proliferation in a mouse model of age-related meibomian gland dysfunction (ARMGD). To visualize the changes associated with ARMGD, 5-month and 2-year old mouse eyelids were 3-D reconstructed by ICT using antibodies to cytokeratin (CK) 1, 5 and 6 and the proliferation marker Ki67. We quantified total gland, ductal and lipid volume from the reconstructions, observing a dramatic decrease in old glands. In young glands, proliferative ductules suggest a potential site of acinar progenitors that were found to be largely absent in aged, atrophic glands. In the aged mouse, we observed an anterior migration of the mucocutaneous junction (MCJ) and an absence of hyper-keratinization with meibomian gland atrophy. Thus, we propose that changes in the MCJ and glandular atrophy through a loss of meibocyte progenitors are most likely responsible for ARMGD and not ductal hyper-keratinization and gland obstruction. PMID:24259272

  13. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism.

    PubMed

    Park, Seongjoon; Fujishita, Chika; Komatsu, Toshimitsu; Kim, Sang Eun; Chiba, Takuya; Mori, Ryoichi; Shimokawa, Isao

    2014-12-01

    An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.

  14. Age-related differences in experimental stroke: possible involvement of mitochondrial dysfunction and oxidative damage.

    PubMed

    Li, Nanlin; Kong, Xiangwei; Ye, Ruidong; Yang, Qianzi; Han, Junliang; Xiong, Lize

    2011-06-01

    Age is the single most important risk factor for cerebral stroke. Unfortunately, the effect of age on ischemic brain damage is less clear. In this study, we sought to examine the potential influence of aging on the histologic and functional outcomes after ischemia. Juvenile (4 weeks of age), young adult (4 months of age), mid-aged (11-12 months of age), and aged (18-19 months of age) mice were subjected to transient middle cerebral artery occlusion. There was no remarkable difference of infarct volume on postoperative days 1 and 3. However, on postoperative day 7, aged mice exhibited significantly worsened infarct volume compared with juvenile and young mice. Intriguingly, the increase of infarct volume was most prominent in the striatal area rather than in cortex. Accordingly, aged mice displayed a slower and incomplete functional recovery after stroke. We further evaluated the effects of aging on the oxidative damage and mitochondrial dysfunction following ischemia. Brain tissues were assayed for lipid, DNA, and protein peroxidation products, mitochondrial enzyme activities, mitochondrial membrane potential, production of reactive oxygen species, and antioxidant activities. Aging was associated with declined mitochondrial function and antioxidant detoxification following ischemia, thereby inducing a deteriorated oxidative damage. Regional subanalyses demonstrated that, in accordance with infarct area, the pro-oxidant/antioxidant imbalance occurred more prominently in subcortical areas. Collectively, these findings suggest mitochondria-mediated oxidative damage may be involved in the age-related aggravated injury in subcortical areas. Mitochondrial protection could be a promising target for neuroprotective therapy, especially in the aged population.

  15. Amla (Emblica officinalis Gaertn.) attenuates age-related renal dysfunction by oxidative stress.

    PubMed

    Yokozawa, Takako; Kim, Hyun Young; Kim, Hyun Ju; Tanaka, Takashi; Sugino, Hidetoshi; Okubo, Tsutomu; Chu, Djong-Chi; Juneja, Lekh Raj

    2007-09-19

    To investigate the effects of amla on renal dysfunction involved in oxidative stress during the aging process, we employed young (2 months old) and aged (13 months old) male rats and administered SunAmla (Taiyo Kagaku Co., Ltd., Japan) or an ethyl acetate (EtOAc) extract of amla, a polyphenol-rich fraction, at a dose of 40 or 10 mg/kg body weight/day for 100 days. The administration of SunAmla or EtOAc extract of amla reduced the elevated levels of serum creatinine and urea nitrogen in the aged rats. In addition, the tail arterial blood pressure was markedly elevated in aged control rats as compared with young rats, while the systolic blood pressure was significantly decreased by the administration of SunAmla or EtOAc extract of amla. Furthermore, the oral administration of SunAmla or EtOAc extract of amla significantly reduced thiobarbituric acid-reactive substance levels of serum, renal homogenate, and mitochondria in aged rats, suggesting that amla would ameliorate oxidative stress under aging. The increases of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression in the aorta of aging rats were also significantly suppressed by SunAmla extract or EtOAc extract of amla, respectively. Moreover, the elevated expression level of bax, a proapoptotic protein, was significantly decreased after oral administration of SunAmla or EtOAc extract of amla. However, the level of bcl-2, an antiapoptotic protein, did not show any difference among the groups. The expressions of renal nuclear factor-kappaB (NF-kappaB), inhibitory kappaB in cytoplasm, iNOS, and COX-2 protein levels were also increased with aging. However, SunAmla or EtOAc extract of amla reduced the iNOS and COX-2 expression levels by inhibiting NF-kappaB activation in the aged rats. These results indicate that amla would be a very useful antioxidant for the prevention of age-related renal disease.

  16. Hypothalamic ΔFosB prevents age-related metabolic decline and functions via SNS

    PubMed Central

    Nagano, Kenichi; Rowe, Glenn C.; Gori, Francesca; Baron, Roland

    2017-01-01

    The ventral hypothalamus (VHT) integrates several physiological cues to maintain glucose homeostasis and energy balance. Aging is associated with increased glucose intolerance but the underlying mechanisms responsible for age-related metabolic decline, including neuronal signaling in the VHT, remain elusive. We have shown that mice with VHT-targeted overexpression of ΔFosB, a splice variant of the AP1 transcription factor FosB, exhibit increased energy expenditure, leading to decreased adiposity. Here, we show that VHT-targeted overexpression of ΔFosB also improves glucose tolerance, increases insulin sensitivity in target organs and thereby suppresses insulin secretion. These effects are also observed by the overexpression of dominant negative JunD, demonstrating that they occur via AP1 antagonism within the VHT. Furthermore, the improved glucose tolerance and insulin sensitivity persisted in aged animals overexpressing ΔFosB in the VHT. These beneficial effects on glucose metabolism were abolished by peripheral sympathectomy and α-adrenergic, but not β-adrenergic, blockade. Taken together, our results show that antagonizing AP1 transcription activity in the VHT leads to a marked improvement in whole body glucose homeostasis via activation of the SNS, conferring protection against age-related impairment in glucose metabolism. These findings may open novel avenues for therapeutic intervention in diabetes and age-related glucose intolerance. PMID:28121620

  17. Raspberry supplementation alleviates age-related motor dysfunction in select populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related declines in balance, muscle strength and coordination often lead to a higher incidence of falling. Among older adults, falls are the leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demons...

  18. Calcium dysregulation and neuroinflammation: Discrete and integrated mechanisms for age-related synaptic dysfunction

    PubMed Central

    Sama, Diana M.; Norris, Christopher M.

    2013-01-01

    Some of the best biomarkers of age-related cognitive decline are closely linked to synaptic function and plasticity. This review highlights several age-related synaptic alterations as they relate to Ca2+ dyshomeostasis, through elevation of intracellular Ca2+, and neuroinflammation, through production of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Though distinct in many ways, Ca2+ and neuroinflammatory signaling mechanisms exhibit extensive cross-talk and bidirectional interactions. For instance, cytokine production in glial cells is strongly dependent on the Ca2+ dependent protein phosphatase calcineurin, which shows elevated activity in animal models of aging and disease. In turn, pro-inflammatory cytokines, such as TNF, can augment the expression/activity of L-type voltage sensitive Ca2+ channels in neurons, leading to Ca2+ dysregulation, hyperactive calcineurin activity, and synaptic depression. Thus, in addition to discussing unique contributions of Ca2+ dyshomeostasis and neuroinflammation, this review emphasizes how these processes interact to hasten age-related synaptic changes. PMID:23751484

  19. Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease.

    PubMed

    Nicholls, David G

    2002-11-01

    Mitochondria plays a complex multi-factorial role in the cell. In addition to their primary role in ATP generation, the organelles sequester calcium and both generate and detoxify reactive oxygen species. All these functions are intimately inter-linked through the central bioenergetic parameter of the proton electrochemical gradient across the inner mitochondrial membrane. Subtle changes in respiratory chain capacity, substrate supply, glutathione levels, cytoplasmic calcium and membrane potential occur in aging and in conditions predisposing towards neurodegenerative disease. These interactions are incompletely understood and in this review I present an overview of some of the current research in this area, and its possible relevance to aging and aging-related disease.

  20. Age-related changes in metabolic properties of equine skeletal muscle associated with muscle plasticity.

    PubMed

    Kim, Jeong-su; Hinchcliff, Kenneth W; Yamaguchi, Mamoru; Beard, Laurie A; Markert, Chad D; Devor, Steven T

    2005-05-01

    The purpose of the present study was to determine the age-related changes in myosin heavy chain (MHC) composition and muscle oxidative and glycolytic capacity in 18 horses ranging in age from two to 30 years. Muscle samples were collected by excisional biopsy of the semimebranosus muscle. MHC expression and the key enzymatic activities were measured. There was no significant correlation between horse age and the proportions of type-IIA and type-IIX MHC isoforms. The percentage of type-I MHC isoforms decreased with advancing age. Muscle citrate synthase activity decreased, whereas lactate dehydrogenase activity increased with increasing age. Muscle 3-OH acyl CoA dehydrogenase activity did not change with ageing. The results suggest that, similar to humans, the oxidative capacity of equine skeletal muscle decreases with age. The age-related changes in muscle metabolic properties appear to be consistent with an age-related transition in MHC isoforms of equine skeletal muscle that shifts toward more glycolytic isoforms with age.

  1. Prefrontal cortical GABAergic dysfunction contributes to age-related working memory impairment.

    PubMed

    Bañuelos, Cristina; Beas, B Sofia; McQuail, Joseph A; Gilbert, Ryan J; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L

    2014-03-05

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions.

  2. Prefrontal Cortical GABAergic Dysfunction Contributes to Age-Related Working Memory Impairment

    PubMed Central

    Bañuelos, Cristina; Beas, B. Sofia; McQuail, Joseph A.; Gilbert, Ryan J.; Frazier, Charles J.; Setlow, Barry

    2014-01-01

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions. PMID:24599447

  3. Age-Related Impairments in Object-Place Associations Are Not Due to Hippocampal Dysfunction

    PubMed Central

    Hernandez, Abigail R.; Maurer, Andrew P.; Reasor, Jordan E.; Turner, Sean M.; Barthle, Sarah E.; Johnson, Sarah A.; Burke, Sara N.

    2016-01-01

    Age-associated cognitive decline can reduce an individual’s quality of life. As no single neurobiological deficit can account for the wide spectrum of behavioral impairments observed in old age, it is critical to develop an understanding of how interactions between different brain regions change over the life span. The performance of young and aged animals on behaviors that require the hippocampus and cortical regions to interact, however, has not been well characterized. Specifically, the ability to link a spatial location with specific features of a stimulus, such as object identity, relies on the hippocampus, perirhinal and prefrontal cortices. Although aging is associated with dysfunction in each of these brain regions, behavioral measures of functional change within the hippocampus, perirhinal and prefrontal cortices in individual animals are often not correlated. Thus, how dysfunction of a single brain region within this circuit, such as the hippocampus, impacts behaviors that require communication with the perirhinal and prefrontal cortices remains unknown. To address this question, young and aged rats were tested on the interregion dependent object-place paired association task, as well as a hippocampal-dependent test of spatial reference memory. This particular cohort of aged rats did not show deficits on the hippocampal-dependent task, but were significantly impaired at acquiring object-place associations relative to young. These data suggest that behaviors requiring functional connectivity across different regions of the memory network may be particularly sensitive to aging, and can be used to develop models that will clarify the impact of systems-level dysfunction in the elderly. PMID:26413723

  4. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle

    PubMed Central

    Tsai, Sheng-Feng; Chen, Pei-Chun; Calkins, Marcus J.; Wu, Shih-Ying; Kuo, Yu-Min

    2016-01-01

    Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas. PMID:27047373

  5. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells

    PubMed Central

    Coursey, Terry G.; Bian, Fang; Zaheer, Mahira; Pflugfelder, Stephen C.; Volpe, Eugene A.; de Paiva, Cintia S.

    2016-01-01

    In both humans and animal models the development of Sjögren syndrome (SS) and non-SS keratoconjunctivitis sicca (KCS) increases with age. Here, we investigated the ocular surface and lacrimal gland phenotype of NOD.B10.H2b mice at 7–14, 45–50, and 96–100 weeks. Aged mice develop increased corneal permeability, CD4+ T cell infiltration and conjunctival goblet cell loss. Aged mice have lacrimal gland (LG) atrophy with increased lymphocyte infiltration and inflammatory cytokine levels. An increase in the frequency of CD4+Foxp3+ Tregs cells was observed with age in the cervical lymph node (CLN), spleen and LG. These CD4+CD25+ lose suppressive ability, while maintaining expression of Foxp3 and producing IL-17 and IFN-γ. An increase Foxp3+IL-17+ or Foxp3+IFN-γ+ was observed in the LG and LG-draining CLN. In adoptive transfer experiments, recipients of either purified Tregs or purified T effector cells from aged donors developed lacrimal keratoconjunctivitis, while recipients of young Tregs or young T effector cells failed to develop disease. Overall, these results suggest inflammatory cytokine-producing CD4+Foxp3+ cells participate in the pathogenesis of age-related ocular surface disease. PMID:27706128

  6. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction

    PubMed Central

    Mikhed, Yuliya; Daiber, Andreas; Steven, Sebastian

    2015-01-01

    The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan. PMID:26184181

  7. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease.

    PubMed

    Gu, Xue-Mei; Huang, Han-Chang; Jiang, Zhao-Feng

    2012-10-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.

  8. Metabolic risk factors, coping with stress, and psychological well-being in patients with age-related macular degeneration.

    PubMed

    Cavar, Ivan; Lovrić, Sanjin; Vukojević, Mladenka; Sesar, Irena; Petric-Vicković, Ivanka; Sesar, Antonio

    2014-03-01

    The aim of this study was to determine the relationship between the risk factors (age, obesity, hypertension, hyperlipidemia, smoking, consumption of alchohol and drugs, positive family history, and exposure to sunlight), coping with stress, psychological well-being and age-related macular degeneration (ARMD). Forty patients with ARMD (case group) and 63 presbyopes (control group) participated in the study. Patient data were collected through general information questionnaire including patient habits, the COPE questionnaire that showed the way the patients handling stress, and the GHQ that analyzed the psychological aspects of their quality of life. These questionnaires were administered to the patients during ophthalmologic examination. The study involved 46 (44.66%) men and 57 (55.33%) women. Statistical analysis showed that the major risks for the development of ARMD were elevated cholesterol, triglycerides and LDL cholesterol in plasma. A significantly higher number ofARMD patients had a positive family history when compared with presbyopes. This study showed presbyopes to cope with emotional problems significantly better and to have a lower level of social dysfunction when compared with ARMD patients. However, it is necessary to conduct further studies in a large number of patients to determine more accurately the pathophysiological mechanisms of metabolic factors as well as the impact of the disease on the quality of life in patients with ARMD.

  9. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report.

    PubMed

    Correa-de-Araujo, Rosaly; Harris-Love, Michael O; Miljkovic, Iva; Fragala, Maren S; Anthony, Brian W; Manini, Todd M

    2017-01-01

    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and

  10. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report

    PubMed Central

    Correa-de-Araujo, Rosaly; Harris-Love, Michael O.; Miljkovic, Iva; Fragala, Maren S.; Anthony, Brian W.; Manini, Todd M.

    2017-01-01

    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and

  11. Telomere dysfunction induces metabolic and mitochondrial compromise

    PubMed Central

    Sahin, Ergün; Colla, Simona; Liesa, Marc; Moslehi, Javid; Müller, Florian L.; Guo, Mira; Cooper, Marcus; Kotton, Darrell; Fabian, Attila J.; Walkey, Carl; Maser, Richard S.; Tonon, Giovanni; Foerster, Friedrich; Xiong, Robert; Wang, Y. Alan; Shukla, Sachet A.; Jaskelioff, Mariela; Martin, Eric S.; Heffernan, Timothy P.; Protopopov, Alexei; Ivanova, Elena; Mahoney, John E.; Kost-Alimova, Maria; Perry, Samuel R.; Bronson, Roderick; Liao, Ronglih; Mulligan, Richard; Shirihai, Orian S.; Chin, Lynda; DePinho, Ronald A.

    2013-01-01

    Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere–p53–PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction. PMID:21307849

  12. Age-Related Alterations in the Metabolic Profile in the Hippocampus of the Senescence-Accelerated Mouse Prone 8: A Spontaneous Alzheimer's Disease Mouse Model

    PubMed Central

    Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei

    2015-01-01

    Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365

  13. Mitochondrial Dysfunction in Metabolic Syndrome and Asthma

    PubMed Central

    Mabalirajan, Ulaganathan; Ghosh, Balaram

    2013-01-01

    Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma. PMID:23840225

  14. Dietary hyperglycemia, glycemic index and age-related metabolic retinal diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glycemic index (GI) indicates how fast blood glucose is raised after consuming a carbohydrate-containing food. Human metabolic studies indicate that GI is related to patho-physiological responses after meals. Compared with a low-GI meal, a high-GI meal is characterized with hyperglycemia during ...

  15. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation.

    PubMed

    Kodali, Maheedhar; Parihar, Vipan K; Hattiangady, Bharathi; Mishra, Vikas; Shuai, Bing; Shetty, Ashok K

    2015-01-28

    Greatly waned neurogenesis, diminished microvasculature, astrocyte hypertrophy and activated microglia are among the most conspicuous structural changes in the aged hippocampus. Because these alterations can contribute to age-related memory and mood impairments, strategies efficacious for mitigating these changes may preserve cognitive and mood function in old age. Resveratrol, a phytoalexin found in the skin of red grapes having angiogenic and antiinflammatory properties, appears ideal for easing these age-related changes. Hence, we examined the efficacy of resveratrol for counteracting age-related memory and mood impairments and the associated detrimental changes in the hippocampus. Two groups of male F344 rats in late middle-age having similar learning and memory abilities were chosen and treated with resveratrol or vehicle for four weeks. Analyses at ~25 months of age uncovered improved learning, memory and mood function in resveratrol-treated animals but impairments in vehicle-treated animals. Resveratrol-treated animals also displayed increased net neurogenesis and microvasculature, and diminished astrocyte hypertrophy and microglial activation in the hippocampus. These results provide novel evidence that resveratrol treatment in late middle age is efficacious for improving memory and mood function in old age. Modulation of the hippocampus plasticity and suppression of chronic low-level inflammation appear to underlie the functional benefits mediated by resveratrol.

  16. Towards finding the linkage between metabolic and age-related disorders using semantic gene data network analysis

    PubMed Central

    Uzzal Hossain, Mohammad; Zaffar Shibly, Abu; Md. Omar, Taimur; Tous Zohora, Fatama; Sara Santona, Umme; Hossain, Md. Jakir; Hosen Khoka, Md. Sadek; Ara Keya, Chaman; Salimullah, Md.

    2016-01-01

    A metabolic disorder (MD) occurs when the metabolic process is disturbed. This process is carried out by thousands of enzymes participating in numerous inter-dependent metabolic pathways. Critical biochemical reactions that involve the processing and transportation of carbohydrates, proteins and lipids are affected in metabolic diseases. Therefore, it is of interest to identify the common pathways of metabolic disorders by building protein-protein interactions (PPI) for network analysis. The molecular network linkages between MD and age related diseases (ARD) are intriguing. Hence, we created networks of protein-protein interactions that are related with MD and ARD using relevant known data in the public domain. The network analysis identified known MD associated proteins and predicted genes and or its products of ARD in common pathways. The genes in the common pathways were isolated from the network and further analyzed for their co-localization and shared domains. Thus, a model hypothesis is proposed using interaction networks that are linked between MD and ARD. This data even if less conclusive finds application in understanding the molecular mechanism of known diseases in relation to observed molecular events PMID:27212841

  17. Aging-Related Correlation between Serum Sirtuin 1 Activities and Basal Metabolic Rate in Women, but not in Men

    PubMed Central

    2017-01-01

    Sirtuin (SIRT) is a main regulator of metabolism and lifespan, and its importance has been implicated in the prevention against aging-related diseases. The purpose of this study was to identify the pattern of serum SIRT1 activity according to age and sex, and to investigate how serum SIRT1 activity is correlated with other metabolic parameters in Korean adults. The Biobank of Jeju National University Hospital, a member of the Korea Biobank Network, provided serum samples from 250 healthy adults. Aging- and metabolism-related factors were analyzed in serum, and the data were compared by the stratification of age and sex. Basal metabolic rate (BMR) decreased with age and was significantly lower in men in their fifties and older and in women in their forties and older compared with twenties in men and women, respectively. SIRT1 activities were altered by age and sex. Especially, women in their thirties showed the highest SIRT1 activities. Correlation analysis displayed that SIRT1 activity is positively correlated with serum triglyceride (TG) in men, and with waist circumference, systolic blood pressure, diastolic blood pressure, and serum TG in women. And, SIRT1 activity was negatively correlated with aspartate aminotransferase/alanine aminotransferase ratio in women (r = −0.183, p = 0.039). Positive correlation was observed between SIRT1 activity and BMR in women (r = 0.222, p = 0.027), but not in men. Taken together, these findings suggest the possibility that serum SIRT1 activities may be utilized as a biomarker of aging. In addition, positive correlation between SIRT1 activity and BMR in women suggests that serum SIRT1 activity may reflect energy expenditure well in human. PMID:28168178

  18. Medical management of metabolic dysfunction in PCOS.

    PubMed

    Duleba, Antoni J

    2012-03-10

    Polycystic ovary syndrome (PCOS) is associated with metabolic derangements including insulin resistance, dyslipidemia, systemic inflammation and endothelial dysfunction. There is a growing need to develop pharmacologic interventions to improve metabolic function in women with PCOS. Medications that have been tested in patients with PCOS include metformin, thiazolidinediones, acarbose, naltrexone, orlistat, vitamin D and statins. Metformin decreases hepatic gluconeogenesis and free fatty acid oxidation while increasing peripheral glucose uptake. Early studies in PCOS suggested that metformin indirectly reduces insulin level, dyslipidemia and systemic inflammation; however, recent placebo-controlled trials failed to demonstrate significant metabolic benefit. Thiazolidinediones act primarily by increasing peripheral glucose uptake. Most studies in PCOS have demonstrated that thiazolidinediones reduce insulin resistance; however, effects on dyslipidemia were disappointing. Use of thiazolidinediones is associated with weight gain and major complications. Acarbose reduces digestion of polysaccharides. Studies in PCOS yielded inconsistent effects of acarbose on insulin sensitivity and no significant improvement of dyslipidemia. Naltrexone reduces appetite and modulates insulin release; its use in PCOS may reduce hyperinsulinemia. Orlistat decreases absorption of dietary fats; studies in PCOS suggest beneficial effects on insulin sensitivity. Vitamin D may improve insulin sensitivity but mixed results on lipid profile in PCOS have been reported. Statins are competitive inhibitors of the key enzyme regulating the mevalonate pathway; their effects are related to reduced cholesterol production as well as anti-inflammatory and anti-oxidant properties. In women with PCOS, statins reduce hyperandrogenism, improve lipid profile and reduce systemic inflammation while the effects on insulin sensitivity are variable. Use of statins is contraindicated in pregnancy.

  19. S-allyl cysteine ameliorates the quality of sperm and provides protection from age-related sperm dysfunction and oxidative stress in rats

    PubMed Central

    Takemura, Shigekazu; Ichikawa, Hiroshi; Naito, Yuji; Takagi, Tomohisa; Yoshikawa, Toshikazu; Minamiyama, Yukiko

    2014-01-01

    Reactive oxygen species play a central role in the pathophysiology of the age-related decrease in male fertility. It has been reported that the total protein of DJ-1 was decreased in a proteomic analysis of seminal plasma from asthenozoospermia patients and a DJ-1 protein acts as a sensor of cellular redox homeostasis. Therefore, we evaluated the age-related changes in the ratio of the oxidized/reduced forms of the DJ-1 protein in the epididymis. In addition, the protective effects of S-allyl cysteine (SAC), a potent antioxidant, were evaluated against sperm dysfunction. Male rats aged 15–75 weeks were used to assess age-associated sperm function and oxidative stress. Sperm count increased until 25 weeks, but then decreased at 50 and 75 weeks. The rate of sperm movement at 75 weeks was decreased to approximately 60% of the rate observed at 25 weeks. Expression of DJ-1 decreased, but oxidized-DJ-1 increased with age. In addition, 4-hydroxy-2-nonenal modified proteins in the epididymis increased until 50 weeks of age. The total number and DNA synthetic potential of the sperm increased until 25 weeks, and then decreased. In rats 75 weeks of age, SAC (0.45% diet) attenuated the decrease in the number, motility, and DNA synthesis of sperm and inhibited the oxidized proteins. These results suggest that SAC ameliorates the quality of sperm subjected to age-associated oxidative stress. PMID:25411519

  20. Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology

    PubMed Central

    Hu, Peng; Herrmann, Rolf; Bednar, Amanda; Saloupis, Peter; Dwyer, Mary A.; Yang, Ping; Qi, Xiaoping; Thomas, Russell S.; Jaffe, Glenn J.; Boulton, Michael E.; McDonnell, Donald P.; Malek, Goldis

    2013-01-01

    The aryl hydrocarbon receptor (AhR) is a nuclear receptor that regulates xenobiotic metabolism and detoxification. Herein, we report a previously undescribed role for the AhR signaling pathway as an essential defense mechanism in the pathogenesis of early dry age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. We found that AhR activity and protein levels in human retinal pigment epithelial (RPE) cells, cells vulnerable in AMD, decrease with age. This finding is significant given that age is the most established risk factor for development of AMD. Moreover, AhR−/− mice exhibit decreased visual function and develop dry AMD-like pathology, including disrupted RPE cell tight junctions, accumulation of RPE cell lipofuscin, basal laminar and linear-like deposit material, Bruch’s membrane thickening, and progressive RPE and choroidal atrophy. High-serum low-density lipoprotein levels were also observed in AhR−/− mice. In its oxidized form, this lipoprotein can stimulate increased secretion of extracellular matrix molecules commonly found in deposits from RPE cells, in an AhR-dependent manner. This study demonstrates the importance of cellular clearance via the AhR signaling pathway in dry AMD pathogenesis, implicating AhR as a potential target, and the mouse model as a useful platform for validating future therapies. PMID:24106308

  1. Common cell biologic and biochemical changes in aging and age-related diseases of the eye: Toward new therapeutic approaches to age-related ocular diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reviews of information about age related macular degeneration (AMD), cataract, and glaucoma make it apparent that while each eye tissue has its own characteristic metabolism, structure and function, there are common perturbations to homeostasis that are associated with age-related dysfunction. The c...

  2. Dietary nitrate improves age-related hypertension and metabolic abnormalities in rats via modulation of angiotensin II receptor signaling and inhibition of superoxide generation.

    PubMed

    Hezel, Michael; Peleli, Maria; Liu, Ming; Zollbrecht, Christa; Jensen, Boye L; Checa, Antonio; Giulietti, Alessia; Wheelock, Craig E; Lundberg, Jon O; Weitzberg, Eddie; Carlström, Mattias

    2016-10-01

    Advanced age is associated with increased risk for cardiovascular disease and type 2 diabetes. A proposed central event is diminished amounts of nitric oxide (NO) due to reduced generation by endothelial NO synthase (eNOS) and increased oxidative stress. In addition, it is widely accepted that increased angiotensin II (ANG II) signaling is also implicated in the pathogenesis of endothelial dysfunction and hypertension by accelerating formation of reactive oxygen species. This study was designed to test the hypothesis that dietary nitrate supplementation could reduce blood pressure and improve glucose tolerance in aged rats, via attenuation of NADPH oxidase activity and ANG II receptor signaling. Dietary nitrate supplementation for two weeks reduced blood pressure (10-15mmHg) and improved glucose clearance in old, but not in young rats. These favorable effects were associated with increased insulin responses, reduced plasma creatinine as well as improved endothelial relaxation to acetylcholine and attenuated contractility to ANG II in resistance arteries. Mechanistically, nitrate reduced NADPH oxidase-mediated oxidative stress in the cardiovascular system and increased cGMP signaling. Finally, nitrate treatment in aged rats normalized the gene expression profile of ANG II receptors (AT1A, AT2, AT1A/AT2 ratio) in the renal and cardiovascular systems without altering plasma levels of renin or ANG II. Our results show that boosting the nitrate-nitrite-NO pathway can partly compensate for age-related disturbances in endogenous NO generation via inhibition of NADPH oxidase and modulation of ANG II receptor expression. These novel findings may have implications for nutrition-based preventive and therapeutic strategies against cardiovascular and metabolic diseases.

  3. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies.

    PubMed

    Bhatti, Jasvinder Singh; Bhatti, Gurjit Kaur; Reddy, P Hemachandra

    2016-11-09

    Mitochondria are the powerhouses of the cell and are involved in essential functions of the cell, including ATP production, intracellular Ca(2+) regulation, reactive oxygen species production & scavenging, regulation of apoptotic cell death and activation of the caspase family of proteases. Mitochondrial dysfunction and oxidative stress are largely involved in aging, cancer, age-related neurodegenerative and metabolic syndrome. In the last decade, tremendous progress has been made in understanding mitochondrial structure, function and their physiology in metabolic syndromes such as diabetes, obesity, stroke and hypertension, and heart disease. Further, progress has also been made in developing therapeutic strategies, including lifestyle interventions (healthy diet and regular exercise), pharmacological strategies and mitochondria-targeted approaches. These strategies were mainly focused to reduce mitochondrial dysfunction and oxidative stress and to maintain mitochondrial quality in metabolic syndromes. The purpose of our article is to highlight the recent progress on the mitochondrial role in metabolic syndromes and also summarize the progress of mitochondria-targeted molecules as therapeutic targets to treat metabolic syndromes. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.

  4. Perturbed Energy Metabolism and Neuronal Circuit Dysfunction in Cognitive Impairment

    PubMed Central

    Kapogiannis, Dimitrios; Mattson, Mark P.

    2010-01-01

    Summary Epidemiological, neuropathological and functional neuroimaging evidence implicates global and regional derangements in brain metabolism and energetics in the pathogenesis of cognitive impairment. Nerve cell microcircuits are modified adaptively by excitatory and inhibitory synaptic activity and neurotrophic factors. Aging and Alzheimer’s disease (AD) cause perturbations in cellular energy metabolism, level of excitation/inhibition and neurotrophic factor release that overwhelm compensatory mechanisms and result in neuronal microcircuit and brain network dysfunction. A prolonged positive energy balance impairs the ability of neurons to respond adaptively to oxidative and metabolic stress. Experimental studies in animals demonstrate how derangements related to chronic positive energy balance, such as diabetes, set the stage for accelerated cognitive aging and AD. Therapeutic interventions to allay cognitive dysfunction that target energy metabolism and adaptive stress responses (such as neurotrophin signaling) have shown efficacy in animal models and preliminary studies in humans. PMID:21147038

  5. Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging.

    PubMed

    Brink, Thore C; Demetrius, Lloyd; Lehrach, Hans; Adjaye, James

    2009-10-01

    Individual differences in the rate of aging are determined by the efficiency with which an organism transforms resources into metabolic energy thus maintaining the homeostatic condition of its cells and tissues. This observation has been integrated with analytical studies of the metabolic process to derive the following principle: The metabolic stability of regulatory networks, that is the ability of cells to maintain stable concentrations of reactive oxygen species (ROS) and other critical metabolites is the prime determinant of life span. The metabolic stability of a regulatory network is determined by the diversity of the metabolic pathways or the degree of connectivity of genes in the network. These properties can be empirically evaluated in terms of transcriptional changes in gene expression. We use microarrays to investigate the age-dependence of transcriptional changes of genes in the insulin signaling, oxidative phosphorylation and glutathione metabolism pathways in mice. Our studies delineate age and tissue specific patterns of transcriptional changes which are consistent with the metabolic stability-longevity principle. This study, in addition, rejects the free radical hypothesis which postulates that the production rate of ROS, and not its stability, determines life span.

  6. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction

    PubMed Central

    Stoeckel, Luke E.; Arvanitakis, Zoe; Gandy, Sam; Small, Dana; Kahn, C. Ronald; Pascual-Leone, Alvaro; Pawlyk, Aaron; Sherwin, Robert; Smith, Philip

    2016-01-01

    Scientific evidence has established several links between metabolic and neurocognitive dysfunction, and epidemiologic evidence has revealed an increased risk of Alzheimer’s disease and vascular dementia in patients with diabetes. In July 2015, the National Institute of Diabetes, Digestive, and Kidney Diseases gathered experts from multiple clinical and scientific disciplines, in a workshop entitled “The Intersection of Metabolic and Neurocognitive Dysfunction”, to clarify the state-of-the-science on the mechanisms linking metabolic dysfunction, and insulin resistance and diabetes in particular, to neurocognitive impairment and dementia. This perspective is intended to serve as a summary of the opinions expressed at this meeting, which focused on identifying gaps and opportunities to advance research in this emerging area with important public health relevance. PMID:27303627

  7. Age-Related Changes in Gustatory, Homeostatic, Reward, and Memory Processing of Sweet Taste in the Metabolic Syndrome: An fMRI Study.

    PubMed

    Jacobson, Aaron; Green, Erin; Haase, Lori; Szajer, Jacquelyn; Murphy, Claire

    2017-01-01

    Age affects the human taste system at peripheral and central levels. Metabolic syndrome is a constellation of risk factors (e.g., abdominal obesity and hypertension) that co-occur, increase with age, and heighten risk for cardiovascular disease, diabetes, and cognitive decline. Little is known about how age, metabolic syndrome, and hunger state interact to influence how the brain processes information about taste. We investigated brain activation during the hedonic evaluation of a pleasant, nutritive stimulus (sucrose) within regions critical for taste, homeostatic energy regulation, and reward, as a function of the interactions among age, metabolic syndrome, and hunger condition. We scanned young and elderly adults, half with risk factors associated with metabolic syndrome twice: Once fasted overnight and once after a preload. Functional magnetic resonance imaging data indicated significant effects of age as well as interactive effects with metabolic syndrome and hunger condition. Age-related differences in activation were dependent on the hunger state in regions critical for homoeostatic energy regulation and basic as well as higher order sensory processing and integration. The effects of age and metabolic syndrome on activation in the insula, orbital frontal cortex, caudate, and the hypothalamus may have particularly important implications for taste processing, energy regulation, and dietary choices.

  8. Interventions for the metabolic dysfunction in polycystic ovary syndrome.

    PubMed

    Bozdag, Gurkan; Yildiz, Bulent O

    2013-08-01

    Polycystic ovary syndrome (PCOS) is associated with metabolic disturbances including obesity, insulin resistance, diabetes and dyslipidemia. Cardiometabolic risk should be assessed at regular intervals starting from diagnosis. A comprehensive clinical evaluation includes determination of body mass index, waist circumference, blood pressure and measurement of serum lipid and glucose levels in all women with PCOS. A standard 2-h 75g oral glucose tolerance test is required for women with a body mass index over 25kg/m(2) and with other risk factors for glucose intolerance. No long-term data are available for the risk or benefit of any medical intervention for metabolic dysfunction of PCOS. For the initial management of metabolic dysfunction in PCOS, available guidelines recommend lifestyle intervention which improves androgen excess and insulin resistance without significant effect on glucose intolerance or dyslipidemia. Pharmacological interventions include insulin sensitizing agents and statins. Metformin is the most commonly prescribed insulin sensitizer in PCOS. Available randomized controlled trials suggest that metformin improves insulin resistance without any effect on body mass index, fasting glucose or lipid levels. Short term use of statins alone or in combination with metformin decreases total cholesterol, low-density lipoprotein-cholesterol and triglycerides in PCOS patients with dyslipidemia. Low dose oral contraception in PCOS appears not to be associated with clinically significant metabolic dysfunction.

  9. The relationship of metabolic syndrome and body composition in children with premature adrenarche: is it age related?

    PubMed Central

    Williams, Kristen M; Oberfield, Sharon E; Zhang, Chengchen; McMahon, Donald J; Sopher, Aviva B

    2015-01-01

    Background Studies that evaluate both body composition and metabolic syndrome (MeS) risk in prepubertal children with premature adrenarche (PA) are limited. Methods Fifty-eight prepubertal children (5-9 years, 33F and 25M), with PA(n=30) and controls (n=28) were evaluated for the presence of MeS as defined by age-modified NCEP ATP III criteria. A subset had dual-energy x-ray absorptiometry and bone markers (n=23/58) to evaluate the effect of hyperandrogenism on metabolic abnormalities and body composition. Results There was no difference in prevalence of MeS between PA and controls(p=0.138). Children with MeS were obese with increased WC and decreased HDL levels. Androgens were not associated with having more than one criteria for MeS (p=0.08), but were associated with triglycerides and WC (p=0.029, p=0.041). Lean mass was greater in PA (p=0.039) and androgens correlated with BMD(p=0.029) and total body fat(p=0.008). Subjects with higher percent body fat were more likely to have more than one MeS risk factor(p=0.005). Conclusions MeS was seen only in obese subjects whether or not they had PA. Thus, it appears that obesity drives metabolic risk in the prepubertal population, rather than PA. Our findings are important in determining how the prepubertal patient with PA should be evaluated for metabolic risk. PMID:26513727

  10. Age-related changes in secretion rate and post-secretory metabolism of growth hormone in swine.

    PubMed

    Farmer, C; Lapierre, H; Matte, J J; Brazeau, P

    1993-07-01

    The effect of age on growth hormone (GH) metabolism and GH-releasing factor (GRF)-induced GH concentrations were studied in 7 young (3 mo, 39 kg) and 7 old (30 mo, 156 kg) Yorkshire x Landrace female pigs. Jugular catheters were surgically inserted and 60 hr later total serum volume was determined. The following day, all animals were infused for 3 hr with GH (30.3 ng.min/kg B.W.) in order to calculate GH metabolic clearance rate (MCR), secretion rate (SR) and half-life (t 1/2). Two days later, 15 micrograms/kg of GRF was injected i.v. into all pigs. On a per animal basis, aging increased (P < .01) MCR (299 vs 132 ml/min), SR (714 vs 422 ng/min) and serum volume (6.6 vs 2.01), whereas t1/2 was unaltered (P > .1). Basal GH concentrations were lower in older pigs (P < .10) but the GRF-induced GH concentrations (measured as GH peak or area under the curve, AUC) were not affected by age (P > .1). Yet, when induced total GH secretion (AUC x MCR) and average total serum GH (mean GH post-injection x serum volume) were calculated per pig, these variables significantly increased between 3 and 30 mo of age. Basal IGF-I concentrations were lower in older pigs (P < .01), yet, there was a tendency (P = .10) for these pigs to show a greater IGF-I response to GH infusion. The present data therefore indicate that age alters both SR and post-secretory metabolism of GH.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. [Age-related aspects of the extent of lipid metabolism and post-traumatic stress disorders among veterans of modern warfare].

    PubMed

    Torgashov, M N; Miakotnykh, V S; Pal'tsev, A I

    2013-01-01

    The peculiarities of violations of lipid metabolism and symptoms of post-traumatic stress disorder (PTSD) in 161 patients of 25-69 years, veterans of the military actions on the territory of Afghanistan and the Northern Caucasus were investigated. The dependence of the formation of dyslipidemia and related changes of atherosclerosis in the young age on neuroendocrine effects, accompanying the effects of combat stress and promoting accelerated aging was determined. On the other hand, with the time, after 15-25 years after participating in hostilities, the intensity of PTSD and its influence on the development of violations of lipid spectrum may decline. The leading role in the pathogenesis of dyslipidemia goes to age-related changes, accompanying a process of accelerated aging of veterans of combat operations, and to pathological disorders of metabolism in liver associated with alcohol abuse and the consequences of infectious diseases.

  12. Mitochondrial Dysfunction and Immune Cell Metabolism in Sepsis

    PubMed Central

    2017-01-01

    Sepsis is a life threatening condition mediated by systemic infection, but also triggered by hemorrhage and trauma. These are significant causes of organ injury implicated in morbidity and mortality, as well as post-sepsis complications associated with dysfunction of innate and adaptive immunity. The role of cellular bioenergetics and loss of metabolic plasticity of immune cells is increasingly emerging in the pathogenesis of sepsis. This review describes mitochondrial biology and metabolic alterations of immune cells due to sepsis, as well as indicates plausible therapeutic opportunities. PMID:28378540

  13. Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders.

    PubMed

    Cai, Huan; Cong, Wei-na; Ji, Sunggoan; Rothman, Sarah; Maudsley, Stuart; Martin, Bronwen

    2012-01-01

    Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.

  14. Endocrine Dysfunctions in Patients with Inherited Metabolic Diseases

    PubMed Central

    Erdöl, Şahin; Sağlam, Halil

    2016-01-01

    Objective: Inherited metabolic diseases (IMDs) can affect many organ systems, including the endocrine system. There are limited data regarding endocrine dysfunctions related to IMDs in adults, however, no data exist in pediatric patients with IMDs. The aim of this study was to investigate endocrine dysfunctions in patients with IMDs by assessing their demographic, clinical, and laboratory data. Methods: Data were obtained retrospectively from the medical reports of patients with IMDs who were followed by the division of pediatric metabolism and nutrition between June 2011 and November 2013. Results: In total, 260 patients [139 males (53%) and 121 females (47%)] with an IMD diagnosis were included in the study. The mean age of the patients was 5.94 (range; 0.08 to 49) years and 95.8% (249 of 260 patients) were in the pediatric age group. Growth status was evaluated in 258 patients and of them, 27 (10.5%) had growth failure, all cases of which were attributed to non-endocrine reasons. There was a significant correlation between growth failure and serum albumin levels below 3.5 g/dL (p=0.002). Only three of 260 (1.1%) patients had endocrine dysfunction. Of these, one with lecithin-cholesterol acyltransferase deficiency and another with Kearns-Sayre syndrome had diabetes, and one with glycerol kinase deficiency had glucocorticoid deficiency. Conclusion: Endocrine dysfunction in patients with IMDs is relatively rare. For this reason, there is no need to conduct routine endocrine evaluations in most patients with IMDs unless a careful and detailed history and a physical examination point to an endocrine dysfunction. PMID:27086477

  15. Mitochondrial dysfunction remodels one-carbon metabolism in human cells

    PubMed Central

    Bao, Xiaoyan Robert; Ong, Shao-En; Goldberger, Olga; Peng, Jun; Sharma, Rohit; Thompson, Dawn A; Vafai, Scott B; Cox, Andrew G; Marutani, Eizo; Ichinose, Fumito; Goessling, Wolfram; Regev, Aviv; Carr, Steven A; Clish, Clary B; Mootha, Vamsi K

    2016-01-01

    Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.10575.001 PMID:27307216

  16. Age-related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour.

    PubMed

    Maccarrone, Mauro; Valverde, Olga; Barbaccia, Maria L; Castañé, Anna; Maldonado, Rafael; Ledent, Catherine; Parmentier, Marc; Finazzi-Agrò, Alessandro

    2002-04-01

    Anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) are the most active endocannabinoids at brain (CB1) cannabinoid receptors. CD1 mice lacking the CB1 receptors ("knockout" [KO] mutants) were compared with wildtype (WT) littermates for their ability to degrade AEA through an AEA membrane transporter (AMT) and an AEA hydrolase (fatty acid amide hydrolase, FAAH). The age dependence of AMT and FAAH activity were investigated in 1- or 4-month-old WT and KO animals, and found to increase with age in KO, but not WT, mice and to be higher in the hippocampus than in the cortex of all animals. AEA and 2-AG were detected in nmol/mg protein (microm) concentrations in both regions, though the hippocampus showed approximately twice the amount found in the cortex. In the same regions, 2-AG failed to change across groups, while AEA was significantly decreased (approximately 30%) in hippocampus, but not in cortex, of old KO mice, when compared with young KO or age-matched WT animals. In the open-field test under bright light and in the lit-dark exploration model of anxiety, young KO mice, compared with old KO, exhibited a mild anxiety-related behaviour. In contrast, neither the increase in memory performance assessed by the object recognition test, nor the reduction of morphine withdrawal symptoms, showed age dependence in CB1 KO mice. These results suggest that invalidation of the CB1 receptor gene is associated with age-dependent adaptive changes of endocannabinoid metabolism which appear to correlate with the waning of the anxiety-like behaviour exhibited by young CB1 KO mice.

  17. Erectile dysfunction, metabolic syndrome, and cardiovascular risks: facts and controversies

    PubMed Central

    Sanchez, Edward; Pastuszak, Alexander W.

    2017-01-01

    Erectile dysfunction (ED) is the most common male sexual dysfunction, and shares many risk factors with systemic conditions including cardiovascular disease (CVD) and the metabolic syndrome (MetS). ED is considered to be an independent risk factor for CVD and can be a harbinger of future cardiovascular events. Given this relationship, each encounter for ED should be viewed by healthcare providers as an opportunity to screen for CVD and other comorbid conditions, including the MetS, that can significantly affect a man’s overall health. While universally accepted screening guidelines are lacking, expert panels do recommend an approach to risk stratification in men with ED. In this review, we discuss the current state of understanding of the relationship between ED, the MetS, and CV risk, and how this impacts the approach to the patient presenting with ED. PMID:28217448

  18. Aging-Related Hormone Changes in Men

    MedlinePlus

    Healthy Lifestyle Men's health Aging-related hormone changes in men — sometimes called male menopause — are different from those ... to erectile dysfunction and other sexual issues. Make healthy lifestyle choices. Eat a healthy diet and include physical ...

  19. [Vascular dysfunction in metabolic disorders: evaluation of some therapeutic interventions].

    PubMed

    Bouskela, Eliete; Kraemer de Aguiar, Luiz Guillherme; Nivoit, Pierre; Bahia, Luciana R; Villela, Nivaldo R; Bottino, Daniel A

    2007-03-01

    Cardiovascular diseases continue to be the main cause of death in most industrialized countries. Endothelial dysfunction, a systemic process, is the earliest known marker of atherosclerosis and has become a major focus in acute ischemic disorders. We are investigating the hypothesis that, in these diseases, microvascular and endothelial dysfunctions occur simultaneously and precede the onset of macrovascular disease. We studied, to our knowledge for the first time in the same subjects, microvascular and endothelial functions in 11 patients with type 2 diabetes. 36 metabolic syndrome patients (NCEP-ATPIII criteria) and 25 young obese women matched with healthy controls. Micro vascular morphology and hemodynamics were evaluated non-invasively by means of nailfold videocapillaroscopy. Red blood cell velocity (RBCV, mm/s) was measured at rest and after release from 60 s of arterial occlusion (RBCVmax, mm/s) at the finger base, along with the time to reach RBCVmax (TRBCVmax, s), by video analysis with Cap Image software. Venous occlusion plethysmography was performed after intra-arterial infusions of acetylcholine and sodium nitroprusside to assess endo thelial-dependent and -independent vasodilation, respectively. We found similar results in the three groups of subjects, namely a significant decrease in RBCVmax, an increase in TRBCVmax, and a decrease in endothelial-dependent vasodilation. These findings clearly demonstrate that the two dysfunctions occur simultaneously in these groups of patients. Several mechanisms which could impair micro vascular and endothelial functions are associated with insulin resistance, and drugs that act on insulin resistance might thus be beneficial. Metformin, given to 16 first-degree relatives of patients with type 2 diabetes mellitus, who had the metabolic syndrome and normal glucose tolerance (ADA criteria), improved endothelial-dependent vasodilation and microcirculatory function. Rosiglitazone, given to 18 patients with the

  20. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB.

    PubMed

    Walker, Ashley E; Kaplon, Rachelle E; Pierce, Gary L; Nowlan, Molly J; Seals, Douglas R

    2014-12-01

    Habitual aerobic exercise prevents age-related impairments in endothelium-dependent dilation (EDD). We have hypothesized that the pro-inflammatory transcription factor nuclear factor κB (NF-κB) impairs EDD with sedentary aging, and habitual aerobic exercise prevents this age-related suppression of EDD by NF-κB. To test this hypothesis, we have inhibited NF-κB signalling via oral salsalate administration in healthy older aerobic exercise-trained adults (OT, n=14, 58 ± 2 years), older non-exercising adults (ON, n=16, 61 ± 1 years) and young non-exercising controls (YN, n=8, 23 ± 1 years). Salsalate reduced endothelial cell expression of NF-κB p65 by ~25% in ON (P<0.05) but did not significantly change expression in OT or YN (P>0.05). EDD, assessed by brachial artery flow-mediated dilation (FMD), was improved by salsalate in ON (4.0 ± 0.7% compared with 6.8 ± 0.7%, placebo compared with salsalate, P<0.001) but did not change with salsalate in OT or YN (OT: 7.2 ± 0.7% compared with 7.7 ± 0.6%; YN: 7.6 ± 0.9% compared with 8.1 ± 0.8%; placebo compared with salsalate, P>0.05). Endothelium-independent dilation was not affected by salsalate in any group (P>0.05). In ON, vitamin C infusion improved FMD by ~30% during placebo (P<0.001) but had no affect during salsalate (P>0.05). In OT and YN, vitamin C infusion did not affect FMD during either placebo or salsalate (P>0.05). Salsalate reduced endothelial cell nitrotyrosine content by ~25% and NADPH oxidase p47phox expression by ~30% in ON (P<0.05) but had no effect in OT or YN (P>0.05). Our results suggest that endothelial NF-κB signalling is associated with oxidative stress-related impairment of EDD in healthy non-exercising but not aerobically exercising older adults. This may be a key mechanism by which regular aerobic exercise preserves endothelial function and reduces cardiovascular risk with aging.

  1. Adipose tissue inflammation and metabolic dysfunction: a clinical perspective.

    PubMed

    Tam, Charmaine S; Redman, Leanne M

    2013-09-01

    Obesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).

  2. Progressive cardiovascular autonomic dysfunction in rats with evolving metabolic syndrome.

    PubMed

    Lehnen, A M; Leguisamo, N M; Casali, K R; Schaan, B D

    2013-06-01

    Metabolic syndrome is linked to increased cardiovascular mortality, which may be partially attributed to cardiac sympatho-vagal imbalance. However, autonomic changes were not evaluated during the metabolic syndrome development in a monosodium glutamate-induced animal model. We evaluate temporal changes in cardiovascular autonomic modulation in an animal model of metabolic syndrome. Eighteen neonate male spontaneously hypertensive rats (SHR) were treated with monosodium glutamate (MetS), and compared with Wistar-Kyoto (C) and saline-treated SHR (H). Lee index, insulin resistance and autonomic control (spectral analysis) were evaluated at 3 (3-mo), 6 (6-mo) and 9 (9-mo) months of age (compared by two-way ANOVA, p<0.05). Weight of visceral fat, Lee index and arterial pressure were higher in the MetS vs. C and H groups (p<0.001) at all ages. Heart rate variability (HRV) was decreased in the MetS and H groups at 3-mo and 9-mo vs. C. The LF component of HRV was reduced in the MetS group at 3-mo vs. C (p=0.032), and higher vs. C and H at 9-mo (p<0.001, all comparisons). H and MetS rats had a higher LF/HF index vs. C at 9-mo (p=0.001, all comparisons). The VLF component of systolic arterial pressure variability of the MetS was higher earlier (6-mo) than that of the H group. A reduction of 70%, 98% and 54% in αLF index of H and MetS rats vs. C, was observed at 3, 6 and 9 months, respectively. Metabolic syndrome and hypertension in rats evolve with progressive autonomic dysfunction (worst at 9 months), with specific derangements occurring very early.

  3. Adipokines, metabolic dysfunction and illness course in bipolar disorder.

    PubMed

    Mansur, Rodrigo B; Rizzo, Lucas B; Santos, Camila M; Asevedo, Elson; Cunha, Graccielle R; Noto, Mariane N; Pedrini, Mariana; Zeni, Maiara; Cordeiro, Quirino; McIntyre, Roger S; Brietzke, Elisa

    2016-03-01

    Replicated evidence indicates that individuals with BD are differentially affected by metabolic comorbidities and that its occurrence is a critical mediator and/or moderator of BD outcomes. This study aimed to explore the role of adipokines on bipolar disorder (BD) course and its relationship with metabolic comorbidities (i.e. type 2 diabetes mellitus, obesity). We measured plasma levels of adiponectin and leptin, as well as anthropometric and metabolic parameters of 59 patients with BD and 28 healthy volunteers. Our results showed that, in female participants, adiponectin was lower in individuals with BD, relative to healthy controls (p = 0.017). In the BD population, adiponectin levels were correlated with fasting glucose (r = -0.291, p = 0.047), fasting insulin (r = -0.332, p = 0.023), C-peptide (r = 0.040, p = 0.040), homeostatic model assessment-insulin resistance (r = -0.411, p = 0.004), HDL (r = 0.508, p < 0.001), VLDL (r = -0.395, p = 0.005) and triglycerides (r = -0.310, p = 0.030). After adjustment for age, gender and BMI, individuals with BD and low adiponectin levels (i.e. < 7.5 μg/ml), had a higher number of mood episodes (p < 0.001), lower number of psychiatric hospitalizations (p = 0.007), higher depressive symptoms (p < 0.001) and lower levels of functioning (p = 0.020). In conclusion, adiponectin levels, either directly or as a proxy of metabolic dysfunction, is independently associated with an unfavorable course of illness in BD.

  4. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments

    PubMed Central

    Tefera, Tesfaye W.; Borges, Karin

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS. PMID:28119559

  5. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments.

    PubMed

    Tefera, Tesfaye W; Borges, Karin

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS.

  6. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    PubMed Central

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; Foster, Carmen M.; Kennel, Stephen J.; Wall, Jonathan S.

    2015-01-01

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils. PMID:26393799

  7. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    SciTech Connect

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; Foster, Carmen M.; Kennel, Stephen J.; Wall, Jonathan S.

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  8. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGES

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; ...

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  9. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration

    PubMed Central

    2011-01-01

    Vitamin D has been shown to have anti-angiogenic properties and to play a protective role in several types of cancer, including breast, prostate and cutaneous melanoma. Similarly, vitamin D levels have been shown to be protective for risk of a number of conditions, including cardiovascular disease and chronic kidney disease, as well as numerous autoimmune disorders such as multiple sclerosis, inflammatory bowel diseases and type 1 diabetes mellitus. A study performed by Parekh et al. was the first to suggest a role for vitamin D in age-related macular degeneration (AMD) and showed a correlation between reduced serum vitamin D levels and risk for early AMD. Based on this study and the protective role of vitamin D in diseases with similar pathophysiology to AMD, we examined the role of vitamin D in a family-based cohort of 481 sibling pairs. Using extremely phenotypically discordant sibling pairs, initially we evaluated the association of neovascular AMD and vitamin D/sunlight-related epidemiological factors. After controlling for established AMD risk factors, including polymorphisms of the genes encoding complement factor H (CFH) and age-related maculopathy susceptibility 2/HtrA serine peptidase (ARMS2/HTRA1), and smoking history, we found that ultraviolet irradiance was protective for the development of neovascular AMD (p = 0.001). Although evaluation of serum vitamin D levels (25-hydroxyvitamin D [25(OH)D]) was higher in unaffected individuals than in their affected siblings, this finding did not reach statistical significance. Based on the relationship between ultraviolet irradiance and vitamin D production, we employed a candidate gene approach for evaluating common variation in key vitamin D pathway genes (the genes encoding the vitamin D receptor [VDR]; cytochrome P450, family 27, subfamily B, polypeptide 1 [CYP27B1]; cytochrome P450, family 24, subfamily A, polypeptide 1 [CYP24A1]; and CYP27A1) in this same family-based cohort. Initial findings were then

  10. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration.

    PubMed

    Morrison, Margaux A; Silveira, Alexandra C; Huynh, Nancy; Jun, Gyungah; Smith, Silvia E; Zacharaki, Fani; Sato, Hajime; Loomis, Stephanie; Andreoli, Michael T; Adams, Scott M; Radeke, Monte J; Jelcick, Austin S; Yuan, Yang; Tsiloulis, Aristoteles N; Chatzoulis, Dimitrios Z; Silvestri, Giuliana; Kotoula, Maria G; Tsironi, Evangelia E; Hollis, Bruce W; Chen, Rui; Haider, Neena B; Miller, Joan W; Farrer, Lindsay A; Hageman, Gregory S; Kim, Ivana K; Schaumberg, Debra A; DeAngelis, Margaret M

    2011-10-01

    Vitamin D has been shown to have anti-angiogenic properties and to play a protective role in several types of cancer, including breast, prostate and cutaneous melanoma. Similarly, vitamin D levels have been shown to be protective for risk of a number of conditions, including cardiovascular disease and chronic kidney disease, as well as numerous autoimmune disorders such as multiple sclerosis, inflammatory bowel diseases and type 1 diabetes mellitus. A study performed by Parekh et al. was the first to suggest a role for vitamin D in age-related macular degeneration (AMD) and showed a correlation between reduced serum vitamin D levels and risk for early AMD. Based on this study and the protective role of vitamin D in diseases with similar pathophysiology to AMD, we examined the role of vitamin D in a family-based cohort of 481 sibling pairs. Using extremely phenotypically discordant sibling pairs, initially we evaluated the association of neovascular AMD and vitamin D/sunlight-related epidemiological factors. After controlling for established AMD risk factors, including polymorphisms of the genes encoding complement factor H (CFH) and age-related maculopathy susceptibility 2/HtrA serine peptidase (ARMS2/HTRA1), and smoking history, we found that ultraviolet irradiance was protective for the development of neovascular AMD (p = 0.001). Although evaluation of serum vitamin D levels (25-hydroxyvitamin D [25(OH)D]) was higher in unaffected individuals than in their affected siblings, this finding did not reach statistical significance. Based on the relationship between ultraviolet irradiance and vitamin D production, we employed a candidate gene approach for evaluating common variation in key vitamin D pathway genes (the genes encoding the vitamin D receptor [VDR]; cytochrome P450, family 27, subfamily B, polypeptide 1 [CYP27B1]; cytochrome P450, family 24, subfamily A, polypeptide 1 [CYP24A1]; and CYP27A1) in this same family-based cohort. Initial findings were then

  11. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches

    PubMed Central

    Cheng, Ning; Rho, Jong M.; Masino, Susan A.

    2017-01-01

    Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed. PMID:28270747

  12. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches.

    PubMed

    Cheng, Ning; Rho, Jong M; Masino, Susan A

    2017-01-01

    Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed.

  13. How to Study Basement Membrane Stiffness as a Biophysical Trigger in Prostate Cancer and Other Age-related Pathologies or Metabolic Diseases.

    PubMed

    Rodriguez-Teja, Mercedes; Breit, Claudia; Clarke, Mitchell; Talar, Kamil; Wang, Kai; Mohammad, Mohammad A; Pickwell, Sage; Etchandy, Guillermina; Stasiuk, Graeme J; Sturge, Justin

    2016-09-20

    Here we describe a protocol that can be used to study the biophysical microenvironment related to increased thickness and stiffness of the basement membrane (BM) during age-related pathologies and metabolic disorders (e.g. cancer, diabetes, microvascular disease, retinopathy, nephropathy and neuropathy). The premise of the model is non-enzymatic crosslinking of reconstituted BM (rBM) matrix by treatment with glycolaldehyde (GLA) to promote advanced glycation endproduct (AGE) generation via the Maillard reaction. Examples of laboratory techniques that can be used to confirm AGE generation, non-enzymatic crosslinking and increased stiffness in GLA treated rBM are outlined. These include preparation of native rBM (treated with phosphate-buffered saline, PBS) and stiff rBM (treated with GLA) for determination of: its AGE content by photometric analysis and immunofluorescent microscopy, its non-enzymatic crosslinking by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) as well as confocal microscopy, and its increased stiffness using rheometry. The procedure described here can be used to increase the rigidity (elastic moduli, E) of rBM up to 3.2-fold, consistent with measurements made in healthy versus diseased human prostate tissue. To recreate the biophysical microenvironment associated with the aging and diseased prostate gland three prostate cell types were introduced on to native rBM and stiff rBM: RWPE-1, prostate epithelial cells (PECs) derived from a normal prostate gland; BPH-1, PECs derived from a prostate gland affected by benign prostatic hyperplasia (BPH); and PC3, metastatic cells derived from a secondary bone tumor originating from prostate cancer. Multiple parameters can be measured, including the size, shape and invasive characteristics of the 3D glandular acini formed by RWPE-1 and BPH-1 on native versus stiff rBM, and average cell length, migratory velocity and persistence of cell movement of 3D spheroids formed by PC3 cells under

  14. How to Study Basement Membrane Stiffness as a Biophysical Trigger in Prostate Cancer and Other Age-related Pathologies or Metabolic Diseases

    PubMed Central

    Rodriguez-Teja, Mercedes; Breit, Claudia; Clarke, Mitchell; Talar, Kamil; Wang, Kai; Mohammad, Mohammad A.; Pickwell, Sage; Etchandy, Guillermina; Stasiuk, Graeme J.; Sturge, Justin

    2016-01-01

    Here we describe a protocol that can be used to study the biophysical microenvironment related to increased thickness and stiffness of the basement membrane (BM) during age-related pathologies and metabolic disorders (e.g. cancer, diabetes, microvascular disease, retinopathy, nephropathy and neuropathy). The premise of the model is non-enzymatic crosslinking of reconstituted BM (rBM) matrix by treatment with glycolaldehyde (GLA) to promote advanced glycation endproduct (AGE) generation via the Maillard reaction. Examples of laboratory techniques that can be used to confirm AGE generation, non-enzymatic crosslinking and increased stiffness in GLA treated rBM are outlined. These include preparation of native rBM (treated with phosphate-buffered saline, PBS) and stiff rBM (treated with GLA) for determination of: its AGE content by photometric analysis and immunofluorescent microscopy, its non-enzymatic crosslinking by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) as well as confocal microscopy, and its increased stiffness using rheometry. The procedure described here can be used to increase the rigidity (elastic moduli, E) of rBM up to 3.2-fold, consistent with measurements made in healthy versus diseased human prostate tissue. To recreate the biophysical microenvironment associated with the aging and diseased prostate gland three prostate cell types were introduced on to native rBM and stiff rBM: RWPE-1, prostate epithelial cells (PECs) derived from a normal prostate gland; BPH-1, PECs derived from a prostate gland affected by benign prostatic hyperplasia (BPH); and PC3, metastatic cells derived from a secondary bone tumor originating from prostate cancer. Multiple parameters can be measured, including the size, shape and invasive characteristics of the 3D glandular acini formed by RWPE-1 and BPH-1 on native versus stiff rBM, and average cell length, migratory velocity and persistence of cell movement of 3D spheroids formed by PC3 cells under

  15. Estrogens prevent metabolic dysfunctions induced by circadian disruptions in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian disruption has become a significant factor contributing to the epidemics of obesity and insulin resistance. However, interventions to treat metabolic dysfunctions induced by circadian disruptions are limited. The ovarian hormone, estrogen, produces important antiobesity and antidiabetic ef...

  16. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease

    PubMed Central

    Goveia, Jermaine; Stapor, Peter; Carmeliet, Peter

    2014-01-01

    The endothelium is the orchestral conductor of blood vessel function. Pathological blood vessel formation (a process termed pathological angiogenesis) or the inability of endothelial cells (ECs) to perform their physiological function (a condition known as EC dysfunction) are defining features of various diseases. Therapeutic intervention to inhibit aberrant angiogenesis or ameliorate EC dysfunction could be beneficial in diseases such as cancer and cardiovascular disease, respectively, but current strategies have limited efficacy. Based on recent findings that pathological angiogenesis and EC dysfunction are accompanied by EC-specific metabolic alterations, targeting EC metabolism is emerging as a novel therapeutic strategy. Here, we review recent progress in our understanding of how EC metabolism is altered in disease and discuss potential metabolic targets and strategies to reverse EC dysfunction and inhibit pathological angiogenesis. PMID:25063693

  17. Relationship between CYP 2D6 metabolic status and sexual dysfunction in paroxetine treatment.

    PubMed

    Zourková, Alexandra; Hadasová, Eva

    2002-01-01

    This article describes the incidence of sexual dysfunction in 30 patients subjected to long-term treatment by paroxetine in dependence on the P 450 CYP 2D6 isoenzyme metabolic status. Measured on the Arizona Sexual Experience Scale (ASEX; McGahuey, Delgado, & Gelenberg, 1999), the incidence of sexual dysfunction in patients converted to CYP 2D6 poor metabolizers was markedly higher compared with patients who had no history of such conversion, a difference that reached the level of statistical significance. Our article discusses the incidence of sexual dysfunction in connection with reduced CYP 2D6 capacity.

  18. Fermented Red Ginseng Potentiates Improvement of Metabolic Dysfunction in Metabolic Syndrome Rat Models

    PubMed Central

    Kho, Min Chul; Lee, Yun Jung; Park, Ji Hun; Kim, Hye Yoom; Yoon, Jung Joo; Ahn, You Mee; Tan, Rui; Park, Min Cheol; Cha, Jeong Dan; Choi, Kyung Min; Kang, Dae Gill; Lee, Ho Sub

    2016-01-01

    Metabolic syndrome including obesity, dyslipidemia and hypertension is a cluster of risk factors of cardiovascular disease. Fermentation of medicinal herbs improves their pharmacological efficacy. Red ginseng (RG), a widely used traditional herbal medicine, was reported with anti-inflammatory and anti-oxidant activity. Aim in the present study was to investigate that the effects of fermented red ginseng (FRG) on a high-fructose (HF) diet induced metabolic disorders, and those effects were compared to RG and losartan. Animals were divided into four groups: a control group fed a regular diet and tap water, and fructose groups that were fed a 60% high-fructose (HF) diet with/without RG 250 mg/kg/day or FRG 250 mg/kg/day for eight weeks, respectively. Treatment with FRG significantly suppressed the increments of body weight, liver weight, epididymal fat weight and adipocyte size. Moreover, FRG significantly prevented the development of metabolic disturbances such as hyperlipidemia and hypertension. Staining with Oil-red-o demonstrated a marked increase of hepatic accumulation of triglycerides, and this increase was prevented by FRG. FRG ameliorated endothelial dysfunction by downregulation of endothelin-1 (ET-1) and adhesion molecules in the aorta. In addition, FRG induced markedly upregulation of Insulin receptor substrate 1 (IRS-1) and glucose transporter type 4 (Glut4) in the muscle. These results indicate that FRG ameliorates obesity, dyslipidemia, hypertension and fatty liver in HF diet rats. More favorable pharmacological effects on HF diet induced metabolic disorders were observed with FRG, compared to an equal dose of RG. These results showed that the pharmacological activity of RG was enhanced by fermentation. Taken together, fermentated red ginseng might be a beneficial therapeutic approach for metabolic syndrome. PMID:27322312

  19. [Age related macular degeneration].

    PubMed

    Sayen, Alexandra; Hubert, Isabelle; Berrod, Jean-Paul

    2011-02-01

    Age-related macular degeneration (ARMD) is a multifactorial disease caused by a combination of genetic and environmental factors. It is the first cause of blindness in patients over 50 in the western world. The disease has been traditionally classified into early and late stages with dry (atrophic) and wet (neovascular) forms: neovascular form is characterized by new blood vessels development under the macula (choroidal neovascularisation) which lead to a rapid decline of vision associated with metamorphopsia and requiring an urgent ophtalmological examination. Optical coherence tomography is now one of the most important part of the examination for diagnosis and treatment. Patient with age related maculopathy should consider taking a dietary supplement such that used in AREDS. The treatment of the wet ARMD has largely beneficied since year 2006 of anti-VEGF (vascular endothelial growth factor) molecules such as ranibizumab or bevacizumab given as repeated intravitreal injections. A systematic follow up each 4 to 8 week in required for several years. There is no effective treatment at the moment for dry AMD. For patients with binocular visual acuity under 60/200 rehabilitation includes low vision specialist, vision aids and psychological support.

  20. Metabolic alterations in children with environmental enteric dysfunction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental enteric dysfunction, an asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, malabsorption, and increased intestinal permeability, is a major contributor to childhood stunting in low-income countries. Here we report the relationship of increa...

  1. Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers.

    PubMed

    McFarlane, S Eryn; Sirkiä, Päivi M; Ålund, Murielle; Qvarnström, Anna

    2016-01-01

    Studies of ecological speciation are often biased towards extrinsic sources of selection against hybrids, resulting from intermediate hybrid morphology, but the knowledge of how genetic incompatibilities accumulate over time under natural conditions is limited. Here we focus on a physiological trait, metabolic rate, which is central to life history strategies and thermoregulation but is also likely to be sensitive to mismatched mitonuclear interactions. We measured the resting metabolic rate of male collared, and pied flycatchers as well as of naturally occurring F1 hybrid males, in a recent hybrid zone. We found that hybrid males had a higher rather than intermediate metabolic rate, which is indicative of hybrid physiological dysfunction. Fitness costs associated with elevated metabolic rate are typically environmentally dependent and exaggerated under harsh conditions. By focusing on male hybrid dysfunction in an eco-physiological trait, our results contribute to the general understanding of how combined extrinsic and intrinsic sources of hybrid dysfunction build up under natural conditions.

  2. Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers

    PubMed Central

    McFarlane, S. Eryn; Sirkiä, Päivi M.; Ålund, Murielle; Qvarnström, Anna

    2016-01-01

    Studies of ecological speciation are often biased towards extrinsic sources of selection against hybrids, resulting from intermediate hybrid morphology, but the knowledge of how genetic incompatibilities accumulate over time under natural conditions is limited. Here we focus on a physiological trait, metabolic rate, which is central to life history strategies and thermoregulation but is also likely to be sensitive to mismatched mitonuclear interactions. We measured the resting metabolic rate of male collared, and pied flycatchers as well as of naturally occurring F1 hybrid males, in a recent hybrid zone. We found that hybrid males had a higher rather than intermediate metabolic rate, which is indicative of hybrid physiological dysfunction. Fitness costs associated with elevated metabolic rate are typically environmentally dependent and exaggerated under harsh conditions. By focusing on male hybrid dysfunction in an eco-physiological trait, our results contribute to the general understanding of how combined extrinsic and intrinsic sources of hybrid dysfunction build up under natural conditions. PMID:27583553

  3. Metabolic alterations in children with environmental enteric dysfunction.

    PubMed

    Semba, Richard D; Shardell, Michelle; Trehan, Indi; Moaddel, Ruin; Maleta, Kenneth M; Ordiz, M Isabel; Kraemer, Klaus; Khadeer, Mohammed; Ferrucci, Luigi; Manary, Mark J

    2016-06-13

    Environmental enteric dysfunction, an asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, malabsorption, and increased intestinal permeability, is a major contributor to childhood stunting in low-income countries. Here we report the relationship of increased intestinal permeability with serum metabolites in 315 children without acute malnutrition, aged 12-59 months, in rural Malawi. Increased gut permeability was associated with significant differences in circulating metabolites that included lower serum phosphatidylcholines, sphingomyelins, tryptophan, ornithine, and citrulline, and elevated serum glutamate, taurine, and serotonin. Our findings suggest that environmental enteric dysfunction is characterized by alterations in important metabolites involved in growth and differentiation and gut function and integrity.

  4. Metabolic alterations in children with environmental enteric dysfunction

    PubMed Central

    Semba, Richard D.; Shardell, Michelle; Trehan, Indi; Moaddel, Ruin; Maleta, Kenneth M.; Ordiz, M. Isabel; Kraemer, Klaus; Khadeer, Mohammed; Ferrucci, Luigi; Manary, Mark J.

    2016-01-01

    Environmental enteric dysfunction, an asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, malabsorption, and increased intestinal permeability, is a major contributor to childhood stunting in low-income countries. Here we report the relationship of increased intestinal permeability with serum metabolites in 315 children without acute malnutrition, aged 12–59 months, in rural Malawi. Increased gut permeability was associated with significant differences in circulating metabolites that included lower serum phosphatidylcholines, sphingomyelins, tryptophan, ornithine, and citrulline, and elevated serum glutamate, taurine, and serotonin. Our findings suggest that environmental enteric dysfunction is characterized by alterations in important metabolites involved in growth and differentiation and gut function and integrity. PMID:27294788

  5. Preparing Muscles for Diving: Age-Related Changes in Muscle Metabolic Profiles in Harp (Pagophilus groenlandicus) and Hooded (Cystophora cristata) Seals.

    PubMed

    Burns, J M; Lestyk, K; Freistroffer, D; Hammill, M O

    2015-01-01

    In adult marine mammals, muscles can sustain aerobic metabolism during dives in part because they contain large oxygen (O2) stores and metabolic rates are low. However, young pups have significantly lower tissue O2 stores and much higher mass-specific metabolic rates. To investigate how these differences may influence muscle function during dives, we measured the activities of enzymes involved in aerobic and anaerobic metabolic pathways (citrate synthase [CS], β-hydroxyacyl-coenzyme A dehydrogenase [HOAD], lactate dehydrogenase [LDH]) and the LDH isoform profile in six muscles from 41 harp (Pagophilus groenlandicus) and 30 hooded (Cystophora cristata) seals ranging in age from fetal to adult. All neonatal muscles had significantly higher absolute but lower metabolically scaled CS and HOAD activities than adults (∼ 70% and ∼ 85% lower, respectively). Developmental increases in LDH activity lagged that of aerobic enzymes and were not accompanied by changes in isozyme profile, suggesting that changes in enzyme concentration rather than structure determine activity levels. Biochemical maturation proceeded faster in the major locomotory muscles. In combination, findings suggest that pup muscles are unable to support strenuous aerobic exercise or rely heavily on anaerobic metabolism during early diving activities and that pups' high mass-specific metabolic rates may play a key role in limiting the ability of their muscles to support underwater foraging.

  6. A indicator of visceral adipose dysfunction to evaluate metabolic health in adult Chinese

    PubMed Central

    Xia, Ming-Feng; Chen, Ying; Lin, Huan-Dong; Ma, Hui; Li, Xiao-Ming; Aleteng, Qiqige; Li, Qian; Wang, Dan; Hu, Yu; Pan, Bai-shen; Li, Xue-Jun; Li, Xiao-Ying; Gao, Xin

    2016-01-01

    Visceral adipose dysfunction is a major cause of metabolic disorders. However, there is lack of a clinical index for prediction of visceral fat dysfunction in Asians. The present study aims to establish a visceral adiposity index for evaluation of metabolic health status in Chinese, the largest Asian ethnic group. 485 subjects were recruited from Lianqian Community, Xiamen and received abdominal computed tomography(CT) for visceral fat area. A Chinese visceral adiposity index (CVAI) was created using multivariate linear regression analyses, and was further validated in 6495 subjects recruited from Changfeng Community, Shanghai. CVAI was well associated with visceral obesity (r = 0.68, P < 0.001) and HOMA-IR (r = 0.60, P < 0.001). The AUROCs were 0.89(0.88–0.90), 0.72(0.71–0.73), 0.69(0.68–0.71) and 0.67(0.65–0.68) for determination of metabolic syndrome, hypertension, diabetes and prediabetes, respectively. CVAI was more valuable compared to BMI and waist circumference in evaluation of metabolic risks (all P < 0.001), even in subjects with metabolically unhealthy normal weight (MUNW) and metabolically healthy obese/overweight (MHO). This study demonstrates that CVAI is a reliable and applicable index for evaluation of visceral fat dysfunction in Chinese. It might be used to evaluate metabolic health status in Asians. PMID:27905531

  7. Age-related macular degeneration.

    PubMed

    Cheung, Lily K; Eaton, Angie

    2013-08-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and the prevalence of the disease increases exponentially with every decade after age 50 years. It is a multifactorial disease involving a complex interplay of genetic, environmental, metabolic, and functional factors. Besides smoking, hypertension, obesity, and certain dietary habits, a growing body of evidence indicates that inflammation and the immune system may play a key role in the development of the disease. AMD may progress from the early form to the intermediate form and then to the advanced form, where two subtypes exist: the nonneovascular (dry) type and the neovascular (wet) type. The results from the Age-Related Eye Disease Study have shown that for the nonneovascular type of AMD, supplementation with high-dose antioxidants (vitamin C, vitamin E, and β-carotene) and zinc is recommended for those with the intermediate form of AMD in one or both eyes or with advanced AMD or vision loss due to AMD in one eye. As for the neovascular type of the advanced AMD, the current standard of therapy is intravitreal injections of vascular endothelial growth factor inhibitors. In addition, lifestyle and dietary modifications including improved physical activity, reduced daily sodium intake, and reduced intake of solid fats, added sugars, cholesterol, and refined grain foods are recommended. To date, no study has demonstrated that AMD can be cured or effectively prevented. Clearly, more research is needed to fully understand the pathophysiology as well as to develop prevention and treatment strategies for this devastating disease.

  8. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    PubMed

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids.

  9. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy

    PubMed Central

    2015-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a complex, multifactorial disease in which an increase in pulmonary vascular resistance leads to increased afterload on the right ventricle (RV), causing right heart failure and death. Our understanding of the pathophysiology of RV dysfunction in PAH is limited but is constantly improving. Increasing evidence suggests that in PAH RV dysfunction is associated with various components of metabolic syndrome, such as insulin resistance, hyperglycemia, and dyslipidemia. The relationship between RV dysfunction and fatty acid/glucose metabolites is multifaceted, and in PAH it is characterized by a shift in utilization of energy sources toward increased glucose utilization and reduced fatty acid consumption. RV dysfunction may be caused by maladaptive fatty acid metabolism resulting from an increase in fatty acid uptake by fatty acid transporter molecule CD36 and an imbalance between glucose and fatty acid oxidation in mitochondria. This leads to lipid accumulation in the form of triglycerides, diacylglycerol, and ceramides in the cytoplasm, hallmarks of lipotoxicity. Current interventions in animal models focus on improving RV dysfunction through altering fatty acid oxidation rates and limiting lipid accumulation, but more specific and effective therapies may be available in the coming years based on current research. In conclusion, a deeper understanding of the complex mechanisms of the metabolic remodeling of the RV will aid in the development of targeted treatments for RV failure in PAH. PMID:26064451

  10. Adiposity and metabolic dysfunction in polycystic ovary syndrome.

    PubMed

    Sam, Susan

    2015-02-01

    Polycystic ovary syndrome (PCOS) is the most common hormonal disorder among reproductive-age women and is associated with a high risk for metabolic disorders. Adiposity and insulin resistance are two prevalent conditions in PCOS and the likely culprits for the heightened metabolic risk. Up to 60% of women with PCOS are considered to be overweight or obese, and even among non-obese women with PCOS there is an increased accumulation of adipose tissue in abdominal depots. Insulin resistance in PCOS is unique and independent of obesity, as even non-obese women with this condition are frequently insulin resistant. However, obesity substantially aggravates the insulin resistance and the metabolic and reproductive abnormalities in women with PCOS. Recently, it has been shown that many aspects of adipose tissue function in PCOS are abnormal, and these abnormalities likely predispose to development of insulin resistance even in the absence of obesity. This review provides an overview of these abnormalities and their impact on development of metabolic disorders. At the end, an overview of the therapeutic options for management of adiposity and its complications in PCOS are discussed.

  11. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia.

    PubMed

    Biolo, Gianni; Cederholm, Tommy; Muscaritoli, Maurizio

    2014-10-01

    Skeletal muscle is the most abundant body tissue accounting for many physiological functions. However, muscle mass and functions are not routinely assessed. Sarcopenia is defined as skeletal muscle loss and dysfunction in aging and chronic diseases. Inactivity, inflammation, age-related factors, anorexia and unbalanced nutrition affect changes in skeletal muscle. Mechanisms are difficult to distinguish in individual subjects due to the multifactorial character of the condition. Sarcopenia includes both muscle loss and dysfunction which induce contractile impairment and metabolic and endocrine abnormalities, affecting whole-body metabolism and immune/inflammatory response. There are different metabolic trajectories for muscle loss versus fat changes in aging and chronic diseases. Appetite regulation and physical activity affect energy balance and changes in body fat mass. Appetite regulation by inflammatory mediators is poorly understood. In some patients, inflammation induces anorexia and fat loss in combination with sarcopenia. In others, appetite is maintained, despite activation of systemic inflammation, leading to sarcopenia with normal or increased BMI. Inactivity contributes to sarcopenia and increased fat tissue in aging and diseases. At the end of the metabolic trajectories, cachexia and sarcopenic obesity are paradigms of the two patient categories. Pre-cachexia and cachexia are observed in patients with cancer, chronic heart failure or liver cirrhosis. Sarcopenic obesity and sarcopenia with normal/increased BMI are observed in rheumatoid arthritis, breast cancer patients with adjuvant chemotherapy and in most of patients with COPD or chronic kidney disease. In these conditions, sarcopenia is a powerful prognostic factor for morbidity and mortality, independent of BMI.

  12. [The role of the interferon system in pathogenesis of endothelial dysfunction in patients with metabolic syndrome].

    PubMed

    Voloshyna, O O; Rybalko, S L

    2008-01-01

    We have studied the serum interferon activity and its relation to the endothelial dysfunction. Atherosclerosis development in patients with metabolic syndrome is followed by significant increase in interferon activity. Close relation presents between activity of the serum interferon and indexes of structural and functional changes of arterial vessels compromised with atherosclerosis process.

  13. The Loss Of Macrophage Fatty Acid Oxidation Does Not Potentiate Systemic Metabolic Dysfunction.

    PubMed

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S; Collins, Samuel L; Horton, Maureen R; Wolfgang, Michael J

    2017-02-21

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase 2 (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation deficient CPT2 Mϕ-KO bone marrow derived macrophages (BMDM) displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although alternatively activated macrophages up-regulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative rather than causative role in systemic metabolic dysfunction.

  14. Dysregulated arginine metabolism and cardiopulmonary dysfunction in patients with thalassaemia.

    PubMed

    Morris, Claudia R; Kim, Hae-Young; Klings, Elizabeth S; Wood, John; Porter, John B; Trachtenberg, Felicia; Sweeters, Nancy; Olivieri, Nancy F; Kwiatkowski, Janet L; Virzi, Lisa; Hassell, Kathryn; Taher, Ali; Neufeld, Ellis J; Thompson, Alexis A; Larkin, Sandra; Suh, Jung H; Vichinsky, Elliott P; Kuypers, Frans A

    2015-06-01

    Pulmonary hypertension (PH) commonly develops in thalassaemia syndromes, but is poorly characterized. The goal of this study was to provide a comprehensive description of the cardiopulmonary and biological profile of patients with thalassaemia at risk for PH. A case-control study of thalassaemia patients at high versus low PH-risk was performed. A single cross-sectional measurement for variables reflecting cardiopulmonary status and biological pathophysiology were obtained, including Doppler-echocardiography, 6-min-walk-test, Borg Dyspnoea Score, New York Heart Association functional class, cardiac magnetic resonance imaging (MRI), chest-computerized tomography, pulmonary function testing and laboratory analyses targeting mechanisms of coagulation, inflammation, haemolysis, adhesion and the arginine-nitric oxide pathway. Twenty-seven thalassaemia patients were evaluated, 14 with an elevated tricuspid-regurgitant-jet-velocity (TRV) ≥ 2·5 m/s. Patients with increased TRV had a higher frequency of splenectomy, and significantly larger right atrial size, left atrial volume and left septal-wall thickness on echocardiography and/or MRI, with elevated biomarkers of abnormal coagulation, lactate dehydrogenase (LDH) levels and arginase concentration, and lower arginine-bioavailability compared to low-risk patients. Arginase concentration correlated significantly to several echocardiography/MRI parameters of cardiovascular function in addition to global-arginine-bioavailability and biomarkers of haemolytic rate, including LDH, haemoglobin and bilirubin. Thalassaemia patients with a TRV ≥ 2·5 m/s have additional echocardiography and cardiac-MRI parameters suggestive of right and left-sided cardiac dysfunction. In addition, low arginine bioavailability may contribute to cardiopulmonary dysfunction in β-thalassaemia.

  15. Metabolic dysfunction in obese Hispanic women with polycystic ovary syndrome

    PubMed Central

    Sam, Susan; Scoccia, Bert; Yalamanchi, Sudha; Mazzone, Theodore

    2015-01-01

    STUDY QUESTION Are certain ethnic groups with polycystic ovary syndrome (PCOS) at increased risk of metabolic disorders? SUMMARY ANSWER Obese Hispanic women with PCOS are at increased risk of metabolic disorders compared with age- and BMI-matched obese non-Hispanic white women with PCOS in the USA. WHAT IS KNOWN ALREADY Ethnic differences in body composition and metabolic risk are well established. PCOS is a common disorder in women of reproductive age and is associated with high rates of insulin resistance, glucose intolerance and dyslipidemia. STUDY DESIGN, SIZE, DURATION A cross-sectional observational study was performed at an Academic Medical Center on 60 women of reproductive age with PCOS. PARTICIPANTS/MATERIALS, SETTING, METHODS Blood was obtained after fasting from 17 Hispanic, 22 non-Hispanic black and 21 non-Hispanic white women with PCOS who were similar in age and BMI. Anthropometric parameters, insulin, lipid and lipoprotein levels (measured by nuclear magnetic resonance) were compared between the three groups. MAIN RESULTS AND THE ROLE OF CHANCE Age and BMI did not differ between the groups. Hispanic women with PCOS had higher waist-to-hip ratio (WHR) (P = 0.02), homeostasis model assessment of insulin resistance (HOMA-IR) (P = 0.03) and a more atherogenic lipid and lipoprotein profile consisting of lower high-density lipoprotein (HDL) (P = 0.02), higher low-density lipoprotein (LDL) particle number (P = 0.02), higher very low-density lipoprotein particle (VLDL) size (P = 0.03) and lower LDL (P = 0.03) and HDL particle size (P = 0.005) compared with non-Hispanic white women. The differences in HDL, HOMA-IR, VLDL and LDL size did not persist after adjustment for WHR while differences in LDL particle number (P = 0.04) and HDL size (P = 0.01) persisted. LIMITATIONS, REASON FOR CAUTION The sample size for the three groups was small but the findings were still significant. The women were mostly obese so the ethnic differences in metabolic disorders may

  16. Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis

    PubMed Central

    St John Sutton, M.

    2010-01-01

    Cardiac disease in diabetes mellitus and in the metabolic syndrome consists of both vascular and myocardial abnormalities. The latter are characterised predominantly by diastolic dysfunction, which has been difficult to evaluate in spite of its prevalence. While traditional Doppler echocardiographic parameters enable only semiquantitative assessment of diastolic function and cannot reliably distinguish perturbations in loading conditions from altered diastolic functions, new technologies enable detailed quantification of global and regional diastolic function. The most readily available technique for the quantification of subclinical diastolic dysfunction is tissue Doppler imaging, which has been integrated into routine contemporary clinical practice, whereas cine magnetic resonance imaging (CMR) remains a promising complementary research tool for investigating the molecular mechanisms of the disease. Diastolic function is reported to vary linearly with age in normal persons, decreasing by 0.16 cm/s each year. Diastolic function in diabetes and the metabolic syndrome is determined by cardiovascular risk factors that alter myocardial stiffness and myocardial energy availability/bioenergetics. The latter is corroborated by the improvement in diastolic function with improvement in metabolic control of diabetes by specific medical therapy or lifestyle modification. Accordingly, diastolic dysfunction reflects the structural and metabolic milieu in the myocardium, and may allow targeted therapeutic interventions to modulate cardiac metabolism to prevent heart failure in insulin resistance and diabetes. PMID:20349347

  17. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    PubMed Central

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01)). Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001). Glycogen synthase activity was 12% higher (P<0.05) but glycogen branching enzyme activity was 70% lower (P<0.01) in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01) in mdx mice resulting from a 24% reduction in PKA activity (P<0.01). In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001) together with starch-binding domain protein 1 (219% higher; P<0.01). In addition, mdx mice were glucose intolerant (P<0.01) and had 30% less liver glycogen (P<0.05) compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05) as a possible cause of this phenotype. Conclusion We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen. PMID:24626262

  18. Inflammation and metabolic dysfunction: links to cardiovascular diseases.

    PubMed

    Taube, Annika; Schlich, Raphaela; Sell, Henrike; Eckardt, Kristin; Eckel, Juergen

    2012-06-01

    Abdominal obesity is a major risk factor for cardiovascular disease, and recent studies highlight a key role of adipose tissue dysfunction, inflammation, and aberrant adipokine release in this process. An increased demand for lipid storage results in both hyperplasia and hypertrophy, finally leading to chronic inflammation, hypoxia, and a phenotypic change of the cellular components of adipose tissue, collectively leading to a substantially altered secretory output of adipose tissue. In this review we have assessed the adipo-vascular axis, and an overview of adipokines associated with cardiovascular disease is provided. This resulted in a first list of more than 30 adipokines. A deeper analysis only considered adipokines that have been reported to impact on inflammation and NF-κB activation in the vasculature. Out of these, the most prominent link to cardiovascular disease was found for leptin, TNF-α, adipocyte fatty acid-binding protein, interleukins, and several novel adipokines such as lipocalin-2 and pigment epithelium-derived factor. Future work will need to address the potential role of these molecules as biomarkers and/or drug targets.

  19. Age-related changes in protein metabolism of beech (Fagus sylvatica L.) seeds during alleviation of dormancy and in the early stage of germination.

    PubMed

    Ratajczak, Ewelina; Kalemba, Ewa M; Pukacka, Stanislawa

    2015-09-01

    The long-term storage of seeds generally reduces their viability and vigour. The aim of this work was to evaluate the effect of long-term storage on beech (Fagus sylvatica L.) seeds at optimal conditions, over 9 years, on the total and soluble protein levels and activity of proteolytic enzymes, including endopeptidases, carboxypeptidases and aminopeptidases, as well as free amino acid levels and protein synthesis, in dry seeds, after imbibition and during cold stratification leading to dormancy release and germination. The same analyses were conducted in parallel on seeds gathered from the same tree in the running growing season and stored under the same conditions for only 3 months. The results showed that germination capacity decreased from 100% in freshly harvested seeds to 75% in seeds stored for 9 years. The levels of total and soluble proteins were highest in freshly harvested seeds and decreased significantly during storage, these proportions were retained during cold stratification and germination of seeds. Significant differences between freshly harvested and stored seeds were observed in the activities of proteolytic enzymes, including endopeptidases, aminopeptidases and carboxypeptidases, and in the levels of free amino acids. The neosynthesis of proteins during dormancy release and in the early stage of seed germination was significantly weaker in stored seeds. These results confirm the importance of protein metabolism for seed viability and the consequences of its reduction during seed ageing.

  20. Association of hypertension with coexistence of abnormal metabolism and inflammation and endothelial dysfunction.

    PubMed

    Zhang, Mingzhi; Wang, Guiyan; Wang, Aili; Tong, Weijun; Zhang, Yonghong

    2013-06-01

    To explore association of hypertension with coexistence of inflammation and endothelial dysfunction and abnormal metabolism, a community-based study was conducted among Mongolian people in China. Demographic characteristics and lifestyle risk factors were investigated, blood pressure, body weight and waist circumference were measured, fasting blood samples were obtained to measure blood lipids, fasting plasma glucose and the biomarkers of inflammation and endothelial dysfunction, C-reactive protein (CRP), soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble E-selectin (sE-selectin) and angiotensin II. Rates of abnormal metabolism, elevated CRP, elevated sICAM-1, elevated sE-selectin and elevated angiotensin II as well as coexistence of abnormal metabolism with the elevated biomarkers were all higher in hypertensives than these in normotensives (all p < 0.01). Compared with subjects with normal metabolism and without any elevated biomarker, multivariate adjusted odds ratio (95% confidence interval) of hypertension associated with abnormal metabolism, elevated CRP, elevated sICAM-1, elevated sE-selectin, elevated angiotensin II, coexistences of abnormal metabolism with elevated CRP, elevated sICAM-1,elevated sE-selectin and elevated angiotensin II were 2.209 (1.594-3.062), 2.820 (1.992-3.992), 2.370 (1.665-3.374), 1.893 (1.331-2.691), 2.545 (1.793-3.612), 2.990 (2.102-4.252), 2.551 (1.775-3.667), 2.223 (1.544-3.220), 3.135 (2.185-4.519), respectively. In conclusion, this study indicated that inflammation and endothelial dysfunction was associated with hypertension and abnormal metabolism, and individuals with co-existence of abnormal metabolism with inflammation and endothelial dysfunction had higher risk of prevalent hypertension among Mongolian population. This study suggests that further study on treatment for hypertension patients with coexistence of abnormal metabolism with inflammation and endothelial dysfunction should be conducted in the near

  1. Role of Aryl Hydrocarbon Receptor in Circadian Clock Disruption and Metabolic Dysfunction

    PubMed Central

    Jaeger, Cassie; Tischkau, Shelley A.

    2016-01-01

    The prevalence of metabolic syndrome, a clustering of three or more risk factors that include abdominal obesity, increased blood pressure, and high levels of glucose, triglycerides, and high-density lipoproteins, has reached dangerous and costly levels worldwide. Increases in morbidity and mortality result from a combination of factors that promote altered glucose metabolism, insulin resistance, and metabolic dysfunction. Although diet and exercise are commonly touted as important determinants in the development of metabolic dysfunction, other environmental factors, including circadian clock disruption and activation of the aryl hydrocarbon receptor (AhR) by dietary or other environmental sources, must also be considered. AhR binds a range of ligands, which prompts protein–protein interactions with other Per-Arnt-Sim (PAS)-domain-containing proteins and subsequent transcriptional activity. This review focuses on the reciprocal crosstalk between the activated AhR and the molecular circadian clock. AhR exhibits a rhythmic expression and time-dependent sensitivity to activation by AhR agonists. Conversely, AhR activation influences the amplitude and phase of expression of circadian clock genes, hormones, and the behavioral responses of the clock system to changes in environmental illumination. Both the clock and AhR status and activation play significant and underappreciated roles in metabolic homeostasis. This review highlights the state of knowledge regarding how AhR may act together with the circadian clock to influence energy metabolism. Understanding the variety of AhR-dependent mechanisms, including its interactions with the circadian timing system that promote metabolic dysfunction, reveals new targets of interest for maintenance of healthy metabolism. PMID:27559298

  2. Long-lasting partnership between insulin resistance and endothelial dysfunction: role of metabolic memory

    PubMed Central

    Tallapragada, Divya Sri Priyanka; Karpe, Pinakin Arun; Tikoo, Kulbhushan

    2015-01-01

    Background and Purpose The persistence of deleterious effects of hyperglycaemia even after glucose normalization is referred to as ‘metabolic memory’. However, similar persistent effects of the metabolic consequences of a high fat diet (HFD) have not been described. Experimental Approach Rats were given a normal pellet diet (NPD) or a HFD for 3 months. The animals from the HFD group were then returned to the NPD to observe the long-term effects of insulin resistance. Endothelial dysfunction was assessed by carbachol-mediated vasorelaxation and eNOS phosphorylation. Key Results As expected, HFD consumption resulted in insulin resistance and endothelial dysfunction. Phosphorylation of eNOS at S1177 was decreased in HFD rats, compared with that in the NPD group. Rats on 3 months of HFD showed glucose intolerance and impaired insulin sensitivity and were then switched back to NPD (REV group). Levels of cholesterol and triglyceride, and adiposity returned to normal in REV rats. However, endothelium-dependent vascular responses to carbachol which were impaired in HFD rats, continued to be impaired in REV rats. Similarly, decreased eNOS phosphorylation after HFD was not improved after 1 or 6 months of REV. Conclusions and Implications Our data indicate that returning to NPD did not improve the insulin sensitivity or the endothelial dysfunction induced by HFD. Although some biochemical parameters responsible for insulin resistance and endothelial dysfunction were normalized, molecular and vascular abnormalities, involving NO, persisted for several months, highlighting the long-lasting effects of metabolic memory. PMID:25825057

  3. Age-Related Macular Degeneration

    MedlinePlus

    ... version of this page please turn Javascript on. Age-related Macular Degeneration About AMD Click for more ... a leading cause of vision loss among people age 60 and older. It causes damage to the ...

  4. Toward an early marker of metabolic dysfunction: omentin-1 in prepubertal children.

    PubMed

    Prats-Puig, Anna; Bassols, Judit; Bargalló, Eva; Mas-Parareda, Marta; Ribot, Rosa; Soriano-Rodríguez, Pilar; Berengüí, Àngela; Díaz, Marta; de Zegher, Francis; Ibánez, Lourdes; López-Bermejo, Abel

    2011-09-01

    Omentin-1 is a recently recognized adipokine primarily originating in visceral adipose tissue. We posited that circulating omentin-1 could be an early marker of metabolic dysfunction. To this end, we examined the associations between circulating omentin-1, body fat (bioelectric impedance), an endocrine-metabolic profile (homeostasis model assessment for insulin resistance (HOMA(IR)), serum lipids, high-molecular-weight (HMW) adiponectin and blood pressure (BP)) and family history of obesity and diabetes in asymptomatic prepubertal children (n = 161; 77 boys and 84 girls; age 7 ± 1 year) with a normal distribution of height and weight. Increased circulating omentin-1 was associated with a poorer metabolic profile, with relatively higher HOMA(IR), fasting triacylglycerol, BP and familial prevalence of diabetes (all P < 0.005 to P < 0.0001), and relatively lower fraction of HMW adiponectin (P < 0.005), whereas no relationship was found with body weight or fat or with family history of obesity. All these associations were independent of age, gender and fat mass. In conclusion, circulating omentin-1 may become a marker of metabolic dysfunction integrating insulin sensitivity, markers of adipose-tissue metabolism and BP as early as in prepubertal childhood.

  5. Reversible cardiac dysfunction after venlafaxine overdose and possible influence of genotype and metabolism.

    PubMed

    Castanares-Zapatero, Diego; Gillard, Nathalie; Capron, Arnaud; Haufroid, Vincent; Hantson, Philippe

    2016-09-01

    Acute poisoning by large venlafaxine (VEN) overdoses may result in serious cardiac events like acute left ventricular dysfunction or even fatalities. In humans, venlafaxine is biotransformed for the most part by CYP2D6 and CYP2C19 isoenzymes to its major metabolite O-desmethylvenlafaxine (ODV), and in parallel to N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (NODV) by several CYP isoenzymes, mainly including CYP3A4 and CYP2C19. The ODV concentrations must be taken into consideration along with those of VEN when relating blood concentrations to clinical effects. Herein we describe a case of reversible cardiac dysfunction following VEN self-poisoning. The peak ODV concentration (46,094ng/mL) was observed 20h post-ingestion, being one of the highest ever associated with survival. The calculated elimination half-life was 10h for VEN and 22h for ODV, and the calculated ODV/VEN metabolic ratio 12.9. Genotyping confirmed the patient to have an extensive metabolizer phenotype for CYP2D6, and an ultra-rapid metabolizer phenotype for CYP2C19. We suspect cardiotoxicity was related to sustained ODV exposure despite extensive VEN metabolism, and therefore suggest that ODV metabolism saturation may occur following large VEN overdoses.

  6. Novel diagnostics of metabolic dysfunction detected in breath and plasma by selective isotope-assisted labeling.

    PubMed

    Haviland, Julia A; Tonelli, Marco; Haughey, Dermot T; Porter, Warren P; Assadi-Porter, Fariba M

    2012-08-01

    Metabolomics is the study of a unique fingerprint of small molecules present in biological systems under healthy and disease conditions. One of the major challenges in metabolomics is validation of fingerprint molecules to identify specifically perturbed pathways in metabolic aberrations. This step is crucial to the understanding of budding metabolic pathologies and the ability to identify early indicators of common diseases such as obesity, type 2 diabetes mellitus, metabolic syndrome, polycystic ovary syndrome, and cancer. We present a novel approach to diagnosing aberrations in glucose utilization including metabolic pathway switching in a disease state. We used a well-defined prenatally exposed glucocorticoid mouse model that results in adult females with metabolic dysfunction. We applied the complementary technologies of nuclear magnetic resonance spectroscopy and cavity ring-down spectroscopy to analyze serial plasma samples and real-time breath measurements following selective (13)C-isotope-assisted labeling. These platforms allowed us to trace metabolic markers in whole animals and identify key metabolic pathway switching in prenatally glucocorticoid-treated animals. Total glucose flux is significantly proportionally increased through the major oxidative pathways of glycolysis and the pentose phosphate pathway in the prenatally glucocorticoid-treated animals relative to the control animals. This novel diagnostics approach is fast, noninvasive, and sensitive for determining specific pathway utilization, and provides a direct translational application in the health care field.

  7. Age-related macular degeneration.

    PubMed

    Lim, Laurence S; Mitchell, Paul; Seddon, Johanna M; Holz, Frank G; Wong, Tien Y

    2012-05-05

    Age-related macular degeneration is a major cause of blindness worldwide. With ageing populations in many countries, more than 20% might have the disorder. Advanced age-related macular degeneration, including neovascular age-related macular degeneration (wet) and geographic atrophy (late dry), is associated with substantial, progressive visual impairment. Major risk factors include cigarette smoking, nutritional factors, cardiovascular diseases, and genetic markers, including genes regulating complement, lipid, angiogenic, and extracellular matrix pathways. Some studies have suggested a declining prevalence of age-related macular degeneration, perhaps due to reduced exposure to modifiable risk factors. Accurate diagnosis combines clinical examination and investigations, including retinal photography, angiography, and optical coherence tomography. Dietary anti-oxidant supplementation slows progression of the disease. Treatment for neovascular age-related macular degeneration incorporates intraocular injections of anti-VEGF agents, occasionally combined with other modalities. Evidence suggests that two commonly used anti-VEGF therapies, ranibizumab and bevacizumab, have similar efficacy, but possible differences in systemic safety are difficult to assess. Future treatments include inhibition of other angiogenic factors, and regenerative and topical therapies.

  8. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks.

    PubMed

    Lessard, Sarah J; Rivas, Donato A; Alves-Wagner, Ana B; Hirshman, Michael F; Gallagher, Iain J; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L; Qi, Nathan R; Gustafsson, Thomas; Fielding, Roger A; Timmons, James A; Britton, Steven L; Koch, Lauren G; Goodyear, Laurie J

    2013-08-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are "exercise-resistant" and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease.

  9. Carotid artery intima-media thickness and erectile dysfunction in patients with metabolic syndrome

    PubMed Central

    Unal, Mustafa; Aksoy, Duygu Yazgan; Aydın, Yusuf; Tanriover, Mine Durusu; Berker, Dilek; Karakaya, Jale; Guler, Serdar

    2014-01-01

    Background Metabolic syndrome (MS) has become a pandemic in Turkey, as is the case globally. Increase in carotid artery intima-media thickness (CIMT) and erectile dysfunction (ED) may be evident before the clinical signs of cardiovascular disease appear. We aimed to investigate the prevalence of increased CIMT and ED as markers of atherosclerotic disease in patients with MS. Material/Methods Thirty-two patients with MS and 29 healthy controls were included. Anthropometric and biochemical parameters, along with total testosterone (TT), high sensitive C-reactive protein (hs-CRP), were recorded. Carotid artery intima-media thickness was measured. Erectile dysfunction was assessed with International Index of Erectile Function. Results Patients with MS had higher BMI, fasting plasma glucose, post-prandial plasma glucose, insulin, HOMA-IR, total cholesterol, triglycerides, hs-CRP, and CIMT, whereas TT levels were lower (p<0.0001). The prevalence and severity of erectile dysfunction were higher in patients with MS (p<0.0001). Erectile dysfunction scores correlated inversely with CIMT. MS patients with ED were older and had higher CIMT compared to those without ED. Increase in age and HOMA and decrease in TT increased the risk of ED. When KIMT exceeding the 95th percentile of healthy controls was accepted as a risk factor for CVD, presence of ED was the only determinant for this increase. Conclusions Erectile dysfunction was more prevalent and severe in patients with MS and correlated with subclinical endothelial dysfunction. Total testosterone deficiency was prominent among MS patients. Presence of ED points to an increased risk of cardiovascular disease when MS is present. PMID:24869934

  10. Preclinical Systolic and Diastolic Dysfunction in Metabolically Healthy and Unhealthy Obese Individuals

    PubMed Central

    Wang, Yi-Chih; Liang, Chang-seng; Gopal, Deepa M.; Ayalon, Nir; Donohue, Courtney; Santhanakrishnan, Rajalakshmi; Sandhu, Harpaul; Perez, Alejandro J.; Downing, Jill; Gokce, Noyan; Colucci, Wilson S.; Ho, Jennifer E.

    2015-01-01

    Background Despite the substantial overlap of obesity and metabolic disease, there is hetereogeneity with respect to cardiovascular risk. We sought to investigate preclinical differences in systolic and diastolic function in obesity, and specifically compare obese individuals with and without metabolic syndrome (MS). Methods and Results Obese individuals without cardiac disease with (OB/MS+, n=124) and without MS (OB/MS−, n=37) were compared to non-obese controls (n=29). Diastolic function was assessed by transmitral and tissue Doppler. Global longitudinal strain (LS) and time-based dyssynchrony were assessed by speckle tracking. Both Ob/MS− and OB/MS+ groups had similar ejection fraction but worse systolic mechanics as assessed by LS and dyssynchrony compared with non-obese controls. Specifically, OB/MS− had 2.5% lower LS (s.e. 0.7%, P=0.001 in multivariable-adjusted analyses) and 10.8 ms greater dyssynchrony (s.e. 3.3, P=0.002), and OB/MS+ had 1.0% lower LS (s.e. 0.3%, P<0.001) and 7.8 ms greater dyssynchrony (s.e. 1.5, P<0.001) compared with controls. Obesity was associated with impaired diastolic function regardless of MS status, as evidenced by greater left atrial diameter and left ventricular mass, though diastolic dysfunction was more pronounced in OB/MS+ compared with OB/MS− individuals. Conclusions Obesity is associated with subclinical differences in both systolic and diastolic function regardless of the presence or absence of MS, although MS appears to be associated with worse diastolic dysfunction. Compared to controls, ‘metabolically healthy’ obese had lower LS, greater dyssynchrony, and early diastolic dysfunction, supporting the notion that obesity per se may have adverse cardiovascular effects regardless of metabolic disease. PMID:26175540

  11. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy.

  12. New links between SOD1 and metabolic dysfunction from a yeast model of amyotrophic lateral sclerosis

    PubMed Central

    Bastow, Emma L.; Peswani, Amber R.; Tarrant, Daniel S. J.; Pentland, Daniel R.; Chen, Xi; Staniforth, Gemma L.; Rowe, Michelle L.; Howard, Mark J.

    2016-01-01

    ABSTRACT A number of genes have been linked to familial forms of the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). Over 150 mutations within the gene encoding superoxide dismutase 1 (SOD1) have been implicated in ALS, but why such mutations lead to ALS-associated cellular dysfunction is unclear. In this study, we identify how ALS-linked SOD1 mutations lead to changes in the cellular health of the yeast Saccharomyces cerevisiae. We find that it is not the accumulation of aggregates but the loss of Sod1 protein stability that drives cellular dysfunction. The toxic effect of Sod1 instability does not correlate with a loss of mitochondrial function or increased production of reactive oxygen species, but instead prevents acidification of the vacuole, perturbs metabolic regulation and promotes senescence. Central to the toxic gain-of-function seen with the SOD1 mutants examined was an inability to regulate amino acid biosynthesis. We also report that leucine supplementation results in an improvement in motor function in a Caenorhabditis elegans model of ALS. Our data suggest that metabolic dysfunction plays an important role in Sod1-mediated toxicity in both the yeast and worm models of ALS. PMID:27656112

  13. Role of high-energy phosphate metabolism in hydrogen peroxide-induced cardiac dysfunction.

    PubMed

    Matsumoto, Y; Kaneko, M; Iimuro, M; Fujise, Y; Hayashi, H

    2000-01-01

    This study was undertaken to clarify the role of high-energy phosphate metabolism in hydrogen peroxide-induced cardiac dysfunction using phosphorus and fluorine nuclear magnetic resonance spectroscopy. The exposure of a Langendorff-perfused heart to hydrogen peroxide (200-400 micromol/L, 8 min) provoked biphasic contractile dysfunction characterized by a transient depression of left ventricular developed pressure during the administration of hydrogen peroxide and a delayed elevation of left ventricular end-diastolic pressure after the washout of hydrogen peroxide. The initial phase of cardiac dysfunction correlated well with the accumulation of sugar phosphates (r = 0.89, p < 0.01). Furthermore, we demonstrated that glibenclamide, a potent inhibitor of the ATP-sensitive K+ channel, attenuated the initial depression of developed pressure. On the other hand, the delayed elevation of end-diastolic pressure correlated well with the total ATP depletion (r = 0.96, p < 0.01). However, ATP loss was supposed to be a mere result from the increased ATP consumption corresponding to a rise in intracellular free Ca2+ (from the control value of 315+/-23 nmol/L to 708+/-104 after the administration of hydrogen peroxide, p < 0.01), which also paralleled the elevation of end-diastolic pressure. Thus glycolytic inhibition and intracellular Ca2+ overload are independently responsible for the biphasic contractile dysfunction induced by hydrogen peroxide.

  14. Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man.

    PubMed Central

    Curto, R; Voit, E O; Cascante, M

    1998-01-01

    A modelling approach is used to analyse diseases associated with purine metabolism in man. The specific focus is on deficiencies in two enzymes, hypoxanthine:guanine phosphoribosyltransferase and adenylosuccinate lyase. These deficiencies can lead to a number of symptoms, including neurological dysfunctions and mental retardation. Although the biochemical mechanisms of dysfunctions associated with adenylosuccinate lyase deficiency are not completely understood, there is at least general agreement in the literature about possible causes. Simulations with our model confirm that accumulation of the two substrates of the enzyme can lead to significant biochemical imbalance. In hypoxanthine:guanine phosphoribosyltransferase deficiency the biochemical mechanisms associated with neurological dysfunctions are less clear. Model analyses support some old hypotheses but also suggest new indicators for possible causes of neurological dysfunctions associated with this deficiency. Hypoxanthine:guanine phosphoribosyltransferase deficiency is known to cause hyperuricaemia and gout. We compare the relative importance of this deficiency with other known causes of gout in humans. The analysis suggests that defects in the excretion of uric acid are more consequential than defects in uric acid synthesis such as hypoxanthine:guanine phosphoribosyltransferase deficiency. PMID:9445373

  15. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision.

  16. Influence of metabolic dysfunction on cardiac mechanics in decompensated hypertrophy and heart failure.

    PubMed

    Tewari, Shivendra G; Bugenhagen, Scott M; Vinnakota, Kalyan C; Rice, J Jeremy; Janssen, Paul M L; Beard, Daniel A

    2016-05-01

    Alterations in energetic state of the myocardium are associated with decompensated heart failure in humans and in animal models. However, the functional consequences of the observed changes in energetic state on mechanical function are not known. The primary aim of the study was to quantify mechanical/energetic coupling in the heart and to determine if energetic dysfunction can contribute to mechanical failure. A secondary aim was to apply a quantitative systems pharmacology analysis to investigate the effects of drugs that target cross-bridge cycling kinetics in heart failure-associated energetic dysfunction. Herein, a model of metabolite- and calcium-dependent myocardial mechanics was developed from calcium concentration and tension time courses in rat cardiac muscle obtained at different lengths and stimulation frequencies. The muscle dynamics model accounting for the effect of metabolites was integrated into a model of the cardiac ventricles to simulate pressure-volume dynamics in the heart. This cardiac model was integrated into a simple model of the circulation to investigate the effects of metabolic state on whole-body function. Simulations predict that reductions in metabolite pools observed in canine models of heart failure can cause systolic dysfunction, blood volume expansion, venous congestion, and ventricular dilation. Simulations also predict that myosin-activating drugs may partially counteract the effects of energetic state on cross-bridge mechanics in heart failure while increasing myocardial oxygen consumption. Our model analysis demonstrates how metabolic changes observed in heart failure are alone sufficient to cause systolic dysfunction and whole-body heart failure symptoms.

  17. Tripping on TRIB3 at the junction of health, metabolic dysfunction and cancer.

    PubMed

    Mondal, Debasis; Mathur, Aditi; Chandra, Partha K

    2016-05-01

    Metabolic diseases like obesity, atherosclerosis and diabetes are frequently associated with increased risk of aggressive cancers. Although metabolic dysfunctions in normal cells are manifested due to defective signaling networks that control cellular homeostasis, malignant cells utilize these signaling networks for their increased survival, growth and metastasis. Despite decades of research, a common mechanistic link between these chronic pathologies is still not well delineated. Evidences show that the unfolded protein response (UPR) and the endoplasmic reticulum stress (ERS) pathways are often dysregulated in both metabolic diseases and cancer. The UPR also triggers coordinated signaling with both PI3K/AKT/mTOR and Autophagy pathways in order to promote stress-adaptive mechanisms. Whereas, uncontrolled UPR and the resultant ERS escalates cells towards metabolic dysfunctions and ultimately cell death. In this review, we will discuss findings that implicate a crucial role for the multifunctional ERS-induced protein, TRIB3. The 'pseudokinase' function of TRIB3 facilitates the inactivation of multiple transcription factors and signaling proteins. The MEK1 binding domain of TRIB3 enables it to deactivate multiple MAP-kinases. In addition, the COP1 motif of TRIB3 assists ubiquitination and proteasomal degradation of numerous TRIB3 associated proteins. The most well studied action of TRIB3 has been on the PI3K/AKT/mTOR pathway, where TRIB3-mediated inhibition of AKT phosphorylation decreases insulin signaling and cell survival. Conversely, cancer cells can either upregulate the AKT survival pathway by suppressing TRIB3 expression or alter TRIB3 localization to degrade differentiation inducing nuclear transcription factors such as C/EBPα and PPARγ. The gain-of-function Q84R polymorphism in TRIB3 is associated with increased risk of diabetes and atherosclerosis. TRIB3 acts as a crucial 'stress adjusting switch' that links homeostasis, metabolic disease and cancer; and

  18. Oxytocin system dysfunction as a common mechanism underlying metabolic syndrome and psychiatric symptoms in schizophrenia and bipolar disorders.

    PubMed

    Quintana, Daniel S; Dieset, Ingrid; Elvsåshagen, Torbjørn; Westlye, Lars T; Andreassen, Ole A

    2017-01-01

    There is growing interest in using intranasal oxytocin (OT) to treat social dysfunction in schizophrenia and bipolar disorders (i.e., psychotic disorders). While OT treatment results have been mixed, emerging evidence suggests that OT system dysfunction may also play a role in the etiology of metabolic syndrome (MetS), which appears in one-third of individuals with psychotic disorders and associated with increased mortality. Here we examine the evidence for a potential role of the OT system in the shared risk for MetS and psychotic disorders, and its prospects for ameliorating MetS. Using several studies to demonstrate the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, we show that OT system dysfunction may be one common mechanism underlying MetS and psychotic disorders. Given the critical need to better understand metabolic dysregulation in these disorders, future OT trials assessing behavioural and cognitive outcomes should additionally include metabolic risk factor parameters.

  19. Age-related eye disease.

    PubMed

    Voleti, Vinod B; Hubschman, Jean-Pierre

    2013-05-01

    As with many organs, compromised function of the eye is accompanied with age and has become increasingly prevalent with the aging population. When decreased visual loss becomes significant, patients' ability to perform activities of daily living becomes compromised. This decrease in function is met with morbidity and mortality, as well as a large socioeconomic burden throughout the world. This review summarizes the most common age-related eye diseases, including cataract, glaucoma, diabetic retinopathy, retinal vein occlusion, and age-related macular degeneration. Although our understanding of the genetic and biochemical pathways of these diseases is sill at its primitive stages, we have become able to help our patients improve the quality of life as they age.

  20. Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3).

    PubMed

    Nykjaer, A; Fyfe, J C; Kozyraki, R; Leheste, J R; Jacobsen, C; Nielsen, M S; Verroust, P J; Aminoff, M; de la Chapelle, A; Moestrup, S K; Ray, R; Gliemann, J; Willnow, T E; Christensen, E I

    2001-11-20

    Steroid hormones are central regulators of a variety of biological processes. According to the free hormone hypothesis, steroids enter target cells by passive diffusion. However, recently we demonstrated that 25(OH) vitamin D(3) complexed to its plasma carrier, the vitamin D-binding protein, enters renal proximal tubules by receptor-mediated endocytosis. Knockout mice lacking the endocytic receptor megalin lose 25(OH) vitamin D(3) in the urine and develop bone disease. Here, we report that cubilin, a membrane-associated protein colocalizing with megalin, facilitates the endocytic process by sequestering steroid-carrier complexes on the cellular surface before megalin-mediated internalization of the cubilin-bound ligand. Dogs with an inherited disorder affecting cubilin biosynthesis exhibit abnormal vitamin D metabolism. Similarly, human patients with mutations causing cubilin dysfunction exhibit urinary excretion of 25(OH) vitamin D(3). This observation identifies spontaneous mutations in an endocytic receptor pathway affecting cellular uptake and metabolism of a steroid hormone.

  1. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction.

    PubMed

    Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Schwartzman, Michal Laniado; Rocic, Petra

    2017-03-01

    Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO(·-) production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS.NEW & NOTEWORTHY

  2. Job stress strengthens the link between metabolic risk factors and renal dysfunction in adult men.

    PubMed

    Tsurugano, Shinobu; Nakao, Mutsuhiro; Takeuchi, Takeaki; Nomura, Kyoko; Yano, Eiji

    2012-01-01

    Chronic kidney disease (CKD) is an important risk factor for cardiovascular disease. The metabolic risk factors obesity, hypertension, diabetes, and dyslipidemia are closely associated with renal dysfunction. As psychosocial stress affects these risk factors, here, we examined relationships between metabolic risk factors and renal function, and their association with job stress. The participants were 1,231 Japanese male office workers attending annual health examinations. The estimated glomerular filtration rate (eGFR) was determined using the equation recommended by the Japanese Society for Nephrology: eGFR (mL/min/1.73 m(2)) = 194 × age(-0.287) × Cr(-1.094). Job stress was measured using the Job Content Questionnaire based on the job demand-control model. The job strain index equaled the job demand scores divided by the job control scores. The participants were classified into four ordinal groups of job strain index, based on previous studies (i.e., ≤ 0.4 the lowest, 0.4-0.5 lower, 0.5-0.6 higher, or ≥ 0.6 the highest). A significant correlation was found between lowered eGFR and each of the metabolic risk factors waist circumference, systolic and diastolic blood pressure, and total cholesterol (p < 0.001). Furthermore, job stress had an interactive effect on the relationships between eGFR and systolic and diastolic blood pressure, and triglycerides, depending on the job strain index (highest vs. lowest) (p < 0.05). The highly stressed workers exhibited a close association of eGFR with metabolic risk factors like hypertension and dyslipidemia. Therefore, intensive management may be important for preventing the progression of renal dysfunction and cardiovascular complications in those experiencing stress.

  3. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model.

    PubMed

    McClanahan, Fabienne; Riches, John C; Miller, Shaun; Day, William P; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M; Capasso, Melania; Gribben, John G

    2015-07-09

    T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3(+)CD8(+) T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1(+) T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8(+) T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity.

  4. Serotonergic dysfunctions and abnormal iron metabolism: Relevant to mental fatigue of Parkinson disease.

    PubMed

    Zuo, Li-Jun; Yu, Shu-Yang; Hu, Yang; Wang, Fang; Piao, Ying-Shan; Lian, Teng-Hong; Yu, Qiu-Jin; Wang, Rui-Dan; Li, Li-Xia; Guo, Peng; Du, Yang; Zhu, Rong-Yan; Jin, Zhao; Wang, Ya-Jie; Wang, Xiao-Min; Chan, Piu; Chen, Sheng-Di; Wang, Yong-Jun; Zhang, Wei

    2016-12-01

    Fatigue is a very common non-motor symptom in Parkinson disease (PD) patients. It included physical fatigue and mental fatigue. The potential mechanisms of mental fatigue involving serotonergic dysfunction and abnormal iron metabolism are still unknown. Therefore, we evaluated the fatigue symptoms, classified PD patients into fatigue group and non-fatigue group, and detected the levels of serotonin, iron and related proteins in CSF and serum. In CSF, 5-HT level is significantly decreased and the levels of iron and transferrin are dramatically increased in fatigue group. In fatigue group, mental fatigue score is negatively correlated with 5-HT level in CSF, and positively correlated with the scores of depression and excessive daytime sleepiness, and disease duration, also, mental fatigue is positively correlated with the levels of iron and transferrin in CSF. Transferrin level is negatively correlated with 5-HT level in CSF. In serum, the levels of 5-HT and transferrin are markedly decreased in fatigue group; mental fatigue score exhibits a negative correlation with 5-HT level. Thus serotonin dysfunction in both central and peripheral systems may be correlated with mental fatigue through abnormal iron metabolism. Depression, excessive daytime sleepiness and disease duration were the risk factors for mental fatigue of PD.

  5. Neonatal treatment with scopolamine butylbromide prevents metabolic dysfunction in male rats

    PubMed Central

    Malta, Ananda; Souza, Aline Amenencia de; Ribeiro, Tatiane Aparecida; Francisco, Flávio Andrade; Pavanello, Audrei; Prates, Kelly Valério; Tófolo, Laize Peron; Miranda, Rosiane Aparecida; Oliveira, Júlio Cezar de; Martins, Isabela Peixoto; Previate, Carina; Gomes, Rodrigo Mello; Franco, Claudinéia Conationi da Silva; Natali, Maria Raquel Marçal; Palma-Rigo, Kesia; Mathias, Paulo Cezar de Freitas

    2016-01-01

    We tested whether treatment with a cholinergic antagonist could reduce insulin levels in early postnatal life and attenuate metabolic dysfunctions induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SLs, 3 pups/dam) and normal litters (NLs, 9 pups/dam) were used in models of early overfeeding and normal feeding, respectively. During the first 12 days of lactation, animals in the SL and NL groups received scopolamine butylbromide (B), while the controls received saline (S) injections. The drug treatment decreased insulin levels in pups from both groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, vagus nerve activity, fat tissue accretion, insulinemia, leptinemia, body weight gain and food intake. Low glucose and cholinergic insulinotropic effects were observed in pancreatic islets from both groups. Low protein expression was observed for the muscarinic M3 acetylcholine receptor subtype (M3mAChR), although M2mAChR subtype expression was increased in SL-B islets. In addition, beta-cell density was reduced in drug-treated rats. These results indicate that early postnatal scopolamine butylbromide treatment inhibits early overfeeding-induced metabolic dysfunctions in adult rats, which might be caused by insulin decreases during lactation, associated with reduced parasympathetic activity and expression of M3mAChR in pancreatic islets. PMID:27561682

  6. Compromised respiratory adaptation and thermoregulation in aging and age-related diseases.

    PubMed

    Chan, Sic L; Wei, Zelan; Chigurupati, Srinivasulu; Tu, Weihong

    2010-01-01

    Mitochondrial dysfunction and reactive oxygen species (ROS) production are at the heart of the aging process and are thought to underpin age-related diseases. Mitochondria are not only the primary energy-generating system but also the dominant cellular source of metabolically derived ROS. Recent studies unravel the existence of mechanisms that serve to modulate the balance between energy metabolism and ROS production. Among these is the regulation of proton conductance across the inner mitochondrial membrane that affects the efficiency of respiration and heat production. The field of mitochondrial respiration research has provided important insight into the role of altered energy balance in obesity and diabetes. The notion that respiration and oxidative capacity are mechanistically linked is making significant headway into the field of aging and age-related diseases. Here we review the regulation of cellular energy and ROS balance in biological systems and survey some of the recent relevant studies that suggest that respiratory adaptation and thermodynamics are important in aging and age-related diseases.

  7. Myocardial mechanical dysfunction following endotoxemia: role of changes in energy substrate metabolism.

    PubMed

    Soraya, Hamid; Masoud, Waleed G T; Gandhi, Manoj; Garjani, Alireza; Clanachan, Alexander S

    2016-03-01

    Cardiovascular depression due to endotoxemia remains a major cause of mortality in intensive care patients. To determine whether drug-induced alterations in cardiac metabolism may be a viable strategy to reduce endotoxemia-mediated cardiac dysfunction, we assessed endotoxemia-induced changes in glucose and fatty acid metabolism under aerobic and post-ischemic conditions. Endotoxemia was induced in male Sprague-Dawley rats by lipopolysaccharide (Escherichia coli 0111:B4c, 4 mg/kg, i.p.) 6 h prior to heart removal for ex vivo assessment of left ventricular (LV) work and rates of glucose metabolism (glucose uptake, glycogen synthesis, glycolysis and glucose oxidation) and palmitate oxidation. Under aerobic conditions, endotoxemic hearts had impaired LV function as judged by echocardiography in vivo (% ejection fraction, 66.0 ± 3.2 vs 78.0 ± 2.1, p < 0.05) or by LV work ex vivo (2.14 ± 0.16 vs 3.28 ± 0.16, Joules min(-1) g dry wt(-1), p < 0.05). However, rates of glucose uptake, glycogen synthesis, glycolysis, and glucose oxidation were not altered. Palmitate oxidation was lower in endotoxemic hearts in proportion to the decreased workload, thus metabolic efficiency was unaffected. In hearts reperfused following global ischemia, untreated hearts had impaired recovery of LV work (52.3 ± 9.4 %) whereas endotoxemic hearts had significantly higher recovery (105.6 ± 11.3 %, p < 0.05). During reperfusion, fatty acid oxidation, acetyl CoA production and metabolic efficiency were similar in both groups. As impaired cardiac function appeared unrelated to depression of energy substrate oxidation, it is unlikely that drug-induced acceleration of fatty acid oxidation will improve mechanical function. The beneficial repartitioning of glucose metabolism in reperfused endotoxemic hearts may contribute to the cardioprotected phenotype.

  8. Age-related macular degeneration

    PubMed Central

    Querques, Giuseppe; Avellis, Fernando Onofrio; Querques, Lea; Bandello, Francesco; Souied, Eric H

    2011-01-01

    Clinical question: Is there any new knowledge about the pathogenesis and treatment of age-related macular degeneration (AMD)? Results: We now understand better the biochemical and pathological pathways involved in the genesis of AMD. Treatment of exudative AMD is based on intravitreal injection of new antivascular endothelial growth factor drugs for which there does not yet exist a unique recognized strategy of administration. No therapies are actually available for atrophic AMD, despite some experimental new pharmacological approaches. Implementation: strategy of administration, safety of intravitreal injection PMID:21654887

  9. [Biomarkers of iron metabolism and inflammation in patients with chronic heart failure and various types of left ventricular dysfunction].

    PubMed

    Kazymyrko, V K; Kutovyĭ, V V; Ivanyts'ka, L M; Dubkova, A G; Silant'ieva, T S

    2013-09-01

    Study the level of some of the indicators of iron metabolism and inflammatory markers in patients with chronic heart failure due to hypertension and coronary heart disease. The results of the study in systolic and diastolic dysfunction of the left ventricle, the varying degrees of severity of heart failure. The level of the studied parameters determined by the severity of heart failure and does not depend on the nature of left ventricular dysfunction.

  10. A Role for Timp3 in Microbiota-Driven Hepatic Steatosis and Metabolic Dysfunction.

    PubMed

    Mavilio, Maria; Marchetti, Valentina; Fabrizi, Marta; Stöhr, Robert; Marino, Arianna; Casagrande, Viviana; Fiorentino, Loredana; Cardellini, Marina; Kappel, Ben; Monteleone, Ivan; Garret, Celine; Mauriello, Alessandro; Monteleone, Giovanni; Farcomeni, Alessio; Burcelin, Remy; Menghini, Rossella; Federici, Massimo

    2016-07-19

    The effect of gut microbiota on obesity and insulin resistance is now recognized, but the underlying host-dependent mechanisms remain poorly undefined. We find that tissue inhibitor of metalloproteinase 3 knockout (Timp3(-/-)) mice fed a high-fat diet exhibit gut microbiota dysbiosis, an increase in branched chain and aromatic (BCAA) metabolites, liver steatosis, and an increase in circulating soluble IL-6 receptors (sIL6Rs). sIL6Rs can then activate inflammatory cells, such as CD11c(+) cells, which drive metabolic inflammation. Depleting the microbiota through antibiotic treatment significantly improves glucose tolerance, hepatic steatosis, and systemic inflammation, and neutralizing sIL6R signaling reduces inflammation, but only mildly impacts glucose tolerance. Collectively, our results suggest that gut microbiota is the primary driver of the observed metabolic dysfunction, which is mediated, in part, through IL-6 signaling. Our findings also identify an important role for Timp3 in mediating the effect of the microbiota in metabolic diseases.

  11. Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions.

    PubMed

    Yang, Xiaoyan; Sui, Wenhai; Zhang, Meng; Dong, Mei; Lim, Sharon; Seki, Takahiro; Guo, Ziheng; Fischer, Carina; Lu, Huixia; Zhang, Cheng; Yang, Jianmin; Zhang, Meng; Wang, Yangang; Cao, Caixia; Gao, Yanyan; Zhao, Xingguo; Sun, Meili; Sun, Yuping; Zhuang, Rujie; Samani, Nilesh J; Zhang, Yun; Cao, Yihai

    2017-02-23

    Visceral fat is considered the genuine and harmful white adipose tissue (WAT) that is associated to development of metabolic disorders, cardiovascular disease, and cancer. Here, we present a new concept to turn the harmful visceral fat into a beneficial energy consumption depot, which is beneficial for improvement of metabolic dysfunctions in obese mice. We show that low temperature-dependent browning of visceral fat caused decreased adipose weight, total body weight, and body mass index, despite increased food intake. In high-fat diet-fed mice, low temperature exposure improved browning of visceral fat, global metabolism via nonshivering thermogenesis, insulin sensitivity, and hepatic steatosis. Genome-wide expression profiling showed upregulation of WAT browning-related genes including Cidea and Dio2. Conversely, Prdm16 was unchanged in healthy mice or was downregulated in obese mice. Surgical removal of visceral fat and genetic knockdown of UCP1 in epididymal fat largely ablated low temperature-increased global thermogenesis and resulted in the death of most mice. Thus, browning of visceral fat may be a compensatory heating mechanism that could provide a novel therapeutic strategy for treating visceral fat-associated obesity and diabetes.

  12. Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions

    PubMed Central

    Yang, Xiaoyan; Sui, Wenhai; Zhang, Meng; Dong, Mei; Lim, Sharon; Seki, Takahiro; Guo, Ziheng; Fischer, Carina; Lu, Huixia; Zhang, Cheng; Yang, Jianmin; Zhang, Meng; Wang, Yangang; Cao, Caixia; Gao, Yanyan; Zhao, Xingguo; Sun, Meili; Sun, Yuping; Zhuang, Rujie; Samani, Nilesh J.; Zhang, Yun

    2017-01-01

    Visceral fat is considered the genuine and harmful white adipose tissue (WAT) that is associated to development of metabolic disorders, cardiovascular disease, and cancer. Here, we present a new concept to turn the harmful visceral fat into a beneficial energy consumption depot, which is beneficial for improvement of metabolic dysfunctions in obese mice. We show that low temperature–dependent browning of visceral fat caused decreased adipose weight, total body weight, and body mass index, despite increased food intake. In high-fat diet–fed mice, low temperature exposure improved browning of visceral fat, global metabolism via nonshivering thermogenesis, insulin sensitivity, and hepatic steatosis. Genome-wide expression profiling showed upregulation of WAT browning–related genes including Cidea and Dio2. Conversely, Prdm16 was unchanged in healthy mice or was downregulated in obese mice. Surgical removal of visceral fat and genetic knockdown of UCP1 in epididymal fat largely ablated low temperature–increased global thermogenesis and resulted in the death of most mice. Thus, browning of visceral fat may be a compensatory heating mechanism that could provide a novel therapeutic strategy for treating visceral fat–associated obesity and diabetes. PMID:28239649

  13. Dysfunctional adipose tissue and low-grade inflammation in the management of the metabolic syndrome: current practices and future advances

    PubMed Central

    van Greevenbroek, Marleen M. J.; Schalkwijk, Casper G.; Stehouwer, Coen D.A.

    2016-01-01

    The ongoing worldwide obesity epidemic makes the metabolic syndrome an increasingly important entity. In this review, we provide a short background on the metabolic syndrome, we discuss recent developments in the three main options that have been identified for intervention in the metabolic syndrome, i.e. lifestyle and surgical and pharmacological interventions, and we focus on different views in the literature and also include our own viewpoints on the metabolic syndrome. In addition, we discuss some emerging treatment targets for adipose tissue dysfunction and low-grade inflammation, i.e. activation of the inflammasome and the complement system, and consider some selected opportunities for intervention in these processes. PMID:27803798

  14. NMR-based metabolomics reveals brain region-specific metabolic alterations in streptozotocin-induced diabetic rats with cognitive dysfunction.

    PubMed

    Zheng, Hong; Lin, Qiuting; Wang, Dan; Xu, Pengtao; Zhao, Liangcai; Hu, Wenyi; Bai, Guanghui; Yan, Zhihan; Gao, Hongchang

    2017-04-01

    Diabetes mellitus (DM) can result in cognitive dysfunction, but its potential metabolic mechanisms remain unclear. In the present study, we analyzed the metabolite profiling in eight different brain regions of the normal rats and the streptozotocin (STZ)-induced diabetic rats accompanied by cognitive dysfunction using a (1)H NMR-based metabolomic approach. A mixed linear model analysis was performed to assess the effects of DM, brain region and their interaction on metabolic changes. We found that different brain regions in rats displayed significant metabolic differences. In addition, the hippocampus was more susceptible to DM compared with other brain regions in rats. More interestingly, significant interaction effects of DM and brain region were observed on alanine, creatine/creatine-phosphate, lactate, succinate, aspartate, glutamate, glutamine, γ-aminobutyric acid, glycine, choline, N-acetylaspartate, myo-inositol and taurine. Based on metabolic pathway analysis, we speculate that cognitive dysfunction in the STZ-induced diabetic rats may be associated with brain region-specific metabolic alterations involving energy metabolism, neurotransmitters, membrane metabolism and osmoregulation.

  15. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction.

    PubMed

    Chalkiadaki, Angeliki; Guarente, Leonard

    2012-08-08

    Adipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrient availability in many metabolic tissues. Here we report that SIRT1 functions in adipose tissue to protect from inflammation and obesity under normal feeding conditions, and to forestall the progression to metabolic dysfunction under dietary stress and aging. Genetic ablation of SIRT1 in adipose tissue leads to gene expression changes that highly overlap with changes induced by high-fat diet in wild-type mice, suggesting that dietary stress signals inhibit the activity of SIRT1. Indeed, we show that high-fat diet induces the cleavage of SIRT1 protein in adipose tissue by the inflammation-activated caspase-1, providing a link between dietary stress and predisposition to metabolic dysfunction.

  16. Maternal Metabolic Syndrome Programs Mitochondrial Dysfunction via Germline Changes across Three Generations.

    PubMed

    Saben, Jessica L; Boudoures, Anna L; Asghar, Zeenat; Thompson, Alysha; Drury, Andrea; Zhang, Wendy; Chi, Maggie; Cusumano, Andrew; Scheaffer, Suzanne; Moley, Kelle H

    2016-06-28

    Maternal obesity impairs offspring health, but the responsible mechanisms are not fully established. To address this question, we fed female mice a high-fat/high-sugar diet from before conception until weaning and then followed the outcomes in the next three generations of offspring, all fed a control diet. We observed that female offspring born to obese mothers had impaired peripheral insulin signaling that was associated with mitochondrial dysfunction and altered mitochondrial dynamic and complex proteins in skeletal muscle. This mitochondrial phenotype persisted through the female germline and was passed down to the second and third generations. Our results indicate that maternal programming of metabolic disease can be passed through the female germline and that the transfer of aberrant oocyte mitochondria to subsequent generations may contribute to the increased risk for developing insulin resistance.

  17. Behavioral changes and brain energy metabolism dysfunction in rats treated with methamphetamine or dextroamphetamine.

    PubMed

    Feier, Gustavo; Valvassori, Samira S; Lopes-Borges, Jéssica; Varela, Roger B; Bavaresco, Daniela V; Scaini, Giselli; Morais, Meline O; Andersen, Monica L; Streck, Emilio L; Quevedo, João

    2012-11-14

    Studies have demonstrated that AMPHs produce long-term damage to the brain dopaminergic, serotoninergic and glutamatergic regions. Prefrontal cortex, amygdala, hippocampus and striatum appear to be involved in the toxicity and behavioral changes induced by AMPHs. A single dose of AMPH causes mitochondrial dysfunction and oxidative stress in rat brain. The goal of the present study was thus to investigate the potency of two amphetamines, dextroamphetamine (d-AMPH) and methamphetamine (m-AMPH), on the behavior and energetic dysfunction in the brain of rats. d-AMPH and m-AMPH increased the crossing and rearing behaviors. The numbers of visits to the center were increased by d-AMPH and m-AMPH only at 2mg/kg. Likewise, at a high dose (2 mg/kg), the injection of m-AMPH increased the amount of sniffing. The AMPHs significantly decreased the activities of Krebs cycle enzymes (citrate synthase and succinate dehydrogenase) and mitochondrial respiratory chain complexes (I-IV); nevertheless, this effect varied depending on the brain region evaluated. In summary, this study demonstrated that at high doses, m-AMPH, increased stereotyped (sniffing) behavior in rats, but d-AMPH did not. However, this study shows that d-AMPH and m-AMPH seem to have similar effects on the brains energetic metabolism.

  18. Endothelial Dysfunction Caused by Circulating Microparticles from Patients with Metabolic Syndrome

    PubMed Central

    Agouni, Abdelali; Lagrue-Lak-Hal, Anne Hélène; Ducluzeau, Pierre Henri; Mostefai, Hadj Ahmed; Draunet-Busson, Catherine; Leftheriotis, Georges; Heymes, Christophe; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2008-01-01

    Microparticles are membrane vesicles that are released during cell activation and apoptosis. Elevated levels of microparticles occur in many cardiovascular diseases; therefore, we characterized circulating microparticles from both metabolic syndrome (MS) patients and healthy patients. We evaluated microparticle effects on endothelial function; however, links between circulating microparticles and endothelial dysfunction have not yet been demonstrated. Circulating microparticles and their cellular origins were examined by flow cytometry of blood samples from patients and healthy subjects. Microparticles were used either to treat human endothelial cells in vitro or to assess endothelium function in mice after intravenous injection. MS patients had increased circulating levels of microparticles compared with healthy patients, including microparticles from platelet, endothelial, erythrocyte, and procoagulant origins. In vitro treatment of endothelial cells with microparticles from MS patients reduced both nitric oxide (NO) and superoxide anion production, resulting in protein tyrosine nitration. These effects were associated with enhanced phosphorylation of endothelial NO synthase at the site of inhibition. The reduction of O2− was linked to both reduced expression of p47phox of NADPH oxidase and overexpression of extracellular superoxide dismutase. The decrease in NO production was triggered by nonplatelet-derived microparticles. In vivo injection of MS microparticles into mice impaired endothelium-dependent relaxation and decreased endothelial NO synthase expression. These data provide evidence that circulating microparticles from MS patients influence endothelial dysfunction. PMID:18772329

  19. Farnesoid X receptor activation improves erectile dysfunction in models of metabolic syndrome and diabetes.

    PubMed

    Morelli, Annamaria; Vignozzi, Linda; Maggi, Mario; Adorini, Luciano

    2011-08-01

    The metabolic syndrome (MetS) is an insulin-resistant state characterized by a cluster of cardiovascular risk factors, including abdominal obesity, hyperglycemia, elevated blood pressure and combined dyslipidemia. In this review, we discuss the potential of farnesoid X receptor (FXR) agonists in the treatment of erectile dysfunction (ED), a multifactorial disorder often comorbid with MetS. FXR not only regulates lipid and glucose homeostasis but also influences endothelial function and atherosclerosis, suggesting a regulatory role for this hormone nuclear receptor in the cardiovascular complications associated with the MetS, including ED. MetS induces ED via several mechanisms, and in particular through endothelial dysfunction in penile vessels. In a high-fat diet rabbit model of MetS, a 3-month treatment with the potent and selective FXR agonist INT-747 restores endothelium-dependent relaxation in isolated cavernous tissue, normalizing responsiveness to acetylcholine and to electrical field stimulation. Accordingly, eNOS expression in the penis is greatly up-regulated by INT-747 treatment. Experiments in a rat model of chemically-induced type 1 diabetes further demonstrate that INT-747 treatment preserves erectile function induced by electrical stimulation of the cavernous nerve. These results add a new facet to the pleiotropic activities mediated by FXR, and reveal novel beneficial effects of FXR activation with potential clinical relevance. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.

  20. Endothelial dysfunction and metabolic control in streptozotocin-induced diabetic rats.

    PubMed

    Rodríguez-Mañas, L; Angulo, J; Peiró, C; Llergo, J L; Sánchez-Ferrer, A; López-Dóriga, P; Sánchez-Ferrer, C F

    1998-04-01

    1. The aim of this work was to study the influence of the metabolic control, estimated by the levels of glycosylated haemoglobin in total blood samples (HbA1c), in developing vascular endothelial dysfunction in streptozotocin-induced diabetic rats. Four groups of animals with different levels of insulin treatment were established, by determining HbA1c values in 5.5 to 7.4%, 7.5 to 9.4%, 9.5 to 12% and > 12%, respectively. 2. The parameters analysed were: (1) the endothelium-dependent relaxations to acetylcholine (ACh) in isolated aorta and mesenteric microvessels; (2) the vasodilator responses to exogenous nitric oxide (NO) in aorta: and (3) the existence of oxidative stress by studying the influence of the free radical scavenger superoxide dismutase (SOD) on the vasodilator responses to both ACh and NO. 3. In both isolated aortic segments and mesenteric microvessels, the endothelium-mediated concentration-dependent relaxant responses elicited by ACh were significantly decreased when the vessels were obtained from diabetic animals but only with HbA1c values higher than 7.5%. There was a high correlation between HbA1c levels and the impairment of ACh-induced relaxations, measured by pD2 values. 4. The concentration-dependent vasorelaxant responses to NO in endothelium-denuded aortic segments were significantly reduced only in vessels from diabetic animals with HbA1c values higher than 7.5%. Again, a very high correlation was found between the HbA1c values and pD2 for NO-evoked responses. 5. In the presence of SOD, the responses to ACh or NO were only increased in the segments from diabetic rats with HbA1c levels higher than 7.5%, but not in those from non-diabetic or diabetic rats with a good metabolic control (HbA1c levels <7.5%). 6. These results suggest the existence of: (1) a close relation between the degree of endothelial dysfunction and the metabolic control of diabetes, estimated by the levels of HbA1c; and (2) an increased production of superoxide anions in

  1. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome

    PubMed Central

    Paniagua, Juan Antonio

    2016-01-01

    Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS. PMID

  2. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts

    PubMed Central

    Guo, Rui; Hu, Nan; Kandadi, Machender R.; Ren, Jun

    2012-01-01

    Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A1, E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect. PMID:22441020

  3. Favorable effects of vildagliptin on metabolic and cognitive dysfunctions in streptozotocin-induced diabetic rats.

    PubMed

    El Batsh, Maha M; El Batch, Manal M; Shafik, Noha M; Younos, Ibrahim H

    2015-12-15

    Progression of diabetes mellitus is accompanied by metabolic disorders together with psychological deficits including cognitive dysfunctions. Herein, we used a murine streptozotocin (STZ)-induced diabetes to investigate the beneficial effects of vildagliptin not only on metabolic abnormalities, but also on diabetes-induced cognitive decline. Sixty rats were divided randomly and equally into 2 groups; one remains normal and the other serves as STZ- induced diabetic. Both groups were further divided equally into 2 groups; one received vehicle and the other received oral vildagliptin for 8 weeks. Cognitive behavior was assessed using novel object recognition test. Blood samples were collected to measure metabolic parameters and dipeptidyl peptidase (DPP)-IV activity. Brains were removed and investigated for the levels of inflammatory and oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD) and tumor necrosis factor-α (TNF-α), in addition to brain-derived neurotrophic factor (BDNF) and relative expression of nuclear factor kappa B (NF-κB)/p65. Treatment of STZ-induced diabetic rats with vildagliptin increased their body weight and corrected diabetes-induced memory and learning impairment. Moreover, vildagliptin significantly decreased serum levels of glucose and lipids (except high density lipoprotein) together with brain MDA, TNF-α, serum DPP-IV activities and NF-κB/p65 gene expression. On the other hand, vildagliptin significantly increased brain BDNF, SOD as well as serum insulin. Results suggested that vildagliptin has a protective role in counteracting both metabolic abnormalities and memory deficits in diabetic rats, possibly via its anti-hyperglycemic, anti-inflammatory, antioxidant effects, together with reduction of brain NF-κB/p65 over expression.

  4. Diabetes and hyperlipidemia induce dysfunction of VSMCs: contribution of the metabolic inflammation/miRNA pathway.

    PubMed

    Li, Tao; Yang, Guang-ming; Zhu, Yu; Wu, Yue; Chen, Xiang-yun; Lan, Dan; Tian, Kun-lun; Liu, Liang-ming

    2015-02-15

    Vascular endothelial cell injury is considered to be the major factor inducing vascular complications in metabolic diseases and plays an important role in other organ damage. With diabetic and hyperlipidemic rats and cultured VSMCs, the present study was aimed at investigating whether the early damage of VSMCs during metabolic diseases plays a critical role in vascular dysfunction and the underlying mechanisms and would be a promising treatment target. With diabetic and hyperlipidemic rats and cultured VSMCs, the changes and relationships of vascular relaxation and contractile function to the vital organ damage and the underlying mechanisms were investigated; meanwhile, the protective and preventive effects of lowering blood lipid and glucose and inhibition of diabetes and hyperlipidemia-induced vascular hyperreactivity were observed. Diabetic and hyperlipidemic rats presented hyperreactivity in vascular contractile response in the early stages. Hyperglycemia and hyperlipidemia directly affected the contractile function of VSMCs. Early application of fasudil, a specific antagonist of Rho kinase, significantly alleviated diabetes and hyperlipidemia-induced organ damage by inhibiting vascular hyperreactivity. Diabetes and hyperlipidemia-induced inflammatory response could upregulate the expression of connexins and Rho kinase by selective downregulation of the expression of miR-10a, miR-139b, miR-206, and miR-222. These findings suggest that hyperglucose and lipid may directly impair VSMCs and induce vascular hyperreactivity in the early stages. Metabolic inflammation-induced changes in the miRNA-connexin/Rho kinase regulatory pathway are the main mechanism for vascular hyperreactivity and organ damage. Measures inhibiting vascular hyperreactivity are promising for the prevention of organ damage induced by metabolic diseases.

  5. β-Cell Dysfunction Is Associated with Metabolic Syndrome Severity in Adults

    PubMed Central

    Malin, Steven K.; Finnegan, Stephen; Fealy, Ciaran E.; Filion, Julianne; Rocco, Michael B.

    2014-01-01

    .59, r=−0.51, and r=−0.43, all P<0.001). Insulin secretion significantly predicted the Z-score independent of sex, body fat, blood lipids, blood pressure, IR, and glucose metabolism (P<0.005). Conclusion: β-cell dysfunction is highly correlated with the severity of metabolic syndrome in adults. Future work is warranted to elucidate the mechanism by which cardiometabolic disturbances influence insulin secretion. PMID:24283920

  6. Developmental programming of obesity and metabolic dysfunction: role of prenatal stress and stress biology.

    PubMed

    Entringer, Sonja; Wadhwa, Pathik D

    2013-01-01

    Epidemiological, clinical, physiological, cellular and molecular evidence suggests the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. We propose that in addition to maternal nutrition-related processes, it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate processes that may underlie the long-term effects of intrauterine stress.

  7. Advanced glycation end products: A link between metabolic and endothelial dysfunction in polycystic ovary syndrome?

    PubMed

    Pertynska-Marczewska, Magdalena; Diamanti-Kandarakis, Evanthia; Zhang, John; Merhi, Zaher

    2015-11-01

    Polycystic ovary syndrome (PCOS), a heterogeneous syndrome of reproductive and metabolic alterations, is associated with increased long-term risk of cardiovascular complications. This phenomenon has been linked to an increase in oxidative stress and inflammatory markers. Advanced glycation end products (AGEs) are pro-inflammatory molecules that trigger a state of intracellular oxidative stress and inflammation after binding to their cell membrane receptors RAGE. The activation of the AGE-RAGE axis has been well known to play a role in atherosclerosis in both men and women. Women with PCOS have systemic chronic inflammatory condition even at the ovarian level as represented by elevated levels of serum/ovarian AGEs and increased expression of the pro-inflammatory RAGE in ovarian tissue. Data also showed the presence of sRAGE in the follicular fluid and its potential protective role against the harmful effect of AGEs on ovarian function. Thus, whether AGE-RAGE axis constitutes a link between metabolic and endothelial dysfunction in women with PCOS is addressed in this review. Additionally, we discuss the role of hormonal changes observed in PCOS and how they are linked with the AGE-RAGE axis in order to better understand the nature of this complex syndrome whose consequences extend well beyond reproduction.

  8. Developmental Programming of Obesity and Metabolic Dysfunction: Role of Prenatal Stress and Stress Biology

    PubMed Central

    Entringer, Sonja; Wadhwa, Pathik D.

    2014-01-01

    Epidemiological, clinical, physiological, cellular and molecular evidence suggests the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. We propose that in addition to maternal nutrition-related processes, it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate processes that may underlie the long-term effects of intrauterine stress. PMID:23887109

  9. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events.

    PubMed

    Fernyhough, Paul

    2015-11-01

    Diabetic neuropathy is a dying back neurodegenerative disease of the peripheral nervous system where mitochondrial dysfunction has been implicated as an etiological factor. Diabetes (type 1 or type 2) invokes an elevation of intracellular glucose concentration simultaneously with impaired growth factor support by insulin, and this dual alteration triggers a maladaptation in metabolism of adult sensory neurons. The energy sensing pathway comprising the AMP-activated protein kinase (AMPK)/sirtuin (SIRT)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) signaling axis is the target of these damaging changes in nutrient levels, e.g., induction of nutrient stress, and loss of insulin-dependent growth factor support and instigates an aberrant metabolic phenotype characterized by a suppression of mitochondrial oxidative phosphorylation and shift to anaerobic glycolysis. There is discussion of how this loss of mitochondrial function and transition to overreliance on glycolysis contributes to the diminishment of collateral sprouting and axon regeneration in diabetic neuropathy in the context of the highly energy-consuming nerve growth cone.

  10. Extension of the mitochondria dysfunction hypothesis of metabolic syndrome to atherosclerosis with emphasis on the endocrine-disrupting chemicals and biophysical laws.

    PubMed

    Lee, Hong Kyu; Shim, Eun Bo

    2013-01-29

    Metabolic syndrome and its component phenotypes, hyperglycemia, hypertension, (abdominal) obesity and hypertriglyceridemia, are major risk factors for atherosclerosis. Recently, associations between exposure to endocrine-disrupting chemicals (EDCs), mitochondrial dysfunction, metabolic syndrome and atherosclerosis have been established, suggesting a possible common mechanism underlying these phenomena. Extending a previously proposed mitochondria dysfunction theory of metabolic syndrome and using biophysical laws, such as metabolic scaling, Murray's law and fractal geometry of the vascular branching system, we propose that atherosclerosis could be explained as an ill-adaptive change occurring in nutrient-supplying arteries in response to the decreasing tissue energy demand caused by tissue mitochondrial dysfunction. Various aspects of this new hypothesis are discussed.

  11. Brain metabolic dysfunction at the core of Alzheimer’s disease

    PubMed Central

    de la Monte, Suzanne M.; Tong, Ming

    2015-01-01

    Growing evidence supports the concept that Alzheimer’s disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics. PMID:24380887

  12. Effects of genistein in combination with conjugated estrogens on endometrial hyperplasia and metabolic dysfunction in ovariectomized mice.

    PubMed

    Kim, Jun Ho; Kim, Young Jun

    2015-01-01

    Tissue-selective estrogen complex (TSEC), which combines a selective estrogen receptor modulator (SERM) with one or more estrogens, is a novel approach to menopausal therapy. It has been demonstrated that the phytoestrogen genistein (GEN) exhibits mixed estrogen receptor agonist and antagonist activity, suggesting that GEN may have potential for use as a natural SERM. We evaluated, for the first time, the effects of GEN, conjugated estrogens (CE), and their pairing effects as a TSEC treatment on estrogen-induced endometrial hyperplasia and metabolic dysfunction in ovariectomized (OVX) mice fed a high-fat diet. CE replacement prevented fat accumulation in the adipose tissue and liver, improved glucose homeostasis, and induced endometrial hyperplasia in OVX mice. GEN at 100 mg/kg showed CE mimetic effects in preventing ovariectomy-induced metabolic dysfunctions without endometrial stimulation. Combination treatments with CE and GEN prevented metabolic dysfunctions more strongly than CE alone, but at both low and high doses, GEN did not reverse CE-induced endometrial hyperplasia. In addition, we found that in a TSEC regimen, a typical SERM raloxifene maintains the metabolic benefits of CE while simultaneously protecting the endometrium in OVX mice. These findings indicate that GEN acts as an estrogen agonist in metabolic regulation, but has no SERM function in the uteri of OVX mice.

  13. Magnetic Resonance Imaging of Mitochondrial Dysfunction and Metabolic Activity, Accompanied by Overproduction of Superoxide.

    PubMed

    Bakalova, Rumiana; Georgieva, Ekaterina; Ivanova, Donika; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2015-12-16

    This study shows that a mitochondria-penetrating nitroxide probe (mito-TEMPO) allows detection of superoxide and visualization of mitochondrial dysfunction in living cells due to the effect of T1 shortening in MRI. Mitochondrial dysfunction was induced by treatment of cells with rotenone and 2-methoxyestradiol (2-ME/Rot). The MRI measurements were performed on 7T MRI. The 2-ME/Rot-treated cells were characterized by overproduction of superoxide, which was confirmed by a conventional dihydroethidium test. In the presence of mito-TEMPO, the intensity of MRI signal in 2-ME/Rot-treated cells was ∼30-40% higher, in comparison with that in untreated cells or culture media. In model (cell-free) systems, we observed that superoxide, but not hydrogen peroxide, increased the intensity of T1-weighted MRI signal of mito-TEMPO. Moreover, the superoxide restores the T1-weighted MRI contrast of mito-TEMPOH, a noncontrast (diamagnetic) analogue of mito-TEMPO. This was also confirmed by using EPR spectroscopy. The results demonstrate that superoxide radical is involved in the enhancement of T1-weighted MRI contrast in living cells, in the absence and presence of mito-TEMPO. This report gives a direction for discovering new opportunities for functional MRI, for detection of metabolic activity, accompanied by overproduction of superoxide, as well as by disturbance of the balance between superoxide and hydrogen peroxide, a very important approach to clarify the fine molecular mechanisms in the regulation of many pathologies. The visualization of mitochondrial activity in real-time can be crucial to clarify the molecular mechanism of the functional MRI in its commonly accepted definition, as a method for detection of neurovascular coupling.

  14. Association of Epicardial Fat, Hypertension, Subclinical Coronary Artery Disease and Metabolic Syndrome With Left Ventricular Diastolic Dysfunction

    PubMed Central

    Cavalcante, João L.; Tamarappoo, Balaji K.; Hachamovitch, Rory; Kwon, Deborah H.; Alraies, M. Chadi; Halliburton, Sandra; Schoenhagen, Paul; Dey, Damini; Berman, Daniel S.; Marwick, Thomas H.

    2015-01-01

    Epicardial fat is a metabolically active fat depot that is strongly associated with obesity, metabolic syndrome and coronary artery disease (CAD). The relationship of epicardial fat and diastolic function is unknown. We sought to: a) understand the relationship of epicardial fat volume (EFV) and diastolic function and b) understand the role of EFV relative to potential risk factors (hypertension, subclinical CAD and metabolic syndrome) of diastolic dysfunction in apparently healthy subjects with preserved systolic function and with no history of CAD. We studied 110 consecutive subjects (65% male, 55±13 years, mean BMI 28±5 kg/m2) who underwent cardiac computed tomography (CCT) and a transthoracic echocardiogram, within 6 months as part of a self-referred health screening program. Exclusion criteria included: history of CAD, significant valvular disease, systolic dysfunction (LVEF<50%). Diastolic function was defined according to American Society of Echocardiography guidelines. EFV was measured using validated CCT software by 2 independent cardiologists blinded to the clinical and echocardiographic data. Hypertension and metabolic syndrome were present in 60% and 45%, respectively. Subclinical CAD was identified in 20% of the cohort. Diastolic dysfunction was present in 45 patients. EFV was an independent predictor of diastolic dysfunction, mean e′ velocities and E/e′ ratio (p=0.01, <0.0001 and 0.001, respectively) with incremental contribution to the other clinical factors. In conclusion, EFV is an independent predictor of impaired diastolic function in apparently healthy overweight individuals, even after accounting for associated comorbidities such as metabolic syndrome, hypertension and subclinical CAD. PMID:22980968

  15. Association of epicardial fat, hypertension, subclinical coronary artery disease, and metabolic syndrome with left ventricular diastolic dysfunction.

    PubMed

    Cavalcante, João L; Tamarappoo, Balaji K; Hachamovitch, Rory; Kwon, Deborah H; Alraies, M Chadi; Halliburton, Sandra; Schoenhagen, Paul; Dey, Damini; Berman, Daniel S; Marwick, Thomas H

    2012-12-15

    Epicardial fat is a metabolically active fat depot that is strongly associated with obesity, metabolic syndrome, and coronary artery disease (CAD). The relation of epicardial fat to diastolic function is unknown. We sought to (1) understand the relation of epicardial fat volume (EFV) to diastolic function and (2) understand the role of EFV in relation to potential risk factors (hypertension, subclinical CAD, and metabolic syndrome) of diastolic dysfunction in apparently healthy subjects with preserved systolic function and no history of CAD. We studied 110 consecutive subjects (65% men, 55 ± 13 years old, mean body mass index 28 ± 5 kg/m(2)) who underwent cardiac computed tomography and transthoracic echocardiography within 6 months as part of a self-referred health screening program. Exclusion criteria included history of CAD, significant valvular disease, systolic dysfunction (left ventricular ejection fraction <50%). Diastolic function was defined according to American Society of Echocardiography guidelines. EFV was measured using validated cardiac computed tomographic software by 2 independent cardiologists blinded to clinical and echocardiographic data. Hypertension and metabolic syndrome were present in 60% and 45%, respectively. Subclinical CAD was identified in 20% of the cohort. Diastolic dysfunction was present in 45 patients. EFV was an independent predictor of diastolic dysfunction, mean peak early diastolic mitral annular velocity, and ratio of early diastolic filling to peak early diastolic mitral annular velocity (p = 0.01, <0.0001, and 0.001, respectively) with incremental contribution to other clinical factors. In conclusion, EFV is an independent predictor of impaired diastolic function in apparently healthy overweight patients even after accounting for associated co-morbidities such as metabolic syndrome, hypertension, and subclinical CAD.

  16. The impact of metabolic syndrome on retinal findings in patients with erectile dysfunction

    PubMed Central

    Balcı, Melih; Aslan, Yılmaz; Bozarslan, Berçem; Tuncel, Altuğ; Kayalı, Mustafa; Atan, Ali

    2013-01-01

    Objective: In the present study, we investigated the association between metabolic syndrome (MS) and retinal findings in patients presenting with erectile dysfunction (ED) complaints. Material and methods: A total of 102 patients with ED were included in this study. The patients were divided into two groups according to the National Cholesterol Education Program Adult Treatment Panel - III consensus definition: patients with MS (Group 1, n=62) and patients without MS (Group 2, n=40). The severity of ED was determined according to the first five versions of the International Index of Erectile Function. A detailed fundus examination was performed to evaluate the patients for retinopathy. The patients’ retinopathy grades were classified according to the Early Treatment Diabetic Retinopathy Study. Results: The mean age of the patients was 51.4 years. Twenty-two patients (35.5%) in Group 1 and nine (22.5%) in Group 2 had severe ED (p=0.241). Ten (16.1%) patients in Group 1 and one (2.5%) patient in Group 2 had any degree of retinopathy (p=0.047). The logistic regression analysis of the correlation between severe ED and MS risk factors revealed that a fasting glucose level (FBG) of >110 mg/dL increased the risk of severe ED by 2.5 times (95% CI 1–6.2, p=0.058). Additionally, the logistic regression analysis of metabolic risk factors showed that only the FBS level was strongly associated with retinopathy, with the relative risk increased to 10.6 (95% CI 1.2–93, p=0.033). Conclusion: Our results showed that elevated FBG levels were the most critical MS component in the development of severe ED and retinopathy. PMID:26328073

  17. Management of endocrino-metabolic dysfunctions after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Vantyghem, Marie-Christine; Cornillon, Jérôme; Decanter, Christine; Defrance, Frédérique; Karrouz, Wassila; Leroy, Clara; Le Mapihan, Kristell; Couturier, Marie-Anne; De Berranger, Eva; Hermet, Eric; Maillard, Natacha; Marcais, Ambroise; Francois, Sylvie; Tabrizi, Reza; Yakoub-Agha, Ibrahim

    2014-10-29

    Allogeneic hematopoietic stem cell transplantation is mainly indicated in bone marrow dysfunction related to blood diseases, but also in some rare diseases (adrenoleucodystrophy, mitochondrial neurogastrointestinal encephalomyopathy or MNGIE...). After decades, this treatment has proven to be efficient at the cost of numerous early and delayed side effects such as infection, graft-versus-host disease, cardiovascular complications and secondary malignancies. These complications are mainly related to the conditioning, which requires a powerful chemotherapy associated to total body irradiation (myelo-ablation) or immunosuppression (non myelo-ablation). Among side effects, the endocrine complications may be classified as 1) hormonal endocrine deficiencies (particularly gonado- and somatotropic) related to delayed consequences of chemo- and above all radiotherapy, with their consequences on growth, puberty, bone and fertility); 2) auto-immune diseases, particularly dysthyroidism; 3) secondary tumors involving either endocrine glands (thyroid carcinoma) or dependent on hormonal status (breast cancer, meningioma), favored by immune dysregulation and radiotherapy; 4) metabolic complications, especially steroid-induced diabetes and dyslipidemia with their increased cardio-vascular risk. These complications are intricate. Moreover, hormone replacement therapy can modulate the cardio-vascular or the tumoral risk of patients, already increased by radiotherapy and chemotherapy, especially steroids and anthracyclins... Therefore, patients and families should be informed of these side effects and of the importance of a long-term follow-up requiring a multidisciplinary approach.

  18. Association between metabolic syndrome and vascular endothelium dysfunction in children and adolescents.

    PubMed

    Wei, Y; Liu, G L; Yang, J Y; Zheng, R X; Jiang, L H; Li, Y P; Gao, F F

    2014-10-27

    We aimed at investigating the association between metabolic syndrome (MS) and vascular endothelial cell dysfunction (ECD) in children and adolescents. Sixty children (30 obese children and 30 children with MS) were included in this retrospective analysis. Thirty healthy subjects were randomly selected as the control group. A series of indices/biomarkers known to be related to MS/ECD were determined using ELISA. Correlations between the variables measured were analyzed. Compared with the control group, PAI-1, vWF, VE-cad, TM, and VEGF were significantly increased in the MS group (P < 0.05). Adolescents in the obese group had significantly increased levels of serum PAI-1, VE-cad, TM, and VEGF as compared with the control group (P < 0.05). Further, vWF in the obese and control groups did not differ significantly (P = 0.556). Our results suggest that ECD is correlated with MS in children and adolescents. Pathophysiological changes of the vascular endothelium may exist in obese children who have yet to develope MS. PAI-1, vWF, VE-cad, TM, and VEGF could be used as biomarkers for predicting ECD. ECD that develops in patients with MS may be associated with obesity, elevated blood lipid, elevated blood glucose, and higher blood pressure.

  19. Sex hormone imbalances and adipose tissue dysfunction impacting on metabolic syndrome; a paradigm for the discovery of novel adipokines.

    PubMed

    Zhang, Hui; Sairam, M Ram

    2014-02-01

    Sex hormone imbalance is causally related with visceral adipose tissue (AT) dysfunction and visceral obesity - an etiological component of metabolic syndrome (MetS), associated with high risk of both cardiovascular disease (CVD) and type 2 diabetes. In general, premenopausal women appear to be protected from CVD and the dramatic decline in sex steroid hormone occurring during menopausal transitions or other sex-related disorders influence the regional distribution, function, and metabolism of AT and increase the risk of CVD. Visceral AT dysfunction, manifesting as abnormality of fatty acid metabolism, increased oxidative stress, endothelial dysfunction, and excessive production of adipokines have been proposed in the pathogenesis of MetS. However, direct evidence of molecular mechanisms of depot-specific AT alterations, and dysfunction causally related to MetS is limited in studies on postmenopausal women due to difficulty in collecting discrete AT specimens at different ages and repeated sampling from different fat depots. This can be overcome using animal models that can mimic the cluster of pathology leading to MetS and help establish the molecular basis of links between loss of gonadal function on various AT depots and their contribution to MetS. Our group used sex hormone imbalance FSH receptor knock out (FORKO) female mice to recapitulate different aspects of the MetS and addressed the mechanism of visceral obesity related to MetS and discover two novel sex steroid hormone-regulated deep mesenteric estrogen-dependent adipose (MEDAs) genes. Taken together, such recent studies raise hopes for pharmacologic intervention strategies targeting sex steroid hormone signaling in AT to provide protection against AT dysfunction.

  20. [New possibilities in the pharmacologic prevention of age-related macular degeneration].

    PubMed

    Fischer, Tamás

    2008-01-20

    The beneficial effect achieved by the treatment of endothelial dysfunction in chronic cardiovascular diseases is already an evidence belonging to the basic treatment of the disease. Given the fact that the vascular system is uniform and consubstantial both physiologically, pathophysiologically and in terms of therapy, and that it plays a key role in age-related macular degeneration (AMD)--a disease leading to tragic loss of vision with its etiology and therapy being unknown--endothelial dysfunction should be treated. The pleiotropic effects of ACE-inhibitors, AR-blockers and statins help to restitute the balance between vasodilators and vasoconstrictors in endothelial dysfunction caused by oxidative stress, the balance of growth factors and their inhibitors, pro- and anti-inflammatory substances and prothrombotic and fibrinolytic factors, inhibit the formation of oxidative stress and its harmful effects; while aspirin with its pleiotropic effects acting as an antiaggregation substance on platelets helps to set the endothelial layer back to its normal balance regarding its vasodilating, antithrombotic, antiadhesive and anti-inflammatory functions; trimetazidine as an adjuvant agent helps to normalize, to restore the disturbed metabolism of the retinal tissue functioning insufficiently, in the end. For the above reasons it is suggested that, as a part of long term primary and/or secondary prevention, the following groups of patients with AMD receive--taking into consideration all possible side effects--ACE-inhibitor and/or AR blocker and statin and aspirin treatment, and trimetazidine as adjuvant medicine 1. those without maculopathy but being above the age of 50 and having risk factors inducing endothelial dysfunction; 2. those, who already developed AMD in one eye as a prevention in the second, unaffected eye; and 3. those patients who developed AMD in both eyes in order to ameliorate or merely slow the progression of the disease. Besides, it is advisory to

  1. Alterations of Hepatic Metabolism in Chronic Kidney Disease via D-box-binding Protein Aggravate the Renal Dysfunction.

    PubMed

    Hamamura, Kengo; Matsunaga, Naoya; Ikeda, Eriko; Kondo, Hideaki; Ikeyama, Hisako; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Yoshida, Yuya; Matsuda, Masaki; Yasuda, Kaori; Doi, Atsushi; Yokota, Yoshifumi; Amamoto, Toshiaki; Aramaki, Hironori; Irino, Yasuhiro; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-03-04

    Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol.

  2. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    PubMed Central

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  3. Animal models of age related macular degeneration.

    PubMed

    Pennesi, Mark E; Neuringer, Martha; Courtney, Robert J

    2012-08-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.

  4. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  5. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments.

  6. Nerve growth factor metabolic dysfunction in Down’s syndrome brains

    PubMed Central

    Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge

    2014-01-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic

  7. Skeletal muscle oxidative metabolism in an animal model of pulmonary emphysema: formoterol and skeletal muscle dysfunction.

    PubMed

    Sullo, Nikol; Roviezzo, Fiorentina; Matteis, Maria; Spaziano, Giuseppe; Del Gaudio, Stefania; Lombardi, Assunta; Lucattelli, Monica; Polverino, Francesca; Lungarella, Giuseppe; Cirino, Giuseppe; Rossi, Francesco; D'Agostino, Bruno

    2013-02-01

    Skeletal muscle dysfunction is a significant contributor to exercise limitation in pulmonary emphysema. This study investigated skeletal muscle oxidative metabolism before and after aerosol exposure to a long-acting β-agonist (LABA), such as formoterol, in the pallid mouse (B6.Cg-Pldnpa/J), which has a deficiency in serum α(1)-antitrypsin (α(1)-PI) and develops spontaneous pulmonary emphysema. C57 BL/6J and its congener pallid mice of 8-12 and 16 months of age were treated with vehicle or formoterol aerosol challenge for 120 seconds. Morphological and morphometric studies and evaluations of mitochondrial adenosine diphosphate-stimulated respiration and of cytochrome oxidase activity on skeletal muscle were performed. Moreover, the mtDNA content in skeletal muscle and the mediators linked to muscle mitochondrial function and biogenesis, as well as TNF-α and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), were also evaluated. The lungs of pallid mice at 12 and 16 months of age showed patchy areas of airspace enlargements, with the destruction of alveolar septa. No significant differences were observed in basal values of mitochondrial skeletal muscle oxidative processes between C57 BL/6J and pallid mice. Exposure to LABA significantly improved mitochondrial skeletal muscle oxidative processes in emphysematous mice, where the mtDNA content was significantly higher with respect to 8-month-old pallid mice. This effect was compared with a significant increase of PGC-1α in skeletal muscles of 16-month-old pallid mice, with no significant changes in TNF-α concentrations. In conclusion, in emphysematous mice that showed an increased mtDNA content, exposure to inhaled LABA can improve mitochondrial skeletal muscle oxidative processes. PGC-1α may serve as a possible mediator of this effect.

  8. Age-Related Changes in Creative Thinking

    ERIC Educational Resources Information Center

    Roskos-Ewoldsen, Beverly; Black, Sheila R.; Mccown, Steven M.

    2008-01-01

    Age-related differences in cognitive processes were used to understand age-related declines in creativity. According to the Geneplore model (Finke, Ward, & Smith, 1992), there are two phases of creativity--generating an idea and exploring the implications of the idea--each with different underlying cognitive processes. These two phases are…

  9. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  10. Connection between telomerase activity in PBMC and markers of inflammation and endothelial dysfunction in patients with metabolic syndrome.

    PubMed

    Rentoukas, Elias; Tsarouhas, Konstantinos; Kaplanis, Ioannis; Korou, Eleni; Nikolaou, Maria; Marathonitis, George; Kokkinou, Stavroula; Haliassos, Alexander; Mamalaki, Avgi; Kouretas, Demetrios; Tsitsimpikou, Christina

    2012-01-01

    Metabolic syndrome (MS) is a constellation of metabolic derangements associated with vascular endothelial dysfunction and oxidative stress and is widely regarded as an inflammatory condition, accompanied by an increased risk for cardiovascular disease. The present study tried to investigate the implications of telomerase activity with inflammation and impaired endothelial function in patients with metabolic syndrome. Telomerase activity in circulating peripheral blood mononuclear cells (PBMC), TNF-α, IL-6 and ADMA were monitored in 39 patients with MS and 20 age and sex-matched healthy volunteers. Telomerase activity in PBMC, TNF-α, IL-6 and ADMA were all significantly elevated in patients with MS compared to healthy volunteers. PBMC telomerase was negatively correlated with HDL and positively correlated with ADMA, while no association between TNF-α and IL-6 was observed. IL-6 was increasing with increasing systolic pressure both in the patients with MS and in the healthy volunteers, while smoking and diabetes were positively correlated with IL-6 only in the patients' group. In conclusion, in patients with MS characterised by a strong dyslipidemic profile and low diabetes prevalence, significant telomerase activity was detected in circulating PBMC, along with elevated markers of inflammation and endothelial dysfunction. These findings suggest a prolonged activity of inflammatory cells in the studied state of this metabolic disorder that could represent a contributory pathway in the pathogenesis of atherosclerosis.

  11. Global Metabolic Profiling of Plasma Shows that Three-Year Mild-Caloric Restriction Lessens an Age-Related Increase in Sphingomyelin and Reduces L-leucine and L-phenylalanine in Overweight and Obese Subjects.

    PubMed

    Kim, Minjoo; Lee, Sang-Hyun; Lee, Jong Ho

    2016-12-01

    The effect of weight loss from long-term, mild-calorie diets (MCD) on plasma metabolites is unknown. This study was to examine whether MCD-induced weight reduction caused changes in the extended plasma metabolites. Overweight and obese subjects aged 40-59 years consumed a MCD (approximately 100 kcal/day deficit, n=47) or a weight-maintenance diet (control, n=47) in a randomized, controlled design with a three-year clinical intervention period and plasma samples were analyzed by using UPLC-LTQ-Orbitrap mass spectrometry. The three-year MCD intervention resulted in weight loss (-8.87%) and significant decreases in HOMA-IR and TG. The three-year follow-up of the MCD group showed reductions in the following 13 metabolites: L-leucine; L-phenylalanine; 9 lysoPCs; PC (18:0/20:4); and SM (d18:0/16:1). The three-year MCD group follow-up identified increases in palmitic amide, oleamide, and PC (18:2/18:2). Considering the age-related alterations in the identified metabolites, the MCD group showed a greater decrease in L-leucine, L-phenylalanine, and SM (d18:0/16:1) compared with those of the control group. Overall, the change (Δ) in BMI positively correlated with the ΔTG, ΔHOMA-IR, ΔL-leucine, and ΔSM (d18:0/16:1). The ΔHOMA-IR positively correlated with ΔTG, ΔL-leucine, ΔL-phenylalanine, and ΔSM (d18:0/16:1). The weight loss resulting from three-year mild-caloric restriction lessens the age-related increase in SM and reduces L-leucine and L-phenylalanine in overweight and obese subjects. These changes were coupled with improved insulin resistance (ClinicalTrials.gov: NCT02081898).

  12. Global Metabolic Profiling of Plasma Shows that Three-Year Mild-Caloric Restriction Lessens an Age-Related Increase in Sphingomyelin and Reduces L-leucine and L-phenylalanine in Overweight and Obese Subjects

    PubMed Central

    Kim, Minjoo; Lee, Sang-Hyun; Lee, Jong Ho

    2016-01-01

    The effect of weight loss from long-term, mild-calorie diets (MCD) on plasma metabolites is unknown. This study was to examine whether MCD-induced weight reduction caused changes in the extended plasma metabolites. Overweight and obese subjects aged 40-59 years consumed a MCD (approximately 100 kcal/day deficit, n=47) or a weight-maintenance diet (control, n=47) in a randomized, controlled design with a three-year clinical intervention period and plasma samples were analyzed by using UPLC-LTQ-Orbitrap mass spectrometry. The three-year MCD intervention resulted in weight loss (-8.87%) and significant decreases in HOMA-IR and TG. The three-year follow-up of the MCD group showed reductions in the following 13 metabolites: L-leucine; L-phenylalanine; 9 lysoPCs; PC (18:0/20:4); and SM (d18:0/16:1). The three-year MCD group follow-up identified increases in palmitic amide, oleamide, and PC (18:2/18:2). Considering the age-related alterations in the identified metabolites, the MCD group showed a greater decrease in L-leucine, L-phenylalanine, and SM (d18:0/16:1) compared with those of the control group. Overall, the change (Δ) in BMI positively correlated with the ΔTG, ΔHOMA-IR, ΔL-leucine, and ΔSM (d18:0/16:1). The ΔHOMA-IR positively correlated with ΔTG, ΔL-leucine, ΔL-phenylalanine, and ΔSM (d18:0/16:1). The weight loss resulting from three-year mild-caloric restriction lessens the age-related increase in SM and reduces L-leucine and L-phenylalanine in overweight and obese subjects. These changes were coupled with improved insulin resistance (ClinicalTrials.gov: NCT02081898). PMID:28053823

  13. Exploring Temporospatial Changes in Glucose Metabolic Disorder, Learning, and Memory Dysfunction in a Rat Model of Diffuse Axonal Injury

    PubMed Central

    Li, Jia; Gu, Lei; Ding, Fang; Zhu, Guangyao; Rong, Jiandong

    2012-01-01

    Abstract Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and contributes significantly to cognitive deficits. The mechanisms underlying these cognitive deficits are often associated with complex metabolic alterations. However, the relationships between temporospatial alterations in cerebral glucose metabolism and the pathophysiology of DAI-related learning and memory dysfunction are not yet completely understood. We used a small animal positron emission tomography (PET) scanner with 2-[F-18]-fluoro-2-deoxy-D-glucose (18F-FDG) as a molecular probe to evaluate temporospatial glucose metabolism in vulnerable areas of rats with DAI. The Morris water maze (MWM) was used to evaluate the development and progression of learning and memory dysfunction. Compared to the sham-treated group, PET-MRI fusion images showed that glucose metabolism was reduced in animals with DAI. In addition, the standardized uptake value (SUV) of 18F-FDG was significantly decreased in the sensorimotor cortex, hippocampus, corpus callosum, caudate putamen, brain stem, and cerebellum at days 1, 3, and 7 after injury. SUV returned to baseline levels by 30 days after injury. The escape latency of the injured group was significantly increased, and the percentages of distance travelled and time spent in the target quadrant were significantly decreased 1 month after injury. These effects persisted for 3 months. SUVs in the hippocampus at the acute stage were significantly correlated with MWM performance during the recovery stage of DAI. These results demonstrate that microstructural injury-induced hypometabolism in the hippocampus at the acute stage are all significantly correlated with learning and memory dysfunctions during the recovery stage of DAI. PMID:22880625

  14. Sodium Butyrate Protects Against High Fat Diet-induced Cardiac Dysfunction and Metabolic Disorders in Type II Diabetic Mice.

    PubMed

    Zhang, Ling; Du, Jianfeng; Yano, Naohiro; Wang, Hao; Zhao, Yu Tina; Patricia, Dubielecka-Szczerba; Zhuang, Shougang; Chin, Eugene Y; Qin, Gangjian; Zhao, Ting C

    2017-01-21

    Histone deacetylases are recently identified to act as key regulators for cardiac pathophysiology and metabolic disorders. However, the function of histone deacetylase (HDAC) in controlling cardiac performance in type II diabetes and obesity remains unknown. Here we determine whether HDAC inhibition attenuates high fat diet (HFD)-induced cardiac dysfunction and improves metabolic features. Adult mice were fed with either HFD or standard chow food for 24 weeks. Starting at 12 weeks, mice were divided into four groups randomly, in which sodium butyrate (1%), a potent HDAC inhibitor, was provided to chow and HFD-fed mice in drinking water, respectively. Glucose intolerance, metabolic parameters, cardiac function, and remodeling were assessed. Histological analysis and cellular signaling were examined at 24 weeks following euthanization of mice. HFD-fed mice demonstrated myocardial dysfunction and profound interstitial fibrosis, which were attenuated by HDAC inhibition. HFD-induced metabolic syndrome features insulin resistance, obesity, hyperinsulinemia, hyperglycemia, lipid accumulations, and cardiac hypertrophy, these effects were prevented by HDAC inhibition. Furthermore, HDAC inhibition attenuated myocyte apoptosis, reduced production of reactive oxygen species, and increased angiogenesis in the HFD-fed myocardium. Notably, HFD induced decreases in MKK3, p38, p38 regulated/activated protein kinase (PRAK) and Akt-1, but not p44/42 phosphorylation, which were prevented by HDAC inhibition. These results suggest that HDAC inhibition plays a critical role to preserve cardiac performance and mitigate metabolic disorders in obesity and diabetes, which is associated with MKK3/p38/PRAK pathway. The study holds promise in developing a new therapeutic strategy in the treatment of type II diabetic-induced heart failure and metabolic disorders. This article is protected by copyright. All rights reserved.

  15. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain.

    PubMed

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I

    2012-12-21

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.

  16. Alcohol-induced One-carbon Metabolism Impairment Promotes Dysfunction of DNA Base Excision Repair in Adult Brain*

    PubMed Central

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G.; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J.; Bergeson, Susan E.; Henderson, George I.; Kruman, Inna I.

    2012-01-01

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr+/− mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain. PMID:23118224

  17. What Is Age-Related Macular Degeneration?

    MedlinePlus

    ... of Low Vision Age-Related Macular Degeneration Vision Simulator AMD Pictures and Videos: What Does Macular Degeneration ... degeneration as part of the body's natural aging process. There are different kinds of macular problems, but ...

  18. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2017-01-12

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  19. Amentoflavone protects against high fat-induced metabolic dysfunction: Possible role of the regulation of adipogenic differentiation.

    PubMed

    Chen, Guangyong; Han, Yangdong; He, Wang; Liang, Feng

    2016-12-01

    In the present study, we evaluated the protective effects of amentoflavone (AMF) against high-fat (HF) diet-induced metabolic dysfunction and focused on the influence of AMF on adipogenic differentiation during 3T3-L1 adipocyte differentiation. For this purpose, male Wistar rats were fed a HF diet or a HF diet with AMF (10 or 50 mg/kg). We found that AMF protected against HF diet-induced metabolic dysfunction in a dose-dependent manner, as evidenced by a decrease in the fasting blood glucose levels, fasting insulin levels and the homeostatic model assessment-insulin resistance index (HOMA‑IR), as well as by a decrease in the glucose level, as shown by the intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Moreover, the results revealed that AMF significantly inhibited the increase in body weight, the weight of perirenal adipose tissues and the serum triglyceride (TG) content of the rats fed the HF diet in a dose-dependent manner. AMF also inhibited the accumulation of oil droplets in differentiated 3T3-L1 adipocytes in a concentration-dependent manner. The incubation of the cells with AMF for 0-8, 0-2, 2-4, or 4-8 days markedly inhibited adipogenesis. During the early phase of the adipocyte differentiation of 3T3-L1 cells, AMF decreased CCAAT/enhancer-binding protein (C/EBP) β expression in a concentration-dependent manner, leading to the inhibition of mitotic clonal expansion (MCE). Moreover, our results demonstrated that AMF significantly increased reactive oxygen species (ROS) generation in the cells and the antioxidant, N-acetylcysteine (NAC), markedly attenuated the inhibitory effects of AMF on adipogenesis. AMF also inhibited the expression of peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα and the expression of downstream targets in a concentration-dependent manner. The overexpression of PPARγ and C/EBPα  (by transfection with respective overexpression plasmids) attentuated the

  20. Amentoflavone protects against high fat-induced metabolic dysfunction: Possible role of the regulation of adipogenic differentiation

    PubMed Central

    Chen, Guangyong; Han, Yangdong; He, Wang; Liang, Feng

    2016-01-01

    In the present study, we evaluated the protective effects of amentoflavone (AMF) against high-fat (HF) diet-induced metabolic dysfunction and focused on the influence of AMF on adipogenic differentiation during 3T3-L1 adipocyte differentiation. For this purpose, male Wistar rats were fed a HF diet or a HF diet with AMF (10 or 50 mg/kg). We found that AMF protected against HF diet-induced metabolic dysfunction in a dose-dependent manner, as evidenced by a decrease in the fasting blood glucose levels, fasting insulin levels and the homeostatic model assessment-insulin resistance index (HOMA-IR), as well as by a decrease in the glucose level, as shown by the intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Moreover, the results revealed that AMF significantly inhibited the increase in body weight, the weight of perirenal adipose tissues and the serum triglyceride (TG) content of the rats fed the HF diet in a dose-dependent manner. AMF also inhibited the accumulation of oil droplets in differentiated 3T3-L1 adipocytes in a concentration-dependent manner. The incubation of the cells with AMF for 0–8, 0–2, 2–4, or 4–8 days markedly inhibited adipogenesis. During the early phase of the adipocyte differentiation of 3T3-L1 cells, AMF decreased CCAAT/enhancer-binding protein (C/EBP) β expression in a concentration-dependent manner, leading to the inhibition of mitotic clonal expansion (MCE). Moreover, our results demonstrated that AMF significantly increased reactive oxygen species (ROS) generation in the cells and the antioxidant, N-acetylcysteine (NAC), markedly attenuated the inhibitory effects of AMF on adipogenesis. AMF also inhibited the expression of peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα and the expression of downstream targets in a concentration-dependent manner. The overexpression of PPARγ and C/EBPα (by transfection with respective overexpression plasmids) attentuated the inhibitory effects

  1. Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice

    PubMed Central

    Smeland, Olav B; Hadera, Mussie G; McDonald, Tanya S; Sonnewald, Ursula; Borges, Karin

    2013-01-01

    Although certain metabolic characteristics such as interictal glucose hypometabolism are well established for temporal lobe epilepsy (TLE), its pathogenesis still remains unclear. Here, we performed a comprehensive study of brain metabolism in a mouse model of TLE, induced by pilocarpine–status epilepticus (SE). To investigate glucose metabolism, we injected mice 3.5–4 weeks after SE with [1,2-13C]glucose before microwave fixation of the head. Using 1H and 13C nuclear magnetic resonance spectroscopy, gas chromatography—mass spectrometry and high-pressure liquid chromatography, we quantified metabolites and 13C labeling in extracts of cortex and hippocampal formation (HF). Hippocampal levels of glutamate, glutathione and alanine were decreased in pilocarpine–SE mice compared with controls. Moreover, the contents of N-acetyl aspartate, succinate and reduced nicotinamide adenine dinucleotide (phosphate) NAD(P)H were decreased in HF indicating impairment of mitochondrial function. In addition, the reduction in 13C enrichment of hippocampal citrate and malate suggests decreased tricarboxylic acid (TCA) cycle turnover in this region. In cortex, we found reduced 13C labeling of glutamate, glutamine and aspartate via the pyruvate carboxylation and pyruvate dehydrogenation pathways, suggesting slower turnover of these amino acids and/or the TCA cycle. In conclusion, mitochondrial metabolic dysfunction and altered amino-acid metabolism is found in both cortex and HF in this epilepsy model. PMID:23611869

  2. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy.

    PubMed

    Perluigi, Marzia; Di Domenico, Fabio; Butterfield, D Allan

    2015-12-01

    Compelling evidence indicates that the mammalian target of rapamycin (mTOR) signaling pathway is involved in cellular senescence, organismal aging and age-dependent diseases. mTOR is a conserved serine/threonine kinase that is known to be part of two different protein complexes: mTORC1 and mTORC2, which differ in some components and in upstream and downstream signalling. In multicellular organisms, mTOR regulates cell growth and metabolism in response to nutrients, growth factors and cellular energy conditions. Growing studies highlight that disturbance in mTOR signalling in the brain affects multiple pathways including glucose metabolism, energy production, mitochondrial function, cell growth and autophagy. All these events are key players in age-related cognitive decline such as development of Alzheimer disease (AD). The current review discusses the main regulatory roles of mTOR signalling in the brain, in particular focusing on autophagy, glucose metabolism and mitochondrial functions. Targeting mTOR in the CNS can offer new prospective for drug discovery; however further studies are needed for a comprehensive understanding of mTOR, which lies at the crossroads of multiple signals involved in AD etiology and pathogenesis.

  3. Rimonabant-mediated changes in intestinal lipid metabolism and improved renal vascular dysfunction in the JCR:LA-cp rat model of prediabetic metabolic syndrome.

    PubMed

    Russell, James C; Kelly, Sandra E; Diane, Abdoulaye; Wang, Ye; Mangat, Rabban; Novak, Susan; Vine, Donna F; Proctor, Spencer D

    2010-08-01

    Rimonabant (SR141716) is a specific antagonist of the cannabinoid-1 receptor. Activation of the receptor initiates multiple effects on central nervous system function, metabolism, and body weight. The hypothesis that rimonabant has protective effects against vascular disease associated with the metabolic syndrome was tested using JCR:LA-cp rats. JCR:LA-cp rats are obese if they are cp/cp, insulin resistant, and exhibit associated micro- and macrovascular disease with end-stage myocardial and renal disease. Treatment of obese rats with rimonabant (10 mg.kg(-1).day(-1), 12-24 wk of age) caused transient reduction in food intake for 2 wk, without reduction in body weight. However, by 4 wk, there was a modest, sustained reduction in weight gain. Glycemic control improved marginally compared with controls, but at the expense of increased insulin concentration. In contrast, rimonabant normalized fasting plasma triglyceride and reduced plasma plasminogen activator inhibitor-1 and acute phase protein haptoglobin in cp/cp rats. Furthermore, these changes were accompanied by reduced postprandial intestinal lymphatic secretion of apolipoprotein B48, cholesterol, and haptoglobin. While macrovascular dysfunction and ischemic myocardial lesion frequency were unaffected by rimonabant treatment, both microalbuminuria and glomerular sclerosis were substantially reduced. In summary, rimonabant has a modest effect on body weight in freely eating obese rats and markedly reduces plasma triglyceride levels and microvascular disease, in part due to changes in intestinal metabolism, including lymphatic secretion of apolipoprotein B48 and haptoglobin. We conclude that rimonabant improves renal disease and intestinal lipid oversecretion associated with an animal model of the metabolic syndrome that appears to be independent of hyperinsulinemia or macrovascular dysfunction.

  4. Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings.

    PubMed

    Leon-Cabrera, Sonia; Solís-Lozano, Lourdes; Suárez-Álvarez, Karina; González-Chávez, Antonio; Béjar, Yadira L; Robles-Díaz, Guillermo; Escobedo, Galileo

    2013-01-01

    Leptin is an adipose tissue-derived hormone that has been involved in hypothalamic and systemic inflammation, altered food-intake patterns, and metabolic dysfunction in obese mice. However, it remains unclear whether leptin has a relationship with parameters of systemic inflammation and metabolic dysfunction in humans. We thus evaluated in a cross-sectional study the circulating levels of leptin in 40 non-obese and 41 obese Mexican individuals, examining their relationship with tumor necrosis factor alpha (TNF-α), interleukin (IL) 12, IL-10, central obesity, serum glucose and insulin levels, and serum triglyceride and cholesterol concentrations. Circulating levels of leptin, TNF-α, IL-12, IL-10, and insulin were measured by ELISA, while concentrations of glucose, triglyceride, and cholesterol were determined by enzymatic assays. As expected, serum levels of leptin exhibited a significant elevation in obese individuals as compared to non-obese subjects, showing a clear association with increased body mass index (r = 0.4173), central obesity (r = 0.4678), and body fat percentage (r = 0.3583). Furthermore, leptin also showed a strong relationship with serum TNF-α (r = 0.6989), IL-12 (r = 0.3093), and IL-10 (r = -0.5691). Interestingly, leptin was also significantly related with high concentrations of fasting glucose (r = 0.5227) and insulin (r = 0.2229), as well as elevated levels of insulin resistance (r = 0.3611) and circulating triglyceride (r = 0.4135). These results suggest that hyperleptinemia is strongly associated with the occurrence of low-grade systemic inflammation and metabolic alteration in obese subjects. Further clinical research is still needed to determine whether hyperleptinemia may be a potential marker for recognizing the advent of obesity-related metabolic disorders in human beings.

  5. Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings

    PubMed Central

    Leon-Cabrera, Sonia; Solís-Lozano, Lourdes; Suárez-Álvarez, Karina; González-Chávez, Antonio; Béjar, Yadira L.; Robles-Díaz, Guillermo; Escobedo, Galileo

    2013-01-01

    Leptin is an adipose tissue-derived hormone that has been involved in hypothalamic and systemic inflammation, altered food-intake patterns, and metabolic dysfunction in obese mice. However, it remains unclear whether leptin has a relationship with parameters of systemic inflammation and metabolic dysfunction in humans. We thus evaluated in a cross-sectional study the circulating levels of leptin in 40 non-obese and 41 obese Mexican individuals, examining their relationship with tumor necrosis factor alpha (TNF-α), interleukin (IL) 12, IL-10, central obesity, serum glucose and insulin levels, and serum triglyceride and cholesterol concentrations. Circulating levels of leptin, TNF-α, IL-12, IL-10, and insulin were measured by ELISA, while concentrations of glucose, triglyceride, and cholesterol were determined by enzymatic assays. As expected, serum levels of leptin exhibited a significant elevation in obese individuals as compared to non-obese subjects, showing a clear association with increased body mass index (r = 0.4173), central obesity (r = 0.4678), and body fat percentage (r = 0.3583). Furthermore, leptin also showed a strong relationship with serum TNF-α (r = 0.6989), IL-12 (r = 0.3093), and IL-10 (r = −0.5691). Interestingly, leptin was also significantly related with high concentrations of fasting glucose (r = 0.5227) and insulin (r = 0.2229), as well as elevated levels of insulin resistance (r = 0.3611) and circulating triglyceride (r = 0.4135). These results suggest that hyperleptinemia is strongly associated with the occurrence of low-grade systemic inflammation and metabolic alteration in obese subjects. Further clinical research is still needed to determine whether hyperleptinemia may be a potential marker for recognizing the advent of obesity-related metabolic disorders in human beings. PMID:23986664

  6. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats

    PubMed Central

    Liu, Chunyan; Wang, Yangang

    2017-01-01

    In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive

  7. Age-related changes in triathlon performances.

    PubMed

    Lepers, R; Sultana, F; Bernard, T; Hausswirth, C; Brisswalter, J

    2010-04-01

    The aim of this study was two-fold: i) to analyse age-related declines in swimming, cycling, and running performances for Olympic and Ironman triathlons, and ii) to compare age-related changes in these three disciplines between the Olympic and Ironman triathlons. Swimming, cycling, running and total time performances of the top 10 males between 20 and 70 years of age (in 5 years intervals) were analysed for two consecutive world championships (2006 and 2007) for Olympic and Ironman distances. There was a lesser age-related decline in cycling performance (p<0.01) compared with running and swimming after 55 years of age for Olympic distance and after 50 years of age for Ironman distance. With advancing age, the performance decline was less pronounced (p<0.01) for Olympic than for Ironman triathlon in cycling (>55 years) and running (>50 years), respectively. In contrast, an age-related decline in swimming performance seemed independent of triathlon distance. The age-related decline in triathlon performance is specific to the discipline, with cycling showing less declines in performance with age than swimming and running. The magnitude of the declines in cycling and running performance at Ironman distance is greater than at Olympic distance, suggesting that task duration exerts an important influence on the magnitude of the age-associated changes in triathlon performance.

  8. Overview of age-related ocular conditions.

    PubMed

    Akpek, Esen K; Smith, Roderick A

    2013-05-01

    The United States is an aging society. The number of Americans 65 years or older is expected to more than double over the next 40 years, from 40.2 million in 2010 to 88.5 million in 2050, with aging baby boomers accounting for most of the increase. As the society ages, the prevalence of age-related diseases, including diseases of the eye, will continue to increase. By 2020, age-related macular degeneration, one of the leading causes of vision loss, is expected to affect 2.95 million individuals in the United States. Likewise, the prevalence of open-angle glaucoma, estimated at 2.2 million in 2000, is projected to increase by 50%, to 3.36 million by 2020. As the eye ages, it undergoes a number of physiologic changes that may increase susceptibility to disease. Environmental and genetic factors are also major contributors to the development of age-related ocular diseases. This article reviews the physiology of the aging eye and the epidemiology and pathophysiology of 4 major age-related ocular diseases: age-related macular degeneration, glaucoma, diabetic retinopathy, and dry eye.

  9. Erectile dysfunction.

    PubMed

    Wylie, Kevan

    2008-01-01

    Erectile dysfunction is a common problem affecting sexual function in men. Approximately one in 10 men over the age of 40 is affected by this condition and the incidence is age related. Erectile dysfunction is a sentinel marker for several reversible conditions including peripheral and coronary vascular disease, hypertension and diabetes mellitus. Endothelial dysfunction is a common factor between the disease states. Concurrent conditions such as depression, late-onset hypogonadism, Peyronie's disease and lower urinary tract symptoms may significantly worsen erectile function, other sexual and relationship issues and penis dysmorphophobia. A focused physical examination and baseline laboratory investigations are mandatory. Management consists of initiating modifiable lifestyle changes, psychological and psychosexual/couples interventions and pharmacological and other interventions. In combination and with treatment of concurrent comorbid states, these interventions will often bring about successful resolution of symptoms and avoid the need for surgical interventions.

  10. Potentiation of intraocular absorption and drug metabolism of N-acetylcarnosine lubricant eye drops: drug interaction with sight threatening lipid peroxides in the treatment for age-related eye diseases.

    PubMed

    Babizhayev, Mark A

    2009-01-01

    Cataract is the dominant cause of blindness worldwide. Studies of the morphological structure and biophysical changes of the lens in human senile cataracts have demonstrated the disappearance of normal fiber structure in the opaque region of the lens and the disintegration of the lens fiber plasma membrane in the lens tissue. Morphological and biochemical techniques have revealed the regions in human cataractous lenses in which the plasma membrane derangement occurs as the primary light scattering centers which cause the observed lens opacity. Human cataract formation is mostly considered to be a multifactorial disease; however, oxidative stress might be one of the leading causes for both nuclear and cortical cataract. Phospholipid molecules modified with oxygen, accumulating in the lipid bilayer, change its geometry and impair lipid-lipid and protein-lipid interactions in lenticular fiber membranes. Electron microscopy data of human lenses at various stages of age-related cataract document that these disruptions were globules, vacuoles, multilamellar membranes, and clusters of highly undulating membranes. The opaque shades of cortical cataracts represent cohorts of locally affected fibres segregated from unaffected neighbouring fibres by plasma membranes. Other potential scattering centers found throughout the mature cataract nucleus included variations in staining density between adjacent cells, enlarged extracellular spaces between undulating membrane pairs, and protein-like deposits in the extracellular space. These affected parts had membranes with a fine globular aspect and in cross-section proved to be filled with medium to large globular elements. Lipid peroxidation (LPO) is a pathogenetic and causative factor of cataract. Increased concentrations of primary molecular LPO products (diene conjugates, lipid hydroperoxides, fatty acid oxy-derivatives) and end fluorescent LPO products were detected in the lipid moieties of the aqueous humor samples and human

  11. Gender Difference in the Epidemiological Association between Metabolic Syndrome and Olfactory Dysfunction: The Korea National Health and Nutrition Examination Survey

    PubMed Central

    Hwang, Se-Hwan; Kang, Jun-Myung; Seo, Jae-Hyun; Han, Kyung-do; Joo, Young-Hoon

    2016-01-01

    Metabolic syndrome (MetS) is associated with a higher risk of morbidity and/or mortality for various chronic diseases. The aim of this study was to investigate the relationships of MetS and its components with olfactory dysfunction in a representative Korean population. We analyzed the data from the Korean National Health and Nutrition Examination Survey (2008–2010). A total of 11,609 adults who underwent otolaryngological examination were evaluated. The olfactory function was classified as normosmia or hyposmia by a self-report questionnaire according to the sense problems of smell during the past 3 months. MetS was diagnosed if a participant had at least three of the following: (1) WC ≥90 cm in men and ≥80 cm in women; (2) fasting blood sugar ≥ 100 mg/dL or medication use for elevated glucose; (3) fasting triglyceride ≥ 150 mg/dL or cholesterol-lowering medication use; (4) HDL-cholesterol <40 mg/dL in men and <50 mg/dL in women or cholesterol-lowering medication use; and (5) SBP ≥ 130 mmHg and/or DBP ≥ 85 mmHg or antihypertensive drug use for patients with a history of hypertension. The prevalence of olfactory dysfunction in the study population was 6.3%. The prevalence of olfactory dysfunction was significantly higher in older people with MetS than in those without MetS in both sexes (male, 42.0 ± 3.4% vs. 34.7 ± 0.9%, p = 0.0354; female, 46.2 ± 2.8% vs. 37.8 ± 0.8%, p = 0.0026). However, elevated waist circumference, elevated fasting glucose, elevated triglycerides, reduced HDL cholesterol, elevated blood pressure, severe stress, depressed mood, and suicidal ideation were significantly associated with olfactory dysfunction only in women. After controlling for confounders, olfactory dysfunction was significantly associated with MetS (odds ratio, 1.352; 95% confidence interval, 1.005–1.820) only in women. MetS are associated with olfactory dysfunction only in Korean women. PMID:26859830

  12. [Pathogenesis of age-related macular degeneration].

    PubMed

    Kaarniranta, Kai; Seitsonen, Sanna; Paimela, Tuomas; Meri, Seppo; Immonen, Ilkka

    2009-01-01

    Age-related macular degeneration is a multiform disease of the macula, the region responsible for detailed central vision. In recent years, plenty of new knowledge of the pathogenesis of this disease has been obtained, and the treatment of exudative macular degeneration has greatly progressed. The number of patients with age-related macular degeneration will multiply in the following decades, because knowledge of mechanisms of development of macular degeneration that could be subject to therapeutic measures is insufficient. Central underlying factors are genetic inheritance, exposure of the retina to chronic oxidative stress and accumulation of inflammation-inducing harmful proteins into or outside of retinal cells.

  13. [New aspects in age related macular degeneration].

    PubMed

    Turlea, C

    2012-01-01

    Being the leading cause of blindness in modern world Age Related Macular Degeneration has beneficiated in the last decade of important progress in diagnosis, classification and the discovery of diverse factors who contribute to the etiology of this disease. Treatments have arised who can postpone the irreversible evolution of the disease and thus preserve vision. Recent findings have identified predisposing genetic factors and also inflamatory and imunological parameters that can be modified trough a good and adequate prevention and therapy This articole reviews new aspects of patology of Age Related Macular Degeneration like the role of complement in maintaining inflamation and the role of oxidative stress on different structures of the retina.

  14. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy

    PubMed Central

    Drosatos, Konstantinos

    2016-01-01

    Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic equilibrium of the heart along with mitochondrial dysfunction and impaired β-adrenergic receptor signaling contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-activated receptor-α, β-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential therapeutic targets for cardiac aging. PMID:27558317

  15. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  16. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  17. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  18. Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells

    PubMed Central

    Brereton, Melissa F.; Rohm, Maria; Shimomura, Kenju; Holland, Christian; Tornovsky-Babeay, Sharona; Dadon, Daniela; Iberl, Michaela; Chibalina, Margarita V.; Lee, Sheena; Glaser, Benjamin; Dor, Yuval; Rorsman, Patrik; Clark, Anne; Ashcroft, Frances M.

    2016-01-01

    Insulin secretion from pancreatic β-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including β-cells. Here we show that chronic hyperglycaemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. In a mouse model of human neonatal diabetes, hyperglycaemia results in marked glycogen accumulation, and increased apoptosis in β-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy and restores β-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetic patients. Altered β-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced β-cell mass in diabetes. PMID:27882918

  19. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  20. The dipeptidyl peptidase-4 inhibitor teneligliptin improved endothelial dysfunction and insulin resistance in the SHR/NDmcr-cp rat model of metabolic syndrome.

    PubMed

    Nakagami, Hironori; Pang, Zhengda; Shimosato, Takashi; Moritani, Toshinori; Kurinami, Hitomi; Koriyama, Hiroshi; Tenma, Akiko; Shimamura, Munehisa; Morishita, Ryuichi

    2014-07-01

    Diabetes mellitus, hypertension and metabolic syndrome are major risk factors for the occurrence of cardiovascular events. In this study, we used spontaneous hypertensive rat (SHR)/NDmcr-cp (cp/cp) (SHRcp) rats as a model for metabolic syndrome to examine the effects of dipeptidyl peptidase (DPP)-4 inhibition on hypertension, glucose metabolism and endothelial dysfunction. First, we confirmed that SHRcp rats showed very severe obesity, hypertension and endothelial dysfunction phenotypes from 14 to 54 weeks of age. Next, we examined whether the DPP-4 inhibitor teneligliptin (10 mg kg(-1) per day per os for 12 weeks) could modify any of these phenotypes. Treatment with teneligliptin significantly improved hyperglycemia and insulin resistance, as evidenced by an oral glucose tolerance test and homeostasis model assessment for insulin resistance, respectively. Teneligliptin showed no effects on systolic blood pressure or heart rate. In regard to endothelial function, the vasodilator response to acetylcholine was significantly impaired in SHRcp rats when compared with WKY rats. Long-term treatment with teneligliptin significantly attenuated endothelial dysfunction through the upregulation of endothelium-derived nitric oxide synthase mRNA. These results demonstrate that long-term treatment with teneligliptin significantly improved endothelial dysfunction and glucose metabolism in a rat model of metabolic syndrome, suggesting that teneligliptin treatment might be beneficial for patients with hypertension and/or diabetes.

  1. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction

    PubMed Central

    Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov

    2016-01-01

    Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092

  2. The presentation of metabolic dysfunction and the relationship with energy output in breast cancer survivors: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Breast cancer prognosis can be adversely influenced by obesity, physical inactivity and metabolic dysfunction. Interventions aimed at improving surrogate markers of breast cancer risk such as insulin resistance may result in improved breast cancer outcomes. The design of such interventions may be improved through increased understanding of metabolic presentation in this cohort. This cross-sectional study aimed to characterise the metabolic profile of breast cancer survivors relative to abdominal obesity and insulin resistance. A secondary aim was to compare measures of energy output across these groups. Methods Sixty-nine women (mean (SD) age 53.43 (9.39) years) who had completed adjuvant chemotherapy and radiotherapy for breast cancer were recruited. All measures were completed during one assessment conducted 3.1 (1.0) years post diagnosis. Body composition was measured by bioimpedance analysis and waist circumference (WC). Fasting (12 hour) blood samples were drawn to measure lipid profile, glucose, insulin, glycosylated haemoglobin A1c (HBA1c) and C-reactive protein (CRP). Insulin resistance was estimated by the homeostatic model assessment index (HOMA-IR)). Energy output was evaluated by resting metabolic rate (RMR) measured by indirect calorimetry and physical activity measured by accelerometry. Characteristics were compared across four groups (1. WC <80 cm, not insulin resistant; 2. WC 80–87.9 cm, not insulin resistant; 3. WC >88 cm, not insulin resistant; 4. WC >80 cm, insulin resistant) using ANOVA (p < 0.05). Results Group 4 was characterised by significant disturbances in measures of glucose metabolism (glucose, insulin, HOMA-IR and HBA1c) and raised CRP compared to other groups. Group 4 also displayed evidence of dyslipidemia and higher body composition values compared to Groups 1 and 2. Both absolute and adjusted RMR were significantly higher in the Group 4 versus all other groups. Physical activity levels were similar for all

  3. Prevention of age-related macular degeneration

    PubMed Central

    Koo, Simon Chi Yan; Chan, Clement Wai Nang

    2010-01-01

    Age-related macular degeneration (AMD) is one of the leading causes of blindness in the developed world. Although effective treatment modalities such as anti-VEGF treatment have been developed for neovascular AMD, there is still no effective treatment for geographical atrophy, and therefore the most cost-effective management of AMD is to start with prevention. This review looks at current evidence on preventive measures targeted at AMD. Modalities reviewed include (1) nutritional supplements such as the Age-Related Eye Disease Study (AREDS) formula, lutein and zeaxanthin, omega-3 fatty acid, and berry extracts, (2) lifestyle modifications, including smoking and body-mass-index, and (3) filtering sunlight, i.e. sunglasses and blue-blocking intraocular lenses. In summary, the only proven effective preventive measures are stopping smoking and the AREDS formula. PMID:20862519

  4. Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction

    PubMed Central

    Mdaki, Kennedy S.; Larsen, Tricia D.; Wachal, Angela L.; Schimelpfenig, Michelle D.; Weaver, Lucinda J.; Dooyema, Samuel D. R.; Louwagie, Eli J.

    2016-01-01

    Offspring of diabetic pregnancies are at risk of cardiovascular disease at birth and throughout life, purportedly through fuel-mediated influences on the developing heart. Preventative measures focus on glycemic control, but the contribution of additional offenders, including lipids, is not understood. Cellular bioenergetics can be influenced by both diabetes and hyperlipidemia and play a pivotal role in the pathophysiology of adult cardiovascular disease. This study investigated whether a maternal high-fat diet, independently or additively with diabetes, could impair fuel metabolism, mitochondrial function, and cardiac physiology in the developing offspring's heart. Sprague-Dawley rats fed a control or high-fat diet were administered placebo or streptozotocin to induce diabetes during pregnancy and then delivered offspring from four groups: control, diabetes exposed, diet exposed, and combination exposed. Cardiac function, cellular bioenergetics (mitochondrial stress test, glycolytic stress test, and palmitate oxidation assay), lipid peroxidation, mitochondrial histology, and copy number were determined. Diabetes-exposed offspring had impaired glycolytic and respiratory capacity and a reduced proton leak. High-fat diet-exposed offspring had increased mitochondrial copy number, increased lipid peroxidation, and evidence of mitochondrial dysfunction. Combination-exposed pups were most severely affected and demonstrated cardiac lipid droplet accumulation and diastolic/systolic cardiac dysfunction that mimics that of adult diabetic cardiomyopathy. This study is the first to demonstrate that a maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancies through metabolic stress and serves as a critical step in understanding the role of cellular bioenergetics in developmentally programmed cardiac disease. PMID:26801311

  5. Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit.

    PubMed

    Vignozzi, Linda; Filippi, Sandra; Comeglio, Paolo; Cellai, Ilaria; Sarchielli, Erica; Morelli, Annamaria; Rastrelli, Giulia; Maneschi, Elena; Galli, Andrea; Vannelli, Gabriella Barbara; Saad, Farid; Mannucci, Edoardo; Adorini, Luciano; Maggi, Mario

    2014-03-25

    A pathogenic link between erectile dysfunction (ED) and metabolic syndrome (MetS) is now well established. Nonalcoholic steatohepatitis (NASH), the hepatic hallmark of MetS, is regarded as an active player in the pathogenesis of MetS-associated cardiovascular disease (CVD). This study was aimed at evaluating the relationship between MetS-induced NASH and penile dysfunction. We used a non-genomic, high fat diet (HFD)-induced, rabbit model of MetS, and treated HFD rabbits with testosterone (T), with the selective farnesoid X receptor (FXR) agonist obeticholic acid (OCA), or with the anti-TNFα mAb infliximab. Rabbits fed a regular diet were used as controls. Liver histomorphological and gene expression analysis demonstrated NASH in HFD rabbits. Several genes related to inflammation (including TNFα), activation of stellate cells, fibrosis, and lipid metabolism parameters were negatively associated to maximal acetylcholine (Ach)-induced relaxation in penis. When all these putative liver determinants of penile Ach responsiveness were tested as covariates in a multivariate model, only the association between hepatic TNFα expression and Ach response was confirmed. Accordingly, circulating levels of TNFα were increased 15-fold in HFD rabbits. T and OCA dosing in HFD rabbits both reduced TNFα liver expression and plasma levels, with a parallel increase of penile eNOS expression and responsiveness to Ach. Also neutralization of TNFα with infliximab treatment fully normalized HFD-induced hypo-responsiveness to Ach, as well as responsiveness to vardenafil, a phosphodiesterase type 5 inhibitor. Thus, MetS-induced NASH in HFD rabbits plays an active role in the pathogenesis of ED, likely through TNFα, as indicated by treatments reducing liver and circulating TNFα levels (T or OCA), or neutralizing TNFα action (infliximab), which significantly improve penile responsiveness to Ach in HFD rabbits.

  6. Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation

    PubMed Central

    Kong, Ping; Gonzalez-Quesada, Carlos; Li, Na; Cavalera, Michele; Lee, Dong-Wook

    2013-01-01

    As a typical matricellular protein, thrombospondin (TSP)-1, binds to the structural matrix and regulates cellular behavior by modulating growth factor and cytokine signaling. Obesity and diabetes are associated with marked upregulation of TSP-1 in adipose tissue. We hypothesized that endogenous TSP-1 may play an important role in the pathogenesis of diet-induced obesity and metabolic dysfunction. Accordingly, we examined the effects of TSP-1 gene disruption on weight gain, adiposity, and adipose tissue inflammation in mice receiving a high-fat diet (HFD: 60% fat, 20% carbohydrate) or a high-carbohydrate low-fat diet (HCLFD: 10% fat, 70% carbohydrate). HFD mice had significantly higher TSP-1 expression in perigonadal adipose tissue; TSP-1 was predominantly localized in the adipose interstitium. TSP-1 loss attenuated weight gain and fat accumulation in HFD and HCLFD groups. Compared with corresponding wild-type animals, TSP-1-null mice had decreased insulin levels but exhibited elevated free fatty acid and triglyceride levels, suggesting impaired fatty acid uptake. TSP-1 loss did not affect adipocyte size and had no effect on adipose vascular density. However, TSP-1-null mice exhibited attenuated tumor necrosis factor-α mRNA expression and reduced macrophage infiltration, suggesting a role for TSP-1 in mediating obesity-associated inflammation. In vitro, TSP-1 enhanced proliferation of 3T3-L1 preadipocytes but did not modulate inflammatory cytokine and chemokine synthesis. In conclusion, TSP-1 upregulation contributes to weight gain, adipose growth, and the pathogenesis of metabolic dysfunction. The effects of TSP-1 may involve stimulation of adipocyte proliferation, activation of inflammatory signaling, and facilitated fatty acid uptake by adipocytes. PMID:23757408

  7. Female rats selectively bred for high intrinsic aerobic fitness are protected from ovariectomy-associated metabolic dysfunction

    PubMed Central

    Padilla, Jaume; Park, Young-Min; Welly, Rebecca J.; Scroggins, Rebecca J.; Britton, Steven L.; Koch, Lauren G.; Jenkins, Nathan T.; Crissey, Jacqueline M.; Zidon, Terese; Morris, E. Matthew; Meers, Grace M. E.; Thyfault, John P.

    2015-01-01

    Ovariectomized rodents model human menopause in that they rapidly gain weight, reduce spontaneous physical activity (SPA), and develop metabolic dysfunction, including insulin resistance. How contrasting aerobic fitness levels impacts ovariectomy (OVX)-associated metabolic dysfunction is not known. Female rats selectively bred for high and low intrinsic aerobic fitness [high-capacity runners (HCR) and low-capacity runners (LCR), respectively] were maintained under sedentary conditions for 39 wk. Midway through the observation period, OVX or sham (SHM) operations were performed providing HCR-SHM, HCR-OVX, LCR-SHM, and LCR-OVX groups. Glucose tolerance, energy expenditure, and SPA were measured before and 4 wk after surgery, while body composition via dual-energy X-ray absorptiometry and adipose tissue distribution, brown adipose tissue (BAT), and skeletal muscle phenotype, hepatic lipid content, insulin resistance via homeostatic assessment model of insulin resistance and AdipoIR, and blood lipids were assessed at death. Remarkably, HCR were protected from OVX-associated increases in adiposity and insulin resistance, observed only in LCR. HCR rats were ∼30% smaller, had ∼70% greater spontaneous physical activity (SPA), consumed ∼10% more relative energy, had greater skeletal muscle proliferator-activated receptor coactivator 1-alpha, and ∼40% more BAT. OVX did not increase energy intake and reduced SPA to the same extent in both HCR and LCR. LCR were particularly affected by an OVX-associated reduction in resting energy expenditure and experienced a reduction in relative BAT; resting energy expenditure correlated positively with BAT across all animals (r = 0.6; P < 0.001). In conclusion, despite reduced SPA following OVX, high intrinsic aerobic fitness protects against OVX-associated increases in adiposity and insulin resistance. The mechanism may involve preservation of resting energy expenditure. PMID:25608751

  8. Aging-related inflammation in osteoarthritis.

    PubMed

    Greene, M A; Loeser, R F

    2015-11-01

    It is well accepted that aging is an important contributing factor to the development of osteoarthritis (OA). The mechanisms responsible appear to be multifactorial and may include an age-related pro-inflammatory state that has been termed "inflamm-aging." Age-related inflammation can be both systemic and local. Systemic inflammation can be promoted by aging changes in adipose tissue that result in increased production of cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNFα). Numerous studies have shown an age-related increase in blood levels of IL-6 that has been associated with decreased physical function and frailty. Importantly, higher levels of IL-6 have been associated with an increased risk of knee OA progression. However, knockout of IL-6 in male mice resulted in worse age-related OA rather than less OA. Joint tissue cells, including chondrocytes and meniscal cells, as well as the neighboring infrapatellar fat in the knee joint, can be a local source of inflammatory mediators that increase with age and contribute to OA. An increased production of pro-inflammatory mediators that include cytokines and chemokines, as well as matrix-degrading enzymes important in joint tissue destruction, can be the result of cell senescence and the development of the senescence-associated secretory phenotype (SASP). Further studies are needed to better understand the basis for inflamm-aging and its role in OA with the hope that this work will lead to new interventions targeting inflammation to reduce not only joint tissue destruction but also pain and disability in older adults with OA.

  9. Chloroquine-induced nitric oxide as a potential treatment of erectile dysfunction associated with the metabolic syndrome: the science and the fiction.

    PubMed

    Ahmed, Mohamed H

    2007-05-01

    Erectile dysfunction is an important cause of decreased quality of life in men. It is estimated that approximately 30 million men in the US and 100 million worldwide may have erectile dysfunction. Data from epidemiological studies indicate a higher prevalence of impotence in obese men. Obesity may be a risk factor for sexual dysfunction in both sexes; data for the metabolic syndrome are very preliminary and need to be confirmed in larger epidemiological studies. The high prevalence of erectile dysfunction in patients with cardiovascular risk factors suggests that abnormalities of the vasodilator system of penile arteries play an important role in the pathophysiology of erectile dysfunction. Nitric oxide released during non-adrenergic, non-cholinergic neurotransmission and from the endothelium is probably the principal neurotransmitter mediating penile erection. It has been shown that chloroquine administration was associated with an increase in nitric oxide synthesis. Chloroquine was also postulated to enhance insulin sensitivity, which suggests potential benefit in treating the metabolic syndrome-related erectile dysfunction.

  10. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction

    PubMed Central

    Jiang, Changtao; Xie, Cen; Lv, Ying; Li, Jing; Krausz, Kristopher W.; Shi, Jingmin; Brocker, Chad N.; Desai, Dhimant; Amin, Shantu G.; Bisson, William H.; Liu, Yulan; Gavrilova, Oksana; Patterson, Andrew D.; Gonzalez, Frank J.

    2015-01-01

    The farnesoid X receptor (FXR) regulates bile acid, lipid and glucose metabolism. Here we show that treatment of mice with glycine-β-muricholic acid (Gly-MCA) inhibits FXR signalling exclusively in intestine, and improves metabolic parameters in mouse models of obesity. Gly-MCA is a selective high-affinity FXR inhibitor that can be administered orally and prevents, or reverses, high-fat diet-induced and genetic obesity, insulin resistance and hepatic steatosis in mice. The high-affinity FXR agonist GW4064 blocks Gly-MCA action in the gut, and intestine-specific Fxr-null mice are unresponsive to the beneficial effects of Gly-MCA. Mechanistically, the metabolic improvements with Gly-MCA depend on reduced biosynthesis of intestinal-derived ceramides, which directly compromise beige fat thermogenic function. Consequently, ceramide treatment reverses the action of Gly-MCA in high-fat diet-induced obese mice. We further show that FXR signalling in ileum biopsies of humans positively correlates with body mass index. These data suggest that Gly-MCA may be a candidate for the treatment of metabolic disorders. PMID:26670557

  11. Age-related changes in the central auditory system.

    PubMed

    Ouda, Ladislav; Profant, Oliver; Syka, Josef

    2015-07-01

    Aging is accompanied by the deterioration of hearing that complicates our understanding of speech, especially in noisy environments. This deficit is partially caused by the loss of hair cells as well as by the dysfunction of the stria vascularis. However, the central part of the auditory system is also affected by processes accompanying aging that may run independently of those affecting peripheral receptors. Here, we review major changes occurring in the central part of the auditory system during aging. Most of the information that is focused on age-related changes in the central auditory system of experimental animals arises from experiments using immunocytochemical targeting on changes in the glutamic-acid-decarboxylase, parvalbumin, calbindin and calretinin. These data are accompanied by information about age-related changes in the number of neurons as well as about changes in the behavior of experimental animals. Aging is in principle accompanied by atrophy of the gray as well as white matter, resulting in the enlargement of the cerebrospinal fluid space. The human auditory cortex suffers not only from atrophy but also from changes in the content of some metabolites in the aged brain, as shown by magnetic resonance spectroscopy. In addition to this, functional magnetic resonance imaging reveals differences between activation of the central auditory system in the young and old brain. Altogether, the information reviewed in this article speaks in favor of specific age-related changes in the central auditory system that occur mostly independently of the changes in the inner ear and that form the basis of the central presbycusis.

  12. Differential Pathways to Adult Metabolic Dysfunction following Poor Nutrition at Two Critical Developmental Periods in Sheep

    PubMed Central

    Poore, Kirsten R.; Hollis, Lisa J.; Murray, Robert J. S.; Warlow, Anna; Brewin, Andrew; Fulford, Laurence; Cleal, Jane K.; Lillycrop, Karen A.; Burdge, Graham C.; Hanson, Mark A.; Green, Lucy R.

    2014-01-01

    Epidemiological and experimental studies suggest early nutrition has long-term effects on susceptibility to obesity, cardiovascular and metabolic diseases. Small and large animal models confirm the influence of different windows of sensitivity, from fetal to early postnatal life, on offspring phenotype. We showed previously that undernutrition in sheep either during the first month of gestation or immediately after weaning induces differential, sex-specific changes in adult metabolic and cardiovascular systems. The current study aims to determine metabolic and molecular changes that underlie differences in lipid and glucose metabolism induced by undernutrition during specific developmental periods in male and female sheep. Ewes received 100% (C) or 50% nutritional requirements (U) from 1–31 days gestation, and 100% thereafter. From weaning (12 weeks) to 25 weeks, offspring were then fed either ad libitum (CC, UC) or were undernourished (CU, UU) to reduce body weight to 85% of their individual target. From 25 weeks, all offspring were fed ad libitum. A cohort of late gestation fetuses were studied after receiving either 40% nutritional requirements (1–31 days gestation) or 50% nutritional requirements (104–127 days gestation). Post-weaning undernutrition increased in vivo insulin sensitivity, insulin receptor and glucose transporter 4 expression in muscle, and lowered hepatic methylation at the delta-like homolog 1/maternally expressed gene 3 imprinted cluster in adult females, but not males. Early gestational undernutrition induced lower hepatic expression of gluconeogenic factors in fetuses and reduced in vivo adipose tissue insulin sensitivity in adulthood. In males, undernutrition in early gestation increased adipose tissue lipid handling mechanisms (lipoprotein lipase, glucocorticoid receptor expression) and hepatic methylation within the imprinted control region of insulin-like growth factor 2 receptor in adulthood. Therefore, undernutrition during

  13. Caloric Restriction as a Strategy to Improve Vascular Dysfunction in Metabolic Disorders

    PubMed Central

    García-Prieto, Concha F.; Fernández-Alfonso, María S.

    2016-01-01

    Caloric restriction (CR) has proved to be the most effective and reproducible dietary intervention to increase healthy lifespan and aging. A reduction in cardiovascular disease (CVD) risk in obese subjects can be already achieved by a moderate and sustainable weight loss. Since pharmacological approaches for body weight reduction have, at present, a poor long-term efficacy, CR is of great interest in the prevention and/or reduction of CVD associated with obesity. Other dietary strategies changing specific macronutrients, such as altering carbohydrates, protein content or diet glycemic index have been also shown to decrease the progression of CVD in obese patients. In this review, we will focus on the positive effects and possible mechanisms of action of these strategies on vascular dysfunction. PMID:27314388

  14. Nutritional influences on age-related skeletal muscle loss.

    PubMed

    Welch, Ailsa A

    2014-02-01

    Age-related muscle loss impacts on whole-body metabolism and leads to frailty and sarcopenia, which are risk factors for fractures and mortality. Although nutrients are integral to muscle metabolism the relationship between nutrition and muscle loss has only been extensively investigated for protein and amino acids. The objective of the present paper is to describe other aspects of nutrition and their association with skeletal muscle mass. Mechanisms for muscle loss relate to imbalance in protein turnover with a number of anabolic pathways of which the mechanistic TOR pathway and the IGF-1-Akt-FoxO pathways are the most characterised. In terms of catabolism the ubiquitin proteasome system, apoptosis, autophagy, inflammation, oxidation and insulin resistance are among the major mechanisms proposed. The limited research associating vitamin D, alcohol, dietary acid-base load, dietary fat and anti-oxidant nutrients with age-related muscle loss is described. Vitamin D may be protective for muscle loss; a more alkalinogenic diet and diets higher in the anti-oxidant nutrients vitamin C and vitamin E may also prevent muscle loss. Although present recommendations for prevention of sarcopenia focus on protein, and to some extent on vitamin D, other aspects of the diet including fruits and vegetables should be considered. Clearly, more research into other aspects of nutrition and their role in prevention of muscle loss is required.

  15. Cellular and metabolic alterations in the hippocampus caused by insulin signalling dysfunction and its association with cognitive impairment during aging and Alzheimer's disease: studies in animal models.

    PubMed

    Calvo-Ochoa, Erika; Arias, Clorinda

    2015-01-01

    A growing body of animal and epidemiological studies suggest that metabolic diseases such as obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus are associated with the development of cognitive impairment, dementia and Alzheimer's disease, particularly in aging. Several lines of evidence suggest that insulin signalling dysfunction produces these metabolic alterations and underlie the development of these neurodegenerative diseases. In this article, we address normal insulin function in the synapse; we review and discuss the physiopathological hallmarks of synaptic insulin signalling dysfunction associated with metabolic alterations. Additionally, we describe and review the major animal models of obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus. The comprehensive knowledge of the molecular mechanisms behind the association of metabolic alterations and cognitive impairment could facilitate the early detection of neurodegenerative diseases in patients with metabolic alterations, with treatment that focus on neuroprotection. It could also help in the development of metabolic-based therapies and drugs for using in dementia and Alzheimer's disease patients to alleviate their symptoms in a more efficient and comprehensive way.

  16. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    PubMed Central

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  17. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth

    PubMed Central

    Kemppainen, Esko; George, Jack; Garipler, Görkem; Tuomela, Tea; Kiviranta, Essi; Soga, Tomoyoshi; Dunn, Cory D.; Jacobs, Howard T.

    2016-01-01

    The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level. PMID:26812173

  18. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments.

    PubMed

    Zhang, Xiaonan; Fryknäs, Mårten; Hernlund, Emma; Fayad, Walid; De Milito, Angelo; Olofsson, Maria Hägg; Gogvadze, Vladimir; Dang, Long; Påhlman, Sven; Schughart, Leoni A Kunz; Rickardson, Linda; D'Arcy, Padraig; Gullbo, Joachim; Nygren, Peter; Larsson, Rolf; Linder, Stig

    2014-01-01

    Abnormal vascularization of solid tumours results in the development of microenvironments deprived of oxygen and nutrients that harbour slowly growing and metabolically stressed cells. Such cells display enhanced resistance to standard chemotherapeutic agents and repopulate tumours after therapy. Here we identify the small molecule VLX600 as a drug that is preferentially active against quiescent cells in colon cancer 3-D microtissues. The anticancer activity is associated with reduced mitochondrial respiration, leading to bioenergetic catastrophe and tumour cell death. VLX600 shows enhanced cytotoxic activity under conditions of nutrient starvation. Importantly, VLX600 displays tumour growth inhibition in vivo. Our findings suggest that tumour cells in metabolically compromised microenvironments have a limited ability to respond to decreased mitochondrial function, and suggest a strategy for targeting the quiescent populations of tumour cells for improved cancer treatment.

  19. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    PubMed

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD.

  20. Metabolic dysfunction in female mice with disruption of 5α-reductase 1

    PubMed Central

    Di Rollo, Emma M; Mak, Tracy C-S; Sooy, Karen; Walker, Brian R; Andrew, Ruth

    2016-01-01

    5α-Reductases irreversibly catalyse A-ring reduction of pregnene steroids, including glucocorticoids and androgens. Genetic disruption of 5α-reductase 1 in male mice impairs glucocorticoid clearance and predisposes to glucose intolerance and hepatic steatosis upon metabolic challenge. However, it is unclear whether this is driven by changes in androgen and/or glucocorticoid action. Female mice with transgenic disruption of 5α-reductase 1 (5αR1-KO) were studied, representing a ‘low androgen’ state. Glucocorticoid clearance and stress responses were studied in mice aged 6 months. Metabolism was assessed in mice on normal chow (aged 6 and 12 m) and also in a separate cohort following 1-month high-fat diet (aged 3 m). Female 5αR1-KO mice had adrenal suppression (44% lower AUC corticosterone after stress), and upon corticosterone infusion, accumulated hepatic glucocorticoids (~27% increased corticosterone). Female 5αR1-KO mice aged 6 m fed normal chow demonstrated insulin resistance (~35% increased area under curve (AUC) for insulin upon glucose tolerance testing) and hepatic steatosis (~33% increased hepatic triglycerides) compared with controls. This progressed to obesity (~12% increased body weight) and sustained insulin resistance (~38% increased AUC insulin) by age 12 m. Hepatic transcript profiles supported impaired lipid β-oxidation and increased triglyceride storage. Female 5αR1-KO mice were also predisposed to develop high-fat diet-induced insulin resistance. Exaggerated predisposition to metabolic disorders in female mice, compared with that seen in male mice, after disruption of 5αR1 suggests phenotypic changes may be underpinned by altered metabolism of glucocorticoids rather than androgens. PMID:27647861

  1. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    PubMed Central

    Wiklund, Petri; Zhang, Xiaobo; Pekkala, Satu; Autio, Reija; Kong, Lingjia; Yang, Yifan; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue. PMID:27080554

  2. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice

    PubMed Central

    Zhang, Limin; Hatzakis, Emmanuel; Nichols, Robert G.; Hao, Ruixin; Correll, Jared; Smith, Philip B.; Chiaro, Christopher R.; Perdew, Gary H.; Patterson, Andrew D.

    2016-01-01

    Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) were assessed using global 1H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolic profiling of extracts obtained from serum and liver. 1H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was also observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure. PMID:26023891

  3. Metformin improves metabolic memory in high fat diet (HFD)-induced renal dysfunction.

    PubMed

    Tikoo, Kulbhushan; Sharma, Ekta; Amara, Venkateswara Rao; Pamulapati, Himani; Dhawale, Vaibhav Shrirang

    2016-08-22

    Recently, we have shown that high fat diet (HFD) in vivo and in vitro generates metabolic memory by altering H3K36me2 and H3K27me3 on the promoter of FOXO1 (transcription factor of gluconeogenic genes) (Kumar et al., 2015). Here we checked the hypothesis, whether concomitant diet reversal and metformin could overcome HFD-induced metabolic memory and renal damage. Male adult Sprague Dawley rats were rendered insulin resistant by feeding high fat diet for 16 weeks. Then the rats were subjected to diet reversal (REV) alone and along with metformin (REV+MET) for 8 weeks. Biochemical and histological markers of insulin resistance and kidney function were measured. Blood pressure and in vivo vascular reactivity to Angiotensin II (200 mgkg-1) were also checked. Diet reversal could improve lipid profile but could not prevent renal complications induced by HFD. Interestingly, metformin along with diet reversal restored the levels of blood glucose, triglycerides, cholesterol, blood urea nitrogen and creatinine. In kidney, metformin increased the activation of AMPK, decreased inflammatory markers-COX-2, IL-1β and apoptotic markers-PARP, Caspase3. Metformin was effective in lowering the elevated basal blood pressure, acute change in mean arterial pressure (ΔMAP) in response to Ang II. It also attenuated the tubulointerstitial fibrosis and glomerulosclerosis induced by HFD-feeding in kidney. Here we report for the first time, that metformin treatment overcomes metabolic memory and prevents HFD-induced renal damage.

  4. Preventing painful age-related bone fractures

    PubMed Central

    Thompson, Michelle L; Chartier, Stephane R; Mitchell, Stefanie A

    2016-01-01

    Age-related bone fractures are usually painful and have highly negative effects on a geriatric patient’s functional status, quality of life, and survival. Currently, there are few analgesic therapies that fully control bone fracture pain in the elderly without significant unwanted side effects. However, another way of controlling age-related fracture pain would be to preemptively administer an osteo-anabolic agent to geriatric patients with high risk of fracture, so as to build new cortical bone and prevent the fracture from occurring. A major question, however, is whether an osteo-anabolic agent can stimulate the proliferation of osteogenic cells and build significant amounts of new cortical bone in light of the decreased number and responsiveness of osteogenic cells in aging bone. To explore this question, geriatric and young mice, 20 and 4 months old, respectively, received either vehicle or a monoclonal antibody that sequesters sclerostin (anti-sclerostin) for 28 days. From days 21 to 28, animals also received sustained administration of the thymidine analog, bromodeoxyuridine (BrdU), which labels the DNA of dividing cells. Animals were then euthanized at day 28 and the femurs were examined for cortical bone formation, bone mineral density, and newly borne BrdU+ cells in the periosteum which is a tissue that is pivotally involved in the formation of new cortical bone. In both the geriatric and young mice, anti-sclerostin induced a significant increase in the thickness of the cortical bone, bone mineral density, and the proliferation of newly borne BrdU+ cells in the periosteum. These results suggest that even in geriatric animals, anti-sclerostin therapy can build new cortical bone and increase the proliferation of osteogenic cells and thus reduce the likelihood of painful age-related bone fractures. PMID:27837171

  5. Age-related eye disease and gender.

    PubMed

    Zetterberg, Madeleine

    2016-01-01

    Worldwide, the prevalence of moderate to severe visual impairment and blindness is 285 millions, with 65% of visually impaired and 82% of all blind people being 50 years and older. Meta-analyses have shown that two out of three blind people are women, a gender discrepancy that holds true for both developed and developing countries. Cataract accounts for more than half of all blindness globally and gender inequity in access to cataract surgery is the major cause of the higher prevalence of blindness in women. In addition to gender differences in cataract surgical coverage, population-based studies on the prevalence of lens opacities indicate that women have a higher risk of developing cataract. Laboratory as well as epidemiologic studies suggest that estrogen may confer antioxidative protection against cataractogenesis, but the withdrawal effect of estrogen in menopause leads to increased risk of cataract in women. For the other major age-related eye diseases; glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy, data are inconclusive. Due to anatomic factors, angle closure glaucoma is more common in women, whereas the dominating glaucoma type; primary open-angle glaucoma (POAG), is more prevalent in men. Diabetic retinopathy also has a male predominance and vascular/circulatory factors have been implied both in diabetic retinopathy and in POAG. For AMD, data on gender differences are conflicting although some studies indicate increased prevalence of drusen and neovascular AMD in women. To conclude, both biologic and socioeconomic factors must be considered when investigating causes of gender differences in the prevalence of age-related eye disease.

  6. Pathophysiology of age-related diseases

    PubMed Central

    Campisi, Giuseppina; Chiappelli, Martina; De Martinis, Massimo; Franco, Vito; Ginaldi, Lia; Guiglia, Rosario; Licastro, Federico; Lio, Domenico

    2009-01-01

    A Symposium regarding the Pathophysiology of Successful and Unsuccessful Ageing was held in Palermo, Italy on 7-8 April 2009. Three lectures from that Symposium by G. Campisi, L. Ginaldi and F. Licastro are here summarized. Ageing is a complex process which negatively impacts on the development of various bodily systems and its ability to function. A long life in a healthy, vigorous, youthful body has always been one of humanity's greatest dreams. Thus, a better understanding of the pathophysiology of age-related diseases is urgently required to improve our understanding of maintaining good health in the elderly and to program possible therapeutic intervention. PMID:19737378

  7. Depression in Age-Related Macular Degeneration.

    PubMed

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling diseases. This article discusses the effect of depression on vision-related disability in patients with AMD, suggests methods for screening for depression, and summarizes interventions for preventing depression in this high-risk group.

  8. [Age-related macular degeneration (AMD)].

    PubMed

    Michels, Stephan; Kurz-Levin, Malaika

    2009-03-01

    Today age-related macular degeneration (AMD) is the most frequent cause for legal blindness in western industrialized countries. The prevalence of this disease rises with increasing age. A multifactorial pathogenesis of AMD is postulated including genetic predisposition and environmental risk factors. The most relevant modifiable risk factor is smoking. Up to today there is no cure of this chronic disease. Prophylaxis, including a healthy diet and antioxidants as nutrional supplements for selected patients, aims to slow down the disease progression. Significant progress has been made in the treatment of the neovascular form of the disease using inhibitors of the vascular endothelial growth factor (VEGF).

  9. Nitroxide pharmaceutical development for age-related degeneration and disease

    PubMed Central

    Zarling, Jacob A.; Brunt, Vienna E.; Vallerga, Anne K.; Li, Weixing; Tao, Albert; Zarling, David A.; Minson, Christopher T.

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed. PMID:26594225

  10. Nitroxide pharmaceutical development for age-related degeneration and disease.

    PubMed

    Zarling, Jacob A; Brunt, Vienna E; Vallerga, Anne K; Li, Weixing; Tao, Albert; Zarling, David A; Minson, Christopher T

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed.

  11. Neuroendorine and Epigentic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome

    PubMed Central

    Lemche, Erwin; Chaban, Oleg S.; Lemche, Alexandra V.

    2016-01-01

    Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS) has been substantiated by epidemiological, psychophysiological, and endocrinological studies. This review discusses recent advances in the understanding of causative roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly in MetS-like conditions. The review identifies candidate risk genes from factors shown critical for the functioning of each of these neuroendocrine signaling cascades. In its meta-analytic part, recent studies in epigenetic modification (histone methylation, acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by microRNAs are evaluated. Several studies suggest modification mechanisms of early life stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions with populations of POMC-expressing neurons. Epigenetic modifications were found in cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes. With respect to adiposity genes, epigenetic modifications were documented for fat mass gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory, immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic lipoproteins were documented for epigenetic modifications. PMID:27147943

  12. Neuroendorine and Epigentic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome.

    PubMed

    Lemche, Erwin; Chaban, Oleg S; Lemche, Alexandra V

    2016-01-01

    Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS) has been substantiated by epidemiological, psychophysiological, and endocrinological studies. This review discusses recent advances in the understanding of causative roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly in MetS-like conditions. The review identifies candidate risk genes from factors shown critical for the functioning of each of these neuroendocrine signaling cascades. In its meta-analytic part, recent studies in epigenetic modification (histone methylation, acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by microRNAs are evaluated. Several studies suggest modification mechanisms of early life stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions with populations of POMC-expressing neurons. Epigenetic modifications were found in cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes. With respect to adiposity genes, epigenetic modifications were documented for fat mass gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory, immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic lipoproteins were documented for epigenetic modifications.

  13. G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction.

    PubMed

    Rajaraman, Gayathri; Simcocks, Anna; Hryciw, Deanne H; Hutchinson, Dana S; McAinch, Andrew J

    2016-01-01

    Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels. Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression. These cannabinoid receptors are part of a large family of G protein coupled receptors (GPCRs). GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal, and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus. Obesity is considered a state of chronic low-grade inflammation elicited by an immunological response. Interestingly, the newly deorphanized GPCR (GPR18), which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function. In this review, the current scientific knowledge on GPR18 is explored including its localization, signaling pathways, and pharmacology. Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described. Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.

  14. Ghrelin receptor signaling: a promising therapeutic target for metabolic syndrome and cognitive dysfunction

    PubMed Central

    Cong, Wei-na; Golden, Erin; Pantaleo, Nick; White, Caitlin M.; Maudsley, Stuart; Martin, Bronwen

    2010-01-01

    The neuroendocrine hormone ghrelin is an octanoylated 28-residue peptide that exerts numerous physiological functions. Ghrelin exerts its effects on the body mainly through a highly conserved G protein-coupled receptor known as the growth hormone secretagagogue receptor subtype 1a (GHS-R1a). Ghrelin and GSH-R1a are widely expressed in both peripheral and central tissues/organs, and ghrelin signaling plays a critical role in maintaining energy balance and neuronal health. The multiple orexigenic effects of ghrelin and its receptor have been studied in great detail, and GHS-R1a-mediated ghrelin signaling has long been a promising target for the treatment of metabolic disorders, such as obesity. In addition to its well-characterized metabolic effects, there is also mounting evidence that ghrelin-mediated GHS-R1a signaling exerts neuroprotective effects on the brain. In this review, we will summarize some of the effects of ghrelin-mediated GSH-R1a signaling on peripheral energy balance and cognitive function. We will also discuss the potential pharmacotherapeutic role of GSH-R1a-mediated ghrelin signaling for the treatment of complex neuroendocrine disorders. PMID:20632971

  15. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats.

    PubMed

    Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu

    2016-02-15

    Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent.

  16. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?

    PubMed

    Dumas, Sébastien J; Humbert, Marc; Cohen-Kaminsky, Sylvia

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a rare, complex and multifactorial disease in which pulmonary vascular remodeling plays a major role ending in right heart failure and death. Current specific therapies of PAH that mainly target the vasoconstriction/vasodilatation imbalance are not curative. Bi-pulmonary transplantation remains the only option in patients resistant to current therapies. It is thus crucial to identify novel vascular anti-remodeling therapeutic targets. This remodeling displays several properties of cancer cells, especially overproliferation and apoptosis resistance of pulmonary vascular cells, hallmarks of cancer related to the metabolic shift known as the "Warburg effect". The latter is characterized by a shift of ATP production, from oxidative phosphorylation to low rate aerobic glycolysis. In compensation, the cancer cells exhibit exacerbated glutaminolysis thus resulting in glutamine addiction, necessary to their overproliferation. Glutamine intake results in glutamate production, a molecule at the crossroads of energy metabolism and cancer cell communication, thus contributing to cell proliferation. Accordingly, therapeutic strategies targeting glutamate production, its release into the extracellular space and its membrane receptors have been suggested to treat different types of cancers, not only in the central nervous system but also in the periphery. We propose that similar strategies targeting glutamatergic signaling may be considered in PAH, especially as they could affect not only the vascular remodeling but also the right heart hypertrophy known to involve the glutaminolysis pathway. Ongoing studies aim to characterize the involvement of the glutamate pathway and its receptors in vascular remodeling, and the therapeutic potential of specific molecules targeting this pathway.

  17. Dysfunctional protection against advanced glycation due to thiamine metabolism abnormalities in gestational diabetes.

    PubMed

    Bartáková, Vendula; Pleskačová, Anna; Kuricová, Katarína; Pácal, Lukáš; Dvořáková, Veronika; Bělobrádková, Jana; Tomandlová, Marie; Tomandl, Josef; Kaňková, Kateřina

    2016-08-01

    While the pathogenic role of dicarbonyl stress and accelerated formation of advanced glycation end products (AGEs) to glucose intolerance and to the development of diabetic complications is well established, little is known about these processes in gestational diabetes mellitus (GDM), a condition pathogenically quite similar to type 2 diabetes. The aims of the present study were (i) to determine plasma thiamine and erythrocyte thiamine diphosphate (TDP) and transketolase (TKT) activity in pregnant women with and without GDM, (ii) to assess relationships between thiamine metabolism parameters and selected clinical, biochemical and anthropometric characteristics and, finally, (iii) to analyse relationship between variability in the genes involved in the regulation of transmembrane thiamine transport (i.e. SLC19A2 and SLC19A3) and relevant parameters of thiamine metabolism. We found significantly lower plasma BMI adjusted thiamine in women with GDM (P = 0.002, Mann-Whitney) while levels of erythrocyte TDP (an active TKT cofactor) in mid-trimester were significantly higher in GDM compared to controls (P = 0.04, Mann-Whitney). However, mid-gestational TKT activity - reflecting pentose phosphate pathway activity - did not differ between the two groups (P > 0.05, Mann-Whitney). Furthermore, we ascertained significant associations of postpartum TKT activity with SNPs SLC19A2 rs6656822 and SLC19A3 rs7567984 (P = 0.03 and P = 0.007, resp., Kruskal-Wallis). Our findings of increased thiamine delivery to the cells without concomitant increase of TKT activity in women with GDM therefore indicate possible pathogenic role of thiamine mishandling in GDM. Further studies are needed to determine its contribution to maternal and/or neonatal morbidity.

  18. Ubc13 haploinsufficiency protects against age-related insulin resistance and high-fat diet-induced obesity

    PubMed Central

    Joo, Erina; Fukushima, Toru; Harada, Norio; Reed, John C.; Matsuzawa, Shu-ichi; Inagaki, Nobuya

    2016-01-01

    Obesity is associated with low-grade inflammation that leads to insulin resistance and type 2 diabetes via Toll-like Receptor (TLR) and TNF-family cytokine receptor (TNFR) signaling pathways. Ubc13 is an ubiquitin-conjugating enzyme responsible for non-canonical K63-linked polyubiquitination of TNF receptor-associated factor (TRAF)-family adapter proteins involved in TLR and TNFR pathways. However, the relationship between Ubc13 and metabolic disease remains unclear. In this study, we investigated the role of Ubc13 in insulin resistance and high-fat diet (HFD)-induced obesity. We compared wild-type (WT) and Ubc13 haploinsufficient (ubc13+/−) mice under normal diet (ND) and HFD, since homozygous knockout mice (ubc13−/−) are embryonic lethal. Male and female ubc13+/− mice were protected against age-related insulin resistance under ND and HFD compared to WT mice. Interestingly, only female ubc13+/− mice were protected against HFD-induced obesity and hepatic steatosis. Moreover, only female HFD-fed ubc13+/− mice showed lower expression of inflammatory cytokines that was secondary to reduction in weight gain not present in the other groups. In summary, our results indicate that suppression of Ubc13 activity may play a metabolic role independent of its inflammatory function. Thus, Ubc13 could represent a therapeutic target for insulin resistance, diet-induced obesity, and associated metabolic dysfunctions. PMID:27796312

  19. Glut1 deficiency (G1D): Epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Duarte, Joao; Bottiglieri, Teodoro; Sinton, Christopher M.; Heilig, Charles W.; Pascual, Juan M.

    2012-01-01

    Brain glucose supplies most of the carbon required for acetyl-coenzyme A (acetyl-CoA) generation (an important step for myelin synthesis) and for neurotransmitter production via further metabolism of acetyl-CoA in the tricarboxylic acid (TCA) cycle. However, it is not known whether reduced brain glucose transporter type I (GLUT-1) activity, the hallmark of the GLUT-1 deficiency (G1D) syndrome, leads to acetyl-CoA, TCA or neurotransmitter depletion. This question is relevant because, in its most common form in man, G1D is associated with cerebral hypomyelination (manifested as microcephaly) and epilepsy, suggestive of acetyl-CoA depletion and neurotransmitter dysfunction, respectively. Yet, brain metabolism in G1D remains underexplored both theoretically and experimentally, partly because computational models of limited brain glucose transport are subordinate to metabolic assumptions and partly because current hemizygous G1D mouse models manifest a mild phenotype not easily amenable to investigation. In contrast, adult antisense G1D mice replicate the human phenotype of spontaneous epilepsy associated with robust thalamocortical electrical oscillations. Additionally, and in consonance with human metabolic imaging observations, thalamus and cerebral cortex display the lowest GLUT-1 expression and glucose uptake in the mutant mouse. This depletion of brain glucose is associated with diminished plasma fatty acids and elevated ketone body levels, and with decreased brain acetyl-CoA and fatty acid contents, consistent with brain ketone body consumption and with stimulation of brain beta-oxidation and/or diminished cerebral lipid synthesis. In contrast with other epilepsies, astrocyte glutamine synthetase expression, cerebral TCA cycle intermediates, amino acid and amine neurotransmitter contents are also intact in G1D. The data suggest that the TCA cycle is preserved in G1D because reduced glycolysis and acetyl-CoA formation can be balanced by enhanced ketone body

  20. [Treatment options for age-related infertility].

    PubMed

    Belaisch-Allart, Joëlle

    2010-06-20

    There has been a consistent trend towards delayed childbearing in most Western countries. Treatment options for age-related infertility includes controlled ovarian hyperstimulation with intrauterine insemination and in vitro fertilization (IVF). A sharp decline in pregnancy rate with advancing female age is noted with assisted reproductive technologies (ART) including IVF. Evaluation and treatment of infertility should not be delayed in women 35 years and older. No treatment other than oocyte donation has been shown to be effective for women over 40 and for those with compromised ovarian reserve, but its pratice is not easy in France hence the procreative tourism. As an increasing number of couples choose to postpone childbearing, they should be informed that maternal age is an important risk factor for failure to conceive.

  1. Medical bioremediation of age-related diseases

    PubMed Central

    Mathieu, Jacques M; Schloendorn, John; Rittmann, Bruce E; Alvarez, Pedro JJ

    2009-01-01

    Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods. PMID:19358742

  2. Erectile dysfunction

    PubMed Central

    Yafi, Faysal A.; Jenkins, Lawrence; Albersen, Maarten; Corona, Giovanni; Isidori, Andrea M.; Goldfarb, Shari; Maggi, Mario; Nelson, Christian J.; Parish, Sharon; Salonia, Andrea; Tan, Ronny; Mulhall, John P.; Hellstrom, Wayne J. G.

    2016-01-01

    Erectile dysfunction is a multidimensional but common male sexual dysfunction that involves an alteration in any of the components of the erectile response, including organic, relational and psychological. Roles for nonendocrine (neurogenic, vasculogenic and iatrogenic) and endocrine pathways have been proposed. Owing to its strong association with metabolic syndrome and cardiovascular disease, cardiac assessment may be warranted in men with symptoms of erectile dysfunction. Minimally invasive interventions to relieve the symptoms of erectile dysfunction include lifestyle modifications, oral drugs, injected vasodilator agents and vacuum erection devices. Surgical therapies are reserved for the subset of patients who have contraindications to these nonsurgical interventions, those who experience adverse effects from (or are refractory to) medical therapy and those who also have penile fibrosis or penile vascular insufficiency. Erectile dysfunction can have deleterious effects on a man’s quality of life; most patients have symptoms of depression and anxiety related to sexual performance. These symptoms, in turn, affect his partner’s sexual experience and the couple’s quality of life. This Primer highlights numerous aspects of erectile dysfunction, summarizes new treatment targets and ongoing preclinical studies that evaluate new pharmacotherapies, and covers the topic of regenerative medicine, which represents the future of sexual medicine. PMID:27188339

  3. Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows.

    PubMed

    Kvidera, S K; Dickson, M J; Abuajamieh, M; Snider, D B; Fernandez, M V Sanz; Johnson, J S; Keating, A F; Gorden, P J; Green, H B; Schoenberg, K M; Baumgard, L H

    2017-03-22

    Study objectives were to evaluate the effects of intentionally reduced intestinal barrier function on productivity, metabolism, and inflammatory indices in otherwise healthy dairy cows. Fourteen lactating Holstein cows (parity 2.6 ± 0.3; 117 ± 18 d in milk) were enrolled in 2 experimental periods. Period 1 (5 d) served as the baseline for period 2 (7 d), during which cows received 1 of 2 i.v. treatments twice per day: sterile saline or a gamma-secretase inhibitor (GSI; 1.5 mg/kg of body weight). Gamma-secretase inhibitors reduce intestinal barrier function by inhibiting crypt cell differentiation into absorptive enterocytes. During period 2, control cows receiving sterile saline were pair-fed (PF) to the GSI-treated cows, and all cows were killed at the end of period 2. Administering GSI increased goblet cell area 218, 70, and 28% in jejunum, ileum, and colon, respectively. In the jejunum, GSI-treated cows had increased crypt depth and reduced villus height, villus height-to-crypt depth ratio, cell proliferation, and mucosal surface area. Plasma lipopolysaccharide binding protein increased with time, and tended to be increased 42% in GSI-treated cows relative to PF controls on d 5 to 7. Circulating haptoglobin and serum amyloid A concentrations increased (585- and 4.4-fold, respectively) similarly in both treatments. Administering GSI progressively reduced dry matter intake (66%) and, by design, the pattern and magnitude of decreased nutrient intake was similar in PF controls. A similar progressive decrease (42%) in milk yield occurred in both treatments, but we observed no treatment effects on milk components. Cows treated with GSI tended to have increased plasma insulin (68%) and decreased circulating nonesterified fatty acids (29%) compared with PF cows. For both treatments, plasma glucose decreased with time while β-hydroxybutyrate progressively increased. Liver triglycerides increased 221% from period 1 to sacrifice in both treatments. No differences were

  4. Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: short- and long-term modification by non-genetic risk factors.

    PubMed

    Sato, Naoyuki; Morishita, Ryuichi

    2013-11-05

    It is well known that a specific set of genetic and non-genetic risk factors contributes to the onset of Alzheimer disease (AD). Non-genetic risk factors include diabetes, hypertension in mid-life, and probably dyslipidemia in mid-life. This review focuses on the vascular and metabolic components of non-genetic risk factors. The mechanisms whereby non-genetic risk factors modify cognitive dysfunction are divided into four components, short- and long-term effects of vascular and metabolic factors. These consist of (1) compromised vascular reactivity, (2) vascular lesions, (3) hypo/hyperglycemia, and (4) exacerbated AD histopathological features, respectively. Vascular factors compromise cerebrovascular reactivity in response to neuronal activity and also cause irreversible vascular lesions. On the other hand, representative short-term effects of metabolic factors on cognitive dysfunction occur due to hypoglycemia or hyperglycemia. Non-genetic risk factors also modify the pathological manifestations of AD in the long-term. Therefore, vascular and metabolic factors contribute to aggravation of cognitive dysfunction in AD through short-term and long-term effects. β-amyloid could be involved in both vascular and metabolic components. It might be beneficial to support treatment in AD patients by appropriate therapeutic management of non-genetic risk factors, considering the contributions of these four elements to the manifestation of cognitive dysfunction in individual patients, though all components are not always present. It should be clarified how these four components interact with each other. To answer this question, a clinical prospective study that follows up clinical features with respect to these four components: (1) functional MRI or SPECT for cerebrovascular reactivity, (2) MRI for ischemic lesions and atrophy, (3) clinical episodes of hypoglycemia and hyperglycemia, (4) amyloid-PET and tau-PET for pathological features of AD, would be required.

  5. Water metabolism dysfunction via renin-angiotensin system activation caused by liver damage in mice treated with microcystin-RR.

    PubMed

    Zhong, Qing; Sun, Feng; Wang, Weiguang; Xiao, Wenqing; Zhao, Xiaoni; Gu, Kangding

    2017-03-19

    Microcystins (MCs) are a group of monocyclic heptapeptide toxins that have been shown to act as potent hepatotoxins. However, the observed symptoms of water metabolism disruption induced by microcystin-RR (MC-RR) or MCs have rarely been reported, and a relatively clear mechanism has not been identified. In the present study, male mice were divided into 4 groups (A: 140μg/kg, B: 70μg/kg,C: 35μg/kg, and D: 0μg/kg) and administered MC-RR daily for a month. On day 8 of treatment, an increase in water intake and urine output was observed in the high-dose group compared with the control, and the symptoms worsened with the repeated administration of the toxin until day 30. In addition, the urine specific gravity decreased and serum enzymes that can reflect hepatic damage increased in the high-dose group compared with the control (P<0.05). The mRNA level of angiotensinogen (AGT) in hepatocytes was upregulated to approximately 150% of the control (P<0.05), and the serum renin-angiotensin system (RAS) was activated in the high-dose group; however, signs of renal injury were not observed throughout the experiment. After the toxin treatment was completed, the high levels of the RAS and vasopressin in group A returned to normal levels within 1 week. As expected, the symptoms of polyuria and polydipsia also disappeared. Therefore, we propose that water metabolism dysfunction occurs via RAS activation caused by liver damage because the increased serum RAS levels in the experiment were consistent with the increased urine output and water intake in the mice during the observation period. In addition, we found for the first time that a RAS blocker could alleviate the observed polyuria and polydipsia and inactivate the high level of the RAS induced by MC-RR in a dose-dependent manner, which further supported our hypothesis.

  6. Multiple effects of circadian dysfunction induced by photoperiod shifts: alterations in context memory and food metabolism in the same subjects.

    PubMed

    McDonald, Robert J; Zelinski, Erin L; Keeley, Robin J; Sutherland, Dylan; Fehr, Leah; Hong, Nancy S

    2013-06-13

    Humans exposed to shiftwork conditions have been reported to have increased susceptibility to various health problems including various forms of dementia, cancer, heart disease, and metabolic disorders related to obesity. The present experiments assessed the effects of circadian disruption on learning and memory function and various food related processes including diet consumption rates, food metabolism, and changes in body weight. These experiments utilized a novel variant of the conditioned place preference task (CPP) that is normally used to assess Pavlovian associative learning and memory processes produced via repeated context-reward pairings. For the present experiments, the standard CPP paradigm was modified in that both contexts were paired with food, but the dietary constituents of the food were different. In particular, we were interested in whether rats could differentiate between two types of carbohydrates, simple (dextrose) and complex (starch). Consumption rates for each type of carbohydrate were measured throughout training. A test of context preference without the food present was also conducted. At the end of behavioral testing, a fasting glucose test and a glucose challenge test were administered. Chronic photoperiod shifting resulted in impaired context learning and memory processes thought to be mediated by a neural circuit centered on the hippocampus. The results also showed that preferences for the different carbohydrate diets were altered in rats experiencing photoperiod shifting in that they maintained an initial preference for the simple carbohydrate throughout training. Lastly, photoperiod shifting resulted in changes in fasting blood glucose levels and elicited weight gain. These results show that chronic photoperiod shifting, which likely resulted in circadian dysfunction, impairs multiple functions of the brain and/or body in the same individual.

  7. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome.

    PubMed

    Iulita, M Florencia; Cuello, A Claudio

    2014-07-01

    Alzheimer's disease (AD) is a devastating neurodegenerative condition and the most common type of amnestic dementia in the elderly. Individuals with Down syndrome (DS) are at increased risk of developing AD in adulthood as a result of chromosome 21 trisomy and triplication of the amyloid precursor protein (APP) gene. In both conditions, the central nervous system (CNS) basal forebrain cholinergic system progressively degenerates, and such changes contribute to the manifestation of cognitive decline and dementia. Given the strong dependency of these neurons on nerve growth factor (NGF), it was hypothesized that their atrophy was caused by NGF deficits. However, in AD, the synthesis of NGF is not affected at the transcript level and there is a marked increase in its precursor, proNGF. This apparent paradox remained elusive for many years. In this review, we discuss the recent evidence supporting a CNS deficit in the extracellular metabolism of NGF, both in AD and in DS brains. We describe the nature of this trophic disconnection and its implication for the atrophy of basal forebrain cholinergic neurons. We further discuss the potential of NGF pathway markers as diagnostic indicators of a CNS trophic disconnection.

  8. Silymarin Ameliorates Metabolic Dysfunction Associated with Diet-Induced Obesity via Activation of Farnesyl X Receptor

    PubMed Central

    Gu, Ming; Zhao, Ping; Huang, Jinwen; Zhao, Yuanyuan; Wang, Yahui; Li, Yin; Li, Yifei; Fan, Shengjie; Ma, Yue-Ming; Tong, Qingchun; Yang, Li; Ji, Guang; Huang, Cheng

    2016-01-01

    Background and purpose: Silymarin, a standardized extract of the milk thistle seeds, has been widely used to treat chronic hepatitis, cirrhosis, and other types of toxic liver damage. Despite increasing studies on the action of silymarin and its major active constituent, silybin in their therapeutic properties against insulin resistance, diabetes and hyperlipidaemia in vitro and in vivo, the mechanism underlying silymarin action remains unclear. Experimental approach: C57BL/6 mice were fed high-fat diet (HFD) for 3 months to induce obesity, insulin resistance, hyperlipidaemia, and fatty liver. These mice were then continuously treated with HFD alone or mixed with silymarin at 40 mg/100 g for additional 6 weeks. Biochemical analysis was used to test the serum lipid and bile acid profiles. Farnesyl X receptor (FXR) and nuclear factor kappa B (NF-κB) transactivities were analyzed in liver using a gene reporter assay based on quantitative RT-PCR. Key results: Silymarin treatment ameliorated insulin resistance, dyslipidaemia and inflammation, and reconstituted the bile acid pool in liver of diet-induced obesity. Associated with this, silybin and silymarin enhanced FXR transactivity. Consistently, in HepG2 cells, silybin inhibited NF-κB signaling, which was enhanced by FXR activation. Conclusion and implications: Our results suggest that silybin is an effective component of silymarin for treating metabolic syndrome by stimulating FXR signaling. PMID:27733832

  9. Hemodynamic and metabolic basis of impaired exercise tolerance in patients with severe left ventricular dysfunction

    SciTech Connect

    Roubin, G.S.; Anderson, S.D.; Shen, W.F.; Choong, C.Y.; Alwyn, M.; Hillery, S.; Harris, P.J.; Kelly, D.T. )

    1990-04-01

    Hemodynamic and metabolic changes were measured at rest and during exercise in 23 patients with chronic heart failure and in 6 control subjects. Exercise was limited by leg fatigue in both groups and capacity was 40% lower in the patients with failure. At rest, comparing patients with control subjects, heart rate and right atrial and pulmonary wedge pressure were higher; cardiac output, stroke volume and work indexes and ejection fraction were lower; mean arterial and right atrial pressure and systemic resistance were similar. During all phases of exercise in patients with heart failure, pulmonary wedge pressure and systemic vascular resistance were higher and pulmonary vascular resistance remained markedly elevated compared with values in control subjects. Cardiac output was lower in the patients with failure, but appeared to have the same physiologic distribution in both groups during exercise. Although arterial-femoral venous oxygen content difference was higher in patients with heart failure, this increase did not compensate for the reduced blood flow. Even though the maximal oxygen consumption was significantly reduced, femoral venous lactate and pH values were higher than values in control subjects, but femoral venous pH was similar in both groups at their respective levels of maximal exercise. Ejection fraction was lower in those with heart failure at rest and did not increase with exercise. Ventilation in relation to oxygen consumption was higher in patients with failure than in control subjects.

  10. Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia

    PubMed Central

    Schäfer, Michaela; Oeing, Christian U.; Rohm, Maria; Baysal-Temel, Ezgi; Lehmann, Lorenz H.; Bauer, Ralf; Volz, H. Christian; Boutros, Michael; Sohn, Daniela; Sticht, Carsten; Gretz, Norbert; Eichelbaum, Katrin; Werner, Tessa; Hirt, Marc N.; Eschenhagen, Thomas; Müller-Decker, Karin; Strobel, Oliver; Hackert, Thilo; Krijgsveld, Jeroen; Katus, Hugo A.; Berriel Diaz, Mauricio; Backs, Johannes; Herzig, Stephan

    2015-01-01

    Objectives Cancer cachexia affects the majority of tumor patients and significantly contributes to high mortality rates in these subjects. Despite its clinical importance, the identity of tumor-borne signals and their impact on specific peripheral organ systems, particularly the heart, remain mostly unknown. Methods and results By combining differential colon cancer cell secretome profiling with large-scale cardiomyocyte phenotyping, we identified a signature panel of seven “cachexokines”, including Bridging integrator 1, Syntaxin 7, Multiple inositol-polyphosphate phosphatase 1, Glucosidase alpha acid, Chemokine ligand 2, Adamts like 4, and Ataxin-10, which were both sufficient and necessary to trigger cardiac atrophy and aberrant fatty acid metabolism in cardiomyocytes. As a prototypical example, engineered secretion of Ataxin-10 from non-cachexia-inducing cells was sufficient to induce cachexia phenotypes in cardiomyocytes, correlating with elevated Ataxin-10 serum levels in murine and human cancer cachexia models. Conclusions As Ataxin-10 serum levels were also found to be elevated in human cachectic cancer patients, the identification of Ataxin-10 as part of a cachexokine cocktail now provides a rational approach towards personalized predictive, diagnostic and therapeutic measures in cancer cachexia. PMID:26909315

  11. The DrugAge database of aging-related drugs.

    PubMed

    Barardo, Diogo; Thornton, Daniel; Thoppil, Harikrishnan; Walsh, Michael; Sharifi, Samim; Ferreira, Susana; Anžič, Andreja; Fernandes, Maria; Monteiro, Patrick; Grum, Tjaša; Cordeiro, Rui; De-Souza, Evandro Araújo; Budovsky, Arie; Araujo, Natali; Gruber, Jan; Petrascheck, Michael; Fraifeld, Vadim E; Zhavoronkov, Alexander; Moskalev, Alexey; de Magalhães, João Pedro

    2017-03-16

    Aging is a major worldwide medical challenge. Not surprisingly, identifying drugs and compounds that extend lifespan in model organisms is a growing research area. Here, we present DrugAge (http://genomics.senescence.info/drugs/), a curated database of lifespan-extending drugs and compounds. At the time of writing, DrugAge contains 1316 entries featuring 418 different compounds from studies across 27 model organisms, including worms, flies, yeast and mice. Data were manually curated from 324 publications. Using drug-gene interaction data, we also performed a functional enrichment analysis of targets of lifespan-extending drugs. Enriched terms include various functional categories related to glutathione and antioxidant activity, ion transport and metabolic processes. In addition, we found a modest but significant overlap between targets of lifespan-extending drugs and known aging-related genes, suggesting that some but not most aging-related pathways have been targeted pharmacologically in longevity studies. DrugAge is freely available online for the scientific community and will be an important resource for biogerontologists.

  12. The Potential of Chitosan and Its Derivatives in Prevention and Treatment of Age-Related Diseases

    PubMed Central

    Kerch, Garry

    2015-01-01

    Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed. PMID:25871293

  13. Abdominal adipose tissue: early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet.

    PubMed

    Rebolledo, O R; Marra, C A; Raschia, A; Rodriguez, S; Gagliardino, J J

    2008-11-01

    The possible contribution of early changes in lipid composition, function, and antioxidant status of abdominal adipose tissue (AAT) induced by a fructose-rich diet (FRD) to the development of insulin resistance (IR) and oxidative stress (OS) was studied. Wistar rats were fed with a commercial diet with (FRD) or without 10% fructose in the drinking water for 3 weeks. The glucose (G), triglyceride (TG), and insulin (I) plasma levels, and the activity of antioxidant enzymes, lyposoluble antioxidants, total glutathione (GSH), lipid peroxidation as TBARS, fatty acid (FA) composition of AAT-TG as well as their release by incubated pieces of AAT were measured. Rats fed with a FRD have significantly higher plasma levels of G, TG, and I. Their AAT showed a marked increase in content and ratios of saturated to monounsaturated and polyunsaturated FAs, TBARS, and catalase, GSH-transferase and GSH-reductase, together with a decrease in superoxide dismutase and GSH-peroxidase activity, and total GSH, alpha-tocopherol, beta-carotene and lycopene content. Incubated AAT from FRD released in vitro higher amount of free fatty acids (FFAs) with higher ratios of saturated to monounsaturated and polyunsaturated FAs. Our data suggest that FRD induced an early prooxidative state and metabolic dysfunction in AAT that would favor the overall development of IR and OS and further development of pancreatic beta-cell failure; therefore, its early control would represent an appropriate strategy to prevent alterations such as the development of type 2 diabetes.

  14. Protective Effects of PGC-1α Against Lead-Induced Oxidative Stress and Energy Metabolism Dysfunction in Testis Sertoli Cells.

    PubMed

    Liu, Xi; Ye, Jingping; Wang, Lu; Li, Zhen; Zhang, Yucheng; Sun, Jiantao; Du, Chuang; Wang, Chunhong; Xu, Siyuan

    2017-02-01

    The reproductive system is sensitive to lead (Pb) toxicity, which has long been an area of research interest, but the underlying mechanisms remain to be illustrated. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is pivotal in mitochondrial function. In this study, mouse testis Sertoli cells (TM4 cells), PGC-1α lower-expression (PGC-1α(-)) TM4 cells and PGC-1α overexpression (PGC-1α(+)) TM4 cells were used to explore the protective roles of PGC-1α against lead toxicity on the mouse reproductive system. Lead acetate (PbAc) exposure decreased the expression level of PGC-1α, increased the intracellular level of reactive oxygen species (ROS), and reduced the level of ATP in the three TM4 cell lines. The effects of PbAc on intracellular ATP level and on ROS content were significantly weakened in PGC-1α(+)TM4 cells versus TM4 cells and were significantly amplified in PGC-1α(-)TM4 cells versus TM4 cells. These results suggest that PGC-1α is a protective factor against PbAc-induced oxidative stress and energy metabolism dysfunction in the mouse reproductive system, thereby holding the potential of being developed as a preventive or therapeutic strategy against disorders induced by lead exposure.

  15. Murine filaggrin-2 is involved in epithelial barrier function and down-regulated in metabolically induced skin barrier dysfunction.

    PubMed

    Hansmann, Britta; Ahrens, Kerstin; Wu, Zhihong; Proksch, Ehrhardt; Meyer-Hoffert, Ulf; Schröder, Jens-Michael

    2012-04-01

    The S100 fused-type proteins (SFTPs) are thought to be involved in the barrier formation and function of the skin. Mutations in the profilaggrin gene, one of the best investigated members of this family, are known to be the major risk factors for ichthyosis vulgaris and atopic dermatitis. Recently, we identified human filaggrin-2 as a new member of the SFTP family. To achieve further insight into its function, here the murine filaggrin-2 was analysed as a possible orthologue. The 5' and 3' ends of the mouse filaggrin-2 cDNA of the BALB/c strain were sequenced and confirmed an organization typical for SFTPs. Murine filaggrin-2 showed an expression pattern mainly in keratinizing epithelia in the upper cell layers on both mRNA and protein levels. The expression in cultured mouse keratinocytes was increased upon elevated Ca(2+) levels. Immunoblotting experiments indicated an intraepidermal processing of the 250-kDa full-length protein. In metabolically (essential fatty acid-deficient diet) induced skin barrier dysfunction, filaggrin-2 expression was significantly reduced, whereas filaggrin expression was up-regulated. In contrast, mechanical barrier disruption with acetone treatment did not affect filaggrin-2 mRNA expression. These results suggest that filaggrin-2 may contribute to epidermal barrier function and its regulation differs, at least in parts, from that of filaggrin.

  16. Age-related differences in pulmonary effects of acute and ...

    EPA Pesticide Factsheets

    Ozone (O3) is known to induce adverse pulmonary and systemic health effects. Importantly, children and older persons are considered at-risk populations for O3-induced dysfunction, yet the mechanisms accounting for the age-related pulmonary responses to O3 are uncertain. In this study, we examined age-related susceptibility to O3 using 1 mo (adolescent), 4 mo (young adult), 12 mo (adult) and 24 mo (senescent) male Brown Norway rats exposed to filtered air or O3 (0.25and 1.00 ppm), 6 h/day, two days/week for 1 week (acute) or 13 weeks (subchronic). Ventilatory function, assessed by whole-body plethysmography, and bronchoalveolar lavage fluid (BALF) biomarkers of injury and inflammation were used to examine O3-induced pulmonary effects.Relaxation time declined in all ages following the weekly exposures; however, this effect persisted only in the 24 mo rats following a five days recovery, demonstrating an inability to induce adaptation commonly seen with repeated O3 exposures. PenH was increased in all groups with an augmented response in the 4 mo rats following the subchronic O3 exposures. O3 led to increased breathing frequency and minute volume in the 1 and 4 mo animals. Markers ofpulmonary permeability were increased in all age groups. Elevations in BALF γ-glutamyl transferase activity and lung inflammation following an acute O3 exposure were noted in only the 1 and 4 mo rats, which likely received an increased effective O3 dose. These data demonstrate that ado

  17. Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice.

    PubMed

    Higa, Talita S; Spinola, Acauã V; Fonseca-Alaniz, Miriam H; Evangelista, Fabiana Sant Anna

    2014-01-01

    This study sought to compare the metabolic responses induced by high-fat (HF) diet and cafeteria (CA) diet in mice. Adult male C57BL/6J mice were assigned into groups fed a chow (C, n=13), CA (n=12) or HF (n=11) diet during 12 weeks. Diets did not change body weight, Lee index, inguinal subcutaneous fat, the weight of organs and muscles, resting arterial pressure and heart rate. CA and HF increased visceral fat pad mass compared to C group, but only CA group showed greater adipocyte diameter and food intake compared to the C. Food intake was reduced in HF compared to C group. CA and HF showed hyperglycemia in the 3(rd), 6(th), 9(th) and 12(th) week and all values were higher in CA than HF, except in the 6(th) week. CA group showed glucose intolerance (GI) in the 6(th) week, while HF group did not show GI until the 9(th) week. CA decreased insulin sensitivity compared to C in the 12(th) week (kITT=3.3±0.2%/min vs. 4.2±0.1%/min). CA and HF groups presented higher insulin, leptin, total cholesterol, LDL-C, triglycerides and FFA levels compared to the C group. Total cholesterol and LDL-C in mg/dL were higher in the HF (161.9±7.2 and 57.5±13.4) than the CA (110.5±9.1 and 48.5±11.4), and HDL-C was higher in the HF than in the C and CA groups. In conclusion, the CA diet was more efficient to induce hyperphagia, adipocyte hypertrophy, hyperglycemia, earlier GI and insulin resistance, while the HF diet was more efficient to induce lipid profile changes.

  18. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death

    PubMed Central

    Vereczki, Viktoria; Martin, Erica; Rosenthal, Robert E; Hof, Patrick R; Hoffman, Gloria E; Fiskum, Gary

    2008-01-01

    Resuscitation and prolonged ventilation using 100% oxygen after cardiac arrest is standard clinical practice despite evidence from animal models indicating that neurologic outcome is improved using normoxic compared with hyperoxic resuscitation. This study tested the hypothesis that normoxic ventilation during the first hour after cardiac arrest in dogs protects against prelethal oxidative stress to proteins, loss of the critical metabolic enzyme pyruvate dehydrogenase complex (PDHC), and minimizes subsequent neuronal death in the hippocampus. Anesthetized beagles underwent 10 mins ventricular fibrillation cardiac arrest, followed by defibrillation and ventilation with either 21% or 100% O2. At 1 h after resuscitation, the ventilator was adjusted to maintain normal blood gas levels in both groups. Brains were perfusion-fixed at 2 h reperfusion and used for immunohistochemical measurements of hippocampal nitrotyrosine, a product of protein oxidation, and the E1α subunit of PDHC. In hyperoxic dogs, PDHC immunostaining diminished by approximately 90% compared with sham-operated dogs, while staining in normoxic animals was not significantly different from nonischemic dogs. Protein nitration in the hippocampal neurons of hyperoxic animals was 2–3 times greater than either sham-operated or normoxic resuscitated animals at 2 h reperfusion. Stereologic quantification of neuronal death at 24 h reperfusion showed a 40% reduction using normoxic compared with hyperoxic resuscitation. These results indicate that postischemic hyperoxic ventilation promotes oxidative stress that exacerbates prelethal loss of pyruvate dehydrogenase and delayed hippocampal neuronal cell death. Moreover, these findings indicate the need for clinical trials comparing the effects of different ventilatory oxygen levels on neurologic outcome after cardiac arrest. PMID:16251887

  19. Translational strategies in aging and age-related disease.

    PubMed

    Armanios, Mary; de Cabo, Rafael; Mannick, Joan; Partridge, Linda; van Deursen, Jan; Villeda, Saul

    2015-12-01

    Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine.

  20. Prevalence of pituitary hormone dysfunction, metabolic syndrome, and impaired quality of life in retired professional football players: a prospective study.

    PubMed

    Kelly, Daniel F; Chaloner, Charlene; Evans, Diana; Mathews, Amy; Cohan, Pejman; Wang, Christina; Swerdloff, Ronald; Sim, Myung-Shin; Lee, Jihey; Wright, Mathew J; Kernan, Claudia; Barkhoudarian, Garni; Yuen, Kevin C J; Guskiewicz, Kevin

    2014-07-01

    Hypopituitarism is common after moderate and severe traumatic brain injury (TBI). Herein, we address the association between mild TBI (mTBI) and pituitary and metabolic function in retired football players. Retirees 30-65 years of age, with one or more years of National Football League (NFL) play and poor quality of life (QoL) based on Short Form 36 (SF-36) Mental Component Score (MCS) were prospectively enrolled. Pituitary hormonal and metabolic syndrome (MetS) testing was performed. Using a glucagon stimulation test, growth hormone deficiency (GHD) was defined with a standard cut point of 3 ng/mL and with a more stringent body mass index (BMI)-adjusted cut point. Subjects with and without hormonal deficiency (HD) were compared in terms of QoL, International Index of Erectile Function (IIEF) scores, metabolic parameters, and football career data. Of 74 subjects, 6 were excluded because of significant non-football-related TBIs. Of the remaining 68 subjects (mean age, 47.3±10.2 years; median NFL years, 5; median NFL concussions, 3; mean BMI, 33.8±6.0), 28 (41.2%) were GHD using a peak GH cutoff of <3 ng/mL. However, with a BMI-adjusted definition of GHD, 13 of 68 (19.1%) were GHD. Using this BMI-adjusted definition, overall HD was found in 16 (23.5%) subjects: 10 (14.7%) with isolated GHD; 3 (4.4%) with isolated hypogonadism; and 3 (4.4%) with both GHD and hypogonadism. Subjects with HD had lower mean scores on the IIEF survey (p=0.016) and trended toward lower scores on the SF-36 MCS (p=0.113). MetS was present in 50% of subjects, including 5 of 6 (83%) with hypogonadism, and 29 of 62 (46.8%) without hypogonadism (p=0.087). Age, BMI, median years in NFL, games played, number of concussions, and acknowledged use of performance-enhancing steroids were similar between HD and non-HD groups. In summary, in this cohort of retired NFL players with poor QoL, 23.5% had HD, including 19% with GHD (using a BMI-adjusted definition), 9% with hypogonadism, and 50% had Met

  1. Prevalence of Pituitary Hormone Dysfunction, Metabolic Syndrome, and Impaired Quality of Life in Retired Professional Football Players: A Prospective Study

    PubMed Central

    Chaloner, Charlene; Evans, Diana; Mathews, Amy; Cohan, Pejman; Wang, Christina; Swerdloff, Ronald; Sim, Myung-Shin; Lee, Jihey; Wright, Mathew J.; Kernan, Claudia; Barkhoudarian, Garni; Yuen, Kevin C.J.; Guskiewicz, Kevin

    2014-01-01

    Abstract Hypopituitarism is common after moderate and severe traumatic brain injury (TBI). Herein, we address the association between mild TBI (mTBI) and pituitary and metabolic function in retired football players. Retirees 30–65 years of age, with one or more years of National Football League (NFL) play and poor quality of life (QoL) based on Short Form 36 (SF-36) Mental Component Score (MCS) were prospectively enrolled. Pituitary hormonal and metabolic syndrome (MetS) testing was performed. Using a glucagon stimulation test, growth hormone deficiency (GHD) was defined with a standard cut point of 3 ng/mL and with a more stringent body mass index (BMI)-adjusted cut point. Subjects with and without hormonal deficiency (HD) were compared in terms of QoL, International Index of Erectile Function (IIEF) scores, metabolic parameters, and football career data. Of 74 subjects, 6 were excluded because of significant non-football-related TBIs. Of the remaining 68 subjects (mean age, 47.3±10.2 years; median NFL years, 5; median NFL concussions, 3; mean BMI, 33.8±6.0), 28 (41.2%) were GHD using a peak GH cutoff of <3 ng/mL. However, with a BMI-adjusted definition of GHD, 13 of 68 (19.1%) were GHD. Using this BMI-adjusted definition, overall HD was found in 16 (23.5%) subjects: 10 (14.7%) with isolated GHD; 3 (4.4%) with isolated hypogonadism; and 3 (4.4%) with both GHD and hypogonadism. Subjects with HD had lower mean scores on the IIEF survey (p=0.016) and trended toward lower scores on the SF-36 MCS (p=0.113). MetS was present in 50% of subjects, including 5 of 6 (83%) with hypogonadism, and 29 of 62 (46.8%) without hypogonadism (p=0.087). Age, BMI, median years in NFL, games played, number of concussions, and acknowledged use of performance-enhancing steroids were similar between HD and non-HD groups. In summary, in this cohort of retired NFL players with poor QoL, 23.5% had HD, including 19% with GHD (using a BMI-adjusted definition), 9% with hypogonadism, and

  2. Metabolic syndrome’ in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition

    PubMed Central

    Agrawal, Rahul; Gomez-Pinilla, Fernando

    2012-01-01

    We pursued studies to determine the effects of the metabolic syndrome (MetS) on brain, and the possibility of modulating these effects by dietary interventions. In addition, we have assessed potential mechanisms by which brain metabolic disorders can impact synaptic plasticity and cognition. We report that high-dietary fructose consumption leads to an increase in insulin resistance index, and insulin and triglyceride levels, which characterize MetS. Rats fed on an n-3 deficient diet showed memory deficits in a Barnes maze, which were further exacerbated by fructose intake. In turn, an n-3 deficient diet and fructose interventions disrupted insulin receptor signalling in hippocampus as evidenced by a decrease in phosphorylation of the insulin receptor and its downstream effector Akt. We found that high fructose consumption with an n-3 deficient diet disrupts membrane homeostasis as evidenced by an increase in the ratio of n-6/n-3 fatty acids and levels of 4-hydroxynonenal, a marker of lipid peroxidation. Disturbances in brain energy metabolism due to n-3 deficiency and fructose treatments were evidenced by a significant decrease in AMPK phosphorylation and its upstream modulator LKB1 as well as a decrease in Sir2 levels. The decrease in phosphorylation of CREB, synapsin I and synaptophysin levels by n-3 deficiency and fructose shows the impact of metabolic dysfunction on synaptic plasticity. All parameters of metabolic dysfunction related to the fructose treatment were ameliorated by the presence of dietary n-3 fatty acid. Results showed that dietary n-3 fatty acid deficiency elevates the vulnerability to metabolic dysfunction and impaired cognitive functions by modulating insulin receptor signalling and synaptic plasticity. PMID:22473784

  3. Age-related changes in wavelength discrimination

    PubMed Central

    Shinomori, Keizo; Schefrin, Brooke E.; Werner, John S.

    2008-01-01

    Wavelength discrimination functions (420 to 620–650 nm) were measured for four younger (mean 30.9 years) and four older (mean 72.5 years) observers. Stimuli consisted of individually determined isoluminant monochromatic lights (10 Td) presented in each half of a 2° circular bipartite field with use of a Maxwellian-view optical system. A spatial two-alternative forced-choice method was used in combination with a staircase procedure to determine discrimination thresholds across the spectrum. Small but consistent elevations in discrimination thresholds were found for older compared with younger observers. Because the retinal illuminance of the stimuli was equated across all observers, these age-related losses in discrimination are attributable to neural changes. Analyses of these data reveal a significant change in Weber fraction across adulthood for a chromatically opponent pathway receiving primarily antagonistic signals from middle-wavelength-sensitive and long-wavelength-sensitive cones but not for a short-wavelength-sensitive cone pathway. PMID:11205976

  4. Statistical physics of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer disease and Parkinson disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin in the aging RPE. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the RPE the larger ones become fixed and grow by aggregation.

  5. Age-related crosslink in skin collagen

    SciTech Connect

    Yamauchi, M.; Mechanic, G.

    1986-05-01

    A stable crosslinking amino acid was isolated from mature bovine skin collagen and its structure was identified as histidinohydroxylysinonorleucine (HHL) using fast atom bombardment mass spectrometry and /sup 1/H, /sup 13/C-NMR. This newly identified crosslink has a linkage between C-2 histidine and C-6 of lysine in the latter's portion of hydroxylysinonorleucine. Quantitative studies using various aged samples of cow and human skin collagen indicated that this acid-heat stable nonreducible compound was the major age-related crosslink. In case of cow skin collagen, for example, during early embryonic development (3 and 5 month old embryos) the content of HHL stayed less than 0.01 residue/mole of collagen, however from the middle of gestation period (7 month old embryo) through the maturation stage it showed rapid increase with age and reached approximately 0.5 residues/mole of collagen in the 3 year old animal. Small increments (up to 0.65 res/mole of collagen) were observed in the 9 year old cow. The amounts of the crosslink unlike pyridinoline do not decrease with aging. Similar patterns were observed in human skin collagen.

  6. Physics of Age Related Macular Degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    2009-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer's disease, and Parkinson's disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. In this talk I will discuss a model of non-equilibrium cluster growth that we have developed for studying the formation and growth of lipofuscin in AMD [K.I. Mazzitello, C.M. Arizmendi, Fereydoon Family, H. E. Grossniklaus, Physical Review E (2009)]. I will also present an overview of our theoretical and computational efforts in modeling some other aspects of the physics of AMD, including CNV and the breakdown of Bruch's membrane [Ongoing collaboration with Abbas Shirinifard and James A. Glazier, Biocomplexity Institute and Department of Physics, Indiana University, Y. Jiang, Los Alamos, and Hans E. Grossniklaus, Department of Ophthalmology, Emory University].

  7. Mechanisms of age-related bone loss.

    PubMed

    Mosekilde, L

    2001-01-01

    The human skeleton is formed and modelled during childhood and youth through the influence of hormones and daily mechanical usage. Around the age of 20-25 years, the skeleton achieves its maximum mass and strength. Thereafter, and throughout adult life, bone is lost at an almost constant rate due to the dynamic bone turnover process: the remodelling process. During this process, small packets of bone are renewed by teams of bone cells coupled together in time and space. In an adult human skeleton there will be 1-2 million active remodelling sites at any time point. The vast number of turnover units combined with a slightly negative balance at the completion of each process leads to the age-related loss of bone mass mentioned above and, concomitantly, to loss of structural continuity and strength. The magnitude of this loss will be determined by hormonal factors, nutrition and mechanical usage. As a consequence of the remodelling process, the bone tissue of the skeleton will always be younger than the age of the individual. However, as a consequence of the remodelling process, osteopenia and osteoporotic fractures will also occur. In this article, the remodelling-induced changes in the human spine will be used as an example of ageing bone.

  8. Age-related change of technetium-99m-HMDP distribution in the skeleton

    SciTech Connect

    Kigami, Yusuke; Yamamoto, Itsuo; Ohnishi, Hideo

    1996-05-01

    To understand age-related changes of whole-body and regional skeletal metabolism, it is important to investigate the mechanisms of age-related bone loss and to develop suitable treatments for it. Bone biopsies show metabolism of the particular site examined while biochemical markers for bone metabolism reflect total skeletal metabolis. Bone scintigraphy is a convenient and simple way to analyze whole-body and regional skeletal metabolism. We attempted to study and understand age-related changes in bone metabolism by quantifying the bone scan and correlating it with biochemical bone metabolic markers. The whole-body skeletal uptake (WBSU) and whole-body skeletal tracer distribution pattern were studied in men and women by bone scintigraphy using {sup 99m}Tc-hydroxy-methane-diphosphonate (HMDP). Bone scans were performed using a standard protocol and quantified by setting regions of interest (ROIs) on selected regions. WBSU and the skeletal distribution pattern were compared with simultaneously obtained serum biochemical markers. WBSU showed an increase with age in both sexes, but in women, uptake in the head and legs increased more relatively than in the thoracic region, while in men no such tendency was observed. Increase of WBSU and relative increase of uptakes in the head demonstrated a weak correlation with the serum levels of alkaline phosphatase and type 1 collagen metabolites. These results show an age-related increase of skeletal turnover and sex-dependent regional skeletal metabolism. The age-related changes seen in bone scintigrams might be a sign of progressive bone loss, reflecting changes in local bone matabolism. 23 refs., 3 figs., 1 tab.

  9. Genetic evidence for common pathways in human age-related diseases

    PubMed Central

    Johnson, Simon C; Dong, Xiao; Vijg, Jan; Suh, Yousin

    2015-01-01

    Aging is the single largest risk factor for chronic disease. Studies in model organisms have identified conserved pathways that modulate aging rate and the onset and progression of multiple age-related diseases, suggesting that common pathways of aging may influence age-related diseases in humans as well. To determine whether there is genetic evidence supporting the notion of common pathways underlying age-related diseases, we analyzed the genes and pathways found to be associated with five major categories of age-related disease using a total of 410 genomewide association studies (GWAS). While only a small number of genes are shared among all five disease categories, those found in at least three of the five major age-related disease categories are highly enriched for apoliprotein metabolism genes. We found that a more substantial number of gene ontology (GO) terms are shared among the 5 age-related disease categories and shared GO terms include canonical aging pathways identified in model organisms, such as nutrient-sensing signaling, translation, proteostasis, stress responses, and genome maintenance. Taking advantage of the vast amount of genetic data from the GWAS, our findings provide the first direct evidence that conserved pathways of aging simultaneously influence multiple age-related diseases in humans as has been demonstrated in model organisms. PMID:26077337

  10. Age related macular degeneration and visual disability.

    PubMed

    Christoforidis, John B; Tecce, Nicola; Dell'Omo, Roberto; Mastropasqua, Rodolfo; Verolino, Marco; Costagliola, Ciro

    2011-02-01

    Age-related macular degeneration (AMD) is the leading cause of central blindness or low vision among the elderly in industrialized countries. AMD is caused by a combination of genetic and environmental factors. Among modifiable environmental risk factors, cigarette smoking has been associated with both the dry and wet forms of AMD and may increase the likelihood of worsening pre-existing AMD. Despite advances, the treatment of AMD has limitations and affected patients are often referred for low vision rehabilitation to help them cope with their remaining eyesight. The characteristic visual impairment for both forms of AMD is loss of central vision (central scotoma). This loss results in severe difficulties with reading that may be only partly compensated by magnifying glasses or screen-projection devices. The loss of central vision associated with the disease has a profound impact on patient quality of life. With progressive central visual loss, patients lose their ability to perform the more complex activities of daily living. Common vision aids include low vision filters, magnifiers, telescopes and electronic aids. Low vision rehabilitation (LVR) is a new subspecialty emerging from the traditional fields of ophthalmology, optometry, occupational therapy, and sociology, with an ever-increasing impact on the usual concepts of research, education, and services for visually impaired patients. Relatively few ophthalmologists practise LVR and fewer still routinely use prismatic image relocation (IR) in AMD patients. IR is a method of stabilizing oculomotor functions with the purpose of promoting better function of preferred retinal loci (PRLs). The aim of vision rehabilitation therapy consists in the achievement of techniques designed to improve PRL usage. The use of PRLs to compensate for diseased foveae has offered hope to these patients in regaining some function. However, in a recently published meta-analysis, prism spectacles were found to be unlikely to be of

  11. Is TNF a link between aging-related reproductive endocrine dyscrasia and Alzheimer's disease?

    PubMed

    Clark, Ian A; Atwood, Craig S

    2011-01-01

    This commentary addresses a novel mechanism by which aging-related changes in reproductive hormones could mediate their action in the brain. It presents the evidence that dyotic endocrine signals modulate the expression of tumor necrosis factor (TNF) and related cytokines, and that these cytokines are a functionally important downstream link mediating neurodegeneration and dysfunction. This convergence of dyotic signaling on TNF-mediated degeneration and dysfunction has important implications for understanding the pathophysiology of AD, stroke, and traumatic brain disease, and also for the treatment of these diseases.

  12. Age-related memory impairments due to reduced blood glucose responses to epinephrine.

    PubMed

    Morris, Ken A; Chang, Qing; Mohler, Eric G; Gold, Paul E

    2010-12-01

    Increases in blood glucose levels are an important component of the mechanisms by which epinephrine enhances memory formation. The present experiments addressed the hypothesis that a dysfunction in the blood glucose response to circulating epinephrine contributes to age-related memory impairments. Doses of epinephrine and glucagon that significantly increased blood glucose levels in young adult rats were far less effective at doing so in 2-year-old rats. In young rats, epinephrine and glucose were about equally effective in enhancing memory and in prolonging post-training release of acetylcholine in the hippocampus. However, glucose was more effective than epinephrine in enhancing both memory and acetylcholine release in aged rats. These results suggest that an uncoupling between circulating epinephrine and glucose levels in old rats may lead to an age-related reduction in the provision of glucose to the brain during training. This in turn may contribute to age-related changes in memory and neural plasticity.

  13. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy

    PubMed Central

    Sakellariou, Giorgos K.; Pearson, Timothy; Lightfoot, Adam P.; Nye, Gareth A.; Wells, Nicola; Giakoumaki, Ifigeneia I.; Vasilaki, Aphrodite; Griffiths, Richard D.; Jackson, Malcolm J.; McArdle, Anne

    2016-01-01

    Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging. PMID:27681159

  14. Mood, Memory and Movement: An Age-Related Neurodegenerative Complex?

    PubMed Central

    Granholm, Ann-Charlotte; Boger, Heather; Emborg, Marina E.

    2009-01-01

    The following review was constructed as a concept paper based on a recent workshop on neurodegenerative disease sponsored by the National Institute on Aging (NIA), the American Geriatric Society (AGS), and the John A. Hartford Foundation. The meeting was entitled “Thinking, moving and feeling: Common underlying mechanisms? 4th Annual Bedside-to-Bench Conference” and had the purpose to connect current basic and clinical findings on common brain-related alterations occurring with aging such as depression, movement disorders, and cognitive decline. Many prominent researchers expressed their opinion on aging and it was revealed that age-related brain dysfunction of any kind seems to share several risk factors and/or pathways. But can something be done to actively achieve “successful aging”? In this review, based largely on the workshop and current literature, we have summarized some of the current theories for depression, movement and cognitive impairment with aging, as well as potential preventive measures. We have also summarized the emerging need for relevant animal models and how these could be developed and utilized. PMID:20021382

  15. Association of Age Related Macular Degeneration and Age Related Hearing Impairment

    PubMed Central

    Ghasemi, Hassan; Pourakbari, Malihe Shahidi; Entezari, Morteza; Yarmohammadi, Mohammad Ebrahim

    2016-01-01

    Purpose: To evaluate the association between age-related macular degeneration (ARMD) and sensory neural hearing impairment (SHI). Methods: In this case-control study, hearing status of 46 consecutive patients with ARMD were compared with 46 age-matched cases without clinical ARMD as a control group. In all patients, retinal involvements were confirmed by clinical examination, fluorescein angiography (FA) and optical coherence tomography (OCT). All participants were examined with an otoscope and underwent audiological tests including pure tone audiometry (PTA), speech reception threshold (SRT), speech discrimination score (SDS), tympanometry, reflex tests and auditory brainstem response (ABR). Results: A significant (P = 0.009) association was present between ARMD, especially with exudative and choroidal neovascularization (CNV) components, and age-related hearing impairment primarily involving high frequencies. Patients had higher SRT and lower SDS against anticipated presbycusis than control subjects. Similar results were detected in exudative, CNV and scar patterns supporting an association between late ARMD with SRT and SDS abnormalities. ABR showed significantly prolonged wave I and IV latency times in ARMD (P = 0.034 and 0.022, respectively). Average latency periods for wave I in geographic atrophy (GA) and CNV, and that for wave IV in drusen patterns of ARMD were significantly higher than controls (P = 0.030, 0.007 and 0.050, respectively). Conclusion: The association between ARMD and age-related SHI may be attributed to common anatomical components such as melanin in these two sensory organs. PMID:27195086

  16. [Age-related muscle mass loss].

    PubMed

    Czarkowska-Paczek, Bozena; Milczarczyk, Sylwia

    2006-01-01

    One of the signs of advancing age in humans is sarcopenia. The term is used to define the loss of muscle mass and strength that occurs with ageing. Sarcopenia contributes to the decreased capacity of independent living and increased amounts of traumas. Numbers of mechanisms are proposed as a cause of sarcopenia, including changes in protein metabolism, alterations in hormonal and neural functions, impaired regeneration after contraction-induced injuries, mitochondrial abnormalities, oxidative stress and apoptosis in skeletal muscle fibres. Further studies on the mechanisms leading to sarcopenia could provide the basis for prevention and establishment of therapeutic methods that would contribute to an increase in the standard of living among elderly people.

  17. Flavonoids and Age Related Disease: Risk, benefits and critical windows

    PubMed Central

    Prasain, JK; Carlson, SH; Wyss, JM

    2010-01-01

    Plant derived products are consumed by a large percentage of the population to prevent, delay and ameliorate disease burden; however, relatively little is known about the efficacy, safety and underlying mechanisms of these traditional health products, especially when taken in concert with pharmaceutical agents. The flavonoids are a group of plant metabolites that are common in the diet and appear to provide some health benefits. While flavonoids are primarily derived from soy, many are found in fruits, nuts and more exotic sources, e.g., kudzu. Perhaps the strongest evidence for the benefits of flavonoids in diseases of aging relates to their effect on components of the metabolic syndrome. Flavonoids from soy, grape seed, kudzu and other sources all lower arterial pressure in hypertensive animal models and in a limited number of tests in humans. They also decrease the plasma concentration of lipids and buffer plasma glucose. The underlying mechanisms appear to include antioxidant actions, central nervous system effects, gut transport alterations, fatty acid sequestration and processing, PPAR activation and increases in insulin sensitivity. In animal models of disease, dietary flavonoids also demonstrate a protective effect against cognitive decline, cancer and metabolic disease. However, research also indicates that the flavonoids can be detrimental in some settings and, therefore, are not universally safe. Thus, as the population ages, it is important to determine the impact of these agents on prevention/attenuation of disease, including optimal exposure (intake, timing/duration) and potential contraindications. PMID:20181448

  18. The Importance of Mitochondria in Age-Related and Inherited Eye Disorders

    PubMed Central

    Jarrett, Stuart G.; Lewin, Alfred S.; Boulton, Michael E.

    2010-01-01

    Mitochondria are critical for ocular function as they represent the major source of a cell's supply of energy and play an important role in cell differentiation and survival. Mitochondrial dysfunction can occur as a result of inherited mitochondrial mutations (e.g. Leber's hereditary optic neuropathy and chronic progressive external ophthalmoplegia) or stochastic oxidative damage which leads to cumulative mitochondrial damage and is an important factor in age-related disorders (e.g. age-related macular degeneration, cataract and diabetic retinopathy). Mitochondrial DNA (mtDNA) instability is an important factor in mitochondrial impairment culminating in age-related changes and pathology, and in all regions of the eye mtDNA damage is increased as a consequence of aging and age-related disease. It is now apparent that the mitochondrial genome is a weak link in the defenses of ocular cells since it is susceptible to oxidative damage and it lacks some of the systems that protect the nuclear genome, such as nucleotide excision repair. Accumulation of mitochondrial mutations leads to cellular dysfunction and increased susceptibility to adverse events which contribute to the pathogenesis of numerous sporadic and chronic disorders in the eye. PMID:20829642

  19. Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice.

    PubMed

    Abd Alla, Joshua; Graemer, Muriel; Fu, Xuebin; Quitterer, Ursula

    2016-02-05

    Impairment of myocardial fatty acid substrate metabolism is characteristic of late-stage heart failure and has limited treatment options. Here, we investigated whether inhibition of G-protein-coupled receptor kinase 2 (GRK2) could counteract the disturbed substrate metabolism of late-stage heart failure. The heart failure-like substrate metabolism was reproduced in a novel transgenic model of myocardium-specific expression of fatty acid synthase (FASN), the major palmitate-synthesizing enzyme. The increased fatty acid utilization of FASN transgenic neonatal cardiomyocytes rapidly switched to a heart failure phenotype in an adult-like lipogenic milieu. Similarly, adult FASN transgenic mice developed signs of heart failure. The development of disturbed substrate utilization of FASN transgenic cardiomyocytes and signs of heart failure were retarded by the transgenic expression of GRKInh, a peptide inhibitor of GRK2. Cardioprotective GRK2 inhibition required an intact ERK axis, which blunted the induction of cardiotoxic transcripts, in part by enhanced serine 273 phosphorylation of Pparg (peroxisome proliferator-activated receptor γ). Conversely, the dual-specific GRK2 and ERK cascade inhibitor, RKIP (Raf kinase inhibitor protein), triggered dysfunctional cardiomyocyte energetics and the expression of heart failure-promoting Pparg-regulated genes. Thus, GRK2 inhibition is a novel approach that targets the dysfunctional substrate metabolism of the failing heart.

  20. Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice*♦

    PubMed Central

    Abd Alla, Joshua; Graemer, Muriel; Fu, Xuebin; Quitterer, Ursula

    2016-01-01

    Impairment of myocardial fatty acid substrate metabolism is characteristic of late-stage heart failure and has limited treatment options. Here, we investigated whether inhibition of G-protein-coupled receptor kinase 2 (GRK2) could counteract the disturbed substrate metabolism of late-stage heart failure. The heart failure-like substrate metabolism was reproduced in a novel transgenic model of myocardium-specific expression of fatty acid synthase (FASN), the major palmitate-synthesizing enzyme. The increased fatty acid utilization of FASN transgenic neonatal cardiomyocytes rapidly switched to a heart failure phenotype in an adult-like lipogenic milieu. Similarly, adult FASN transgenic mice developed signs of heart failure. The development of disturbed substrate utilization of FASN transgenic cardiomyocytes and signs of heart failure were retarded by the transgenic expression of GRKInh, a peptide inhibitor of GRK2. Cardioprotective GRK2 inhibition required an intact ERK axis, which blunted the induction of cardiotoxic transcripts, in part by enhanced serine 273 phosphorylation of Pparg (peroxisome proliferator-activated receptor γ). Conversely, the dual-specific GRK2 and ERK cascade inhibitor, RKIP (Raf kinase inhibitor protein), triggered dysfunctional cardiomyocyte energetics and the expression of heart failure-promoting Pparg-regulated genes. Thus, GRK2 inhibition is a novel approach that targets the dysfunctional substrate metabolism of the failing heart. PMID:26670611

  1. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  2. Elevated High-Density Lipoprotein Cholesterol and Age-Related Macular Degeneration: The Alienor Study

    PubMed Central

    Cougnard-Grégoire, Audrey; Delyfer, Marie-Noëlle; Korobelnik, Jean-François; Rougier, Marie-Bénédicte; Le Goff, Mélanie; Dartigues, Jean-François; Barberger-Gateau, Pascale; Delcourt, Cécile

    2014-01-01

    Background Lipid metabolism and particularly high-density lipoprotein (HDL) may be involved in the pathogenic mechanism of age-related macular degeneration (AMD). However, conflicting results have been reported in the associations of AMD with plasma HDL and other lipids, which may be confounded by the recently reported associations of AMD with HDL-related genes. We explored the association of AMD with plasma lipid levels and lipid-lowering medication use, taking into account most of HDL-related genes associated with AMD. Methods The Alienor study is a population-based study on age-related eye diseases performed in 963 elderly residents of Bordeaux (France). AMD was graded from non mydriatic color retinal photographs in three exclusive stages: no AMD (n = 430 subjects, 938 eyes); large soft distinct drusen and/or large soft indistinct drusen and/or reticular drusen and/or pigmentary abnormalities (early AMD, n = 176, 247); late AMD (n = 40, 61). Associations of AMD with plasma lipids (HDL, total cholesterol (TC), Low-density lipoprotein (LDL), and triglycerides (TG)) were estimated using Generalized Estimating Equation logistic regressions. Statistical analyses included 646 subjects with complete data. Results After multivariate adjustment for age, sex, educational level, smoking, BMI, lipid-lowering medication use, cardiovascular disease and diabetes, and for all relevant genetic polymorphisms (ApoE2, ApoE4, CFH Y402H, ARMS2 A69S, LIPC rs10468017, LIPC rs493258, LPL rs12678919, ABCA1 rs1883025 and CETP rs3764261), higher HDL was significantly associated with an increased risk of early (OR = 2.45, 95%CI: 1.54–3.90; P = 0.0002) and any AMD (OR = 2.29, 95%CI: 1.46–3.59; P = 0.0003). Association with late AMD was far from statistical significance (OR = 1.58, 95%CI: 0.48–5.17; p = 0.45). No associations were found for any stage of AMD with TC, LDL and TG levels, statin or fibrate drug use. Conclusions This study suggests that

  3. Genetic risk factors and age-related macular degeneration (AMD)

    PubMed Central

    Mousavi, Maryam; Armstrong, Richard A.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make lifestyle choices that may reduce the risk of disease. Collaboration between geneticists, ophthalmologists, and optometrists suggests that genetic risk factors play a more significant role in AMD than previously thought. The most important genes are associated with immune system modulation and the complement system, e.g., complement factor H (CFH), factor B (CFB), factor C3, and serpin peptidase inhibitor (SERPING1). Genes associated with membrane transport, e.g., ATP-binding cassette protein (ABCR) and voltage-dependent calcium channel gamma 3 (CACNG3), the vascular system, e.g., fibroblast growth factor 2 (FGF2), fibulin-5, lysyl oxidase-like gene (LOXL1) and selectin-P (SELP), and with lipid metabolism, e.g., apolipoprotein E (APOE) and hepatic lipase (LIPC) have also been implicated. In addition, several other genes exhibit some statistical association with AMD, e.g., age-related maculopathy susceptibility protein 2 (ARMS2) and DNA excision repair protein gene (ERCC6) but more research is needed to establish their significance. Modifiable risk factors for AMD should be discussed with patients whose lifestyle and/or family history place them in an increased risk category. Furthermore, calculation of AMD risk using current models should be recommended as a tool for patient education. It is likely that AMD management in future will be increasingly influenced by assessment of genetic risk as such screening methods become more widely available.

  4. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model.

    PubMed

    Bock, J; Breuer, S; Poeggel, G; Braun, K

    2017-03-01

    In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ((14)C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.

  5. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome.

    PubMed

    Marchesi, Chiara; Ebrahimian, Talin; Angulo, Orlando; Paradis, Pierre; Schiffrin, Ernesto L

    2009-12-01

    The metabolic syndrome represents a constellation of cardiovascular risk factors that promote the development of cardiovascular disease. Oxidative stress is a mediator of endothelial dysfunction and vascular remodeling. We investigated vascular dysfunction in the metabolic syndrome and the oxidant mechanisms involved. New Zealand obese (NZO) mice with metabolic syndrome and New Zealand black control mice were studied. NZO mice showed insulin resistance and increased visceral fat and blood pressure compared with New Zealand black mice. Mesenteric resistance arteries from NZO mice exhibited increased media:lumen ratio and media cross-sectional area, demonstrating hypertrophic vascular remodeling. Endothelium-dependent relaxation to acetylcholine, assessed by pressurized myography, was impaired in NZO mice, not affected by N(G)-nitro-l-arginine methyl ester, inhibitor of endothelial NO synthase, and improved by the antioxidant Tempol, suggesting reduced NO bioavailability and increased oxidative stress. Dimer:monomer ratio of endothelial NO synthase was decreased in NZO mice compared with New Zealand black mice, suggesting endothelial NO synthase uncoupling. Furthermore, vascular superoxide and peroxynitrite production was increased, as well as adhesion molecule expression. Perivascular adipose tissue of NZO mice showed increased superoxide production and NADPH oxidase activity, as well as adipocyte hypertrophy, associated with inflammatory Mac-3-positive cell infiltration. Vasoconstriction to norepinephrine decreased in the presence of perivascular adipose tissue in New Zealand black mice but was unaffected by perivascular adipose tissue in NZO mice, suggesting loss of perivascular adipose tissue anticontractile properties. Our data suggest that this rodent model of metabolic syndrome is associated with perivascular adipose inflammation and oxidative stress, hypertrophic resistance artery remodeling, and endothelial dysfunction, the latter a result of decreased NO

  6. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction

    PubMed Central

    Kim, Ji Min; Joung, Kyong Hye; Lee, Ju Hee; You, Bo Ram; Choi, Min Jeong; Ryu, Min Jeong; Ko, Young Bok; Lee, Min A.; Lee, Junguee; Ku, Bon Jeong; Shong, Minho; Lee, Ki Hwan; Kim, Hyun Jin

    2016-01-01

    The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25). The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037) but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035) but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and leptin have specific

  7. A Subset of Men With Age-Related Decline in Testosterone Have Gonadotroph Autoantibodies

    PubMed Central

    Ricciuti, Adriana; Travison, Thomas G.; Di Dalmazi, Giulia; Talor, Monica V.; DeVincentiis, Ludovica; Manley, Robert W.; Bhasin, Shalender; Caturegli, Patrizio

    2016-01-01

    Context: Age-related decline in serum testosterone (T) is being increasingly diagnosed. In most men, it associates with low or inappropriately normal gonadotropin levels, which suggests a hypothalamic-pituitary etiology. Autoantibodies against adenohypophyseal cells have been associated with pituitary dysfunction; however, the prevalence of pituitary autoimmunity in this age-related T decline has not been assessed. Objectives: This is a proof-of-concept study with the objective of determining the prevalence of antibodies to gonadotrophs in older men with age-related low T and compare it with healthy young and older eugonadal men. Study Design: This is a cross-sectional case-control study of 182 men. Cases included 100 older men (≥65 years) with age-related low T levels; the control groups were composed of 50 young and 32 older healthy eugonadal men. Serum antibodies against the anterior pituitary gland were measured using a two-step approach: 1) single indirect immunofluorescence (ie, participant serum only) to determine the pattern of cytosolic staining; and 2) double indirect immunofluorescence (ie, participant serum plus a commercial adenohypophyseal hormone antibody) to identify the anterior pituitary cell type recognized by the patient's antibodies). Results: In participants with positive antipituitary antibodies, the granular cytosolic pattern (highly predictive of pituitary autoimmunity) was only seen in older men with age-related low T (4%) and none in control groups (0%, P = .001). Double indirect immunofluorescence confirmed that pituitary antibodies were exclusively directed against the gonadotrophs. Conclusion: A subset of older men with age-related low T levels have specific antibodies against the gonadotrophs. Whether these antibodies are pathogenic and contributory to the age-related decline in T remains to be established. PMID:26963952

  8. [Non-pharmacologic therapy of age-related macular degeneration, based on the etiopathogenesis of the disease].

    PubMed

    Fischer, Tamás

    2015-07-12

    It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction.

  9. Age-related consequences of childhood obesity.

    PubMed

    Kelsey, Megan M; Zaepfel, Alysia; Bjornstad, Petter; Nadeau, Kristen J

    2014-01-01

    The severity and frequency of childhood obesity has increased significantly over the past three to four decades. The health effects of increased body mass index as a child may significantly impact obese youth as they age. However, many of the long-term outcomes of childhood obesity have yet to be studied. This article examines the currently available longitudinal data evaluating the effects of childhood obesity on adult outcomes. Consequences of obesity include an increased risk of developing the metabolic syndrome, cardiovascular disease, type 2 diabetes and its associated retinal and renal complications, nonalcoholic fatty liver disease, obstructive sleep apnea, polycystic ovarian syndrome, infertility, asthma, orthopedic complications, psychiatric disease, and increased rates of cancer, among others. These disorders can start as early as childhood, and such early onset increases the likelihood of early morbidity and mortality. Being obese as a child also increases the likelihood of being obese as an adult, and obesity in adulthood also leads to obesity-related complications. This review outlines the evidence for childhood obesity as a predictor of adult obesity and obesity-related disorders, thereby emphasizing the importance of early intervention to prevent the onset of obesity in childhood.

  10. Multiple Brain Markers are Linked to Age-Related Variation in Cognition.

    PubMed

    Hedden, Trey; Schultz, Aaron P; Rieckmann, Anna; Mormino, Elizabeth C; Johnson, Keith A; Sperling, Reisa A; Buckner, Randy L

    2016-04-01

    Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65-90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70-80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health.

  11. Abnormal amounts of intracellular calcium regulatory proteins in SHRSP.Z-Lepr(fa)/IzmDmcr rats with metabolic syndrome and cardiac dysfunction.

    PubMed

    Kagota, Satomi; Maruyama, Kana; Tada, Yukari; Wakuda, Hirokazu; Nakamura, Kazuki; Kunitomo, Masaru; Shinozuka, Kazumasa

    2013-02-01

    Metabolic syndrome is known to increase the risk of abnormal cardiac structure and function, which are considered to contribute to increased incidence of cardiovascular disease and mortality. We previously demonstrated that ventricular hypertrophy and diastolic dysfunction occur in SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP fatty) rats with metabolic syndrome. The aim of this study was to investigate the possible mechanisms underlying abnormal heart function in SHRSP fatty rats. The amount of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a, phospholamban (PLB) protein, and Ser(16)-phosphorylated PLB was decreased in cardiomyocytes from SHRSP fatty rats compared with those from control Wistar-Kyoto rats at 18 weeks of age, and the PLB-to-SERCA2a ratio was increased. Left ventricular developed pressure was unchanged, and coronary flow rate and maximum rate of left ventricular pressure decline (-dP/dt) was decreased in SHRSP fatty rats. Treatment with telmisartan reversed the abnormalities of PLB amount, coronary flow rate, and -dP/dt in SHRSP fatty rats. These results indicate that abnormal amounts of intracellular Ca(2+) regulatory proteins in cardiomyocytes, leading to reduced intracellular Ca(2+) reuptake into the sarcoplasmic reticulum, may play a role in the diastolic dysfunction in SHRSP fatty rats and that these effects are partially related to decreased coronary circulation. Telmisartan may be beneficial in protecting against disturbances in cardiac function associated with metabolic syndrome.

  12. Oxidative modification of proteins: age-related changes.

    PubMed

    Chakravarti, Bulbul; Chakravarti, Deb N

    2007-01-01

    Aging is a complex biological phenomenon which involves progressive loss of different physiological functions of various tissues of living organisms. It is the inevitable fate of life and is a major risk factor for death and different pathological disorders. Based on a wide variety of studies performed in humans as well as in various animal models and microbial systems, reactive oxygen species (ROS) are believed to play a key role in the aging process. The production of ROS is influenced by cellular metabolic activities as well as environmental factors. ROS can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since, in general, proteins are the key molecules that play the ultimate role in various structural and functional aspects of living organisms, this review will focus on the age-related oxidative modifications of proteins as well as on mechanism for removal or repair of the oxidized proteins. The topics covered include protein oxidation as a marker of oxidative stress, experimental evidence indicating the role of ROS in protein oxidation, protein carbonyl content, enzymatic degradation of oxidized proteins, and effects of caloric restriction on protein oxidation in the context of aging. Finally, we will discuss different strategies which have been or can be undertaken to slow down the oxidative damage of proteins and the aging process.

  13. Fundus autofluorescence in exudative age-related macular degeneration.

    PubMed

    Peng, Q; Dong, Y; Zhao, P Q

    2013-12-02

    The aim of this study was to investigate the characteristics of fundus autofluorescence (FAF) in patients with wet (exudative) age-related macular degeneration (AMD). Color fundus photographs, fundus fluorescein angiograms, indocyanine green angiograms, and FAF images were obtained from 61 patients (72 eyes) with exudative AMD. The FAF results for different patterns of exudative AMD were compared to those revealed by other fundus images. Of the 72 eyes evaluated, which were classified into three patterns based on the results of fundus fluorescein angiography, 68 had abnormal FAF. Forty-six eyes (63.9%) had classic wet AMD with abnormal FAF. Among these, 10 exhibited a slightly decreased FAF with near-normal or background FAF signal at the center of the lesion area; 36 demonstrated not only decreased FAF at the center of the lesion but also an increased FAF signal toward the lesion edge. Sixteen eyes (22.2%) had occult wet AMD, of which 12 exhibited heterogeneous fluorescence at the lesion site; 4 yielded normal FAF images. Ten eyes (13.9%) had a mixed pattern of wet AMD with abnormal FAF. FAF imaging suggested that the areas of blood and exudates decreased; however, fluorescence angiography revealed that lesions with hyperfluorescence had background or slightly increased FAF. These results showed that various patterns of wet AMD exhibit different autofluorescence characteristics. These represent the functional and metabolic features of retinal pigment epithelial cells. Therefore, FAF can be used to monitor disease development and evaluate the severity and prognosis of AMD.

  14. Seven New Loci Associated with Age-Related Macular Degeneration

    PubMed Central

    2013-01-01

    Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate understanding of AMD biology and help design new therapies, we executed a collaborative genomewide association study, examining >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with AMD with p<5×10−8 and enriched for genes involved in regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching p<5×10−8 for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all loci displayed similar good ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD. PMID:23455636

  15. Seven new loci associated with age-related macular degeneration.

    PubMed

    Fritsche, Lars G; Chen, Wei; Schu, Matthew; Yaspan, Brian L; Yu, Yi; Thorleifsson, Gudmar; Zack, Donald J; Arakawa, Satoshi; Cipriani, Valentina; Ripke, Stephan; Igo, Robert P; Buitendijk, Gabriëlle H S; Sim, Xueling; Weeks, Daniel E; Guymer, Robyn H; Merriam, Joanna E; Francis, Peter J; Hannum, Gregory; Agarwal, Anita; Armbrecht, Ana Maria; Audo, Isabelle; Aung, Tin; Barile, Gaetano R; Benchaboune, Mustapha; Bird, Alan C; Bishop, Paul N; Branham, Kari E; Brooks, Matthew; Brucker, Alexander J; Cade, William H; Cain, Melinda S; Campochiaro, Peter A; Chan, Chi-Chao; Cheng, Ching-Yu; Chew, Emily Y; Chin, Kimberly A; Chowers, Itay; Clayton, David G; Cojocaru, Radu; Conley, Yvette P; Cornes, Belinda K; Daly, Mark J; Dhillon, Baljean; Edwards, Albert O; Evangelou, Evangelos; Fagerness, Jesen; Ferreyra, Henry A; Friedman, James S; Geirsdottir, Asbjorg; George, Ronnie J; Gieger, Christian; Gupta, Neel; Hagstrom, Stephanie A; Harding, Simon P; Haritoglou, Christos; Heckenlively, John R; Holz, Frank G; Hughes, Guy; Ioannidis, John P A; Ishibashi, Tatsuro; Joseph, Peronne; Jun, Gyungah; Kamatani, Yoichiro; Katsanis, Nicholas; N Keilhauer, Claudia; Khan, Jane C; Kim, Ivana K; Kiyohara, Yutaka; Klein, Barbara E K; Klein, Ronald; Kovach, Jaclyn L; Kozak, Igor; Lee, Clara J; Lee, Kristine E; Lichtner, Peter; Lotery, Andrew J; Meitinger, Thomas; Mitchell, Paul; Mohand-Saïd, Saddek; Moore, Anthony T; Morgan, Denise J; Morrison, Margaux A; Myers, Chelsea E; Naj, Adam C; Nakamura, Yusuke; Okada, Yukinori; Orlin, Anton; Ortube, M Carolina; Othman, Mohammad I; Pappas, Chris; Park, Kyu Hyung; Pauer, Gayle J T; Peachey, Neal S; Poch, Olivier; Priya, Rinki Ratna; Reynolds, Robyn; Richardson, Andrea J; Ripp, Raymond; Rudolph, Guenther; Ryu, Euijung; Sahel, José-Alain; Schaumberg, Debra A; Scholl, Hendrik P N; Schwartz, Stephen G; Scott, William K; Shahid, Humma; Sigurdsson, Haraldur; Silvestri, Giuliana; Sivakumaran, Theru A; Smith, R Theodore; Sobrin, Lucia; Souied, Eric H; Stambolian, Dwight E; Stefansson, Hreinn; Sturgill-Short, Gwen M; Takahashi, Atsushi; Tosakulwong, Nirubol; Truitt, Barbara J; Tsironi, Evangelia E; Uitterlinden, André G; van Duijn, Cornelia M; Vijaya, Lingam; Vingerling, Johannes R; Vithana, Eranga N; Webster, Andrew R; Wichmann, H-Erich; Winkler, Thomas W; Wong, Tien Y; Wright, Alan F; Zelenika, Diana; Zhang, Ming; Zhao, Ling; Zhang, Kang; Klein, Michael L; Hageman, Gregory S; Lathrop, G Mark; Stefansson, Kari; Allikmets, Rando; Baird, Paul N; Gorin, Michael B; Wang, Jie Jin; Klaver, Caroline C W; Seddon, Johanna M; Pericak-Vance, Margaret A; Iyengar, Sudha K; Yates, John R W; Swaroop, Anand; Weber, Bernhard H F; Kubo, Michiaki; Deangelis, Margaret M; Léveillard, Thierry; Thorsteinsdottir, Unnur; Haines, Jonathan L; Farrer, Lindsay A; Heid, Iris M; Abecasis, Gonçalo R

    2013-04-01

    Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 loci associated at P < 5 × 10(-8). These loci show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include seven loci with associations reaching P < 5 × 10(-8) for the first time, near the genes COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9 and B3GALTL. A genetic risk score combining SNP genotypes from all loci showed similar ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD.

  16. Age-related differences in pulmonary effects of acute and subchronic episodic ozone exposures in Brown Norway rats

    EPA Science Inventory

    Ozone (O3) is known to induce adverse pulmonary and systemic health effects. Importantly, children and older persons are considered at-risk populations for O3-induced dysfunction, yet the mechanisms accounting for the age-related pulmonary responses to O3 are uncertain. In this s...

  17. Executive Functioning and Processing Speed in Age-Related Differences in Memory: Contribution of a Coding Task

    ERIC Educational Resources Information Center

    Baudouin, Alexia; Clarys, David; Vanneste, Sandrine; Isingrini, Michel

    2009-01-01

    The aim of the present study was to examine executive dysfunctioning and decreased processing speed as potential mediators of age-related differences in episodic memory. We compared the performances of young and elderly adults in a free-recall task. Participants were also given tests to measure executive functions and perceptual processing speed…

  18. Lipoprotein metabolism mediates the association of MTP polymorphism with beta-cell dysfunction in healthy subjects and in nondiabetic normolipidemic patients with nonalcoholic steatohepatitis.

    PubMed

    Musso, Giovanni; Gambino, Roberto; Cassader, Maurizio

    2010-09-01

    Nonalcoholic steatohepatitis (NASH) predicts incident diabetes independently of insulin resistance, adiposity and metabolic syndrome through unclear mechanisms. Dietary fat consumption and lipoperoxidative stress predispose to diabetes in the general population and to liver injury in NASH. Microsomal triglyceride transfer protein (MTP) polymorphism modulates lipoprotein metabolism in the general population and liver disease in NASH; a functional MTP polymorphism recently predicted incident diabetes independently of insulin resistance in the general population. We simultaneously assessed the impact of MTP polymorphism, diet, adipokines and lipoprotein metabolism, on glucose homeostasis in NASH. MTP -493G/T polymorphism, dietary habits, adipokines and postprandial triglyceride-rich lipoproteins, high-density lipoprotein cholesterol (HDL-C) and oxidized low-density lipoprotein (oxLDL) responses to an oral fat load, were cross-sectionally correlated to oral glucose tolerance test- and frequently sampled intravenous glucose tolerance test-derived Minimal Model indexes of glucose homeostasis in 40 nondiabetic normolipidemic patients with NASH and 40 age-,sex- and body mass index-matched healthy controls. Despite comparable insulin resistance, fasting lipids, adipokines and dietary habits, MTP GG genotype had significantly more severe beta-cell dysfunction; higher plasma Tg, FFA, intestinal and hepatic very low-density lipoprotein 1 subfractions and oxLDL responses and deeper HDL-C fall than GT/TT carriers in patients and controls. Postprandial HDL-C and oxLDL responses independently predicted beta-cell dysfunction and mediated the effect of MTP polymorphism on beta-cell function. In nondiabetic normolipidemic NASH, MTP -493G/T polymorphism modulates beta-cell function, an effect mediated by postprandial HDL-C and oxLDL metabolism. The impact of this polymorphism on the risk of diabetes and the efficacy of lipid-lowering therapies in restoring beta-cell function in NASH

  19. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases.

    PubMed

    Maessen, Dionne E M; Stehouwer, Coen D A; Schalkwijk, Casper G

    2015-06-01

    The formation and accumulation of advanced glycation endproducts (AGEs) are related to diabetes and other age-related diseases. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is the major precursor in the formation of AGEs. MGO is mainly formed as a byproduct of glycolysis. Under physiological circumstances, MGO is detoxified by the glyoxalase system into D-lactate, with glyoxalase I (GLO1) as the key enzyme in the anti-glycation defence. New insights indicate that increased levels of MGO and the major MGO-derived AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1), and dysfunctioning of the glyoxalase system are linked to several age-related health problems, such as diabetes, cardiovascular disease, cancer and disorders of the central nervous system. The present review summarizes the mechanisms through which MGO is formed, its detoxification by the glyoxalase system and its effect on biochemical pathways in relation to the development of age-related diseases. Although several scavengers of MGO have been developed over the years, therapies to treat MGO-associated complications are not yet available for application in clinical practice. Small bioactive inducers of GLO1 can potentially form the basis for new treatment strategies for age-related disorders in which MGO plays a pivotal role.

  20. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index.

  1. Slowing Down: Age-Related Neurobiological Predictors of Processing Speed

    PubMed Central

    Eckert, Mark A.

    2011-01-01

    Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging. PMID:21441995

  2. Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan

    PubMed Central

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-01-01

    Summary Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan. PMID:26867182

  3. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-02-10

    Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan.

  4. Age-related Dysregulation of Inflammation and Innate Immunity: Lessons Learned from Rodent Models

    PubMed Central

    Brubaker, Aleah L.; Palmer, Jessica L.; Kovacs, Elizabeth J.

    2011-01-01

    In the elderly patient population, it has become increasingly evident that immune dysregulation is a contributing factor to age-related pathologies and their associated morbidity and mortality. In particular, elderly subjects are plagued by poor responses to infectious challenge and immunization and are at heightened risk for the development of autoimmune, neuroinflammatory and tumor-associated pathologies. Rodent models of aging and age-related disorders have been utilized to better describe how innate immune cell dysfunction contributes to these clinical scenarios. As the elderly population continues to increase in size, use of these aging rodent models to study immune dysregulation may translate into increased healthy living years for these individuals. PMID:22396887

  5. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance

    PubMed Central

    Vajapey, Ramya; Rini, David; Walston, Jeremy; Abadir, Peter

    2014-01-01

    Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox) homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS). A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). Ang II binds with equal affinity to two main angiotensin receptors—type 1 (AT1R) and type 2 (AT2R). The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS). This Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell. AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a) report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b) discuss the effect of age-related activation of RAS on generation of free radicals. PMID:25505418

  6. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease

    PubMed Central

    Crosson, Bruce; McGregor, Keith M.; Nocera, Joe R.; Drucker, Jonathan H.; Tran, Stella M.; Butler, Andrew J.

    2015-01-01

    The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered. PMID:26074807

  7. [Effects of diabetes mellitus on the occurrence of age-related macular degeneration].

    PubMed

    Li, Xia; Wang, Yu-sheng

    2011-03-01

    Diabetes mellitus causing long term disturbed glucose metabolism could result in tissue injury and multiple complications. According to recent studies, diabetes mellitus might be regarded as one of the risk factors of age related macular degeneration (AMD). Diabetes mellitus affects the incidence and progression of AMD through altering hemodynamics, increasing oxidative stress, accumulating advanced glycation end products, etc. By studying epidemiological investigation and basic research on this subject comprehensively, it is required to review the correlation between diabetes mellitus and AMD.

  8. Age-Related Impairment of Pancreatic Beta-Cell Function: Pathophysiological and Cellular Mechanisms

    PubMed Central

    De Tata, Vincenzo

    2014-01-01

    The incidence of type 2 diabetes significantly increases with age. The relevance of this association is dramatically magnified by the concomitant global aging of the population, but the underlying mechanisms remain to be fully elucidated. Here, some recent advances in this field are reviewed at the level of both the pathophysiology of glucose homeostasis and the cellular senescence of pancreatic islets. Overall, recent results highlight the crucial role of beta-cell dysfunction in the age-related impairment of pancreatic endocrine function and delineate the possibility of new original therapeutic interventions. PMID:25232350

  9. Adipocytokines in Thyroid Dysfunction

    PubMed Central

    Aydogan, Berna İmge; Sahin, Mustafa

    2013-01-01

    Adipocytokines are important mediators of interorgan crosstalk in metabolic regulation. Thyroid diseases have effects on metabolism and inflammation. The mechanism of these effects is not clear. Recently, there are several reports suggesting this interrelation between adipocytokines and thyroid dysfunction. In this review, we summarize this relation according to the literature. PMID:24049662

  10. An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function.

    PubMed

    Pierno, Sabata; Tricarico, Domenico; Liantonio, Antonella; Mele, Antonietta; Digennaro, Claudio; Rolland, Jean-François; Bianco, Gianpatrizio; Villanova, Luciano; Merendino, Alessandro; Camerino, Giulia Maria; De Luca, Annamaria; Desaphy, Jean-François; Camerino, Diana Conte

    2014-02-01

    Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.

  11. Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations.

    PubMed

    Hu, Fang; Liu, Feng

    2014-01-01

    It has been well established that most of the age-related diseases such as insulin resistance, type 2 diabetes, hypertension, cardiovascular disease, osteoporosis, and atherosclerosis are all closely related to metabolic dysfunction. On the other hand, interventions on metabolism such as calorie restriction or genetic manipulations of key metabolic signaling pathways such as the insulin and mTOR signaling pathways slow down the aging process and improve healthy aging. These findings raise an important question as to whether improving energy homeostasis by targeting certain metabolic signaling pathways in specific tissues could be an effective anti-aging strategy. With a more comprehensive understanding of the tissue-specific roles of distinct metabolic signaling pathways controlling energy homeostasis and the cross-talks between these pathways during aging may lead to the development of more effective therapeutic interventions not only for metabolic dysfunction but also for aging.

  12. Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia?

    PubMed Central

    Joseph, Jamie; Depp, Colin; Shih, Pei-an B.; Cadenhead, Kristen S.; Schmid-Schönbein, Geert

    2017-01-01

    Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive

  13. Low Calorie Diet Affects Aging-Related Factors

    MedlinePlus

    ... Issue Past Issues Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / Summer ... learn more about the effects of sustained low-calorie diets in humans on factors affecting aging. This ...

  14. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy.

    PubMed

    Pant, Meghna; Sopariwala, Danesh H; Bal, Naresh C; Lowe, Jeovanna; Delfín, Dawn A; Rafael-Fortney, Jill; Periasamy, Muthu

    2015-01-01

    The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.

  15. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1

    PubMed Central

    2016-01-01

    Cryptochrome proteins (CRYs), which can bind noncovalently to cofactor (chromophore) flavin adenine dinucleotide (FAD), occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice), ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1) being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes characterized by beta-cell dysfunction, resembling human maturity onset diabetes of the young (MODY). The lowered proliferation of β-cells is a primary cause of age-dependent β-cell loss. Furthermore, unusually enlarged duct-like structures developed prominently in the Tg mice pancreases. The duct-like structures contained insulin-positive cells, suggesting neogenesis of β-cells in the Tg mice. This review, based mainly on the author's investigation of the unique features of Tg mice, presents reported results and recent findings related to molecular processes associated with mammalian cryptochromes, especially their involvement in the regulation of metabolism. New information is described with emphasis on the aspects of islet architecture, pancreatic β-cell dysfunction, and regeneration. PMID:28105441

  16. Nutrient-Induced Inflammation in Polycystic Ovary Syndrome: Role in the Development of Metabolic Aberration and Ovarian Dysfunction.

    PubMed

    González, Frank

    2015-07-01

    A pathophysiology paradigm shift has emerged with the discovery that polycystic ovary syndrome (PCOS) is a proinflammatory state. Despite the dogma that the compensatory hyperinsulinemia of insulin resistance is the promoter of hyperandrogenism, physiological insulin infusion has no effect on androgen levels in PCOS. The dogma also does not explain the cause of hyperandrogenism and ovarian dysfunction in the 30 to 50% of women with PCOS who are of normal weight and lack insulin resistance. Inflammation is the underpinning of insulin resistance in obesity and type 2 diabetes, and may also be the cause of insulin resistance when present in PCOS. The origin of inflammation in PCOS has been ascribed to excess abdominal adiposity or frank obesity. However, nutrients such as glucose and saturated fat can incite inflammation from circulating mononuclear cells (MNC) of women with PCOS independent of excess adiposity and insulin resistance, and can also promote atherogenesis. Hyperandrogenism activates MNC in the fasting state to increase MNC sensitivity to nutrients, and is a potential mechanism for initiating inflammation in PCOS. However, chronic ovarian androgen suppression does not reduce inflammation in normal-weight women with PCOS. Direct exposure of ovarian theca cells to proinflammatory stimuli in vitro increases androgen production. These findings may be corroborated in vivo with anti-inflammatory therapy to normal-weight insulin-sensitive women with PCOS without abdominal adiposity to observe for amelioration of ovarian dysfunction.

  17. Age-related motor dysfunction: Manual slowing in Gorilla gorilla gorilla.

    PubMed

    Mahovetz, Lindsay M; Stoinski, Tara S

    2015-12-01

    Aging in humans and rhesus monkeys is commonly associated with motor function decrements including dexterity, speed, and strength. Despite their longevity and phylogenetic relatedness to humans, the effects of aging on motor function in non-human apes have been minimally studied. We conducted two experiments with western lowland gorillas (11-54 years of age) to determine whether aged gorillas exhibit motor deficits similar to those seen in other species. In experiment one, gorillas extracted up to 12 food rewards lodged in holes of a Lexan board. Extraction rates were calculated for eight test sessions. A repeated measures ANOVA revealed no main effects of session or sex on extraction rate, but a significant main effect of age. Comparisons between the first and last sessions showed that experience significantly improved extraction rates in young but not aged gorillas. In experiment two, gorillas retrieved a hex nut from three differently shaped rods with each hand for a reward. Latencies of retrieval were calculated for 16 test sessions. A repeated measures ANOVA revealed significant main effects of age class, sex, and session. There were significant interactions between session and sex, session and age, and session, sex, and age. These findings held when analyzing each rod shape separately. Post hoc comparisons revealed that young gorillas were significantly faster at the task than aged gorillas, and females were faster than males. This finding held only for the question mark shaped rod when analyzing each rod shape separately. Comparisons between the first and last sessions showed that experience did not significantly improve latencies in either age or sex class. The direction of these results are congruent with previous findings in humans and monkeys and suggest that aged gorillas experience deficits in bimanual coordination compared to younger gorillas and that age and sex influence fine motor ability in gorillas.

  18. Genetic architecture of age-related cognitive decline in African Americans

    PubMed Central

    Raj, Towfique; Chibnik, Lori B.; McCabe, Cristin; Wong, Andus; Replogle, Joseph M.; Yu, Lei; Gao, Sujuan; Unverzagt, Frederick W.; Stranger, Barbara; Murrell, Jill; Barnes, Lisa; Hendrie, Hugh C.; Foroud, Tatiana; Krichevsky, Anna; Bennett, David A.; Hall, Kathleen S.; Evans, Denis A.

    2016-01-01

    Objective: To identify genetic risk factors associated with susceptibility to age-related cognitive decline in African Americans (AAs). Methods: We performed a genome-wide association study (GWAS) and an admixture-mapping scan in 3,964 older AAs from 5 longitudinal cohorts; for each participant, we calculated a slope of an individual's global cognitive change from neuropsychological evaluations. We also performed a pathway-based analysis of the age-related cognitive decline GWAS. Results: We found no evidence to support the existence of a genomic region which has a strongly different contribution to age-related cognitive decline in African and European genomes. Known Alzheimer disease (AD) susceptibility variants in the ABCA7 and MS4A loci do influence this trait in AAs. Of interest, our pathway-based analyses returned statistically significant results highlighting a shared risk from lipid/metabolism and protein tyrosine signaling pathways between cognitive decline and AD, but the role of inflammatory pathways is polarized, being limited to AD susceptibility. Conclusions: The genetic architecture of aging-related cognitive in AA individuals is largely similar to that of individuals of European descent. In both populations, we note a surprising lack of enrichment for immune pathways in the genetic risk for cognitive decline, despite strong enrichment of these pathways among genetic risk factors for AD. PMID:28078323

  19. Age-related gene expression changes in substantia nigra dopamine neurons of the rat.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2015-07-01

    Ageing affects most, if not all, functional systems in the body. For example, the somatic motor nervous system, responsible for initiating and regulating motor output to skeletal musculature, is vulnerable to ageing. The nigrostriatal dopamine pathway is one component of this system, with deficits in dopamine signalling contributing to major motor dysfunction, as exemplified in Parkinson's disease (PD). However, while the dopamine deficit in PD is due to degeneration of substantia nigra (SN) dopamine (DA) neurons, it is unclear whether there is sufficient loss of SN DA neurons with ageing to explain observed motor impairments. Instead, evidence suggests that age-related loss of DA neuron function may be more important than frank cell loss. To further elucidate the mechanisms of functional decline, we have investigated age-related changes in gene expression specifically in laser microdissected SN DA neurons. There were significant age-related changes in the expression of genes associated with neurotrophic factor signalling and the regulation of tyrosine hydroxylase activity. Furthermore, reduced expression of the DA neuron-associated transcription factor, Nurr1, may contribute to these changes. Together, these results suggest that altered neurotrophic signalling and tyrosine hydroxylase activity may contribute to altered DA neuron signalling and motor nervous system regulation in ageing.

  20. Modulation of Mcl-1 expression reduces age-related cochlear degeneration.

    PubMed

    Yang, Wei Ping; Xu, Yang; Guo, Wei Wei; Liu, Hui Zhan; Hu, Bo Hua

    2013-11-01

    Mcl-1 is an anti-apoptotic member of the Bcl-2 family that modulates apoptosis-related signaling pathways and promotes cell survival. We have previously demonstrated a reduction of Mcl-1 expression in aging cochleae. To investigate whether restoring Mcl-1 expression would reduce aging-related cochlear degeneration, we developed a rat model of Mcl-1 overexpression. A plasmid encoding human Mcl-1/enhanced green fluorescent protein was applied to the round window of the cochlea. This in vivo treatment transfected both the sensory and supporting cells of the cochlear sensory epithelium and enhanced Mcl-1 expression at both the mRNA and the protein level. The upregulation of Mcl-1 expression reduced the progression of age-related cochlear dysfunction and sensory cell death. Furthermore, the transfection of Mcl-1 exerted its protective effect by suppressing cochlear apoptosis at the mitochondrial level. This study demonstrates that the genetic modulation of Mcl-1 expression reduces the progression of age-related cochlear degeneration.

  1. Loss of Rictor with aging in osteoblasts promotes age-related bone loss

    PubMed Central

    Lai, Pinling; Song, Qiancheng; Yang, Cheng; Li, Zhen; Liu, Sichi; Liu, Bin; Li, Mangmang; Deng, Hongwen; Cai, Daozhang; Jin, Dadi; Liu, Anling; Bai, Xiaochun

    2016-01-01

    Osteoblast dysfunction is a major cause of age-related bone loss, but the mechanisms underlying changes in osteoblast function with aging are poorly understood. This study demonstrates that osteoblasts in aged mice exhibit markedly impaired adhesion to the bone formation surface and reduced mineralization in vivo and in vitro. Rictor, a specific component of the mechanistic target of rapamycin complex 2 (mTORC2) that controls cytoskeletal organization and cell survival, is downregulated with aging in osteoblasts. Mechanistically, we found that an increased level of reactive oxygen species with aging stimulates the expression of miR-218, which directly targets Rictor and reduces osteoblast bone surface adhesion and survival, resulting in a decreased number of functional osteoblasts and accelerated bone loss in aged mice. Our findings reveal a novel functional pathway important for age-related bone loss and support for miR-218 and Rictor as potential targets for therapeutic intervention for age-related osteoporosis treatment. PMID:27735936

  2. Age-related decline in motor behavior and striatal dopamine transporter in cynomolgus monkeys.

    PubMed

    Yue, Feng; Zeng, Sien; Wu, Di; Yi, Deqiao; Alex Zhang, Y; Chan, Piu

    2012-08-01

    Advanced human aging is associated with progressive declines of motor function and a risk factor for Parkinson's disease, which mainly involves central nigrostriatal dopaminergic system. The present study investigated age-related changes in motor behaviors and alterations of the number of nigrostriatal dopaminergic terminals in non-human primates. A total of 30 cynomolgus monkeys (Macaca fascicularis) of age 3.5-15.5 years were studied. Motor behaviors including upper limb movement time and the amount of overall home cage activity were quantitatively assessed using a modified movement assessment panel and a newly developed webcam-based monitoring system. The function of the dopaminergic system was semi-quantitatively measured by (99m)Tc-TRODAT-1 uptake rates, a dopamine transporter (DAT) specific radiopharmaceutical with SPECT imaging. The results showed a significant decline in motor behaviors associated with aging which were significantly correlated with age-related decreases of (99m)Tc-TRODAT-1 uptake. A further partial correlation analysis independent of age indicated that age contributed to the relationship between striatal DAT levels and motor behaviors. Our results indicate that normal aging-related dopamine physiology influences certain aspects of motor behaviors and suggest that aging-associated dysfunction in the nigrostriatal dopaminergic system may be an important factor contributing to the decline of motor behaviors in aging cynomolgus monkeys.

  3. Aging related erectile dysfunction—potential mechanism to halt or delay its onset

    PubMed Central

    Gonzalez-Cadavid, Nestor F.; Rajfer, Jacob

    2017-01-01

    Erectile dysfunction (ED) will visit every man at some time in his life. The age at when that knock on the door is heard is totally dependent on one’s genetics as well as other extrinsic factors. Unlike guests who come for a visit and then leave, once ED shows up it tends to hang around forever. To add insult to injury, the longer ED hangs around, the worse it will get. It is estimated that by the time a man is in his 40’s, he has about a 40% chance of having some form of ED and this prevalence increases about 10% per decade thereafter. This suggests that the aging related process that leads to ED begins early in life. It turns out that the most common cause of ED, regardless of the patient’s age, is due to a problem with the vascular system of the penis. However, this specific aging related vascular problem is not caused by arterial disease but due to a dysfunction and/or loss of the corporal smooth muscle cells (SMC), the main constituent of the corporal sinusoids. As one gets older, these SMC continue to degrade and disappear. When approximately 15% of these cells have been impacted, it results in an inability of the corporal tissue to retain and/or prevent the blood from “leaking” out of the corporal sinusoids into the systemic veins. However, the corporal SMC themselves begin to combat this aging process by expressing the inducible nitric oxide synthase (iNOS) enzyme to make nitric oxide (NO) in an attempt to quench the high intracellular oxidative stress responsible for the SMC apoptosis. When this iNOS pathway is then pharmacologically upregulated, reversal of these aging related changes in the corpora with correction of the venous leakage is observed. Since we believe that aging related ED is pathologically the same disorder as essential hypertension, the development of a therapeutic regimen that can halt, delay or possibly reverse the cellular processes that lead to aging related ED should also be applicable to those patients diagnosed with

  4. [The relationship between the polymorphism of immunity genes and both aging and age-related diseases].

    PubMed

    Ruan, Qing-Wei; Yu, Zhuo-Wei; Bao, Zhi-Jun; Ma, Yong-Xing

    2013-07-01

    Aging is acommon, progressive and irreversible state of multi-cell dysfunction. Immune aging mainly includes the declines of regenerative capacity and lymphoid lineage differentiation potential, the hyporesponsive to infection and vaccination, the hyperresponsive in the context of inflammatory pathology, and the increased risk of autoimmunity. The dysfunction of aged immune system accelerates the occurrence of aging and age-related diseases. The mutation of immunity genes that affect immune responses accelerates or slows aging process and age-related diseases. The frequencies of acquired immunity genes, such as immune protective HLA II DRB1*11 and DRB*16-associated haplotype, are increased in the longevity populations. The increased susceptibility of immune inflammatory response, morbidity and mortality in the elderly is often associated with decreased frequencies of anti-inflammatory factor IL-10 -1082G allele, TNF-β1 haplotype cnd10T/C, cnd25G/G, -988C/C, -800G/A, low proinflammatory fator TNFa level related extended TNF-A genotype -1031C/C, -863C/A, -857C/C, IL-6-174 CC and IFN-γ+874 T allele as well. The innate immunity genes, such as highly expressed anti-inflammatory +896 G KIR4 allele, CCR5Δ32 variant, -765 C Cox-2 allele, -1708 G and 21 C 5-Lox alleles are detected in centenarians. In age-related diseases, a higher CMV-specific IgG antibody level in elderly individuals is associated with a decreased frequency of KIR haplotypes KIR2DS5 and A1B10 and an increased frequency of MBL2 haplotypes LYPB, LYQC and HYPD that result in the absence of MBL2 protein. The increased frequencies of CRP ATG haplotypes and CFH 402 His allele indicate high mortality in the elderly. In the present study, we review the advances in the polymorphism and haplotype of innate and adoptive immunity genes, and their association with both aging and age-related diseases. To strengthen the analysis of extended haplotypes, epigenetic studies of immunity genes and genetic study of

  5. Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome

    PubMed Central

    2014-01-01

    Co-enzyme Q10 (Co-Q10) is an essential component of the mitochondrial electron transport chain. Most cells are sensitive to co-enzyme Q10 (Co-Q10) deficiency. This deficiency has been implicated in several clinical disorders such as heart failure, hypertension, Parkinson’s disease and obesity. The lipid lowering drug statin inhibits conversion of HMG-CoA to mevalonate and lowers plasma Co-Q10 concentrations. However, supplementation with Co-Q10 improves the pathophysiological condition of statin therapy. Recent evidence suggests that Co-Q10 supplementation may be useful for the treatment of obesity, oxidative stress and the inflammatory process in metabolic syndrome. The anti-inflammatory response and lipid metabolizing effect of Co-Q10 is probably mediated by transcriptional regulation of inflammation and lipid metabolism. This paper reviews the evidence showing beneficial role of Co-Q10 supplementation and its potential mechanism of action on contributing factors of metabolic and cardiovascular complications. PMID:24932457

  6. Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome.

    PubMed

    Alam, Md Ashraful; Rahman, Md Mahbubur

    2014-01-01

    Co-enzyme Q10 (Co-Q10) is an essential component of the mitochondrial electron transport chain. Most cells are sensitive to co-enzyme Q10 (Co-Q10) deficiency. This deficiency has been implicated in several clinical disorders such as heart failure, hypertension, Parkinson's disease and obesity. The lipid lowering drug statin inhibits conversion of HMG-CoA to mevalonate and lowers plasma Co-Q10 concentrations. However, supplementation with Co-Q10 improves the pathophysiological condition of statin therapy. Recent evidence suggests that Co-Q10 supplementation may be useful for the treatment of obesity, oxidative stress and the inflammatory process in metabolic syndrome. The anti-inflammatory response and lipid metabolizing effect of Co-Q10 is probably mediated by transcriptional regulation of inflammation and lipid metabolism. This paper reviews the evidence showing beneficial role of Co-Q10 supplementation and its potential mechanism of action on contributing factors of metabolic and cardiovascular complications.

  7. Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features

    PubMed Central

    Ouyang, Qing; Nakayama, Tojo; Baytas, Ozan; Davidson, Shawn M.; Yang, Chendong; Schmidt, Michael; Lizarraga, Sofia B.; Mishra, Sasmita; EI-Quessny, Malak; Niaz, Saima; Gul Butt, Mirrat; Imran Murtaza, Syed; Javed, Afzal; Chaudhry, Haroon Rashid; Vaughan, Dylan J.; Hill, R. Sean; Partlow, Jennifer N.; Yoo, Seung-Yun; Lam, Anh-Thu N.; Nasir, Ramzi; Al-Saffar, Muna; Barkovich, A. James; Schwede, Matthew; Nagpal, Shailender; Rajab, Anna; DeBerardinis, Ralph J.; Housman, David E.; Mochida, Ganeshwaran H.; Morrow, Eric M.

    2016-01-01

    Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms. PMID:27601654

  8. Parasitic nematode-induced modulation of body weight and associated metabolic dysfunction in mouse models of obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with a chronic low grade inflammation characterized by high level of pro-inflammatory cytokines and mediators implicated in disrupted metabolic homeostasis. Parasitic nematode infection induces a polarized Th2 cytokine response and has been shown to modulate immune-based pathol...

  9. Oxidative stress, innate immunity, and age-related macular degeneration.

    PubMed

    Shaw, Peter X; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer's disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  10. Oxidative stress, innate immunity, and age-related macular degeneration

    PubMed Central

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  11. Sex differences in the metabolic dysfunction and insulin resistance of skeletal muscle glucose transport following high fructose ingestion.

    PubMed

    Rattanavichit, Yupaporn; Chukijrungroat, Natsasi; Saengsirisuwan, Vitoon

    2016-12-01

    The role of high fructose ingestion (HFI) in the development of conditions mimicking human metabolic syndrome has mostly been demonstrated in male animals; however, the extent of HFI-induced metabolic alterations in females remains unclear. The present study investigated whether HFI-induced metabolic perturbations differ between sexes and whether HFI aggravates the metabolic disturbances under ovarian hormone deprivation. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) for 6 wk. Blood pressure, glucose tolerance, insulin-stimulated glucose transport activity and signaling proteins, including insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Akt, Akt substrate of 160 kDa (AS160), AMPKα, JNK, p38 MAPK, angiotensin-converting enzyme (ACE), ANG II type 1 receptor (AT1R), ACE2, and Mas receptor (MasR) in skeletal muscle, were evaluated. We found that HFI led to glucose intolerance and hypertension in male and OVX rats but not in female rats with intact ovaries. Moreover, HFI did not induce insulin resistance in the skeletal muscle of female and OVX rats but impaired the insulin-stimulated glucose transport activity in the skeletal muscle of male rats, which was accompanied by lower insulin-stimulated IRS-1 Tyr(989) (44%), Akt Ser(473) (30%), and AS160 Ser(588) (43%), and increases in insulin-stimulated IRS-1 Ser(307) (78%), JNK Thr(183)/Tyr(185) (69%), and p38 MAPK Thr(180)/Tyr(182) (81%). The results from the present study show sex differences in the development of metabolic syndrome-like conditions and indicate the protective role of female sex hormones against HFI-induced cardiometabolic abnormalities.

  12. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.

  13. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis].

    PubMed

    Fischer, Tamás

    2015-03-01

    The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.

  14. Pathophysiology of ageing, longevity and age related diseases

    PubMed Central

    Bürkle, Alexander; Caselli, Graziella; Franceschi, Claudio; Mariani, Erminia; Sansoni, Paolo; Santoni, Angela; Vecchio, Giancarlo; Witkowski, Jacek M; Caruso, Calogero

    2007-01-01

    On April 18, 2007 an international meeting on Pathophysiology of Ageing, Longevity and Age-Related Diseases was held in Palermo, Italy. Several interesting topics on Cancer, Immunosenescence, Age-related inflammatory diseases and longevity were discussed. In this report we summarize the most important issues. However, ageing must be considered an unavoidable end point of the life history of each individual, nevertheless the increasing knowledge on ageing mechanisms, allows envisaging many different strategies to cope with, and delay it. So, a better understanding of pathophysiology of ageing and age-related disease is essential for giving everybody a reasonable chance for living a long and enjoyable final part of the life. PMID:17683521

  15. Age-related macular degeneration: current treatment and future options.

    PubMed

    Moutray, Tanya; Chakravarthy, Usha

    2011-09-01

    Age-related macular degeneration is the leading cause of visual impairment among older adults in the developed world. Epidemiological studies have revealed a number of genetic, ocular and environmental risk factors for this condition, which can be addressed by disease reduction strategies. We discuss the various treatment options for dry and exudative age-related macular degeneration available and explain how the recommended treatment depends on the exact type, location and extent of the degeneration. Currently, vascular endothelial growth factor (VEGF) inhibition therapy is the best available treatment for exudative age-related macular degeneration but is limited by the need for repeated intravitreal injections. The current treatment regime is being refined through research on optimal treatment frequency and duration and type of anti-VEGF drug. Different modes of drug delivery are being developed and in the future other methods of VEGF inhibition may be used.

  16. Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice.

    PubMed

    Miranda, Cristobal L; Elias, Valerie D; Hay, Joshua J; Choi, Jaewoo; Reed, Ralph L; Stevens, Jan F

    2016-06-01

    Xanthohumol (XN) is a prenylated flavonoid found in hops (Humulus lupulus) and beer. The dose-dependent effects of XN on glucose and lipid metabolism in a preclinical model of metabolic syndrome were the focus of our study. Forty-eight male C57BL/6J mice, 9 weeks of age, were randomly divided into three XN dose groups of 16 animals. The mice were fed a high-fat diet (60% kcal as fat) supplemented with XN at dose levels of 0, 30, or 60 mg/kg body weight/day, for 12 weeks. Dietary XN caused a dose-dependent decrease in body weight gain. Plasma levels of glucose, total triglycerides, total cholesterol, and MCP-1 were significantly decreased in mice on the 60 mg/kg/day treatment regimen. Treatment with XN at 60 mg/kg/day resulted in reduced plasma LDL-cholesterol (LDL-C), IL-6, insulin and leptin levels by 80%, 78%, 42%, and 41%, respectively, compared to the vehicle control group. Proprotein Convertase Subtilisin Kexin 9 (PCSK-9) levels were 44% lower in the 60 mg/kg dose group compared to the vehicle control group (p ≤ 0.05) which may account for the LDL-C lowering activity of XN. Our results show that oral administration of XN improves markers of systemic inflammation and metabolic syndrome in diet-induced obese C57BL/6J mice.

  17. Metabolic Dysfunction and Unabated Respiration Precede the Loss of Membrane Integrity during Dehydration of Germinating Radicles1

    PubMed Central

    Leprince, Olivier; Harren, Frans J.M.; Buitink, Julia; Alberda, Mark; Hoekstra, Folkert A.

    2000-01-01

    This study shows that dehydration induces imbalanced metabolism before loss of membrane integrity in desiccation-sensitive germinated radicles. Using a photoacoustic detection system, responses of CO2 emission and fermentation to drying were analyzed non-invasively in desiccation-tolerant and -intolerant radicles of cucumber (Cucumis sativa) and pea (Pisum sativum). Survival after drying and a membrane integrity assay showed that desiccation tolerance was present during early imbibition and lost in germinated radicles. However, tolerance could be re-induced in germinated cucumber radicles by incubation in polyethylene glycol before drying. Tolerant and polyethylene glycol (PEG)-induced tolerant radicles exhibited a much-reduced CO2 production before dehydration compared with desiccation-sensitive radicles. This difference was maintained during dehydration. In desiccation-sensitive tissues, dehydration induced an increase in the emission of acetaldehyde and ethanol that peaked well before the loss of membrane integrity. Acetaldehyde emission from sensitive radicles was significantly reduced when dehydration occurred in 50% O2 instead of air. Acetaldehyde/ethanol were not detected in dehydrating tolerant radicles of either species or in polyethylene glycol-induced tolerant cucumber radicles. Thus, a balance between down-regulation of metabolism during drying and O2 availability appears to be associated with desiccation tolerance. Using Fourier transform infrared spectroscopy, acetaldehyde was found to disturb the phase behavior of phospholipid vesicles, suggesting that the products resulting from imbalanced metabolism in seeds may aggravate membrane damage induced by dehydration. PMID:10677452

  18. CKD increases the risk of age-related macular degeneration.

    PubMed

    Liew, Gerald; Mitchell, Paul; Wong, Tien Yin; Iyengar, Sudha K; Wang, Jie Jin

    2008-04-01

    Age-related macular degeneration is the leading cause of irreversible blindness in the United States and often coexists with chronic kidney disease. Both conditions share common genetic and environmental risk factors. A total of 1183 participants aged 54+ were examined in the population-based, prospective cohort Blue Mountains Eye Study (Australia) to determine if chronic kidney disease increases the risk of age-related macular degeneration. Moderate chronic kidney disease (estimated glomerular filtration rate < 60 ml/min per 1.73 m(2) based on the Cockcroft-Gault equation) was present in 24% of the population (286 of 1183). The 5-yr incidence of early age-related macular degeneration was 3.9% in participants with no/mild chronic kidney disease (35 of 897) and 17.5% in those with moderate chronic kidney disease (50 of 286). After adjusting for age, sex, cigarette smoking, hypertension, complement factor H polymorphism, and other risk factors, persons with moderate chronic kidney disease were 3 times more likely to develop early age-related macular degeneration than persons with no/mild chronic kidney disease (odds ratio = 3.2; 95% confidence interval, 1.8 to 5.7, P < 0.0001). Each SD (14.8 ml/min per 1.73 m(2)) decrease in Cockcroft-Gault estimated glomerular filtration rate was associated with a doubling of the adjusted risk for early age-related macular degeneration (odds ratio = 2.0; 95% confidence interval, 1.5 to 2.8, P < 0.0001). In conclusion, persons with chronic kidney disease have a higher risk of early age-related macular degeneration, suggesting the possibility of shared pathophysiologic mechanisms between the two conditions.

  19. Age-related decline in emotional prosody discrimination: acoustic correlates.

    PubMed

    Mitchell, Rachel L C; Kingston, Rachel A

    2014-01-01

    It is now accepted that older adults have difficulty recognizing prosodic emotion cues, but it is not clear at what processing stage this ability breaks down. We manipulated the acoustic characteristics of tones in pitch, amplitude, and duration discrimination tasks to assess whether impaired basic auditory perception coexisted with our previously demonstrated age-related prosodic emotion perception impairment. It was found that pitch perception was particularly impaired in older adults, and that it displayed the strongest correlation with prosodic emotion discrimination. We conclude that an important cause of age-related impairment in prosodic emotion comprehension exists at the fundamental sensory level of processing.

  20. An ethanolic extract of Lindera obtusiloba stems, YJP-14, improves endothelial dysfunction, metabolic parameters and physical performance in diabetic db/db mice.

    PubMed

    Lee, Jung-Ok; Auger, Cyril; Park, Dong Hyun; Kang, Moonkyu; Oak, Min-Ho; Kim, Kyoung Rak; Schini-Kerth, Valérie B

    2013-01-01

    Lindera obtusiloba is a medicinal herb traditionally used in Asia for improvement of blood circulation, treatment of inflammation, and prevention of liver damage. A previous study has shown that an ethanolic extract of Lindera obtusiloba stems (LOE) has vasoprotective and antihypertensive effects. The possibility that Lindera obtusiloba improves endothelial function and metabolic parameters in type 2 diabetes mellitus (T2DM) remains to be examined. Therefore, the aim of the present study was to determine the potential of LOE to prevent the development of an endothelial dysfunction, and improve metabolic parameters including hyperglycemia, albuminuria and physical exercise capacity in db/db mice, an experimental model of T2DM. The effect of LOE (100 mg/kg/day by gavage for 8 weeks) on these parameters was compared to that of an oral antidiabetic drug, pioglitazone (30 mg/kg/day by gavage). Reduced blood glucose level, body weight and albumin-creatinine ratio were observed in the group receiving LOE compared to the control db/db group. The LOE treatment improved endothelium-dependent relaxations, abolished endothelium-dependent contractions to acetylcholine in the aorta, and normalized the increased vascular oxidative stress and expression of NADPH oxidase, cyclooxygenases, angiotensin II, angiotensin type 1 receptors and peroxynitrite and the decreased expression of endothelial NO synthase in db/db mice. The angiotensin-converting enzyme (ACE) activity was reduced in the LOE group compared to that in the control db/db group. LOE also inhibited the activity of purified ACE, COX-1 and COX-2 in a dose-dependent manner. In addition, LOE improved physical exercise capacity. Thus, the present findings indicate that LOE has a beneficial effect on the vascular system in db/db mice by improving endothelium-dependent relaxations and vascular oxidative stress most likely by normalizing the angiotensin system, and also on metabolic parameters, and these effects are associated

  1. An Ethanolic Extract of Lindera obtusiloba Stems, YJP-14, Improves Endothelial Dysfunction, Metabolic Parameters and Physical Performance in Diabetic db/db Mice

    PubMed Central

    Lee, Jung-Ok; Auger, Cyril; Park, Dong Hyun; Kang, Moonkyu; Oak, Min-Ho; Kim, Kyoung Rak; Schini-Kerth, Valérie B.

    2013-01-01

    Lindera obtusiloba is a medicinal herb traditionally used in Asia for improvement of blood circulation, treatment of inflammation, and prevention of liver damage. A previous study has shown that an ethanolic extract of Lindera obtusiloba stems (LOE) has vasoprotective and antihypertensive effects. The possibility that Lindera obtusiloba improves endothelial function and metabolic parameters in type 2 diabetes mellitus (T2DM) remains to be examined. Therefore, the aim of the present study was to determine the potential of LOE to prevent the development of an endothelial dysfunction, and improve metabolic parameters including hyperglycemia, albuminuria and physical exercise capacity in db/db mice, an experimental model of T2DM. The effect of LOE (100 mg/kg/day by gavage for 8 weeks) on these parameters was compared to that of an oral antidiabetic drug, pioglitazone (30 mg/kg/day by gavage). Reduced blood glucose level, body weight and albumin-creatinine ratio were observed in the group receiving LOE compared to the control db/db group. The LOE treatment improved endothelium-dependent relaxations, abolished endothelium-dependent contractions to acetylcholine in the aorta, and normalized the increased vascular oxidative stress and expression of NADPH oxidase, cyclooxygenases, angiotensin II, angiotensin type 1 receptors and peroxynitrite and the decreased expression of endothelial NO synthase in db/db mice. The angiotensin-converting enzyme (ACE) activity was reduced in the LOE group compared to that in the control db/db group. LOE also inhibited the activity of purified ACE, COX-1 and COX-2 in a dose-dependent manner. In addition, LOE improved physical exercise capacity. Thus, the present findings indicate that LOE has a beneficial effect on the vascular system in db/db mice by improving endothelium-dependent relaxations and vascular oxidative stress most likely by normalizing the angiotensin system, and also on metabolic parameters, and these effects are associated

  2. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity

    PubMed Central

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders; Crowther, Damian C.

    2016-01-01

    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibireTS flies that exhibit a temperature-sensitive paralysis phenotype as a reporter of proteostatic robustness. In this model, we found that increasing age but not Aβ expression lowered the flies' permissive temperature, suggesting that Aβ did not exert its lethal effects by proteostatic disruption. Instead, we observed that chemical challenges, in particular oxidative stressors, discriminated clearly between young (robust) and old (sensitive) flies. Using nuclear magnetic resonance spectroscopy in combination with multivariate analysis, we compared water-soluble metabolite profiles at various ages in flies expressing Aβ in their brains. We observed 2 genotype-linked metabolomic signals, the first reported the presence of any Aβ isoform and the second the effects of the lethal Arctic Aβ. Lethality was specifically associated with signs of oxidative respiration dysfunction and oxidative stress. PMID:27103517

  3. Metabolic myopathies

    NASA Technical Reports Server (NTRS)

    Martin, A.; Haller, R. G.; Barohn, R.; Blomqvist, C. G. (Principal Investigator)

    1994-01-01

    Metabolic myopathies are disorders of muscle energy production that result in skeletal muscle dysfunction. Cardiac and systemic metabolic dysfunction may coexist. Symptoms are often intermittent and provoked by exercise or changes in supply of lipid and carbohydrate fuels. Specific disorders of lipid and carbohydrate metabolism in muscle are reviewed. Evaluation often requires provocative exercise testing. These tests may include ischemic forearm exercise, aerobic cycle exercise, and 31P magnetic resonance spectroscopy with exercise.

  4. A Context for Teaching Aging-Related Public Policy.

    ERIC Educational Resources Information Center

    Brown, David K.

    1999-01-01

    Describes two points of view regarding age-related public programs (Medicaid, Medicare, Social Security): that of devolutionists who would curtail them and safety netters who maintain the government's role is indispensable. Uses Relative Deprivation theory as a framework for teaching public policy about aging. (SK)

  5. Glycosaminoglycans in the Human Cornea: Age-Related Changes

    PubMed Central

    Pacella, Elena; Pacella, Fernanda; De Paolis, Giulio; Parisella, Francesca Romana; Turchetti, Paolo; Anello, Giulia; Cavallotti, Carlo

    2015-01-01

    AIM To investigate possible age-related changes in glycosaminoglycans (GAGs) in the human cornea. The substances today called GAGs were previously referred to as mucopolysaccharides. METHODS Samples of human cornea were taken from 12 younger (age 21 ± 1.2) and 12 older (age 72 ± 1.6) male subjects. Samples were weighed, homogenized, and used for biochemical and molecular analyses. All the quantitative results were statistically analyzed. RESULTS The human cornea appears to undergo age-related changes, as evidenced by our biochemical and molecular results. The total GAG and hyaluronic acid counts were significantly higher in the younger subjects than in the older subjects. The sulfated heavy GAGs, such as chondroitin, dermatan, keratan, and heparan sulfate, were lower in the younger subjects than in the older subjects. DISCUSSION GAGs of the human cornea undergo numerous age-related changes. Their quantity is significantly altered in the elderly in comparison with younger subjects. GAGs play an important role in age-related diseases of the human cornea. PMID:25674020

  6. Nutritional influences on epigenetics and age-related disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  7. Age-Related Differences in Moral Identity across Adulthood

    ERIC Educational Resources Information Center

    Krettenauer, Tobias; Murua, Lourdes Andrea; Jia, Fanli

    2016-01-01

    In this study, age-related differences in adults' moral identity were investigated. Moral identity was conceptualized a context-dependent self-structure that becomes differentiated and (re)integrated in the course of development and that involves a broad range of value-orientations. Based on a cross-sectional sample of 252 participants aged 14 to…

  8. Nutritional modulation of age-related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated wi...

  9. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  10. [Impact of thymic function in age-related immune deterioration].

    PubMed

    Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles

    2013-01-01

    Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline.

  11. Age-Related Health Stereotypes and Illusory Correlation

    ERIC Educational Resources Information Center

    Madey, Scott F.; Chasteen, Alison L.

    2004-01-01

    This experiment investigated how age-related health stereotypes affect people's judgments of younger and older patients' medical compliance. Previous research has shown that stereotypes of young adults include healthy components, but stereotypes of older adults include both healthy and unhealthy components (Hummert, 1990). We predicted that…

  12. Age-Related Differences in Idiom Production in Adulthood

    ERIC Educational Resources Information Center

    Conner, Peggy S.; Hyun, Jungmoon; O'Connor Wells, Barbara; Anema, Inge; Goral, Mira; Monereau-Merry, Marie-Michelle; Rubino, Daniel; Kuckuk, Raija; Obler, Loraine K.

    2011-01-01

    To investigate whether idiom production was vulnerable to age-related difficulties, we asked 40 younger (ages 18-30) and 40 older healthy adults (ages 60-85) to produce idiomatic expressions in a story-completion task. Younger adults produced significantly more correct idiom responses (73%) than did older adults (60%). When older adults generated…

  13. The Experience of Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Wong, Elaine Y. H.; Guymer, Robyn H.; Hassell, Jennifer B.; Keeffe, Jill E.

    2004-01-01

    This qualitative article describes the impact of age-related macular degeneration (ARMD) among 15 participants: how a person makes sense of ARMD, the effect of ARMD on the person's quality of life, the psychological disturbances associated with the limitations of ARMD, and the influence of ARMD on social interactions. Such in-depth appreciation of…

  14. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  15. Age-Related Changes in 1/f Neural Electrophysiological Noise.

    PubMed

    Voytek, Bradley; Kramer, Mark A; Case, John; Lepage, Kyle Q; Tempesta, Zechari R; Knight, Robert T; Gazzaley, Adam

    2015-09-23

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15-53 years) and scalp EEG data from healthy younger (20-30 years) and older (60-70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <-1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. Significance statement: Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise-induced deficits in

  16. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  17. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  18. Aerobic exercise acutely prevents the endothelial dysfunction induced by mental stress among subjects with metabolic syndrome: the role of shear rate.

    PubMed

    Sales, Allan R K; Fernandes, Igor A; Rocha, Natália G; Costa, Lucas S; Rocha, Helena N M; Mattos, João D M; Vianna, Lauro C; Silva, Bruno M; Nóbrega, Antonio C L

    2014-04-01

    Mental stress induces transient endothelial dysfunction, which is an important finding for subjects at cardiometabolic risk. Thus, we tested whether aerobic exercise prevents this dysfunction among subjects with metabolic syndrome (MetS) and whether an increase in shear rate during exercise plays a role in this phenomenon. Subjects with MetS participated in two protocols. In protocol 1 (n = 16), endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Subjects then underwent a mental stress test followed by either 40 min of leg cycling or rest across two randomized sessions. FMD was assessed again at 30 and 60 min after exercise or rest, with a second mental stress test in between. Mental stress reduced FMD at 30 and 60 min after the rest session (baseline: 7.7 ± 0.4%, 30 min: 5.4 ± 0.5%, and 60 min: 3.9 ± 0.5%, P < 0.05 vs. baseline), whereas exercise prevented this reduction (baseline: 7.5 ± 0.4%, 30 min: 7.2 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline). Protocol 2 (n = 5) was similar to protocol 1 except that the first period of mental stress was followed by either exercise in which the brachial artery shear rate was attenuated via forearm cuff inflation or exercise without a cuff. Noncuffed exercise prevented the reduction in FMD (baseline: 7.5 ± 0.7%, 30 min: 7.0 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline), whereas cuffed exercise failed to prevent this reduction (baseline: 7.5 ± 0.6%, 30 min: 5.4 ± 0.8%, and 60 min: 4.1 ± 0.9%, P < 0.05 vs. baseline). In conclusion, exercise prevented mental stress-induced endothelial dysfunction among subjects with MetS, and an increase in shear rate during exercise mediated this effect.

  19. Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice.

    PubMed

    Philp, Lisa K; Heilbronn, Leonie K; Janovska, Alena; Wittert, Gary A

    2015-01-01

    High saturated fat (HF-S) diets increase intramyocellular lipid, an effect ameliorated by omega-3 fatty acids in vitro and in vivo, though little is known about sex- and muscle fiber type-specific effects. We compared effects of standard chow, HF-S, and 7.5% HF-S replaced with fish oil (HF-FO) diets on the metabolic profile and lipid metabolism gene and protein content in red (soleus) and white (extensor digitorum longus) muscles of male and female C57BL/6 mice (n = 9-12/group). Weight gain was similar in HF-S- and HF-FO-fed groups. HF-S feeding increased mesenteric fat mass and lipid marker, Oil Red O, in red and mixed muscle; HF-FO increased interscapular brown fat mass. Compared to chow, HF-S and HF-FO increased expression of genes regulating triacylglycerol synthesis and fatty acid transport, HF-S suppressed genes and proteins regulating fatty acid oxidation, whereas HF-FO increased oxidative genes, proteins and enzymes and lipolytic gene content, whilst suppressing lipogenic genes. In comparison to HF-S, HF-FO further increased fat transporters, markers of fatty acid oxidation and mitochondrial content, and reduced lipogenic genes. No diet-by-sex interactions were observed. Neither diet influenced fiber type composition. However, some interactions between muscle type and diet were observed. HF-S induced changes in triacylglycerol synthesis and lipogenic genes in red, but not white, muscle, and mitochondrial biogenesis and oxidative genes were suppressed by HF-S and increased by HF-FO in red muscle only. In conclusion, HF-S feeding promotes lipid storage in red muscle, an effect abrogated by the fish oil, which increases mediators of lipolysis, oxidation and thermogenesis while inhibiting lipogenic genes. Greater storage and synthesis, and lower oxidative genes in red, but not white, muscle likely contribute to lipid accretion encountered in red muscle. Despite several gender-dimorphic genes, both sexes exhibited a similar HF-S-induced metabolic and gene

  20. Clustering of lifestyle characteristics and their association with cardio-metabolic health: the Lifestyles and Endothelial Dysfunction (EVIDENT) study.

    PubMed

    Patino-Alonso, Maria C; Recio-Rodríguez, José I; Magdalena-Belio, José Felix; Giné-Garriga, María; Martínez-Vizcaino, Vicente; Fernández-Alonso, Carmen; Arietaleanizbeaskoa, María Soledad; Galindo-Villardon, María Purificación; Gómez-Marcos, Manuel A; García-Ortiz, Luis

    2015-09-28

    Little is known about the clustering patterns of lifestyle behaviours in adult populations. We explored clusters in multiple lifestyle behaviours including physical activity (PA), smoking, alcohol use and eating habits in a sample of adult population. A cross-sectional and multi-centre study was performed with six participating groups distributed throughout Spain. Participants (n 1327) were part of the Lifestyles and Endothelial Dysfunction (EVIDENT) study and were aged between 20 and 80 years. The lifestyle and cardiovascular risk (CVR) factors were analysed using a clustering method based on the HJ-biplot coordinates to understand the variables underlying these groupings. The following three clusters were identified. Cluster 1: unhealthy, 677 subjects (51%), with a slight majority of men (58.7%), who were more sedentary and smokers with higher consumption of whole-fat dairy products, bigger waist circumference as well as higher TAG levels, systolic blood pressure (SBP) and CVR. Cluster 2: healthy/PA, 265 subjects (20%), including 24.0% of males with high PA. Cluster 3: healthy/diet, including 29% of the participants, with a higher consumption of olive oil, fish, fruits, nuts, vegetables and lower alcohol consumption. Using the unhealthy cluster as a reference, and after adjusting for age and sex, the multiple regression analysis showed that belonging to the healthy/PA cluster was associated with a lower waist circumference, body fat percentage, SBP and CVR. In summary, the three clusters were identified according to lifestyles. The 'unhealthy' cluster had the least favourable clinical parameters, the 'healthy/PA' cluster had good HDL-cholesterol levels and low SBP and the 'healthy/diet' cluster had lower LDL-cholesterol levels and clinical blood pressure.

  1. [A new possible strategy for prevention and preventive treatment of age-related macular degeneration resting on recent clinical and pathophysiological observations].

    PubMed

    Fischer, Tamás

    2009-03-15

    The beneficial effect achieved by the treatment of endothelial dysfunction in chronic cardiovascular diseases is already an evidence belonging to the basic treatment of the disease. Given the fact that the vascular system is uniform and consubstantial both physiologically, pathophysiologically and in terms of therapy, and that it plays a key role in age-related macular degeneration (AMD)--a disease leading to tragic loss of vision with its etiology and therapy being unknown--endothelial dysfunction should be treated. The pleiotropic effects of ACE-inhibitors, AR-blockers and statins and third generation beta blockers help to restitute the balance between vasodilators and vasoconstrictors in endothelial dysfunction caused by oxidative stress, the balance of growth factors and their inhibitors, pro- and anti-inflammatory substances and prothrombotic and fibrinolytic factors, inhibit the formation of oxidative stress and its harmful effects; while aspirin with its pleiotropic effects acting as an antiaggregation substance on platelets helps to set the endothelial layer back to its normal balance regarding its vasodilating, antithrombotic, antiadhesive and anti-inflammatory functions; trimetazidine as an adjuvant agent helps to normalize, to restore the disturbed metabolism of the retinal tissue functioning insufficiently, in the end. The angiotensin II receptor blocker telmisartan with its peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist effect inhibits the development of choroidal neovascularisation (CNV) and improves it clinically favourably. The third generation beta adrenergic receptor blocker carvedilol and nebivolol as well as the peroxisome proliferator-activated receptor-gamma agonist pioglitazone elicit their antioxidant vascular protective effects mitochondrially. For the above reasons it is suggested that, as a part of long term primary and/or secondary prevention, the following groups of patients with AMD receive--taking into

  2. PGC-1α Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis

    PubMed Central

    Leone, Teresa C; Lehman, John J; Finck, Brian N; Schaeffer, Paul J; Wende, Adam R; Boudina, Sihem; Courtois, Michael; Wozniak, David F; Sambandam, Nandakumar; Bernal-Mizrachi, Carlos; Chen, Zhouji; O. Holloszy, John; Medeiros, Denis M; Schmidt, Robert E; Saffitz, Jeffrey E; Abel, E. Dale; Semenkovich, Clay F

    2005-01-01

    The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was targeted in mice. PGC-1α null (PGC-1α−/−) mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1α−/− mice. With age, the PGC-1α−/− mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1α−/− mice, leading to reduced muscle performance and exercise capacity. PGC-1α−/− mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1α−/− mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1α−/− mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1α−/− mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1α−/− mice. These results demonstrate that PGC-1α is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life. PMID:15760270

  3. Dietary compound score and risk of age-related macular degeneration in the Age-Related Eye Disease Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Because foods provide many nutrients, which may interact with each other to modify risk for multifactorial diseases such as age-related macular degeneration (AMD), we sought to develop a composite scoring system to summarize the combined effect of multiple dietary nutrients on AMD risk. Th...

  4. Orgasmic dysfunction

    MedlinePlus

    Inhibited sexual excitement; Sex - orgasmic dysfunction; Anorgasmia; Sexual dysfunction - orgasmic; Sexual problem - orgasmic ... of knowledge about sexual function Negative feelings about sex (often learned in childhood or teen years) Shyness ...

  5. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution

    PubMed Central

    Youm, Yun-Hee; Horvath, Tamas L.; Mangelsdorf, David J.; Kliewer, Steven A.; Dixit, Vishwa Deep

    2016-01-01

    Age-related thymic degeneration is associated with loss of naïve T cells, restriction of peripheral T-cell diversity, and reduced healthspan due to lower immune competence. The mechanistic basis of age-related thymic demise is unclear, but prior evidence suggests that caloric restriction (CR) can slow thymic aging by maintaining thymic epithelial cell integrity and reducing the generation of intrathymic lipid. Here we show that the prolongevity ketogenic hormone fibroblast growth factor 21 (FGF21), a member of the endocrine FGF subfamily, is expressed in thymic stromal cells along with FGF receptors and its obligate coreceptor, βKlotho. We found that FGF21 expression in thymus declines with age and is induced by CR. Genetic gain of FGF21 function in mice protects against age-related thymic involution with an increase in earliest thymocyte progenitors and cortical thymic epithelial cells. Importantly, FGF21 overexpression reduced intrathymic lipid, increased perithymic brown adipose tissue, and elevated thymic T-cell export and naïve T-cell frequencies in old mice. Conversely, loss of FGF21 function in middle-aged mice accelerated thymic aging, increased lethality, and delayed T-cell reconstitution postirradiation and hematopoietic stem cell transplantation (HSCT). Collectively, FGF21 integrates metabolic and immune systems to prevent thymic injury and may aid in the reestablishment of a diverse T-cell repertoire in cancer patients following HSCT. PMID:26755598

  6. Age-related changes in gene expression in tissues of the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Loram, Jeannette; Bodnar, Andrea

    2012-05-01

    The life history of sea urchins is fundamentally different from that of traditional models of aging and therefore they provide the opportunity to gain new insight into this complex process. Sea urchins grow indeterminately, reproduce throughout their life span and some species exhibit negligible senescence. Using a microarray and qRT-PCR, age-related changes in gene expression were examined in three tissues (muscle, esophagus and nerve) of the sea urchin species Strongylocentrotus purpuratus. The results indicate age-related changes in gene expression involving many key cellular functions such as the ubiquitin-proteasome pathway, DNA metabolism, signaling pathways and apoptosis. Although there are tissue-specific differences in the gene expression profiles, there are some characteristics that are shared between tissues providing insight into potential mechanisms that promote lack of senescence in these animals. As an example, there is an increase in expression of genes encoding components of the Notch signaling pathway with age in all three tissues and a decrease in expression of the Wnt1 gene in both muscle and nerve. The interplay between the Notch and Wnt pathways may be one mechanism that ensures continued regeneration of tissues with advancing age contributing to the general lack of age-related decline in these animals.

  7. Mechanisms of age-related macular degeneration and therapeutic opportunities.

    PubMed

    van Lookeren Campagne, Menno; LeCouter, Jennifer; Yaspan, Brian L; Ye, Weilan

    2014-01-01

    As the age of the population increases in many nations, age-related degenerative diseases pose significant socioeconomic challenges. One of the key degenerative diseases that compromise quality of life is age-related macular degeneration (AMD). AMD is a multi-faceted condition that affects the central retina, which ultimately leads to blindness in millions of people worldwide. The pathophysiology and risk factors for AMD are complex, and the symptoms manifest in multiple related but distinct forms. The ability to develop effective treatments for AMD will depend on a thorough understanding of the underlying pathophysiology, risk factors, and driver molecular pathways, as well as the ability to develop useful animal models. This review provides an overview of the aforementioned aspects in AMD.

  8. Neuroanatomy accounts for age-related changes in risk preferences

    PubMed Central

    Grubb, Michael A.; Tymula, Agnieszka; Gilaie-Dotan, Sharon; Glimcher, Paul W.; Levy, Ifat

    2016-01-01

    Many decisions involve uncertainty, or ‘risk', regarding potential outcomes, and substantial empirical evidence has demonstrated that human aging is associated with diminished tolerance for risky rewards. Grey matter volume in a region of right posterior parietal cortex (rPPC) is predictive of preferences for risky rewards in young adults, with less grey matter volume indicating decreased tolerance for risk. That grey matter loss in parietal regions is a part of healthy aging suggests that diminished rPPC grey matter volume may have a role in modulating risk preferences in older adults. Here we report evidence for this hypothesis and show that age-related declines in rPPC grey matter volume better account for age-related changes in risk preferences than does age per se. These results provide a basis for understanding the neural mechanisms that mediate risky choice and a glimpse into the neurodevelopmental dynamics that impact decision-making in an aging population. PMID:27959326

  9. Investigations Into Age-related Changes in the Human Mandible().

    PubMed

    Parr, Nicolette M; Passalacqua, Nicholas V; Skorpinski, Katie

    2017-03-02

    While changes in mandibular shape over time are not widely recognized by skeletal biologists, mandibular remodeling and associated changes in gross morphology may result from a number of causes related to mechanical stress such as antemortem tooth loss, changes in bite force, or alterations of masticatory performance. This study investigated the relationship between age-related changes and antemortem tooth loss in adult humans via dry bone measurements. This study examined 10 standard mandibular measurements as well as individual antemortem tooth loss scores using the Eichner Index from a total of 319 female and male individuals with ages ranging from 16 to 99 years. Results indicate that few mandibular measurements exhibited age-related changes, and most were affected by antemortem tooth loss.

  10. Stem cell transplantation improves aging-related diseases

    PubMed Central

    Ikehara, Susumu; Li, Ming

    2014-01-01

    Aging is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. The number of patients with age-associated diseases such as type 2 diabetes mellitus (T2DM), osteoporosis, Alzheimer's disease (AD), Parkinson's disease, atherosclerosis, and cancer has increased recently. Aging-related diseases are related to a deficiency of the immune system, which results from an aged thymus and bone marrow cells. Intra bone marrow-bone marrow transplantation (IBM-BMT) is a useful method to treat intractable diseases. This review summarizes findings that IBM-BMT can improve and treat aging-related diseases, including T2DM, osteoporosis and AD, in animal models. PMID:25364723

  11. Epigenetics of Aging and Aging-related Disease

    PubMed Central

    2014-01-01

    Aging is associated with a wide range of human disorders, including cancer, diabetes, cardiovascular, and neurodegenerative diseases. Long thought to be an inexorable road toward decline and diseases, aging is in fact remarkably plastic. Such plasticity could be harnessed to approach age-related diseases from a novel perspective. Although many studies have focused on the genes that impact aging, the nongenetic regulation of aging is gaining increasing attention. Specifically, aging is associated with profound epigenetic changes, resulting in alterations of gene expression and disturbances in broad genome architecture and the epigenomic landscape. The potential reversibility of these epigenetic changes that occur as a hallmark of aging offers exciting opportunities to alter the trajectory of age-related diseases. This short review highlights key epigenetic players in the regulation of aging, as well as both future goals and challenges to the utilization of epigenetic strategies to delay and reverse the main diseases of aging. PMID:24833581

  12. Epigenetics of aging and aging-related disease.

    PubMed

    Brunet, Anne; Berger, Shelley L

    2014-06-01

    Aging is associated with a wide range of human disorders, including cancer, diabetes, cardiovascular, and neurodegenerative diseases. Long thought to be an inexorable road toward decline and diseases, aging is in fact remarkably plastic. Such plasticity could be harnessed to approach age-related diseases from a novel perspective. Although many studies have focused on the genes that impact aging, the nongenetic regulation of aging is gaining increasing attention. Specifically, aging is associated with profound epigenetic changes, resulting in alterations of gene expression and disturbances in broad genome architecture and the epigenomic landscape. The potential reversibility of these epigenetic changes that occur as a hallmark of aging offers exciting opportunities to alter the trajectory of age-related diseases. This short review highlights key epigenetic players in the regulation of aging, as well as both future goals and challenges to the utilization of epigenetic strategies to delay and reverse the main diseases of aging.

  13. Ageism, age relations, and garment industry work in Montreal.

    PubMed

    McMullin, J A; Marshall, V W

    2001-02-01

    This study examined the complexities of age relations at work. Garment workers believed that their fate was linked to ageism and that their work experience was discounted by management. Managers wanted to be rid of older workers because they commanded higher wages than younger workers. The issue was cost reduction, and age was implicated unintendedly. Still, managers seemed to use stereotypical images to discourage older workers and they did not organize work routines to facilitate the adaptation of them. Instead, they subcontracted the easy jobs, relying on the experience of the older employees for difficult work while not adapting the workplace. Theoretically, the authors argue that ageism and age discrimination can best be understood through a recognition of the importance of structured age relations and human agency.

  14. Idiom understanding in adulthood: examining age-related differences.

    PubMed

    Hung, Pei-Fang; Nippold, Marilyn A

    2014-03-01

    Idioms are figurative expressions such as hold your horses, kick the bucket, and lend me a hand, which commonly occur in everyday spoken and written language. Hence, the understanding of these expressions is essential for daily communication. In this study, we examined idiom understanding in healthy adults in their 20s, 40s, 60s and 80s (n=30 per group) to determine if performance would show an age-related decline. Participants judged their own familiarity with a set of 20 idioms, explained the meaning of each, described a situation in which the idiom could be used, and selected the appropriate interpretation from a set of choices. There was no evidence of an age-related decline on any tasks. Rather, the 60s group reported greater familiarity and offered better explanations than did the 20s group. Moreover, greater familiarity with idioms was associated with better understanding in adults.

  15. Lipids, Lipoproteins, and Age-Related Macular Degeneration

    PubMed Central

    Ebrahimi, Katayoon B.; Handa, James T.

    2011-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. While excellent treatment has emerged for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. A prominent age-related change is the accumulation of neutral lipid in normal Bruch's membrane (BrM) throughout adulthood and also disease-related BrM accumulations called basal deposits and drusen. AMD lesion formation has thus been conceptualized as sharing mechanisms with atherosclerotic plaque formation, where low-density lipoprotein (LDL) retention within the arterial wall initiates a cascade of pathologic events. However, we do not yet understand how lipoproteins contribute to AMD. This paper explores how systemic and local production of lipoproteins might contribute to the pathogenesis of AMD. PMID:21822496

  16. Age-related changes in intraventricular kinetic energy: a physiological or pathological adaptation?

    PubMed Central

    Wong, James; Chabiniok, Radomir; deVecchi, Adelaide; Dedieu, Nathalie; Sammut, Eva; Schaeffter, Tobias

    2016-01-01

    Aging has important deleterious effects on the cardiovascular system. We sought to compare intraventricular kinetic energy (KE) in healthy subjects of varying ages with subjects with ventricular dysfunction to understand if changes in energetic momentum may predispose individuals to heart failure. Four-dimensional flow MRI was acquired in 35 healthy subjects (age: 1–67 yr) and 10 patients with left ventricular (LV) dysfunction (age: 28–79 yr). Healthy subjects were divided into age quartiles (1st quartile: <16 yr, 2nd quartile: 17–32 yr, 3rd quartile: 33–48 yr, and 4th quartile: 49–64 yr). KE was measured in the LV throughout the cardiac cycle and indexed to ventricular volume. In healthy subjects, two large peaks corresponding to systole and early diastole occurred during the cardiac cycle. A third smaller peak was seen during late diastole in eight adults. Systolic KE (P = 0.182) and ejection fraction (P = 0.921) were preserved through all age groups. Older adults showed a lower early peak diastolic KE compared with children (P < 0.0001) and young adults (P = 0.025). Subjects with LV dysfunction had reduced ejection fraction (P < 0.001) and compared with older healthy adults exhibited a similar early peak diastolic KE (P = 0.142) but with the addition of an elevated KE in diastasis (P = 0.029). In healthy individuals, peak diastolic KE progressively decreases with age, whereas systolic peaks remain constant. Peak diastolic KE in the oldest subjects is comparable to those with LV dysfunction. Unique age-related changes in ventricular diastolic energetics might be physiological or herald subclinical pathology. PMID:26747496

  17. Versatile Functions of Caveolin-1 in Aging-related Diseases

    PubMed Central

    Nguyen, Kim Cuc Thi

    2017-01-01

    Caveolin-1 (Cav-1) is a trans-membrane protein that is a major component of the caveolae structure on the plasma membrane. Cav-1 is involved in the regulation of various cellular processes, including cell growth, differentiation, endocytosis, and in particular it has been implied in cellular senescence. Here we review current knowledge about Cav-1 in cellular signaling and discuss the role of Cav-1 in aging-related diseases. PMID:28184336

  18. Age-related changes in ultra-triathlon performances

    PubMed Central

    2012-01-01

    Background The age-related decline in performance has been investigated in swimmers, runners and triathletes. No study has investigated the age-related performance decline in ultra-triathletes. The purpose of this study was to analyse the age-related declines in swimming, cycling, running and overall race time for both Triple Iron ultra-triathlon (11.4-km swimming, 540-km cycling and 126.6-km running) and Deca Iron ultra-triathlon (38-km swimming, 1,800-km cycling and 420-km running). Methods The age and performances of 423 male Triple Iron ultra-triathletes and 119 male Deca Iron ultra-triathletes were analysed from 1992 to 2010 using regression analyses and ANOVA. Results The mean age of the finishers was significantly higher for Deca Iron ultra-triathletes (41.3 ± 3.1 years) compared to a Triple Iron ultra-triathletes (38.5 ± 3.3 years) (P < 0.05). For both ultra-distances, the fastest overall race times were achieved between the ages of 25 and 44 years. Deca Iron ultra-triathletes achieved the same level of performance in swimming and cycling between 25 and 54 years of age. Conclusions The magnitudes of age-related declines in performance in the three disciplines of ultra-triathlon differ slightly between Triple and Deca Iron ultra-triathlon. Although the ages of Triple Iron ultra-triathletes were on average younger compared to Deca Iron ultra-triathletes, the fastest race times were achieved between 25 and 44 years for both distances. Further studies should investigate the motivation and training of ultra-triathletes to gain better insights in ultra-triathlon performance. PMID:23849327

  19. Complement pathway biomarkers and age-related macular degeneration

    PubMed Central

    Gemenetzi, M; Lotery, A J

    2016-01-01

    In the age-related macular degeneration (AMD) ‘inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration. PMID:26493033

  20. Vitreomacular traction and age-related macular degeneration.

    PubMed

    Green-Simms, Amy E; Bakri, Sophie J

    2011-05-01

    The interaction between the vitreous and the internal limiting membrane of the retina is important in the pathoetiology of numerous ocular disease processes. Recent studies have focused on the vitreo-retinal interface in the context of age-related macular degeneration (AMD), linking vitreo-retinal adhesion to exudative AMD in particular. This review summarizes our knowledge of vitreous anatomy and recent investigations regarding vitreomacular adhesion and AMD.

  1. Supervised Recognition of Age-Related Spanish Temporal Phrases

    NASA Astrophysics Data System (ADS)

    Galicia-Haro, Sofia N.; Gelbukh, Alexander F.

    This paper reports research on temporal expressions shaped by a common temporal expression for a period of years modified by an adverb of time. From a Spanish corpus we found that some of those phrases are age-related expressions. To determine automatically the temporal phrases with such meaning we analyzed a bigger sample obtained from the Internet. We analyzed these examples to define the relevant features to support a learning method. We present some preliminary results when a decision tree is applied.

  2. Dietary Approaches that Delay Age-Related Diseases

    PubMed Central

    Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G

    2006-01-01

    Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2–15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet—disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood

  3. Smoking and age-related macular degeneration: review and update.

    PubMed

    Velilla, Sara; García-Medina, José Javier; García-Layana, Alfredo; Dolz-Marco, Rosa; Pons-Vázquez, Sheila; Pinazo-Durán, M Dolores; Gómez-Ulla, Francisco; Arévalo, J Fernando; Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto

    2013-01-01

    Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health.

  4. Smoking and Age-Related Macular Degeneration: Review and Update

    PubMed Central

    Velilla, Sara; García-Medina, José Javier; García-Layana, Alfredo; Pons-Vázquez, Sheila; Pinazo-Durán, M. Dolores; Gómez-Ulla, Francisco; Arévalo, J. Fernando; Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto

    2013-01-01

    Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health. PMID:24368940

  5. Early detection of age related macular degeneration: current status.

    PubMed

    Schwartz, Roy; Loewenstein, Anat

    2015-01-01

    Early diagnosis and treatment of choroidal neovascularization (CNV), a main cause of severe vision loss in age related macular degeneration (AMD), is crucial in order to preserve vision and the quality of life of patients. This review summarizes current literature on the subject of early detection of CNV, both in the clinic setting and mainly in the patient's home. New technologies are evolving to allow for earlier detection and thus vision preservation in AMD patients.

  6. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-09

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip.

  7. Age-related differences in working memory updating components.

    PubMed

    Linares, Rocío; Bajo, M Teresa; Pelegrina, Santiago

    2016-07-01

    The aim of this study was to investigate possible age-related changes throughout childhood and adolescence in different component processes of working memory updating (WMU): retrieval, transformation, and substitution. A set of numerical WMU tasks was administered to four age groups (8-, 11-, 14-, and 21-year-olds). To isolate the effect of each of the WMU components, participants performed different versions of a task that included different combinations of the WMU components. The results showed an expected overall decrease in response times and an increase in accuracy performance with age. Most important, specific age-related changes in the retrieval component were found, demonstrating that the effect of retrieval on accuracy was larger in children than in adolescents or young adults. These findings indicate that the availability of representations from outside the focus of attention may change with age. Thus, the retrieval component of updating could contribute to the age-related changes observed in the performance of many updating tasks.

  8. Neuroanatomical substrates of age-related cognitive decline

    PubMed Central

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure, and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the age-related cognitive changes. Although this conclusion may well be true, it is widely recognized that simple correlations are not sufficient to warrant causal conclusions, and other types of correlational information, such as mediation and correlations between longitudinal brain changes and longitudinal cognitive changes, also have limitations with respect to causal inferences. These issues are discussed, and the existing results on relations of regional volume, white matter hyperintensities, and DTI measures of white matter integrity to age and to measures of cognitive functioning are reviewed. It is concluded that at the current time the evidence that these aspects of brain structure are neuroanatomical substrates of age-related cognitive decline is weak. The final section contains several suggestions concerned with measurement and methodology that may lead to stronger conclusions in the future. PMID:21463028

  9. The Age-related Positivity Effect and Tobacco Warning Labels

    PubMed Central

    Roberts, Megan E.; Peters, Ellen; Ferketich, Amy K.; Klein, Elizabeth G.

    2016-01-01

    Objectives This study tested whether age is a factor in viewing time for tobacco warning labels. The approach drew from previous work demonstrating an age-related positivity effect, whereby older adults show preferences toward positive and away from negative stimuli. Methods Participants were 295 daily smokers from Appalachian Ohio (age range: 21–68). All participants took part in an eye-tracking paradigm that captured the attention paid to elements of health warning labels in the context of magazine advertisements. Participants also reported on their past cessation attempts and their beliefs about the dangers of smoking. Results Consistent with theory on age-related positivity, older age predicted weaker beliefs about smoking risks, but only among those with no past-year quit attempts. In support of our primary hypothesis, older age was also related to a lower percentage of time spent viewing tobacco warning labels, both overall (text + image) and for the graphic image alone. These associations remained after controlling for cigarettes smoked per day. Conclusions Overall, findings suggest that age is an important consideration for the design of future graphic warning labels and other tobacco risk communications. For older adults, warning labels may need to be tailored to overcome the age-related positivity effect. PMID:27617273

  10. Age-related macular degeneration: a guide for the primary care physician.

    PubMed

    Hazin, Ribhi; Freeman, P David; Kahook, Malik Y

    2009-02-01

    Age-related macular degeneration (AMD) is the leading cause of visual loss in Americans over the age of 50 years. AMD often results in profound disability due to the disease destroying the macula, the part of the retina responsible for central visual acuity and color vision. Risk factors for AMD include age greater than 50, female gender, Caucasian race, cigarette smoking, and family history of AMD. African Americans and other racial or ethnic groups can be affected by AMD. Although there is no cure for AMD, early diagnosis and treatment may slow disease progression and minimize irreversible visual dysfunction. Individuals suffering from central vision loss from AMD often retain peripheral vision. These affected individuals can benefit from low vision therapy, visual rehabilitation, or both to maintain or enhance activities of daily living.

  11. Melatonin treatment reverts age-related changes in Guinea pig gallbladder neuromuscular transmission and contractility.

    PubMed

    Gomez-Pinilla, Pedro J; Camello-Almaraz, Cristina; Moreno, Rosario; Camello, Pedro J; Pozo, María J

    2006-11-01

    The incidence of gallbladder illness increases with age, but the altered mechanisms leading to gallbladder dysfunction are poorly understood. Here we determine the age-related alterations in gallbladder contractility and the impact of melatonin treatment. Isometric tension changes in response to electrical field stimulation and to agonists were recorded from guinea pig gallbladder muscle strips. [Ca(2+)](i) was determined by epifluorescence microscopy in fura-2 loaded isolated gallbladder smooth muscle cells, and F-actin content was quantified by confocal microscopy. Aging reduced neurogenic contractions, which was associated with the impairment of nitrergic innervation and with increased responsiveness of capsaicin-sensitive relaxant nerves, possibly involving calcitonin gene-related peptide. Melatonin treatment for 4 weeks restored neurogenic responses to normal values, with an associated recovery of nitrergic function and the disappearance of the capsaicin-sensitive component. Aging also reduced the contractile responses to cholecystokinin and Ca(2+) influx. The impaired contractility only correlated with diminished Ca(2+) mobilization in response to activation of Ca(2+) influx. Melatonin improved contractility and increased smooth muscle F-actin content without changing Ca(2+) homeostasis. In conclusion, aging impairs gallbladder function as the result of changes in the inhibitory neuromodulation of smooth muscle contractility and the reduction in the myogenic response to contractile agonists. Impaired contractility seems to be related to decreased Ca(2+) influx and damage of contractile proteins. Melatonin significantly ameliorated these age-related changes.

  12. Cuprizone-induced demyelination in mice: age-related vulnerability and exploratory behavior deficit.

    PubMed

    Wang, Hongkai; Li, Chengren; Wang, Hanzhi; Mei, Feng; Liu, Zhi; Shen, Hai-Ying; Xiao, Lan

    2013-04-01

    Schizophrenia is a mental disease that mainly affects young individuals (15 to 35 years old) but its etiology remains largely undefined. Recently, accumulating evidence indicated that demyelination and/or dysfunction of oligodendrocytes is an important feature of its pathogenesis. We hypothesized that the vulnerability of young individuals to demyelination may contribute to the onset of schizophrenia. In the present study, three different age cohorts of mice, i.e. juvenile (3 weeks), young-adult (6 weeks) and middle-aged (8 months), were subjected to a 6-week diet containing 0.2% cuprizone (CPZ) to create an animal model of acute demyelination. Then, age-related vulnerability to CPZ-induced demyelination, behavioral outcomes, and myelination-related molecular biological changes were assessed. We demonstrated: (1) CPZ treatment led to more severe demyelination in juvenile and young-adult mice than in middle-aged mice in the corpus callosum, a region closely associated with the pathophysiology of schizophrenia; (2) the higher levels of demyelination in juvenile and young-adult mice were correlated with a greater reduction of myelin basic protein, more loss of CC-1-positive mature oligodendrocytes, and higher levels of astrocyte activation; and (3) CPZ treatment resulted in a more prominent exploratory behavior deficit in juvenile and young-adult mice than in middle-aged mice. Together, our data demonstrate an age-related vulnerability to demyelination with a concurrent behavioral deficit, providing supporting evidence for better understanding the susceptibility of the young to the onset of schizophrenia.

  13. Molecular Mechanism for Age-Related Memory Loss: The Histone-Binding Protein RbAp48

    PubMed Central

    Pavlopoulos, Elias; Jones, Sidonie; Kosmidis, Stylianos; Close, Maggie; Kim, Carla; Kovalerchik, Olga; Small, Scott A.; Kandel, Eric R.

    2016-01-01

    To distinguish age-related memory loss more explicitly from Alzheimer’s disease (AD), we have explored its molecular underpinning in the dentate gyrus (DG), a subregion of the hippocampal formation thought to be targeted by aging. We carried out a gene expression study in human postmortem tissue harvested from both DG and entorhinal cortex (EC), a neighboring subregion unaffected by aging and known to be the site of onset of AD. Using expression in the EC for normalization, we identified 17 genes that manifested reliable age-related changes in the DG. The most significant change was an age-related decline in RbAp48, a histone-binding protein that modifies histone acetylation. To test whether the RbAp48 decline could be responsible for age-related memory loss, we turned to mice and found that, consistent with humans, RbAp48 was less abundant in the DG of old than in young mice. We next generated a transgenic mouse that expressed a dominant-negative inhibitor of RbAp48 in the adult forebrain. Inhibition of RbAp48 in young mice caused hippocampus-dependent memory deficits similar to those associated with aging, as measured by novel object recognition and Morris water maze tests. Functional magnetic resonance imaging studies showed that within the hippocampal formation, dysfunction was selectively observed in the DG, and this corresponded to a regionally selective decrease in histone acetylation. Up-regulation of RbAp48 in the DG of aged wild-type mice ameliorated age-related hippocampus-based memory loss and age-related abnormalities in histone acetylation. Together, these findings show that the DG is a hippocampal subregion targeted by aging, and identify molecular mechanisms of cognitive aging that could serve as valid targets for therapeutic intervention. PMID:23986399

  14. A BOLD Perspective on Age-Related Neurometabolic-Flow Coupling and Neural Efficiency Changes in Human Visual Cortex

    PubMed Central

    Hutchison, Joanna Lynn; Shokri-Kojori, Ehsan; Lu, Hanzhang; Rypma, Bart

    2013-01-01

    Age-related performance declines in visual tasks have been attributed to reductions in processing efficiency. The neural basis of these declines has been explored by comparing the blood-oxygen-level-dependent (BOLD) index of neural activity in older and younger adults during visual task performance. However, neural activity is one of many factors that change with age and lead to BOLD signal differences. We investigated the origin of age-related BOLD changes by comparing blood flow and oxygen metabolic constituents of BOLD signal. Subjects periodically viewed flickering annuli and pressed a button when detecting luminance changes in a central fixation cross. Using magnetic resonance dual-echo arterial spin labeling and CO2 ingestion, we observed age-equivalent (i.e., similar in older and younger groups) fractional cerebral blood flow (ΔCBF) in the presence of age-related increases in fractional cerebral metabolic rate of oxygen (ΔCMRO2). Reductions in ΔCBF responsiveness to increased ΔCMRO2 in elderly led to paradoxical age-related BOLD decreases. Age-related ΔCBF/ΔCMRO2 ratio decreases were associated with reaction times, suggesting that age-related slowing resulted from less efficient neural activity. We hypothesized that reduced vascular responsiveness to neural metabolic demand would lead to a reduction in ΔCBF/ΔCMRO2. A simulation of BOLD relative to ΔCMRO2 for lower and higher neurometabolic-flow coupling ratios (approximating those for old and young, respectively) indicated less BOLD signal change in old than young in relatively lower CMRO2 ranges, as well as greater BOLD signal change in young compared to old in relatively higher CMRO2 ranges. These results suggest that age-comparative studies relying on BOLD signal might be misinterpreted, as age-related BOLD changes do not merely reflect neural activity changes. Age-related declines in neurometabolic-flow coupling might lead to neural efficiency reductions that can adversely affect visual task

  15. The role of epigenetics in age-related macular degeneration.

    PubMed

    Gemenetzi, M; Lotery, A J

    2014-12-01

    It is becoming increasingly evident that epigenetic mechanisms influence gene expression and can explain how interactions between genetics and the environment result in particular phenotypes during development. The extent to which this epigenetic effect contributes to phenotype heritability in age-related macular degeneration (AMD) is currently ill defined. However, emerging evidence suggests that epigenetic changes are relevant to AMD and as such provide an exciting new avenue of research for AMD. This review addresses information on the impact of posttranslational modification of the genome on the pathogenesis of AMD, such as DNA methylation changes affecting antioxidant gene expression, hypoxia-regulated alterations in chromatin structure, and histone acetylation status in relation to angiogenesis and inflammation. It also contains information on the role of non-coding RNA-mediated gene regulation in AMD at a posttranscriptional (before translation) level. Our aim was to review the epigenetic mechanisms that cause heritable changes in gene activity without changing the DNA sequence. We also describe some long-term alterations in the transcriptional potential of a cell, which are not necessarily heritable but remains to be defined in the future. Increasing understanding of the significance of common and rare genetic variants and their relationship to epigenetics and environmental influences may help in establishing methods to assess the risk of AMD. This in turn may allow new therapeutic interventions for the leading cause of central vision impairment in patients over the age of 50 years in developed countries. Search strategy We searched the MEDLINE/PubMed database following MeSH suggestions for articles including the terms: 'ocular epigenetic mechanisms', 'human disease epigenetics', and 'age-related macular degeneration genetics'. The headline used to locate related articles in PubMed was 'epigenetics in ocular disease', and to restrict search, we used the

  16. Multifocal electroretinogram: age-related changes for different luminance levels

    PubMed Central

    Gerth, Christina; Garcia, Susan M.; Ma, Lei; Keltner, John L.; Werner, John S.

    2008-01-01

    Background Age-related changes in the first-order multifocal electroretinogram (mfERG) responses were measured for two different luminance levels (200 and 700 cd·m−2). The relative contribution of optical and neural factors to senescent change in response was evaluated. Methods Data were obtained from one eye of each of 71 normal phakic subjects, age 9−80 years. The mfERG responses were recorded with the 7” stimulus-refractor unit (EDI) and VERIS 4.3 using the following protocol: bipolar contact lens, 103 hexagons, consecutive stimulation with 200 and 700 cd·m−2, pupils ≥6 mm, amplification of 105, filter cut-offs at 10 and 300 Hz. Results Age-correlated decreases in amplitude and response density and increases in P1 implicit time were found for both luminance levels. The mean response density (nV·deg−2) was higher for the 700 cd·m−2 stimulus, but the rate of change with age was not significantly different from that obtained with the 200 cd·m−2 stimulus. Implicit time was not significantly different for the two light levels, nor was the rate of change with age. The decrease in response density and the increase in implicit time with age were significant across all retinal regions, dividing the 50 deg stimulus into six concentric rings. Age-related change in response density was greatest for the central retina and decreased with increasing retinal eccentricity. Conclusion Log mfERG response changes linearly as a function of age. Analyses of the effects of reduced ocular media transmission and increased stray light, along with ancillary data obtained from pseudophakes, imply that age-related changes in the mfERG are due to both optical and neural factors. PMID:11935277

  17. Age-related degradation of Westinghouse 480-volt circuit breakers

    SciTech Connect

    Subudhi, M.; Shier, W.; MacDougall, E. )

    1990-07-01

    An aging assessment of Westinghouse DS-series low-voltage air circuit breakers was performed as part of the Nuclear Plant Aging Research (NPAR) program. The objectives of this study are to characterize age-related degradation within the breaker assembly and to identify maintenance practices to mitigate their effect. Since this study has been promulgated by the failures of the reactor trip breakers at the McGuire Nuclear Station in July 1987, results relating to the welds in the breaker pole lever welds are also discussed. The design and operation of DS-206 and DS-416 breakers were reviewed. Failure data from various national data bases were analyzed to identify the predominant failure modes, causes, and mechanisms. Additional operating experiences from one nuclear station and two industrial breaker-service companies were obtained to develop aging trends of various subcomponents. The responses of the utilities to the NRC Bulletin 88-01, which discusses the center pole lever welds, were analyzed to assess the final resolution of failures of welds in the reactor trips. Maintenance recommendations, made by the manufacturer to mitigate age-related degradation were reviewed, and recommendations for improving the monitoring of age-related degradation are discussed. As described in Volume 2 of this NUREG, the results from a test program to assess degradation in breaker parts through mechanical cycling are also included. The testing has characterized the cracking of center-pole lever welds, identified monitoring techniques to determine aging in breakers, and provided information to augment existing maintenance programs. Recommendations to improve breaker reliability using effective maintenance, testing, and inspection programs are suggested. 13 refs., 21 figs., 8 tabs.

  18. Age-related deterioration of rod vision in mice.

    PubMed

    Kolesnikov, Alexander V; Fan, Jie; Crouch, Rosalie K; Kefalov, Vladimir J

    2010-08-18

    Even in healthy individuals, aging leads to deterioration in visual acuity, contrast sensitivity, visual field, and dark adaptation. Little is known about the neural mechanisms that drive the age-related changes of the retina and, more specifically, photoreceptors. According to one hypothesis, the age-related deterioration in rod function is due to the limited availability of 11-cis-retinal for rod pigment formation. To determine how aging affects rod photoreceptors and to test the retinoid-deficiency hypothesis, we compared the morphological and functional properties of rods of adult and aged B6D2F1/J mice. We found that the number of rods and the length of their outer segments were significantly reduced in 2.5-year-old mice compared with 4-month-old animals. Aging also resulted in a twofold reduction in the total level of opsin in the retina. Behavioral tests revealed that scotopic visual acuity and contrast sensitivity were decreased by twofold in aged mice, and rod ERG recordings demonstrated reduced amplitudes of both a- and b-waves. Sensitivity of aged rods determined from single-cell recordings was also decreased by 1.5-fold, corresponding to not more than 1% free opsin in these photoreceptors, and kinetic parameters of dim flash response were not altered. Notably, the rate of rod dark adaptation was unaffected by age. Thus, our results argue against age-related deficiency of 11-cis-retinal in the B6D2F1/J mouse rod visual cycle. Surprisingly, the level of cellular dark noise was increased in aged rods, providing an alternative mechanism for their desensitization.

  19. Effects of Vitreomacular Adhesion on Age-Related Macular Degeneration

    PubMed Central

    Kang, Eui Chun; Koh, Hyoung Jun

    2015-01-01

    Herein, we review the association between vitreomacular adhesion (VMA) and neovascular age-related macular degeneration (AMD). Meta-analyses have shown that eyes with neovascular AMD are twice as likely to have VMA as normal eyes. VMA in neovascular AMD may induce inflammation, macular traction, decrease in oxygenation, sequestering of vascular endothelial growth factor (VEGF), and other cytokines or may directly stimulate VEGF production. VMA may also interfere with the treatment effects of anti-VEGF therapy, which is the standard treatment for neovascular AMD, and releasing VMA can improve the treatment response to anti-VEGF treatment in neovascular AMD. We also reviewed currently available methods of relieving VMA. PMID:26425354

  20. Age-related macular degeneration: Complement in action.

    PubMed

    van Lookeren Campagne, Menno; Strauss, Erich C; Yaspan, Brian L

    2016-06-01

    The complement system plays a key role in host-defense against common pathogens but must be tightly controlled to avoid inflammation and tissue damage. Polymorphisms in genes encoding two important negative regulators of the alternative complement pathway, complement factor H (CFH) and complement factor I (CFI), are associated with the risk for Age-Related Macular Degeneration (AMD), a leading cause of vision impairment in the ageing population. In this review, we will discuss the genetic basis of AMD and the potential impact of complement de-regulation on disease pathogenesis. Finally, we will highlight recent therapeutic approaches aimed at controlling complement activation in patients with AMD.

  1. Normal tear protein profiles and age-related changes.

    PubMed Central

    McGill, J I; Liakos, G M; Goulding, N; Seal, D V

    1984-01-01

    The specific and non-specific tear proteins have been analysed by means of the ELISA technique to establish the normal and age-related values. There is a linear and related decline of lysozyme and lactoferrin with age, and a similar but unrelated reduction in tear volume. IgA levels gradually decline, while caeruloplasmin and IgG both increase after the fifth decade. The results suggest that tear IgG and caeruloplasmin are probably transudates from the serum, that IgA is secreted independently of tear volume, and that lysozyme and lactoferrin are secreted at the same site but independently of tear volume. PMID:6712908

  2. Imaging geographic atrophy in age-related macular degeneration.

    PubMed

    Göbel, Arno P; Fleckenstein, Monika; Schmitz-Valckenberg, Steffen; Brinkmann, Christian K; Holz, Frank G

    2011-01-01

    Advances in retinal imaging technology have largely contributed to the understanding of the natural history, prognostic markers and disease mechanisms of geographic atrophy (GA) due to age-related macular degeneration. There is still no therapy available to halt or slow the disease process. In order to evaluate potential therapeutic effects in interventional trials, there is a need for precise quantification of the GA progression rate. Fundus autofluorescence imaging allows for accurate identification and segmentation of atrophic areas and currently represents the gold standard for evaluating progressive GA enlargement. By means of high-resolution spectral-domain optical coherence tomography, distinct microstructural alterations related to GA can be visualized.

  3. Cause and Consequence: Mitochondrial Dysfunction Initiates and Propagates Neuronal Dysfunction, Neuronal Death and Behavioral Abnormalities in Age Associated Neurodegenerative Diseases

    PubMed Central

    Gibson, Gary E.; Starkov, Anatoly; Blass, John P.; Ratan, Rajiv R.; Beal, M. Flint

    2009-01-01

    SUMMARY Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sub lethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the α-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhance ROS production in Alzheimer’s Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington’s Disease (HD), a movement disorder with cognitive features distinct form AD, complex II + III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a cross linking enzymes that can modulate transcrption, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic

  4. Aging-related dysregulation of dopamine and angiotensin receptor interaction.

    PubMed

    Villar-Cheda, Begoña; Dominguez-Meijide, Antonio; Valenzuela, Rita; Granado, Noelia; Moratalla, Rosario; Labandeira-Garcia, Jose L

    2014-07-01

    It is not known whether the aging-related decrease in dopaminergic function leads to the aging-related higher vulnerability of dopaminergic neurons and risk for Parkinson's disease. The renin-angiotensin system (RAS) plays a major role in the inflammatory response, neuronal oxidative stress, and dopaminergic vulnerability via type 1 (AT1) receptors. In the present study, we observed a counterregulatory interaction between dopamine and angiotensin receptors. We observed overexpression of AT1 receptors in the striatum and substantia nigra of young adult dopamine D1 and D2 receptor-deficient mice and young dopamine-depleted rats, together with compensatory overexpression of AT2 receptors or compensatory downregulation of angiotensinogen and/or angiotensin. In aged rats, we observed downregulation of dopamine and dopamine receptors and overexpression of AT1 receptors in aged rats, without compensatory changes observed in young animals. L-Dopa therapy inhibited RAS overactivity in young dopamine-depleted rats, but was ineffective in aged rats. The results suggest that dopamine may play an important role in modulating oxidative stress and inflammation in the substantia nigra and striatum via the RAS, which is impaired by aging.

  5. Learning and Aging Related Changes in Intrinsic Neuronal Excitability

    PubMed Central

    Oh, M. Matthew; Oliveira, Fernando A.; Disterhoft, John F.

    2010-01-01

    A goal of many laboratories that study aging is to find a key cellular change(s) that can be manipulated and restored to a young-like state, and thus, reverse the age-related cognitive deficits. We have chosen to focus our efforts on the alteration of intrinsic excitability (as reflected by the postburst afterhyperpolarization, AHP) during the learning process in hippocampal pyramidal neurons. We have consistently found that the postburst AHP is significantly reduced in hippocampal pyramidal neurons from young adults that have successfully learned a hippocampus-dependent task. In the context of aging, the baseline intrinsic excitability of hippocampal neurons is decreased and therefore cognitive learning is impaired. In aging animals that are able to learn, neuron changes in excitability similar to those seen in young neurons during learning occur. Our challenge, then, is to understand how and why excitability changes occur in neurons from aging brains and cause age-associated learning impairments. After understanding the changes, we should be able to formulate strategies for reversing them, thus making old neurons function more as they did when they were young. Such a reversal should rescue the age-related cognitive deficits. PMID:20552042

  6. Age-related ultrasonic properties of breast tissue in vivo.

    PubMed

    Katz-Hanani, Ilana; Rothstein, Tamara; Gaitini, Diana; Gallimidi, Zahava; Azhari, Haim

    2014-09-01

    The aim of the current work was to quantify the ultrasonic properties of the whole breast in vivo as a function of age. Forty-four women were scanned using a computerized ultrasonic scanner developed in our laboratory. Raster scans in two orthogonal views, mediolateral and craniocaudal, were obtained using the ultrasonic through-transmission method. By combining the information from the two views, we estimated two acoustic properties: speed of sound and attenuation coefficient. On the basis of the results, both the attenuation coefficient and the speed of sound follow a three-phase age-related pattern. During the first phase, which corresponds to ages 20 to 35 y, both properties decrease with time and then remain roughly unchanged until about 55 y. During the third phase corresponding to ages >55 y, values decrease again with time. The mean speed of sound decreases from 1504 ± 35 m/s at <30 y to 1452 ± 9 m/s at >60 y (p < 0.01), and the attenuation coefficient decreases from 1.27 ± 0.32 to 0.96 ± 0.13 dB/cm/MHz (p < 0.03), respectively. In conclusion, both the ultrasonic speed of sound and the attenuation coefficient of breast tissue are age related. Both parameters decrease during life, markedly during the first and third phases. These changes may be attributed to anatomic and physiologic changes associated with reproductivity and menopause.

  7. Age-related changes to the production of linguistic prosody

    NASA Astrophysics Data System (ADS)

    Barnes, Daniel R.

    The production of speech prosody (the rhythm, pausing, and intonation associated with natural speech) is critical to effective communication. The current study investigated the impact of age-related changes to physiology and cognition in relation to the production of two types of linguistic prosody: lexical stress and the disambiguation of syntactically ambiguous utterances. Analyses of the acoustic correlates of stress: speech intensity (or sound-pressure level; SPL), fundamental frequency (F0), key word/phrase duration, and pause duration revealed that both young and older adults effectively use these acoustic features to signal linguistic prosody, although the relative weighting of cues differed by group. Differences in F0 were attributed to age-related physiological changes in the laryngeal subsystem, while group differences in duration measures were attributed to relative task complexity and the cognitive-linguistic load of these respective tasks. The current study provides normative acoustic data for older adults which informs interpretation of clinical findings as well as research pertaining to dysprosody as the result of disease processes.

  8. Parainflammation, chronic inflammation and age-related macular degeneration

    PubMed Central

    Chen, Mei; Xu, Heping

    2016-01-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978

  9. Exploring age-related brain degeneration in meditation practitioners.

    PubMed

    Luders, Eileen

    2014-01-01

    A growing body of research suggests that meditation practices are associated with substantial psychological as well as physiological benefits. In searching for the biological mechanisms underlying the beneficial impact of meditation, studies have revealed practice-induced alterations of neurotransmitters, brain activity, and cognitive abilities, just to name a few. These findings not only imply a close link between meditation and brain structure, but also suggest possible modulating effects of meditation on age-related brain atrophy. Given that normal aging is associated with significant loss of brain tissue, meditation-induced growth and/or preservation might manifest as a seemingly reduced brain age in meditators (i.e., cerebral measures characteristic of younger brains). Surprisingly, there are only three published studies that have addressed the question of whether meditation diminishes age-related brain degeneration. This paper reviews these three studies with respect to the brain attributes studied, the analytical strategies applied, and the findings revealed. The review concludes with an elaborate discussion on the significance of existing studies, implications and directions for future studies, as well as the overall relevance of this field of research.

  10. Auditory white noise reduces age-related fluctuations in balance.

    PubMed

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability.

  11. Micro-RNAs Let7e and 126 in Plasma as Markers of Metabolic Dysfunction in 10 to 12 Years Old Children

    PubMed Central

    Krause, Bernardo J.; Carrasco-Wong, Ivo; Dominguez, Angélica; Arnaiz, Pilar; Farías, Marcelo; Barja, Salesa; Mardones, Francisco; Casanello, Paola

    2015-01-01

    Background Growing evidence shows that metabolic syndrome (MetS) is already starting in childhood however there is no consensus regarding how to diagnose this condition in pediatric population. Studies in adults show that altered levels of specific micro-RNAs are related with components of the MetS. Objective We determined the plasma levels of four MetS-associated micro-RNAs (miR-126, miR-132, mir-145 and Let-7e) in 10 to 12 years old children with or without MetS traits. Design Pediatric subjects were selected from a cohort of 3325 school-age children, and clustered by the absence (control, n = 30), or the presence of 1 (n = 50), 2 (n = 41) or 3 (n = 35) MetS traits according to Cook´s criteria. Micro-RNAs were isolated from plasma, and levels of miR-126, miR-132, miR-145 and Let-7e were determined by Taqman qPCR. Results Regression analysis of the different MetS traits regarding the different miRNAs analyzed showed that Let-7e presented a negative association with HDL-C levels, but a positive correlation with the number of MetS traits. Levels of miR-126 presented a positive correlation with waist circumference, waist to hip ratio, BMI, and plasma triglycerides and VLDL-C. Levels of miR-132 showed a positive correlation with waist to hip ratio. Plasma levels of Let-7e were increased (~3.4 fold) in subjects with 3 MetS traits, and showed significant AUC (0.681; 95%CI = [0.58, 0.78]; p < 0.001) in the ROC analysis which were improved when miR-126 was included in the analysis (AUC 0.729; p < 0.001). In silico analysis of the interaction of proteins derived from mRNAs targeted by Let7 and miR-126 showed an important effect of both Let-7e and miR-126 regulating the insulin signaling pathway. Conclusions These results suggest that changes in the plasma levels of Let-7e and miR-126 could represent early markers of metabolic dysfunction in children with MetS traits. PMID:26046362

  12. Altered arachidonic acid metabolism via COX-1 and COX-2 contributes to the endothelial dysfunction of penile arteries from obese Zucker rats

    PubMed Central

    Sánchez, A; Contreras, C; Villalba, N; Martínez, P; Martínez, AC; Bríones, A; Salaíces, M; García-Sacristán, A; Hernández, M; Prieto, D

    2010-01-01

    Background and purpose: The aim of the current study was to investigate the role of arachidonic acid (AA) metabolism via cyclooxygenase (COX) in the endothelial dysfunction of penile arteries from pre-diabetic, obese Zucker rats (OZR). Experimental approach: Penile arteries from OZR and from lean Zucker rats (LZR) were mounted in microvascular myographs to assess vascular function and COX expression was determined by immunohistochemistry. Key results: Acetylcholine (ACh) and AA elicited relaxations that were impaired in arteries from OZR. Inhibition of both COX-1 and COX-2 reduced the relaxant effects of ACh and AA in LZR but not in OZR. Inhibitors of COX-1 and of the TXA2/PGH2 (TP) receptor enhanced the relaxations induced by AA in both LZR and OZR, whereas COX-2 inhibition enhanced these responses only in OZR. TP receptor blockade did not restore ACh relaxant responses in arteries from OZR. Inhibition of COX-1 increased basal tension in OZR and this contraction was blunted by TP receptor blockade. The vasoconstrictor responses to noradrenaline were augmented by indomethacin and by COX-2 inhibition in LZR but not in OZR. Immunohistochemical staining showed that both COX-1 and COX-2 are expressed in the endothelium of penile arteries from both LZR and OZR. Conclusions and implications: Vasoactive prostanoids were formed via constitutively active COX-1 and COX-2 pathways in normal rat penile arteries. Under conditions of insulin resistance, the release and/or effects of vasodilator prostanoids were impaired, contributing to the blunted endothelium-dependent vasodilatation and to the enhanced vasoconstriction. PMID:20082610

  13. Metabolism

    MedlinePlus

    ... and intestines. Several of the hormones of the endocrine system are involved in controlling the rate and direction ... For Kids For Parents MORE ON THIS TOPIC Endocrine System What Can I Do About My High Metabolism? ...

  14. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  15. Ageing and apoE change DHA homeostasis: relevance to age-related cognitive decline.

    PubMed

    Hennebelle, Marie; Plourde, Mélanie; Chouinard-Watkins, Raphaël; Castellano, Christian-Alexandre; Barberger-Gateau, Pascale; Cunnane, Stephen C

    2014-02-01

    Epidemiological studies fairly convincingly suggest that higher intakes of fatty fish and n-3 fatty acids are associated with reduced risk of Alzheimer's disease (AD). DHA in plasma is normally positively associated with DHA intake. However, despite being associated with lower fish and DHA intake, unexpectedly, plasma (or brain) DHA is frequently not lower in AD. This review will highlight some metabolic and physiological factors such as ageing and apoE polymorphism that influence DHA homeostasis. Compared with young adults, blood DHA is often slightly but significantly higher in older adults without any age-related cognitive decline. Higher plasma DHA in older adults could be a sign that their fish or DHA intake is higher. However, our supplementation and carbon-13 tracer studies also show that DHA metabolism, e.g. transit through the plasma, apparent retroconversion and β-oxidation, is altered in healthy older compared with healthy young adults. ApoE4 increases the risk of AD, possibly in part because it too changes DHA homeostasis. Therefore, independent of differences in fish intake, changing DHA homeostasis may tend to obscure the relationship between DHA intake and plasma DHA which, in turn, may contribute to making older adults more susceptible to cognitive decline despite older adults having similar or sometimes higher plasma DHA than in younger adults. In conclusion, recent development of new tools such as isotopically labelled DHA to study DHA metabolism in human subjects highlights some promising avenues to evaluate how and why DHA metabolism changes during ageing and AD.

  16. Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans.

    PubMed

    Rahimi, Mehran; Vinciguerra, Manlio; Daghighi, Mojtaba; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Sheedfar, Fareeba; Amini, Marzyeh; Mazza, Tommaso; Pazienza, Valerio; Motazacker, Mahdi M; Mahmoudi, Morteza; De Rooij, Felix W M; Sijbrands, Eric; Peppelenbosch, Maikel P; Rezaee, Farhad

    2015-10-06

    Despite numerous developed drugs based on glucose metabolism interventions for treatment of age-related diseases such as diabetes neuropathies (DNs), DNs are still increasing in patients with type 1 or type 2 diabetes (T1D, T2D). We aimed to identify novel candidates in adipose tissue (AT) and pancreas with T2D for targeting to develop new drugs for DNs therapy. AT-T2D displayed 15 (e.g. SYT4 up-regulated and VGF down-regulated) and pancreas-T2D showed 10 (e.g. BAG3 up-regulated, VAV3 and APOA1 down-regulated) highly differentially expressed genes with neuronal functions as compared to control tissues. ELISA was blindly performed to measure proteins of 5 most differentially expressed genes in 41 human subjects. SYT4 protein was upregulated, VAV3 and APOA1 were down-regulated, and BAG3 remained unchanged in 1- Obese and 2- Obese-T2D without insulin, VGF protein was higher in these two groups as well as in group 3- Obese-T2D receiving insulin than 4-lean subjects. Interaction networks analysis of these 5 genes showed several metabolic pathways (e.g. lipid metabolism and insulin signaling). Pancreas is a novel site for APOA1 synthesis. VGF is synthesized in AT and could be considered as good diagnostic, and even prognostic, marker for age-induced diseases obesity and T2D. This study provides new targets for rational drugs development for the therapy of age-related DNs.

  17. Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans

    PubMed Central

    Daghighi, Mojtaba; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Sheedfar, Fareeba; Amini, Marzyeh; Mazza, Tommaso; Pazienza, Valerio; Motazacker, Mahdi M.; Mahmoudi, Morteza; De Rooij, Felix W. M.; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-01-01

    Despite numerous developed drugs based on glucose metabolism interventions for treatment of age-related diseases such as diabetes neuropathies (DNs), DNs are still increasing in patients with type 1 or type 2 diabetes (T1D, T2D). We aimed to identify novel candidates in adipose tissue (AT) and pancreas with T2D for targeting to develop new drugs for DNs therapy. AT-T2D displayed 15 (e.g. SYT4 up-regulated and VGF down-regulated) and pancreas-T2D showed 10 (e.g. BAG3 up-regulated, VAV3 and APOA1 down-regulated) highly differentially expressed genes with neuronal functions as compared to control tissues. ELISA was blindly performed to measure proteins of 5 most differentially expressed genes in 41 human subjects. SYT4 protein was upregulated, VAV3 and APOA1 were down-regulated, and BAG3 remained unchanged in 1- Obese and 2- Obese-T2D without insulin, VGF protein was higher in these two groups as well as in group 3- Obese-T2D receiving insulin than 4-lean subjects. Interaction networks analysis of these 5 genes showed several metabolic pathways (e.g. lipid metabolism and insulin signaling). Pancreas is a novel site for APOA1 synthesis. VGF is synthesized in AT and could be considered as good diagnostic, and even prognostic, marker for age-induced diseases obesity and T2D. This study provides new targets for rational drugs development for the therapy of age-related DNs. PMID:26337083

  18. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies.

    PubMed

    Marie, Pierre J

    2015-04-01

    Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

  19. The role of epigenetics in age-related macular degeneration

    PubMed Central

    Gemenetzi, M; Lotery, A J

    2014-01-01

    It is becoming increasingly evident that epigenetic mechanisms influence gene expression and can explain how interactions between genetics and the environment result in particular phenotypes during development. The extent to which this epigenetic effect contributes to phenotype heritability in age-related macular degeneration (AMD) is currently ill defined. However, emerging evidence suggests that epigenetic changes are relevant to AMD and as such provide an exciting new avenue of research for AMD. This review addresses information on the impact of posttranslational modification of the genome on the pathogenesis of AMD, such as DNA methylation changes affecting antioxidant gene expression, hypoxia-regulated alterations in chromatin structure, and histone acetylation status in relation to angiogenesis and inflammation. It also contains information on the role of non-coding RNA-mediated gene regulation in AMD at a posttranscriptional (before translation) level. Our aim was to review the epigenetic mechanisms that cause heritable changes in gene activity without changing the DNA sequence. We also describe some long-term alterations in the transcriptional potential of a cell, which are not necessarily heritable but remains to be defined in the future. Increasing understanding of the significance of common and rare genetic variants and their relationship to epigenetics and environmental influences may help in establishing methods to assess the risk of AMD. This in turn may allow new therapeutic interventions for the leading cause of central vision impairment in patients over the age of 50 years in developed countries. Search strategy We searched the MEDLINE/PubMed database following MeSH suggestions for articles including the terms: ‘ocular epigenetic mechanisms', ‘human disease epigenetics', and ‘age-related macular degeneration genetics'. The headline used to locate related articles in PubMed was ‘epigenetics in ocular disease', and to restrict search, we used

  20. Erectile dysfunction.

    PubMed

    Shamloul, Rany; Ghanem, Hussein

    2013-01-12

    Erectile dysfunction is a common clinical entity that affects mainly men older than 40 years. In addition to the classical causes of erectile dysfunction, such as diabetes mellitus and hypertension, several common lifestyle factors, such as obesity, limited or an absence of physical exercise, and lower urinary tract symptoms, have been linked to the development of erectile dysfunction. Substantial steps have been taken in the study of the association between erectile dysfunction and cardiovascular disease. Erectile dysfunction is a strong predictor for coronary artery disease, and cardiovascular assessment of a non-cardiac patient presenting with erectile dysfunction is now recommended. Substantial advances have occurred in the understanding of the pathophysiology of erectile dysfunction that ultimately led to the development of successful oral therapies, namely the phosphodiesterase type 5 inhibitors. However, oral phosphodiesterase type 5 inhibitors have limitations, and present research is thus investigating cutting-edge therapeutic strategies including gene and cell-based technologies with the aim of discovering a cure for erectile dysfunction.

  1. The genetics of age-related macular degeneration.

    PubMed

    Guymer, Robyn

    2001-07-01

    AIM: To review the genetics of age-related macular degeneration (AMD). The pathogenesis of AMD, the leading cause of severe visual disability and blindness in our community, remains unknown. However, AMD is regarded as a genetic disease where family history of AMD is a significant risk factor for the disease. Understanding the genetic factors associated with AMD offers the greatest chance for understanding the underlying disease processes. METHODS: Through a review of the literature and the use of original research findings, the current knowledge of the genetics of AMD is explored. CONCLUSION: AMD is increasing in prevalence and remains a major challenge for eye heath providers. Finding the genes that are associated with AMD offers the greatest chance for the development of preventative strategies and treatments.

  2. Developments in age-related macular degeneration: Diagnosis and treatment.

    PubMed

    Kaufman, Steven R

    2009-03-01

    Age-related macular degeneration (ARMD) is the leading cause of legal blindness of Americans over age 65 years. Severe loss of vision is usually due to exudative ARMD, of which there are about 200,000 new cases in the United States annually. Until recently, only a small fraction of patients benefited from treatment, but advances in the early diagnosis of the disease and major developments in therapy have substantially improved the prognosis of patients with ARMD. Because visual loss substantially reduces quality of life, effective management of ARMD will have increasing public health importance as the population ages. The American Academy of Ophthalmology recommends that people over age 65 years should have a comprehensive eye examination every 1 to 2 years to check for cataracts, macular degeneration, glaucoma, and other conditions. Those who complain of difficulty reading, driving at night, or adapting from sunlight to indoor lighting might have macular degeneration.

  3. Age-related differences in arithmetic strategy sequential effects.

    PubMed

    Lemaire, Patrick

    2016-03-01

    In this article, I review a series of new findings concerning how age-related changes in strategic variations are modulated by sequential effects. Sequential effects refer to how strategy selection and strategy execution on current problems are influenced by which strategy is used on immediately preceding problems. Two sequential effects during strategy selection (i.e., strategy revisions and strategy perseverations) and during strategy execution (i.e., strategy switch costs and modulations of poorer strategy effects) are presented. I also discuss how these effects change with age during adulthood. These phenomena are important, as they shed light on arithmetic processes and how these processes change with age during adulthood. In particular, they speak to the role of executive control while participants select and execute arithmetic strategies. Finally, I discuss the implications of sequential effects for theories of strategies and of arithmetic.

  4. Age-related associative deficits and the isolation effect.

    PubMed

    Badham, Stephen P; Maylor, Elizabeth A

    2013-01-01

    If all but one of the items in a list are similar (e.g., all black except one red), memory for the different item is enhanced (the isolation effect). Older adults generally show similar or smaller isolation effects compared to young adults, which has been attributed to age-related deficits in associative memory whereby older adults are less able to associate an isolated stimulus to its isolating feature. Experiment 1 examined the isolation effect for isolation based on spatial position, modality and color; in Experiment 2, the criterion for isolation was the associative relation between stimuli. The results consistently showed no differences between young and older participants in the magnitude of the isolation effect. Whilst age deficits in associative memory may act to reduce the isolation effect in older adults, age deficits in self-initiated processing and inhibitory functionality may counteract this reduction by enhancing the isolation effect in older adults.

  5. [Molecular genetic basis of age-related macular degeneration].

    PubMed

    Boĭko, É V; Churashov, S V; Kamilova, T A

    2013-01-01

    Visual loss due to age-related macular degeneration (AMD) is caused by one or both forms of advanced disease: "wet" (neovascular) or "dry" (geographic atrophy). Immune system plays a central role in pathogenesis and progression of both AMD forms. Main genetic polymorphisms associated with risk of AMD development and progression were found to be genes that regulate inflammation especially in complement factor H gen (1q31 locus) and 10q26 locus (PLEKHAI/ARMS2/HTRA1). Association of response to treatment and genotype was shown in patients with AMD. Complete characterization of both common and rare alleles that influence AMD risk is necessary for accurate determination of individual genetic risk as well as identification of new targets for therapeutic intervention.

  6. Gene Therapies for Neovascular Age-Related Macular Degeneration.

    PubMed

    Pechan, Peter; Wadsworth, Samuel; Scaria, Abraham

    2014-12-18

    Pathological neovascularization is a key component of the neovascular form (also known as the wet form) of age-related macular degeneration (AMD) and proliferative diabetic retinopathy. Several preclinical studies have shown that antiangiogenesis strategies are effective for treating neovascular AMD in animal models. Vascular endothelial growth factor (VEGF) is one of the main inducers of ocular neovascularization, and several clinical trials have shown the benefits of neutralizing VEGF in patients with neovascular AMD or diabetic macular edema. In this review, we summarize several preclinical and early-stage clinical trials with intraocular gene therapies, which have the potential to reduce or eliminate the repeated intravitreal injections that are currently required for the treatment of neovascular AMD.

  7. Highly penetrant alleles in age-related macular degeneration.

    PubMed

    den Hollander, Anneke I; de Jong, Eiko K

    2014-11-06

    Age-related macular degeneration (AMD) is a complex disease caused by a combination of genetic and environmental factors. Genome-wide association studies have identified several common genetic variants associated with AMD, which together account for 15%-65% of the heritability of AMD. Multiple hypotheses to clarify the unexplained portion of genetic variance have been proposed, such as gene-gene interactions, gene-environment interactions, structural variations, epigenetics, and rare variants. Several studies support a role for rare variants with large effect sizes in the pathogenesis of AMD. In this work, we review the methods that can be used to detect rare variants in common diseases, as well as the recent progress that has been made in the identification of rare variants in AMD. In addition, the relevance of these rare variants for diagnosis, prognosis, and treatment of AMD is highlighted.

  8. Gene-Diet Interactions in Age-Related Macular Degeneration.

    PubMed

    Rowan, Sheldon; Taylor, Allen

    2016-01-01

    Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50 % of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation is the only available treatment option for the dry form of the disease known to slow progression of AMD. Despite an excellent understanding of genes and nutrition in AMD, there is remarkably little known about gene-diet interactions that may identify efficacious approaches to treat individuals. This review will summarize our current understanding of gene-diet interactions in AMD with a focus on animal models and human epidemiological studies.

  9. Molecular pathology of age-related macular degeneration

    PubMed Central

    Ding, Xiaoyan; Patel, Mrinali; Chan, Chi-Chao

    2009-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. Although the etiology and pathogenesis of AMD remain largely unclear, a complex interaction of genetic and environmental factors is thought to exist. AMD pathology is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium, and Bruch’s membrane, as well as, in some cases, alterations in choroidal capillaries. Recent research on the genetic and molecular underpinnings of AMD brings to light several basic molecular pathways and pathophysiological processes that might mediate AMD risk, progression, and/or response to therapy. This review summarizes, in detail, the molecular pathological findings in both humans and animal models, including genetic variations in CFH, CX3CR1, and ARMS2/HtrA1, as well as the role of numerous molecules implicated in inflammation, apoptosis, cholesterol trafficking, angiogenesis, and oxidative stress. PMID:19026761

  10. Wearable diagnostic system for age-related macular degeneration.

    PubMed

    Mohaghegh, N; Zadeh, E Ghafar; Magierowski, S

    2016-08-01

    This paper presents a novel head-mounted point-of-care diagnostic system for detection and continuous monitoring of Age-related Macular Degeneration (AMD). This wearable embedded open-source platform enables accurate monitoring of AMD by taking advantage of multiple standard graphical interface techniques such as Amsler Grid, Threshold Amsler Grid, Macular Computerized Psychophysical Test and Preferential Hyperacuity Perimeter (PHP). Here, we describe the proposed multi-Grid or so-called NGRID software and elaborate on the hardware prototype. This prototype includes a commercially available Oculus HMD incorporated with a single board computer. As the first step towards a fully integrated wearable system, this paper successfully proves the functionality of head-mounted graphical interface device ready for a live demonstration. Participants can experience this device and take a 10-minute AMD eye-exam. Furthermore, NGRID has been approved and permitted for an in-hospital clinical trial.

  11. Rapid Assessment of Age-Related Differences in Standing Balance

    PubMed Central

    Kalisch, Tobias; Kattenstroth, Jan-Christoph; Noth, Sebastian; Tegenthoff, Martin; Dinse, Hubert R.

    2011-01-01

    As life expectancy continues to rise, in the future there will be an increasing number of older people prone to falling. Accordingly, there is an urgent need for comprehensive testing of older individuals to collect data and to identify possible risk factors for falling. Here we use a low-cost force platform to rapidly assess deficits in balance under various conditions. We tested 21 healthy older adults and 24 young adults during static stance, unidirectional and rotational displacement of their centre of pressure (COP). We found an age-related increase in postural sway during quiet standing and a reduction of maximal COP displacement in unidirectional and rotational displacement tests. Our data show that even low-cost computerized assessment tools allow for the comprehensive testing of balance performance in older subjects. PMID:21629742

  12. [Management of age-related macular degeneration. An update].

    PubMed

    García Lozano, Isabel; López García, Santiago; Elosua de Juán, Isabel

    2012-01-01

    Age-related macular degeneration is the leading cause of legal blindness in people over 50 in developed countries. It is a multifactorial disease resulting from the interaction of genetic and environmental factors, and the age is the only worldwide admitted risk factor. The socioeconomic impact of the disease reaches enormous proportions, if we take into account the high cost of the available antiangiogenic therapy, the strict schedule of medical visits that it requires, and the impairment that it gives rise to. The response to treatment and the visual outcomes improve with early management of the retinal lesions, thus the early diagnosis of the disease in its initial phases, based on self-control with an Amsler grid and with regular ophthalmologic assessments, is essential.

  13. Update on geographic atrophy in age-related macular degeneration.

    PubMed

    Biarnés, Marc; Monés, Jordi; Alonso, Jordi; Arias, Luis

    2011-07-01

    Age-related macular degeneration (AMD) is the main cause of legal blindness in older patients in developed countries, and geographic atrophy (GA) represents the advanced form of dry AMD. Although it accounts for one third of the cases of late AMD and is responsible for 20% of the cases of severe visual loss due to the disorder. GA currently lacks effective treatment, whereas antiangiogenic therapies have been shown to be successful in managing choroidal neovascularization, the other form of late AMD. Recent advances in GA epidemiology, etiology, genetics, and imaging techniques have renewed the interest in this entity, which is a cause of progressive visual loss even in treated patients with neovascular AMD. This knowledge has triggered many clinical trials targeting different molecules shown to be associated with the disease, and it is hoped that this research will translate into effective drugs for GA in the near future.

  14. Targeting MAPK Signaling in Age-Related Macular Degeneration

    PubMed Central

    Kyosseva, Svetlana V.

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease. PMID:27385915

  15. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  16. Age-Related Macular Degeneration and Intracrine Biology: An Hypothesis

    PubMed Central

    Re, Richard N.

    2016-01-01

    This laboratory has studied the intracellular actions of angiotensin II and other signaling proteins that can act in the intracellular space—peptides/proteins we have called intracrines. Moreover, we have suggested that general principles of intracrine action exist and can help explain the progression of some chronic degenerative diseases such as diabetic nephropathy and congestive heart failure. Here, a similar analysis is carried out in the case of age-related macular degeneration. We propose that intracrine mechanisms are operative in this disorder. In particular, we hypothesize that intracrine loops involving renin, angiotensin II, transforming growth factor-beta, vascular endothelial growth factor, bone morphogenetic protein-4, and p53, among other factors, are involved. If this analysis is correct, it suggests a commonality of mechanism linking chronic progressive renal diseases, congestive heart failure, and macular degeneration. PMID:27999510

  17. The genetics of age-related macular degeneration.

    PubMed

    Gorin, M B; Breitner, J C; De Jong, P T; Hageman, G S; Klaver, C C; Kuehn, M H; Seddon, J M

    1999-11-03

    Age-related macular degeneration (AMD) is increasingly recognized as a complex genetic disorder in which one or more genes contribute to an individual's susceptibility for developing the condition. Twin and family studies as well as population-based genetic epidemiologic methods have convincingly demonstrated the importance of genetics in AMD, though the extent of heritability, the number of genes involved, and the phenotypic and genetic heterogeneity of the condition remain unresolved. The extent to which other hereditary macular dystrophies such as Stargardts disease, familial radial drusen (malattia leventinese), Best's disease, and peripherin/RDS-related dystrophy are related to AMD remains unclear. Alzheimer's disease, another late onset, heterogeneous degenerative disorder of the central nervous system, offers a valuable model for identifying the issues that confront AMD genetics.

  18. Highly Penetrant Alleles in Age-Related Macular Degeneration

    PubMed Central

    den Hollander, Anneke I.; de Jong, Eiko K.

    2015-01-01

    Age-related macular degeneration (AMD) is a complex disease caused by a combination of genetic and environmental factors. Genome-wide association studies have identified several common genetic variants associated with AMD, which together account for 15%–65% of the heritability of AMD. Multiple hypotheses to clarify the unexplained portion of genetic variance have been proposed, such as gene–gene interactions, gene–environment interactions, structural variations, epigenetics, and rare variants. Several studies support a role for rare variants with large effect sizes in the pathogenesis of AMD. In this work, we review the methods that can be used to detect rare variants in common diseases, as well as the recent progress that has been made in the identification of rare variants in AMD. In addition, the relevance of these rare variants for diagnosis, prognosis, and treatment of AMD is highlighted. PMID:25377141

  19. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits

    PubMed Central

    Oh, M. Matthew; Simkin, Dina; Disterhoft, John F.

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  20. Age-Related Neurochemical Changes in the Vestibular Nuclei

    PubMed Central

    Smith, Paul F.

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa’s ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  1. Nutritional Modulation of Age-Related Macular Degeneration

    PubMed Central

    Weikel, Karen A; Taylor, Allen

    2012-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30–50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated with AMD are in excess of $340 billion US (American-Health-Assistance-Foundation, 2012). The majority of AMD patients in the United States are not eligible for clinical treatments (Biarnes et al., 2011; Klein et al., 2011). Preventive interventions through dietary modulation are attractive strategies because many studies suggest a benefit of micro and macronutrients with respect to AMD, as well as other age-related debilities, and with few, if any, adverse effects (Chiu, 2011). Preservation of vision would enhance quality of life for millions of elderly people, and alleviate the personal and public health financial burden of AMD (Frick et al., 2007; Wood et al., 2011). Observational studies indicate that maintaining adequate levels of omega-3 fatty acids (i.e. with 2 servings/wk of fish) or a low glycemic index diet may be particularly beneficial for early AMD and that higher levels of carotenoids may be protective, most probably, against neovascular AMD. Intervention trials are needed to better understand the full effect of these nutrients and/or combinations of nutrients on retinal health. Analyses that describe effects of a nutrient on onset and/or progress of AMD are valuable because they indicate the value of a nutrient to arrest AMD at the early stages. This comprehensive summary provides essential information about the value of nutrients with regard to diminishing risk for onset or progress of AMD and can serve as a guide until data from ongoing intervention trials are available. PMID:22503690

  2. Inflammation and its role in age-related macular degeneration.

    PubMed

    Kauppinen, Anu; Paterno, Jussi J; Blasiak, Janusz; Salminen, Antero; Kaarniranta, Kai

    2016-05-01

    Inflammation is a cellular response to factors that challenge the homeostasis of cells and tissues. Cell-associated and soluble pattern-recognition receptors, e.g. Toll-like receptors, inflammasome receptors, and complement components initiate complex cellular cascades by recognizing or sensing different pathogen and damage-associated molecular patterns, respectively. Cytokines and chemokines represent alarm messages for leukocytes and once activated, these cells travel long distances to targeted inflamed tissues. Although it is a crucial survival mechanism, prolonged inflammation is detrimental and participates in numerous chronic age-related diseases. This article will review the onset of inflammation and link its functions to the pathogenesis of age-related macular degeneration (AMD), which is the leading cause of severe vision loss in aged individuals in the developed countries. In this progressive disease, degeneration of the retinal pigment epithelium (RPE) results in the death of photoreceptors, leading to a loss of central vision. The RPE is prone to oxidative stress, a factor that together with deteriorating functionality, e.g. decreased intracellular recycling and degradation due to attenuated heterophagy/autophagy, induces inflammation. In the early phases, accumulation of intracellular lipofuscin in the RPE and extracellular drusen between RPE cells and Bruch's membrane can be clinically detected. Subsequently, in dry (atrophic) AMD there is geographic atrophy with discrete areas of RPE loss whereas in the wet (exudative) form there is neovascularization penetrating from the choroid to retinal layers. Elevations in levels of local and systemic biomarkers indicate that chronic inflammation is involved in the pathogenesis of both disease forms.

  3. Nutritional modulation of age-related macular degeneration.

    PubMed

    Weikel, Karen A; Chiu, Chung-Jung; Taylor, Allen

    2012-08-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated with AMD are in excess of $340 billion US (American-Health-Assistance-Foundation, 2012). The majority of AMD patients in the United States are not eligible for clinical treatments (Biarnes et al., 2011; Klein et al., 2011). Preventive interventions through dietary modulation are attractive strategies because many studies suggest a benefit of micro- and macronutrients with respect to AMD, as well as other age-related debilities, and with few, if any, adverse effects (Chiu, 2011). Preservation of vision would enhance quality of life for millions of elderly people, and alleviate the personal and public health financial burden of AMD (Frick et al., 2007; Wood et al., 2011). Observational studies indicate that maintaining adequate levels of omega-3 fatty acids (i.e. with 2 servings/week of fish) or a low glycemic index diet may be particularly beneficial for early AMD and that higher levels of carotenoids may be protective, most probably, against neovascular AMD. Intervention trials are needed to better understand the full effect of these nutrients and/or combinations of nutrients on retinal health. Analyses that describe effects of a nutrient on onset and/or progress of AMD are valuable because they indicate the value of a nutrient to arrest AMD at the early stages. This comprehensive summary provides essential information about the value of nutrients with regard to diminishing risk for onset or progress of AMD and can serve as a guide until data from ongoing intervention trials are available.

  4. Age-related macular degeneration: Evidence of a major gene

    SciTech Connect

    Bhatt, S.; Warren, C.; Yang, H.

    1994-09-01

    Age-related macular degeneration is a major cause of blindness in developing countries. It remains a very poorly understood disorder. Although environmental and genetic factors have been implicated in its pathogenesis, none have been firmly implicated. The purpose of this study was to use pedigree analysis to evaluate the possible role of a major gene as a determinant of familial aggregation. Information was collected regarding occupation, smoking, sun exposure, associated medical problems and family history. 50 probands with age-related macular degeneration (ARMD) and 39 age, race and sex-matched controls were included in the study. In the ARMD group 15/50 (30%) of probands reported a positive family history; 22 out of 222 first degree relatives over age 60 were reported to be affected. In the control groups, none of the 138 first degree relatives over age 50 had a history of ARMD. This difference is statistically significant (p = 0.0003), indicating that genetic factors may play an important role in the pathogenesis of ARMD. In the ARMD group more siblings as compared to parents (16/127 vs. 5/82) were affected. 5/50 (10%) of the ARMD probands also gave a history of a second degree relative affected with ARMD, compared to none known among the relatives of controls. Data from 50 pedigrees were analyzed by complex segregation analysis under a class A regressive logistic model using the REGD program implemented in the SAGE package. Preliminary results allow rejection of a polygenic model and suggest there is a major gene for ARMD in these families. The inheritance model most compatible with the observed familial aggregation is autosomal recessive. In conclusion, these results are suggestive of a major gene effect in the etiology of ARMD. Identification of a major gene effect is a first step to further pursue linkage analysis and to search for the gene(s) involved in the causation of ARMD.

  5. Age-related Alterations in the Dynamic Behavior of Microglia

    PubMed Central

    Damani, Mausam R.; Zhao, Lian; Fontainhas, Aurora M.; Amaral, Juan; Fariss, Robert N.; Wong, Wai T.

    2010-01-01

    Summary Microglia, the primary resident immune cells of the CNS, exhibit dynamic behavior involving rapid process motility and cellular migration that is thought to underlie key functions of immune surveillance and tissue repair. Although age-related changes in microglial activation have been implicated in the pathogenesis of neurodegenerative diseases of aging, how dynamic behavior in microglia is influenced by aging is not fully understood. In this study, we employed live imaging of retinal microglia in situ to compare microglial morphology and behavioral dynamics in young and aged animals. We found that aged microglia in the resting state have significantly smaller and less branched dendritic arbors, and also slower process motilities, which likely compromise their ability to continuously survey and interact with their environment. We also found that dynamic microglial responses to injury were age-dependent. While young microglia responded to extracellular ATP, an injury-associated signal, by increasing their motility and becoming more ramified, aged microglia exhibited a contrary response, becoming less dynamic and ramified. In response to laser-induced focal tissue injury, aged microglia demonstrated slower acute responses with lower rates of process motility and cellular migration compared to young microglia. Interestingly, the longer term response of disaggregation from the injury site was retarded in aged microglia, indicating that senescent microglial responses, while slower to initiate, are more sustained. Together, these altered features of microglial behavior at rest and following injury reveal an age-dependent dysregulation of immune response in the CNS that may illuminate microglial contributions to age-related neuroinflammatory degeneration. PMID:21108733

  6. [Cerebral circulation and metabolism in the patients with higher brain dysfunction caused by chronic minor traumatic brain injury: a study by the positron emission tomography in twenty subjects with normal MRI findings].

    PubMed

    Kabasawa, Hidehiro; Ogawa, Tetsuo; Iida, Akihiko; Matsubara, Michitaka

    2002-06-01

    Many individuals are affected on their higher brain functions, such as intelligence, memory, and attention, even after minor traumatic brain injury (MTBI). Although higher brain dysfunction is based on impairment of the cerbral circulation and metabolism, the precise relationship between them remains unknown. This study was undertaken to investigate the relationship between the cerebral circulation or cerebral metabolism and higher brain dysfunction. Twenty subjects with higher brain dysfunction caused by chronic MTBI were studied. They had no abnormal MRI findings. The full-scale intelligence quotient (FIQ) were quantitatively evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-R), and the subjects were classified into the normal group and the impaired group. Concurrent with the evaluation of FIQ, positron emission tomography (PET) was performed by the steady state method with 15O gases inhalation. Regional cerebral blood flow (rCBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) were calculated in the bilateral frontal, parietal, temporal, and occipital lobe. First, of all twenty subjects, we investigated rCBF, OEF and CMRO2 in all regions. Then we compared rCBF, OEF, and CMRO2 between the normal group and the impaired group based on FIQ score. We also studied the change of FIQ score of 13 subjects 9.3 months after the first evaluation. In addition, we investigated the change of rCBF, OEF and CMRO2 along with the improvement of FIQ score. Although rCBF and OEF of all subjects were within the normal range in all regions, CMRO2 of more than half of subjects was under the lower normal limit in all regions except in the right occipital lobe, showing the presence of "relative luxury perfusion". Comparison of rCBF, OEF and CMRO2 between normal group and impaired group revealed that CMRO2 of the impaired group was significantly lower than that of the normal group in the bilateral frontal, temporal, and occipital lobe. After

  7. Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metabolic Dysfunction in MSG-Induced Obese Mice

    PubMed Central

    Martin, Josiane Morais; Miranda, Rosiane Aparecida; Palma-Rigo, Kesia; Alves, Vander Silva; Fabricio, Gabriel Sergio; Pavanello, Audrei; Franco, Claudinéia Conationi da Silva; Ribeiro, Tatiane Aparecida; Visentainer, Jesuí Vergílio; Banafé, Elton Guntendeorfer; Martin, Clayton Antunes; Mathias, Paulo Cezar de Freitas

    2016-01-01

    Essential polyunsaturated fatty acids (PUFAs) prevent cardiometabolic diseases. We aimed to study whether a diet supplemented with a mixture of n-6/n-3 PUFAs, during perinatal life, attenuates outcomes of long-term metabolic dysfunction in prediabetic and obese mice. Seventy-day-old virgin female mice were mated. From the conception day, dams were fed a diet supplemented with sunflower oil and flaxseed powder (containing an n-6/n-3 PUFAs ratio of 1.2 : 1.0) throughout pregnancy and lactation, while control dams received a commercial diet. Newborn mice were treated with monosodium L-glutamate (MSG, 4 mg g−1 body weight per day) for the first 5 days of age. A batch of weaned pups was sacrificed to quantify the brain and pancreas total lipids; another batch were fed a commercial diet until 90 days of age, where glucose homeostasis and glucose-induced insulin secretion (GIIS) as well as retroperitoneal fat and Lee index were assessed. MSG-treated mice developed obesity, glucose intolerance, insulin resistance, pancreatic islet dysfunction, and higher fat stores. Maternal flaxseed diet-supplementation decreased n-6/n-3 PUFAs ratio in the brain and pancreas and blocked glucose intolerance, insulin resistance, GIIS impairment, and obesity development. The n-6/n-3 essential PUFAs in a ratio of 1.2 : 1.0 supplemented in maternal diet during pregnancy and lactation prevent metabolic dysfunction in MSG-obesity model. PMID:28050167

  8. Age-related changes in adaptive macronutrient intake in swimming male and female Lou rats.

    PubMed

    Boghossian, S; Veyrat-Durebex, C; Alliot, J

    2000-05-01

    To evaluate the age-related changes in capacity to adjust the nutrient intake to needs, self-selecting male and female Lou/C/jall rats of 4, 6, 12, 16 and 23 months of age were submitted to a swimming exercise. They were given 6 consecutive days of moderate intensity training (3 x 15 minutes per day). Exercise and postexercise periods were compared with results from the pretraining period. During swimming, a body weight loss and a decrease in both caloric intake and fat selection were observed. This effect was more marked in older groups compared to 4 month-old groups. An increase in protein intake was observed in females, specially in older groups, whereas no effect was seen in males. The ability to increase caloric ingestion and regain weight during the postexercise period decreased with advancing age and was better in females than in males. We also showed an age-related effect on the recovery of initial nutrient intake rate that was more pronounced and more precocious for males. Moreover, males tended to decrease their protein intake, whereas females significantly increased it. The present findings suggest a decrease of capacity of adjusting feeding behavior to metabolic needs in aged rats, may be due to a deterioration of the central control of food intake.

  9. Are ancient proteins responsible for the age-related decline in health and fitness?

    PubMed

    Truscott, Roger John Willis

    2010-02-01

    There are a number of sites in the body where proteins are present for decades and sometimes for all of our lives. Over a period of many years, such proteins are subject to two types of modifications. The first results from the intrinsic instability of certain amino acid residues and leads to deamidation, racemization, and truncation. The second type can be traced to relentless covalent modification of such ancient proteins by reactive biochemicals produced during cellular metabolism.The accumulation of both types of posttranslational modifications over time may have important consequences for the properties of tissues that contain such proteins. It is proposed that the age-related decline in function of organs such as the eye, heart, brain, and lung, as well as skeletal components, comes about, in part, from the posttranslational modification of these long-lived proteins. Examples are provided in which this may be an important factor in the etiology of age-related conditions. As the properties of these proteins alter inexorably over time, the molecular changes contribute to a gradual decline in the function of individual organs and also tissues such as joints. This cumulative degeneration of old proteins at multiple sites in the body may also constrain the ultimate life span of the individual. The human lens may be particularly useful for discovering which reactive metabolites in the body are of most importance for posttranslational modification of long-lived proteins.

  10. Role of cancer stem cells in age-related rise in colorectal cancer

    PubMed Central

    Nangia-Makker, Pratima; Yu, Yingjie; Majumdar, Adhip PN

    2015-01-01

    Colorectal cancer (CRC) that comprises about 50% of estimated gastrointestinal cancers remains a high mortality malignancy. It is estimated that CRC will result in 9% of all cancer related deaths. CRC is the third leading malignancy affecting both males and females equally; with 9% of the estimated new cancer cases and 9% cancer related deaths. Sporadic CRC, whose incidence increases markedly with advancing age, occurs in 80%-85% patients diagnosed with CRC. Little is known about the precise biochemical mechanisms responsible for the rise in CRC with aging. However, many probable reasons for this increase have been suggested; among others they include altered carcinogen metabolism and the cumulative effects of long-term exposure to cancer-causing agents. Herein, we propose a role for self-renewing, cancer stem cells (CSCs) in regulating these cellular events. In this editorial, we have briefly described the recent work on the evolution of CSCs in gastro-intestinal track especially in the colon, and how they are involved in the age-related rise in CRC. Focus of this editorial is to provide a description of (1) CSC; (2) epigenetic and genetic mechanisms giving rise to CSCs; (3) markers of CSC; (4) characteristics; and (5) age-related increase in CSC in the colonic crypt. PMID:26600965

  11. THE ENERGY-REDOX AXIS IN AGING AND AGE-RELATED NEURODEGENERATION

    PubMed Central

    Yap, Li-Peng; Garcia, Jerome V.; Han, Derick; Cadenas, Enrique

    2009-01-01

    Decrease in mitochondrial energy-transducing capacity is a feature of the aging process that accompanies redox alterations, such as increased generation of mitochondrial oxidants, altered GSH status, and increased protein oxidation. The decrease in mitochondrial energy-transducing capacity and altered redox status should be viewed as a concerted process that embodies the mitochondrial energy – redox axis and is linked through various mechanisms including: (a) an inter-convertible reducing equivalents pool (i.e., NAD(P)+/NAD(P)H) and (b) redox-mediated protein post-translational modifications involved in energy metabolism. The energy–redox axis provides the rationale for therapeutic approaches targeted to each or both component(s) of the axis that effectively preserves or improve mitochondrial function and that have implications for aging and age-related neurodegenerative disorders. PMID:19716388

  12. Genetic studies of Age-related macular degeneration: lessons, challenges and opportunities for disease management

    PubMed Central

    Ratna Priya, Rinki; Chew, Emily Y.; Swaroop, Anand

    2012-01-01

    Age-related macular degeneration (AMD) is a common cause of visual impairment in individuals over 55 years of age worldwide. The varying clinical phenotypes of AMD result from contributions of genetic, epigenetic and non-genetic (environmental) factors. Genetic studies of AMD have come of age as a direct result of tremendous gains from human genome project, genomewide association studies and identification of numerous susceptibility loci. These findings have implicated immune response, high-density lipoprotein cholesterol metabolism, extracellular matrix, and angiogenesis signaling pathways in disease pathophysiology. Here, we address how the wealth of genetic findings in AMD is expected to impact the practice of medicine, providing opportunities for improved risk assessment, molecular diagnosis, preventive and therapeutic intervention. We propose that the potential of using genetic variants for monitoring treatment response (pharmacogenetics) may usher a new era of personalized medicine in the clinical management of AMD. PMID:23009893

  13. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions.

    PubMed

    Kassem, Moustapha; Marie, Pierre J

    2011-04-01

    Human aging is associated with bone loss leading to bone fragility and increased risk of fractures. The cellular and molecular causes of age-related bone loss are current intensive topic of investigation with the aim of identifying new approaches to abolish its negative effects on the skeleton. Age-related osteoblast dysfunction is the main cause of age-related bone loss in both men and women beyond the fifth decade and results from two groups of pathogenic mechanisms: extrinsic mechanisms that are mediated by age-related changes in bone microenvironment including changes in levels of hormones and growth factors, and intrinsic mechanisms caused by the osteoblast cellular senescence. The aim of this review is to provide a summary of the intrinsic senescence mechanisms affecting osteoblastic functions and how they can be targeted to abolish age-related osteoblastic dysfunction and bone loss associated with aging.

  14. Age-related macular degeneration: beyond anti-angiogenesis.

    PubMed

    Kent, David L

    2014-01-06

    Recently, anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration have been developed. These agents, originally developed for their anti-angiogenic mechanism of action, probably also work through an anti-permeability effect in preventing or reducing the amount of leakage from submacular neovascular tissue. Other treatment modalities include laser photocoagulation, photodynamic therapy with verteporfin, and submacular surgery. In reality, these latter treatments can be similarly categorized as anti-angiogenic because their sole aim is destroying or removing choroidal neovascularization (CNV). At the cellular level, CNV resembles stereotypical tissue repair that consists of several matricellular components in addition to neovascularization. In the retina, the clinical term CNV is a misnomer since the term may more appropriately be referred to as aberrant submacular repair. Furthermore, CNV raises a therapeutic conundrum: To complete or correct any reparative process in the body, angiogenesis becomes an essential component. Anti-angiogenic therapy, in all its guises, arrests repair and causes the hypoxic environment to persist, thus fueling pro-angiogenesis and further development of CNV as a component of aberrant repair. However, we realize that anti-vascular endothelial growth factor therapy preserves vision in patients with age-related macular degeneration, albeit temporarily and therefore, repeated treatment is needed. More importantly, however, anti-angiogenic therapy demonstrates that we can at the very least tolerate neovascular tissue beneath the macula and preserve vision in contrast to our historical approach of total vascular destruction. In this clinical scenario, it may be possible to look beyond anti-angiogenesis if our goal is facilitating submacular repair without destroying the neurosensory retina. Thus, in this situation of neovascular tolerance, it may be timely to consider treatments that facilitate

  15. Individual variability in human blood metabolites identifies age-related differences

    PubMed Central

    Murakami, Itsuo; Takada, Junko; Kondoh, Hiroshi; Yanagida, Mitsuhiro

    2016-01-01

    Metabolites present in human blood document individual physiological states influenced by genetic, epigenetic, and lifestyle factors. Using high-resolution liquid chromatography-mass spectrometry (LC-MS), we performed nontargeted, quantitative metabolomics analysis in blood of 15 young (29 ± 4 y of age) and 15 elderly (81 ± 7 y of age) individuals. Coefficients of variation (CV = SD/mean) were obtained for 126 blood metabolites of all 30 donors. Fifty-five RBC-enriched metabolites, for which metabolomics studies have been scarce, are highlighted here. We found 14 blood compounds that show remarkable age-related increases or decreases; they include 1,5-anhydroglucitol, dimethyl-guanosine, acetyl-carnosine, carnosine, ophthalmic acid, UDP-acetyl-glucosamine, N-acetyl-arginine, N6-acetyl-lysine, pantothenate, citrulline, leucine, isoleucine, NAD+, and NADP+. Six of them are RBC-enriched, suggesting that RBC metabolomics is highly valuable for human aging research. Age differences are partly explained by a decrease in antioxidant production or increasing inefficiency of urea metabolism among the elderly. Pearson’s coefficients demonstrated that some age-related compounds are correlated, suggesting that aging affects them concomitantly. Although our CV values are mostly consistent with those CVs previously published, we here report previously unidentified CVs of 51 blood compounds. Compounds having moderate to high CV values (0.4–2.5) are often modified. Compounds having low CV values, such as ATP and glutathione, may be related to various diseases because their concentrations are strictly controlled, and changes in them would compromise health. Thus, human blood is a rich source of information about individual metabolic differences. PMID:27036001

  16. The impact of sleep on age-related sarcopenia: Possible connections and clinical implications.

    PubMed

    Piovezan, Ronaldo D; Abucham, Julio; Dos Santos, Ronaldo Vagner Thomatieli; Mello, Marco Tulio; Tufik, Sergio; Poyares, Dalva

    2015-09-01

    Sarcopenia is a geriatric condition that comprises declined skeletal muscle mass, strength and function, leading to the risk of multiple adverse outcomes, including death. Its pathophysiology involves neuroendocrine and inflammatory factors, unfavorable nutritional habits and low physical activity. Sleep may play a role in muscle protein metabolism, although this hypothesis has not been studied extensively. Reductions in duration and quality of sleep and increases in prevalence of circadian rhythm and sleep disorders with age favor proteolysis, modify body composition and increase the risk of insulin resistance, all of which have been associated with sarcopenia. Data on the effects of age-related slow-wave sleep decline, circadian rhythm disruptions and obstructive sleep apnea (OSA) on hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary-gonadal (HPG), somatotropic axes, and glucose metabolism indicate that sleep disorder interventions may affect muscle loss. Recent research associating OSA with the risk of conditions closely related to the sarcopenia process, such as frailty and sleep quality impairment, indirectly suggest that sleep can influence skeletal muscle decline in the elderly. Several protein synthesis and degradation pathways are mediated by growth hormone (GH), insulin-like growth factor-1 (IGF-1), testosterone, cortisol and insulin, which act on the cellular and molecular levels to increase or reestablish muscle fiber, strength and function. Age-related sleep problems potentially interfere intracellularly by inhibiting anabolic hormone cascades and enhancing catabolic pathways in the skeletal muscle. Specific physical exercises combined or not with nutritional recommendations are the current treatment options for sarcopenia. Clinical studies testing exogenous administration of anabolic hormones have not yielded adequate safety profiles. Therapeutic approaches targeting sleep disturbances to normalize circadian rhythms and sleep homeostasis may

  17. Cognition enhancers in age-related cognitive decline.

    PubMed

    Riedel, W J; Jolles, J

    1996-04-01

    A review of recently published studies on the effect of cognition enhancers in non-demented human study participants is presented. The heterogeneity of the therapeutic target, age-associated cognitive decline, can be improved by separately treating groups in whom age-extrinsic factors may underlie cognitive pathology. Standardisation of cognitive assessments is necessary, since many different tests are applied to answer the same question. Modelling cognitive dysfunction, either by pharmacological or nonpharmacological means, in humans is highly recommended since it allows hypotheses to be tested in a clearly operationalised way. Predictive validity of the currently applied models for the clinical situation remains a problem, however. The scopolamine (hyoscine) model has, to a reasonable extent, predictive validity for the cholinergic agents. The results of 67 single-dose studies and 30 multiple-dose studies are summarised. All single-dose studies and 14 multiple-dose studies were carried out in young or elderly human volunteers. In 45 of 81 volunteer studies, models of cognitive dysfunction were employed. The scopolamine model was the most used (n = 21); the other studies induced cognitive dysfunction by means of benzodiazepines (8), hypoxia (7), alcohol (5) and sleep-deprivation (4). The remaining 16 multiple-dose studies were clinical trials of a duration varying between 2 weeks and 1 year (average duration was 14 weeks). In these trials, the effects of cognition enhancers were assessed in elderly people in whom impairment of memory, psychomotor performance or cognitive function was determined. These included age-associated memory impairment (AAMI) and age-associated cognitive decline (AACD). There were many studies in which the cognition enhancing properties of substances in humans were reliably demonstrated. The cognition enhancing properties of substances that are widely used, such as caffeine, nicotine and vitamins, may already be active against AACD. New

  18. Stereotactic radiotherapy in neovascular age-related macular degeneration

    PubMed Central

    Ranjbar, Mahdy; Kurz, Maximilian; Holzhey, Annekatrin; Melchert, Corinna; Rades, Dirk; Grisanti, Salvatore

    2016-01-01

    Abstract Stereotactic radiotherapy (SRT) is a new approach to treat neovascular age-related macular degeneration (nAMD). The INTREPID trial suggested that SRT could reduce the frequency of regular intravitreal injections (IVIs) with antivascular endothelial growth factor drugs, which are necessary to control disease activity. However, the efficacy of SRT in nAMD and resulting morphological changes have not been validated under real-life circumstances, an issue, which we would like to address in this retrospective analysis. Patients who met the INTREPID criteria for best responders were eligible for SRT. A total of 32 eyes of 32 patients were treated. Thereafter, patients were examined monthly for 12 months and received pro re nata IVI of aflibercept or ranibizumab. Outcome measures were: mean number of injections, best-corrected visual acuity, and morphological changes of the outer retina-choroid complex as well as patient safety. Mean number of IVI decreased by almost 50% during the 12 months after SRT compared to the year before, whereas visual acuity increased by one line (logMAR). Morphological evaluation showed that most changes affect outer retinal layers. Stereotactic radiotherapy significantly reduced IVI retreatment in nAMD patients under real-life circumstances. Therefore, SRT might be the first step to stop visual loss as a result of IVI undertreatment, which is a major risk. PMID:28033280

  19. Age-related similarities and differences in monitoring spatial cognition.

    PubMed

    Ariel, Robert; Moffat, Scott D

    2017-03-31

    Spatial cognitive performance is impaired in later adulthood but it is unclear whether the metacognitive processes involved in monitoring spatial cognitive performance are also compromised. Inaccurate monitoring could affect whether people choose to engage in tasks that require spatial thinking and also the strategies they use in spatial domains such as navigation. The current experiment examined potential age differences in monitoring spatial cognitive performance in a variety of spatial domains including visual-spatial working memory, spatial orientation, spatial visualization, navigation, and place learning. Younger and older adults completed a 2D mental rotation test, 3D mental rotation test, paper folding test, spatial memory span test, two virtual navigation tasks, and a cognitive mapping test. Participants also made metacognitive judgments of performance (confidence judgments, judgments of learning, or navigation time estimates) on each trial for all spatial tasks. Preference for allocentric or egocentric navigation strategies was also measured. Overall, performance was poorer and confidence in performance was lower for older adults than younger adults. In most spatial domains, the absolute and relative accuracy of metacognitive judgments was equivalent for both age groups. However, age differences in monitoring accuracy (specifically relative accuracy) emerged in spatial tasks involving navigation. Confidence in navigating for a target location also mediated age differences in allocentric navigation strategy use. These findings suggest that with the possible exception of navigation monitoring, spatial cognition may be spared from age-related decline even though spatial cognition itself is impaired in older age.

  20. Activity loss and depression in age-related macular degeneration.

    PubMed

    Rovner, Barry W; Casten, Robin J

    2002-01-01

    Age-related macular degeneration (AMD) is the most frequent cause of severe vision loss in older persons and is associated with high rates of disability and depression. The authors evaluated 51 patients with bilateral AMD to investigate the interrelationships of disease severity, disability, and depression and focused on loss of valued activities as an emblematic disabling consequence of AMD. They characterized depression by the Center for Epidemiologic Studies-Depression (CES-D) score, a syndromal state based on the CES-D, and as a level of distress (Index of Affective Suffering; IAS). Thirty subjects (58.8%) had loss of a valued, discretionary activity. They had worse visual acuity and more depressive symptoms and were represented in higher IAS levels than other subjects. Visual acuity was significantly correlated with IAS levels, but not with CES-D scores or syndromal depression. A regression model demonstrated that activity loss mediated the relationship between visual acuity and IAS level. Affective distress occurs in AMD, largely to the extent that valued activities are relinquished because of vision loss. IAS levels best illuminated this relationship, suggesting the value of this dimension of affective functioning in studies of the consequences of chronic disease.

  1. The Theory Behind the Age-Related Positivity Effect

    PubMed Central

    Reed, Andrew E.; Carstensen, Laura L.

    2012-01-01

    The “positivity effect” refers to an age-related trend that favors positive over negative stimuli in cognitive processing. Relative to their younger counterparts, older people attend to and remember more positive than negative information. Since the effect was initially identified and the conceptual basis articulated (Mather and Carstensen, 2005) scores of independent replications and related findings have appeared in the literature. Over the same period, a number of investigations have failed to observe age differences in the cognitive processing of emotional material. When findings are considered in theoretical context, a reliable pattern of evidence emerges that helps to refine conceptual tenets. In this article we articulate the operational definition and theoretical foundations of the positivity effect and review the empirical evidence based on studies of visual attention, memory, decision making, and neural activation. We conclude with a discussion of future research directions with emphasis on the conditions where a focus on positive information may benefit and/or impair cognitive performance in older people. PMID:23060825

  2. Age-Related Changes in Trabecular Meshwork Imaging

    PubMed Central

    Gold, Mark E.; Nagi, Kundandeep S.; Bell, Nicholas P.; Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Mankiewicz, Kimberly A.; Feldman, Robert M.

    2013-01-01

    Purpose. To evaluate the normal aging effects on trabecular meshwork (TM) parameters using Fourier domain anterior segment optical coherence tomography (ASOCT) images. Patients and Methods. One eye from 45 participants with open angles was imaged. Two independent readers measured TM area, TM length, and area and length of the TM interface shadow from 3 age groups (18–40, 41–60, and 61–80). Measurements were compared using stepwise regression analysis. Results. The average TM parameters were 0.0487 (±0.0092) mm2 for TM area, 0.5502 (±0.1033) mm for TM length, 0.1623 (±0.341) mm2 for TM interface shadow area, and 0.7755 (±0.1574) mm for TM interface shadow length. Interobserver reproducibility coefficients ranged from 0.45 (TM length) to 0.82 (TM area). TM area and length were not correlated with age. While the TM interface shadow length did not correlate with age, the TM interface shadow area increased with age. Race, sex, intraocular pressure, and gonioscopy score were not correlated with any TM parameters. Conclusion. Although the TM measurements were not correlated with age, the TM interface shadow area increased with age. Further study is required to determine whether there is any relationship between the age-related ASOCT findings of the TM interface shadow area and physiologic function. PMID:24163814

  3. Parabiosis for the study of age-related chronic disease

    PubMed Central

    Eggel, Alexander; Wyss-Coray, Tony

    2014-01-01

    Summary Modern medicine wields the power to treat large numbers of diseases and injuries most of us would have died from just a hundred years ago. In view of this tremendous achievement, it can seem as if progress has slowed, and we have been unable to impact the most devastating diseases of our time. Chronic diseases of age such as cardiovascular disease, diabetes, osteoarthritis, or Alzheimer’s disease turn out to be of a complexity that may require transformative ideas and paradigms to understand and treat them. Parabiosis, which mimics aspects of the naturally occurring shared blood supply in conjoined twins in humans and certain animals, may just have the power to be such a transformative experimental paradigm. Forgotten and now shunned in many countries, it has contributed to major breakthroughs in tumor biology, endocrinology, and transplantation research in the past century, and a set of new studies in the US and Britain report stunning advances in stem cell biology and tissue regeneration using parabiosis between young and old mice. We review here briefly the history of parabiosis and discuss its utility to study physiological and pathophysiological processes. We argue that parabiosis is a technique that should enjoy wider acceptance and application, and that policies should be revisited especially if one is to study complex age-related, chronic disorders. PMID:24496774

  4. Fundus Autofluorescence in Age-related Macular Degeneration

    PubMed Central

    Ly, Angelica; Nivison-Smith, Lisa; Assaad, Nagi; Kalloniatis, Michael

    2017-01-01

    ABSTRACT Fundus autofluorescence (FAF) provides detailed insight into the health of the retinal pigment epithelium (RPE). This is highly valuable in age-related macular degeneration (AMD) as RPE damage is a hallmark of the disease. The purpose of this paper is to critically appraise current clinical descriptions regarding the appearance of AMD using FAF and to integrate these findings into a chair-side reference. A wide variety of FAF patterns have been described in AMD, which is consistent with the clinical heterogeneity of the disease. In particular, FAF imaging in early to intermediate AMD has the capacity to reveal RPE alterations in areas that appear normal on funduscopy, which aids in the stratification of cases and may have visually significant prognostic implications. It can assist in differential diagnoses and also represents a reliable, sensitive method for distinguishing reticular pseudodrusen. FAF is especially valuable in the detection, evaluation, and monitoring of geographic atrophy and has been used as an endpoint in clinical trials. In neovascular AMD, FAF reveals distinct patterns of classic choroidal neovascularization noninvasively and may be especially useful for determining which eyes are likely to benefit from therapeutic intervention. FAF represents a rapid, effective, noninvasive imaging method that has been underutilized, and incorporation into the routine assessment of AMD cases should be considered. However, the practicing clinician should also be aware of the limitations of the modality, such as in the detection of foveal involvement and in the distinction of phenotypes (hypo-autofluorescent drusen from small areas of geographic atrophy). PMID:27668639

  5. Ocular surface temperature in age-related macular degeneration.

    PubMed

    Sodi, Andrea; Matteoli, Sara; Giacomelli, Giovanni; Finocchio, Lucia; Corvi, Andrea; Menchini, Ugo

    2014-01-01

    Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD) eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320). The ocular surface temperature (OST) of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA) test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272). OST in AMD patients was significantly lower than in controls (P > 0.05). Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD.

  6. Cellular models and therapies for age-related macular degeneration

    PubMed Central

    Forest, David L.; Johnson, Lincoln V.; Clegg, Dennis O.

    2015-01-01

    ABSTRACT Age-related macular degeneration (AMD) is a complex neurodegenerative visual disorder that causes profound physical and psychosocial effects. Visual impairment in AMD is caused by the loss of retinal pigmented epithelium (RPE) cells and the light-sensitive photoreceptor cells that they support. There is currently no effective treatment for the most common form of this disease (dry AMD). A new approach to treating AMD involves the transplantation of RPE cells derived from either human embryonic or induced pluripotent stem cells. Multiple clinical trials are being initiated using a variety of cell therapies. Although many animal models are available for AMD research, most do not recapitulate all aspects of the disease, hampering progress. However, the use of cultured RPE cells in AMD research is well established and, indeed, some of the more recently described RPE-based models show promise for investigating the molecular mechanisms of AMD and for screening drug candidates. Here, we discuss innovative cell-culture models of AMD and emerging stem-cell-based therapies for the treatment of this vision-robbing disease. PMID:26035859

  7. Age-related hearing loss increases cross-modal distractibility.

    PubMed

    Puschmann, Sebastian; Sandmann, Pascale; Bendixen, Alexandra; Thiel, Christiane M

    2014-10-01

    Recent electrophysiological studies have provided evidence that changes in multisensory processing in auditory cortex cannot only be observed following extensive hearing loss, but also in moderately hearing-impaired subjects. How the reduced auditory input affects audio-visual interactions is however largely unknown. Here we used a cross-modal distraction paradigm to investigate multisensory processing in elderly participants with an age-related high-frequency hearing loss as compared to young and elderly subjects with normal hearing. During the experiment, participants were simultaneously presented with independent streams of auditory and visual input and were asked to categorize either the auditory or visual information while ignoring the other modality. Unisensory sequences without any cross-modal input served as control conditions to assure that all participants were able to perform the task. While all groups performed similarly in these unisensory conditions, hearing-impaired participants showed significantly increased error rates when confronted with distracting cross-modal stimulation. This effect could be observed in both the auditory and the visual task. Supporting these findings, an additional regression analysis indicted that the degree of high-frequency hearing loss significantly modulates cross-modal visual distractibility in the auditory task. These findings provide new evidence that already a moderate sub-clinical hearing loss, a common phenomenon in the elderly population, affects the processing of audio-visual information.

  8. Therapeutic Modalities of Exudative Age-related Macular Degeneration

    PubMed Central

    Mavija, Milka; Alimanovic, Emina; Jaksic, Vesna; Kasumovic, Sanja Sefic; Cekic, Sonja; Stamenkovic, Miroslav

    2014-01-01

    Introduction: Age-related macular degeneration (AMD) is a leading cause of irreversible serious vision damage in persons over 50 years of age. In treating AMD many medicaments are applied such as inhibitors of vascular endothelial growth factor (VEGF), have been very carefully included over the last few years after a series of study research. Aims: To analyze the past methods of treatment, discuss emerging therapies which could advance the treatment of exudative AMD. The past anti-VEGF therapies require frequent repetitions of administration, with uncertain visual acuity recovery, as not all patients react to anti-VEGF therapy. Consequently, there is a need to find out additional therapies which could improve the treatment of exudative AMD. The real aim in the treating of AMD is to prevent CNV development. Methods: A survey of the current clinical research and results in the field of the present and future treatments of exudative AMD. Results: There are many areas of research into new methods of the exudative AMD treatment. Conclusion: The future therapies for exudative AMD treatment have a potential not only to reduce the frequency of administration and follow-up visits, but also to improve effects of treatment by targeting additional ways of CNV development, increasing the aptitude of target binding and extending durability of treatment. PMID:25568535

  9. Age-related changes of serum lipoprotein oxidation in rats.

    PubMed

    Nakamura, Yukiko Kawashima; Omaye, Stanley Teruo

    2004-01-23

    Oxidation of low-density lipoprotein (LDL) may be a prelude to atherogenesis and directly age related. To assess whether there may be relationship between age and plasma lipoprotein (LP) oxidation, we studied copper-mediated LP oxidation isolated from the blood of 2 months, 7 months, and 15 months old rats. We determined whether the susceptibility of LP to oxidation might be related to vitamin C levels in serum, vitamin E levels in LP, or the total antioxidant capacity (TAC) of serum or LP. Serum vitamin C content was inversely related to age, malondialdehyde (MDA) propagation rate, and maximum change of MDA concentrations. However, there were no significant relationships between age and serum TAC, LP TAC, serum vitamin E, or the ratio of LP vitamin E to serum vitamin C content. The lag phase of MDA formation was significantly decreased with age and the ratio of LP vitamin E content to serum vitamin C content, increased with age. Maximum change of MDA concentration was positively correlated with the ratio of LP vitamin E contents to serum vitamin C concentration. Thus, as the rat ages, vitamin C status decreases with an increased LP susceptibility to oxidation. It is tempting to speculate that enhanced LP oxidation in older rats may reflect a reduced amount of recycling of LDL vitamin E by serum vitamin C.

  10. DNA Damage: From Chronic Inflammation to Age-Related Deterioration

    PubMed Central

    Ioannidou, Anna; Goulielmaki, Evi; Garinis, George A.

    2016-01-01

    To lessen the “wear and tear” of existence, cells have evolved mechanisms that continuously sense DNA lesions, repair DNA damage and restore the compromised genome back to its native form. Besides genome maintenance pathways, multicellular organisms may also employ adaptive and innate immune mechanisms to guard themselves against bacteria or viruses. Recent evidence points to reciprocal interactions between DNA repair, DNA damage responses and aspects of immunity; both self-maintenance and defense responses share a battery of common players and signaling pathways aimed at safeguarding our bodily functions over time. In the short-term, this functional interplay would allow injured cells to restore damaged DNA templates or communicate their compromised state to the microenvironment. In the long-term, however, it may result in the (premature) onset of age-related degeneration, including cancer. Here, we discuss the beneficial and unrewarding outcomes of DNA damage-driven inflammation in the context of tissue-specific pathology and disease progression. PMID:27826317

  11. Gene transfer for neovascular age-related macular degeneration.

    PubMed

    Campochiaro, Peter A

    2011-05-01

    Age-related macular degeneration (AMD) is a complex disease that has two phases: a degenerative phase often referred to as nonneovascular AMD (non-NVAMD) or dry AMD and a phase dominated by growth of new blood vessels in the subretinal space, referred to as NVAMD or wet AMD. Advances in the understanding of the molecular pathogenesis of NVAMD have led to new drug therapies that have provided major benefits to patients. However, those treatments require frequent intraocular injections that in many patients must be continued indefinitely to maintain visual benefits. Gene transfer to augment expression of endogenous antiangiogenic proteins is an alternative approach that has the potential to provide long-term stability in patients with NVAMD. Studies in animal models that mimic aspects of NVAMD have identified several possible transgenes, and a clinical trial in patients with advanced NVAMD has suggested that the approach may be feasible. Many important questions remain, but the rationale and preliminary data are compelling. The results of two ongoing clinical trials may answer several of the questions and help direct future research.

  12. Age-related differences in recovery from simulated jet lag.

    PubMed

    Moline, M L; Pollak, C P; Monk, T H; Lester, L S; Wagner, D R; Zendell, S M; Graeber, R C; Salter, C A; Hirsch, E

    1992-02-01

    Six healthy young men and eight early middle-aged men were isolated from environmental time cues for 15 days. For the first 6-7 days (one or two nights adaptation, four nights baseline), their sleep and meals were scheduled to approximate their habitual patterns. Their daily routines were then shifted 6 hours earlier by terminating the sixth or seventh sleep episode 6 hours early. The new schedules were followed for the next 8 or 9 days. Important age-related differences in adjustment to this single 6-hour schedule shift were found. For the first 4-day interval after the shift, middle-aged subjects had larger increases of waking time during the sleep period and earlier termination of sleep than young subjects. They also reported larger decreases in alertness and well-being and larger increases in sleepiness, weariness and effort required to perform daily functions. The rate of adjustment of the circadian core temperature rhythm to the new schedule did not differ between groups. These results suggest that the symptoms reported by the middle-aged subjects may be due mainly to difficulty maintaining sleep at early times of the circadian day. The compensatory response to sleep deprivation may also be less robust in middle-aged individuals traveling eastbound.

  13. Breed- and age-related differences in canine mammary tumors

    PubMed Central

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-01-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted. PMID:27127342

  14. Reticular pseudodrusen in age-related macular degeneration.

    PubMed

    Hogg, Ruth Esther

    2014-08-01

    Historically, drusen, which are recognized as the hallmark of age-related macular degeneration (AMD), have been described in terms of size, margins, and texture, and several studies have emphasized the importance of large soft drusen particularly when combined with focal pigmentary irregularities in determining the risk of progression to neovascular AMD. However, recent developments in imaging over the past decade have revealed a further distinct phenotype strongly associated with the development of late AMD, namely, reticular pseudodrusen (RPD) or reticular drusen. Reticular pseudodrusen appear as yellowish interlacing networks in the fundus and, although visible on color photography, are better visualized using infrared imaging or spectral domain optical coherence tomography. Studies correlating spectral domain optical coherence tomography and confocal scanning laser ophthalmoscopy have shown that RPD are subretinal deposits located internal to the retinal pigment epithelium in contrast to traditional drusen, which are located external to the retinal pigment epithelium. As multiple longitudinal studies have revealed RPD are strong predictors for progression to both neovascular AMD and geographic atrophy, the interest in understanding the role that RPD play in the pathogenesis of AMD has grown. This review focuses on the current literature concerning RPD and considers what is currently known regarding their epidemiology, risk factors, appearance in both retinal imaging and histology, impact on visual function, relationship to other AMD lesions, and association with the development of late AMD.

  15. Breed- and age-related differences in canine mammary tumors.

    PubMed

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-04-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted.

  16. Mechanism of Inflammation in Age-Related Macular Degeneration

    PubMed Central

    Parmeggiani, Francesco; Romano, Mario R.; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease. PMID:23209345

  17. Mechanism of inflammation in age-related macular degeneration.

    PubMed

    Parmeggiani, Francesco; Romano, Mario R; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease.

  18. Age-Related Macular Degeneration: A Scientometric Analysis

    PubMed Central

    Ramin, Shahrokh; Soheilian, Masoud; Habibi, Gholamreza; Ghazavi, Roghayeh; Gharebaghi, Reza; Heidary, Fatemeh

    2015-01-01

    Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject. The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993–2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic’s structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed. The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research. Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning. PMID:26060829

  19. Effects of Age-Related Macular Degeneration on Postural Sway

    PubMed Central

    Chatard, Hortense; Tepenier, Laure; Jankowski, Olivier; Aussems, Antoine; Allieta, Alain; Beydoun, Talal; Salah, Sawsen; Bucci, Maria P.

    2017-01-01

    Purpose: To compare the impact of unilateral vs. bilateral age-related macular degeneration (AMD) on postural sway, and the influence of different visual conditions. The hypothesis of our study was that the impact of AMD will be different between unilateral and bilateral AMD subjects compared to age-matched healthy elderly. Methods: Postural stability was measured with a platform (TechnoConcept®) in 10 elderly unilateral AMD subjects (mean age: 71.1 ± 4.6 years), 10 elderly bilateral AMD subjects (mean age: 70.8 ± 6.1 years), and 10 healthy age-matched control subjects (mean age: 69.8 ± 6.3 years). Four visual conditions were tested: both eyes viewing condition (BEV), dominant eye viewing (DEV), non-dominant eye viewing (NDEV), and eyes closed (EC). We analyzed the surface area, the length, the mean speed, the anteroposterior (AP), and mediolateral (ML) displacement of the center of pressure (CoP). Results: Bilateral AMD subjects had a surface area (p < 0.05) and AP displacement of the CoP (p < 0.01) higher than healthy elderly. Unilateral AMD subjects had more AP displacement of the CoP (p < 0.05) than healthy elderly. Conclusions: We suggest that ADM subjects could have poor postural adaptive mechanisms leading to increase their postural instability. Further studies will aim to improve knowledge on such issue and to develop reeducation techniques in these patients.

  20. Object crowding in age-related macular degeneration

    PubMed Central

    Wallace, Julian M.; Chung, Susana T. L.; Tjan, Bosco S.

    2017-01-01

    Crowding, the phenomenon of impeded object identification due to clutter, is believed to be a key limiting factor of form vision in the peripheral visual field. The present study provides a characterization of object crowding in age-related macular degeneration (AMD) measured at the participants' respective preferred retinal loci with binocular viewing. Crowding was also measured in young and age-matched controls at the same retinal locations, using a fixation-contingent display paradigm to allow unlimited stimulus duration. With objects, the critical spacing of crowding for AMD participants was not substantially different from controls. However, baseline contrast energy thresholds in the noncrowded condition were four times that of the controls. Crowding further exacerbated deficits in contrast sensitivity to three times the normal crowding-induced contrast energy threshold elevation. These findings indicate that contrast-sensitivity deficit is a major limiting factor of object recognition for individuals with AMD, in addition to crowding. Focusing on this more tractable deficit of AMD may lead to more effective remediation and technological assistance. PMID:28129416

  1. Automatic age-related macular degeneration detection and staging

    NASA Astrophysics Data System (ADS)

    van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.

    2013-03-01

    Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.

  2. Impact of age related macular degeneration on quality of life

    PubMed Central

    Hassell, J B; Lamoureux, E L; Keeffe, J E

    2006-01-01

    Aims To describe the impact of age related macular degeneration (AMD) on quality of life and explore the association with vision, health, and demographic variables. Methods Adult participants diagnosed with AMD and with impaired vision (visual acuity <6/12) were assessed with the Impact of Vision Impairment (IVI) questionnaire. Participants rated the extent that vision restricted participation in activities affecting quality of life and completed the Short Form General Health Survey (SF‐12) and a sociodemographic questionnaire. Results The mean age of the 106 participants (66% female) was 83.6 years (range 64–98). One quarter had mild vision impairment, (VA<6/12–6/18) and 75% had moderate or severely impaired vision. Participants reported from at least “a little” concern on 23 of the 32