Science.gov

Sample records for age-related muscle loss

  1. Age-Related Loss of Muscle Mass and Strength

    PubMed Central

    Goldspink, Geoffrey

    2012-01-01

    Age-related muscle wasting and increased frailty are major socioeconomic as well as medical problems. In the quest to extend quality of life it is important to increase the strength of elderly people sufficiently so they can carry out everyday tasks and to prevent them falling and breaking bones that are brittle due to osteoporosis. Muscles generate the mechanical strain that contributes to the maintenance of other musculoskeletal tissues, and a vicious circle is established as muscle loss results in bone loss and weakening of tendons. Molecular and proteomic approaches now provide strategies for preventing age-related muscle wasting. Here, attention is paid to the role of the GH/IGF-1 axis and the special role of the IGFI-Ec (mechano growth factor/MGF) which is derived from the IGF-I gene by alternative splicing. During aging MGF levels decline but when administered MGF activates the muscle satellite (stem) cells that “kick start” local muscle repair and induces hypertrophy. PMID:22506111

  2. Age-related loss of muscle fibres is highly variable amongst mouse skeletal muscles.

    PubMed

    Sheard, Philip W; Anderson, Ross D

    2012-04-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength, attributable in part to muscle fibre loss. We are currently unable to prevent fibre loss because we do not know what causes it. To provide a platform from which to better understand the causes of muscle fibre death we have quantified fibre loss in several muscles of aged C57Bl/6J mice. Comparison of muscle fibre numbers on dystrophin-immunostained transverse tissue sections at 6 months of age with those at 24 months shows a significant fibre loss in extensor digitorum longus and soleus, but not in sternomastoid or cleidomastoid muscles. The muscles of the elderly mice were mostly lighter than their younger counterparts, but fibres in the elderly muscles were of about the same cross-sectional area. This study shows that the contribution of fibre death to sarcopenia is highly variable and that there is no consistent pattern of age-related fibre loss between skeletal muscles.

  3. Life-Long Wheel Running Attenuates Age-Related Fiber Loss in the Plantaris Muscle of Mice: a Pilot Study.

    PubMed

    Suwa, M; Ishioka, T; Kato, J; Komaita, J; Imoto, T; Kida, A; Yokochi, T

    2016-06-01

    The purpose of this study was to investigate whether long-term wheel running would attenuate age-related loss of muscle fiber. Male ICR mice were divided into young (Y, n=12, aged 3 months), old-sedentary (OS, n=5, aged 24 months), and old-exercise (OE, n=6, aged 24 months) groups. The OE group started spontaneous wheel running at 3 months and continued until 24 months of age. Soleus and plantaris muscles were fixed in 4% paraformaldehyde buffer. The fixed muscle was digested in a 50% NaOH solution to isolate single fiber and then fiber number was quantified. The masses of the soleus and plantaris muscles were significantly lower at 24 months than at 3 months of age, and this age-related difference was attenuated by wheel running (P<0.05). Soleus muscle fiber number did not differ among the groups. In the plantaris muscle, the fiber number in the OS group (1 288±92 fibers) was significantly lower than in the Y group (1 874±93 fibers), and this decrease was attenuated in the OE group (1 591±80 fibers) (P<0.05). These results suggest that age-related fiber loss occurs only in the fast-twitch fiber-rich muscle of mice, and that life-long wheel running exercise can prevent this fiber loss.

  4. Stuck in gear: age-related loss of variable gearing in skeletal muscle.

    PubMed

    Holt, Natalie C; Danos, Nicole; Roberts, Thomas J; Azizi, Emanuel

    2016-04-01

    Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (P<0.05) from 19.1±5.0 kPa and 188.5±24.2 MPa, respectively, in young rats to 39.1±4.2 kPa and 328.0±48.3 MPa in old rats, indicating a mechanical change in the interaction between contractile and connective tissues. Gear ratio decreased with increasing force in young (P<0.001) but not old (P=0.72) muscles, indicating that variable gearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age.

  5. Stuck in gear: age-related loss of variable gearing in skeletal muscle.

    PubMed

    Holt, Natalie C; Danos, Nicole; Roberts, Thomas J; Azizi, Emanuel

    2016-04-01

    Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (P<0.05) from 19.1±5.0 kPa and 188.5±24.2 MPa, respectively, in young rats to 39.1±4.2 kPa and 328.0±48.3 MPa in old rats, indicating a mechanical change in the interaction between contractile and connective tissues. Gear ratio decreased with increasing force in young (P<0.001) but not old (P=0.72) muscles, indicating that variable gearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age. PMID:27030778

  6. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  7. An analysis of age-related loss of skeletal muscle mass and its significance on osteoarthritis in a Korean population

    PubMed Central

    Kim, Hun-Tae; Kim, Hyun-Je; Ahn, Hee-Yun; Hong, Young-Hoon

    2016-01-01

    Background/Aims: This study was conducted in order to analyze the effects of sarcopenia on age-related osteoarthritis (OA) of the knee in a Korean population. Methods: All the Korean subjects who visited the Yeungnam University Medical Center Health Promotion Center between 2008 and 2012 in order to undergo a routine medical examination were enrolled. A total of 5,723 young, healthy people (2,959 males, 2,764 females) enrolled as normal subjects and 23,473 subjects (13,006 males and 10,467 females) were included for evaluation of the effects of sarcopenia on OA. There were 266 subjects who followed-up bioelectrical impedance analysis at a 4-year interval. Of 327 subjects enrolled in this study, knees with anteroposterior X-rays were assessed according to the Kellgren-Lawrence (K/L) grade. Results: Skeletal muscle mass index (SMI) and basal metabolic rate (BMR) showed a steady decrease with the advance of age (p < 0.01), but SMI showed strong positive correlation with BMR (r = 0.72, β = 30.96, p < 0.01). During the 4-year interval, BMR showed a significant decrease with aging (p < 0.01), consistently with the decrease of SMI. Knees with normal SMI were prone to be designated as K/L grade 0 or 1; however, subjects with sarcopenia showed a trend toward the higher K/L grade, classified as knee radiological osteoarthritis (ROA) (p < 0.01). Conclusions: The results of this study may indicate that sarcopenia as age-related loss of skeletal muscle mass is interactively correlated with the presence and severity of age-related OA. PMID:26976151

  8. Site-specific thigh muscle loss as an independent phenomenon for age-related muscle loss in middle-aged and older men and women.

    PubMed

    Abe, Takashi; Patterson, Kaitlyn M; Stover, Caitlin D; Geddam, David A R; Tribby, Aaron C; Lajza, David G; Young, Kaelin C

    2014-06-01

    The purpose of this study was to examine the relationships between dual-energy X-ray absorptiometry (DXA)-determined appendicular lean mass (aLM) and ultrasound-measured thigh muscle thickness (MTH) ratio and between aLM or thigh MTH ratio and zigzag walking performance. Eighty-one middle-aged and older adults (41 men and 40 women) aged 50 to 74 years volunteered for the study. Approximately two thirds of the subjects (34 men and 17 women) carried out regular sports activity (at least >2 times a week) including running and cycling exercise. MTH was measured using B-mode ultrasound at two sites on the anterior (A50) and posterior (P50) aspects of the mid-thigh. A50:P50 MTH ratio was calculated to evaluate site-specific thigh muscle loss. aLM and percent body fat were also determined using a DXA. Men had lower body fat and higher aLM than women. Anterior and posterior thigh MTH as well as A50:P50 MTH ratio was higher in men than in women. Zigzag walking time was faster in men than in women. Anterior and posterior thigh MTH was positively (p < 0.001) correlated to aLM and aLM index in men and women. However, A50:P50 MTH ratio was not significantly correlated with aLM and aLM index in both sexes. There was no significant correlation between aLM index and zigzag walking time in men and women. A50:P50 MTH ratio was inversely (p < 0.05) correlated to zigzag walking time in both men and women. Our results suggest that thigh MTH ratio is independent of age-related muscle mass loss detected by aLM.

  9. Age-related site-specific muscle loss in the thigh and zigzag walking performance in older men and women.

    PubMed

    Abe, Takashi; Loenneke, J P; Thiebaud, R S; Ogawa, M; Mitsukawa, N

    2014-12-01

    To investigate the relationships between site-specific muscle loss in the thigh, muscle quality and zigzag walking performance, 40 men and 41 women aged 65-79 years had muscle thickness (MTH) measured by ultrasound at nine sites on the anterior and posterior aspects of the body. Skeletal muscle mass (SM) was estimated from an ultrasound-derived prediction equation. Site-specific thigh sarcopenia was calculated using ultrasound-measured MTH at the anterior/posterior aspects of the thigh (AP-MTH ratio). Zigzag walking time (ZWT) and maximum isometric knee extension (KE) and flexion (KF) torques were measured. Muscle quality (torque/thigh SM) and knee joint strength index (torque/body mass) were calculated. There were no significant correlations between SM index and ZWT. However, AP-MTH ratio was inversely correlated (P < 0.05) to ZWT in men (r = -0.335) and women (r = -0.309). ZWT was also inversely correlated (P < 0.05) to KE-strength index in both sexes (men, r = -0.328; women, r = -0.372). Similarly, ZWT was correlated to KF-strength index (r = -0.497) and muscle quality (r = -0.322) in women, but not in men. After adjusting for age, height and body mass, AP-MTH ratio was inversely correlated to ZWT in men (r = -0.325) and tended to be correlated to ZWT in women (r = -0.263). Zigzag walking performance may be associated with site-specific thigh sarcopenia in older men and women.

  10. Age-Related Hearing Loss

    MedlinePlus

    ... hearing loss. Here are the most common ones: Styles of hearing aids Source: NIH/NIDCD Hearing aids ... list of organizations, contact: NIDCD Information Clearinghouse 1 Communication Avenue Bethesda, MD 20892-3456 Toll-free Voice: ( ...

  11. Does the Amount of Fat Mass Predict Age-Related Loss of Lean Mass, Muscle Strength, and Muscle Quality in Older Adults?

    PubMed Central

    Ding, Jingzhong; Stenholm, Sari; Caserotti, Paolo; Houston, Denise K.; Nicklas, Barbara J.; You, Tongjian; Lee, Jung Sun; Visser, Marjolein; Newman, Anne B.; Schwartz, Ann V.; Cauley, Jane A.; Tylavsky, Frances A.; Goodpaster, Bret H.; Kritchevsky, Stephen B.; Harris, Tamara B.

    2011-01-01

    Background. An excessive amount of adipose tissue may contribute to sarcopenia and may be one mechanism underlying accelerated loss of muscle mass and strength with aging. We therefore examined the association of baseline total body fat with changes in leg lean mass, muscle strength, and muscle quality over 7 years of follow-up and whether this link was explained by adipocytokines and insulin resistance. Methods. Data were from 2,307 men and women, aged 70–79 years, participating in the Health, Aging, and Body Composition study. Total fat mass was acquired from dual energy X-ray absorptiometry. Leg lean mass was assessed by dual energy X-ray absorptiometry in Years 1, 2, 3, 4, 5, 6, and 8. Knee extension strength was measured by isokinetic dynamometer in Years 1, 2, 4, 6, and 8. Muscle quality was calculated as muscle strength divided by leg lean mass. Results. Every SD greater fat mass was related to 1.3 kg more leg lean mass at baseline in men and 1.5 kg in women (p < .01). Greater fat mass was also associated with a greater decline in leg lean mass in both men and women (0.02 kg/year, p < .01), which was not explained by higher levels of adipocytokines and insulin resistance. Larger fat mass was related to significantly greater muscle strength but significantly lower muscle quality at baseline (p < .01). No significant differences in decline of muscle strength and quality were found. Conclusions. High fatness was associated with lower muscle quality, and it predicts accelerated loss of lean mass. Prevention of greater fatness in old age may decrease the loss of lean mass and maintain muscle quality and thereby reducing disability and mobility impairments. PMID:21572082

  12. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle

    PubMed Central

    Sakellariou, Giorgos K.; Pearson, Timothy; Lightfoot, Adam P.; Nye, Gareth A.; Wells, Nicola; Giakoumaki, Ifigeneia I.; Griffiths, Richard D.; McArdle, Anne; Jackson, Malcolm J.

    2016-01-01

    Age-related skeletal muscle dysfunction is the underlying cause of morbidity that affects up to half the population aged 80 and over. Considerable evidence indicates that oxidative damage and mitochondrial dysfunction contribute to the sarcopenic phenotype that occurs with aging. To examine this, we administered the mitochondria-targeted antioxidant mitoquinone mesylate {[10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenylphosphonium; 100 μM} to wild-type C57BL/6 mice for 15 wk (from 24 to 28 mo of age) and investigated the effects on age-related loss of muscle mass and function, changes in redox homeostasis, and mitochondrial organelle integrity and function. We found that mitoquinone mesylate treatment failed to prevent age-dependent loss of skeletal muscle mass associated with myofiber atrophy or alter a variety of in situ and ex vivo muscle function analyses, including maximum isometric tetanic force, decline in force after a tetanic fatiguing protocol, and single-fiber-specific force. We also found evidence that long-term mitoquinone mesylate administration did not reduce mitochondrial reactive oxygen species or induce significant changes in muscle redox homeostasis, as assessed by changes in 4-hydroxynonenal protein adducts, protein carbonyl content, protein nitration, and DNA damage determined by the content of 8-hydroxydeoxyguanosine. Mitochondrial membrane potential, abundance, and respiration assessed in permeabilized myofibers were not significantly altered in response to mitoquinone mesylate treatment. Collectively, these findings demonstrate that long-term mitochondria-targeted mitoquinone mesylate administration failed to attenuate age-related oxidative damage in skeletal muscle of old mice or provide any protective effect in the context of muscle aging.—Sakellariou, G. K., Pearson, T., Lightfoot, A. P., Nye, G. A., Wells, N., Giakoumaki, I. I., Griffiths, R. D., McArdle, A., Jackson, M. J. Long-term administration of the

  13. Age-related hair pigment loss.

    PubMed

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. PMID:26370651

  14. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy

    PubMed Central

    Sakellariou, Giorgos K.; Pearson, Timothy; Lightfoot, Adam P.; Nye, Gareth A.; Wells, Nicola; Giakoumaki, Ifigeneia I.; Vasilaki, Aphrodite; Griffiths, Richard D.; Jackson, Malcolm J.; McArdle, Anne

    2016-01-01

    Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging. PMID:27681159

  15. New Clues to Age-Related Hearing Loss

    MedlinePlus

    ... gov/news/fullstory_161359.html New Clues to Age-Related Hearing Loss Older people's brains have a ... the brain's ability to process speech declines with age. For the study, Alessandro Presacco and colleagues divided ...

  16. Mouse models of age-related mitochondrial neurosensory hearing loss.

    PubMed

    Han, Chul; Someya, Shinichi

    2013-07-01

    Hearing loss is the most common sensory disorder in the elderly population. Overall, 10% of the population has a hearing loss in the US, and this age-related hearing disorder is projected to afflict more than 28 million Americans by 2030. Age-related hearing loss is associated with loss of sensory hair cells (sensory hearing loss) and/or spiral ganglion neurons (neuronal hearing loss) in the cochlea of the inner ear. Many lines of evidence indicate that oxidative stress and associated mitochondrial dysfunction play a central role in age-related neurodegenerative diseases and are a cause of age-related neurosensory hearing loss. Yet, the molecular mechanisms of how oxidative stress and/or mitochondrial dysfunction lead to hearing loss during aging remain unclear, and currently there is no treatment for this age-dependent disorder. Several mouse models of aging and age-related diseases have been linked to age-related mitochondrial neurosensory hearing loss. Evaluation of these animal models has offered basic knowledge of the mechanism underlying hearing loss associated with oxidative stress, mitochondrial dysfunction, and aging. Here we review the evidence that specific mutations in the mitochondrial DNA or nuclear DNA that affect mitochondrial function result in increased oxidative damage and associated loss of sensory hair cells and/or spiral ganglion neurons in the cochlea during aging, thereby causing hearing loss in these mouse models. Future studies comparing these models will provide further insight into fundamental knowledge about the disordered process of hearing and treatments to improve the lives of individuals with communication disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.

  17. Age-related cochlear hair cell loss in the chinchilla.

    PubMed

    Bhattacharyya, T K; Dayal, V S

    1985-01-01

    The spiral organ of the chinchilla was studied by the surface-preparation technique in four different age groups: 1 month, 6 months, 1 year, and 4 years, to assess age-related hair cell loss. Decrease in hair cell population is linearly related to age, and damage rate of outer hair cells is greater than that of inner hair cells. The mean percentage of damaged total outer hair cells was 0.60%, 1.16%, 1.71%, and 7.07% in animals in 1 month, 6 months, 1 year, and 4 years of age, respectively. Outer hair cell loss was greatest in the apex of the cochlea and, of these cells, the outermost row was the most affected. Damage to inner hair cells also increases with age. Age-related apical cochlear cell loss in the chinchilla is comparable to that observed in other laboratory animals. PMID:3970507

  18. Endocrine causes of age-related bone loss and osteoporosis.

    PubMed

    Riggs, B Lawrence

    2002-01-01

    Women have an early postmenopausal phase of rapid bone loss that lasts for 5-10 years after menopause, whereas both ageing women and men have a slow continuous phase of bone loss that lasts indefinitely. In women, the rapid phase is mediated mainly by loss of the direct restraining effect of oestrogen on bone cell function, whereas the slow phase is mediated mainly by the loss of oestrogen action on extraskeletal calcium homeostasis leading to net calcium wasting and secondary hyperparathyroidism. Because elderly men have low serum bioavailable oestrogen and testosterone levels, and because recent data suggest that oestrogen is the main sex steroid regulating bone metabolism in men, oestrogen deficiency may also be the principal cause of bone loss in elderly men. Decreased bone formation contributes to bone loss in both genders and may be caused by a decreased production of growth hormone and IGF1 as well as oestrogen and testosterone deficiency. Other changes in endocrine secretion, although present in the elderly, seem less important in the pathophysiology of age-related bone loss and osteoporosis. PMID:11855691

  19. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  20. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension.

  1. Age-related hearing loss increases cross-modal distractibility.

    PubMed

    Puschmann, Sebastian; Sandmann, Pascale; Bendixen, Alexandra; Thiel, Christiane M

    2014-10-01

    Recent electrophysiological studies have provided evidence that changes in multisensory processing in auditory cortex cannot only be observed following extensive hearing loss, but also in moderately hearing-impaired subjects. How the reduced auditory input affects audio-visual interactions is however largely unknown. Here we used a cross-modal distraction paradigm to investigate multisensory processing in elderly participants with an age-related high-frequency hearing loss as compared to young and elderly subjects with normal hearing. During the experiment, participants were simultaneously presented with independent streams of auditory and visual input and were asked to categorize either the auditory or visual information while ignoring the other modality. Unisensory sequences without any cross-modal input served as control conditions to assure that all participants were able to perform the task. While all groups performed similarly in these unisensory conditions, hearing-impaired participants showed significantly increased error rates when confronted with distracting cross-modal stimulation. This effect could be observed in both the auditory and the visual task. Supporting these findings, an additional regression analysis indicted that the degree of high-frequency hearing loss significantly modulates cross-modal visual distractibility in the auditory task. These findings provide new evidence that already a moderate sub-clinical hearing loss, a common phenomenon in the elderly population, affects the processing of audio-visual information.

  2. Age-related structural changes in upper extremity muscle tissue in a non-human primate model

    PubMed Central

    Santago, Anthony C.; Plate, Johannes F.; Shively, Carol A.; Register, Thomas C.; Smith, Thomas L.; Saul, Katherine R.

    2015-01-01

    Background Longitudinal studies of upper extremity aging in humans include logistical concerns that animal models can overcome. The vervet is a promising species with which to study aging related processes. However, age-related changes in upper extremity muscle structure have not been quantified in this species. This study measured age-related changes to muscle structure, examined relationships between muscle structure and measures of physical performance, and evaluated the presence of rotator cuff tears. Methods Muscle structure: volume, optimal fiber length, physiological cross-sectional area (PCSA), of 10 upper extremity muscles was quantified from the right upper limb of 5 middle aged and 6 older adult female vervets. Results Total measured PCSA was smaller (p=0.001) in the older adult vervets than the middle aged vervets. Muscle volume reduction predominate the age-related reductions in PCSA. Total measured PCSA was not correlated to any measures of physical performance. No rotator cuff tears were observed. Supraspinatus volume was relatively larger and deltoid volume relatively smaller in the vervet compared to a human. Conclusion The vervet is an appropriate translational model for age-related upper extremity muscle volume loss. Functional measures were not correlated to PCSA, suggesting the vervets may have enough strength for normal function despite loss of muscle tissue. Reduced relative demand on the supraspinatus may be responsible for the lack of naturally occurring rotator cuff tears. PMID:25963066

  3. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy.

    PubMed

    Buford, Thomas W; Anton, Stephen D; Judge, Andrew R; Marzetti, Emanuele; Wohlgemuth, Stephanie E; Carter, Christy S; Leeuwenburgh, Christiaan; Pahor, Marco; Manini, Todd M

    2010-10-01

    Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia.

  4. Protective effect of myostatin gene deletion on aging-related muscle metabolic decline.

    PubMed

    Chabi, B; Pauly, M; Carillon, J; Carnac, G; Favier, F B; Fouret, G; Bonafos, B; Vanterpool, F; Vernus, B; Coudray, C; Feillet-Coudray, C; Bonnieu, A; Lacan, D; Koechlin-Ramonatxo, C

    2016-06-01

    While myostatin gene deletion is a promising therapy to fight muscle loss during aging, this approach induces also skeletal muscle metabolic changes such as mitochondrial deficits, redox alteration and increased fatigability. In the present study, we evaluated the effects of aging on these features in aged wild-type (WT) and mstn knockout (KO) mice. Moreover, to determine whether an enriched-antioxidant diet may be useful to prevent age-related disorders, we orally administered to the two genotypes a melon concentrate rich in superoxide dismutase for 12 weeks. We reported that mitochondrial functional abnormalities persisted (decreased state 3 and 4 of respiration; p<0.05) in skeletal muscle from aged KO mice; however, differences with WT mice were attenuated at old age in line with reduced difference on running endurance between the two genotypes. Interestingly, we showed an increase in glutathione levels, associated with lower lipid peroxidation levels in KO muscle. Enriched antioxidant diet reduced the aging-related negative effects on maximal aerobic velocity and running limit time (p<0.05) in both groups, with systemic adaptations on body weight. The redox status and the hypertrophic phenotype appeared to be beneficial to KO mice, mitigating the effect of aging on the skeletal muscle metabolic remodeling.

  5. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses.

    PubMed

    Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo

    2013-03-01

    We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing.

  6. Understanding Age-Related Changes in Skeletal Muscle Metabolism: Differences Between Females and Males.

    PubMed

    Gheller, Brandon J F; Riddle, Emily S; Lem, Melinda R; Thalacker-Mercer, Anna E

    2016-07-17

    Skeletal muscle is the largest metabolic organ system in the human body. As such, metabolic dysfunction occurring in skeletal muscle impacts whole-body nutrient homeostasis. Macronutrient metabolism changes within the skeletal muscle with aging, and these changes are associated in part with age-related skeletal muscle remodeling. Moreover, age-related changes in skeletal muscle metabolism are affected differentially between males and females and are likely driven by changes in sex hormones. Intrinsic and extrinsic factors impact observed age-related changes and sex-related differences in skeletal muscle metabolism. Despite some support for sex-specific differences in skeletal muscle metabolism with aging, more research is necessary to identify underlying differences in mechanisms. Understanding sex-specific aging skeletal muscle will assist with the development of therapies to attenuate adverse metabolic and functional outcomes.

  7. Neural Alterations in Acquired Age-Related Hearing Loss

    PubMed Central

    Mudar, Raksha A.; Husain, Fatima T.

    2016-01-01

    Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although, we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches. PMID:27313556

  8. Glycolytic fast-twitch muscle fiber restoration counters adverse age-related changes in body composition and metabolism.

    PubMed

    Akasaki, Yuichi; Ouchi, Noriyuki; Izumiya, Yasuhiro; Bernardo, Barbara L; Lebrasseur, Nathan K; Walsh, Kenneth

    2014-02-01

    Aging is associated with the development of insulin resistance, increased adiposity, and accumulation of ectopic lipid deposits in tissues and organs. Starting in mid-life there is a progressive decline in lean muscle mass associated with the preferential loss of glycolytic, fast-twitch myofibers. However, it is not known to what extent muscle loss and metabolic dysfunction are causally related or whether they are independent epiphenomena of the aging process. Here, we utilized a skeletal-muscle-specific, conditional transgenic mouse expressing a constitutively active form of Akt1 to examine the consequences of glycolytic, fast-twitch muscle growth in young vs. middle-aged animals fed standard low-fat chow diets. Activation of the Akt1 transgene led to selective skeletal muscle hypertrophy, reversing the loss of lean muscle mass observed upon aging. The Akt1-mediated increase in muscle mass led to reductions in fat mass and hepatic steatosis in older animals, and corrected age-associated impairments in glucose metabolism. These results indicate that the loss of lean muscle mass is a significant contributor to the development of age-related metabolic dysfunction and that interventions that preserve or restore fast/glycolytic muscle may delay the onset of metabolic disease.

  9. Age-related hearing loss: ear and brain mechanisms.

    PubMed

    Frisina, Robert D

    2009-07-01

    Loss of sensory function in the aged has serious consequences for economic productivity, quality of life, and healthcare costs in the billions each year. Understanding the neural and molecular bases will pave the way for biomedical interventions to prevent, slow, or reverse these conditions. This chapter summarizes new information regarding age changes in the auditory system involving both the ear (peripheral) and brain (central). A goal is to provide findings that have implications for understanding some common biological underpinnings that affect sensory systems, providing a basis for eventual interventions to improve overall sensory functioning, including the chemical senses.

  10. Age-Related Differences in Muscle Shear Moduli in the Lower Extremity.

    PubMed

    Akagi, Ryota; Yamashita, Yota; Ueyasu, Yuta

    2015-11-01

    This study investigated the age-related differences in shear moduli of the rectus femoris muscle (RF), the lateral head of the gastrocnemius muscle (LG) and the soleus muscle (SOL) using shear wave ultrasound elastography. Thirty-one young individuals and 49 elderly individuals volunteered for this study. The shear modulus of RF was determined at 50% of the thigh length, and those of LG and SOL were determined at 30% of the lower leg length. RF and LG shear moduli were significantly higher in young individuals than in elderly individuals, but there was no age-related difference in SOL shear modulus. From the standpoint of an index reflecting muscle mechanical properties, it is suggested that the lower muscle shear moduli of RF and LG are the reason for the decreased explosive muscle strength in the lower extremity and the increased risk of falls for elderly individuals.

  11. Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents.

    PubMed

    Ballak, Sam B; Degens, Hans; de Haan, Arnold; Jaspers, Richard T

    2014-03-01

    Human aging is associated with a progressive decline in skeletal muscle mass and force generating capacity, however the exact mechanisms underlying these changes are not fully understood. Rodents models have often been used to enhance our understanding of mechanisms of age-related changes in human skeletal muscle. However, to what extent age-related alterations in determinants of muscle force generating capacity observed in rodents resemble those in humans has not been considered thoroughly. This review compares the effect of aging on muscle force generating determinants (muscle mass, fiber size, fiber number, fiber type distribution and muscle specific tension), in men and male rodents at similar relative age. It appears that muscle aging in male F344*BN rat resembles that in men most; 32-35-month-old rats exhibit similar signs of muscle weakness to those of 70-80-yr-old men, and the decline in 36-38-month-old rats is similar to that in men aged over 80 yrs. For male C57BL/6 mice, age-related decline in muscle force generating capacity seems to occur only at higher relative age than in men. We conclude that the effects on determinants of muscle force differ between species as well as within species, but qualitatively show the same pattern as that observed in men.

  12. Age-related changes in neuromuscular function of the quadriceps muscle in physically active adults.

    PubMed

    Mau-Moeller, Anett; Behrens, Martin; Lindner, Tobias; Bader, Rainer; Bruhn, Sven

    2013-06-01

    Substantial evidence exists for the age-related decline in maximal strength and strength development. Despite the importance of knee extensor strength for physical function and mobility in the elderly, studies focusing on the underlying neuromuscular mechanisms of the quadriceps muscle weakness are limited. The aim of this study was to investigate the contributions of age-related neural and muscular changes in the quadriceps muscle to decreases in isometric maximal voluntary torque (iMVT) and explosive voluntary strength. The interpolated twitch technique and normalized surface electromyography (EMG) signal during iMVT were analyzed to assess changes in neural drive to the muscles of 15 young and 15 elderly volunteers. The maximal rate of torque development as well as rate of torque development, impulse and neuromuscular activation in the early phase of contraction were determined. Spinal excitability was estimated using the H reflex technique. Changes at the muscle level were evaluated by analyzing the contractile properties and lean mass. The age-related decrease in iMVT was accompanied by a decline in voluntary activation and normalized surface EMG amplitude. Mechanical parameters of explosive voluntary strength were reduced while the corresponding muscle activation remained primarily unchanged. The spinal excitability of the vastus medialis was not different while M wave latency was longer. Contractile properties and lean mass were reduced. In conclusion, the age-related decline in iMVT of the quadriceps muscle might be due to a reduced neural drive and changes in skeletal muscle properties. The decrease in explosive voluntary strength seemed to be more affected by muscular than by neural changes. PMID:23453325

  13. Age-related structural and functional changes of low back muscles.

    PubMed

    Hiepe, Patrick; Gussew, Alexander; Rzanny, Reinhard; Kurz, Eduard; Anders, Christoph; Walther, Mario; Scholle, Hans-Christoph; Reichenbach, Jürgen R

    2015-05-01

    During aging declining maximum force capacity with more or less unchanged fatigability is observed with the underlying mechanisms still not fully understood. Therefore, we compared morphology and function of skeletal muscles between different age groups. Changes in high-energy phosphate turnover (PCr, Pi and pH) and muscle functional MRI (mfMRI) parameters, including proton transverse relaxation time (T2), diffusion (D) and vascular volume fraction (f), were investigated in moderately exercised low back muscles of young and late-middle-aged healthy subjects with (31)P-MR spectroscopy, T2- and diffusion-weighted MRI at 3T. In addition, T1-weighted MRI data were acquired to determine muscle cross-sectional areas (CSA) and to assess fat infiltration into muscle tissue. Except for pH, both age groups showed similar load-induced MR changes and rates of perceived exertion (RPE), which indicates comparable behavior of muscle activation at moderate loads. Changes of mfMRI parameters were significantly associated with RPE in both cohorts. Age-related differences were observed, with lower pH and higher Pi/ATP ratios as well as lower D and f values in the late-middle-aged subjects. These findings are ascribed to age-related changes of fiber type composition, fiber size and vascularity. Interestingly, post exercise f was negatively associated with fat infiltration with the latter being significantly higher in late-middle-aged subjects. CSA of low back muscles remained unchanged, while CSA of inner back muscle as well as mean T2 at rest were associated with maximum force capacity. Overall, applying the proposed MR approach provides evidence of age-related changes in several muscle tissue characteristics and gives new insights into the physiological processes that take place during aging.

  14. Age-Related Hearing Loss: Quality of Care for Quality of Life

    ERIC Educational Resources Information Center

    Li-Korotky, Ha-Sheng

    2012-01-01

    Age-related hearing loss (ARHL), known as presbycusis, is characterized by progressive deterioration of auditory sensitivity, loss of the auditory sensory cells, and central processing functions associated with the aging process. ARHL is the third most prevalent chronic condition in older Americans, after hypertension and arthritis, and is a…

  15. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation.

    PubMed

    Fan, Ruoxun; Gong, He; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  16. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    PubMed Central

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  17. Serum homocysteine and folate concentrations are associated with prevalent age-related hearing loss.

    PubMed

    Gopinath, Bamini; Flood, Victoria M; Rochtchina, Elena; McMahon, Catherine M; Mitchell, Paul

    2010-08-01

    Elevated total serum homocysteine (tHcy) concentrations associated with vitamin B-12 or folate deficiencies may adversely affect blood flow to the cochlea, leading to age-related hearing loss (presbycusis). However, only 2 small cross-sectional studies have assessed the link between folate, vitamin B-12, or tHcy and presbycusis. We aimed to determine both the cross-sectional and longitudinal association between serum concentrations of folate, vitamin B-12, or tHcy and risk of age-related hearing loss. The Blue Mountains Hearing Study is a population-based survey of age-related hearing loss (1997-1999 to 2002-2004). Presbycusis was measured in 2956 participants (aged >or=50 y) and was defined as the pure-tone average of frequencies 0.5, 1.0, 2.0, and 4.0 kHz >25 dB hearing level (HL). Serum concentrations of folate, vitamin B-12, and tHcy were determined from blood samples. Participants with elevated tHcy (>20 micromol/L) concentrations had a 64% increased likelihood of prevalent hearing loss (>25 dB HL) [multivariate-adjusted odds ratio (OR) 1.64; 95% CI, 1.06-2.53]. Low serum folate levels (<11 nmol/L) increased the odds of prevalent mild hearing loss (>25-40 dB HL), multivariate-adjusted [OR 1.37 (CI 1.04-1.81)]. Serum vitamin B-12, however, was not significantly associated with prevalent hearing loss. Serum folate, vitamin B-12, and tHcy concentrations were also not significantly associated with an increased risk of incident hearing loss. Serum concentrations of tHcy and folate were associated with age-related hearing loss cross-sectionally, but no temporal links were observed, which could be due to insufficient study power. Further, large prospective studies will be required in the future to assess these associations.

  18. Detection of age-related duplications in mtDNA from human muscles and bones.

    PubMed

    Lacan, Marie; Thèves, Catherine; Keyser, Christine; Farrugia, Audrey; Baraybar, Jose-Pablo; Crubézy, Eric; Ludes, Bertrand

    2011-03-01

    Several studies have demonstrated the age-related accumulation of duplications in the D-loop of mitochondrial DNA (mtDNA) extracted from skeletal muscle. This kind of mutation had not yet been studied in bone. The detection of age-related mutations in bone tissue could help to estimate age at death within the context of legal medicine or/and anthropological identification procedures, when traditional osteological markers studied are absent or inefficient. As we detected an accumulation of a point mutation in mtDNA from an older individual's bones in a previous study, we tried here to identify if three reported duplications (150, 190, 260 bp) accumulate in this type of tissue. We developed a sensitive method which consists in the use of back-to-back primers during amplification followed by an electrophoresis capillary analysis. The aim of this study was to confirm that at least one duplication appears systematically in muscle tissue after the age of 20 and to evaluate the duplication age appearance in bones extracted from the same individuals. We found that the number of duplications increase from 38 years and that at least one duplicated fragment is present in 50% of cases after 70 years in this tissue. These results confirm that several age-related mutations can be detected in the D-loop of mtDNA and open the way for the use of molecular markers for age estimation in forensic and/or anthropological identification.

  19. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo.

    PubMed

    Stenroth, Lauri; Peltonen, Jussi; Cronin, Neil J; Sipilä, Sarianna; Finni, Taija

    2012-11-01

    This study examined the concurrent age-related differences in muscle and tendon structure and properties. Achilles tendon morphology and mechanical properties and triceps surae muscle architecture were measured from 100 subjects [33 young (24 ± 2 yr) and 67 old (75 ± 3 yr)]. Motion analysis-assisted ultrasonography was used to determine tendon stiffness, Young's modulus, and hysteresis during isometric ramp contractions. Ultrasonography was used to measure muscle architectural features and size and tendon cross-sectional area. Older participants had 17% lower (P < 0.01) Achilles tendon stiffness and 32% lower (P < 0.001) Young's modulus than young participants. Tendon cross-sectional area was also 16% larger (P < 0.001) in older participants. Triceps surae muscle size was smaller (P < 0.05) and gastrocnemius medialis muscle fascicle length shorter (P < 0.05) in old compared with young. Maximal plantarflexion force was associated with tendon stiffness and Young's modulus (r = 0.580, P < 0.001 and r = 0.561, P < 0.001, respectively). Comparison between old and young subjects with similar strengths did not reveal a difference in tendon stiffness. The results suggest that regardless of age, Achilles tendon mechanical properties adapt to match the level of muscle performance. Old people may compensate for lower tendon material properties by increasing tendon cross-sectional area. Lower tendon stiffness in older subjects might be beneficial for movement economy in low-intensity locomotion and thus optimized for their daily activities.

  20. Age-related relationships between muscle fat content and metabolic traits in growing rabbits.

    PubMed

    Gondret, Florence; Hocquette, Jean-François; Herpin, Patrick

    2004-01-01

    This study was aimed at ascribing muscle fat accretion in growing rabbits to changes in several extra-muscular and intra-muscular metabolic pathways. At 10 wk or 20 wk of age (n = 8 per group), tissue lipid content and metabolic indicators of nutrient anabolic or catabolic pathways were simultaneously assessed in the liver, perirenal fat, the heart and the Longissimus lumborum (LL) muscle, together with plasma concentrations in energy-yielding metabolites. Lipid content significantly increased with age (P < or = 0.01) in the glycolytic LL muscle (+67%) and the oxidative heart (+30%). In the former muscle, it was statistically correlated (r2 = 0.68; P < 0.01) to the changes in the orientation of muscle metabolism towards an enhanced lipogenic capacity and a depressed capacity for fatty acid transport and nutrient oxidation, and to indications of lower availability in plasma glucose and triglycerides. In the heart, age-related fat accretion was positively associated (r2 = 0.48, P < 0.01) to intrinsic metabolic changes towards an enhanced lipogenic capacity, together with a lower availability in plasma glucose. Variables representative of cardiac catabolic capacity tended to be negatively correlated to fat content in the heart (r2 = 0.15, P = 0.07). In growing rabbits, muscle fat content variation was proven to result from a reciprocal balance between catabolic and anabolic fatty acid fluxes, rather than to be assigned to one specific energy metabolic pathway.

  1. Aging-Related Geniohyoid Muscle Atrophy Is Related to Aspiration Status in Healthy Older Adults

    PubMed Central

    2013-01-01

    Background. Age-related muscle weakness due to atrophy and fatty infiltration in orofacial muscles may be related to swallowing deficits in older adults. An important component of safe swallowing is the geniohyoid (GH) muscle, which helps elevate and stabilize the hyoid bone, thus protecting the airway. This study aimed to explore whether aging and aspiration in older adults were related to GH muscle atrophy and fatty infiltration. Method. Eighty computed tomography scans of the head and neck from 40 healthy older (average age 78 years) and 40 younger adults (average age 32 years) were analyzed. Twenty aspirators and 20 nonaspirators from the 40 older adults had been identified previously. Two-dimensional views in the sagittal and coronal planes were used to measure the GH cross-sectional area and fatty infiltration. Results. GH cross-sectional area was larger in men than in women (p < .05). Decreased cross-sectional area was associated with aging (p < .05), and cross-sectional area was significantly smaller in aspirators compared with nonaspirators, but only among the older men (p < .01). Increasing fatty infiltration was associated with aging in the middle (p < .05) and posterior (p < .01) portions of the GH muscle. There was no significant difference in fatty infiltration of the GH muscle among aspirators and nonaspirators. Conclusion. GH muscle atrophy was associated with aging and aspiration. Fatty infiltration in the GH muscle was increased with aging but not related to aspiration status. These findings suggest that GH muscle atrophy may be a component of decreased swallowing safety and aspiration in older adults and warrants further investigation. PMID:23112114

  2. Age-related hearing impairment and the triad of acquired hearing loss

    PubMed Central

    Yang, Chao-Hui; Schrepfer, Thomas; Schacht, Jochen

    2015-01-01

    Understanding underlying pathological mechanisms is prerequisite for a sensible design of protective therapies against hearing loss. The triad of age-related, noise-generated, and drug-induced hearing loss displays intriguing similarities in some cellular responses of cochlear sensory cells such as a potential involvement of reactive oxygen species (ROS) and apoptotic and necrotic cell death. On the other hand, detailed studies have revealed that molecular pathways are considerably complex and, importantly, it has become clear that pharmacological protection successful against one form of hearing loss will not necessarily protect against another. This review will summarize pathological and pathophysiological features of age-related hearing impairment (ARHI) in human and animal models and address selected aspects of the commonality (or lack thereof) of cellular responses in ARHI to drugs and noise. PMID:26283913

  3. Antioxidant-enriched diet does not delay the progression of age-related hearing loss.

    PubMed

    Sha, Su-Hua; Kanicki, Ariane; Halsey, Karin; Wearne, Kimberly Anne; Schacht, Jochen

    2012-05-01

    Oxidative stress has been linked to noise- and drug-induced as well as age-related hearing loss. Antioxidants can attenuate the decline of cochlear structure and function after exposure to noise or drugs, but it is debated as to whether they can protect from age-related hearing loss. In a long-term longitudinal study, 10-month-old female CBA/J mice were placed on either a control or antioxidant-enriched diet and monitored through 24 months of age. Supplementation with vitamins A, C, and E, L-carnitine, and α-lipoic acid significantly increased the antioxidant capacity of inner ear tissues. However, by 24 months of age, the magnitude of hearing loss was equal between the two groups. Likewise, there were no significant differences in hair cell loss or degeneration of spiral ganglion cells. We conclude that dietary manipulations can alter cochlear antioxidant capacity but do not ameliorate age-related sensorineural hearing loss in the CBA/J mouse. PMID:22154190

  4. Effects of chronic estrogen treatment on modulating age-related bone loss in female mice.

    PubMed

    Syed, Farhan A; Mödder, Ulrike Il; Roforth, Matthew; Hensen, Ira; Fraser, Daniel G; Peterson, James M; Oursler, Merry Jo; Khosla, Sundeep

    2010-11-01

    While female mice do not have the equivalent of a menopause, they do undergo reproductive senescence. Thus, to dissociate the effects of aging versus estrogen deficiency on age-related bone loss, we sham-operated, ovariectomized, or ovariectomized and estrogen-replaced female C57/BL6 mice at 6 months of age and followed them to age 18 to 22 months. Lumbar spines and femurs were excised for analysis, and bone marrow hematopoietic lineage negative (lin-) cells (enriched for osteoprogenitor cells) were isolated for gene expression studies. Six-month-old intact control mice were euthanized to define baseline parameters. Compared with young mice, aged/sham-operated mice had a 42% reduction in lumbar spine bone volume/total volume (BV/TV), and maintaining constant estrogen levels over life in ovariectomized/estrogen-treated mice did not prevent age-related trabecular bone loss at this site. By contrast, lifelong estrogen treatment of ovariectomized mice completely prevented the age-related reduction in cortical volumetric bone mineral density (vBMD) and thickness at the tibial diaphysis present in the aged/sham-operated mice. As compared with cells from young mice, lin- cells from aged/sham-operated mice expressed significantly higher mRNA levels for osteoblast differentiation and proliferation marker genes. These data thus demonstrate that, in mice, age-related loss of cortical bone in the appendicular skeleton, but not loss of trabecular bone in the spine, can be prevented by maintaining constant estrogen levels over life. The observed increase in osteoblastic differentiation and proliferation marker gene expression in progenitor bone marrow cells from aged versus young mice may represent a compensatory mechanism in response to ongoing bone loss. PMID:20499336

  5. Gulliver meets Descartes: early modern concepts of age-related memory loss.

    PubMed

    Schäfer, Daniel

    2003-03-01

    Age-related memory loss was a marginal issue in medical discussions during early modern times and until well into the second half of the 17th century. There are many possible explanations: the lack of similar traditions in antiquity and in the Middle Ages, insufficient physiological and morphological knowledge of the brain, and the underlying conflict between idealistic and materialistic perspectives on the functions of the soul and the conditions of these in old age. After these boundaries had been pushed back by the influence of Cartesianism and Iatromechanism, the problem of age-related memory loss was increasingly regarded as a physical illness and began to receive more attention. This trend first occurred in medicine, before spreading to the literary world, where the novel "Gulliver's Travels" is one clear and famous example.

  6. Impulse noise exposure in early adulthood accelerates age-related hearing loss.

    PubMed

    Xiong, Min; Yang, Chuanhong; Lai, Huangwen; Wang, Jian

    2014-06-01

    The aim of this study was to investigate the influence of impulse noise on age-related hearing loss. The study consisted of two groups. Each group contained 109 men. Group I comprised veterans with normal hearing at the end of 1979 sino-vietnamese war. All these veterans were randomly selected from Guangzhou Military Command. Group II were men with no military experience randomly chosen from the health examination center of Guangzhou General Hospital of Guangzhou Military Command. Pure-tone thresholds of these two groups were measured and compared. The pure-tone thresholds of Group I were poorer than those of Group II at the frequencies of 4, 6 and 8 kHz. Thus, impulse noise accelerates age-related hearing loss.

  7. Exercise boosts hippocampal volume by preventing early age-related gray matter loss.

    PubMed

    Fuss, Johannes; Biedermann, Sarah V; Falfán-Melgoza, Claudia; Auer, Matthias K; Zheng, Lei; Steinle, Jörg; Hörner, Felix; Sartorius, Alexander; Ende, Gabriele; Weber-Fahr, Wolfgang; Gass, Peter

    2014-02-01

    Recently, a larger hippocampus was found in exercising mice and men. Here we studied the morphological underpinnings in wheel running mice by longitudinal magnetic resonance imaging. Voxel-based morphometry revealed that running increases hippocampal volume by inhibiting an early age-related gray matter loss. Disruption of neurogenesis-related neuroplasticity by focalized irradiation is sufficient to block positive effects of exercise on macroscopic brain morphology. PMID:24178895

  8. Age-related weakness of proximal muscle studied with motor cortical mapping: a TMS study.

    PubMed

    Plow, Ela B; Varnerin, Nicole; Cunningham, David A; Janini, Daniel; Bonnett, Corin; Wyant, Alexandria; Hou, Juliet; Siemionow, Vlodek; Wang, Xiao-Feng; Machado, Andre G; Yue, Guang H

    2014-01-01

    Aging-related weakness is due in part to degeneration within the central nervous system. However, it is unknown how changes to the representation of corticospinal output in the primary motor cortex (M1) relate to such weakness. Transcranial magnetic stimulation (TMS) is a noninvasive method of cortical stimulation that can map representation of corticospinal output devoted to a muscle. Using TMS, we examined age-related alterations in maps devoted to biceps brachii muscle to determine whether they predicted its age-induced weakness. Forty-seven right-handed subjects participated: 20 young (22.6 ± 0.90 years) and 27 old (74.96 ± 1.35 years). We measured strength as force of elbow flexion and electromyographic activation of biceps brachii during maximum voluntary contraction. Mapping variables included: 1) center of gravity or weighted mean location of corticospinal output, 2) size of map, 3) volume or excitation of corticospinal output, and 4) response density or corticospinal excitation per unit area. Center of gravity was more anterior in old than in young (p<0.001), though there was no significant difference in strength between the age groups. Map size, volume, and response density showed no significant difference between groups. Regardless of age, center of gravity significantly predicted strength (β = -0.34, p = 0.005), while volume adjacent to the core of map predicted voluntary activation of biceps (β = 0.32, p = 0.008). Overall, the anterior shift of the map in older adults may reflect an adaptive change that allowed for the maintenance of strength. Laterally located center of gravity and higher excitation in the region adjacent to the core in weaker individuals could reflect compensatory recruitment of synergistic muscles. Thus, our study substantiates the role of M1 in adapting to aging-related weakness and subtending strength and muscle activation across age groups. Mapping from M1 may offer foundation for an examination of mechanisms that preserve

  9. Superoxide Dismutase 1 Loss Disturbs Intracellular Redox Signaling, Resulting in Global Age-Related Pathological Changes

    PubMed Central

    2014-01-01

    Aging is characterized by increased oxidative stress, chronic inflammation, and organ dysfunction, which occur in a progressive and irreversible manner. Superoxide dismutase (SOD) serves as a major antioxidant and neutralizes superoxide radicals throughout the body. In vivo studies have demonstrated that copper/zinc superoxide dismutase-deficient (Sod1−/−) mice show various aging-like pathologies, accompanied by augmentation of oxidative damage in organs. We found that antioxidant treatment significantly attenuated the age-related tissue changes and oxidative damage-associated p53 upregulation in Sod1−/− mice. This review will focus on various age-related pathologies caused by the loss of Sod1 and will discuss the molecular mechanisms underlying the pathogenesis in Sod1−/− mice. PMID:25276767

  10. Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle.

    PubMed

    Chalil, Sreeda; Pierre, Nicolas; Bakker, Astrid D; Manders, Ralph J; Pletsers, Annelies; Francaux, Marc; Klein-Nulend, Jenneke; Jaspers, Richard T; Deldicque, Louise

    2015-12-25

    Anabolic resistance reflects the inability of skeletal muscle to maintain protein mass by appropriate stimulation of protein synthesis. We hypothesized that endoplasmic reticulum (ER) stress contributes to anabolic resistance in skeletal muscle with aging. Muscles were isolated from adult (8 mo) and old (26 mo) mice and weighed. ER stress markers in each muscle were quantified, and the anabolic response to leucine was assessed by measuring the phosphorylation state of S6K1 in soleus and EDL using an ex vivo muscle model. Aging reduced the muscle-to-body weight ratio in soleus, gastrocnemius, and plantaris, but not in EDL and tibialis anterior. Compared to adult mice, the expression of ER stress markers BiP and IRE1α was higher in EDL, and phospho-eIF2α was higher in soleus and EDL of old mice. S6K1 response to leucine was impaired in soleus, but not in EDL, suggesting that anabolic resistance contributes to soleus weight loss in old mice. Pre-incubation with ER stress inducer tunicamycin before leucine stimulation increased S6K1 phosphorylation beyond the level reached by leucine alone. Since tunicamycin did not impair leucine-induced S6K1 response, and based on the different ER stress marker regulation patterns, ER stress is probably not involved in anabolic resistance in skeletal muscle with aging.

  11. Obesity and medicare expenditure: accounting for age-related height loss.

    PubMed

    Onwudiwe, Nneka C; Stuart, Bruce; Zuckerman, Ilene H; Sorkin, John D

    2011-01-01

    To determine the relationship between BMI and Medicare expenditure for adults 65-years and older and determine whether this relationship changes after accounting for misclassification due to age-related height loss. Using a cross sectional study design, the relationship between BMI and fee-for-service Medicare expenditure was examined among beneficiaries who completed the Medicare Current Beneficiary Survey (MCBS) in 2002, were not enrolled in Medicare Health Maintenance Organization, had a self-reported height and weight, and were 65 and older (n = 7,706). Subjects were classified as underweight, normal weight, overweight, obese (obese I), and severely obese (obese II/III). To adjust BMI for the artifactual increase associated with age-related height loss, the reported height was transformed by adding the sex-specific age-associated height loss to the reported height in MCBS. The main outcome variable was total Medicare expenditure. There was a significant U-shaped pattern between unadjusted BMI and Medicare expenditure: underweight $4,581 (P < 0.0003), normal weight $3,744 (P < 0.0000), overweight $3,115 (reference), obese I $3,686 (P < 0.0039), and obese II/III $4,386 (P < 0.0000). This pattern persisted after accounting for height loss: underweight $4,640 (P < 0.0000), normal weight $3,451 (P < 0.0507), overweight $3,165 (reference), obese I $3,915 (P < 0.0010), and obese II/III $4,385 (P < 0.0004) compared to overweight. In older adults, minimal cost is not found at "normal" BMI, but rather in overweight subjects with higher spending in the obese and underweight categories. Adjusting for loss-of-height with aging had little affect on cost estimates.

  12. Understanding the Experience of Age-Related Vestibular Loss in Older Individuals: A Qualitative Study

    PubMed Central

    Li, Carol; Bridges, John F. P.; Agrawal, Yuri

    2016-01-01

    Background Inner ear balance (or vestibular) function declines with age and is associated with decreased mobility and an increased risk of falls in older individuals. We sought to understand the lived experience of older adults with vestibular loss in order to improve care in this population. Methods Qualitative data were derived from semi-structured interviews of individuals aged 65 years or older presenting to the Balance and Falls Prevention Clinic from February 1, 2014 to March 30, 2015 for evaluation of age-related vestibular loss. Transcripts were analyzed using interpretive phenomenological analysis. We created a taxonomy of overarching superordinate themes based on the World Health Organization's International Classification of Functioning, Disability, and Health (ICF) Framework, and classified key dimensions within each of these themes. Results Sixteen interviews were conducted with individuals (mean age 76.0 years, 75 % female) with age-related vestibular loss. The three superordinate themes and associated key dimensions were (1) body impairment (including depression, fatigue, fear/anxiety, and problems with concentrating and memory); (2) activity limitation and participation restriction (isolation, needing to stop in the middle of activities, reduced participation relative to expectations, reduced ability to drive or travel, and problems with bending/looking up, standing, and walking); and (3) environmental influences (needing help with daily activities). All participants reported difficulty walking. Conclusions Older adults report that vestibular loss impacts their body functioning and restricts their participation in activities. The specific key dimensions uncovered by this qualitative study can be used to evaluate care from the patient's perspective. PMID:26739817

  13. Age-related hearing loss in sea lions and their scientists

    NASA Astrophysics Data System (ADS)

    Schusterman, Ronald J.; Southall, Brandon; Kastak, David; Reichmuth Kastak, Colleen

    2002-05-01

    Interest in the hearing capabilities of California sea lions (Zalophus californianus) was first stimulated by the echolocation hypothesis and more recently by rising concern about coastal noise pollution. During a series of audiometric tests, we measured the absolute hearing sensitivity of two sea lions and two of their human investigators. Aerial hearing curves for each subject were obtained with a go/no-go procedure and standard psychophysics. Additionally, underwater hearing curves were obtained for the sea lions using the same procedures. Underwater, the older sea lion (22-25 years of age) showed hearing losses relative to the younger sea lion (13-16 years) that ranged from 10 dB at lower frequencies to 50 dB near the upper frequency limit. The older sea lions' hearing losses in air were consistent with those measured underwater. The older human (69 years) tested also showed losses relative to the younger human (22 years). These differences ranged from 15 dB at lower frequencies up to 35 dB at the highest frequency tested. The results obtained in this study document age-related hearing losses in sea lions and humans. The findings are consistent with data on presbycusis in other mammalian species, showing that maximum hearing loss occurs at the highest frequencies.

  14. Long-term treatment with aldosterone slows the progression of age-related hearing loss.

    PubMed

    Halonen, Joshua; Hinton, Ashley S; Frisina, Robert D; Ding, Bo; Zhu, Xiaoxia; Walton, Joseph P

    2016-06-01

    Age-related hearing loss (ARHL), clinically referred to as presbycusis, is one of the three most prevalent chronic medical conditions of our elderly, with the majority of persons over the age of 60 suffering from some degree of ARHL. The progressive loss of auditory sensitivity and perceptual capability results in significant declines in workplace productivity, quality of life, cognition and abilities to communicate effectively. Aldosterone is a mineralocorticoid hormone produced in the adrenal glands and plays a role in the maintenance of key ion pumps, including the Na-K(+)-Cl co-transporter 1 or NKCC1, which is involved in homeostatic maintenance of the endocochlear potential. Previously we reported that aldosterone (1 μM) increases NKCC1 protein expression in vitro and that this up-regulation of NKCC1 was not dose-dependent (dosing range from 1 nM to 100 μM). In the current study we measured behavioral and electrophysiological hearing function in middle-aged mice following long-term systemic treatment with aldosterone. We also confirmed that blood pressure remained stable during treatment and that NKCC1 protein expression was upregulated. Pre-pulse inhibition of the acoustic startle response was used as a functional measure of hearing, and the auditory brainstem response was used as an objective measure of peripheral sensitivity. Long-term treatment with aldosterone improved both behavioral and physiological measures of hearing (ABR thresholds). These results are the first to demonstrate a protective effect of aldosterone on age-related hearing loss and pave the way for translational drug development, using aldosterone as a key component to prevent or slow down the progression of ARHL. PMID:27157488

  15. Long-term treatment with aldosterone slows the progression of age-related hearing loss.

    PubMed

    Halonen, Joshua; Hinton, Ashley S; Frisina, Robert D; Ding, Bo; Zhu, Xiaoxia; Walton, Joseph P

    2016-06-01

    Age-related hearing loss (ARHL), clinically referred to as presbycusis, is one of the three most prevalent chronic medical conditions of our elderly, with the majority of persons over the age of 60 suffering from some degree of ARHL. The progressive loss of auditory sensitivity and perceptual capability results in significant declines in workplace productivity, quality of life, cognition and abilities to communicate effectively. Aldosterone is a mineralocorticoid hormone produced in the adrenal glands and plays a role in the maintenance of key ion pumps, including the Na-K(+)-Cl co-transporter 1 or NKCC1, which is involved in homeostatic maintenance of the endocochlear potential. Previously we reported that aldosterone (1 μM) increases NKCC1 protein expression in vitro and that this up-regulation of NKCC1 was not dose-dependent (dosing range from 1 nM to 100 μM). In the current study we measured behavioral and electrophysiological hearing function in middle-aged mice following long-term systemic treatment with aldosterone. We also confirmed that blood pressure remained stable during treatment and that NKCC1 protein expression was upregulated. Pre-pulse inhibition of the acoustic startle response was used as a functional measure of hearing, and the auditory brainstem response was used as an objective measure of peripheral sensitivity. Long-term treatment with aldosterone improved both behavioral and physiological measures of hearing (ABR thresholds). These results are the first to demonstrate a protective effect of aldosterone on age-related hearing loss and pave the way for translational drug development, using aldosterone as a key component to prevent or slow down the progression of ARHL.

  16. Shortening-induced torque depression in old men: implications for age-related power loss.

    PubMed

    Power, Geoffrey A; Makrakos, Demetri P; Stevens, Daniel E; Herzog, Walter; Rice, Charles L; Vandervoort, Anthony A

    2014-09-01

    Following active muscle shortening, the steady-state isometric torque at the final muscle length is lower than the steady-state torque obtained for a purely isometric contraction at that same final muscle length. This well-documented property of skeletal muscle is termed shortening-induced torque depression (TD). Despite many investigations into the mechanisms of weakness and power loss in old age, the influence of muscle shortening on the history dependence of isometric torque production remains to be elucidated. Thus, it is unclear whether older adults are disadvantaged for torque and power production following a dynamic shortening contraction. The purpose of this study was to evaluate shortening-induced TD in older adults, and to determine whether shortening-induced TD is related to power loss. Maximal voluntary isometric dorsiflexion contractions (MVC; 10s) in 8 young (25.5±3.7years) and 9 old (76.1±5.4years) men were performed on a HUMAC NORM dynamometer as a reference, and then again following an active shortening of 40° joint excursion (40°PF-0°PF) at angular velocities of 15°/s and 120°/s. Work and instantaneous power were derived during shortening. Shortening-induced TD was calculated and expressed as a percentage by determining the mean torque value over 1s during the isometric steady state of the MVC following shortening, divided by the mean torque value for the same 1s time period during the isometric reference MVC. To assess muscle activation, electromyography (root mean square; EMGRMS) of the tibialis anterior (TA) and soleus (SOL) was calculated at identical time points used in assessing shortening-induced TD, and voluntary activation (VA) was assessed using the interpolated twitch technique. Old were 18% weaker than young for MVC, and ~40% less powerful for 15°/s and 120°/s of shortening. Old produced 37% and 21% less work for 15°/s and 120°/s than young, respectively. Furthermore, old experienced 60% and 70% greater shortening-induced TD

  17. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  18. Aging-related gains and losses associated with word production in connected speech.

    PubMed

    Dennis, Paul A; Hess, Thomas M

    2016-11-01

    Older adults have been observed to use more nonnormative, or atypical, words than younger adults in connected speech. We examined whether aging-related losses in word-finding abilities or gains in language expertise underlie these age differences. Sixty younger and 60 older adults described two neutral photographs. These descriptions were processed into word types, and textual analysis was used to identify interrupted speech (e.g., pauses), reflecting word-finding difficulty. Word types were assessed for normativeness, with nonnormative word types defined as those used by six (5%) or fewer participants to describe a particular picture. Accuracy and precision ratings were provided by another sample of 48 high-vocabulary younger and older adults. Older adults produced more interrupted and, as predicted, nonnormative words than younger adults. Older adults were more likely than younger adults to use nonnormative language via interrupted speech, suggesting a compensatory process. However, older adults' nonnormative words were more precise and trended for having higher accuracy, reflecting expertise. In tasks offering response flexibility, like connected speech, older adults may be able to offset instances of aging-related deficits by maximizing their expertise in other instances. PMID:26963869

  19. Aging-related gains and losses associated with word production in connected speech.

    PubMed

    Dennis, Paul A; Hess, Thomas M

    2016-11-01

    Older adults have been observed to use more nonnormative, or atypical, words than younger adults in connected speech. We examined whether aging-related losses in word-finding abilities or gains in language expertise underlie these age differences. Sixty younger and 60 older adults described two neutral photographs. These descriptions were processed into word types, and textual analysis was used to identify interrupted speech (e.g., pauses), reflecting word-finding difficulty. Word types were assessed for normativeness, with nonnormative word types defined as those used by six (5%) or fewer participants to describe a particular picture. Accuracy and precision ratings were provided by another sample of 48 high-vocabulary younger and older adults. Older adults produced more interrupted and, as predicted, nonnormative words than younger adults. Older adults were more likely than younger adults to use nonnormative language via interrupted speech, suggesting a compensatory process. However, older adults' nonnormative words were more precise and trended for having higher accuracy, reflecting expertise. In tasks offering response flexibility, like connected speech, older adults may be able to offset instances of aging-related deficits by maximizing their expertise in other instances.

  20. Loss of peripheral right-ear advantage in age-related hearing loss.

    PubMed

    Tadros, Sherif F; Frisina, Susan T; Mapes, Frances; Kim, SungHee; Frisina, D Robert; Frisina, Robert D

    2005-01-01

    In young adults with normal hearing, the right ear is more sensitive than the left to simple sounds (peripheral right-ear advantage) and to processing complex sounds such as speech (central right-ear advantage). In the present investigation, the effects of hearing loss and aging on this auditory asymmetry were examined at both peripheral and central levels. Audiograms and transient evoked otoacoustic emission (TEOAE) and distortion product otoacoustic emission amplitudes were used to assess cochlear function. The contralateral suppression of TEOAEs was measured to assess the medial olivocochlear efferent system. The Hearing in Noise Test (HINT; binaural speech) was conducted to assess higher central auditory function. A group of aged subjects with normal hearing (flat audiograms) were compared to a group of aged subjects with sloping audiograms (presbycusis). At the cochlear (peripheral) level, the normal hearing group showed significantly higher otoacoustic emission amplitudes for the right ear compared to the left ear, which is consistent with the right-ear dominance normally seen in young adults. However, this finding was reversed in the presbycusic group that showed higher left-ear emission amplitudes. At the brainstem level, the amplitudes of TEOAE contralateral suppression were small and no significant difference was found between the right and left ears in both groups. On the contrary, HINT results showed a continuous dominance of the right ear (left hemisphere) in both groups, which was consistent with previous reports showing that the right hemisphere is more affected by age than the left hemisphere.

  1. Sporadic Visual Acuity Loss in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT)

    PubMed Central

    Kim, Benjamin J.; Ying, Gui-Shuang; Huang, Jiayan; Levy, Nicole E.; Maguire, Maureen G.

    2014-01-01

    Purpose To evaluate transient, large visual acuity (VA) decreases, termed sporadic vision loss, during anti-vascular endothelial growth factor treatment for neovascular age-related macular degeneration (AMD). Design Cohort within a randomized clinical trial. Methods Setting Comparison of AMD Treatments Trials (CATT). Study Population 1185 CATT patients. Main Outcome Measures incidence of sporadic vision loss and odds ratio (OR) for association with patient and ocular factors. Sporadic vision loss was a decline of ≥ 15 letters from the previous visit, followed by a return at the next visit to no more than 5 letters worse than the visit before the VA loss. Results There were 143 sporadic vision loss events in 122/1185 (10.3%) patients. Mean VA at two years for those with and without sporadic vision loss was 58.5 (~20/63) and 68.4 (~20/40) letters, respectively (P < 0.001). Among patients treated pro re nata, no injection was given for 27.6% (27/98) of sporadic vision loss events. Multivariate analysis demonstrated that baseline predictors for sporadic vision loss included worse baseline VA (OR 2.92, 95%CI:1.65–5.17 for ≤ 20/200 compared with ≥ 20/40), scar (OR 2.21, 95%CI:1.22–4.01), intraretinal foveal fluid on optical coherence tomography (OR 1.80, 95%CI:1.11–2.91), and medical history of anxiety (OR 1.90, 95%CI:1.12–3.24) and syncope (OR 2.75, 95%CI:1.45–5.22). Refraction decreased the likelihood of sporadic vision loss (OR 0.62, 95%CI:0.42–0.91). Conclusions Approximately 10% of CATT patients had sporadic vision loss. Baseline predictors included AMD-related factors and factors independent of AMD. These data are relevant for clinicians in practice and those involved in clinical trials. PMID:24727261

  2. GRM7 variants associated with age-related hearing loss based on auditory perception

    PubMed Central

    Newman, Dina L.; Fisher, Laurel M.; Ohmen, Jeffrey; Parody, Robert; Fong, Chin-To; Frisina, Susan T.; Mapes, Frances; Eddins, David A.; Frisina, D. Robert; Frisina, Robert D.; Friedman, Rick A.

    2012-01-01

    Age-related hearing impairment (ARHI), or presbycusis, is a common condition of the elderly that results in significant communication difficulties in daily life. Clinically, it has been defined as a progressive loss of sensitivity to sound, starting at the high frequencies, inability to understand speech, lengthening of the minimum discernable temporal gap in sounds, and a decrease in the ability to filter out background noise. The causes of presbycusis are likely a combination of environmental and genetic factors. Previous research into the genetics of presbycusis has focused solely on hearing as measured by pure-tone thresholds. A few loci have been identified, based on a best ear pure-tone average phenotype, as having a likely role in susceptibility to this type of hearing loss; and GRM7 is the only gene that has achieved genome-wide significance. We examined the association of GRM7 variants identified from the previous study, which used an European cohort with Z-scores based on pure-tone thresholds, in a European–American population from Rochester, NY (N = 687), and used novel phenotypes of presbycusis. In the present study mixed modeling analyses were used to explore the relationship of GRM7 haplotype and SNP genotypes with various measures of auditory perception. Here we show that GRM7 alleles are associated primarily with peripheral measures of hearing loss, and particularly with speech detection in older adults. PMID:23102807

  3. GRM7 variants associated with age-related hearing loss based on auditory perception.

    PubMed

    Newman, Dina L; Fisher, Laurel M; Ohmen, Jeffrey; Parody, Robert; Fong, Chin-To; Frisina, Susan T; Mapes, Frances; Eddins, David A; Robert Frisina, D; Frisina, Robert D; Friedman, Rick A

    2012-12-01

    Age-related hearing impairment (ARHI), or presbycusis, is a common condition of the elderly that results in significant communication difficulties in daily life. Clinically, it has been defined as a progressive loss of sensitivity to sound, starting at the high frequencies, inability to understand speech, lengthening of the minimum discernable temporal gap in sounds, and a decrease in the ability to filter out background noise. The causes of presbycusis are likely a combination of environmental and genetic factors. Previous research into the genetics of presbycusis has focused solely on hearing as measured by pure-tone thresholds. A few loci have been identified, based on a best ear pure-tone average phenotype, as having a likely role in susceptibility to this type of hearing loss; and GRM7 is the only gene that has achieved genome-wide significance. We examined the association of GRM7 variants identified from the previous study, which used an European cohort with Z-scores based on pure-tone thresholds, in a European-American population from Rochester, NY (N = 687), and used novel phenotypes of presbycusis. In the present study mixed modeling analyses were used to explore the relationship of GRM7 haplotype and SNP genotypes with various measures of auditory perception. Here we show that GRM7 alleles are associated primarily with peripheral measures of hearing loss, and particularly with speech detection in older adults.

  4. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration.

    PubMed

    Ikemoto-Uezumi, Madoka; Uezumi, Akiyoshi; Tsuchida, Kunihiro; Fukada, So-ichiro; Yamamoto, Hiroshi; Yamamoto, Naoki; Shiomi, Kosuke; Hashimoto, Naohiro

    2015-08-01

    Sarcopenia, age-related muscle weakness, increases the frequency of falls and fractures in elderly people, which can trigger severe muscle injury. Rapid and successful recovery from muscle injury is essential not to cause further frailty and loss of independence. In fact, we showed insufficient muscle regeneration in aged mice. Although the number of satellite cells, muscle stem cells, decreases with age, the remaining satellite cells maintain the myogenic capacity equivalent to young mice. Transplantation of young green fluorescent protein (GFP)-Tg mice-derived satellite cells into young and aged mice revealed that age-related deterioration of the muscle environment contributes to the decline in regenerative capacity of satellite cells. Thus, extrinsic changes rather than intrinsic changes in satellite cells appear to be a major determinant of inefficient muscle regeneration with age. Comprehensive protein expression analysis identified a decrease in insulin-like growth factor-II (IGF-II) level in regenerating muscle of aged mice. We found that pro- and big-IGF-II but not mature IGF-II specifically express during muscle regeneration and the expressions are not only delayed but also decreased in absolute quantity with age. Supplementation of pro-IGF-II in aged mice ameliorated the inefficient regenerative response by promoting proliferation of satellite cells, angiogenesis, and suppressing adipogenic differentiation of platelet derived growth factor receptor (PDGFR)α(+) mesenchymal progenitors. We further revealed that pro-IGF-II but not mature IGF-II specifically inhibits the pathological adipogenesis of PDGFRα(+) cells. Together, these results uncovered a distinctive pro-IGF-II-mediated self-reinforcement mechanism of muscle regeneration and suggest that supplementation of pro-IGF-II could be one of the most effective therapeutic approaches for muscle injury in elderly people.

  5. Communicating with Assistive Listening Devices and Age-Related Hearing Loss: Perceptions of Older Australians.

    PubMed

    Aberdeen, Lucinda; Fereiro, David

    2014-01-31

    Abstract Age-related hearing loss can impact adversely on the delivery of primary care and cannot necessarily be remedied by hearing aid technology. A study of 20 older Australians living in a Queensland retirement village and residential hostel complex was undertaken to investigate how communication might be advanced through an assistive listening device (ALD). Most participants were women aged over 85 years; almost all had hearing loss and wore hearing aids. Tests with an ALD found very high levels of satisfaction with understanding speech and sound quality amongst participants. However, few had heard previously of ALDs, all required individualised assistance to fit and use the device and rated ease of use less highly. The findings affirm those of previous studies that ALD technology has a role in communication for older hearing-impaired people and for hearing rehabilitation. Its potential to enhance quality of life can be facilitated and promoted through nursing practice, but requires professional and consumer education so that it is not overlooked as a communication option. PMID:24484316

  6. Communicating with assistive listening devices and age-related hearing loss: Perceptions of older Australians.

    PubMed

    Aberdeen, Lucinda; Fereiro, David

    2014-01-01

    Abstract Age-related hearing loss can impact adversely on the delivery of primary care and cannot necessarily be remedied by hearing aid technology. A study of 20 older Australians living in a Queensland retirement village and residential hostel complex was undertaken to investigate how communication might be advanced through an assistive listening device (ALD). Most participants were women aged over 85 years; almost all had hearing loss and wore hearing aids. Tests with an ALD found very high levels of satisfaction with understanding speech and sound quality amongst participants. However, few had heard previously of ALDs, all required individualised assistance to fit and use the device and rated ease of use less highly. The findings affirm those of previous studies that ALD technology has a role in communication for older hearing impaired people and for hearing rehabilitation. Its potential to enhance quality of life can be facilitated and promoted through nursing practice, but requires professional and consumer education so that it is not overlooked as a communication option. PMID:25267134

  7. Age-related differences in muscle control of the lower extremity for support and propulsion during walking

    PubMed Central

    Toda, Haruki; Nagano, Akinori; Luo, Zhiwei

    2016-01-01

    [Purpose] This study examined age-related differences in muscle control for support and propulsion during walking in both males and females in order to develop optimal exercise regimens for muscle control. [Subjects and Methods] Twenty elderly people and 20 young people participated in this study. Coordinates of anatomical landmarks and ground reaction force during walking were obtained using a 3D motion analysis system and force plates. Muscle forces during walking were estimated using OpenSim. Muscle modules were obtained by using non-negative matrix factorization analysis. A two-way analysis of covariance was performed to examine the difference between the elderly and the young in muscle weightings using walking speed as a covariate. The similarities in activation timing profiles between the elderly and the young were analyzed by cross-correlation analysis in males and females. [Results] In the elderly, there was a change in the coordination of muscles around the ankle, and muscles of the lower extremity exhibited co-contraction in late stance. Timing and shape of these modules were similar between elderly and young people. [Conclusion] Our results suggested that age-related alteration of muscle control was associated with support and propulsion during walking. PMID:27134360

  8. Age-related differences in muscle control of the lower extremity for support and propulsion during walking.

    PubMed

    Toda, Haruki; Nagano, Akinori; Luo, Zhiwei

    2016-03-01

    [Purpose] This study examined age-related differences in muscle control for support and propulsion during walking in both males and females in order to develop optimal exercise regimens for muscle control. [Subjects and Methods] Twenty elderly people and 20 young people participated in this study. Coordinates of anatomical landmarks and ground reaction force during walking were obtained using a 3D motion analysis system and force plates. Muscle forces during walking were estimated using OpenSim. Muscle modules were obtained by using non-negative matrix factorization analysis. A two-way analysis of covariance was performed to examine the difference between the elderly and the young in muscle weightings using walking speed as a covariate. The similarities in activation timing profiles between the elderly and the young were analyzed by cross-correlation analysis in males and females. [Results] In the elderly, there was a change in the coordination of muscles around the ankle, and muscles of the lower extremity exhibited co-contraction in late stance. Timing and shape of these modules were similar between elderly and young people. [Conclusion] Our results suggested that age-related alteration of muscle control was associated with support and propulsion during walking.

  9. Current concepts in age-related hearing loss: Epidemiology and mechanistic pathways

    PubMed Central

    Yamasoba, Tatsuya; Lin, Frank R.; Someya, Shinichi; Kashio, Akinori; Sakamoto, Takashi; Kondo, Kenji

    2013-01-01

    Age-related hearing loss (AHL), also known as presbycusis, is a universal feature of mammalian aging and is characterized by a decline of auditory function, such as increased hearing thresholds and poor frequency resolution. The primary pathology of AHL includes the hair cells, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. A growing body of evidence in animal studies has suggested that cumulative effect of oxidative stress could induce damage to macromolecules such as mitochondrial DNA (mtDNA) and that the resulting accumulation of mtDNA mutations/deletions and decline of mitochondrial function play an important role in inducing apoptosis of the cochlear cells, thereby the development of AHL. Epidemiological studies have demonstrated four categories of risk factors of AHL in humans: cochlear aging, environment such as noise exposure, genetic predisposition, and health co-morbidities such as cigarette smoking and atherosclerosis. Genetic investigation has identified several putative associating genes, including those related to antioxidant defense and atherosclerosis. Exposure to noise is known to induce excess generation of reactive oxygen species (ROS) in the cochlea, and cumulative oxidative stress can be enhanced by relatively hypoxic situations resulting from the impaired homeostasis of cochlear blood supply due to atherosclerosis, which could be accelerated by genetic and co-morbidity factors. Antioxidant defense system may also be influenced by genetic backgrounds. These may explain the large variations of the onset and extent of AHL among elderly subjects. PMID:23422312

  10. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons

    PubMed Central

    Zhu, Xiaoxia; Walton, Joseph P.

    2016-01-01

    Age-related hearing loss (ARHL) -presbycusis - is the most prevalent neurodegenerative disease and number one communication disorder of our aged population; and affects hundreds of millions of people worldwide. Its prevalence is close to that of cardiovascular disease and arthritis, and can be a precursor to dementia. The auditory perceptual dysfunction is well understood, but knowledge of the biological bases of ARHL is still somewhat lacking. Surprisingly, there are no FDA-approved drugs for treatment. Based on our previous studies of human subjects, where we discovered relations between serum aldosterone levels and the severity of ARHL, we treated middle age mice with aldosterone, which normally declines with age in all mammals. We found that hearing thresholds and suprathreshold responses significantly improved in the aldosterone-treated mice compared to the non-treatment group. In terms of cellular and molecular mechanisms underlying this therapeutic effect, additional experiments revealed that spiral ganglion cell survival was significantly improved, mineralocorticoid receptors were upregulated via post-translational protein modifications, and age-related intrinsic and extrinsic apoptotic pathways were blocked by the aldosterone therapy. Taken together, these novel findings pave the way for translational drug development towards the first medication to prevent the progression of ARHL. PMID:27667674

  11. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.

  12. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis

    PubMed Central

    Baehr, Leslie M.; West, Daniel W.D.; Marcotte, George; Marshall, Andrea G.; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C.

    2016-01-01

    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. PMID:26826670

  13. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis.

    PubMed

    Baehr, Leslie M; West, Daniel W D; Marcotte, George; Marshall, Andrea G; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C

    2016-01-01

    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength.

  14. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation.

    PubMed

    Tanner, Ruth E; Brunker, Lucille B; Agergaard, Jakob; Barrows, Katherine M; Briggs, Robert A; Kwon, Oh Sung; Young, Laura M; Hopkins, Paul N; Volpi, Elena; Marcus, Robin L; LaStayo, Paul C; Drummond, Micah J

    2015-09-15

    Bed rest-induced muscle loss and impaired muscle recovery may contribute to age-related sarcopenia. It is unknown if there are age-related differences in muscle mass and muscle anabolic and catabolic responses to bed rest. A secondary objective was to determine if rehabilitation could reverse bed rest responses. Nine older and fourteen young adults participated in a 5-day bed rest challenge (BED REST). This was followed by 8 weeks of high intensity resistance exercise (REHAB). Leg lean mass (via dual-energy X-ray absorptiometry; DXA) and strength were determined. Muscle biopsies were collected during a constant stable isotope infusion in the postabsorptive state and after essential amino acid (EAA) ingestion on three occasions: before (PRE), after bed rest and after rehabilitation. Samples were assessed for protein synthesis, mTORC1 signalling, REDD1/2 expression and molecular markers related to muscle proteolysis (MURF1, MAFBX, AMPKα, LC3II/I, Beclin1). We found that leg lean mass and strength decreased in older but not younger adults after bedrest (P < 0.05) and was restored after rehabilitation. EAA-induced mTORC1 signalling and protein synthesis increased before bed rest in both age groups (P < 0.05). Although both groups had blunted mTORC1 signalling, increased REDD2 and MURF1 mRNA after bedrest, only older adults had reduced EAA-induced protein synthesis rates and increased MAFBX mRNA, p-AMPKα and the LC3II/I ratio (P < 0.05). We conclude that older adults are more susceptible than young persons to muscle loss after short-term bed rest. This may be partially explained by a combined suppression of protein synthesis and a marginal increase in proteolytic markers. Finally, rehabilitation restored bed rest-induced deficits in lean mass and strength in older adults.

  15. Absence of age-related dopamine transporter loss in current cocaine abusers

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Fischman, M.

    1997-05-01

    The brain dopamine (DA) system appears to play a crucial role in the reinforcing properties of cocaine. Using PET we had previously shown significant decreases in DA D2 receptors but no changes in DA transporters (DAT) in detoxified cocaine abusers (>1 month after last cocaine use). This study evaluates DAT availability in current cocaine abusers (15 male and 5 female; age = 36.2{+-}5.3 years old) using PET and [C-11]cocaine, as a DAT ligand, and compares it to that in 18 male and 2 female age matched normal controls. Cocaine abusers had a history of abusing 4.2{+-}2.8 gm /week of cocaine for an average of 11.0{+-}4.9 years and their last use of cocaine was 5.4{+-}8 days prior to PET study. DAT availability was obtained using the ratio of the distribution volume in the region of interest (caudate, pulamen) to that in cerebellum which is a function of Bmax./Kd.+1. DAT availability in cocaine abusers did not differ to that in normals (N) (C= 1.78{+-}0.14, N= 1.77{+-}0.13). In addition, there were no differences between the groups in the distribution volume or the Kl (plasma to brain transfer constant) measures for [C-11]cocaine. However, in the normals but not in the abusers striatal DAT availability decreased with age (C: r = -0.07, p = 0.76; N: r = -0.55, p < 0.01). Though this study fails to show group differences in DAT availability between normals and current cocaine abusers it indicates a blunting of the age-related decline in DAT availability in the cocaine abusers. Future studies in older cocaine abusers at different time after detoxification arc required in order to assess if cocaine slows the loss of DAT with age or whether these changes reflect compensation to increased DAT blockade and recover with detoxification.

  16. Age-related differences in muscle recruitment and reaction-time performance.

    PubMed

    Arnold, Pauline; Vantieghem, Stijn; Gorus, Ellen; Lauwers, Elien; Fierens, Yves; Pool-Goudzwaard, Annelies; Bautmans, Ivan

    2015-10-01

    Previously, we showed that prolonged reaction-time (RT) in older persons is related to increased antagonist muscle co-activation, occurring already before movement onset. Here, we studied whether a difference in temporal agonist and antagonist muscle activation exists between young and older persons during an RT-test. We studied Mm. Biceps (antagonist muscle) & Triceps (agonist muscle) Brachii activation time by sEMG in 60 young (26 ± 3 years) and 64 older (80 ± 6 years) community-dwelling subjects during a simple point-to-point RT-test (moving a finger using standardized elbow-extension from one pushbutton to another following a visual stimulus). RT was divided in pre-movement-time (PMT, time for stimulus processing) and movement-time (MT, time for motor response completion). Muscle activation time 1) following stimulus onset (PMAT) and 2) before movement onset (MAT) was calculated. PMAT for both muscles was significantly longer for the older subjects compared to the young (258 ± 53 ms versus 224 ± 37 ms, p=0.042 for Biceps and 280 ± 70 ms versus 218 ± 43 ms for Triceps, p<0.01). Longer agonist muscle PMAT was significantly related to worse PMT and RT in young (respectively r=0.76 & r=0.68, p<0.001) and elderly (respectively r=0.42 & r=0.40, p=0.001). In the older subjects we also found that the antagonist muscle activated significantly earlier than the agonist muscle (-22 ± 55 ms, p=0.003). We conclude that in older persons, besides the previously reported increased antagonist muscle co-activation, the muscle firing sequence is also profoundly altered. This is characterized by a delayed muscle activation following stimulus onset, and a significantly earlier recruitment of the antagonist muscle before movement onset.

  17. Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging.

    PubMed

    Jiang, Nan; Du, Guyu; Tobias, Ethan; Wood, Jason G; Whitaker, Rachel; Neretti, Nicola; Helfand, Stephen L

    2013-11-01

    During aging, changes in chromatin state that alter gene transcription have been postulated to result in expression of genes that are normally silenced, leading to deleterious age-related effects on cellular physiology. Despite the prevalence of this hypothesis, it is primarily in yeast that loss of gene silencing with age has been well documented. We use a novel position effect variegation (PEV) reporter in Drosophila melanogaster to show that age-related loss of repressive heterochromatin is associated with loss of gene silencing in metazoans and is affected by Sir2, as it is in yeast. The life span-extending intervention, calorie restriction (CR), delays the age-related loss of gene silencing, indicating that loss of gene silencing is a component of normal aging. Diet switch experiments show that such flies undergo a rapid change in their level of gene silencing, demonstrating the epigenetic plasticity of chromatin during aging and highlighting the potential role of diet and metabolism in chromatin maintenance, Thus, diet and related interventions may be of therapeutic importance for age-related diseases, such as cancer.

  18. Underestimation of urinary biomarker-to-creatinine ratio resulting from age-related gain in muscle mass in rats.

    PubMed

    Tonomura, Yutaka; Morikawa, Yuji; Takagi, Shingo; Torii, Mikinori; Matsubara, Mitsunobu

    2013-01-01

    Recent efforts have been made to identify useful urinary biomarkers of nephrotoxicity. Furthermore, the application of urine to the other toxicities as new biomarker source has been recently expanded. Meanwhile, correction of urinary biomarker concentrations according to fluctuations in urine flow rate is required for adequate interpretation of the alteration. The urinary biomarker-to-creatinine ratio (UBCR) is widely used because of the convenience, while the urinary biomarker-excretion rate is regarded as the gold standard corrective method. Because creatinine is a catabolite in energy production in muscles, we hypothesized that altered muscle mass could affect creatinine kinetics, ultimately affecting UBCR. However, no study has examined this hypothesis. In this study, we examined the influence of muscle mass gain on UBCR, using male Sprague-Dawley rats during the growth phase, 6-12-week old. Both plasma creatinine and excretion of urinary creatinine (Ucr excretion) showed increases with muscle mass gain in rats, in which the alterations of UBCR were lowered. The renal mRNA level of the organic cation transporter-2 (Oct2), a creatinine transporter, showed an age-related increase, whereas the mRNA level of multidrug and toxin extrusions-1 (Mate1) remained constant. Multiple regression analysis showed that the increase in creatinine clearance highly contributed to the age-related increase in Ucr excretion compared to the mRNA levels of Oct2 and Mate1. This suggested that the age-related increase in Ucr excretion may be attributable to the increased transglomerular passage of creatinine. In conclusion, the results suggest that muscle mass gain can affect creatinine kinetics, leading to underestimation of UBCR. Therefore, it is important to understand the characteristics of the corrective method when using urinary biomarker, the failure of which can result in an incorrect diagnosis.

  19. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  20. Auditory sensitivity and the outer hair cell system in the CBA mouse model of age-related hearing loss.

    PubMed

    Frisina, Robert D; Zhu, Xiaoxia

    2010-06-01

    Age-related hearing loss is a highly prevalent sensory disorder, from both the clinical and animal model perspectives. Understanding of the neurophysiologic, structural, and molecular biologic bases of age-related hearing loss will facilitate development of biomedical therapeutic interventions to prevent, slow, or reverse its progression. Thus, increased understanding of relationships between aging of the cochlear (auditory portion of the inner ear) hair cell system and decline in overall hearing ability is necessary. The goal of the present investigation was to test the hypothesis that there would be correlations between physiologic measures of outer hair cell function (otoacoustic emission levels) and hearing sensitivity (auditory brainstem response thresholds), starting in middle age. For the CBA mouse, a useful animal model of age-related hearing loss, it was found that correlations between these two hearing measures occurred only for high sound frequencies in middle age. However, in old age, a correlation was observed across the entire mouse range of hearing. These findings have implications for improved early detection of progression of age-related hearing loss in middle-aged mammals, including mice and humans, and distinguishing peripheral etiologies from central auditory system decline.

  1. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration.

    PubMed

    Soriano-Arroquia, Ana; McCormick, Rachel; Molloy, Andrew P; McArdle, Anne; Goljanek-Whysall, Katarzyna

    2016-04-01

    A common characteristic of aging is defective regeneration of skeletal muscle. The molecular pathways underlying age-related decline in muscle regenerative potential remain elusive. microRNAs are novel gene regulators controlling development and homeostasis and the regeneration of most tissues, including skeletal muscle. Here, we use satellite cells and primary myoblasts from mice and humans and an in vitro regeneration model, to show that disrupted expression of microRNA-143-3p and its target gene, Igfbp5, plays an important role in muscle regeneration in vitro. We identified miR-143 as a regulator of the insulin growth factor-binding protein 5 (Igfbp5) in primary myoblasts and show that the expression of miR-143 and its target gene is disrupted in satellite cells from old mice. Moreover, we show that downregulation of miR-143 during aging may act as a compensatory mechanism aiming at improving myogenesis efficiency; however, concomitant upregulation of miR-143 target gene, Igfbp5, is associated with increased cell senescence, thus affecting myogenesis. Our data demonstrate that dysregulation of miR-143-3p:Igfbp5 interactions in satellite cells with age may be responsible for age-related changes in satellite cell function. PMID:26762731

  2. Age-related changes of muscle and plasma amino acids in healthy children.

    PubMed

    Hammarqvist, Folke; Angsten, Gertrud; Meurling, Staffan; Andersson, Kerstin; Wernerman, Jan

    2010-07-01

    The aim of the study was to explore if changes in muscle and plasma amino acid concentrations developed during growth and differed from levels seen in adults. The gradient and concentrations of free amino acids in muscle and plasma were investigated in relation to age in metabolic healthy children. Plasma and specimens from the abdominal muscle were obtained during elective surgery. The children were grouped into three groups (group 1: < 1 year, n = 8; group 2: 1-4 years, n = 13 and group 3: 5-15 years, n = 15). A reference group of healthy adults (21-38 years, n = 22) was included in their comparisons and reflected specific differences between children and adults. In muscle the concentrations of 8 out of 19 amino acids analysed increased with age, namely taurine, aspartate, threonine, alanine, valine, isoleucine, leucine, histidine, as well as the total sums of branched chain amino acids (BCAA), basic amino acids (BAA) and total sum of amino acids (P < 0.05). In plasma the concentrations of threonine, glutamine, valine, cysteine, methionine, leucine, lysine, tryptophane, arginine, BCAA, BAA and the essential amino acids correlated with age (P < 0.05). These results indicate that there is an age dependency of the amino acid pattern in skeletal muscle and plasma during growth.

  3. Age-related changes in glucose utilization and fatty acid oxidation in a muscle-specific manner during rabbit growth.

    PubMed

    Gondret, Florence; Damon, Marie; Jadhao, Sanjay B; Houdebine, Louis-Marie; Herpin, Patrick; Hocquette, Jean-François

    2004-01-01

    The optimal utilization of energy substrates in muscle fibers is of primary importance for muscle contraction and whole body physiology. This study aimed to investigate the age-related changes in some indicators of glucose catabolism and fatty acid oxidation in muscles of growing rabbits. Longissimus lumborum (fast-twitch, LL) and semimembranosus proprius (slow-twitch, SMP) muscles were collected at 10 or 20 weeks of age ( n=6 per age). Glucose transporter GLUT4 content was investigated by immunoblot assay. Activity levels of five enzymes were measured: lactate dehydrogenase (LDH) and phosphofructokinase (PFK) for glycolysis; citrate synthase (CS), isocitrate dehydrogenase (ICDH) and -3-hydroxyacyl-coenzyme A dehydrogenase (HAD) for oxidation. Mitochondrial and peroxisomal oxidation rates were assessed on fresh homogenates using [1-14C]-oleate as substrate. At both ages, mitochondrial and peroxisomal oxidations rates, as well as activities of oxidative enzymes were higher in SMP than in LL. In both muscles, the apparent rate of fatty acid oxidation by the mitochondria did not differ between the two ages. However, a decrease in the activities of the three oxidative enzymes was observed in LL, whereas activities of CS and HAD and peroxisomal oxidation rate of oleate increased between the two ages in SMP muscle. In both muscles, LDH activity increased between 10 and 20 weeks, without variations in glucose uptake (GLUT4 transporter content) and in the first step of glucose utilization (PFK activity). In conclusion, mitochondrial oxidation rate of fatty acids and activities of selected mitochondrial enzymes were largely unrelated. Moreover, regulation of energy metabolism with advancing age differed between muscle types.

  4. Age-related changes in consolidation of perceptual and muscle-based learning of motor skills.

    PubMed

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2013-01-01

    Improvements in motor sequence learning come about via goal-based learning of the sequence of visual stimuli and muscle-based learning of the sequence of movement responses. In young adults, consolidation of goal-based learning is observed after intervals of sleep but not following wake, whereas consolidation of muscle-based learning is greater following intervals with wake compared to sleep. While the benefit of sleep on motor sequence learning has been shown to decline with age, how sleep contributes to consolidation of goal-based vs. muscle-based learning in older adults (OA) has not been disentangled. We trained young (n = 62) and older (n = 50) adults on a motor sequence learning task and re-tested learning following 12 h intervals containing overnight sleep or daytime wake. To probe consolidation of goal-based learning of the sequence, half of the participants were re-tested in a configuration in which the stimulus sequence was the same but, due to a shift in stimulus-response mapping, the movement response sequence differed. To probe consolidation of muscle-based learning, the remaining participants were tested in a configuration in which the stimulus sequence was novel, but now the sequence of movements used for responding was unchanged. In young adults, there was a significant condition (goal-based vs. muscle-based learning) by interval (sleep vs. wake) interaction, F(1,58) = 6.58, p = 0.013: goal-based learning tended to be greater following sleep compared to wake, t(29) = 1.47, p = 0.072. Conversely, muscle-based learning was greater following wake than sleep, t(29) = 2.11, p = 0.021. Unlike young adults, this interaction was not significant in OA, F(1,46) = 0.04, p = 0.84, nor was there a main effect of interval, F(1,46) = 1.14, p = 0.29. Thus, OA do not preferentially consolidate sequence learning over wake or sleep.

  5. Age-related muscle activation profiles and joint stiffness regulation in repetitive hopping.

    PubMed

    Hoffrén, Merja; Ishikawa, Masaki; Rantalainen, Timo; Avela, Janne; Komi, Paavo V

    2011-06-01

    It is well documented that increasing effort during exercise is characterized by an increase in electromyographic activity of the relevant muscles. How aging influences this relationship is a matter of great interest. In the present study, nine young and 24 elderly subjects did repetitive hopping with maximal effort as well as with 50%, 65%, 75% and 90% intensities. During hopping joint kinematics were measured together with electromyographic activity (EMG) from the soleus, gastrocnemius medialis, gastrocnemius lateralis and tibialis anterior muscles. The results showed that agonist activation increased in both age groups with increasing intensity. The highest jumping efficiency (EMG ratio of the braking phase to the push off-phase activation) was achieved with moderate hopping intensities (65-75%) in both the young and in the elderly. Age-comparison showed that elderly subjects had high agonist preactivation but thereafter lower activation during the braking phase. Antagonist coactivation was minimal and did not show age- or intensity-specificity. The elderly had more flexed knees at the instant of ground contact. When intensity increased, the elderly also plantarflexed their ankles more before ground contact. Ankle joint stiffness was lower in elderly subjects only in high hopping intensities (90% and Max). These results confirm that age-specific agonist muscle activation profiles exist during hopping even when exercise intensities are matched on the relative scale. The results suggest further that the elderly can adjust their reduced neuromuscular capacity to match the demands set by different exercise intensities.

  6. Age Related Differences in the Surface EMG Signals on Adolescent's Muscle during Contraction

    NASA Astrophysics Data System (ADS)

    Uddin Ahamed, Nizam; Taha, Zahari; Alqahtani, Mahdi; Altwijri, Omar; Rahman, Matiur; Deboucha, Abdelhakim

    2016-02-01

    The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal among five different age groups of adolescent's muscle. Fifteen healthy adolescents participated in this study and they were divided into five age groups (13, 14, 15, 16 and 17 years). Subjects were performed dynamic contraction during lifting a standard weight (3-kg dumbbell) and EMG signals were recorded from their Biceps Brachii (BB) muscle. Two common EMG analysis techniques namely root mean square (RMS) and mean absolute values (MAV) were used to find the differences. The statistical analysis was included: linear regression to examine the relationships between EMG amplitude and age, repeated measures ANOVA to assess differences among the variables, and finally Coefficient of Variation (CoV) for signal steadiness among the groups of subjects during contraction. The result from RMS and MAV analysis shows that the 17-years age groups exhibited higher activity (0.28 and 0.19 mV respectively) compare to other groups (13-Years: 0.26 and 0.17 mV, 14-years: 0.25 and 0.23 mV, 15-Years: 0.23 and 0.16 mV, 16-years: 0.23 and 0.16 mV respectively). Also, this study shows modest correlation between age and signal activities among all age group's muscle. The experiential results can play a pivotal role for developing EMG prosthetic hand controller, neuromuscular system, EMG based rehabilitation aid and movement biomechanics, which may help to separate age groups among the adolescents.

  7. Age-related changes in the flight muscle mitochondria from the blowfly Sarcophaga bullata.

    PubMed

    Wohlrab, H

    1976-05-01

    Flight muscle mitochondria have been isolated from female blowflies (Sarcophaga bullata) of different ages, alpha-Glycerophosphate and pyruvate-proline respiration rates increase during development. Only pyruvate-proline respiration declines toward senescence (30%). This decline can be overcome by ATP-NaHCO3. Cytochrome concentrations and hydrogen peroxide generation rates per protein increase during development but remain constant thereafter. Total NAD+ of metabolically completely oxidized mitochondria decreases during development; a small decline occurs between mature and senescent mitochondria. Respiring young mitochondria do not swell in potassium isethionate, very little in potassium chloride, and relatively slowly in potassium acetate. Mature and senescent mitochondria do swell in these three salts but cannot be differentiated from each other on this basis. None of the preparations swells in sodium chloride, sodium- or potassium Mops. While many differences exist between young and mature mitochondria, only the decline in pyruvate-proline respiration distinguishes mature from senescent mitochondria.

  8. Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis

    PubMed Central

    Taniguchi, Noboru; Caramés, Beatriz; Ronfani, Lorenza; Ulmer, Ulrich; Komiya, Setsuro; Bianchi, Marco E.; Lotz, Martin

    2009-01-01

    Osteoarthritis (OA) is the most common joint disease and typically begins with an aging-related disruption of the articular cartilage surface. Mechanisms leading to the aging-related cartilage surface degeneration remain to be determined. Here, we demonstrate that nonhistone chromatin protein high-mobility group box (HMGB) protein 2 is uniquely expressed in the superficial zone (SZ) of human articular cartilage. In human and murine cartilage, there is an aging-related loss of HMGB2 expression, ultimately leading to its complete absence. Mice genetically deficient in HMGB2 (Hmgb2−/−) show earlier onset of and more severe OA. This is associated with a profound reduction in cartilage cellularity attributable to increased cell death. These cellular changes precede glycosaminoglycan depletion and progressive cartilage erosions. Chondrocytes from Hmgb2−/− mice are more susceptible to apoptosis induction in vitro. In conclusion, HMGB2 is a transcriptional regulator specifically expressed in the SZ of human articular cartilage and supports chondrocyte survival. Aging is associated with a loss of HMGB2 expression and reduced cellularity, and this contributes to the development of OA. PMID:19139395

  9. Computer Simulations of Loss of Organization of Neurons as a Model for Age-related Cognitive Decline

    NASA Astrophysics Data System (ADS)

    Cruz, Luis; Fengometidis, Elene; Jones, Frank; Jampani, Srinivas

    2011-03-01

    In normal aging, brains suffer from progressive cognitive decline not linked with loss of neurons common in neurodegenerative disorders such as Alzheimer's disease. However, in some brain areas neurons have lost positional organization specifically within microcolumns: arrays of interconnected neurons which may constitute fundamental computational units in the brain. This age-related loss of organization, likely a result of micron-sized random displacements in neuronal positions, is hypothesized to be a by-product of the loss of support from the surrounding medium, including dendrites. Using a dynamical model applied to virtual 3D representation of neuronal arrangements, that previously showed loss of organization in brains of cognitively tested rhesus monkeys, the relationship between these displacements and changes to the surrounding dendrite network are presented. The consequences of these displacements on the structure of the dendritic network, with possible disruptions in signal synchrony important to cognitive function, are discussed. NIH R01AG021133.

  10. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy*

    PubMed Central

    Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.; Murry, Daryl J.; Fox, Daniel K.; Bongers, Kale S.; Lira, Vitor A.; Meyerholz, David K.; Talley, John J.; Adams, Christopher M.

    2015-01-01

    Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two small molecules that significantly reduce age-related deficits in skeletal muscle strength, quality, and mass: ursolic acid (a pentacyclic triterpenoid found in apples) and tomatidine (a steroidal alkaloid derived from green tomatoes). Because small molecule inhibitors can sometimes provide mechanistic insight into disease processes, we used ursolic acid and tomatidine to investigate the pathogenesis of age-related muscle weakness and atrophy. We found that ursolic acid and tomatidine generate hundreds of small positive and negative changes in mRNA levels in aged skeletal muscle, and the mRNA expression signatures of the two compounds are remarkably similar. Interestingly, a subset of the mRNAs repressed by ursolic acid and tomatidine in aged muscle are positively regulated by activating transcription factor 4 (ATF4). Based on this finding, we investigated ATF4 as a potential mediator of age-related muscle weakness and atrophy. We found that a targeted reduction in skeletal muscle ATF4 expression reduces age-related deficits in skeletal muscle strength, quality, and mass, similar to ursolic acid and tomatidine. These results elucidate ATF4 as a critical mediator of age-related muscle weakness and atrophy. In addition, these results identify ursolic acid and tomatidine as potential agents and/or lead compounds for reducing ATF4 activity, weakness, and atrophy in aged skeletal muscle. PMID:26338703

  11. Effects of Age and Age-Related Hearing Loss on the Brain

    ERIC Educational Resources Information Center

    Tremblay, Kelly; Ross, Bernhard

    2007-01-01

    It is well documented that aging adversely affects the ability to perceive time-varying acoustic cues. Here we review how physiological measures are being used to explore the effects of aging (and concomitant hearing loss) on the neural representation of temporal cues. Also addressed are the implications of current research findings on the…

  12. Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies

    PubMed Central

    Hubert, Patrice A.; Lee, Sang Gil; Lee, Sun-Kyeong; Chun, Ock K.

    2014-01-01

    Bone loss during aging has become an increasing public health concern as average life expectancy has increased. One of the most prevalent forms of age-related bone disease today is osteoporosis in which the body slows down bone formation and existing bone is increasingly being resorbed by the body to maintain the calcium balance. Some causes of this bone loss can be attributed to dysregulation of osteoblast and osteoclast activity mediated by increased oxidative stress through the aging process. Due to certain serious adverse effects of the currently available therapeutic agents that limit their efficacy, complementary and alternative medicine (CAM) has garnered interest as a natural means for the prevention of this debilitating disease. Natural antioxidant supplementation, a type of CAM, has been researched to aid in reducing bone loss caused by oxidative stress. Naturally occurring polyphenols, such as anthocyanins rich in berries, are known to have anti-oxidative properties. Several studies have been reviewed to determine the impact polyphenol intake—particularly that of berries—has on bone health. Studies reveal a positive association of high berry intake and higher bone mass, implicating berries as possible inexpensive alternatives in reducing the risk of age related bone loss. PMID:26784669

  13. Loss of UCHL1 promotes age-related degenerative changes in the enteric nervous system

    PubMed Central

    Coulombe, Josée; Gamage, Prasanna; Gray, Madison T.; Zhang, Mei; Tang, Matthew Y.; Woulfe, John; Saffrey, M. Jill; Gray, Douglas A.

    2014-01-01

    UCHL1 (ubiquitin carboxyterminal hydrolase 1) is a deubiquitinating enzyme that is particularly abundant in neurons. From studies of a spontaneous mutation arising in a mouse line it is clear that loss of function of UCHL1 generates profound degenerative changes in the central nervous system, and it is likely that a proteolytic deficit contributes to the pathology. Here these effects were found to be recapitulated in mice in which the Uchl1 gene had been inactivated by homologous recombination. In addition to the previously documented neuropathology associated with loss of UCHL1 function, axonal swellings were detected in the striatum. In agreement with previously reported findings the loss of UCHL1 function was accompanied by perturbations in ubiquitin pools, but glutathione levels were also significantly depleted in the brains of the knockout mice, suggesting that oxidative defense mechanisms may be doubly compromised. To determine if, in addition to its role in the central nervous system, UCHL1 function is also required for homeostasis of the enteric nervous system the gastrointestinal tract was analyzed in UCHL1 knockout mice. The mice displayed functional changes and morphological changes in gut neurons that preceded degenerative changes in the brain. The changes were qualitatively and quantitatively similar to those observed in wild type mice of much greater age, and strongly resemble changes reported for elderly humans. UCHL1 knockout mice should therefore serve as a useful model of gut aging. PMID:24994982

  14. Molecular Mechanisms of Age-Related Sleep Loss in the Fruit Fly

    PubMed Central

    Robertson, Meagan; Keene, Alex C.

    2013-01-01

    Across phyla, aging is associated with reduced sleep duration and efficiency. Both aging and sleep involve complex genetic architecture and diverse cell types and are heavily influenced by diet and environment. Therefore, understanding the molecular mechanisms of age-dependent changes in sleep will require integrative approaches that go beyond examining these two processes independently. The fruit fly, Drosophila melanogaster, provides a genetically amenable system for dissecting the molecular basis of these processes. In this review, we examine the role of metabolism and circadian rhythms in age-dependent sleep loss. PMID:23594925

  15. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice.

    PubMed

    Chumak, Tetyana; Bohuslavova, Romana; Macova, Iva; Dodd, Nicole; Buckiova, Daniela; Fritzsch, Bernd; Syka, Josef; Pavlinkova, Gabriela

    2016-05-01

    The development, maturation, and maintenance of the inner ear are governed by temporal and spatial expression cascades of transcription factors that form a gene regulatory network. ISLET1 (ISL1) may be one of the major players in this cascade, and in order to study its role in the regulation of inner ear development, we produced a transgenic mouse overexpressing Isl1 under the Pax2 promoter. Pax2-regulated ISL1 overexpression increases the embryonic ISL1(+) domain and induces accelerated nerve fiber extension and branching in E12.5 embryos. Despite these gains in early development, the overexpression of ISL1 impairs the maintenance and function of hair cells of the organ of Corti. Mutant mice exhibit hyperactivity, circling behavior, and progressive age-related decline in hearing functions, which is reflected in reduced otoacoustic emissions (DPOAEs) followed by elevated hearing thresholds. The reduction of the amplitude of DPOAEs in transgenic mice was first detected at 1 month of age. By 6-9 months of age, DPOAEs completely disappeared, suggesting a functional inefficiency of outer hair cells (OHCs). The timing of DPOAE reduction coincides with the onset of the deterioration of cochlear efferent terminals. In contrast to these effects on efferents, we only found a moderate loss of OHCs and spiral ganglion neurons. For the first time, our results show that the genetic alteration of the medial olivocochlear (MOC) efferent system induces an early onset of age-related hearing loss. Thus, the neurodegeneration of the MOC system could be a contributing factor to the pathology of age-related hearing loss.

  16. Likely Age-Related Hearing Loss (Presbycusis) in a Stranded Indo-Pacific Humpback Dolphin (Sousa chinensis).

    PubMed

    Li, Songhai; Wang, Ding; Wang, Kexiong; Hoffmann-Kuhnt, Matthias; Fernando, Nimal; Taylor, Elizabeth A; Lin, Wenzhi; Chen, Jialin; Ng, Timothy

    2016-01-01

    The hearing of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, was measured. The age of this animal was estimated to be ~40 years. The animal's hearing was measured using a noninvasive auditory evoked potential (AEP) method. The results showed that the high-frequency hearing cutoff frequency of the studied dolphin was ~30-40 kHz lower than that of a conspecific younger individual ~13 year old. The lower high-frequency hearing range in the older dolphin was explained as a likely result of age-related hearing loss (presbycusis).

  17. Likely Age-Related Hearing Loss (Presbycusis) in a Stranded Indo-Pacific Humpback Dolphin (Sousa chinensis).

    PubMed

    Li, Songhai; Wang, Ding; Wang, Kexiong; Hoffmann-Kuhnt, Matthias; Fernando, Nimal; Taylor, Elizabeth A; Lin, Wenzhi; Chen, Jialin; Ng, Timothy

    2016-01-01

    The hearing of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, was measured. The age of this animal was estimated to be ~40 years. The animal's hearing was measured using a noninvasive auditory evoked potential (AEP) method. The results showed that the high-frequency hearing cutoff frequency of the studied dolphin was ~30-40 kHz lower than that of a conspecific younger individual ~13 year old. The lower high-frequency hearing range in the older dolphin was explained as a likely result of age-related hearing loss (presbycusis). PMID:26611012

  18. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone

    PubMed Central

    Todd, Henry; Galea, Gabriel L.; Meakin, Lee B.; Delisser, Peter J.; Lanyon, Lance E.

    2015-01-01

    Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to

  19. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    PubMed

    Todd, Henry; Galea, Gabriel L; Meakin, Lee B; Delisser, Peter J; Lanyon, Lance E; Windahl, Sara H; Price, Joanna S

    2015-01-01

    Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to

  20. Neuronal erythropoietin overexpression protects mice against age-related hearing loss (presbycusis).

    PubMed

    Naldi, Arianne Monge; Belfrage, Celina; Jain, Neha; Wei, Eric T; Martorell, Belén Canto; Gassmann, Max; Vogel, Johannes

    2015-12-01

    So far, typical causes of presbycusis such as degeneration of hair cells and/or primary auditory (spiral ganglion) neurons cannot be treated. Because erythropoietin's (Epo) neuroprotective potential has been shown previously, we determined hearing thresholds of juvenile and aged mice overexpressing Epo in neuronal tissues. Behavioral audiometry revealed in contrast to 5 months of age, that 11-month-old Epo-transgenic mice had up to 35 dB lower hearing thresholds between 1.4 and 32 kHz, and at the highest frequencies (50-80 kHz), thresholds could be obtained in aged Epo-transgenic only but not anymore in old C57BL6 control mice. Click-evoked auditory brainstem response showed similar results. Numbers of spiral ganglion neurons in aged C57BL6 but not Epo-transgenic mice were dramatically reduced mainly in the basal turn, the location of high frequencies. In addition, there was a tendency to better preservation of inner and outer hair cells in Epo-transgenic mice. Hence, Epo's known neuroprotective action effectively suppresses the loss of spiral ganglion cells and probably also hair cells and, thus, development of presbycusis in mice. PMID:26364734

  1. Age-related Hearing Loss: GABA, Nicotinic Acetylcholine and NMDA Receptor Expression Changes in Spiral Ganglion Neurons of the Mouse

    PubMed Central

    Tang, Xiaolan; Zhu, Xiaoxia; Ding, Bo; Walton, Joseph P.; Frisina, Robert D.; Su, Jiping

    2014-01-01

    Age-related hearing loss – presbycusis – is the number one communication disorder and most prevalent neurodegenerative condition of our aged population. Although speech understanding in background noise is quite difficult for those with presbycusis, there are currently no biomedical treatments to prevent, delay or reverse this condition. A better understanding of the cochlear mechanisms underlying presbycusis will help lead to future treatments. Objectives of the present study were to investigate gamma-amino butyric acid A (GABAA) receptor subunit α1, nicotinic acetylcholine (nACh) receptor subunit β2, and N-methyl-D-aspartate (NMDA) receptor subunit NR1 mRNA and protein expression changes in spiral ganglion neurons of the CBA/CaJ mouse cochlea, that occur in age-related hearing loss, utilizing quantitative immunohistochemistry and semi-quantitative RT-PCR techniques. We found that auditory brainstem response (ABR) thresholds shifted over 40 dB from 3–48 kHz in old mice compared to young adults. DPOAE thresholds also shifted over 40 dB from 6–49 kHz in old mice, and their amplitudes were significantly decreased or absent in the same frequency range. Spiral ganglion neuron (SGN) density decreased with age in basal, middle and apical turns, and SGN density of the basal turn declined the most. A positive correlation was observed between SGN density and ABR wave 1 amplitude. mRNA and protein expression of GABAAR α1 and AChR β2 decreased with age in SGNs in the old mouse cochlea. mRNA and protein expression of NMDAR NR1 increased with age in SGNs of the old mice. These findings demonstrate that there are functionally-relevant age-related changes of GABAAR, nAChR, NMDAR expression in CBA mouse SGNs reflecting their degeneration, which may be related to functional changes in cochlear synaptic transmission with age, suggesting biological mechanisms for peripheral age-related hearing loss. PMID:24316061

  2. Simulated Interventions to Ameliorate Age-Related Bone Loss Indicate the Importance of Timing

    PubMed Central

    Proctor, Carole J.; Gartland, Alison

    2016-01-01

    Bone remodeling is the continuous process of bone resorption by osteoclasts and bone formation by osteoblasts, in order to maintain homeostasis. The activity of osteoclasts and osteoblasts is regulated by a network of signaling pathways, including Wnt, parathyroid hormone (PTH), RANK ligand/osteoprotegrin, and TGF-β, in response to stimuli, such as mechanical loading. During aging there is a gradual loss of bone mass due to dysregulation of signaling pathways. This may be due to a decline in physical activity with age and/or changes in hormones and other signaling molecules. In particular, hormones, such as PTH, have a circadian rhythm, which may be disrupted in aging. Due to the complexity of the molecular and cellular networks involved in bone remodeling, several mathematical models have been proposed to aid understanding of the processes involved. However, to date, there are no models, which explicitly consider the effects of mechanical loading, the circadian rhythm of PTH, and the dynamics of signaling molecules on bone remodeling. Therefore, we have constructed a network model of the system using a modular approach, which will allow further modifications as required in future research. The model was used to simulate the effects of mechanical loading and also the effects of different interventions, such as continuous or intermittent administration of PTH. Our model predicts that the absence of regular mechanical loading and/or an impaired PTH circadian rhythm leads to a gradual decrease in bone mass over time, which can be restored by simulated interventions and that the effectiveness of some interventions may depend on their timing. PMID:27379013

  3. Age-related striatal BOLD changes without changes in behavioral loss aversion

    PubMed Central

    Viswanathan, Vijay; Lee, Sang; Gilman, Jodi M.; Kim, Byoung Woo; Lee, Nick; Chamberlain, Laura; Livengood, Sherri L.; Raman, Kalyan; Lee, Myung Joo; Kuster, Jake; Stern, Daniel B.; Calder, Bobby; Mulhern, Frank J.; Blood, Anne J.; Breiter, Hans C.

    2015-01-01

    Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task. PMID:25983682

  4. Age-related striatal BOLD changes without changes in behavioral loss aversion.

    PubMed

    Viswanathan, Vijay; Lee, Sang; Gilman, Jodi M; Kim, Byoung Woo; Lee, Nick; Chamberlain, Laura; Livengood, Sherri L; Raman, Kalyan; Lee, Myung Joo; Kuster, Jake; Stern, Daniel B; Calder, Bobby; Mulhern, Frank J; Blood, Anne J; Breiter, Hans C

    2015-01-01

    Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task.

  5. Age-related striatal BOLD changes without changes in behavioral loss aversion.

    PubMed

    Viswanathan, Vijay; Lee, Sang; Gilman, Jodi M; Kim, Byoung Woo; Lee, Nick; Chamberlain, Laura; Livengood, Sherri L; Raman, Kalyan; Lee, Myung Joo; Kuster, Jake; Stern, Daniel B; Calder, Bobby; Mulhern, Frank J; Blood, Anne J; Breiter, Hans C

    2015-01-01

    Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task. PMID:25983682

  6. To unite or divide: mitochondrial dynamics in the murine outer retina that preceded age related photoreceptor loss

    PubMed Central

    Kam, Jaimie Hoh; Jeffery, Glen

    2015-01-01

    Mitochondrial function declines with age and is associated with age-related disorders and cell death. In the retina this is critical as photoreceptor energy demands are the greatest in the body and aged cell loss large (~30%). But mitochondria can fuse or divide to accommodate changing demands. We explore ageing mitochondrial dynamics in young (1 month) and old (12 months) mouse retina, investigating changes in mitochondrial fission (Fis1) and fusion (Opa1) proteins, cytochrome C oxidase (COX III), which reflects mitochondrial metabolic status, and heat shock protein 60 (Hsp60) that is a mitochondrial chaperon for protein folding. Western blots showed each protein declined with age. However, within this, immunostaining revealed increases of around 50% in Fis1 and Opa1 in photoreceptor inner segments (IS). Electron microscope analysis revealed mitochondrial fragmentation with age and marked changes in morphology in IS, consistent with elevated dynamics. COX III declined by approximately 30% in IS, but Hsp60 reductions were around 80% in the outer plexiform layer. Our results are consistent with declining mitochondrial metabolism. But also with increased photoreceptor mitochondrial dynamics that differ from other retinal regions, perhaps reflecting attempts to maintain function. These changes are the platform for age related photoreceptor loss initiated after 12 months. PMID:26393878

  7. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice.

    PubMed

    Zhu, Xiaoxia; Vasilyeva, Olga N; Kim, Sunghee; Jacobson, Michael; Romney, Joshua; Waterman, Marjorie S; Tuttle, David; Frisina, Robert D

    2007-08-10

    The C57BL/6J mouse has been a useful model of presbycusis, as it displays an accelerated age-related peripheral hearing loss. The medial olivocochlear efferent feedback (MOC) system plays a role in suppressing cochlear outer hair cell (OHC) responses, particularly for background noise. Neurons of the MOC system are located in the superior olivary complex, particularly in the dorsomedial periolivary nucleus (DMPO) and in the ventral nucleus of the trapezoid body (VNTB). We previously discovered that the function of the MOC system declines with age prior to OHC degeneration, as measured by contralateral suppression (CS) of distortion product otoacoustic emissions (DPOAEs) in humans and CBA mice. The present study aimed to determine the time course of age changes in MOC function in C57s. DPOAE amplitudes and CS of DPOAEs were collected for C57s from 6 to 40 weeks of age. MOC responses were observed at 6 weeks but were gone at middle (15-30 kHz) and high (30-45 kHz) frequencies by 8 weeks. Quantitative stereological analyses of Nissl sections revealed smaller neurons in the DMPO and VNTB of young adult C57s compared with CBAs. These findings suggest that reduced neuron size may underlie part of the noteworthy rapid decline of the C57 efferent system. In conclusion, the C57 mouse has MOC function at 6 weeks, but it declines quickly, preceding the progression of peripheral age-related sensitivity deficits and hearing loss in this mouse strain.

  8. Genome-wide association study for age-related hearing loss (AHL) in the mouse: a meta-analysis.

    PubMed

    Ohmen, Jeffrey; Kang, Eun Yong; Li, Xin; Joo, Jong Wha; Hormozdiari, Farhad; Zheng, Qing Yin; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar; Friedman, Rick A

    2014-06-01

    Age-related hearing loss (AHL) is characterized by a symmetric sensorineural hearing loss primarily in high frequencies and individuals have different levels of susceptibility to AHL. Heritability studies have shown that the sources of this variance are both genetic and environmental, with approximately half of the variance attributable to hereditary factors as reported by Huag and Tang (Eur Arch Otorhinolaryngol 267(8):1179-1191, 2010). Only a limited number of large-scale association studies for AHL have been undertaken in humans, to date. An alternate and complementary approach to these human studies is through the use of mouse models. Advantages of mouse models include that the environment can be more carefully controlled, measurements can be replicated in genetically identical animals, and the proportion of the variability explained by genetic variation is increased. Complex traits in mouse strains have been shown to have higher heritability and genetic loci often have stronger effects on the trait compared to humans. Motivated by these advantages, we have performed the first genome-wide association study of its kind in the mouse by combining several data sets in a meta-analysis to identify loci associated with age-related hearing loss. We identified five genome-wide significant loci (<10(-6)). One of these loci confirmed a previously identified locus (ahl8) on distal chromosome 11 and greatly narrowed the candidate region. Specifically, the most significant associated SNP is located 450 kb upstream of Fscn2. These data confirm the utility of this approach and provide new high-resolution mapping information about variation within the mouse genome associated with hearing loss.

  9. Age-Related Changes in Dynamic Postural Control and Attentional Demands are Minimally Affected by Local Muscle Fatigue

    PubMed Central

    Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin

    2016-01-01

    Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626

  10. Mineralization of the connective tissue: a complex molecular process leading to age-related loss of function.

    PubMed

    Shindyapina, Anastasia V; Mkrtchyan, Garik V; Gneteeva, Tatiana; Buiucli, Sveatoslav; Tancowny, B; Kulka, M; Aliper, Alexander; Zhavoronkov, Alexander

    2014-04-01

    Age-related metastatic mineralization of soft tissues has been considered a passive and spontaneous process. Recent data have demonstrated that calcium salt deposition in soft tissues could be a highly regulated process. Although calcification occurs in any tissue type, vascular calcification has been of particular interest due to association with atherosclerosis, chronic kidney disease (CKD), and osteoporosis. Different mechanisms underlying calcium apatite accumulation are explored with these age-related disorders. In the case of atherosclerotic plaques, oxy-lipids trigger release of the pro-inflammatory cytokines and inflammation that activate calcification processes in aorta intimae. In CKD patients, renal failure alters the balance between calcium and phosphate levels usually regulated by fibroblast growth factor-23 (FGF23), Klotho, and vitamin D, and vascular smooth muscle cells (VSMCs) begin to explore an osteoblastosteoblast-like phenotype. Calcification could affect extracellular matrix along with VSMCs. Collagen is a major component of extracellular matrix and its modifications accumulate with age. The formation of cross-links between collagen fibers is regulated by the action of lysine hydroxylases and lysyl oxidase and could occur spontaneously. Oxidation-induced advanced glycation end products (AGEs) are a major type of spontaneous cross-links that accelerate with age and may result in tissue stiffness, problems with recycling, and potential accumulation of calcium apatite. Applying strategies for clearing the AGEs proposed by de Grey may be more difficult in the highly mineralized extracellular matrix. We performed bioinformatic analysis of the molecular pathways underlying calcification in atherosclerotic and CKD patients, signaling pathways of collagen cross-links formation, and bone mineralization, and we propose new potential targets and review drugs for calcification treatment. PMID:23902273

  11. Age-related hearing loss and ear morphology affect vertical but not horizontal sound-localization performance.

    PubMed

    Otte, Rik J; Agterberg, Martijn J H; Van Wanrooij, Marc M; Snik, Ad F M; Van Opstal, A John

    2013-04-01

    Several studies have attributed deterioration of sound localization in the horizontal (azimuth) and vertical (elevation) planes to an age-related decline in binaural processing and high-frequency hearing loss (HFHL). The latter might underlie decreased elevation performance of older adults. However, as the pinnae keep growing throughout life, we hypothesized that larger ears might enable older adults to localize sounds in elevation on the basis of lower frequencies, thus (partially) compensating their HFHL. In addition, it is not clear whether sound localization has already matured at a very young age, when the body is still growing, and the binaural and monaural sound-localization cues change accordingly. The present study investigated sound-localization performance of children (7-11 years), young adults (20-34 years), and older adults (63-80 years) under open-loop conditions in the two-dimensional frontal hemifield. We studied the effect of age-related hearing loss and ear size on localization responses to brief broadband sound bursts with different bandwidths. We found similar localization abilities in azimuth for all listeners, including the older adults with HFHL. Sound localization in elevation for the children and young adult listeners with smaller ears improved when stimuli contained frequencies above 7 kHz. Subjects with larger ears could also judge the elevation of sound sources restricted to lower frequency content. Despite increasing ear size, sound localization in elevation deteriorated in older adults with HFHL. We conclude that the binaural localization cues are successfully used well into later stages of life, but that pinna growth cannot compensate the more profound HFHL with age.

  12. Age-related hearing loss: aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain.

    PubMed

    Christensen, Nathan; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D

    2009-02-01

    Presbycusis -- age-related hearing loss, is the number one communication disorder, and one of the top three chronic medical conditions of our aged population. Aquaporins, particularly aquaporin 4 (Aqp4), are membrane proteins with important roles in water and ion flux across cell membranes, including cells of the inner ear and pathways of the brain used for hearing. To more fully understand the biological bases of presbycusis, 39 CBA mice, a well-studied animal model of presbycusis, underwent non-invasive hearing testing as a function of sound frequency (auditory brainstem response -- ABR thresholds, and distortion-product otoacoustic emission -- DPOAE magnitudes), and were clustered into four groups based on age and hearing ability. Aqp4 gene expression, as determined by genechip microarray analysis and quantitative real-time PCR, was compared to the young adult control group in the three older groups: middle aged with good hearing, old age with mild presbycusis, and old age with severe presbycusis. Linear regression and ANOVA showed statistically significant changes in Aqp4 gene expression and ABR and DPOAE hearing status in the cochlea and auditory midbrain -- inferior colliculus. Down-regulation in the cochlea was seen, and an initial down-, then up-regulation was discovered for the inferior colliculus Aqp4 expression. It is theorized that these changes in Aqp4 gene expression represent an age-related disruption of ion flux in the fluids of the cochlea that are responsible for ionic gradients underlying sound transduction in cochlear hair cells necessary for hearing. In regard to central auditory processing at the level of the auditory midbrain, aquaporin gene expression changes may affect neurotransmitter cycling involving supporting cells, thus impairing complex sound neural processing with age.

  13. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function.

    PubMed

    Egawa, Junji; Pearn, Matthew L; Lemkuil, Brian P; Patel, Piyush M; Head, Brian P

    2016-08-15

    A better understanding of the cellular physiological role that plasma membrane lipids, fatty acids and sterols play in various cellular systems may yield more insight into how cellular and whole organ function is altered during the ageing process. Membrane lipid rafts (MLRs) within the plasma membrane of most cells serve as key organizers of intracellular signalling and tethering points of cytoskeletal components. MLRs are plasmalemmal microdomains enriched in sphingolipids, cholesterol and scaffolding proteins; they serve as a platform for signal transduction, cytoskeletal organization and vesicular trafficking. Within MLRs are the scaffolding and cholesterol binding proteins named caveolin (Cav). Cavs not only organize a multitude of receptors including neurotransmitter receptors (NMDA and AMPA receptors), signalling proteins that regulate the production of cAMP (G protein-coupled receptors, adenylyl cyclases, phosphodiesterases (PDEs)), and receptor tyrosine kinases involved in growth (Trk), but also interact with components that modulate actin and tubulin cytoskeletal dynamics (e.g. RhoGTPases and actin binding proteins). MLRs are essential for the regulation of the physiology of organs such as the brain, and age-related loss of cholesterol from the plasma membrane leads to loss of MLRs, decreased presynaptic vesicle fusion, and changes in neurotransmitter release, all of which contribute to different forms of neurodegeneration. Thus, MLRs provide an active membrane domain that tethers and reorganizes the cytoskeletal machinery necessary for membrane and cellular repair, and genetic interventions that restore MLRs to normal cellular levels may be exploited as potential therapeutic means to reverse the ageing and neurodegenerative processes.

  14. Synergistic effects of free radical scavengers and cochlear vasodilators: a new otoprotective strategy for age-related hearing loss

    PubMed Central

    Alvarado, Juan Carlos; Fuentes-Santamaría, Verónica; Melgar-Rojas, Pedro; Valero, María Llanos; Gabaldón-Ull, María Cruz; Miller, Josef M.; Juiz, José M.

    2015-01-01

    The growing increase in age-related hearing loss (ARHL), with its dramatic reduction in quality of life and significant increase in health care costs, is a catalyst to develop new therapeutic strategies to prevent or reduce this aging-associated condition. In this regard, there is extensive evidence that excessive free radical formation along with diminished cochlear blood flow are essential factors involved in mechanisms of other stress-related hearing loss, such as that associated with noise or ototoxic drug exposure. The emerging view is that both play key roles in ARHL pathogenesis. Therapeutic targeting of excessive free radical formation and cochlear blood flow regulation may be a useful strategy to prevent onset of ARHL. Supporting this idea, micronutrient-based therapies, in particular those combining antioxidants and vasodilators like magnesium (Mg2+), have proven effective in reducing the impact of noise and ototoxic drugs in the inner ear, therefore improving auditory function. In this review, the synergistic effects of combinations of antioxidant free radicals scavengers and cochlear vasodilators will be discussed as a feasible therapeutic approach for the treatment of ARHL. PMID:26029103

  15. Synergistic effects of free radical scavengers and cochlear vasodilators: a new otoprotective strategy for age-related hearing loss.

    PubMed

    Alvarado, Juan Carlos; Fuentes-Santamaría, Verónica; Melgar-Rojas, Pedro; Valero, María Llanos; Gabaldón-Ull, María Cruz; Miller, Josef M; Juiz, José M

    2015-01-01

    The growing increase in age-related hearing loss (ARHL), with its dramatic reduction in quality of life and significant increase in health care costs, is a catalyst to develop new therapeutic strategies to prevent or reduce this aging-associated condition. In this regard, there is extensive evidence that excessive free radical formation along with diminished cochlear blood flow are essential factors involved in mechanisms of other stress-related hearing loss, such as that associated with noise or ototoxic drug exposure. The emerging view is that both play key roles in ARHL pathogenesis. Therapeutic targeting of excessive free radical formation and cochlear blood flow regulation may be a useful strategy to prevent onset of ARHL. Supporting this idea, micronutrient-based therapies, in particular those combining antioxidants and vasodilators like magnesium (Mg(2+)), have proven effective in reducing the impact of noise and ototoxic drugs in the inner ear, therefore improving auditory function. In this review, the synergistic effects of combinations of antioxidant free radicals scavengers and cochlear vasodilators will be discussed as a feasible therapeutic approach for the treatment of ARHL.

  16. Physical activity, inflammation, and muscle loss.

    PubMed

    Roubenoff, Ronenn

    2007-12-01

    Sarcopenia is the degenerative loss of skeletal muscle that occurs naturally in individuals as they age. Although many factors underlie sarcopenia, epidemiological and experimental evidence suggests that low-grade chronic inflammation is an important contributor to its progression. Still, few healthcare professionals have a clear understanding of the profound effects of cytokines on sarcopenia, or how these effects may be counteracted. Interestingly, mounting evidence suggests that along with good diet and vitamin supplementation, this muscle damage can be mitigated with regular physical activity. Without a doubt, exercise is an intervention that reliably counteracts the loss of muscle mass, strength, and power common in our increasingly aged, and pervasively sedentary, population.

  17. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions

    PubMed Central

    Larose, Joanie; Boulay, Pierre; Wright-Beatty, Heather E.; Sigal, Ronald J.; Hardcastle, Stephen

    2014-01-01

    This study examined the progression of impairments in heat dissipation as a function of age and environmental conditions. Sixty men (n = 12 per group; 20–30, 40–44, 45–49, 50–54, and 55–70 yr) performed four intermittent exercise/recovery cycles for a duration of 2 h in dry (35°C, 20% relative humidity) and humid (35°C, 60% relative humidity) conditions. Evaporative heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and heat loss during the sessions. Evaporative heat loss was reduced during exercise in the humid vs. dry condition in age groups 20–30 (−17%), 40–44 (−18%), 45–49 (−21%), 50–54 (−25%), and 55–70 yr (−20%). HE fell short of being significantly different between groups in the dry condition, but was greater in age group 20–30 yr (279 ± 10 W) compared with age groups 45–49 (248 ± 8 W), 50–54 (242 ± 6 W), and 55–70 yr (240 ± 7 W) in the humid condition. As a result of a reduced rate of heat dissipation predominantly during exercise, age groups 40–70 yr stored between 60–85 and 13–38% more heat than age group 20–30 yr in the dry and humid conditions, respectively. These age-related differences in heat dissipation and heat storage were not paralleled by significant differences in local sweating and skin blood flow, or by differences in core temperature between groups. From a whole body perspective, combined heat and humidity impeded heat dissipation to a similar extent across age groups, but, more importantly, intermittent exercise in dry and humid heat stress conditions created a greater thermoregulatory challenge for middle-aged and older adults. PMID:24812643

  18. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions.

    PubMed

    Larose, Joanie; Boulay, Pierre; Wright-Beatty, Heather E; Sigal, Ronald J; Hardcastle, Stephen; Kenny, Glen P

    2014-07-01

    This study examined the progression of impairments in heat dissipation as a function of age and environmental conditions. Sixty men (n = 12 per group; 20-30, 40-44, 45-49, 50-54, and 55-70 yr) performed four intermittent exercise/recovery cycles for a duration of 2 h in dry (35°C, 20% relative humidity) and humid (35°C, 60% relative humidity) conditions. Evaporative heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and heat loss during the sessions. Evaporative heat loss was reduced during exercise in the humid vs. dry condition in age groups 20-30 (-17%), 40-44 (-18%), 45-49 (-21%), 50-54 (-25%), and 55-70 yr (-20%). HE fell short of being significantly different between groups in the dry condition, but was greater in age group 20-30 yr (279 ± 10 W) compared with age groups 45-49 (248 ± 8 W), 50-54 (242 ± 6 W), and 55-70 yr (240 ± 7 W) in the humid condition. As a result of a reduced rate of heat dissipation predominantly during exercise, age groups 40-70 yr stored between 60-85 and 13-38% more heat than age group 20-30 yr in the dry and humid conditions, respectively. These age-related differences in heat dissipation and heat storage were not paralleled by significant differences in local sweating and skin blood flow, or by differences in core temperature between groups. From a whole body perspective, combined heat and humidity impeded heat dissipation to a similar extent across age groups, but, more importantly, intermittent exercise in dry and humid heat stress conditions created a greater thermoregulatory challenge for middle-aged and older adults.

  19. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice

    PubMed Central

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R.

    2016-01-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  20. Glycinergic synaptic transmission in the cochlear nucleus of mice with normal hearing and age-related hearing loss.

    PubMed

    Xie, Ruili; Manis, Paul B

    2013-10-01

    The principal inhibitory neurotransmitter in the mammalian cochlear nucleus (CN) is glycine. During age-related hearing loss (AHL), glycinergic inhibition becomes weaker in CN. However, it is unclear what aspects of glycinergic transmission are responsible for weaker inhibition with AHL. We examined glycinergic transmission onto bushy cells of the anteroventral CN in normal-hearing CBA/CaJ mice and in DBA/2J mice, a strain that exhibits an early onset AHL. Glycinergic synaptic transmission was examined in brain slices of mice at 10-15 postnatal days old, 20-35 days old, and at 6-7 mo old. Spontaneous inhibitory postsynaptic current (sIPSC) event frequency and amplitude were the same among all three ages in both strains of mice. However, the amplitudes of IPSCs evoked (eIPSC) from stimulating the dorsal CN were smaller, and the failure rate was higher, with increasing age due to decreased quantal content in both mouse strains, independent of hearing status. The coefficient of variation of the eIPSC amplitude also increased with age. The decay time constant (τ) of sIPSCs and eIPSCs were constant in CBA/CaJ mice at all ages, but were significantly slower in DBA/2J mice at postnatal days 20-35, following the onset of AHL, and not at earlier or later ages. Our results suggest that glycinergic inhibition at the synapses onto bushy cells becomes weaker and less reliable with age through changes in release. However, the hearing loss in DBA/2J mice is accompanied by a transiently enhanced inhibition, which could disrupt the balance of excitation and inhibition.

  1. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function.

    PubMed

    Egawa, Junji; Pearn, Matthew L; Lemkuil, Brian P; Patel, Piyush M; Head, Brian P

    2016-08-15

    A better understanding of the cellular physiological role that plasma membrane lipids, fatty acids and sterols play in various cellular systems may yield more insight into how cellular and whole organ function is altered during the ageing process. Membrane lipid rafts (MLRs) within the plasma membrane of most cells serve as key organizers of intracellular signalling and tethering points of cytoskeletal components. MLRs are plasmalemmal microdomains enriched in sphingolipids, cholesterol and scaffolding proteins; they serve as a platform for signal transduction, cytoskeletal organization and vesicular trafficking. Within MLRs are the scaffolding and cholesterol binding proteins named caveolin (Cav). Cavs not only organize a multitude of receptors including neurotransmitter receptors (NMDA and AMPA receptors), signalling proteins that regulate the production of cAMP (G protein-coupled receptors, adenylyl cyclases, phosphodiesterases (PDEs)), and receptor tyrosine kinases involved in growth (Trk), but also interact with components that modulate actin and tubulin cytoskeletal dynamics (e.g. RhoGTPases and actin binding proteins). MLRs are essential for the regulation of the physiology of organs such as the brain, and age-related loss of cholesterol from the plasma membrane leads to loss of MLRs, decreased presynaptic vesicle fusion, and changes in neurotransmitter release, all of which contribute to different forms of neurodegeneration. Thus, MLRs provide an active membrane domain that tethers and reorganizes the cytoskeletal machinery necessary for membrane and cellular repair, and genetic interventions that restore MLRs to normal cellular levels may be exploited as potential therapeutic means to reverse the ageing and neurodegenerative processes. PMID:26332795

  2. Inflammation induced loss of skeletal muscle.

    PubMed

    Londhe, Priya; Guttridge, Denis C

    2015-11-01

    Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".

  3. Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells

    PubMed Central

    Whitmore, S. Scott; Braun, Terry A.; Skeie, Jessica M.; Haas, Christine M.; Sohn, Elliott H.; Stone, Edwin M.; Scheetz, Todd E.

    2013-01-01

    Purpose Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. Methods Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. Results Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = –2.61; raw p value=0.0008). Conclusions GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker

  4. Memory Loss, Dementia, and Stroke: Implications for Rehabilitation of Older Adults with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Warren, Mary

    2008-01-01

    Older adults with age-related macular degeneration (AMD) are not immune to the other diseases of aging. Although AMD is the leading cause of low vision in older Americans, stroke is the leading cause of disability, and dementias affect another 2.5 million older Americans. Each condition alone can significantly impair a person's ability to…

  5. Severity and pattern of bone mineral loss in endocrine causes of osteoporosis as compared to age-related bone mineral loss

    PubMed Central

    Dutta, D; Dharmshaktu, P; Aggarwal, A; Gaurav, K; Bansal, R; Devru, N; Garga, UC; Kulshreshtha, B

    2016-01-01

    Background: Data are scant on bone health in endocrinopathies from India. This study evaluated bone mineral density (BMD) loss in endocrinopathies [Graves’ disease (GD), type 1 diabetes mellitus (T1DM), hypogonadotrophic hypogonadism (HypoH), hypergonadotropic hypogonadism (HyperH), hypopituitarism, primary hyperparathyroidism (PHPT)] as compared to age-related BMD loss [postmenopausal osteoporosis (PMO), andropause]. Materials and Methods: Retrospective audit of records of patients >30 years age attending a bone clinic from August 2014 to January 2016 was done. Results: Five-hundred and seven records were screened, out of which 420 (females:male = 294:126) were analyzed. A significantly higher occurrence of vitamin D deficiency and insufficiency was noted in T1DM (89.09%), HyperH (85%), and HypoH (79.59%) compared to age-related BMD loss (60.02%; P < 0.001). The occurrence of osteoporosis among females and males was 55.41% and 53.97%, respectively, and of osteopenia among females and males was 28.91% and 32.54%, respectively. In females, osteoporosis was significantly higher in T1DM (92%), HyperH (85%), and HypoH (59.26%) compared to PMO (49.34%; P < 0.001). Z score at LS, TF, NOF, and greater trochanter (GT) was consistently lowest in T1DM women. Among men, osteoporosis was significantly higher in T1DM (76.67%) and HypoH (54.55%) compared to andropause (45.45%; P = 0.001). Z score at LS, TF, NOF, GT, and TR was consistently lowest in T1DM men. In GD, the burden of osteoporosis was similar to PMO and andropause. BMD difference among the study groups was not significantly different after adjusting for body mass index (BMI) and vitamin D. Conclusion: Low bone mass is extremely common in endocrinopathies, warranting routine screening and intervention. Concomitant vitamin D deficiency compounds the problem. Calcium and vitamin D supplementations may improve bone health in this setting. PMID:27241810

  6. X-Ray induced cataract is preceded by LEC loss, and coincident with accumulation of cortical DNA, and ROS; similarities with age-related cataracts

    PubMed Central

    Zitnik, Galynn; Tsai, Ryan; Wolf, Norman

    2010-01-01

    Purpose To compare age-related cataractous (ARC) changes in unirradiated mice lenses to those induced by head-only X-irradiation of 3 month-old mice. Methods lens epithelial cells (LECs) as well as partially degraded cortical DNA were visualized in fixed sections using 4',6-diamidino-2-phenylindole (DAPI) staining, and in fresh lenses using the vital stain Hoechst 33342. reactive oxygen species (ROS) activity was also visualized directly in fresh lenses using the vital dye Dihydrorhodamine (DHR). In fixed lenses an antibody specific for 8-OH Guanosine (8-OH-G) lesions was used to visualize DNA oxidative adducts from ROS damage. Alpha smooth muscle actin was visualized using specific antibodies to determine if myofibroblasts were present. Fluorescence was quantified using Laser Scanning Confocal Microscopy (LSCM). The degree of lens opacity and cataract formation was determined by slit lamp, or from digitalized images of light reflections taken with a low magnification light microscope. Results Using DNA- and ROS-specific vital fluorescent dyes, and laser scanning confocal microscopy we have previously described 4 changes in the aging rodent lenses: 1) a significantly decreased density of surface LECs in lenses from old compared to younger mice and rats; 2) a very large increase in retained cortical nuclei and DNA fragments in the secondary lens fibers of old rodent lenses; 3) increased cortical ROS in old rodent lenses; 4) increased cataract concomitantly with the cortical DNA and ROS increases. In the current study we report that these same 4 changes also occur in an accelerated fashion in mice given head-only X-irradiation at 3 months of age. In addition to vital staining of fresh lenses, we also examined sections from fixed eyes stained with DAPI or hematoxylin and eosin (H&E) and found the same loss of surface LECs and accumulation of undigested nuclei and debris in secondary lens fibers occur with age or following X-irradiation. In addition sections from fixed

  7. Fetal thymus graft prevents age-related hearing loss and up regulation of the IL-1 receptor type II gene in CD4(+) T cells.

    PubMed

    Iwai, Hiroshi; Inaba, Muneo

    2012-09-15

    We found that rejuvenation of the recipient immunity by inoculation of young CD4(+) T cells or a fetal thymus graft led to down regulation of the interleukin 1 receptor type II (IL-1R2) gene in CD4(+) T cells and reduced age-related hearing loss and degeneration of the spiral ganglion in SAMP1 mice, a murine model of human senescence. Our studies on the relationship between age-related systemic immune dysfunctions and neurodegeneration mechanisms open up new avenues of treatment of neurosenescence, including presbycusis, for which there is no effective therapy.

  8. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women.

    PubMed

    Csapo, R; Malis, V; Hodgson, J; Sinha, S

    2014-04-15

    The aim of the present study was to test the hypothesis that the age-associated decrease of tendon stiffness would necessitate greater muscle fascicle strains to produce similar levels of force during isometric contraction. Greater fascicle strains could force sarcomeres to operate in less advantageous regions of their force-length and force-velocity relationships, thus impairing the capacity to generate strong and explosive contractions. To test this hypothesis, sagittal-plane dynamic velocity-encoded phase-contrast magnetic resonance images of the gastrocnemius medialis (GM) muscle and Achilles tendon (AT) were acquired in six young (YW; 26.1 ± 2.3 yr) and six senior (SW; 76.7 ± 8.3 yr) women during submaximal isometric contraction (35% maximum voluntary isometric contraction) of the plantar flexor muscles. Multiple GM fascicle lengths were continuously determined by automatically tracking regions of interest coinciding with the end points of muscle fascicles evenly distributed along the muscle's proximo-distal length. AT stiffness and Young's modulus were measured as the slopes of the tendon's force-elongation and stress-strain curves, respectively. Despite significantly lower AT stiffness at older age (YW: 120.2 ± 52.3 N/mm vs. SW: 53.9 ± 44.4 N/mm, P = 0.040), contraction-induced changes in GM fascicle lengths were similar in both age groups at equal levels of absolute muscular force (4-5% fascicle shortening in both groups), and even significantly larger in YW (YW: 11-12% vs. SW: 6-8% fascicle shortening) at equal percentage of maximum voluntary contraction. These results suggest that factors other than AT stiffness, such as age-associated changes in muscle composition or fascicle slack, might serve as compensatory adaptations, limiting the degree of fascicle strains upon contraction.

  9. Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL.

    PubMed

    Ojo, Bunmi; Rezaie, Payam; Gabbott, Paul L; Davies, Heather; Colyer, Frances; Cowley, Thelma R; Lynch, Marina; Stewart, Michael G

    2012-07-01

    Altered synaptic morphology, progressive loss of synapses and glial (astrocyte and microglial) cell activation are considered as characteristic hallmarks of aging. Recent evidence suggests that there is a concomitant age-related decrease in expression of the presynaptic protein, synaptophysin, and the neuronal glycoprotein CD200, which, by interacting with its receptor, plays a role in maintaining microglia in a quiescent state. These age-related changes may be indicative of reduced neuroglial support of synapses. FG Loop (FGL) peptide synthesized from the second fibronectin type III module of neural cell adhesion molecule (NCAM), has previously been shown to attenuate age-related glial cell activation, and to 'restore' cognitive function in aged rats. The mechanisms by which FGL exerts these neuroprotective effects remain unclear, but could involve regulation of CD200, modifying glial-synaptic interactions (affecting neuroglial 'support' at synapses), or impacting directly on synaptic function. Light and electron microscopic (EM) analyses were undertaken to investigate whether systemic treatment with FGL (i) alters CD200, synaptophysin (presynaptic) and PSD-95 (postsynaptic) immunohistochemical expression levels, (ii) affects synaptic number, or (iii) exerts any effects on glial-synaptic interactions within young (4 month-old) and aged (22 month-old) rat hippocampus. Treatment with FGL attenuated the age-related loss of synaptophysin immunoreactivity (-ir) within CA3 and hilus (with no major effect on PSD-95-ir), and of CD200-ir specifically in the CA3 region. Ultrastructural morphometric analyses showed that FGL treatment (i) prevented age-related loss in astrocyte-synaptic contacts, (ii) reduced microglia-synaptic contacts in the CA3 stratum radiatum, but (iii) had no effect on the mean number of synapses in this region. These data suggest that FGL mediates its neuroprotective effects by regulating glial-synaptic interaction.

  10. Metabolomic analysis of akt1-mediated muscle hypertrophy in models of diet-induced obesity and age-related fat accumulation.

    PubMed

    Cheng, Kian-Kai; Akasaki, Yuichi; Lecommandeur, Emmanuelle; Lindsay, Ross T; Murfitt, Steven; Walsh, Kenneth; Griffin, Julian L

    2015-01-01

    Akt1 is a serine/threonine kinase that promotes cell growth and survival. Previously, Akt1 activation in a double transgenic (DTG) mouse model fed a high-fat/high-sucrose (HF/HS) diet was found to promote type IIb muscle growth and to lead to a significant reduction in obesity. Here, we have used metabolomics to examine the metabolic perturbations in blood serum and liver and gastrocnemius tissues of the DTG mice. Multivariate statistics highlighted consistent metabolic changes in gastrocnemius muscle following Akt1 activation, which included significant reductions of serine and histidine-containing dipeptides (anserine and carnosine), in addition to increased concentrations of phosphorylated sugars. In addition, Akt1-mediated regression in obesity could be associated with increased glycolysis in gastrocnemius muscle as well as increased gluconeogenesis, glycogenolysis, and ketogenesis in the liver. In old DTG animals, Akt1 activation was found to improve glucose metabolism and confer a beneficial effect in the regression of age-related fat accumulation. This study identifies metabolic changes induced by Akt1-mediated muscle growth and demonstrates a cross-talk between distant organs that leads to a regression of fat mass. The current findings indicate that agents that promote Akt1 induction in muscle have utility in the regression of obesity. PMID:25231380

  11. AGE RELATED DIFFERENCES IN STRAIN RATE TENSOR OF THE MEDIAL GASTROCNEMIUS MUSCLE DURING PASSIVE PLANTARFLEXION AND ACTIVE ISOMETRIC CONTRACTION USING VELOCITY ENCODED MR IMAGING

    PubMed Central

    Sinha, Usha; Malis, Vadim; Csapo, Robert; Moghadasi, Ali; Kinugasa, Ryuta; Sinha, Shantanu

    2014-01-01

    Purpose The strain rate (SR) tensor measures the principal directions and magnitude of the instantaneous deformation; this study aims to track age related changes in the 2D SR tensor in the medial gastrocnemius during passive joint rotation and active isometric contraction. Methods SR tensors were derived from velocity encoded magnetic resonance phase-contrast images in nine young (28 yrs) and eight senior (78 yrs) women. Strain rates along and in the cross-section of the fiber were calculated from the SR tensor and used to derive the out-plane SR. Age related and regional differences in the SR eigenvalues, orientation, and the angle between the SR and muscle fiber (SR-fiber angle) were statistically analyzed. Results SR along the fiber was significantly different between the cohorts during isometric contraction with higher values in the young (P<0.05). The SR-fiber angle was larger in the young for both motion types but this difference was not statistically significant. Significant regional differences in the SR indices was seen in passive joint rotation (P<0.05) for both cohorts. Conclusion SR mapping reflects age related and regional differences during active and passive motion respectively; this may arise from differences in contractility (active motion) and elastic properties (active and passive motion). PMID:25046255

  12. C57BL/6 life span study: age-related declines in muscle power production and contractile velocity.

    PubMed

    Graber, Ted G; Kim, Jong-Hee; Grange, Robert W; McLoon, Linda K; Thompson, LaDora V

    2015-06-01

    Quantification of key outcome measures in animal models of aging is an important step preceding intervention testing. One such measurement, skeletal muscle power generation (force * velocity), is critical for dynamic movement. Prior research focused on maximum power (P max), which occurs around 30-40 % of maximum load. However, movement occurs over the entire load range. Thus, the primary purpose of this study was to determine the effect of age on power generation during concentric contractions in the extensor digitorum longus (EDL) and soleus muscles over the load range from 10 to 90 % of peak isometric tetanic force (P 0). Adult, old, and elderly male C57BL/6 mice were examined for contractile function (6-7 months old, 100 % survival; ~24 months, 75 %; and ~28 months, <50 %, respectively). Mice at other ages (5-32 months) were also tested for regression modeling. We hypothesized and found that power decreased with age not only at P max but also over the load range. Importantly, we found greater age-associated deficits in both power and velocity when the muscles were contracting concentrically against heavy loads (>50 % P 0). The shape of the force-velocity curve also changed with age (a/P 0 increased). In addition, there were prolonged contraction times to maximum force and shifts in the distribution of the myosin light and heavy chain isoforms in the EDL. The results demonstrate that age-associated difficulty in movement during challenging tasks is likely due, in addition to overall reduced force output, to an accelerated deterioration of power production and contractile velocity under heavily loaded conditions.

  13. Age-related loss of hepatic Nrf2 protein homeostasis: Potential role for heightened expression of miR-146a.

    PubMed

    Smith, Eric J; Shay, Kate P; Thomas, Nicholas O; Butler, Judy A; Finlay, Liam F; Hagen, Tory M

    2015-12-01

    Nrf2 regulates the expression of numerous anti-oxidant, anti-inflammatory, and metabolic genes. We observed that, paradoxically, Nrf2 protein levels decline in the livers of aged rats despite the inflammatory environment evident in that organ. To examine the cause(s) of this loss, we investigated the age-related changes in Nrf2 protein homeostasis and activation in cultured hepatocytes from young (4-6 months) and old (24-28 months) Fischer 344 rats. While no age-dependent change in Nrf2 mRNA levels was observed (p>0.05), Nrf2 protein content, and the basal and anetholetrithione (A3T)-induced expression of Nrf2-dependent genes were attenuated with age. Conversely, overexpression of Nrf2 in cells from old animals reinstated gene induction. Treatment with A3T, along with bortezomib to inhibit degradation of existing protein, caused Nrf2 to accumulate significantly in cells from young animals (p<0.05), but not old, indicating a lack of new Nrf2 synthesis. We hypothesized that the loss of Nrf2 protein synthesis with age may partly stem from an age-related increase in microRNA inhibition of Nrf2 translation. Microarray analysis revealed that six microRNAs significantly increase >2-fold with age (p<0.05). One of these, miRNA-146a, is predicted to bind Nrf2 mRNA. Transfection of hepatocytes from young rats with a miRNA-146a mimic caused a 55% attenuation of Nrf2 translation that paralleled the age-related loss of Nrf2. Overall, these results provide novel insights for the age-related decline in Nrf2 and identify new targets to maintain Nrf2-dependent detoxification with age. PMID:26549877

  14. Age-Related Hearing Loss and Degeneration of Cochlear Hair Cells in Mice Lacking Thyroid Hormone Receptor β1.

    PubMed

    Ng, Lily; Cordas, Emily; Wu, Xuefeng; Vella, Kristen R; Hollenberg, Anthony N; Forrest, Douglas

    2015-10-01

    A key function of the thyroid hormone receptor β (Thrb) gene is in the development of auditory function. However, the roles of the 2 receptor isoforms, TRβ1 and TRβ2, expressed by the Thrb gene are unclear, and it is unknown whether these isoforms promote the maintenance as well as development of hearing. We investigated the function of TRβ1 in mice with a Thrb(b1) reporter allele that expresses β-galactosidase instead of TRβ1. In the immature cochlea, β-galactosidase was detected in the greater epithelial ridge, sensory hair cells, spiral ligament, and spiral ganglion and in adulthood, at low levels in the hair cells, support cells and root cells of the outer sulcus. Although deletion of all TRβ isoforms causes severe, early-onset deafness, deletion of TRβ1 or TRβ2 individually caused no obvious hearing loss in juvenile mice. However, over subsequent months, TRβ1 deficiency resulted in progressive loss of hearing and loss of hair cells. TRβ1-deficient mice had minimal changes in serum thyroid hormone and thyrotropin levels, indicating that hormonal imbalances were unlikely to cause hearing loss. The results suggest mutually shared roles for TRβ1 and TRβ2 in cochlear development and an unexpected requirement for TRβ1 in the maintenance of hearing in adulthood.

  15. Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training.

    PubMed

    Consitt, Leslie A; Saxena, Gunjan; Saneda, Alicson; Houmard, Joseph A

    2016-07-01

    The purpose of this study was to determine whether plasma lactate and skeletal muscle glucose regulatory pathways, specifically PDH dephosphorylation, are impaired during hyperinsulinemic conditions in middle- to older-aged individuals and determine whether exercise training could improve key variables responsible for skeletal muscle PDH regulation. Eighteen young (19-29 yr; n = 9 males and 9 females) and 20 middle- to older-aged (57-82 yr; n = 10 males and 10 females) individuals underwent a 2-h euglycemic hyperinsulinemic clamp. Plasma samples were obtained at baseline and at 30, 50, 90, and 120 min for analysis of lactate, and skeletal muscle biopsies were performed at 60 min for analysis of protein associated with glucose metabolism. In response to insulin, plasma lactate was elevated in aged individuals when normalized to insulin action. Insulin-stimulated phosphorylation of skeletal muscle PDH on serine sites 232, 293, and 300 decreased in young individuals only. Changes in insulin-stimulated PDH phosphorylation were positively related to changes in plasma lactate. No age-related differences were observed in skeletal muscle phosphorylation of LDH, GSK-3α, or GSK-3β in response to insulin or PDP1, PDP2, PDK2, PDK4, or MPC1 total protein. Twelve weeks of endurance- or strength-oriented exercise training improved insulin-stimulated PDH dephosphorylation, which was related to a reduced lactate response. These findings suggest that impairments in insulin-induced PDH regulation in a sedentary aging population contribute to impaired glucose metabolism and that exercise training is an effective intervention for treating metabolic inflexibility. PMID:27221120

  16. Age-Related Benefits of Digital Noise Reduction for Short-Term Word Learning in Children with Hearing Loss

    ERIC Educational Resources Information Center

    Pittman, Andrea

    2011-01-01

    Purpose: To determine the rate of word learning for children with hearing loss (HL) in quiet and in noise compared to normal-hearing (NH) peers. The effects of digital noise reduction (DNR) were examined for children with HL. Method: Forty-one children with NH and 26 children with HL were grouped by age (8-9 years and 11-12 years). The children…

  17. Preparing Muscles for Diving: Age-Related Changes in Muscle Metabolic Profiles in Harp (Pagophilus groenlandicus) and Hooded (Cystophora cristata) Seals.

    PubMed

    Burns, J M; Lestyk, K; Freistroffer, D; Hammill, M O

    2015-01-01

    In adult marine mammals, muscles can sustain aerobic metabolism during dives in part because they contain large oxygen (O2) stores and metabolic rates are low. However, young pups have significantly lower tissue O2 stores and much higher mass-specific metabolic rates. To investigate how these differences may influence muscle function during dives, we measured the activities of enzymes involved in aerobic and anaerobic metabolic pathways (citrate synthase [CS], β-hydroxyacyl-coenzyme A dehydrogenase [HOAD], lactate dehydrogenase [LDH]) and the LDH isoform profile in six muscles from 41 harp (Pagophilus groenlandicus) and 30 hooded (Cystophora cristata) seals ranging in age from fetal to adult. All neonatal muscles had significantly higher absolute but lower metabolically scaled CS and HOAD activities than adults (∼ 70% and ∼ 85% lower, respectively). Developmental increases in LDH activity lagged that of aerobic enzymes and were not accompanied by changes in isozyme profile, suggesting that changes in enzyme concentration rather than structure determine activity levels. Biochemical maturation proceeded faster in the major locomotory muscles. In combination, findings suggest that pup muscles are unable to support strenuous aerobic exercise or rely heavily on anaerobic metabolism during early diving activities and that pups' high mass-specific metabolic rates may play a key role in limiting the ability of their muscles to support underwater foraging. PMID:25730272

  18. Preparing Muscles for Diving: Age-Related Changes in Muscle Metabolic Profiles in Harp (Pagophilus groenlandicus) and Hooded (Cystophora cristata) Seals.

    PubMed

    Burns, J M; Lestyk, K; Freistroffer, D; Hammill, M O

    2015-01-01

    In adult marine mammals, muscles can sustain aerobic metabolism during dives in part because they contain large oxygen (O2) stores and metabolic rates are low. However, young pups have significantly lower tissue O2 stores and much higher mass-specific metabolic rates. To investigate how these differences may influence muscle function during dives, we measured the activities of enzymes involved in aerobic and anaerobic metabolic pathways (citrate synthase [CS], β-hydroxyacyl-coenzyme A dehydrogenase [HOAD], lactate dehydrogenase [LDH]) and the LDH isoform profile in six muscles from 41 harp (Pagophilus groenlandicus) and 30 hooded (Cystophora cristata) seals ranging in age from fetal to adult. All neonatal muscles had significantly higher absolute but lower metabolically scaled CS and HOAD activities than adults (∼ 70% and ∼ 85% lower, respectively). Developmental increases in LDH activity lagged that of aerobic enzymes and were not accompanied by changes in isozyme profile, suggesting that changes in enzyme concentration rather than structure determine activity levels. Biochemical maturation proceeded faster in the major locomotory muscles. In combination, findings suggest that pup muscles are unable to support strenuous aerobic exercise or rely heavily on anaerobic metabolism during early diving activities and that pups' high mass-specific metabolic rates may play a key role in limiting the ability of their muscles to support underwater foraging.

  19. miR-29b overexpression induces cochlear hair cell apoptosis through the regulation of SIRT1/PGC-1α signaling: Implications for age-related hearing loss

    PubMed Central

    Xue, Tao; Wei, Li; Zha, Ding-Jun; Qiu, Jian-Hua; Chen, Fu-Quan; Qiao, Li; Qiu, Yang

    2016-01-01

    It has been reported that the degeneration of cochlear hair cells is the typical cause of presbycusis (or age-related hearing loss). However, the molecular mechanisms that mediate cochlear hair cell apoptosis are not yet fully understood and there is no effective treatment for this disorder. MicroRNAs (miRNAs or miRs) have been increasingly shown to be associated with age-related diseases and are emerging as promising therapeutic targets. In this study, we investigated whether miR-29b is involved in the degeneration of cochlear hair cells. To examine our hypothesis, nuclear staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) were used to quantify the hair cell counts. RT-qPCR and western blot analysis were used to examine miR-29b/sirtuin 1 (SIRT1)/proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in cochlear hair cells. We found that there was a significant degeneration of cochlear hair cells and a higher expression of miR-29b in aged C57BL/6 mice compared with young mice. There was also an age-related decrease in the expression of SIRT1 and PGC-1α. In the inner ear cell line, HEI-OC1, miR-29b overexpression (by transfection with miR-29b mimic) inhibited SIRT1 and PGC-1α expression, leading to an increase in mitochondrial dysfunction and apoptosis. Moreover, the inhibition of miR-29b (by transfection with miR-29b inhibitor) increased SIRT1 and PGC-1α expression, while it decreased apoptosis. Taken together, our findings support a link between age-related cochlear hair cell apoptosis and miR-29b/SIRT1/PGC-1α signaling, which may present an attractive pharmacological target for the development of novel drugs for the treatment of age-related hearing loss. PMID:27635430

  20. Development of a new Sonovue™ contrast-enhanced ultrasound approach reveals temporal and age-related features of muscle microvascular responses to feeding

    PubMed Central

    Mitchell, William Kyle; Phillips, Bethan E; Williams, John P; Rankin, Debbie; Smith, Kenneth; Lund, Jonathan N; Atherton, Philip J

    2013-01-01

    Compromised limb blood flow in aging may contribute to the development of sarcopenia, frailty, and the metabolic syndrome. We developed a novel contrast-enhanced ultrasound technique using Sonovue™ to characterize muscle microvasculature responses to an oral feeding stimulus (15 g essential amino acids) in young (∼20 years) and older (∼70 years) men. Intensity-time replenishment curves were made via an ultrasound probe “fixed” over the quadriceps, with intermittent high mechanical index destruction of microbubbles within muscle vasculature. This permitted real-time measures of microvascular blood volume (MBV), microvascular flow velocity (MFV) and their product, microvascular blood flow (MBF). Leg blood flow (LBF) was measured by Doppler and insulin by enzyme-linked immunosorbent assay. Steady-state contrast concentrations needed for comparison between different physiological states were achieved <150 sec from commencing Sonovue™ infusion, and MFV and MBV measurements were completed <120 sec thereafter. Interindividual coefficients of variation in MBV and MFV were 35–40%, (N = 36). Younger men (N = 6) exhibited biphasic vascular responses to feeding with early increases in MBV (+36%, P < 0.008 45 min post feed) reflecting capillary recruitment, and late increases in MFV (+77%, P < 0.008) and MBF (+130%, P < 0.007 195 min post feed) reflecting more proximal vessel dilatation. Early MBV responses were synchronized with peak insulin but not increased LBF, while later changes in MFV and MBF occurred with insulin at post absorptive values but alongside increased LBF. All circulatory responses were absent in old men (N = 7). Thus, impaired postprandial circulation could impact age-related declines in muscle glucose disposal, protein anabolism, and muscle mass. PMID:24303186

  1. A Comparative Study of Age-Related Hearing Loss in Wild Type and Insulin-Like Growth Factor I Deficient Mice

    PubMed Central

    Riquelme, Raquel; Cediel, Rafael; Contreras, Julio; Lourdes, Rodriguez-de la Rosa; Murillo-Cuesta, Silvia; Hernandez-Sanchez, Catalina; Zubeldia, Jose M.; Cerdan, Sebastian; Varela-Nieto, Isabel

    2010-01-01

    Insulin-like growth factor-I (IGF-I) belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1−/− null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss) is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1+/+ and null Igf1−/− mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR) recordings and in vivo MRI brain imaging. Igf1−/− null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1+/+ wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1−/− null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to prevent or

  2. Coenzyme Q Protects Against Age-Related Alveolar Bone Loss Associated to n-6 Polyunsaturated Fatty Acid Rich-Diets by Modulating Mitochondrial Mechanisms.

    PubMed

    Varela-Lopez, Alfonso; Bullon, Pedro; Battino, Maurizio; Ramirez-Tortosa, M Carmen; Ochoa, Julio J; Cordero, Mario D; Ramirez-Tortosa, César L; Rubini, Corrado; Zizzi, Antonio; Quiles, José L

    2016-05-01

    An age-dependent model of the periodontium was reproduced to evaluate the effect of life-long feeding on a low coenzyme Q10 dosage in n-6, n-3 polyunsaturated fatty acid or monounsaturated fatty acid-based diets on periodontal tissues of young and old rats. Results shown that exacerbated age-related alveolar bone loss previously associated to n-6 polyunsaturated fatty acid diet was attenuated by coenzyme Q10 Gene expression analysis suggests that involved mechanisms might be related to a restored capacity of mitochondria to adapt to aging in gingival cells from rats fed on n-6 polyunsaturated fatty acid. In particular, this could be due to an age-related increase of the rate of mitochondrial biogenesis and a better oxidative and respiratory balance in these animals. From the nutritional and clinical point of view, it is noteworthy that supplementation with coenzyme Q10 could counteract the negative effects of n-6 polyunsaturated fatty acid on alveolar bone loss (a major feature of periodontitis) associated to age.

  3. Dietary intake of heat-killed Lactococcus lactis H61 delays age-related hearing loss in C57BL/6J mice.

    PubMed

    Oike, Hideaki; Aoki-Yoshida, Ayako; Kimoto-Nira, Hiromi; Yamagishi, Naoko; Tomita, Satoru; Sekiyama, Yasuyo; Wakagi, Manabu; Sakurai, Mutsumi; Ippoushi, Katsunari; Suzuki, Chise; Kobori, Masuko

    2016-01-01

    Age-related hearing loss (AHL) is a common disorder associated with aging. In this study, we investigated the effect of the intake of heat-killed Lactococcus lactis subsp. cremoris H61 (strain H61) on AHL in C57BL/6J mice. Measurement of the auditory brainstem response (ABR) demonstrated that female mice at 9 months of age fed a diet containing 0.05% strain H61 for 6 months maintained a significantly lower ABR threshold than control mice. The age-related loss of neurons and hair cells in the cochlea was suppressed by the intake of strain H61. Faecal analysis of bacterial flora revealed that the intake of strain H61 increased the prevalence of Lactobacillales, which is positively correlated with hearing ability in mice. Furthermore, plasma fatty acid levels were negatively correlated with hearing ability. Overall, the results supported that the intake of heat-killed strain H61 for 6 months altered the intestinal flora, affected plasma metabolite levels, including fatty acid levels, and retarded AHL in mice. PMID:27000949

  4. Dietary intake of heat-killed Lactococcus lactis H61 delays age-related hearing loss in C57BL/6J mice

    PubMed Central

    Oike, Hideaki; Aoki-Yoshida, Ayako; Kimoto-Nira, Hiromi; Yamagishi, Naoko; Tomita, Satoru; Sekiyama, Yasuyo; Wakagi, Manabu; Sakurai, Mutsumi; Ippoushi, Katsunari; Suzuki, Chise; Kobori, Masuko

    2016-01-01

    Age-related hearing loss (AHL) is a common disorder associated with aging. In this study, we investigated the effect of the intake of heat-killed Lactococcus lactis subsp. cremoris H61 (strain H61) on AHL in C57BL/6J mice. Measurement of the auditory brainstem response (ABR) demonstrated that female mice at 9 months of age fed a diet containing 0.05% strain H61 for 6 months maintained a significantly lower ABR threshold than control mice. The age-related loss of neurons and hair cells in the cochlea was suppressed by the intake of strain H61. Faecal analysis of bacterial flora revealed that the intake of strain H61 increased the prevalence of Lactobacillales, which is positively correlated with hearing ability in mice. Furthermore, plasma fatty acid levels were negatively correlated with hearing ability. Overall, the results supported that the intake of heat-killed strain H61 for 6 months altered the intestinal flora, affected plasma metabolite levels, including fatty acid levels, and retarded AHL in mice. PMID:27000949

  5. Autophagy is a Protective Mechanism in Normal Cartilage and its Aging-related Loss is Linked with Cell Death and Osteoarthritis

    PubMed Central

    Caramés, Beatriz; Taniguchi, Noboru; Otsuki, Shuhei; Blanco, Francisco J.; Lotz, Martin

    2010-01-01

    Objective Autophagy is a process for turnover of intracellular organelles and molecules that protects cells during stress responses. This study evaluated the potential role of ULK1, an inducer of autophagy, Beclin1, a regulator of autophagy and LC3, which executes autophagy, in the development of osteoarthritis (OA) and in cartilage cell death. Methods Expression of ULK1, Beclin1 and LC3 were analyzed in normal and OA human articular cartilage and in knee joints of mice with aging-related and surgically induced OA by using immunohistochemistry (IHC) and western blotting. Poly-ADP(ribose) polymerase (Parp p85) was used to determine the correlation between cell death and autophagy. Results In normal human articular cartilage ULK1, Beclin1 and LC3 were constitutively expressed. ULK1, Beclin1 and LC3 protein expression were reduced in OA chondrocytes and cartilage but these three proteins were strongly expressed in the OA cell clusters. In mouse knee joints loss of glycosaminoglycans (GAGs) was observed at 9 and 12 months of age and in the surgical OA model 8 weeks after knee destabilization. Expression of ULK1, Beclin1 and LC3 decreased together with GAG loss while Parp p85 was increased. Conclusion Autophagy may be a protective or homeostatic mechanism in normal cartilage. By contrast, human OA, aging-related and surgically-induced OA in mice are associated with a reduction and loss of ULK1, Beclin1 and LC3 expression and a related increase in apoptosis. These results suggest that compromised autophagy represents a novel mechanism in the development of OA. PMID:20187128

  6. Age-related hearing loss

    MedlinePlus

    ... EH, Katz PR, Malone ML, eds. Practice of Geriatrics . 4th ed. Philadelphia, PA: Elsevier Mosby; 2007:chap ... Seshamani M, Kashima ML. Special considerations in managing geriatric patients. In: Flint PW, Haughey BH, Lund LJ, ...

  7. Age-related differences in adaptation during childhood: the influences of muscular power production and segmental energy flow caused by muscles.

    PubMed

    Korff, Thomas; Jensen, Jody L

    2007-03-01

    Acquisition of skillfulness is not only characterized by a task-appropriate application of muscular forces but also by the ability to adapt performance to changing task demands. Previous research suggests that there is a different developmental schedule for adaptation at the kinematic compared to the neuro-muscular level. The purpose of this study was to determine how age-related differences in neuro-muscular organization affect the mechanical construction of pedaling at different levels of the task. By quantifying the flow of segmental energy caused by muscles, we determined the muscular synergies that construct the movement outcome across movement speeds. Younger children (5-7 years; n = 11), older children (8-10 years; n = 8), and adults (22-31 years; n = 8) rode a stationary ergometer at five discrete cadences (60, 75, 90, 105, and 120 rpm) at 10% of their individually predicted peak power output. Using a forward dynamics simulation, we determined the muscular contributions to crank power, as well as muscular power delivered to the crank directly and indirectly (through energy absorption and transfer) during the downstroke and the upstroke of the crank cycle. We found significant age x cadence interactions for (1) peak muscular power at the hip joint [Wilks' Lambda = 0.441, F(8,42) = 2.65, p = 0.019] indicating that at high movement speeds children produced less peak power at the hip than adults, (2) muscular power delivered to the crank during the downstroke and the upstroke of the crank cycle [Wilks' Lambda = 0.399, F(8,42) = 3.07, p = 0.009] indicating that children delivered a greater proportion of the power to the crank during the upstroke when compared to adults, (3) hip power contribution to limb power [Wilks' Lambda = 0.454, F(8,42) = 2.54, p = 0.023] indicating a cadence-dependence of age-related differences in the muscular synergy between hip extensors and plantarflexors. The results demonstrate that in spite of a successful performance, children

  8. Possible age-related hearing loss (presbycusis) and corresponding change in echolocation parameters in a stranded Indo-Pacific humpback dolphin.

    PubMed

    Li, Songhai; Wang, Ding; Wang, Kexiong; Hoffmann-Kuhnt, Matthias; Fernando, Nimal; Taylor, Elizabeth A; Lin, Wenzhi; Chen, Jialin; Ng, Timothy

    2013-11-15

    The hearing and echolocation clicks of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, were studied. This animal had been repeatedly observed in the wild before it was stranded and its age was estimated to be ~40 years. The animal's hearing was measured using a non-invasive auditory evoked potential (AEP) method. Echolocation clicks produced by the dolphin were recorded when the animal was freely swimming in a 7.5 m (width)×22 m (length)×4.8 m (structural depth) pool with a water depth of ~2.5 m. The hearing and echolocation clicks of the studied dolphin were compared with those of a conspecific younger individual, ~13 years of age. The results suggested that the cut-off frequency of the high-frequency hearing of the studied dolphin was ~30-40 kHz lower than that of the younger individual. The peak and centre frequencies of the clicks produced by the older dolphin were ~16 kHz lower than those of the clicks produced by the younger animal. Considering that the older dolphin was ~40 years old, its lower high-frequency hearing range with lower click peak and centre frequencies could probably be explained by age-related hearing loss (presbycusis).

  9. Auditory Brainstem Gap Responses Start to Decline in Middle Age Mice: A Novel Physiological Biomarker for Age-Related Hearing Loss

    PubMed Central

    Williamson, Tanika T.; Zhu, Xiaoxia; Walton, Joseph P.; Frisina, Robert D.

    2014-01-01

    The CBA/CaJ mouse strain's auditory function is normal during the early phases of life and gradually declines over its lifespan, much like human age-related hearing loss (ARHL), but on a mouse life cycle “time frame”. This pattern of ARHL is relatively similar to that of most humans: difficult to clinically diagnose at its onset, and currently not treatable medically. To address the challenge of early diagnosis, CBA mice were used for the present study to analyze the beginning stages and functional onset biomarkers of ARHL. The results from Auditory Brainstem Response (ABR) audiogram and Gap-in-noise (GIN) ABR tests were compared for two groups of mice of different ages, young adult and middle age. ABR peak components from the middle age group displayed minor changes in audibility, but had a significantly higher prolonged peak latency and decreased peak amplitude in response to temporal gaps in comparison to the young adult group. The results for the younger subjects revealed gap thresholds and recovery rates that were comparable to previous studies of auditory neural gap coding. Our findings suggest that age-linked degeneration of the peripheral and brainstem auditory system is already beginning in middle age, allowing for the possibility of preventative biomedical or hearing protection measures to be implemented as a possibility for attenuating further damage to the auditory system due to ARHL. PMID:25307161

  10. Auditory brainstem gap responses start to decline in mice in middle age: a novel physiological biomarker for age-related hearing loss.

    PubMed

    Williamson, Tanika T; Zhu, Xiaoxia; Walton, Joseph P; Frisina, Robert D

    2015-07-01

    The auditory function of the CBA/CaJ mouse strain is normal during the early phases of life and gradually declines over its lifespan, much like human age-related hearing loss (ARHL) but within the "time frame" of a mouse life cycle. This pattern of ARHL is similar to that of most humans: difficult to diagnose clinically at its onset and currently not treatable medically. To address the challenge of early diagnosis, we use CBA mice to analyze the initial stages and functional onset biomarkers of ARHL. The results from Auditory Brainstem Response (ABR) audiogram and Gap-in-noise (GIN) ABR tests were compared for two groups of mice of different ages, namely young adult and middle age. ABR peak components from the middle age group displayed minor changes in audibility but had a significantly higher prolonged peak latency and decreased peak amplitude in response to temporal gaps in comparison with the young adult group. The results for the younger subjects revealed gap thresholds and recovery rates that were comparable with previous studies of auditory neural gap coding. Our findings suggest that age-linked degeneration of the peripheral and brainstem auditory system begins in middle age, allowing for the possibility of preventative biomedical or hearing protection measures to be implemented in order to attenuate further damage to the auditory system attributable to ARHL.

  11. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision.

  12. Weight, muscle and bone loss during space flight: another perspective.

    PubMed

    Stein, T P

    2013-09-01

    Space flight is a new experience for humans. Humans adapt if not perfectly, rather well to life without gravity. There is a reductive remodeling of the musculo-skeletal system. Protein is lost from muscles and calcium from bones with anti-gravity functions. The observed biochemical and physiological changes reflect this accommodative process. The two major direct effects of the muscle loss are weakness post-flight and the increased incidence of low back ache pre- and post-flight. The muscle protein losses are compromised by the inability to maintain energy balance inflight. Voluntary dietary intake is reduced during space flight by ~20 %. These adaptations to weightlessness leave astronauts ill-equipped for life with gravity. Exercise, the obvious counter-measure has been repeatedly tried and since the muscle and bone losses persist it is not unreasonable to assume that success has been limited at best. Nevertheless, more than 500 people have now flown in space for up to 1 year and have done remarkably well. This review addresses the question of whether enough is now known about these three problems (negative energy balance, muscle loss and bone loss) for to the risks to be considered either acceptable or correctible enough to meet the requirements for a Mars mission.

  13. Weight, muscle and bone loss during space flight: another perspective.

    PubMed

    Stein, T P

    2013-09-01

    Space flight is a new experience for humans. Humans adapt if not perfectly, rather well to life without gravity. There is a reductive remodeling of the musculo-skeletal system. Protein is lost from muscles and calcium from bones with anti-gravity functions. The observed biochemical and physiological changes reflect this accommodative process. The two major direct effects of the muscle loss are weakness post-flight and the increased incidence of low back ache pre- and post-flight. The muscle protein losses are compromised by the inability to maintain energy balance inflight. Voluntary dietary intake is reduced during space flight by ~20 %. These adaptations to weightlessness leave astronauts ill-equipped for life with gravity. Exercise, the obvious counter-measure has been repeatedly tried and since the muscle and bone losses persist it is not unreasonable to assume that success has been limited at best. Nevertheless, more than 500 people have now flown in space for up to 1 year and have done remarkably well. This review addresses the question of whether enough is now known about these three problems (negative energy balance, muscle loss and bone loss) for to the risks to be considered either acceptable or correctible enough to meet the requirements for a Mars mission. PMID:23192310

  14. Nutrition and muscle loss in humans during spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    1999-01-01

    The protein loss in humans during spaceflight is partly due to a normal adaptive response to a decreased work load on the muscles involved in weight bearing. The process is mediated by changes in prostaglandin release, secondary to the decrease in tension on the affected muscles. On missions, where there is a high level of physical demands on the astronauts, there tends to be an energy deficit, which adds to the muscle protein loss and depletes the body fat reserves. While the adaptive response is a normal part of homeostasis, the additional protein loss from an energy deficit can, in the long run, have a negative effect on health and capability of humans to live and work in space and afterward return to Earth.

  15. On high heels and short muscles: A multiscale model for sarcomere loss in the gastrocnemius muscle

    PubMed Central

    Zöllner, Alexander M.; Pok, Jacquelynn M.; McWalter, Emily J.; Gold, Garry E.; Kuhl, Ellen

    2014-01-01

    High heels are a major source of chronic lower limb pain. Yet, more than one third of all women compromise health for looks and wear high heels on a daily basis. Changing from flat footwear to high heels induces chronic muscle shortening associated with discomfort, fatigue, reduced shock absorption, and increased injury risk. However, the long-term effects of high-heeled footwear on the musculoskeletal kinematics of the lower extremities remain poorly understood. Here we create a multiscale computational model for chronic muscle adaptation to characterize the acute and chronic effects of global muscle shortening on local sarcomere lengths. We perform a case study of a healthy female subject and show that raising the heel by 13 cm shortens the gastrocnemius muscle by 5% while the Achilles tendon remains virtually unaffected. Our computational simulation indicates that muscle shortening displays significant regional variations with extreme values of 22% in the central gastrocnemius. Our model suggests that the muscle gradually adjusts to its new functional length by a chronic loss of sarcomeres in series. Sarcomere loss varies significantly across the muscle with an average loss of 9%, virtually no loss at the proximal and distal ends, and a maximum loss of 39% in the central region. These changes reposition the remaining sarcomeres back into their optimal operating regime. Computational modeling of chronic muscle shortening provides a valuable tool to shape our understanding of the underlying mechanisms of muscle adaptation. Our study could open new avenues in orthopedic surgery and enhance treatment for patients with muscle contracture caused by other conditions than high heel wear such as paralysis, muscular atrophy, and muscular dystrophy. PMID:25451524

  16. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: a comparative study of newborn, adult and aged rats.

    PubMed Central

    Andersson, A M; Olsen, M; Zhernosekov, D; Gaardsvoll, H; Krog, L; Linnemann, D; Bock, E

    1993-01-01

    Neural cell adhesion molecule (NCAM) is expressed by muscle and involved in muscle-neuron and muscle-muscle cell interactions. The expression in muscle is regulated during myogenesis and by the state of innervation. In aged muscle, both neurogenic and myogenic degenerative processes occur. We here report quantitative and qualitative changes in NCAM protein and mRNA forms during aging in normal rat skeletal muscle. Determination of the amount of NCAM by e.l.i.s.a. showed that the level decreased from perinatal to adult age, followed by a considerable increase in 24-month-old rat muscle. Thus NCAM concentration in aged muscle was sixfold higher than in young adult muscle. In contrast with previous reports, NCAM polypeptides of 200, 145, 125 and 120 kDa were observed by immunoblotting throughout postnatal development and aging, the relative proportions of the individual NCAM polypeptides remaining virtually unchanged at all ages examined. However, changes in the extent of sialylation of NCAM were demonstrated. Even though the relative amounts of the various NCAM polypeptides were unchanged during aging, distinct changes in NCAM mRNA classes were observed. Three NCAM mRNA classes of 6.7, 5.2 and 2.9 kb were present in perinatal and young adult skeletal muscle, whereas only the 5.2 and 2.9 kb mRNA classes could be demonstrated in aged muscle. This indicates that metabolism of the various NCAM polypeptides is individually regulated during aging. Alternative splicing of NCAM mRNA in skeletal muscle was studied by Northern blotting using DNA oligonucleotide probes specifically hybridizing to selected exons or exon combinations. Exon VASE, which has previously been shown to be present in both brain and heart NCAM mRNA, was virtually absent from skeletal muscle at all ages studied. In contrast, the majority of NCAM mRNA in postnatal skeletal muscle was shown to contain extra exons inserted between exons 12 and 13. Of the various possible exon combinations at this splice site

  17. Biomimetic Scaffolds for Regeneration of Volumetric Muscle Loss in Skeletal Muscle Injuries

    PubMed Central

    Grasman, Jonathan M.; Zayas, Michelle J.; Page, Ray; Pins, George D.

    2015-01-01

    Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. PMID:26219862

  18. What is Still Working in Working Memory in Old Age: Dual Tasking and Resistance to Interference Do Not Explain Age-Related Item Loss After a Focus Switch

    PubMed Central

    2013-01-01

    Objectives. In 2 experiments, we examined the oft-replicated finding of age-related differences in accuracy at retrieving items stored in working memory, but outside the focus of attention. Specifically, we investigated whether such differences could be explained by (a) age-related differences in coping with the dual-task nature of swapping items into and out of the focus of attention and/or (b) age-related differences in resistance to interference. Method. We used a modified version of the N-Back task with stimuli of different levels of difficulty, and experimental manipulations aimed at isolating the dual-task and interference effects. Results. We found both explanations lacking: We obtained a dual-task cost (Experiment 1) and an interference cost (Experiment 2), as well as a large age effect (Cohen’s d = 1.6 in Experiment 1 and 0.7 in Experiment 2) but neither the dual task nor the interference effect was sensitive to age. Discussion. These findings, combined with previous failures to find an explanation for the age effects, suggest that item availability after a focus switch might be an important new and fundamental variable—a cognitive primitive—potentially necessary for a full understanding of age effects in higher order cognition. PMID:23254887

  19. Relationship between site-specific loss of thigh muscle and gait performance in women: the HIREGASAKI study.

    PubMed

    Abe, Takashi; Ogawa, Madoka; Loenneke, Jeremy P; Thiebaud, Robert S; Loftin, Mark; Mitsukawa, Naotoshi

    2012-01-01

    Sarcopenia is observed as a site-specific loss of skeletal muscle mass, however, it is unknown whether the site-specific sarcopenia is associated with development of physical disability. The purpose of this study was to examine the relationship between age-related thigh muscle loss and gait performance. Fifty-three women aged 52-83 years had their thigh muscle thickness (MTH) measured by ultrasound at five sites on the anterior (30%, 50%, and 70% of thigh length) and posterior (50% and 70% of thigh length) aspects of their thigh. Maximum and normal walking speeds, zig-zag walking time, and maximal voluntary isometric knee extension and flexion strength were measured. Age was inversely correlated to the anterior and posterior MTH ratio (e.g., anterior 50%:posterior 70% MTH ratio [r=-0.426, p=0.002]), thus the site-specific muscle loss of the thigh was observed in the present sample. There were no significant correlations between the anterior/posterior MTH ratio and maximum and normal walking speeds. However, the ratios of anterior 50%:posterior 70% MTH (r=-0.430) and anterior 30%:posterior 70% MTH (r=-0.444) were correlated (p=0.001) to zig-zag walking test. After adjusting for age, height and weight, the anterior 30%:posterior 70% MTH (r=-0.292, p=0.040) was inversely correlated to zig-zag walking performance. Isometric knee extension strength was also inversely correlated to zig-zag walking. Our results suggest that an age-related loss of adductor/quadriceps muscles may be associated with a decrease in a relatively difficult task performance such as zig-zag walking. PMID:22795673

  20. Age-related appearance of muscle trauma in primary total hip arthroplasty and the benefit of a minimally invasive approach for patients older than 70 years

    PubMed Central

    Tohtz, Stephan; Dewey, Marc; Springer, Ivonne; Perka, Carsten

    2010-01-01

    Old age is frequently associated with a poorer functional outcome after THA. This might be based upon muscular damage resulting from surgical trauma. Minimally invasive approaches have been widely promoted on the basis of the muscle sparing effect. The aim of the study was to evaluate of the functional outcome and the grade of fatty muscle atrophy of the gluteus medius muscle by magnetic-resonance-imaging (MRI) in patients undergoing minimally invasive or traditional THA. Forty patients (21 female, 19 male) underwent THA either via a modified direct lateral (mDL) or a minimally invasive anterolateral (ALMI) approach. Patients were evaluated clinically and by MRI in terms of age (< or ≥70 y) preoperatively and at three and 12 months postoperatively. The Harris hip score and Trendelenburg’s sign were recorded and a survey of a pain (using a numeric rating scale of 0–10) and satisfaction score (using a numeric rating scale of 1–6) was performed. Fatty atrophy (FA) of gluteus medius muscle was rated by means of a five-point rating scale (0 indicates no fat and 4 implies more fat than muscle). Younger patients reached a significantly higher Harris hip score, lower pain score and lower rate of positive Trendelenburg’s sign accompanied by a significantly lower rate of postoperative FA (P = 0.03; young: FA (MW) = (preop. / 3 / 12 months), 0.15 / 0.7 / 0.7; old: FA (MW) = 0.18 / 1.3 / 1.36). Older patients with an mDL-approach had the significantly lowest clinical scores, the highest rate of positive Trendelenburg’s sign and also the highest rate of fatty atrophy (P = 0.03; FA (old) mDL: 1.8; ALMI: 0.7). Interestingly, no influence of the approach could be detected within the younger group. Patients older than 70 years had a poorer functional outcome and a higher postoperative extent of FA when compared to younger patients, which must be based upon a higher vulnerability and a reduced regenerative capacity of their skeletal muscle. Through a

  1. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  2. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats.

    PubMed

    Sung, Bokyung; Hwang, Seong Yeon; Kim, Min Jo; Kim, Minjung; Jeong, Ji Won; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-09-01

    A main characteristic of aging is the debilitating, progressive and generalized impairment of biological functions, resulting in an increased vulnerability to disease and death. Skeletal muscle comprises approximately 40% of the human body; thus, it is the most abundant tissue. At the age of 30 onwards, 0.5‑1% of human muscle mass is lost each year, with a marked acceleration in the rate of decline after the age of 65. Thus, novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function are required to improve the quality of life of older subjects. The aim of the present study was to determine whether loquat (Eriobotrya japonica) leaf extract (LE) can prevent the loss of skeletal muscle function in aged rats. Young (5-month-old) and aged (18‑19-month-old) rats were fed LE (50 mg/kg/day) for 35 days and the changes in muscle mass and strength were evaluated. The age‑associated loss of grip strength was attenuated, and muscle mass and muscle creatine kinase (CK) activity were enhanced following the administration of LE. Histochemical analysis also revealed that LE abrogated the age‑associated decrease in cross‑sectional area (CSA) and decreased the amount of connective tissue in the muscle of aged rats. To investigate the mode of action of LE, C2C12 murine myoblasts were used to evaluate the myogenic potential of LE. The expression levels of myogenic proteins (MyoD and myogenin) and functional myosin heavy chain (MyHC) were measured by western blot analysis. LE enhanced MyoD, myogenin and MyHC expression. The changes in the expression of myogenic genes corresponded with an increase in the activity of CK, a myogenic differentiation marker. Finally, LE activated the Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is involved in muscle protein synthesis during myogenesis. These findings suggest that LE attenuates sarcopenia by promoting myogenic differentiation and subsequently promoting muscle protein synthesis

  3. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats.

    PubMed

    Sung, Bokyung; Hwang, Seong Yeon; Kim, Min Jo; Kim, Minjung; Jeong, Ji Won; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-09-01

    A main characteristic of aging is the debilitating, progressive and generalized impairment of biological functions, resulting in an increased vulnerability to disease and death. Skeletal muscle comprises approximately 40% of the human body; thus, it is the most abundant tissue. At the age of 30 onwards, 0.5‑1% of human muscle mass is lost each year, with a marked acceleration in the rate of decline after the age of 65. Thus, novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function are required to improve the quality of life of older subjects. The aim of the present study was to determine whether loquat (Eriobotrya japonica) leaf extract (LE) can prevent the loss of skeletal muscle function in aged rats. Young (5-month-old) and aged (18‑19-month-old) rats were fed LE (50 mg/kg/day) for 35 days and the changes in muscle mass and strength were evaluated. The age‑associated loss of grip strength was attenuated, and muscle mass and muscle creatine kinase (CK) activity were enhanced following the administration of LE. Histochemical analysis also revealed that LE abrogated the age‑associated decrease in cross‑sectional area (CSA) and decreased the amount of connective tissue in the muscle of aged rats. To investigate the mode of action of LE, C2C12 murine myoblasts were used to evaluate the myogenic potential of LE. The expression levels of myogenic proteins (MyoD and myogenin) and functional myosin heavy chain (MyHC) were measured by western blot analysis. LE enhanced MyoD, myogenin and MyHC expression. The changes in the expression of myogenic genes corresponded with an increase in the activity of CK, a myogenic differentiation marker. Finally, LE activated the Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is involved in muscle protein synthesis during myogenesis. These findings suggest that LE attenuates sarcopenia by promoting myogenic differentiation and subsequently promoting muscle protein synthesis.

  4. Muscle Disuse as a Pivotal Problem in Sarcopenia-related Muscle Loss and Dysfunction.

    PubMed

    Bell, K E; von Allmen, M T; Devries, M C; Phillips, S M

    2016-01-01

    An age-associated loss of muscle mass and strength--sarcopenia--begins at around the fifth decade of life, with mass being lost at ~0.5-1.2% per year and strength at ~3% per year. Sarcopenia can contribute to a variety of negative health outcomes, including an increased risk for falls and fractures, the development of metabolic diseases like type 2 diabetes mellitus, and increase the chance of requiring assisted living. Linear sarcopenic declines in muscle mass and strength are, however, punctuated by transient periods of muscle disuse that can accelerate losses of muscle and strength, which could result in increased risk for the aforementioned conditions. Muscle disuse is recognizable with bed rest or immobilization (for example, due to surgery or acute illness requiring hospitalization); however, recent work has shown that even a relative reduction in ambulation (reduced daily steps) results in significant reductions in muscle mass, strength and possibly an increase in disease risk. Although reduced ambulation is a seemingly "benign" form of disuse, compared to bed rest and immobilization, reports have documented that 2-3 weeks of reduced daily steps may induce: negative changes in body composition, reductions in muscle strength and quality, anabolic resistance, and decrements in glycemic control in older adults. Importantly, periods of reduced ambulation likely occur fairly frequently and appear more difficult to fully recover from, in older adults. Here we explore the consequences of muscle disuse due to reduced ambulatory activity in older adults, with frequent comparisons to established models of disuse: bed rest and immobilization. PMID:26980367

  5. Active zone protein Bassoon co-localizes with presynaptic calcium channel, modifies channel function, and recovers from aging related loss by exercise.

    PubMed

    Nishimune, Hiroshi; Numata, Tomohiro; Chen, Jie; Aoki, Yudai; Wang, Yonghong; Starr, Miranda P; Mori, Yasuo; Stanford, John A

    2012-01-01

    The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca(2+) influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise.

  6. Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus.

    PubMed

    Shi, Yun; Pulliam, Daniel A; Liu, Yuhong; Hamilton, Ryan T; Jernigan, Amanda L; Bhattacharya, Arunabh; Sloane, Lauren B; Qi, Wenbo; Chaudhuri, Asish; Buffenstein, Rochelle; Ungvari, Zoltan; Austad, Steven N; Van Remmen, Holly

    2013-03-01

    Comparing biological processes in closely related species with divergent life spans is a powerful approach to study mechanisms of aging. The oxidative stress hypothesis of aging predicts that longer-lived species would have lower reactive oxygen species (ROS) generation and/or an increased antioxidant capacity, resulting in reduced oxidative damage with age than in shorter-lived species. In this study, we measured ROS generation in the young adult animals of the long-lived white-footed mouse, Peromyscus leucopus (maximal life span potential, MLSP = 8 yr) and the common laboratory mouse, Mus musculus (C57BL/6J strain; MLSP = 3.5 yr). Consistent with the hypothesis, our results show that skeletal muscle mitochondria from adult P. leucopus produce less ROS (superoxide and hydrogen peroxide) compared with M. musculus. Additionally, P. leucopus has an increase in the activity of antioxidant enzymes superoxide dismutase 1, catalase, and glutathione peroxidase 1 at young age. P. leucopus compared with M. musculus display low levels of lipid peroxidation (isoprostanes) throughout life; however, P. leucopus although having elevated protein carbonyls at a young age, the accrual of protein oxidation with age is minimal in contrast to the linear increase in M. musculus. Altogether, the results from young animals are in agreement with the predictions of the oxidative stress hypothesis of aging with the exception of protein carbonyls. Nonetheless, the age-dependent increase in protein carbonyls is more pronounced in short-lived M. musculus, which supports enhanced protein homeostasis in long-lived P. leucopus.

  7. Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus.

    PubMed

    Shi, Yun; Pulliam, Daniel A; Liu, Yuhong; Hamilton, Ryan T; Jernigan, Amanda L; Bhattacharya, Arunabh; Sloane, Lauren B; Qi, Wenbo; Chaudhuri, Asish; Buffenstein, Rochelle; Ungvari, Zoltan; Austad, Steven N; Van Remmen, Holly

    2013-03-01

    Comparing biological processes in closely related species with divergent life spans is a powerful approach to study mechanisms of aging. The oxidative stress hypothesis of aging predicts that longer-lived species would have lower reactive oxygen species (ROS) generation and/or an increased antioxidant capacity, resulting in reduced oxidative damage with age than in shorter-lived species. In this study, we measured ROS generation in the young adult animals of the long-lived white-footed mouse, Peromyscus leucopus (maximal life span potential, MLSP = 8 yr) and the common laboratory mouse, Mus musculus (C57BL/6J strain; MLSP = 3.5 yr). Consistent with the hypothesis, our results show that skeletal muscle mitochondria from adult P. leucopus produce less ROS (superoxide and hydrogen peroxide) compared with M. musculus. Additionally, P. leucopus has an increase in the activity of antioxidant enzymes superoxide dismutase 1, catalase, and glutathione peroxidase 1 at young age. P. leucopus compared with M. musculus display low levels of lipid peroxidation (isoprostanes) throughout life; however, P. leucopus although having elevated protein carbonyls at a young age, the accrual of protein oxidation with age is minimal in contrast to the linear increase in M. musculus. Altogether, the results from young animals are in agreement with the predictions of the oxidative stress hypothesis of aging with the exception of protein carbonyls. Nonetheless, the age-dependent increase in protein carbonyls is more pronounced in short-lived M. musculus, which supports enhanced protein homeostasis in long-lived P. leucopus. PMID:23325454

  8. Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus

    PubMed Central

    Shi, Yun; Pulliam, Daniel A.; Liu, Yuhong; Hamilton, Ryan T.; Jernigan, Amanda L.; Bhattacharya, Arunabh; Sloane, Lauren B.; Qi, Wenbo; Chaudhuri, Asish; Buffenstein, Rochelle; Ungvari, Zoltan; Austad, Steven N.

    2013-01-01

    Comparing biological processes in closely related species with divergent life spans is a powerful approach to study mechanisms of aging. The oxidative stress hypothesis of aging predicts that longer-lived species would have lower reactive oxygen species (ROS) generation and/or an increased antioxidant capacity, resulting in reduced oxidative damage with age than in shorter-lived species. In this study, we measured ROS generation in the young adult animals of the long-lived white-footed mouse, Peromyscus leucopus (maximal life span potential, MLSP = 8 yr) and the common laboratory mouse, Mus musculus (C57BL/6J strain; MLSP = 3.5 yr). Consistent with the hypothesis, our results show that skeletal muscle mitochondria from adult P. leucopus produce less ROS (superoxide and hydrogen peroxide) compared with M. musculus. Additionally, P. leucopus has an increase in the activity of antioxidant enzymes superoxide dismutase 1, catalase, and glutathione peroxidase 1 at young age. P. leucopus compared with M. musculus display low levels of lipid peroxidation (isoprostanes) throughout life; however, P. leucopus although having elevated protein carbonyls at a young age, the accrual of protein oxidation with age is minimal in contrast to the linear increase in M. musculus. Altogether, the results from young animals are in agreement with the predictions of the oxidative stress hypothesis of aging with the exception of protein carbonyls. Nonetheless, the age-dependent increase in protein carbonyls is more pronounced in short-lived M. musculus, which supports enhanced protein homeostasis in long-lived P. leucopus. PMID:23325454

  9. Disproportionate, age-related bone loss in long bone ends: a structural analysis based on dual-energy X-ray absorptiometry.

    PubMed

    Sievänen, H; Uusi-Rasi, K; Heinonen, A; Oja, P; Vuori, I

    1999-01-01

    The width of long bone diaphyses apparently increase with age, a phenomenon that is suggested to have some positive impact on bone strength. On the other hand, these changes in size that are site-specific may cause a deterioration in the local mechanical integrity of the whole bone. Physical activity and calcium intake are known to be able to modify bone mass and size. It is, however, not known whether these lifestyle habits can modify the postulated disproportionate changes in bone size. To address this question, bone mineral content (BMC)-derived estimates of cross-sectional areas (CSA) of femur and radius in 158 premenopausal (mean age 43, standard deviation 2 years) and 134 postmenopausal (63 (2) years), clinically healthy women with contrasting long-term histories in physical activity and calcium intake were determined from dual-energy X-ray absorptiometry (DXA) data. The DXA-obtained BMC correlated strongly with the actual CSA (r = 0.94) determined with peripheral quantitative computed tomography. The ratios between functionally interrelated CSA data (i.e., (radial shaft CSA/distal radius CSA), (trochanter CSA/femoral neck CSA), (femoral shaft CSA/trochanter CSA) and (femoral shaft CSA/femoral neck CSA)) were considered primary outcome variables. Neither physical activity nor calcium intake separately or interactively were associated with any CSA ratio. Age showed no interaction with physical activity or calcium intake but was independently associated with all CSA ratios, except the ratio of femoral shaft CSA to trochanteric CSA. This study indicated clearly that a preferential reduction in the cross-sectional area occupied by bone mineral occurs disproportionately at the long bone ends as compared with diaphyseal sites, and this apparently inherent, age-associated relative loss seems not to be prevented by physical activity or calcium intake. In particular, given the utmost clinical relevance of the proximal femur region, an observed loss in femoral neck CSA

  10. Perturbation and age-related changes in the fatty acid pattern of soleus muscle phospholipids and triglycerides in rats depleted in long-chain polyunsaturated omega3 fatty acids.

    PubMed

    Malaisse, Willy J; Portois, Laurence; Sener, Abdullah; Carpentier, Yvon A

    2007-12-01

    Altered D-glucose metabolism prevails in the soleus muscle of rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3). In these animals, the prior intravenous injection of an omega3-rich medium-chain triglyceride:fish oil emulsion (omega3-FO rats), as compared to that of an omega3-poor medium-chain triglyceride:olive oil emulsion (omega3-OO rats), may either correct or aggravate selected metabolic variables. This study deals with the fatty acid pattern of soleus phospholipids and triglycerides in control animals versus omega3-depleted rats not injected with any lipid emulsion (omega3-NI rats) and in omega3-OO versus omega3-FO rats. In each group of omega3-depleted rats, age-related changes were also monitored. The omega3-depleted rats displayed low long-chain polyunsaturated omega3 fatty acid content, facilitated metabolism of long-chain polyunsaturated omega6 fatty acids, and increased Delta9-desaturase activity. Both the age-related changes in lipid variables and those attributable to the prior intravenous injection of the omega3-rich lipid emulsion consisted either in a move towards normalization or in the opposite direction, i.e. towards aggravation of the defect found in the omega3-depleted rats. Emphasis is placed, therefore, on the unusual situation found in the soleus muscle of omega3-depleted rats, in which both lipid and metabolic variables may be either favourably or adversely affected by the same environmental factor(s). PMID:17982700

  11. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice.

    PubMed

    Lukjanenko, Laura; Jung, M Juliane; Hegde, Nagabhooshan; Perruisseau-Carrier, Claire; Migliavacca, Eugenia; Rozo, Michelle; Karaz, Sonia; Jacot, Guillaume; Schmidt, Manuel; Li, Liangji; Metairon, Sylviane; Raymond, Frederic; Lee, Umji; Sizzano, Federico; Wilson, David H; Dumont, Nicolas A; Palini, Alessio; Fässler, Reinhard; Steiner, Pascal; Descombes, Patrick; Rudnicki, Michael A; Fan, Chen-Ming; von Maltzahn, Julia; Feige, Jerome N; Bentzinger, C Florian

    2016-08-01

    Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism. PMID:27376579

  12. How to diminish calcium loss and muscle atrophy in space

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    Humans in micro-gravity suffer from Ca loss and muscle atrophy, efforts are made to prevent it by means of physical exercises and with medicaments. The tread-mill and exercise bike are just two most frequently used examples. This can and should be widely extended, and in such a way as to mimic as close as possible the normal loading of the muscles and skeleton which we experience here on the earth. Special very light weight active harness is proposed which monitors the body loading. This is accomplished by means of computer aided monitoring of muscle and bone loading systems. Using feedback it helps the crew to load their bodies and skeletons in the same way as it happens here on the earth. The active exercise mat with pressure sensors first creates a record here on the earth of all normal muscle tensions during exercise. In space the computer guides each exercising crew member to follow their earthbound training routine. High care is needed to select the best and most effective exercises which should demand least energy, yet providing the very best results. May I suggest the very best known to me kind of comprehensive exercises: Yoga. Doing it on the Earth you need next to none special training equipment. Our body is in principle all we need here to do Yoga exercises on the Earth. Integral part of Yoga exercises are abdominal breathing exercises, which can slow down the breathing rate even threefold. This improves the oxygen and CO_2 exchange and massages all internal organs around the clock, helping the adept to stay fit and also keeps their minds steady and calm. Yoga exercises should be mastered already here on the earth, providing the crew with much greater tolerance to micro-gravity. In Yoga we acquire the tolerance not only to zero gravity but also to "negative" gravity: as it happens in all inverted positions. This should help the astronauts to be more tolerant of the half way only step into "zero gravity". Weightlessness state provides us the ultimate in

  13. Age-related cataract.

    PubMed

    Asbell, Penny A; Dualan, Ivo; Mindel, Joel; Brocks, Dan; Ahmad, Mehdi; Epstein, Seth

    Cataract, opacification of the lens, is one of the commonest causes of loss of useful vision, with an estimated 16 million people worldwide affected. Several risk factors have been identified in addition to increasing age--genetic composition, exposure to ultraviolet light, and diabetes. However, no method to halt the formation of a cataractous lens has been shown to be effective. Nevertheless, advances in surgical removal of cataracts, including small-incision surgery, use of viscoelastics, and the development of intraocular lenses, have made treatment very effective and visual recovery rapid in most cases. Despite these advances, cataract continues to be a leading public-health issue that will grow in importance as the population increases and life expectancy is extended worldwide. PMID:15708105

  14. Synapse loss and axon retraction in response to local muscle degeneration.

    PubMed

    Hegstrom, C D; Truman, J W

    1996-10-01

    During metamorphosis in the moth, Manduca sexta, the abdominal body-wall muscle DEO1 is remodeled to form the adult muscle DE5. As the larval muscle degenerates, its motoneuron loses its end plates and retracts axon branches from the degenerating muscle. Muscle degeneration is under the control of the insect hormones, the ecdysteroids. Topical application of an ecdysteroid mimic resulted in animals that produced a localized patch of pupal cuticle. Muscle fibers underlying the patch showed a gradient of degeneration. The motoneuron showed end-plate loss and axon retraction from degenerating regions of a given fiber but maintained its fine terminal branches and end plates on intact regions. The results suggest that local steroid treatments that result in local muscle degeneration bring about a loss of synaptic contacts from regions of muscle degeneration.

  15. [Age-related peculiarities of thymus reaction to the exposure to helium-neon laser and injured muscle alloplasty with the muscle tissue from the animals of the same age].

    PubMed

    Bulyakova, N V; Azarova, V S

    2015-01-01

    Histological, cytological and morphometric changes in the thymus of 1 month-old, adult (3-4 months-old) and old (24-30 months-old) rats (24 animals in each group) were studied during muscle regeneration after the alloplasty of the injured area with the muscle tissue from the animal of the same age. Muscles of the donor or recipient were subjected to the course of preliminary irradiation with He-Ne laser (dose: 4.5-5.4 J/cm2 for each extremity; total dose of 9.0-10.8 J/cm2 per animal). It was shown that the exposure of gastrocnemius muscles that were prepared for the operation to He-Ne laser radiation decreased morpho-functional activity of the thymus in young, adult and old recipient rats the before surgery. This was demonstrated by its weaker reaction to the allograft during the early time intervals after surgery. The observed effect was more pronounced with the increasing age of an animal. PMID:25958725

  16. [Age-related peculiarities of thymus reaction to the exposure to helium-neon laser and injured muscle alloplasty with the muscle tissue from the animals of the same age].

    PubMed

    Bulyakova, N V; Azarova, V S

    2015-01-01

    Histological, cytological and morphometric changes in the thymus of 1 month-old, adult (3-4 months-old) and old (24-30 months-old) rats (24 animals in each group) were studied during muscle regeneration after the alloplasty of the injured area with the muscle tissue from the animal of the same age. Muscles of the donor or recipient were subjected to the course of preliminary irradiation with He-Ne laser (dose: 4.5-5.4 J/cm2 for each extremity; total dose of 9.0-10.8 J/cm2 per animal). It was shown that the exposure of gastrocnemius muscles that were prepared for the operation to He-Ne laser radiation decreased morpho-functional activity of the thymus in young, adult and old recipient rats the before surgery. This was demonstrated by its weaker reaction to the allograft during the early time intervals after surgery. The observed effect was more pronounced with the increasing age of an animal.

  17. Is dynamometry able to infer the risk of muscle mass loss in patients with COPD?

    PubMed Central

    Ramos, Dionei; Bertolini, Giovana Navarro; Leite, Marceli Rocha; Carvalho Junior, Luiz Carlos Soares; da Silva Pestana, Paula Roberta; dos Santos, Vanessa Ribeiro; Fortaleza, Ana Claudia de Souza; Rodrigues, Fernanda Maria Machado; Ramos, Ercy Mara Cipulo

    2015-01-01

    Introduction Sarcopenia is characterized by a progressive and generalized decrease of strength and muscle mass. Muscle mass loss is prevalent in patients with chronic obstructive pulmonary disease (COPD) as a result of both the disease and aging. Some methods have been proposed to assess body composition (and therefore identify muscle mass loss) in this population. Despite the high accuracy of some methods, they require sophisticated and costly equipment. Aim The purpose of this study was to infer the occurrence of muscle mass loss measured by a sophisticated method (dual energy X-ray absorptiometry [DEXA]) using a more simple and affordable equipment (dynamometer). Methods Fifty-seven stable subjects with COPD were evaluated for anthropometric characteristics, lung function, functional exercise capacity, body composition, and peripheral muscle strength. A binary logistic regression model verified whether knee-extension strength (measured by dynamometry) could infer muscle mass loss (from DEXA). Results Patients with decreased knee-extension strength were 5.93 times more likely to have muscle mass loss, regardless of sex, disease stage, and functional exercise capacity (P=0.045). Conclusion Knee-extension dynamometry was able to infer muscle mass loss in patients with COPD. PMID:26229459

  18. Endurance interval training in obese mice reduces muscle inflammation and macrophage content independently of weight loss

    PubMed Central

    Samaan, M. Constantine; Marcinko, Katarina; Sikkema, Sarah; Fullerton, Morgan D.; Ziafazeli, Tahereh; Khan, Mohammad I.; Steinberg, Gregory R.

    2014-01-01

    Abstract Obesity is associated with chronic low‐grade inflammation that involves infiltration of macrophages into metabolic organs such as skeletal muscle. Exercise enhances skeletal muscle insulin sensitivity independently of weight loss; but its role in regulating muscle inflammation is not fully understood. We hypothesized that exercise training would inhibit skeletal muscle inflammation and alter macrophage infiltration into muscle independently of weight loss. Wild type C57BL/6 male mice were fed a chow diet or a high‐fat diet (HFD, 45% calories fat) for 6 weeks. Then, mice maintained on the HFD either remained sedentary (HFD Sed) or exercised (HFD Ex) on a treadmill for another 6 weeks. The exercise training protocol involved conducting intervals of 2 min in duration followed by 2 min of rest for 60 min thrice weekly. Chow‐fed control mice remained sedentary for the entire 12 weeks. Muscle cytokine and macrophage gene expression analysis were conducted using qRT‐PCR, and muscle macrophage content was also measured using immunohistochemistry. Muscle cytokine protein content was quantified using a cytokine array. The HFD increased adiposity and weight gain compared to chow‐fed controls. HFD Sed and HFD Ex mice had similar body mass as well as total and visceral adiposity. However, despite similar adiposity, exercise reduced inflammation and muscle macrophage infiltration. We conclude that Endurance exercise training modulates the immune‐metabolic crosstalk in obesity independently of weight loss, and may have potential benefits in reducing obesity‐related muscle inflammation. PMID:24843075

  19. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation With Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss

    PubMed Central

    2006-01-01

    Background Observational and experimental data suggest that antioxidant and/or zinc supplements may delay progression of age-related macular degeneration (AMD) and vision loss. Objective To evaluate the effect of high-dose vitamins C and E, beta carotene, and zinc supplements on AMD progression and visual acuity. Design The Age-Related Eye Disease Study, an 11-center double-masked clinical trial, enrolled participants in an AMD trial if they had extensive small drusen, intermediate drusen, large drusen, noncentral geographic atrophy, or pigment abnormalities in 1 or both eyes, or advanced AMD or vision loss due to AMD in 1 eye. At least 1 eye had best-corrected visual acuity of 20/32 or better. Participants were randomly assigned to receive daily oral tablets containing: (1) antioxidants (vitamin C, 500 mg; vitamin E, 400 IU; and beta carotene, 15 mg); (2) zinc, 80 mg, as zinc oxide and copper, 2 mg, as cupric oxide; (3) antioxidants plus zinc; or (4) placebo. Main Outcome Measures (1)Photographic assessment of progression to or treatment for advanced AMD and (2) at least moderate visual acuity loss from baseline (≥15 letters). Primary analyses used repeated-measures logistic regression with a significance level of .01, unadjusted for covariates. Serum level measurements, medical histories, and mortality rates were used for safety monitoring. Results Average follow-up of the 3640 enrolled study participants, aged 55–80 years, was 6.3 years, with 2.4% lost to follow-up. Comparison with placebo demonstrated a statistically significant odds reduction for the development of advanced AMD with antioxidants plus zinc (odds ratio [OR], 0.72; 99% confidence interval [CI], 0.52–0.98). The ORs for zinc alone and antioxidants alone are 0.75 (99% CI, 0.55–1.03) and 0.80 (99% CI, 0.59–1.09), respectively. Participants with extensive small drusen, nonextensive intermediate size drusen, or pigment abnormalities had only a 1.3% 5-year probability of progression to

  20. [Epidemiology of age related macular degeneration].

    PubMed

    Leveziel, N; Delcourt, C; Zerbib, J; Dollfus, H; Kaplan, J; Benlian, P; Coscas, G; Souied, E H; Soubrane, G

    2009-06-01

    Age-related macular degeneration (ARMD) is a multifactorial and polygenic disease and is the main cause of vision loss in developed countries. The environmental factors of ARMD can modify prevalence and incidence of this disease. This article is a review of the main environmental factors currently recognized as at risk or protective factor for ARMD. Modification of these factors is of crucial importance because it could delay the onset of exudative or atrophic forms of the disease. PMID:19515460

  1. Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury.

    PubMed

    Garg, Koyal; Corona, Benjamin T; Walters, Thomas J

    2014-11-15

    Losartan is a Food and Drug Administration approved antihypertensive medication that is recently emerging as an antifibrotic therapy. Previously, losartan has been successfully used to reduce fibrosis and improve both muscle regeneration and function in several models of recoverable skeletal muscle injuries, such as contusion and laceration. In this study, the efficacy of losartan treatment in reducing fibrosis and improving regeneration was determined in a Lewis rat model of volumetric muscle loss (VML) injury. VML has been defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment. It is among the top 10 causes for wounded service members to be medically retired from the military. This study shows that, after several weeks of recovery, VML injury results in little to no muscle regeneration, but is marked by persistent inflammation, chronic upregulation of profibrotic markers and extracellular matrix (i.e., collagen type I), and fat deposition at the defect site, which manifest irrecoverable deficits in force production. Losartan administration at 10 mg·kg(-1)·day(-1) was able to modulate the gene expression of fibrotic markers and was also effective at reducing fibrosis (i.e., the deposition of collagen type I) in the injured muscle. However, there were no improvements in muscle regeneration, and deleterious effects on muscle function were observed instead. We propose that, in the absence of regeneration, reduction in fibrosis worsens the ability of the VML injured muscle to transmit forces, which ultimately results in decreased muscle function.

  2. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats.

    PubMed

    Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Sperringer, Justin; Mohamed, Junaith S; Edens, Neile K; Pereira, Suzette L

    2015-02-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to

  3. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    PubMed

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed.

  4. Pressure shift freezing of pork muscle: effect on color, drip loss, texture, and protein stability.

    PubMed

    Zhu, Songming; Le Bail, Alain; Chapleau, Nicolas; Ramaswamy, Hosahalli S; De Lamballerie-Anton, Marie

    2004-01-01

    Cylindrical specimens (50 mm diameter and 160 mm length) of fresh pork muscle (boneless rib portions) packed in plastic bags were frozen by pressure shift freezing (PSF) at 100, 150, and 200 MPa, air blast freezing (ABF), and liquid immersion freezing (LIF). Temperature and phase transformations of the muscle tissue were monitored during the freezing process at three locations: center, midway between the center and the surface, and near the surface. Pork muscle quality changes [color, drip loss (both thawing and cooking), texture (shear force), and protein stability (DSC thermal profiles)] were evaluated after thawing the frozen samples at room temperature (20 degrees C). Employing pressures above 150 MPa caused very significant (P < 0.01) color changes in pork muscle during the PSF process. The PSF process reduced thawing drip loss of pork muscle but did not cause obvious changes in total drip loss following thawing and subsequent cooking. PSF at 150 and 200 MPa resulted in considerable denaturation of myofibrillar proteins of pork muscle. The PSF process also caused an increase in the pork muscle toughness as compared with that of unfrozen, ABF, and LIF samples.

  5. GSK-3α is a central regulator of age-related pathologies in mice

    PubMed Central

    Zhou, Jibin; Freeman, Theresa A.; Ahmad, Firdos; Shang, Xiying; Mangano, Emily; Gao, Erhe; Farber, John; Wang, Yajing; Ma, Xin-Liang; Woodgett, James; Vagnozzi, Ronald J.; Lal, Hind; Force, Thomas

    2013-01-01

    Aging is regulated by conserved signaling pathways. The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases regulates several of these pathways, but the role of GSK-3 in aging is unknown. Herein, we demonstrate premature death and acceleration of age-related pathologies in the Gsk3a global KO mouse. KO mice developed cardiac hypertrophy and contractile dysfunction as well as sarcomere disruption and striking sarcopenia in cardiac and skeletal muscle, a classical finding in aging. We also observed severe vacuolar degeneration of myofibers and large tubular aggregates in skeletal muscle, consistent with impaired clearance of insoluble cellular debris. Other organ systems, including gut, liver, and the skeletal system, also demonstrated age-related pathologies. Mechanistically, we found marked activation of mTORC1 and associated suppression of autophagy markers in KO mice. Loss of GSK-3α, either by pharmacologic inhibition or Gsk3a gene deletion, suppressed autophagy in fibroblasts. mTOR inhibition rescued this effect and reversed the established pathologies in the striated muscle of the KO mouse. Thus, GSK-3α is a critical regulator of mTORC1, autophagy, and aging. In its absence, aging/senescence is accelerated in multiple tissues. Strategies to maintain GSK-3α activity and/or inhibit mTOR in the elderly could retard the appearance of age-related pathologies. PMID:23549082

  6. Genetic compensation for sarcoglycan loss by integrin alpha7beta1 in muscle.

    PubMed

    Allikian, Michael J; Hack, Andrew A; Mewborn, Stephanie; Mayer, Ulrike; McNally, Elizabeth M

    2004-08-01

    Disruption of the sarcoglycan complex leads to muscle membrane instability and muscular dystrophy in humans and mice. Through the dystrophin glycoprotein complex, sarcoglycan participates in connecting the internal cytoskeleton to the membrane and the extracellular matrix. Integrin alpha7beta1 is also a transmembrane protein of skeletal and cardiac muscle that similarly links the cytoskeleton to the extracellular matrix. Mice lacking integrin alpha7 develop mild muscle degeneration, while sarcoglycan mutant mice display overt muscle degeneration and muscular dystrophy. In sarcoglycan-deficient muscle, integrin alpha7 protein was upregulated at the plasma membrane. To ascertain whether integrin alpha7 upregulation compensates for the loss of the transmembrane sarcoglycan linkage in sarcoglycan-deficient muscle, we generated mice lacking both integrin alpha7 and gamma-sarcoglycan (gxi). These double-mutant gxi mice exhibit profound, rapid muscle degeneration leading to death before one month of age consistent with a weakened cellular attachment to the extracellular matrix. The regenerative capacity of gxi muscle was intact with increased embryonic myosin heavy chain expression, myofiber central nucleation and normal in vivo myoblast differentiation. Therefore, upregulation of integrin alpha7beta1 compensates as a transmembrane muscle cell attachment for sarcoglycan consistent with overlapping roles for sarcoglycan and integrins in mediating cytoskeletal-membrane-extracellular matrix interaction.

  7. Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment.

    PubMed

    Drescher, Cathleen; Konishi, Masaaki; Ebner, Nicole; Springer, Jochen

    2016-01-01

    Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartrate-resistant acid phosphatase 5a (TRACP5a), and novel substances like Epigallocatechin-3-gallate (EGCg). In summary, the progress to combat muscle wasting is in full swing and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon supported by improved and more helpful strategies.

  8. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle.

    PubMed

    Frederick, David W; Loro, Emanuele; Liu, Ling; Davila, Antonio; Chellappa, Karthikeyani; Silverman, Ian M; Quinn, William J; Gosai, Sager J; Tichy, Elisia D; Davis, James G; Mourkioti, Foteini; Gregory, Brian D; Dellinger, Ryan W; Redpath, Philip; Migaud, Marie E; Nakamaru-Ogiso, Eiko; Rabinowitz, Joshua D; Khurana, Tejvir S; Baur, Joseph A

    2016-08-01

    NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function. PMID:27508874

  9. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    PubMed

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    their loss of deep tendon reflexes. Moreover, we suggest that their ataxic gait is sensory in origin, due to the loss of functional muscle spindles and hence a compromised sensorimotor control of locomotion.

  10. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  11. Age-related alterations in the sarcolemmal environment are attenuated by lifelong caloric restriction and voluntary exercise.

    PubMed

    Hord, Jeffrey M; Botchlett, Rachel; Lawler, John M

    2016-10-01

    Age-related loss of skeletal muscle mass and function, referred to as sarcopenia, is mitigated by lifelong calorie restriction as well as exercise. In aged skeletal muscle fibers there is compromised integrity of the cell membrane that may contribute to sarcopenia. The purpose of this study was to determine if lifelong mild (8%) caloric restriction (CR) and lifelong CR+voluntary wheel running (WR) could ameliorate disruption of membrane scaffolding and signaling proteins during the aging process, thus maintaining a favorable, healthy membrane environment in plantaris muscle fibers. Fischer-344 rats were divided into four groups: 24-month old adults fed ad libitum (OAL); 24-month old on 8% caloric restriction (OCR); 24month old 8% caloric restriction+wheel running (OCRWR); and 6-month old sedentary adults fed ad libitum (YAL) were used to determine age-related changes. Aging resulted in discontinuous membrane expression of dystrophin glycoprotein complex (DGC) proteins: dystrophin and α-syntrophin. Older muscle also displayed decreased content of neuronal nitric oxide synthase (nNOS), a key DGC signaling protein. In contrast, OCR and OCRWR provided significant protection against age-related DGC disruption. In conjunction with the age-related decline in membrane DGC patency, key membrane repair proteins (MG53, dysferlin, annexin A6, and annexin A2) were significantly increased in the OAL plantaris. However, lifelong CR and CRWR interventions were effective at maintaining membrane repair proteins near YAL levels of. OAL fibers also displayed reduced protein content of NADPH oxidase isoform 2 (Nox2) subunits (p67phox and p47phox), consistent with a perturbed sarcolemmal environment. Loss of Nox2 subunits was prevented by lifelong CR and CRWR. Our results are therefore consistent with the hypothesis that lifelong CR and WR are effective countermeasures against age-related alterations in the myofiber membrane environment. PMID:27534381

  12. Age-related alterations in the sarcolemmal environment are attenuated by lifelong caloric restriction and voluntary exercise.

    PubMed

    Hord, Jeffrey M; Botchlett, Rachel; Lawler, John M

    2016-10-01

    Age-related loss of skeletal muscle mass and function, referred to as sarcopenia, is mitigated by lifelong calorie restriction as well as exercise. In aged skeletal muscle fibers there is compromised integrity of the cell membrane that may contribute to sarcopenia. The purpose of this study was to determine if lifelong mild (8%) caloric restriction (CR) and lifelong CR+voluntary wheel running (WR) could ameliorate disruption of membrane scaffolding and signaling proteins during the aging process, thus maintaining a favorable, healthy membrane environment in plantaris muscle fibers. Fischer-344 rats were divided into four groups: 24-month old adults fed ad libitum (OAL); 24-month old on 8% caloric restriction (OCR); 24month old 8% caloric restriction+wheel running (OCRWR); and 6-month old sedentary adults fed ad libitum (YAL) were used to determine age-related changes. Aging resulted in discontinuous membrane expression of dystrophin glycoprotein complex (DGC) proteins: dystrophin and α-syntrophin. Older muscle also displayed decreased content of neuronal nitric oxide synthase (nNOS), a key DGC signaling protein. In contrast, OCR and OCRWR provided significant protection against age-related DGC disruption. In conjunction with the age-related decline in membrane DGC patency, key membrane repair proteins (MG53, dysferlin, annexin A6, and annexin A2) were significantly increased in the OAL plantaris. However, lifelong CR and CRWR interventions were effective at maintaining membrane repair proteins near YAL levels of. OAL fibers also displayed reduced protein content of NADPH oxidase isoform 2 (Nox2) subunits (p67phox and p47phox), consistent with a perturbed sarcolemmal environment. Loss of Nox2 subunits was prevented by lifelong CR and CRWR. Our results are therefore consistent with the hypothesis that lifelong CR and WR are effective countermeasures against age-related alterations in the myofiber membrane environment.

  13. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients.

  14. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  15. The impact of sleep on age-related sarcopenia: Possible connections and clinical implications.

    PubMed

    Piovezan, Ronaldo D; Abucham, Julio; Dos Santos, Ronaldo Vagner Thomatieli; Mello, Marco Tulio; Tufik, Sergio; Poyares, Dalva

    2015-09-01

    Sarcopenia is a geriatric condition that comprises declined skeletal muscle mass, strength and function, leading to the risk of multiple adverse outcomes, including death. Its pathophysiology involves neuroendocrine and inflammatory factors, unfavorable nutritional habits and low physical activity. Sleep may play a role in muscle protein metabolism, although this hypothesis has not been studied extensively. Reductions in duration and quality of sleep and increases in prevalence of circadian rhythm and sleep disorders with age favor proteolysis, modify body composition and increase the risk of insulin resistance, all of which have been associated with sarcopenia. Data on the effects of age-related slow-wave sleep decline, circadian rhythm disruptions and obstructive sleep apnea (OSA) on hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary-gonadal (HPG), somatotropic axes, and glucose metabolism indicate that sleep disorder interventions may affect muscle loss. Recent research associating OSA with the risk of conditions closely related to the sarcopenia process, such as frailty and sleep quality impairment, indirectly suggest that sleep can influence skeletal muscle decline in the elderly. Several protein synthesis and degradation pathways are mediated by growth hormone (GH), insulin-like growth factor-1 (IGF-1), testosterone, cortisol and insulin, which act on the cellular and molecular levels to increase or reestablish muscle fiber, strength and function. Age-related sleep problems potentially interfere intracellularly by inhibiting anabolic hormone cascades and enhancing catabolic pathways in the skeletal muscle. Specific physical exercises combined or not with nutritional recommendations are the current treatment options for sarcopenia. Clinical studies testing exogenous administration of anabolic hormones have not yielded adequate safety profiles. Therapeutic approaches targeting sleep disturbances to normalize circadian rhythms and sleep homeostasis may

  16. The impact of sleep on age-related sarcopenia: Possible connections and clinical implications.

    PubMed

    Piovezan, Ronaldo D; Abucham, Julio; Dos Santos, Ronaldo Vagner Thomatieli; Mello, Marco Tulio; Tufik, Sergio; Poyares, Dalva

    2015-09-01

    Sarcopenia is a geriatric condition that comprises declined skeletal muscle mass, strength and function, leading to the risk of multiple adverse outcomes, including death. Its pathophysiology involves neuroendocrine and inflammatory factors, unfavorable nutritional habits and low physical activity. Sleep may play a role in muscle protein metabolism, although this hypothesis has not been studied extensively. Reductions in duration and quality of sleep and increases in prevalence of circadian rhythm and sleep disorders with age favor proteolysis, modify body composition and increase the risk of insulin resistance, all of which have been associated with sarcopenia. Data on the effects of age-related slow-wave sleep decline, circadian rhythm disruptions and obstructive sleep apnea (OSA) on hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary-gonadal (HPG), somatotropic axes, and glucose metabolism indicate that sleep disorder interventions may affect muscle loss. Recent research associating OSA with the risk of conditions closely related to the sarcopenia process, such as frailty and sleep quality impairment, indirectly suggest that sleep can influence skeletal muscle decline in the elderly. Several protein synthesis and degradation pathways are mediated by growth hormone (GH), insulin-like growth factor-1 (IGF-1), testosterone, cortisol and insulin, which act on the cellular and molecular levels to increase or reestablish muscle fiber, strength and function. Age-related sleep problems potentially interfere intracellularly by inhibiting anabolic hormone cascades and enhancing catabolic pathways in the skeletal muscle. Specific physical exercises combined or not with nutritional recommendations are the current treatment options for sarcopenia. Clinical studies testing exogenous administration of anabolic hormones have not yielded adequate safety profiles. Therapeutic approaches targeting sleep disturbances to normalize circadian rhythms and sleep homeostasis may

  17. Progressive, Site-Specific Loss of Muscle Mass in Older, Frail Nursing Home Residents.

    PubMed

    Takeshima, Nobuo; Shimada, Keizo; Islam, Mohammod M; Kanehisa, Hiroaki; Ishida, Yoshie; Brechue, William F

    2015-07-01

    To clarify the progression of muscle loss in nursing home residents, frail women (n = 16; age: 85 ± 9 years; residence time: 764 days) were assessed for physical activity, caloric intake, and site-specific muscle thickness (MTH) and subcutaneous fat thickness (SFT) using B-mode ultrasound at nine anatomical sites at four intervals over one year. Height, body weight, and BMI did not change. Physical activity (246 steps/ day) and nutritional intake (1,441 kcal, 60.3 g protein/day) were unaltered throughout the study. Subjects experienced a significant, progressive loss of muscle indicated by decrements in anterior upper arm (20%), posterior upper arm (25%), abdomen (20%), subscapular (33%), anterior thigh (15%), posterior thigh (22%), anterior lower leg (11%), posterior lower leg (13%), and forearm (15%) MTH. At study inception, prevalence of sarcopenia was related to muscle loss in the upper leg, while upper body muscle wasting contributed to sarcopenia later and was unrelated to physical activity, nutritional input, or duration of residence.

  18. Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss.

    PubMed

    Gentile, Natalie E; Stearns, Kristen M; Brown, Elke H P; Rubin, J Peter; Boninger, Michael L; Dearth, Christopher L; Ambrosio, Fabrisia; Badylak, Stephen F

    2014-11-01

    Rehabilitation therapy is an important aspect of recovery after volumetric muscle loss. However, the traditional rehabilitation approach involves a period of rest and passive loading followed by gradual active loading. Extracellular matrix is a naturally occurring material consisting of structural proteins that provide mechanical strength, structural support, and functional molecules with diverse bioactive properties. There is evidence to suggest that the addition of aggressive regenerative rehabilitation protocols immediately after surgical implantation of an extracellular matrix scaffold to an area of volumetric muscle loss has significant benefits for extracellular matrix remodeling. Rehabilitation exercises likely provide the needed mechanical signals to encourage cell migration and site-specific differentiation in the temporal framework required for constructive remodeling. Herein, the authors review the literature and present an example of an aggressive rehabilitation program implemented immediately after extracellular matrix transplantation into a severely injured quadriceps muscle.

  19. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    SciTech Connect

    Wakeford, S.; Watt, D.J.; Partridge, T.A. )

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD.

  20. Sodium channelopathies of skeletal muscle result from gain or loss of function.

    PubMed

    Jurkat-Rott, Karin; Holzherr, Boris; Fauler, Michael; Lehmann-Horn, Frank

    2010-07-01

    Five hereditary sodium channelopathies of skeletal muscle have been identified. Prominent symptoms are either myotonia or weakness caused by an increase or decrease of muscle fiber excitability. The voltage-gated sodium channel NaV1.4, initiator of the muscle action potential, is mutated in all five disorders. Pathogenetically, both loss and gain of function mutations have been described, the latter being the more frequent mechanism and involving not just the ion-conducting pore, but aberrant pores as well. The type of channel malfunction is decisive for therapy which consists either of exerting a direct effect on the sodium channel, i.e., by blocking the pore, or of restoring skeletal muscle membrane potential to reduce the fraction of inactivated channels.

  1. Alcohol-induced autophagy contributes to loss in skeletal muscle mass.

    PubMed

    Thapaliya, Samjhana; Runkana, Ashok; McMullen, Megan R; Nagy, Laura E; McDonald, Christine; Naga Prasad, Sathyamangla V; Dasarathy, Srinivasan

    2014-04-01

    Patients with alcoholic cirrhosis and hepatitis have severe muscle loss. Since ethanol impairs skeletal muscle protein synthesis but does not increase ubiquitin proteasome-mediated proteolysis, we investigated whether alcohol-induced autophagy contributes to muscle loss. Autophagy induction was studied in: A) Human skeletal muscle biopsies from alcoholic cirrhotics and controls, B) Gastrocnemius muscle from ethanol and pair-fed mice, and C) Ethanol-exposed murine C2C12 myotubes, by examining the expression of autophagy markers assessed by immunoblotting and real-time PCR. Expression of autophagy genes and markers were increased in skeletal muscle from humans and ethanol-fed mice, and in myotubes following ethanol exposure. Importantly, pulse-chase experiments showed suppression of myotube proteolysis upon ethanol-treatment with the autophagy inhibitor, 3-methyladenine (3MA) and not by MG132, a proteasome inhibitor. Correspondingly, ethanol-treated C2C12 myotubes stably expressing GFP-LC3B showed increased autophagy flux as measured by accumulation of GFP-LC3B vesicles with confocal microscopy. The ethanol-induced increase in LC3B lipidation was reversed upon knockdown of Atg7, a critical autophagy gene and was associated with reversal of the ethanol-induced decrease in myotube diameter. Consistently, CT image analysis of muscle area in alcoholic cirrhotics was significantly reduced compared with control subjects. In order to determine whether ethanol per se or its metabolic product, acetaldehyde, stimulates autophagy, C2C12 myotubes were treated with ethanol in the presence of the alcohol dehydrogenase inhibitor (4-methylpyrazole) or the acetaldehyde dehydrogenase inhibitor (cyanamide). LC3B lipidation increased with acetaldehyde treatment and increased further with the addition of cyanamide. We conclude that muscle autophagy is increased by ethanol exposure and contributes to sarcopenia.

  2. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity.

    PubMed

    Wannamethee, S Goya; Atkins, Janice L

    2015-11-01

    This paper reviews the health implications of obesity, sarcopenia and sarcopenic obesity on CVD and mortality in older adults and discusses the obesity paradox seen in patients with CVD. Obesity is a major public health problem with increasing prevalence worldwide. It is an established risk factor for cardiovascular morbidity and mortality in adult populations. However, there is controversy surrounding the effects of obesity as measured by BMI in older people, and overweight and obesity (BMI ⩾ 25 kg/m2) are apparently associated with increased survival in those with CVD (obesity paradox). Ageing is associated with an increase in visceral fat and a progressive loss of muscle mass which have opposing effects on mortality. Thus BMI is not a good indicator of obesity in older adults. Sarcopenia, the age-associated loss of skeletal muscle mass, is a major concern in ageing populations and has been associated with metabolic impairment, CVD risk factors, physical disability and mortality. Sarcopenia often coexists with obesity. Sarcopenic obesity is a new category of obesity in older adults who have high adiposity coupled with low muscle mass. To fully understand the effect of obesity on mortality in the elderly it is important to take muscle mass into account. The evidence suggests that sarcopenia with obesity may be associated with higher levels of metabolic disorders and an increased risk of mortality than obesity or sarcopenia alone. Efforts to promote healthy ageing should focus on both preventing obesity and maintaining or increasing muscle mass. PMID:25913270

  3. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity.

    PubMed

    Wannamethee, S Goya; Atkins, Janice L

    2015-11-01

    This paper reviews the health implications of obesity, sarcopenia and sarcopenic obesity on CVD and mortality in older adults and discusses the obesity paradox seen in patients with CVD. Obesity is a major public health problem with increasing prevalence worldwide. It is an established risk factor for cardiovascular morbidity and mortality in adult populations. However, there is controversy surrounding the effects of obesity as measured by BMI in older people, and overweight and obesity (BMI ⩾ 25 kg/m2) are apparently associated with increased survival in those with CVD (obesity paradox). Ageing is associated with an increase in visceral fat and a progressive loss of muscle mass which have opposing effects on mortality. Thus BMI is not a good indicator of obesity in older adults. Sarcopenia, the age-associated loss of skeletal muscle mass, is a major concern in ageing populations and has been associated with metabolic impairment, CVD risk factors, physical disability and mortality. Sarcopenia often coexists with obesity. Sarcopenic obesity is a new category of obesity in older adults who have high adiposity coupled with low muscle mass. To fully understand the effect of obesity on mortality in the elderly it is important to take muscle mass into account. The evidence suggests that sarcopenia with obesity may be associated with higher levels of metabolic disorders and an increased risk of mortality than obesity or sarcopenia alone. Efforts to promote healthy ageing should focus on both preventing obesity and maintaining or increasing muscle mass.

  4. Loss of Notch2 and Notch3 in vascular smooth muscle causes patent ductus arteriosus.

    PubMed

    Baeten, Jeremy T; Jackson, Ashley R; McHugh, Kirk M; Lilly, Brenda

    2015-12-01

    The overlapping roles of the predominant Notch receptors in vascular smooth muscle cells, Notch2 and Notch3, have not been clearly defined in vivo. In this study, we use a smooth muscle-specific deletion of Notch2 together with a global Notch3 deletion to produce mice with combinations of mutant and wild-type Notch2/3 alleles in vascular smooth muscle cells. Mice with complete loss of Notch3 and smooth muscle-expressed Notch2 display late embryonic lethality and subcutaneous hemorrhage. Mice without smooth muscle-Notch2 and only one wild-type copy of Notch3 die within one day of birth and present with vascular defects, most notably patent ductus arteriosus (DA) and aortic dilation. These defects were associated with decreased expression of contractile markers in both the DA and aorta. These results demonstrate that Notch2 and Notch3 have overlapping roles in promoting development of vascular smooth muscle cells, and together contribute to functional closure of the DA.

  5. Age-related atrial fibrosis.

    PubMed

    Gramley, Felix; Lorenzen, Johann; Knackstedt, Christian; Rana, Obaida R; Saygili, Erol; Frechen, Dirk; Stanzel, Sven; Pezzella, Francesco; Koellensperger, Eva; Weiss, Christian; Münzel, Thomas; Schauerte, Patrick

    2009-03-01

    Many age-related diseases are associated with, and may be promoted by, cardiac fibrosis. Transforming growth factor (TGF)-beta, hypoxia-induced factor (HIF), and the matrix metalloproteinase (MMP) system have been implicated in fibrogenesis. Thus, we investigated whether age is related to these systems and to atrial fibrosis. Right atrial appendages (RAA) obtained during heart surgery (n = 115) were grouped according to patients' age (<50 years, 51-60 years, 61-70 years, or >70 years). Echocardiographic ejection fractions (EF) and fibrosis using Sirius-red-stained histological sections were determined. TGF-beta was determined by quantitative RT-PCR and hypoxia-related factors [HIF1 alpha, the vascular endothelial growth factor (VEGF)-receptor, CD34 (a surrogate marker for microvessel density), the factor inhibiting HIF (FIH), and prolyl hydroxylase 3 (PHD 3)] were detected by immunostaining. MMP-2 and -9 activity were determined zymographically, and mRNA levels of their common tissue inhibitor TIMP-1 were determined by RT-PCR. Younger patients (<50 years) had significantly less fibrosis (10.1% +/- 4.4% vs 16.6% +/- 8.3%) than older individuals (>70 years). While HIF1 alpha, FIH, the VEGF-receptor, and CD34 were significantly elevated in the young, TGF-beta and PHD3 were suppressed in these patients. MMP-2 and -9 activity was found to be higher while TIMP-1 levels were lower in older patients. Statistical analysis proved age to be the only factor influencing fibrogenesis. With increasing age, RAAs develop significantly more fibrosis. An increase of fibrotic and decrease of hypoxic signalling and microvessel density, coupled with differential expression of MMPs and TIMP-1 favouring fibrosis may have helped promote atrial fibrogenesis. PMID:19234766

  6. Inflammation in age-related macular degeneration.

    PubMed

    Ozaki, Ema; Campbell, Matthew; Kiang, Anna-Sophia; Humphries, Marian; Doyle, Sarah L; Humphries, Peter

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness in elderly individuals in the developed world, affecting 30-50 million people worldwide. AMD primarily affects the macular region of the retina that is responsible for the majority of central, color and daytime vision. The presence of drusen, extracellular protein aggregates that accumulate under the retinal pigment epithelium (RPE), is a major pathological hallmark in the early stages of the disease. The end stage 'dry' and 'wet' forms of the disease culminate in vision loss and are characterized by focal degeneration of the RPE and cone photoreceptors, and choroidal neovascularization (CNV), respectively. Being a multifactorial and genetically heterogeneous disease, the pathophysiology of AMD remains unclear, yet, there is ample evidence supporting immunological and inflammatory processes. Here, we review the recent literature implicating some of these immune processes in human AMD and in animal models. PMID:24664703

  7. Target genes of myostatin loss-of-function in muscles of late bovine fetuses

    PubMed Central

    Cassar-Malek, Isabelle; Passelaigue, Florent; Bernard, Carine; Léger, Jean; Hocquette, Jean-François

    2007-01-01

    Background Myostatin, a muscle-specific member of the Transforming Growth Factor beta family, negatively regulates muscle development. Double-muscled (DM) cattle have a loss-of-function mutation in their myostatin gene responsible for the hypermuscular phenotype. Thus, these animals are a good model for understanding the mechanisms underpinning muscular hypertrophy. In order to identify individual genes or networks that may be myostatin targets, we looked for genes that were differentially expressed between DM and normal (NM) animals (n = 3 per group) in the semitendinosus muscle (hypertrophied in DM animals) at 260 days of fetal development (when the biochemical differentiation of muscle is intensive). A heterologous microarray (human and murine oligonucleotide sequences) of around 6,000 genes expressed in muscle was used. Results Many genes were found to be differentially expressed according to genetic type (some with a more than 5-fold change), and according to the presence of one or two functional myostatin allele(s). They belonged to various functional categories. The genes down-regulated in DM fetuses were mainly those encoding extracellular matrix proteins, slow contractile proteins and ribosomal proteins. The genes up-regulated in DM fetuses were mainly involved in the regulation of transcription, cell cycle/apoptosis, translation or DNA metabolism. These data highlight features indicating that DM muscle is shifted towards a more glycolytic metabolism, and has an altered extracellular matrix composition (e.g. down-regulation of COL1A1 and COL1A2, and up-regulation of COL4A2) and decreased adipocyte differentiation (down-regulation of C1QTNF3). The altered gene expression in the three major muscle compartments (fibers, connective tissue and intramuscular adipose tissue) is consistent with the well-known characteristics of DM cattle. In addition, novel potential targets of the myostatin gene were identified (MB, PLN, troponins, ZFHX1B). Conclusion Thus, the

  8. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries.

    PubMed

    Grasman, Jonathan M; Do, Duc M; Page, Raymond L; Pins, George D

    2015-12-01

    A significant challenge in the design and development of biomaterial scaffolds is to incorporate mechanical and biochemical cues to direct organized tissue growth. In this study, we investigated the effect of hepatocyte growth factor (HGF) loaded, crosslinked fibrin (EDCn-HGF) microthread scaffolds on skeletal muscle regeneration in a mouse model of volumetric muscle loss (VML). The rapid, sustained release of HGF significantly enhanced the force production of muscle tissue 60 days after injury, recovering more than 200% of the force output relative to measurements recorded immediately after injury. HGF delivery increased the number of differentiating myoblasts 14 days after injury, and supported an enhanced angiogenic response. The architectural morphology of microthread scaffolds supported the ingrowth of nascent myofibers into the wound site, in contrast to fibrin gel implants which did not support functional regeneration. Together, these data suggest that EDCn-HGF microthreads recapitulate several of the regenerative cues lost in VML injuries, promote remodeling of functional muscle tissue, and enhance the functional regeneration of skeletal muscle. Further, by strategically incorporating specific biochemical factors and precisely tuning the structural and mechanical properties of fibrin microthreads, we have developed a powerful platform technology that may enhance regeneration in other axially aligned tissues.

  9. Predictive value of strength loss as an indicator of muscle damage across multiple drop jumps.

    PubMed

    Skurvydas, Albertas; Brazaitis, Marius; Venckūnas, Tomas; Kamandulis, Sigitas

    2011-06-01

    The aim of the present study was to compare the time-course of indirect symptoms of exercise-induced muscle damage after 50 and 100 drop jumps. A high-force, low intensity exercise protocol was used to avoid discrepancies regarding metabolic fatigue immediately after exercise. Healthy untrained men performed 50 ("50 group", n = 13) or 100 ("100 group", n = 13) intermittent (30-s interval between each jump) drop jumps, respectively, from the height of 0.5 m with a counter-movement to a 90° knee flexion angle and immediate maximal rebound. Voluntary and electrically evoked knee extensor strength was assessed using an isokinetic dynamometer immediately before and at 2 min after exercise, as well as 3, 7, and 14 days after exercise. Creatine kinase (CK) activity and muscle soreness within 7 days after exercise were also determined. The results showed that the decrease in voluntary isometric and isokinetic torque as well as 100 Hz stimulation torque at the end of the 50 and 100 drop jumps was very similar, while substantial differences were found in low-frequency fatigue, shift in optimal knee joint angle, muscle soreness, and CK activity. In addition, there was slower muscle strength recovery after the 100 drop jumps. It is concluded that the predictive value of strength loss immediately after exercise as an indicator of muscle damage decreases as the jump number increases. Still, stimuli must be large enough for muscle torque to reach the reduction plateau. Therefore, magnitude of exercise becomes a major factor in accuracy of muscle damage predictions. PMID:21574783

  10. Nutrition and physical activity for the prevention and treatment of age-related sarcopenia.

    PubMed

    Bosaeus, Ingvar; Rothenberg, Elisabet

    2016-05-01

    Sarcopenia, defined as loss of skeletal muscle mass and function, is associated with adverse outcomes such as physical disability, impaired quality of life and increased mortality. Several mechanisms are involved in the development of sarcopenia. Potentially modifiable factors include nutrition and physical activity. Protein metabolism is central to the nutritional issues, along with other potentially modifying nutritional factors as energy balance and vitamin D status. An increasing but still incomplete knowledge base has generated recent recommendations on an increased protein intake in the elderly. Several factors beyond the total amount of protein consumed emerge as potentially important in this context. A recent summit examined three hypotheses: (1) A meal threshold; habitually consuming 25-30 g protein at breakfast, lunch and dinner provides sufficient protein to effectively stimulate muscle protein anabolism; (2) Protein quality; including high-quality protein at each meal improves postprandial muscle protein synthesis; and (3) performing physical activity in close temporal proximity to a high-quality protein meal enhances muscle anabolism. Optimising the potential for muscle protein anabolism by consuming an adequate amount of high-quality protein at each meal, in combination with physical activity, appears as a promising strategy to prevent or delay the onset of sarcopenia. However, results of interventions are inconsistent, and well-designed, standardised studies evaluating exercise or nutrition interventions are needed before guidelines can be developed for the prevention and treatment of age-related sarcopenia. PMID:26620911

  11. Cancer and Chemotherapy Contribute to Muscle Loss by Activating Common Signaling Pathways

    PubMed Central

    Barreto, Rafael; Mandili, Giorgia; Witzmann, Frank A.; Novelli, Francesco; Zimmers, Teresa A.; Bonetto, Andrea

    2016-01-01

    and chemotherapy contribute to muscle loss by activating common signaling pathways. These data support the undertaking of combination strategies that aim to both counteract tumor growth and reduce chemotherapy side effects. PMID:27807421

  12. P38 MAPK signaling underlies a cell autonomous loss of stem cell self-renewal in aged skeletal muscle

    PubMed Central

    Bernet, Jennifer D.; Doles, Jason D.; Hall, John K.; Kelly-Tanaka, Kathleen; Carter, Thomas A.; Olwin, Bradley B.

    2014-01-01

    Skeletal muscle aging results in a gradual loss of skeletal muscle mass, skeletal muscle function and decreased regenerative capacity, which can lead to sarcopenia and increased mortality. While the mechanisms underlying sarcopenia remain unclear, the skeletal muscle stem cell, or satellite cell, is required for muscle regeneration. Therefore, identification of signaling pathways affecting satellite cell function during aging may provide insights into therapeutic targets for combating sarcopenia. Here, we show that a cell-autonomous loss in self-renewal occurs via alterations in FGF Receptor 1 and p38αβ MAPK signaling in aged satellite cells. We further demonstrate that pharmacological manipulation of these pathways can ameliorate age-associated self-renewal defects. Thus, our data highlight an age-associated deregulation of a satellite cell homeostatic network and reveal potential therapeutic opportunities for the treatment of progressive muscle wasting. PMID:24531379

  13. Muscle power failure in mobility-limited adults: preserved single muscle fibre function despite reduced whole muscle size, quality and neuromuscular activiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power woul...

  14. Age-Related Hyperkyphosis: Its Causes, Consequences, and Management

    PubMed Central

    Katzman, Wendy B.; Wanek, Linda; Shepherd, John A.; Sellmeyer, Deborah E.

    2010-01-01

    Age-related postural hyperkyphosis is an exaggerated anterior curvature of the thoracic spine, sometimes referred to as Dowager’s hump or gibbous deformity. This condition impairs mobility,2,31 and increases the risk of falls33 and fractures.26 The natural history of hyperkyphosis is not firmly established. Hyperkyphosis may develop from either muscle weakness and degenerative disc disease, leading to vertebral fractures and worsening hyperkyphosis, or from initial vertebral fractures that precipitate its development. PMID:20511692

  15. Exercise training prevents hyperinsulinemia, muscular glycogen loss and muscle atrophy induced by dexamethasone treatment.

    PubMed

    Barel, Matheus; Perez, Otávio André Brogin; Giozzet, Vanessa Aparecida; Rafacho, Alex; Bosqueiro, José Roberto; do Amaral, Sandra Lia

    2010-03-01

    This study investigated whether exercise training could prevent the negative side effects of dexamethasone. Rats underwent a training period and were either submitted to a running protocol (60% physical capacity, 5 days/week for 8 weeks) or kept sedentary. After this training period, the animals underwent dexamethasone treatment (1 mg/kg per day, i.p., 10 days). Glycemia, insulinemia, muscular weight and muscular glycogen were measured from blood and skeletal muscle. Vascular endothelial growth factor (VEGF) protein was analyzed in skeletal muscles. Dexamethasone treatment evoked body weight loss (-24%), followed by muscular atrophy in the tibialis anterior (-25%) and the extensor digitorum longus (EDL, -15%). Dexamethasone also increased serum insulin levels by 5.7-fold and glucose levels by 2.5-fold compared to control. The exercise protocol prevented atrophy of the EDL and insulin resistance. Also, dexamethasone-treated rats showed decreased muscular glycogen (-41%), which was further attenuated by the exercise protocol. The VEGF protein expression decreased in the skeletal muscles of dexamethasone-treated rats and was unaltered by the exercise protocol. These data suggest that exercise attenuates hyperglycemia and may also prevent insulin resistance, muscular glycogen loss and muscular atrophy, thus suggesting that exercise may have some benefits during glucocorticoid treatment.

  16. Intermuscular adipose tissue and thigh muscle area dynamics during an 18-month randomized weight loss trial.

    PubMed

    Yaskolka Meir, Anat; Shelef, Ilan; Schwarzfuchs, Dan; Gepner, Yftach; Tene, Lilac; Zelicha, Hila; Tsaban, Gal; Bilitzky, Avital; Komy, Oded; Cohen, Noa; Bril, Nitzan; Rein, Michal; Serfaty, Dana; Kenigsbuch, Shira; Chassidim, Yoash; Zeller, Lior; Ceglarek, Uta; Stumvoll, Michael; Blüher, Matthias; Thiery, Joachim; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2016-08-01

    It remains unclear whether intermuscular adipose tissue (IMAT) has any metabolic influence or whether it is merely a marker of abnormalities, as well as what are the effects of specific lifestyle strategies for weight loss on the dynamics of both IMAT and thigh muscle area (TMA). We followed the trajectory of IMAT and TMA during 18-mo lifestyle intervention among 278 sedentary participants with abdominal obesity, using magnetic resonance imaging. We measured the resting metabolic rate (RMR) by an indirect calorimeter. Among 273 eligible participants (47.8 ± 9.3 yr of age), the mean IMAT was 9.6 ± 4.6 cm(2) Baseline IMAT levels were directly correlated with waist circumference, abdominal subdepots, C-reactive protein, and leptin and inversely correlated with baseline TMA and creatinine (P < 0.05 for all). After 18 mo (86.3% adherence), both IMAT (-1.6%) and TMA (-3.3%) significantly decreased (P < 0.01 vs. baseline). The changes in both IMAT and TMA were similar across the lifestyle intervention groups and directly corresponded with moderate weight loss (P < 0.001). IMAT change did not remain independently associated with decreased abdominal subdepots or improved cardiometabolic parameters after adjustments for age, sex, and 18-mo weight loss. In similar models, 18-mo TMA loss remained associated with decreased RMR, decreased activity, and with increased fasting glucose levels and IMAT (P < 0.05 for all). Unlike other fat depots, IMAT may not represent a unique or specific adipose tissue, instead largely reflecting body weight change per se. Moderate weight loss induced a significant decrease in thigh muscle area, suggesting the importance of resistance training to accompany weight loss programs. PMID:27402560

  17. Nutritional antioxidants and age-related cataract and maculopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of vision is the second greatest, next to death, fear among the elderly. Age-related cataract (ARC) and maculopathy (ARM) are two major causes of blindness worldwide. There are several important reasons to study relationships between risk for ARC/ARM and nutrition: (1) because it is likely that...

  18. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  19. Ovarian function in mice results in abrogated skeletal muscle PPARdelta and FoxO1-mediated gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARDelta expression in vivo, and transgenic mice overexpressing mus...

  20. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  1. Time-Course of Muscle Mass Loss, Damage, and Proteolysis in Gastrocnemius following Unloading and Reloading: Implications in Chronic Diseases

    PubMed Central

    Chacon-Cabrera, Alba; Lund-Palau, Helena; Gea, Joaquim; Barreiro, Esther

    2016-01-01

    Background Disuse muscle atrophy is a major comorbidity in patients with chronic diseases including cancer. We sought to explore the kinetics of molecular mechanisms shown to be involved in muscle mass loss throughout time in a mouse model of disuse muscle atrophy and recovery following immobilization. Methods Body and muscle weights, grip strength, muscle phenotype (fiber type composition and morphometry and muscle structural alterations), proteolysis, contractile proteins, systemic troponin I, and mitochondrial content were assessed in gastrocnemius of mice exposed to periods (1, 2, 3, 7, 15 and 30 days) of non-invasive hindlimb immobilization (plastic splint, I cohorts) and in those exposed to reloading for different time-points (1, 3, 7, 15, and 30 days, R cohorts) following a seven-day period of immobilization. Groups of control animals were also used. Results Compared to non-exposed controls, muscle weight, limb strength, slow- and fast-twitch cross-sectional areas, mtDNA/nDNA, and myosin content were decreased in mice of I cohorts, whereas tyrosine release, ubiquitin-proteasome activity, muscle injury and systemic troponin I levels were increased. Gastrocnemius reloading following splint removal improved muscle mass loss, strength, fiber atrophy, injury, myosin content, and mtDNA/nDNA, while reducing ubiquitin-proteasome activity and proteolysis. Conclusions A consistent program of molecular and cellular events leading to reduced gastrocnemius muscle mass and mitochondrial content and reduced strength, enhanced proteolysis, and injury, was seen in this non-invasive mouse model of disuse muscle atrophy. Unloading of the muscle following removal of the splint significantly improved the alterations seen during unloading, characterized by a specific kinetic profile of molecular events involved in muscle regeneration. These findings have implications in patients with chronic diseases including cancer in whom physical activity may be severely compromised. PMID

  2. Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting?

    PubMed Central

    Sakkas, Giorgos K.; Schambelan, Morris; Mulligan, Kathleen

    2010-01-01

    Purpose of review Weight loss and low BMI due to an underlying illness have been associated with increased mortality, reduced functional capacity, and diminished quality of life. There is a need for safe, long- term approaches to maintain body weight in patients with cachexia or wasting. The purpose of this review is to highlight the scientific and clinical evidence derived from the recent literature investigating the rationale for and potential medical use of creatine supplementation in patients with cachexia or wasting. Recent findings Some studies have demonstrated that supplementation with creatine can increase creatine reserves in skeletal muscle and increase muscle mass and performance in various disease states that affect muscle size and function. The mechanisms underlying these effects are not clear. It has been suggested that creatine supplementation may increase intramuscular phosphocreatine stores and promote more rapid recovery of adenosine triphosphate levels following exercise, thus allowing users to exercise for longer periods or at higher intensity levels. Other hypothesized mechanisms include attenuation of proinflammatory cytokines, stimulation of satellite cell proliferation, and up-regulation of genes that promote protein synthesis and cell repair. Summary Creatine is a generally safe, low cost, over-the-counter nutritional supplement that shows potential in improving lean body mass and functionality in patients with wasting diseases. However, placebo-controlled studies have shown variable effects, with improvements in some and not in others. Additional studies with longer follow-up are required to identify the populations that might benefit most from creatine supplementation. PMID:19741514

  3. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis.

    PubMed

    Wang, Lijun; Zhou, Liang; Jiang, Peiyong; Lu, Leina; Chen, Xiaona; Lan, Huiyao; Guttridge, Denis C; Sun, Hao; Wang, Huating

    2012-06-01

    microRNAs (miRNAs) are noncoding RNAs that regulate gene expression in post-transcriptional fashion, and emerging studies support their importance in a multitude of physiological and pathological processes. Here, we describe the regulation and function of miR-29 in Duchenne muscular dystrophy (DMD) and its potential use as therapeutic target. Our results demonstrate that miR-29 expression is downregulated in dystrophic muscles of mdx mice, a model of DMD. Restoration of its expression by intramuscular and intravenous injection improved dystrophy pathology by both promoting regeneration and inhibiting fibrogenesis. Mechanistic studies revealed that loss of miR-29 in muscle precursor cells (myoblasts) promotes their transdifferentiation into myofibroblasts through targeting extracellular molecules including collagens and microfibrillar-associated protein 5 (Mfap5). We further demonstrated that miR-29 is under negative regulation by transforming growth factor-β (TGF-β) signaling. Together, these results not only identify TGF-β-miR-29 as a novel regulatory axis during myoblasts conversion into myofibroblasts which constitutes a novel contributing route to muscle fibrogenesis of DMD but also implicate miR-29 replacement therapy as a promising treatment approach for DMD.

  4. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury.

    PubMed

    Kesireddy, Venu

    2016-01-01

    Volumetric muscle loss (VML) can occur from congenital defects, muscle wasting diseases, civilian or military injuries, and as a result of surgical removal of muscle tissue (eg, cancer), all of which can lead to irrevocable functional and cosmetic defects. Current tissue engineering strategies to repair VML often employ muscle-derived progenitor cells (MDCs) as one component. However, there are some inherent limitations in their in vitro culture expansion. Thus, this study explores the potential of adipose-derived stem cells (ADSCs) as an alternative cell source to MDCs for tissue engineering of skeletal muscle. A reproducible VML injury model in murine latissimus dorsi muscle was used to evaluate tissue-engineered muscle repair (TEMR) constructs incorporating MDCs or ADSCs. Importantly, histological analysis revealed that ADSC-seeded constructs displayed regeneration potential that was comparable to those seeded with MDCs 2 months postrepair. Furthermore, morphological analysis of retrieved constructs demonstrated signs of neotissue formation, including cell fusion, fiber formation, and scaffold remodeling. Immunohistochemistry demonstrated positive staining for both structural and functional proteins. Positive staining for vascular structures indicated the potential for long-term neotissue survival and integration with existing musculature. Qualitative observation of lentivirus-Cherry-labeled donor cells by immunohistochemistry indicates that participation of ADSCs in new hybrid myofiber formation incorporating donor cells was relatively low, compared to donor MDCs. However, ADSCs appear to participate in vascularization. In summary, I have demonstrated that TEMR constructs generated with ADSCs displayed skeletal muscle regeneration potential comparable to TEMR-MDC constructs as previously reported. PMID:27114706

  5. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury

    PubMed Central

    Kesireddy, Venu

    2016-01-01

    Volumetric muscle loss (VML) can occur from congenital defects, muscle wasting diseases, civilian or military injuries, and as a result of surgical removal of muscle tissue (eg, cancer), all of which can lead to irrevocable functional and cosmetic defects. Current tissue engineering strategies to repair VML often employ muscle-derived progenitor cells (MDCs) as one component. However, there are some inherent limitations in their in vitro culture expansion. Thus, this study explores the potential of adipose-derived stem cells (ADSCs) as an alternative cell source to MDCs for tissue engineering of skeletal muscle. A reproducible VML injury model in murine latissimus dorsi muscle was used to evaluate tissue-engineered muscle repair (TEMR) constructs incorporating MDCs or ADSCs. Importantly, histological analysis revealed that ADSC-seeded constructs displayed regeneration potential that was comparable to those seeded with MDCs 2 months postrepair. Furthermore, morphological analysis of retrieved constructs demonstrated signs of neotissue formation, including cell fusion, fiber formation, and scaffold remodeling. Immunohistochemistry demonstrated positive staining for both structural and functional proteins. Positive staining for vascular structures indicated the potential for long-term neotissue survival and integration with existing musculature. Qualitative observation of lentivirus-Cherry-labeled donor cells by immunohistochemistry indicates that participation of ADSCs in new hybrid myofiber formation incorporating donor cells was relatively low, compared to donor MDCs. However, ADSCs appear to participate in vascularization. In summary, I have demonstrated that TEMR constructs generated with ADSCs displayed skeletal muscle regeneration potential comparable to TEMR–MDC constructs as previously reported. PMID:27114706

  6. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation

    PubMed Central

    Biddinger, Jessica E.; Baquet, Zachary C.; Jones, Kevin R.; McAdams, Jennifer

    2013-01-01

    A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout (SM-NT-3KO) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3KO mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3KO mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3KO mice compared with controls. The increases in meal duration and first meal size of SM-NT-3KO mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation. PMID:24068045

  7. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone

    SciTech Connect

    Carney, J.M.; Starke-Reed, P.E.; Oliver, C.N.; Landum, R.W.; Cheng, M.S.; Wu, J.F.; Floyd, R.A. )

    1991-05-01

    Oxygen free radicals and oxidative events have been implicated as playing a role in bringing about the changes in cellular function that occur during aging. Brain readily undergoes oxidative damage, so it is important to determine if aging-induced changes in brain may be associated with oxidative events. Previously we demonstrated that brain damage caused by an ischemia/reperfusion insult involved oxidative events. In addition, pretreatment with the spin-trapping compound N-tert-butyl-alpha-phenylnitrone (PBN) diminished the increase in oxidized protein and the loss of glutamine synthetase (GS) activity that accompanied ischemia/reperfusion injury in brain. We report here that aged gerbils had a significantly higher level of oxidized protein as assessed by carbonyl residues and decreased GS and neutral protease activities as compared to young adult gerbils. We also found that chronic treatment with the spin-trapping compound PBN caused a decrease in the level of oxidized protein and an increase in both GS and neutral protease activity in aged Mongolian gerbil brain. In contrast to aged gerbils, PBN treatment of young adult gerbils had no significant effect on brain oxidized protein content or GS activity. Male gerbils, young adults (3 months of age) and retired breeders (15-18 months of age), were treated with PBN for 14 days with twice daily dosages of 32 mg/kg. If PBN administration was ceased after 2 weeks, the significantly decreased level of oxidized protein and increased GS and neutral protease activities in old gerbils changed in a monotonic fashion back to the levels observed in aged gerbils prior to PBN administration. We also report that old gerbils make more errors than young animals and that older gerbils treated with PBN made fewer errors in a radial arm maze test for temporal and spatial memory than the untreated aged controls.

  8. Managed care implications of age-related ocular conditions.

    PubMed

    Cardarelli, William J; Smith, Roderick A

    2013-05-01

    The economic costs of age-related ocular diseases and vision loss are increasing rapidly as our society ages. In addition to the direct costs of treating age-related eye diseases, elderly persons with vision loss are at significantly increased risk for falls and fractures, experiencing social isolation, and suffering from an array of comorbid medical conditions compared with individuals with normal vision. Recent studies estimate the total economic burden (direct and indirect costs) of adult vision impairment in the United States at $51.4 billion. This figure is expected to increase as the baby boomer generation continues to age. While a number of highly effective new therapies have caused a paradigm shift in the management of several major age-related ocular diseases in recent years, these treatments come at a substantial cost. This article reviews the economic burdens and treatment-related costs of 4 major ocular diseases of aging-glaucoma, age-related macular degeneration, diabetic retinopathy, and dry eye disease-and the implications for managed care.

  9. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  10. The fly wheel exercise device (FWED): A countermeasure against bone loss and muscle atrophy

    NASA Astrophysics Data System (ADS)

    Hueser, Detlev; Wolff, Christian; Berg, Hans E.; Tesch, Per A.; Cork, Michael

    2008-01-01

    The flywheel exercise device (FWED) is planned for use as an in-flight exercise system, to demonstrate its efficacy as a countermeasure device to prevent muscle atrophy, bone loss and impairment of muscle function in human beings in response to long duration spaceflight. It is intended to be used on the International Space Station (ISS) and will be launched by the European cargo carrier, the automated transfer vehicle (ATV) in late 2005. The FWED is a non-gravity-dependent mechanical device based on the Yo-Yo principle, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning flywheel. Currently, the development of a FWED Flight and Ground Model is in progress and is due to be completed in May 2004. An earlier developed prototype is available that has been used for various ground studies. Our FWED design provides a maximum of built-in safety and support to the operation by one astronaut. This is achieved in particular by innovative mechanical design features and an easy, safe to use man-machine interface. The modular design is optimized for efficient set-up and maintenance operations to be performed in orbit by the crew. The mechanical subsystem of the FWED includes a μg disturbance suspension, which minimizes the mechanical disturbances of the exercising subject at the mechanical interface to the ISS. During the FWED operation the astronaut is guided through the exercises by the data management subsystem, which acquires sensor data from the FWED, calculates and displays real-time feedback to the subject, and stores all data on hard disk and personalized storage media for later scientific analysis.

  11. Effect of creatine supplementation during resistance training on muscle accretion in the elderly.

    PubMed

    Candow, D G; Chilibeck, P D

    2007-01-01

    Sarcopenia, defined as the age-related loss of muscle mass, is a serious health concern. Contributing factors to sarcopenia include physical inactivity and undernutrition. Resistance training has a positive effect on muscle mass in the elderly. However, muscle loss is still observed in older adults who perform weight bearing exercise; suggesting that nutrition is important. Creatine supplementation has the potential to increase muscle accretion during resistance training, although the mechanism for its ergogenic effect is unclear. Creatine has the potential to increase cellular hydration and myogenic transcription factors and facilitate the up-regulation of muscle specific-genes such as myosin heavy chain possibly leading to muscle hypertrophy. PMID:17435961

  12. Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis

    PubMed Central

    Romero-Suarez, Sandra; Shen, Jinhua; Brotto, Leticia; Hall, Todd; Mo, ChengLin; Valdivia, Héctor H.; Andresen, Jon; Wacker, Michael; Nosek, Thomas M.; Qu, Cheng-Kui; Brotto, Marco

    2010-01-01

    We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia. PMID:20817957

  13. Inadequate Loading Stimulus on ISS Results in Bone and Muscle Loss

    NASA Technical Reports Server (NTRS)

    Rice, A. J.; Genc, K. O.; Maender, C. C.; Gopalakrishnan, R.; Kuklis, M. M.; Cavanagh, P. R.

    2011-01-01

    INTRODUCTION Exercise has been the primary countermeasure to combat musculoskeletal changes during International Space Station (ISS) missions. However, these countermeasures have not been successful in preventing loss of bone mineral density (BMD) or muscle volume in crew members. METHODS We examined lower extremity loading during typical days on-orbit and on Earth for four ISS crew members. In-shoe forces were monitored using force-measuring insoles placed inside the shoes. BMD (by DXA), muscle volumes (by MRI), and strength were measured before and after long-duration spaceflight (181 +/- 15 days). RESULTS The peak forces measured during ISS activity were significantly less than those measured in 1g for the same activities. Typical single-leg loads on-orbit during walking and running were 0.89 +/- 0.17 body weights (BW) and 1.28 +/- 0.18 BW compared to 1.18 +/- 0.11 BW and 2.36 +/- .22 BW in 1g, respectively [2]. Crew members were only loaded for an average of 43.17 +/- 14.96 min a day while performing exercise on-orbit even though 146.8 min were assigned for exercise each day. Areal BMD decreased in the femoral neck and total hip by 0.71 +/- 0.34% and 0.81 +/- 0.21% per month, respectively. Changes in muscle volume were observed in the lower extremity (-10 to -16% calf; -4 to -7% thigh) but there were no changes in the upper extremity (+0.4 to -0.8%). Decrements in isometric and isokinetic strength at the knee (range: -10.4 to -24.1%), ankle (range: -4 to -22.3%), and elbow (range: -7.5 to - 16.7%) were also observed. Knee extension endurance tests showed an overall decline in total work (-14%) but an increased resistance to fatigue post-flight. DISCUSSION AND CONCLUSIONS Our findings support the conclusion that the measured exercise durations and/or loading stimuli were insufficient to protect bone and muscle health.

  14. Accelerated muscle and adipose tissue loss may predict survival in pancreatic cancer patients: the relationship with diabetes and anaemia.

    PubMed

    Di Sebastiano, Katie M; Yang, Lin; Zbuk, Kevin; Wong, Raimond K; Chow, Tom; Koff, David; Moran, Gerald R; Mourtzakis, Marina

    2013-01-28

    Weight loss leading to cachexia is associated with poor treatment response and reduced survival in pancreatic cancer patients. We aim to identify indicators that allow for early detection that will advance our understanding of cachexia and will support targeted anti-cachexia therapies. A total of fifty pancreatic cancer patients were analysed for skeletal muscle and visceral adipose tissue (VAT) changes using computed tomography (CT) scans. These changes were related to physical characteristics, secondary disease states and treatment parameters. Overall, patients lost 1.72 (SD 3.29) kg of muscle and 1.04 (SD 1.08) kg of VAT during the disease trajectory (413 (SD 213) d). After sorting patients into tertiles by rate of VAT and muscle loss, patients losing VAT at > -0.40 kg/100 d had poorer survival outcomes compared with patients with < -0.10 kg/100 d of VAT loss (P= 0.020). Patients presenting with diabetes at diagnosis demonstrated significantly more and accelerated VAT loss compared with non-diabetic patients. In contrast, patients who were anaemic at the first CT scan lost significantly more muscle tissue and at accelerated rates compared with non-anaemic patients. Accelerated rates of VAT loss are associated with reduced survival. Identifying associated features of cachexia, such as diabetes and anaemia, is essential for the early detection of cachexia and may facilitate the attenuation of complications associated with cachexia. PMID:23021109

  15. Muscle soreness, swelling, stiffness and strength loss after intense eccentric exercise.

    PubMed

    Cleak, M J; Eston, R G

    1992-12-01

    High-intensity eccentric contractions induce performance decrements and delayed onset muscle soreness. The purpose of this investigation was to study the magnitude and time course of such decrements and their interrelationships in 26 young women of mean(s.d.) age 21.4(3.3) years. Subjects performed 70 maximal eccentric contractions of the elbow flexors on a pulley system, specially designed for the study. The non-exercised arm acted as the control. Measures of soreness, tenderness, swelling (SW), relaxed elbow joint angle (RANG) and isometric strength (STR) were taken before exercise, immediately after exercise (AE), analysis of variance and at 24-h intervals for 11 days. There were significant (P < 0.01, analysis of variance) changes in all factors. Peak effects were observed between 24 and 96 h AE. With the exception of STR, which remained lower (P < 0.01), all variables returned to baseline levels by day 11. A non-significant correlation between pain and STR indicated that pain was not a major factor in strength loss. Also, although no pain was evident, RANG was decreased immediately AE. There was no relationship between SW, RANG and pain. The prolonged nature of these symptoms indicates that repair to damaged soft tissue is a slow process. Strength loss is considered particularly important as it continues when protective pain and tenderness have disappeared. This has implications for the therapeutic management of patients with myopathologies and those receiving eccentric exercise for rehabilitation.

  16. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  17. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  18. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  19. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  20. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  1. Immunology of age-related macular degeneration

    PubMed Central

    Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.

    2014-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979

  2. The effect of loss of visual input on muscle power in resistance trained and untrained young men and women.

    PubMed

    Killebrew, Shanna S; Petrella, John K; Jung, Alan P; Hensarling, Robert W

    2013-02-01

    Visual impairment has been shown to reduce muscle power when compared with that in sighted individuals. The purpose of this study was to assess whether the loss of visual input affects lower limb muscle power production in sighted men and women who are resistance trained and untrained. Twenty-seven college-aged participants (19-23 years) performed a seated double-leg press with and without visual input (resulting from being blindfold) in 2 separate counterbalanced trials. Lower limb concentric power was calculated by measuring the distance and time a leg press footplate was displaced while lifting 60% of 1-repetition maximum as quickly as possible. Loss of visual input reduced power output by 22.8 W (-6.4%) in all participants (p < 0.01). When resistance training status was taken into account, resistance trained participants (n = 12, trained >2× per week) did not lose power output (4.4 W, -1.1%, p = 0.90), whereas untrained men and women (n = 15) had significantly less power when visual input was removed via blindfold (37.6 W, -11.7%, p < 0.01). Untrained women experienced the greatest decrease in power when blindfolded (39 W, -15.9%, p < 0.01). Muscle power decreases in the absence of vision, but a regular strength training program attenuates this occurrence in young men and women. In practical application, strength training interventions may be successful in protecting individuals from losses in muscle power when visual input is removed.

  3. Soybean β-Conglycinin Prevents Age-Related Hearing Impairment.

    PubMed

    Tanigawa, Tohru; Shibata, Rei; Kondo, Kazuhisa; Katahira, Nobuyuki; Kambara, Takahiro; Inoue, Yoko; Nonoyama, Hiroshi; Horibe, Yuichiro; Ueda, Hiromi; Murohara, Toyoaki

    2015-01-01

    Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG), one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months) were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV), which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress.

  4. Age-Related Degeneration of the Egg-Laying System Promotes Matricidal Hatching in Caenorhabditis elegans

    PubMed Central

    Pickett, Christopher L.; Kornfeld, Kerry

    2014-01-01

    Summary The identification and characterization of age-related degenerative changes is a critical goal because it can elucidate mechanisms of aging biology and contribute to understanding interventions that promote longevity. Here we document a novel, age-related degenerative change in C. elegans hermaphrodites, an important model system for the genetic analysis of longevity. Matricidal hatching—intra-uterine hatching of progeny that causes maternal death—displayed an age-related increase in frequency and affected ∼70% of mated, wild-type hermaphrodites. The timing and incidence of matricidal hatching were largely independent of the levels of early and total progeny production and the duration of male exposure. Thus, matricidal hatching appears to reflect intrinsic age-related degeneration of the egg-laying system rather than use-dependent damage accumulation. Consistent with this model, mutations that extend longevity by causing dietary restriction significantly delayed matricidal hatching, indicating age-related degeneration of the egg-laying system is controlled by nutrient availability. To identify the underlying tissue defect, we analyzed serotonin signaling that triggers vulval muscle contractions. Mated hermaphrodites displayed an age-related decline in the ability to lay eggs in response to exogenous serotonin, indicating that vulval muscles and/or a further downstream function that is necessary for egg-laying degenerate in an age-related manner. By characterizing a new, age-related degenerative event displayed by C. elegans hermaphrodites, these studies contribute to understanding a frequent cause of death in mated hermaphrodites and establish a model of age-related reproductive complications that may be relevant to the birthing process in other animals such as humans. PMID:23551912

  5. [Age-related changes of the brain].

    PubMed

    Paltsyn, A A; Komissarova, S V

    2015-01-01

    The first morphological signs of aging of the brain are found in the white matter already at a young age (20-40 years), and later (40-50 years) in a gray matter. After the 40-50 years appear and in subsequently are becoming more pronounced functional manifestations of morphological changes: the weakening of sensory-motor and cognitive abilities. While in principle this dynamic of age-related changes is inevitable, the rate of their development to a large extent determined by the genetic characteristics and lifestyle of the individual. According to modem concepts age-related changes in the number of nerve cells are different in different parts of the brain. However, these changes are not large and are not the main cause of senile decline brain. The main processes that contribute to the degradation of the brain develop as in the bodies of neurons and in neuropil. In the bodies of neurons--it is a damage (usually decrease) of the level of expression of many genes, and especially of the genes determining cell communication. In neuropil: reduction in the number of synapses and the strength of synaptic connections, reduction in the number of dendritic spines and axonal buttons, reduction in the number and thickness of the dendritic branches, demyelination of axons. As the result of these events, it becomes a violation of the rate of formation and rebuilding neuronal circuits. It is deplete associative ability, brain plasticity, and memory. PMID:27116888

  6. A review of creatine supplementation in age-related diseases: more than a supplement for athletes.

    PubMed

    Smith, Rachel N; Agharkar, Amruta S; Gonzales, Eric B

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases.

  7. Determinants of Muscle and Bone Aging.

    PubMed

    Curtis, Elizabeth; Litwic, Anna; Cooper, Cyrus; Dennison, Elaine

    2015-11-01

    Loss of bone and muscle with advancing age represent a huge threat to loss of independence in later life. Osteoporosis represents a major public health problem through its association with fragility fractures, primarily of the hip, spine and distal forearm. Sarcopenia, the age related loss of muscle mass and function, may add to fracture risk by increasing falls risk. In the context of muscle aging, it is important to remember that it is not just a decline in muscle mass which contributes to the deterioration of muscle function. Other factors underpinning muscle quality come into play, including muscle composition, aerobic capacity and metabolism, fatty infiltration, insulin resistance, fibrosis and neural activation. Genetic, developmental, endocrine and lifestyle factors, such as physical activity, smoking and poor diet have dual effects on both muscle and bone mass in later life and these will be reviewed here. Recent work has highlighted a possible role for the early environment. Inflammaging is an exciting emerging research field that is likely to prove relevant to future work, including interventions designed to retard to reverse bone and muscle loss with age. PMID:25820482

  8. Determinants of muscle and bone aging

    PubMed Central

    Curtis, E; Litwic, A; Cooper, C; Dennison, E

    2015-01-01

    Loss of bone and muscle with advancing age represent a huge threat to loss of independence in later life. Osteoporosis represents a major public health problem through its association with fragility fractures, primarily of the hip, spine and distal forearm. Sarcopenia, the age related loss of muscle mass and function, may add to fracture risk by increasing falls risk. In the context of muscle aging, it is important to remember that it is not just a decline in muscle mass which contributes to the deterioration of muscle function. Other factors underpinning muscle quality come into play, including muscle composition, aerobic capacity and metabolism, fatty infiltration, insulin resistance, fibrosis and neural activation. Genetic, developmental, endocrine and lifestyle factors, such as physical activity, smoking and poor diet have dual effects on both muscle and bone mass in later life and these will be reviewed here. These include poor nutrition, lack of physical activity and cigarette smoking, comorbidities or medication use. Recent work has highlighted a possible role for the early environment. Inflammaging is an exciting emerging research field that is likely to prove relevant to future work, including interventions designed to retard to reverse bone and muscle loss with age. PMID:25820482

  9. [Treatment options for age-related infertility].

    PubMed

    Belaisch-Allart, Joëlle

    2010-06-20

    There has been a consistent trend towards delayed childbearing in most Western countries. Treatment options for age-related infertility includes controlled ovarian hyperstimulation with intrauterine insemination and in vitro fertilization (IVF). A sharp decline in pregnancy rate with advancing female age is noted with assisted reproductive technologies (ART) including IVF. Evaluation and treatment of infertility should not be delayed in women 35 years and older. No treatment other than oocyte donation has been shown to be effective for women over 40 and for those with compromised ovarian reserve, but its pratice is not easy in France hence the procreative tourism. As an increasing number of couples choose to postpone childbearing, they should be informed that maternal age is an important risk factor for failure to conceive. PMID:20623902

  10. [Epidemiology of age-related macular degeneration].

    PubMed

    Brandl, C; Stark, K J; Wintergerst, M; Heinemann, M; Heid, I M; Finger, R P

    2016-09-01

    Age-related macular degeneration (AMD) is the main cause of blindness in industrialized societies. Population-based epidemiological investigations generate important data on prevalence, incidence, risk factors, and future trends. This review summarizes the most important epidemiological studies on AMD with a focus on their transferability to Germany including existing evidence for the main risk factors for AMD development and progression. Future tasks, such as the standardization of grading systems and the use of recent retinal imaging technology in epidemiological studies are discussed. In Germany, epidemiological data on AMD are scarce. However, the need for epidemiological research in ophthalmology is currently being addressed by several recently started population-based studies. PMID:27541733

  11. Consequences of Age-Related Cognitive Declines

    PubMed Central

    Salthouse, Timothy

    2013-01-01

    Adult age differences in a variety of cognitive abilities are well documented, and many of those abilities have been found to be related to success in the workplace and in everyday life. However, increased age is seldom associated with lower levels of real-world functioning, and the reasons for this lab-life discrepancy are not well understood. This article briefly reviews research concerned with relations of age to cognition, relations of cognition to successful functioning outside the laboratory, and relations of age to measures of work performance and achievement. The final section discusses several possible explanations for why there are often little or no consequences of age-related cognitive declines in everyday functioning. PMID:21740223

  12. Medical bioremediation of age-related diseases

    PubMed Central

    Mathieu, Jacques M; Schloendorn, John; Rittmann, Bruce E; Alvarez, Pedro JJ

    2009-01-01

    Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods. PMID:19358742

  13. Age-related macular degeneration: current treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: Although important progress has been made in understanding age-related macular degeneration (AMD), management of the disease continues to be a challenge. AMD research has led to a widening of available treatment options and improved prognostic perspectives. This essay reviews these treatment options. Design: Interpretative essay. Methods: Literature review and interpretation. Results: Current treatments to preserve vision in patients with non-exudative AMD include antioxidant vitamins and mineral supplementations. Exudative AMD is currently most often treated monthly with anti-VEGF intravitreal injections. However, investigators are beginning to experiment with combination therapy and surgical approaches in an attempt to limit the number of treatment and reduce the financial burden on the health care system. Conclusion: By better understanding the basis and pathogenesis of AMD, newer therapies will continue to be developed that target specific pathways in patients with AMD, with the hoped for outcome of better management of the disease and improved visual acuity. PMID:19668560

  14. sEMG wavelet-based indices predicts muscle power loss during dynamic contractions.

    PubMed

    González-Izal, M; Rodríguez-Carreño, I; Malanda, A; Mallor-Giménez, F; Navarro-Amézqueta, I; Gorostiaga, E M; Izquierdo, M

    2010-12-01

    The purpose of this study was to investigate the sensitivity of new surface electromyography (sEMG) indices based on the discrete wavelet transform to estimate acute exercise-induced changes on muscle power output during a dynamic fatiguing protocol. Fifteen trained subjects performed five sets consisting of 10 leg press, with 2 min rest between sets. sEMG was recorded from vastus medialis (VM) muscle. Several surface electromyographic parameters were computed. These were: mean rectified voltage (MRV), median spectral frequency (F(med)), Dimitrov spectral index of muscle fatigue (FI(nsm5)), as well as five other parameters obtained from the stationary wavelet transform (SWT) as ratios between different scales. The new wavelet indices showed better accuracy to map changes in muscle power output during the fatiguing protocol. Moreover, the new wavelet indices as a single parameter predictor accounted for 46.6% of the performance variance of changes in muscle power and the log-FI(nsm5) and MRV as a two-factor combination predictor accounted for 49.8%. On the other hand, the new wavelet indices proposed, showed the highest robustness in presence of additive white Gaussian noise for different signal to noise ratios (SNRs). The sEMG wavelet indices proposed may be a useful tool to map changes in muscle power output during dynamic high-loading fatiguing task.

  15. Further Development of a Tissue Engineered Muscle Repair Construct In Vitro for Enhanced Functional Recovery Following Implantation In Vivo in a Murine Model of Volumetric Muscle Loss Injury

    PubMed Central

    Corona, Benjamin T.; Machingal, Masood A.; Criswell, Tracy; Vadhavkar, Manasi; Dannahower, Ashley C.; Bergman, Christopher; Zhao, Weixin

    2012-01-01

    Volumetric muscle loss (VML) can result from trauma and surgery in civilian and military populations, resulting in irrecoverable functional and cosmetic deficits that cannot be effectively treated with current therapies. Previous work evaluated a bioreactor-based tissue engineering approach in which muscle derived cells (MDCs) were seeded onto bladder acellular matrices (BAM) and mechanically preconditioned. This first generation tissue engineered muscle repair (TEMR) construct exhibited a largely differentiated cellular morphology consisting primarily of myotubes, and moreover, significantly improved functional recovery within 2 months of implantation in a murine latissimus dorsi (LD) muscle with a surgically created VML injury. The present report extends these initial observations to further document the importance of the cellular phenotype and composition of the TEMR construct in vitro to the functional recovery observed following implantation in vivo. To this end, three distinct TEMR constructs were created by seeding MDCs onto BAM as follows: (1) a short-term cellular proliferation of MDCs to generate primarily myoblasts without bioreactor preconditioning (TEMR-1SP), (2) a prolonged cellular differentiation and maturation period that included bioreactor preconditioning (TEMR-1SPD; identical to the first generation TEMR construct), and (3) similar treatment as TEMR-1SPD but with a second application of MDCs during bioreactor preconditioning (TEMR-2SPD); simulating aspects of “exercise” in vitro. Assessment of maximal tetanic force generation on retrieved LD muscles in vitro revealed that TEMR-1SP and TEMR-1SPD constructs promoted either an accelerated (i.e., 1 month) or a prolonged (i.e., 2 month postinjury) functional recovery, respectively, of similar magnitude. Meanwhile, TEMR-2SPD constructs promoted both an accelerated and prolonged functional recovery, resulting in twice the magnitude of functional recovery of either TEMR-1SP or TEMR-1SPD constructs

  16. The Effect of Weight Loss on the Muscle Proteome in the Damara, Dorper and Australian Merino Ovine Breeds

    PubMed Central

    Almeida, André M.; Palhinhas, Rui G.; Kilminster, Tanya; Scanlon, Timothy; van Harten, Sofia; Milton, John; Blache, Dominique; Greeff, Johan; Oldham, Chris; Coelho, Ana Varela; Cardoso, Luís Alfaro

    2016-01-01

    Seasonal Weight Loss (SWL) is an important constraint, limiting animal production in the Tropics and the Mediterranean. As a result, the study of physiological and biochemical mechanisms by which domestic animal breeds respond to SWL is important to those interested in animal breeding and the improvement thereof. To that end, the study of the proteome has been instrumental in gathering important information on physiological mechanisms, including those underlying SWL. In spite of that, little information is available concerning physiological mechanisms of SWL in production animals. The objective of this study was to determine differential protein expression in the muscle of three different breeds of sheep, the Australian Merino, the Dorper and the Damara, each showing different levels of tolerance to weight loss (low, medium and high, respectively). Per breed, two experimental groups were established, one labeled “Growth” and the other labeled “Restricted.” After forty-two days of dietary treatment, all animals were euthanized. Muscle samples were then taken. Total protein was extracted from the muscle, then quantified and two-dimensional gel electrophoresis were conducted using 24 cm pH 3–10 immobiline dry strips and colloidal coomassie staining. Gels were analyzed using Samespots® software and spots of interest were in-gel digested with trypsin. The isolated proteins were identified using MALDI-TOF/TOF. Results indicated relevant differences between breeds; several proteins are suggested as putative biomarkers of tolerance to weight loss: Desmin, Troponin T, Phosphoglucomutase and the Histidine Triad nucleotide-binding protein 1. This information is of relevance to and of possible use in selection programs aiming towards ruminant animal production in regions prone to droughts and weight loss. PMID:26828937

  17. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    SciTech Connect

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.; and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  18. The Bst locus on mouse chromosome 16 is associated with age-related subretinal neovascularization

    PubMed Central

    Smith, Richard S.; John, Simon W. M.; Zabeleta, Adriana; Davisson, Muriel T.; Hawes, Norman L.; Chang, Bo

    2000-01-01

    Ocular neovascularization is the leading cause of blindness in developed countries and often causes rapid loss of vision in age-related macular degeneration. Acute visual loss is most often due to hemorrhage from new vessels that have extended from the choroid into the subretinal space. Growth of abnormal vessels beneath the retina in this condition is known as subretinal neovascularization (SRN). Age-related animal models of macular degeneration and SRN have not been described. Current animal models of SRN depend on chemical or physical stimuli to initiate growth of subretinal vessels. The genes responsible for age-related human macular degeneration with SRN have not been firmly identified. We report an angiogenic phenotype in Bst/+ mice that is age-related, clinically evident, and resembles human SRN. This represents a spontaneous, genetically determined model of SRN. Bst/+ mice offer the possibility of exploring the molecular mechanisms of SRN without the need for exogenous agents. PMID:10681427

  19. 8 Areas of Age-Related Change

    MedlinePlus

    ... please turn Javascript on. Photo: PhotoDisc 1. Brain: Memory and Alzheimer's Disease (AD) As adults age, many ... sign of Alzheimer's Disease (AD). In the past, memory loss and confusion were accepted as just part ...

  20. Aging, frailty and age-related diseases.

    PubMed

    Fulop, T; Larbi, A; Witkowski, J M; McElhaney, J; Loeb, M; Mitnitski, A; Pawelec, G

    2010-10-01

    The concept of frailty as a medically distinct syndrome has evolved based on the clinical experience of geriatricians and is clinically well recognizable. Frailty is a nonspecific state of vulnerability, which reflects multisystem physiological change. These changes underlying frailty do not always achieve disease status, so some people, usually very elderly, are frail without a specific life threatening illness. Current thinking is that not only physical but also psychological, cognitive and social factors contribute to this syndrome and need to be taken into account in its definition and treatment. Together, these signs and symptoms seem to reflect a reduced functional reserve and consequent decrease in adaptation (resilience) to any sort of stressor and perhaps even in the absence of extrinsic stressors. The overall consequence is that frail elderly are at higher risk for accelerated physical and cognitive decline, disability and death. All these characteristics associated with frailty can easily be applied to the definition and characterization of the aging process per se and there is little consensus in the literature concerning the physiological/biological pathways associated with or determining frailty. It is probably true to say that a consensus view would implicate heightened chronic systemic inflammation as a major contributor to frailty. This review will focus on the relationship between aging, frailty and age-related diseases, and will highlight possible interventions to reduce the occurrence and effects of frailty in elderly people. PMID:20559726

  1. Physics of Age Related Macular Degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    2009-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer's disease, and Parkinson's disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. In this talk I will discuss a model of non-equilibrium cluster growth that we have developed for studying the formation and growth of lipofuscin in AMD [K.I. Mazzitello, C.M. Arizmendi, Fereydoon Family, H. E. Grossniklaus, Physical Review E (2009)]. I will also present an overview of our theoretical and computational efforts in modeling some other aspects of the physics of AMD, including CNV and the breakdown of Bruch's membrane [Ongoing collaboration with Abbas Shirinifard and James A. Glazier, Biocomplexity Institute and Department of Physics, Indiana University, Y. Jiang, Los Alamos, and Hans E. Grossniklaus, Department of Ophthalmology, Emory University].

  2. Mechanisms of age-related macular degeneration

    PubMed Central

    Ambati, Jayakrishna; Fowler, Benjamin J.

    2012-01-01

    Age-related macular degeneration (AMD), a progressive condition that is untreatable in up to 90% of patients, is a leading cause of blindness in the elderly worldwide. The two forms of AMD, wet and dry, are classified based on the presence or absence of blood vessels that have disruptively invaded the retina, respectively. A detailed understanding of the molecular mechanisms underlying wet AMD has led to several robust FDA-approved therapies. In contrast, there are not any approved treatments for dry AMD. In this review, we provide insight into the critical effector pathways that mediate each form of disease. The interplay of immune and vascular systems for wet AMD, and the proliferating interest in hunting for gene variants to explain AMD pathogenesis, are placed in the context of the latest clinical and experimental data. Emerging models of dry AMD pathogenesis are presented, with a focus on DICER1 deficit and the toxic accumulation of retinal debris. A recurring theme that spans most aspects of AMD pathogenesis is defective immune modulation in the classically immune-privileged ocular haven. Interestingly, the latest advances in AMD research highlight common molecular disease pathways with other common neurodegenerations. Finally, the therapeutic potential of intervening at known mechanisms of AMD pathogenesis is discussed. PMID:22794258

  3. Age related degradation in operating nuclear plants

    SciTech Connect

    Hermann, R.A.; Davis, J.A.; Banic, M.J.

    1995-12-01

    The aging issues being addressed for today`s operating commercial nuclear power plants encompass a wide spectrum of components, complexities, and reasons for concern. Issues include such things as the intergranular stress corrosion cracking (IGSCC) of boiling water reactor (BWR) internals, the degradation of pressurized water reactor (PWR) Alloy 600 components by primary water stress corrosion cracking (PWSCC) to those associated with significant portions of piping systems, such as service water systems. a discussion of the regulatory activity and action associated with the above issues is provided. Proactive NRC/Industry programs for inspection and repair or replacement of affected components are essential for continued operation of these nuclear reactors. These programs are also essential as licensees consider license extensions for their facilities. These plants are licensed for 40 years and can be granted an extension for an additional 20 years of operation if all of the NRC rules and regulations are met. Proper handling of potential age related problems will be a key consideration in the granting of a license extension.

  4. Statistical physics of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer disease and Parkinson disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin in the aging RPE. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the RPE the larger ones become fixed and grow by aggregation.

  5. Exploring age-related brain degeneration in meditation practitioners.

    PubMed

    Luders, Eileen

    2014-01-01

    A growing body of research suggests that meditation practices are associated with substantial psychological as well as physiological benefits. In searching for the biological mechanisms underlying the beneficial impact of meditation, studies have revealed practice-induced alterations of neurotransmitters, brain activity, and cognitive abilities, just to name a few. These findings not only imply a close link between meditation and brain structure, but also suggest possible modulating effects of meditation on age-related brain atrophy. Given that normal aging is associated with significant loss of brain tissue, meditation-induced growth and/or preservation might manifest as a seemingly reduced brain age in meditators (i.e., cerebral measures characteristic of younger brains). Surprisingly, there are only three published studies that have addressed the question of whether meditation diminishes age-related brain degeneration. This paper reviews these three studies with respect to the brain attributes studied, the analytical strategies applied, and the findings revealed. The review concludes with an elaborate discussion on the significance of existing studies, implications and directions for future studies, as well as the overall relevance of this field of research.

  6. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.

  7. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    PubMed Central

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-01-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4°C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4°C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts’ heath and NASA’s mission. PMID:25821722

  8. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment.

    PubMed

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions. PMID:25821722

  9. Flesh Shear Force, Cooking Loss, Muscle Antioxidant Status and Relative Expression of Signaling Molecules (Nrf2, Keap1, TOR, and CK2) and Their Target Genes in Young Grass Carp (Ctenopharyngodon idella) Muscle Fed with Graded Levels of Choline

    PubMed Central

    Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-01-01

    Six groups of grass carp (average weight 266.9 ± 0.6 g) were fed diets containing 197, 385, 770, 1082, 1436 and 1795 mg choline/kg, for 8 weeks. Fish growth, and muscle nutrient (protein, fat and amino acid) content of young grass carp were significantly improved by appropriate dietary choline. Furthermore, muscle hydroxyproline concentration, lactate content and shear force were improved by optimum dietary choline supplementation. However, the muscle pH value, cooking loss and cathepsins activities showed an opposite trend. Additionally, optimum dietary choline supplementation attenuated muscle oxidative damage in grass carp. The muscle antioxidant enzyme (catalase and glutathione reductase did not change) activities and glutathione content were enhanced by optimum dietary choline supplementation. Muscle cooking loss was negatively correlated with antioxidant enzyme activities and glutathione content. At the gene level, these antioxidant enzymes, as well as the targets of rapamycin, casein kinase 2 and NF-E2-related factor 2 transcripts in fish muscle were always up-regulated by suitable choline. However, suitable choline significantly decreased Kelch-like ECH-associated protein 1 a (Keap1a) and Kelch-like ECH-associated protein 1 b (Keap1b) mRNA levels in muscle. In conclusion, suitable dietary choline enhanced fish flesh quality, and the decreased cooking loss was due to the elevated antioxidant status that may be regulated by Nrf2 signaling. PMID:26600252

  10. Sociocultural and Individual Influences on Muscle Gain and Weight Loss Strategies among Adolescent Boys and Girls

    ERIC Educational Resources Information Center

    Ricciardelli, Lina A.; McCabe, Marita P.

    2003-01-01

    The study examined the role of body dissatisfaction, body image importance, sociocultural influences (media and parent and peer encouragement), self-esteem and negative affect on body change strategies to decrease weight and increase muscles in adolescent boys and girls. Surveys were administered to 587 boys and 598 girls aged between 11 and 15…

  11. GENETICS OF HUMAN AGE RELATED DISORDERS.

    PubMed

    Srivastava, I; Thukral, N; Hasija, Y

    2015-01-01

    Aging is an inevitable biological phenomenon. The incidence of age related disorders (ARDs) such as cardiovascular diseases, cancer, arthritis, dementia, osteoporosis, diabetes, neurodegenerative diseases increase rapidly with aging. ARDs are becoming a key social and economic trouble for the world's elderly population (above 60 years), which is expected to reach 2 billion by 2050. Advancement in understanding of genetic associations, particularly through genome wide association studies (GWAS), has revealed a substantial contribution of genes to human aging and ARDs. In this review, we have focused on the recent understanding of the extent to which genetic predisposition may influence the aging process. Further analysis of the genetic association studies through pathway analysis several genes associated with multiple ARDs have been highlighted such as apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), cadherin 13 (CDH13), CDK5 regulatory subunit associated protein 1 (CDKAL-1), methylenetetrahydrofolate reductase (MTHFR), disrupted in schizophrenia 1 (DISC1), nitric oxide synthase 3 (NOS3), paraoxonase 1 (PON1), indicating that these genes could play a pivotal role in ARD causation. These genes were found to be significantly enriched in Jak-STAT signalling pathway, asthma and allograft rejection. Further, interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), estrogen receptor1 (ESR1), transforming growth factor, beta 1(TGFB1) and calmodulin 1 (CALM1) were found to be highly interconnected in network analysis. We believe that extensive research on the presence of common genetic variants among various ARDs may facilitate scientists to understand the biology behind ARDs causation. PMID:26856084

  12. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments

  13. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments.

  14. Vision Loss, Sudden

    MedlinePlus

    ... of age-related macular degeneration. Spotlight on Aging: Vision Loss in Older People Most commonly, vision loss ... Some Causes and Features of Sudden Loss of Vision Cause Common Features* Tests Sudden loss of vision ...

  15. Age-Related Neurochemical Changes in the Vestibular Nuclei.

    PubMed

    Smith, Paul F

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa's ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  16. Age-Related Neurochemical Changes in the Vestibular Nuclei

    PubMed Central

    Smith, Paul F.

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa’s ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  17. Association of Age Related Macular Degeneration and Age Related Hearing Impairment

    PubMed Central

    Ghasemi, Hassan; Pourakbari, Malihe Shahidi; Entezari, Morteza; Yarmohammadi, Mohammad Ebrahim

    2016-01-01

    Purpose: To evaluate the association between age-related macular degeneration (ARMD) and sensory neural hearing impairment (SHI). Methods: In this case-control study, hearing status of 46 consecutive patients with ARMD were compared with 46 age-matched cases without clinical ARMD as a control group. In all patients, retinal involvements were confirmed by clinical examination, fluorescein angiography (FA) and optical coherence tomography (OCT). All participants were examined with an otoscope and underwent audiological tests including pure tone audiometry (PTA), speech reception threshold (SRT), speech discrimination score (SDS), tympanometry, reflex tests and auditory brainstem response (ABR). Results: A significant (P = 0.009) association was present between ARMD, especially with exudative and choroidal neovascularization (CNV) components, and age-related hearing impairment primarily involving high frequencies. Patients had higher SRT and lower SDS against anticipated presbycusis than control subjects. Similar results were detected in exudative, CNV and scar patterns supporting an association between late ARMD with SRT and SDS abnormalities. ABR showed significantly prolonged wave I and IV latency times in ARMD (P = 0.034 and 0.022, respectively). Average latency periods for wave I in geographic atrophy (GA) and CNV, and that for wave IV in drusen patterns of ARMD were significantly higher than controls (P = 0.030, 0.007 and 0.050, respectively). Conclusion: The association between ARMD and age-related SHI may be attributed to common anatomical components such as melanin in these two sensory organs. PMID:27195086

  18. Eye Conditions in Older Adults: Age-Related Macular Degeneration.

    PubMed

    Iroku-Malize, Tochi; Kirsch, Scott

    2016-06-01

    Age-related macular degeneration (AMD) causes a progressive loss of photoreceptors in the macula. It is the most common cause of legal blindness in the United States, and some form of AMD is thought to affect more than 9 million individuals. Risk factors include older age, smoking, dyslipidemia, obesity, white race, female sex, and a family history of AMD. There are two types of advanced AMD: nonexudative (dry or geographic atrophy) and exudative (wet or neovascular). Both cause progressive central vision loss with intact peripheral vision. Nonexudative AMD accounts for 80% to 90% of all advanced cases, and more than 90% of patients with severe vision loss have exudative AMD. On ophthalmoscopic examination, early findings include drusen (ie, yellow deposits in the retina). Prominent choroidal vessels, subretinal edema, and/or hemorrhage are seen in wet AMD. Regular eye examinations, visual field testing, fluorescein angiography, and optical coherence tomography are used for diagnosis and to guide management. There is no specific therapy for dry AMD, but antioxidant supplementation may be helpful. Intravitreal injection of a vascular endothelial growth factor inhibitor is the treatment of choice for wet AMD. Optical aids and devices can help to maximize function for patients with AMD. PMID:27348529

  19. Eye Conditions in Older Adults: Age-Related Macular Degeneration.

    PubMed

    Iroku-Malize, Tochi; Kirsch, Scott

    2016-06-01

    Age-related macular degeneration (AMD) causes a progressive loss of photoreceptors in the macula. It is the most common cause of legal blindness in the United States, and some form of AMD is thought to affect more than 9 million individuals. Risk factors include older age, smoking, dyslipidemia, obesity, white race, female sex, and a family history of AMD. There are two types of advanced AMD: nonexudative (dry or geographic atrophy) and exudative (wet or neovascular). Both cause progressive central vision loss with intact peripheral vision. Nonexudative AMD accounts for 80% to 90% of all advanced cases, and more than 90% of patients with severe vision loss have exudative AMD. On ophthalmoscopic examination, early findings include drusen (ie, yellow deposits in the retina). Prominent choroidal vessels, subretinal edema, and/or hemorrhage are seen in wet AMD. Regular eye examinations, visual field testing, fluorescein angiography, and optical coherence tomography are used for diagnosis and to guide management. There is no specific therapy for dry AMD, but antioxidant supplementation may be helpful. Intravitreal injection of a vascular endothelial growth factor inhibitor is the treatment of choice for wet AMD. Optical aids and devices can help to maximize function for patients with AMD.

  20. Age-Related Changes in the Misinformation Effect.

    ERIC Educational Resources Information Center

    Sutherland, Rachel; Hayne, Harlene

    2001-01-01

    Two experiments examined relation between age-related changes in retention and age-related changes in the misinformation effect. Found large age-related retention differences when participants were interviewed immediately and after 1 day, but after 6 weeks, differences were minimal. Exposure to misleading information increased commission errors.…

  1. Non-invasive muscle contraction assay to study rodent models of sarcopenia

    PubMed Central

    2011-01-01

    Background Age-related sarcopenia is a disease state of loss of muscle mass and strength that affects physical function and mobility leading to falls, fractures, and disability. The need for therapies to treat age-related sarcopenia has attracted intensive preclinical research. To facilitate the discovery of these therapies, we have developed a non-invasive rat muscle functional assay system to efficiently measure muscle force and evaluate the efficacy of drug candidates. Methods The lower leg muscles of anesthetized rats are artificially stimulated with surface electrodes on the knee holders and the heel support, causing the lower leg muscles to push isometric pedals that are attached to force transducers. We developed a stimulation protocol to perform a fatigability test that reveals functional muscle parameters like maximal force, the rate of fatigue, fatigue-resistant force, as well as a fatigable muscle force index. The system is evaluated in a rat aging model and a rat glucocorticoid-induced muscle loss model Results The aged rats were generally weaker than adult rats and showed a greater reduction in their fatigable force when compared to their fatigue-resistant force. Glucocorticoid treated rats mostly lost fatigable force and fatigued at a higher rate, indicating reduced force from glycolytic fibers with reduced energy reserves. Conclusions The involuntary contraction assay is a reliable system to assess muscle function in rodents and can be applied in preclinical research, including age-related sarcopenia and other myopathy. PMID:22035016

  2. REDD1 Is a Major Target of Testosterone Action in Preventing Dexamethasone-Induced Muscle Loss

    PubMed Central

    Wu, Yong; Zhao, Weidong; Zhao, Jingbo; Zhang, Yuanfei; Qin, Weiping; Pan, Jiangping; Bauman, William A.; Blitzer, Robert D.; Cardozo, Christopher

    2010-01-01

    Glucocorticoids are a well-recognized and common cause of muscle atrophy that can be prevented by testosterone. However, the molecular mechanisms underlying such protection have not been described. Thus, the global effects of testosterone on dexamethasone-induced changes in gene expression were evaluated in rat gastrocnemius muscle using DNA microarrays. Gene expression was analyzed after 7-d administration of dexamethasone, dexamethasone plus testosterone, or vehicle. Dexamethasone changed expression of 876 probe sets by at least 2-fold. Among these, 474 probe sets were changed by at least 2-fold in the opposite direction in the dexamethasone plus testosterone group (genes in opposition). Major biological themes represented by genes in opposition included IGF-I signaling, myogenesis and muscle development, and cell cycle progression. Testosterone completely prevented the 22-fold increase in expression of the mammalian target of rapamycin (mTOR) inhibitor regulated in development and DNA damage responses 1 (REDD1), and attenuated dexamethasone induced increased expression of eIF4E binding protein 1, Forkhead box O1, and the p85 regulatory subunit of the IGF-I receptor but prevented decreased expression of IRS-1. Testosterone attenuated increases in REDD1 protein in skeletal muscle and L6 myoblasts and prevented dephosphorylation of p70S6 kinase at the mTOR-dependent site Thr389 in L6 myoblast cells. Effects of testosterone on REDD1 mRNA levels occurred within 1 h, required the androgen receptor, were blocked by bicalutamide, and were due to inhibition of transcriptional activation of REDD1 by dexamethasone. These data suggest that testosterone blocks dexamethasone-induced changes in expression of REDD1 and other genes that collectively would otherwise down-regulate mTOR activity and hence also down-regulate protein synthesis. PMID:20032058

  3. Improved word recognition for observers with age-related maculopathies using compensation filters

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B.

    1988-01-01

    A method for improving word recognition for people with age-related maculopathies, which cause a loss of central vision, is discussed. It is found that the use of individualized compensation filters based on an person's normalized contrast sensitivity function can improve word recognition for people with age-related maculopathies. It is shown that 27-70 pct more magnification is needed for unfiltered words compared to filtered words. The improvement in word recognition is positively correlated with the severity of vision loss.

  4. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. PMID:27296994

  5. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This longitudinal study examined the major physiological mechanisms that determine the age related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~3 years of follow-up, mobility-limited older adults (mean age: 77.2 +/- 4, n = 22, 12 females) w...

  6. Age-Related Tissue Stiffening: Cause and Effect

    PubMed Central

    Sherratt, Michael J.

    2013-01-01

    Significance Tissue elasticity is severely compromised in aging skin, lungs, and blood vessels. In the vascular and pulmonary systems, respectively, loss of mechanical function is linked to hypertension, which in turn is a risk factor for heart and renal failure, stroke, and aortic aneurysms, and to an increased risk of mortality as a result of acute lung infections. Recent Advances Although cellular mechanisms were thought to play an important role in mediating tissue aging, the reason for the apparent sensitivity of elastic fibers to age-related degradation remained unclear. We have recently demonstrated that compared with type I collagen, a key component of the elastic fiber system, the cysteine-rich fibrillin microfibril is highly susceptible to direct UV exposure in a cell-free environment. We hypothesized therefore that, as a consequence of both their remarkable longevity and cysteine-rich composition, many elastic fiber-associated components will be susceptible to the accumulation of damage by both direct UV radiation and reactive oxygen species-mediated oxidation. Critical Issues Although elastic fiber remodeling is a common feature of aging dynamic tissues, the inaccessibility of most human tissues has hampered attempts to define the molecular causes. Clinical Care Relevance Although, currently, the localized repair of damaged elastic fibers may be effected by the topical application of retinoids and some cosmetic products, future studies may extend the application of systemic transforming growth factor β antagonists, which can prevent cardiovascular remodeling in murine Marfan syndrome, to aging humans. Acellular mechanisms may be key mediators of elastic fiber remodeling and hence age-related tissue stiffening. PMID:24527318

  7. Automatic age-related macular degeneration detection and staging

    NASA Astrophysics Data System (ADS)

    van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.

    2013-03-01

    Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.

  8. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice

    PubMed Central

    Zhang, Yingpei; Padalecki, Susan S; Chaudhuri, Asish R; Waal, Eric De; Goins, Beth A; Grubbs, Barry; Ikeno, Yuji; Richardson, Arlan; Mundy, Gregory R; Herman, Brian

    2007-01-01

    Alteration of apoptotic activity has been observed in a number of tissues in aging mammals, but it remains unclear whether and/or how apoptosis may affect aging. Caspase-2 is a member of the cysteine protease family that plays a critical role in apoptosis. To understand the impact of compromised apoptosis function on mammalian aging, we conducted a comparative study on caspase-2 deficient mice and their wild-type littermates with a specific focus on the aging-related traits at advanced ages. We found that caspase-2 deficiency enhanced a number of traits commonly seen in premature aging animals. Loss of caspase-2 was associated with shortened maximum lifespan, impaired hair growth, increased bone loss, and reduced body fat content. In addition, we found that the livers of caspase-2 deficient mice had higher levels of oxidized proteins than those of age-matched wild-type mice, suggesting that caspase-2 deficiency compromised the animal's ability to clear oxidatively damaged cells. Collectively, these results suggest that caspase-2 deficiency affects aging in the mice. This study thus demonstrates for the first time that disruption of a key apoptotic gene has a significant impact on aging. PMID:17188333

  9. Disproportionate loss of thin filaments in human soleus muscle after 17-day bed rest

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Bain, J. L.; Thompson, J. L.; Fitts, R. H.; Widrick, J. J.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.

    1998-01-01

    Previously we reported that, after 17-day bed rest unloading of 8 humans, soleus slow fibers atrophied and exhibited increased velocity of shortening without fast myosin expression. The present ultrastructural study examined fibers from the same muscle biopsies to determine whether decreased myofilament packing density accounted for the observed speeding. Quantitation was by computer-assisted morphometry of electron micrographs. Filament densities were normalized for sarcomere length, because density depends directly on length. Thick filament density was unchanged by bed rest. Thin filaments/microm2 decreased 16-23%. Glycogen filled the I band sites vacated by filaments. The percentage decrease in thin filaments (Y) correlated significantly (P < 0.05) with the percentage increase in velocity (X), (Y = 0.1X + 20%, R2 = 0.62). An interpretation is that fewer filaments increases thick to thin filament spacing and causes earlier cross-bridge detachment and faster cycling. Increased velocity helps maintain power (force x velocity) as atrophy lowers force. Atrophic muscles may be prone to sarcomere reloading damage because force/microm2 was near normal, and force per thin filament increased an estimated 30%.

  10. Laparoscopic correction of the uterine muscle loss in the scar after a Caesarean section delivery

    PubMed Central

    Jakiel, Grzegorz; Słabuszewska-Jóźwiak, Aneta

    2013-01-01

    Caesarean section is the most frequently conducted surgery in modern obstetrics. It involves a significant risk of complications; also disorders in the area of the scar after hysterotomy may lead to menstrual disorders, pain and secondary infertility. In light of the presented facts the significance of a good uterus muscle correction method is high. We present a case of a 28-year-old patient after Caesarean section with further reproductive plans. In the ultrasonographic examination the residual thickness of the uterine wall was approx. 2.5–3 mm. The patient was operated on using laparoscopy and the fibrotic scar tissue was removed. During the follow-up examination in transvaginal ultrasonography the uterine muscularis was continuous on the whole surface. Laparoscopic treatment ensures the appropriate visibility which makes the risk of damage to the adjacent organs lower, and the time of convalescence is short. It provides repetitive good results from the anatomical and functional points of view. PMID:24501605

  11. Profiling age-related epigenetic markers of stomach adenocarcinoma in young and old subjects.

    PubMed

    Kim, Byoung-Chul; Jeong, Hyoung Oh; Park, Daeui; Kim, Chul-Hong; Lee, Eun Kyeong; Kim, Dae Hyun; Im, Eunok; Kim, Nam Deuk; Lee, Sunghoon; Yu, Byung Pal; Bhak, Jong; Chung, Hae Young

    2015-01-01

    The purpose of our study is to identify epigenetic markers that are differently expressed in the stomach adenocarcinoma (STAD) condition. Based on data from The Cancer Genome Atlas (TCGA), we were able to detect an age-related difference in methylation patterns and changes in gene and miRNA expression levels in young (n = 14) and old (n = 70) STAD subjects. Our analysis identified 323 upregulated and 653 downregulated genes in old STAD subjects. We also found 76 miRNAs with age-related expression patterns and 113 differentially methylated genes (DMGs), respectively. Our further analysis revealed that significant upregulated genes (n = 35) were assigned to the cell cycle, while the muscle system process (n = 27) and cell adhesion-related genes (n = 57) were downregulated. In addition, by comparing gene and miRNA expression with methylation change, we identified that three upregulated genes (ELF3, IL1β, and MMP13) known to be involved in inflammatory responses and cell growth were significantly hypomethylated in the promoter region. We further detected target candidates for age-related, downregulated miRNAs (hsa-mir-124-3, hsa-mir-204, and hsa-mir-125b-2) in old STAD subjects. This is the first report of the results from a study exploring age-related epigenetic biomarkers of STAD using high-throughput data and provides evidence for a complex clinicopathological condition expressed by the age-related STAD progression.

  12. Detection of G-Induced Loss of Consciousness (G-LOC) prognosis through EMG monitoring on gastrocnemius muscle in flight.

    PubMed

    Booyong Choi; Yongkyun Lee; Taehwan Cho; Hyojin Koo; Dongsoo Kim

    2015-08-01

    G-Induced Loss of Consciousness (G-LOC) is mainly caused by the sudden acceleration in the direction of +Gz axis from the fighter pilots, and is considered as an emergent situation of which fighter pilots are constantly aware. In order to resist against G-LOC, fighter pilots are subject to run Anti-G straining maneuver (AGSM), which includes L-1 respiration maneuvering and muscular contraction of the whole body. The purpose of this study is to create a G-LOC warning alarm prior to G-LOC by monitoring the Electromyogram (EMG) of the gastrocnemius muscle on the calf, which goes under constant muscular contraction during the AGSM process. EMG data was retrieved from pilots and pilot trainees of the Korean Air Force, during when subjects were under high G-trainings on a human centrifugal simulator. Out of the EMG features, integrated absolute value (IAV), reflecting muscle contraction, and waveform length (WL), reflecting muscle contraction and fatigue, have shown a rapid decay during the alarm phase, 3 seconds before G-LOC, compared to that of a normal phase withstanding G-force. Such results showed consistency amongst pilots and pilot trainees who were under G-LOC. Based on these findings, this study developed an algorithm which can detect G-LOC prognosis during flight, and at the same time, generate warning signals. The probability of G-LOC occurrence is detected through monitoring the decay trend and degree of the IVA and WL value of when the pilot initiates AGSM during sudden acceleration above 6G. Conclusively, this G-LOC prognosis detecting and warning system is a customized, real-time countermeasure which enhanced the accuracy of detecting G-LOC. PMID:26737905

  13. Detection of G-Induced Loss of Consciousness (G-LOC) prognosis through EMG monitoring on gastrocnemius muscle in flight.

    PubMed

    Booyong Choi; Yongkyun Lee; Taehwan Cho; Hyojin Koo; Dongsoo Kim

    2015-08-01

    G-Induced Loss of Consciousness (G-LOC) is mainly caused by the sudden acceleration in the direction of +Gz axis from the fighter pilots, and is considered as an emergent situation of which fighter pilots are constantly aware. In order to resist against G-LOC, fighter pilots are subject to run Anti-G straining maneuver (AGSM), which includes L-1 respiration maneuvering and muscular contraction of the whole body. The purpose of this study is to create a G-LOC warning alarm prior to G-LOC by monitoring the Electromyogram (EMG) of the gastrocnemius muscle on the calf, which goes under constant muscular contraction during the AGSM process. EMG data was retrieved from pilots and pilot trainees of the Korean Air Force, during when subjects were under high G-trainings on a human centrifugal simulator. Out of the EMG features, integrated absolute value (IAV), reflecting muscle contraction, and waveform length (WL), reflecting muscle contraction and fatigue, have shown a rapid decay during the alarm phase, 3 seconds before G-LOC, compared to that of a normal phase withstanding G-force. Such results showed consistency amongst pilots and pilot trainees who were under G-LOC. Based on these findings, this study developed an algorithm which can detect G-LOC prognosis during flight, and at the same time, generate warning signals. The probability of G-LOC occurrence is detected through monitoring the decay trend and degree of the IVA and WL value of when the pilot initiates AGSM during sudden acceleration above 6G. Conclusively, this G-LOC prognosis detecting and warning system is a customized, real-time countermeasure which enhanced the accuracy of detecting G-LOC.

  14. Progress on retinal image analysis for age related macular degeneration.

    PubMed

    Kanagasingam, Yogesan; Bhuiyan, Alauddin; Abràmoff, Michael D; Smith, R Theodore; Goldschmidt, Leonard; Wong, Tien Y

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in those over the age of 50 years in the developed countries. The number is expected to increase by ∼1.5 fold over the next ten years due to an increase in aging population. One of the main measures of AMD severity is the analysis of drusen, pigmentary abnormalities, geographic atrophy (GA) and choroidal neovascularization (CNV) from imaging based on color fundus photograph, optical coherence tomography (OCT) and other imaging modalities. Each of these imaging modalities has strengths and weaknesses for extracting individual AMD pathology and different imaging techniques are used in combination for capturing and/or quantification of different pathologies. Current dry AMD treatments cannot cure or reverse vision loss. However, the Age-Related Eye Disease Study (AREDS) showed that specific anti-oxidant vitamin supplementation reduces the risk of progression from intermediate stages (defined as the presence of either many medium-sized drusen or one or more large drusen) to late AMD which allows for preventative strategies in properly identified patients. Thus identification of people with early stage AMD is important to design and implement preventative strategies for late AMD, and determine their cost-effectiveness. A mass screening facility with teleophthalmology or telemedicine in combination with computer-aided analysis for large rural-based communities may identify more individuals suitable for early stage AMD prevention. In this review, we discuss different imaging modalities that are currently being considered or used for screening AMD. In addition, we look into various automated and semi-automated computer-aided grading systems and related retinal image analysis techniques for drusen, geographic atrophy and choroidal neovascularization detection and/or quantification for measurement of AMD severity using these imaging modalities. We also review the existing telemedicine studies which

  15. Predation or scavenging? Thoracic muscle pH and rates of water loss reveal cause of death in arthropods.

    PubMed

    Wilson, Erin E; Young, Christine V; Holway, David A

    2010-08-01

    The difficulty of directly observing predatory events hinders a complete understanding of how predation structures food webs. Indirect approaches such as PCR-based and isotopic analyses clarify patterns of resource consumption but fail to distinguish predation from scavenging. Given that facultative scavenging is a ubiquitous and phylogenetically widespread foraging strategy, an improved ability to discriminate prey from carrion is needed to enhance an understanding of the demographic effects of consumption and the true nature of trophic interactions. Using physiological properties of muscle tissue - specifically pH and rate of water loss - we develop a novel method to discriminate prey from carrion collected by scavenging hymenopteran predators. Our focal system is the western yellowjacket (Vespula pensylvanica), a common scavenging predator in Hawaii and western North America. Prior to consumption, the physical properties of hymenopteran muscle tissue change in a quantifiable and deterministic manner post mortem and can be used to estimate the time and putative cause of death of diet items. Applying this method in laboratory and field situations resulted in the correct identification of prey and carrion in 49 out of 56 cases (88%). Although further investigation is needed to determine how post-mortem physiology of diet items changes in the guts of consumers, the approaches developed in this study can be used to distinguish predation from scavenging by central-place foragers (particularly arthropods). Such information will provide a more definitive characterization of species interactions and food webs.

  16. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery

    PubMed Central

    Coen, Paul M.; Menshikova, Elizabeth V.; Distefano, Giovanna; Zheng, Donghai; Tanner, Charles J.; Standley, Robert A.; Helbling, Nicole L.; Dubis, Gabriel S.; Ritov, Vladimir B.; Xie, Hui; Desimone, Marisa E.; Smith, Steven R.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Houmard, Joseph A.

    2015-01-01

    Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery–induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity. PMID:26293505

  17. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery.

    PubMed

    Coen, Paul M; Menshikova, Elizabeth V; Distefano, Giovanna; Zheng, Donghai; Tanner, Charles J; Standley, Robert A; Helbling, Nicole L; Dubis, Gabriel S; Ritov, Vladimir B; Xie, Hui; Desimone, Marisa E; Smith, Steven R; Stefanovic-Racic, Maja; Toledo, Frederico G S; Houmard, Joseph A; Goodpaster, Bret H

    2015-11-01

    Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery-induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity.

  18. Psychosocial Intervention for Age-Related Macular Degeneration: A Pilot Project

    ERIC Educational Resources Information Center

    Wahl, Hans-Werner; Kammerer, Annette; Holz, Frank; Miller, Daniel; Becker, Stefanie; Kaspar, Roman; Himmelsbach, Ines

    2006-01-01

    This study evaluated an emotion-focused and a problem-focused intervention designed for patients with age-related macular degeneration. It found a limited decrease in depression in the emotion-focused group and an increase in active problem orientation and in adaptation to vision loss in the problem-focused group.

  19. Introduction to the issue regarding research regarding age related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blindness is the second greatest fear among the elderly. Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly in most industrialized nations. AMD first compromises central high acuity vision. Subsequently, all vision may be lost. AMD is a progressive retinal d...

  20. Effects of rapid chilling of carcasses and time of deboning on weight loss and technological quality of pork semimembranosus muscle.

    PubMed

    Tomović, Vladimir M; Petrović, Ljiljana S; Džinić, Natalija R

    2008-12-01

    The effect of rapid air chilling of carcasses in the first 3 h of chilling at -31°C (then at 2-4°C, till 24 h post-mortem) and the possibility of earlier deboning (8 h post-mortem) after rapid air chilling, compared to conventional air chilling (at 2-4°C, till 24 h post-mortem) on weight loss and technological quality (pH value, tenderness, drip loss, cooking loss and colour - L(∗)a(∗)b(∗) values) of pork M. semimembranosus was investigated. Under the rapid chilling conditions, weight loss was 0.8% at 8 h post-mortem and increased to 1.4% at 24 h post-mortem when weight loss was 2.0% under conventional chilling. Carcasses that were rapid chilled had significantly lower (P<0.001) internal temperature in the deep leg at 4 (25.7°C), 6 (13.0°C), 8 (6.2°C) and 24 h (3.8°C) post-mortem compared to conventional chill treatment (32.7, 24.2, 19.1 and 5.1°C, respectively). Rapid chilling reduced significantly (P<0.05) the rate of pH value decline at 8 h (6.02) post-mortem in M. semimembranosus compared to conventional chill treatment (5.88). Compared to conventional chilling, in M. semimembranosus deboned in different time post-mortem, rapid chilling had a positive significant effect on drip loss (P<0.05, muscles deboned 8 h post-mortem), cooking loss (P<0.001) and incidence of pale colour (L(∗) value). Rapid chilling i.e. rapid chilling and earlier deboning had neither positive nor negative significant effects (P>0.05) on other investigated technological quality parameters of M. semimembranosus (tenderness, a(∗) value and b(∗) value) compared to conventional chilling.

  1. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction.

    PubMed

    Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2016-08-01

    Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia. PMID:27362462

  2. Diapocynin, a Dimer of the NADPH Oxidase Inhibitor Apocynin, Reduces ROS Production and Prevents Force Loss in Eccentrically Contracting Dystrophic Muscle

    PubMed Central

    Ismail, Hesham M.; Scapozza, Leonardo; Ruegg, Urs T.; Dorchies, Olivier M.

    2014-01-01

    Elevation of intracellular Ca2+, excessive ROS production and increased phospholipase A2 activity contribute to the pathology in dystrophin-deficient muscle. Moreover, Ca2+, ROS and phospholipase A2, in particular iPLA2, are thought to potentiate each other in positive feedback loops. NADPH oxidases (NOX) have been considered as a major source of ROS in muscle and have been reported to be overexpressed in muscles of mdx mice. We report here on our investigations regarding the effect of diapocynin, a dimer of the commonly used NOX inhibitor apocynin, on the activity of iPLA2, Ca2+ handling and ROS generation in dystrophic myotubes. We also examined the effects of diapocynin on force production and recovery ability of isolated EDL muscles exposed to eccentric contractions in vitro, a damaging procedure to which dystrophic muscle is extremely sensitive. In dystrophic myotubes, diapocynin inhibited ROS production, abolished iPLA2 activity and reduced Ca2+ influx through stretch-activated and store-operated channels, two major pathways responsible for excessive Ca2+ entry in dystrophic muscle. Diapocynin also prevented force loss induced by eccentric contractions of mdx muscle close to the value of wild-type muscle and reduced membrane damage as seen by Procion orange dye uptake. These findings support the central role played by NOX-ROS in the pathogenic cascade leading to muscular dystrophy and suggest diapocynin as an effective NOX inhibitor that might be helpful for future therapeutic approaches. PMID:25329652

  3. Increased Skeletal Muscle Capillarization After Aerobic Exercise Training and Weight Loss Improves Insulin Sensitivity in Adults With IGT

    PubMed Central

    Prior, Steven J.; Blumenthal, Jacob B.; Katzel, Leslie I.; Goldberg, Andrew P.; Ryan, Alice S.

    2014-01-01

    OBJECTIVE Transcapillary transport of insulin is one determinant of glucose uptake by skeletal muscle; thus, a reduction in capillary density (CD) may worsen insulin sensitivity. Skeletal muscle CD is lower in older adults with impaired glucose tolerance (IGT) compared with those with normal glucose tolerance and may be modifiable through aerobic exercise training and weight loss (AEX+WL). We tested the hypothesis that 6-month AEX+WL would increase CD to improve insulin sensitivity and glucose tolerance in older adults with IGT. RESEARCH DESIGN AND METHODS Sixteen sedentary, overweight-obese (BMI 27–35 kg/m2), older (63 ± 2 years) men and women with IGT underwent hyperinsulinemic-euglycemic clamps to measure insulin sensitivity, oral glucose tolerance tests, exercise and body composition testing, and vastus lateralis muscle biopsies to determine CD before and after 6-month AEX+WL. RESULTS Insulin sensitivity (M) and 120-min postprandial glucose (G120) correlated with CD at baseline (r = 0.58 and r = −0.60, respectively, P < 0.05). AEX+WL increased maximal oxygen consumption (VO2max) 18% (P = 0.02) and reduced weight and fat mass 8% (P < 0.02). CD increased 15% (264 ± 11 vs. 304 ± 14 capillaries/mm2, P = 0.01), M increased 21% (42.4 ± 4.0 vs. 51.4 ± 4.3 µmol/kg FFM/min, P < 0.05), and G120 decreased 16% (9.35 ± 0.5 vs. 7.85 ± 0.5 mmol/L, P = 0.008) after AEX+WL. Regression analyses showed that the AEX+WL-induced increase in CD independently predicted the increase in M (r = 0.74, P < 0.01) as well as the decrease in G120 (r = −0.55, P < 0.05). CONCLUSIONS Six-month AEX+WL increases skeletal muscle CD in older adults with IGT. This represents one mechanism by which AEX+WL improves insulin sensitivity in older adults with IGT. PMID:24595633

  4. Age-related changes in deformability of human erythrocytes.

    PubMed

    Sutera, S P; Gardner, R A; Boylan, C W; Carroll, G L; Chang, K C; Marvel, J S; Kilo, C; Gonen, B; Williamson, J R

    1985-02-01

    The present study was designed to further the characterization of age-related changes in the deformability of human erythrocytes. The top (approximately young) and bottom (approximately old) 10% fractions of density-separated red cells from ten normal donors were subjected to graded levels of shear stress in a rheoscope. Measurements were made of steady-state elongation (cells tank treading in a state of dynamic equilibrium) and the time course of shape recovery following abrupt cessation of shear. In parallel with the rheologic experiments, several physical and chemical properties were assayed to determine correlates of mechanical properties. These included mean cell volume, mean corpuscular hemoglobin concentration, type A1 hemoglobin, glucosylation of membrane proteins, and membrane phospholipid and protein concentration. The microrheologic observations revealed that only about 90% of the old cells retained their capacity to tank tread. However, the tank-treading cells elongated less than their younger counterparts at corresponding levels of shear stress, thus demonstrating a reduced level of deformability. Further analysis of the data indicates that increases in membrane viscosity and elastic modulus along with a significant loss in excess surface area contribute to the limitation of the ability of the older cells to change shape.

  5. Promising new treatments for neovascular age-related macular degeneration.

    PubMed

    Michels, Stephan; Schmidt-Erfurth, Ursula; Rosenfeld, Philip J

    2006-07-01

    Angiogenesis, the growth of new blood vessels from existing blood vessels, is responsible for vision loss in a variety of ophthalmic diseases. In neovascular age-related macular degeneration (AMD), the leading cause for legal blindness in many industrialised countries, abnormal blood vessels grow in the macula and cause blindness. There are a number of factors important in the angiogenic cascade but VEGF-A has been implicated in recent years as the major factor responsible for neovascular and exudative diseases of the eye. Numerous antiangiogenic drugs are in development but anti-VEGF drugs have shown great promise in treating neovascular AMD and other ocular diseases, and many of these drugs have been adopted from oncology where antiangiogenic therapy is gaining wide acceptance. For the first time in neovascular AMD, anti-VEGF drugs have brought the hope of vision improvement to a significant proportion of patients. This review provides an overview on angiogenic mechanisms, potential antiangiogenic treatment strategies and different antiangiogenic drugs with special focus on neovascular AMD.

  6. Age-related impairment of mesenchymal progenitor cell function.

    PubMed

    Stolzing, Alexandra; Scutt, Andrew

    2006-06-01

    In most mesenchymal tissues a subcompartment of multipotent progenitor cells is responsible for the maintenance and repair of the tissue following trauma. With increasing age, the ability of tissues to repair themselves is diminished, which may be due to reduced functional capacity of the progenitor cells. The purpose of this study was to investigate the effect of aging on rat mesenchymal progenitor cells. Mesenchymal progenitor cells were isolated from Wistar rats aged 3, 7, 12 and 56 weeks. Viability, capacity for differentiation and cellular aging were examined. Cells from the oldest group accumulated raised levels of oxidized proteins and lipids and showed decreased levels of antioxidative enzyme activity. This was reflected in decreased fibroblast colony-forming unit (CFU-f) numbers, increased levels of apoptosis and reduced proliferation and potential for differentiation. These data suggest that the reduced ability to maintain mesenchymal tissue homeostasis in aged mammals is not purely due to a decline in progenitor cells numbers but also to a loss of progenitor functionality due to the accumulation of oxidative damage, which may in turn be a causative factor in a number of age-related pathologies such as arthritis, tendinosis and osteoporosis.

  7. Oxidative modification of proteins: age-related changes.

    PubMed

    Chakravarti, Bulbul; Chakravarti, Deb N

    2007-01-01

    Aging is a complex biological phenomenon which involves progressive loss of different physiological functions of various tissues of living organisms. It is the inevitable fate of life and is a major risk factor for death and different pathological disorders. Based on a wide variety of studies performed in humans as well as in various animal models and microbial systems, reactive oxygen species (ROS) are believed to play a key role in the aging process. The production of ROS is influenced by cellular metabolic activities as well as environmental factors. ROS can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since, in general, proteins are the key molecules that play the ultimate role in various structural and functional aspects of living organisms, this review will focus on the age-related oxidative modifications of proteins as well as on mechanism for removal or repair of the oxidized proteins. The topics covered include protein oxidation as a marker of oxidative stress, experimental evidence indicating the role of ROS in protein oxidation, protein carbonyl content, enzymatic degradation of oxidized proteins, and effects of caloric restriction on protein oxidation in the context of aging. Finally, we will discuss different strategies which have been or can be undertaken to slow down the oxidative damage of proteins and the aging process.

  8. Mechanism of Inflammation in Age-Related Macular Degeneration

    PubMed Central

    Parmeggiani, Francesco; Romano, Mario R.; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease. PMID:23209345

  9. Promising new treatments for neovascular age-related macular degeneration.

    PubMed

    Michels, Stephan; Schmidt-Erfurth, Ursula; Rosenfeld, Philip J

    2006-07-01

    Angiogenesis, the growth of new blood vessels from existing blood vessels, is responsible for vision loss in a variety of ophthalmic diseases. In neovascular age-related macular degeneration (AMD), the leading cause for legal blindness in many industrialised countries, abnormal blood vessels grow in the macula and cause blindness. There are a number of factors important in the angiogenic cascade but VEGF-A has been implicated in recent years as the major factor responsible for neovascular and exudative diseases of the eye. Numerous antiangiogenic drugs are in development but anti-VEGF drugs have shown great promise in treating neovascular AMD and other ocular diseases, and many of these drugs have been adopted from oncology where antiangiogenic therapy is gaining wide acceptance. For the first time in neovascular AMD, anti-VEGF drugs have brought the hope of vision improvement to a significant proportion of patients. This review provides an overview on angiogenic mechanisms, potential antiangiogenic treatment strategies and different antiangiogenic drugs with special focus on neovascular AMD. PMID:16787141

  10. Effect of nutritional interventions and resistance exercise on aging muscle mass and strength.

    PubMed

    Candow, Darren G; Forbes, Scott C; Little, Jonathan P; Cornish, Stephen M; Pinkoski, Craig; Chilibeck, Philip D

    2012-08-01

    Sarcopenia, defined as the age-related loss of muscle mass, has a negative effect on strength, functional independence and overall quality of life. Sarcopenia is a multifactorial phenomenon characterized by changes in muscle morphology, protein and hormonal kinetics, oxidative stress, inflammation, physical activity and nutrition. It is well known that resistance exercise increases aging muscle mass and strength and these physiological adaptations from exercise may be further enhanced with certain nutritional interventions. Research indicates that essential amino acids and milk-based proteins, creatine monohydrate, essential fatty acids, and vitamin D may all have beneficial effects on aging muscle biology. PMID:22684187

  11. Changes in skeletal muscle with aging: effects of exercise training.

    PubMed

    Rogers, M A; Evans, W J

    1993-01-01

    There is an approximate 30% decline in muscle strength and a 40% reduction in muscle area between the second and seventh decades of life. Thus, the loss of muscle mass with aging appears to be the major factor in the age-related loss of muscle strength. The loss of muscle mass is partially due to a significant decline in the numbers of both Type I and Type II muscle fibers plus a decrease in the size of the muscle cells, with the Type II fibers showing a preferential atrophy. There appears to be no loss of glycolytic capacity in senescent skeletal muscle whereas muscle oxidative enzyme activity and muscle capillarization decrease by about 25%. Vigorous endurance exercise training in older people, where the stimulus is progressively increased, elicits a proliferation of muscle capillaries, an increase in oxidative enzyme activity, and a significant improvement in VO2max. Likewise, progressive resistive training in older individuals results in muscle hypertrophy and increased strength, if the training stimulus is of a sufficient intensity and duration. Since older individuals adapt to resistive and endurance exercise training in a similar fashion to young people, the decline in the muscle's metabolic and force-producing capacity can no longer be considered as an inevitable consequence of the aging process. Rather, the adaptations in aging skeletal muscle to exercise training may prevent sarcopenia, enhance the ease of carrying out the activities of daily living, and exert a beneficial effect on such age-associated diseases as Type II diabetes, coronary artery disease, hypertension, osteoporosis, and obesity. PMID:8504850

  12. Muscular senescence in cetaceans: adaptation towards a slow muscle fibre phenotype

    PubMed Central

    Sierra, Eva; Fernández, Antonio; de los Monteros, Antonio Espinosa; Arbelo, Manuel; de Quirós, Yara Bernaldo; Herráez, Pedro

    2013-01-01

    Sarcopenia, or senile muscle atrophy, is the slow and progressive loss of muscle mass with advancing age that constitutes the most prevalent form of muscle atrophy. The effects of ageing on skeletal muscle have been extensively studied in humans and laboratory animals (mice), while the few reports on wild animals are based on short-lived mammals. The present study describes the age-related changes in cetacean muscles regarding the three factors that determine muscle mass: fibre size, fibre number, and fibre type. We show that the skeletal muscle fibres in cetaceans change with advancing age, evolving towards a slower muscle phenotype. We suggest that this physiological evolution constitutes an adaptation that allows these marine mammals to perform prolonged, deep dives. PMID:23648412

  13. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index. PMID:26572116

  14. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index.

  15. Slowing Down: Age-Related Neurobiological Predictors of Processing Speed

    PubMed Central

    Eckert, Mark A.

    2011-01-01

    Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging. PMID:21441995

  16. Absence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice

    PubMed Central

    Perez, Gloria I.; Jurisicova, Andrea; Wise, Lisa; Lipina, Tatiana; Kanisek, Marijana; Bechard, Allison; Takai, Yasushi; Hunt, Patricia; Roder, John; Grynpas, Marc; Tilly, Jonathan L.

    2007-01-01

    The menopausal transition in human females, which is driven by a loss of cyclic ovarian function, occurs around age 50 and is thought to underlie the emergence of an array of health problems in aging women. Although mice do not undergo a true menopause, female mice exhibit ovarian failure long before death because of chronological age and subsequently develop many of the same age-associated health complications observed in postmenopausal women. Here we show in mice that inactivation of the proapoptotic Bax gene, which sustains ovarian lifespan into advanced age, extends fertile potential and minimizes many age-related health problems, including bone and muscle loss, excess fat deposition, alopecia, cataracts, deafness, increased anxiety, and selective attention deficit. Further, ovariectomy studies show that the health benefits gained by aged females from Bax deficiency reflect a complex interplay between ovary-dependent and -independent pathways. Importantly, and contrary to popular belief, prolongation of ovarian function into advanced age by Bax deficiency did not lead to an increase in tumor incidence. Thus, the development of methods for postponing ovarian failure at menopause may represent an attractive option for improving the quality of life in aging females. PMID:17360389

  17. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance

    PubMed Central

    Zolla, Valerio; Nizamutdinova, Irina Tsoy; Scharf, Brian; Clement, Cristina C; Maejima, Daisuke; Akl, Tony; Nagai, Takashi; Luciani, Paola; Leroux, Jean-Christophe; Halin, Cornelia; Stukes, Sabriya; Tiwari, Sangeeta; Casadevall, Arturo; Jacobs, William R; Entenberg, David; Zawieja, David C; Condeelis, John; Fooksman, David R; Gashev, Anatoliy A; Santambrogio, Laura

    2015-01-01

    The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic’s endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport. PMID:25982749

  18. Effects of high protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: The benefits of high protein diets for sparing lean body mass and sustaining skeletal muscle protein metabolism during short-term weight loss in normal-weight adults are not well described. Objective: Determine the effects of varying levels of dietary protein intake on body compos...

  19. Loss of abdominal muscle in Pitx2 mutants associated with altered axial specification of lateral plate mesoderm.

    PubMed

    Eng, Diana; Ma, Hsiao-Yen; Xu, Jun; Shih, Hung-Ping; Gross, Michael K; Kioussi, Chrissa; Kiouss, Chrissa

    2012-01-01

    Sequence specific transcription factors (SSTFs) combinatorially define cell types during development by forming recursively linked network kernels. Pitx2 expression begins during gastrulation, together with Hox genes, and becomes localized to the abdominal lateral plate mesoderm (LPM) before the onset of myogenesis in somites. The somatopleure of Pitx2 null embryos begins to grow abnormally outward before muscle regulatory factors (MRFs) or Pitx2 begin expression in the dermomyotome/myotome. Abdominal somites become deformed and stunted as they elongate into the mutant body wall, but maintain normal MRF expression domains. Subsequent loss of abdominal muscles is therefore not due to defects in specification, determination, or commitment of the myogenic lineage. Microarray analysis was used to identify SSTF families whose expression levels change in E10.5 interlimb body wall biopsies. All Hox9-11 paralogs had lower RNA levels in mutants, whereas genes expressed selectively in the hypaxial dermomyotome/myotome and sclerotome had higher RNA levels in mutants. In situ hybridization analyses indicate that Hox gene expression was reduced in parts of the LPM and intermediate mesoderm of mutants. Chromatin occupancy studies conducted on E10.5 interlimb body wall biopsies showed that Pitx2 protein occupied chromatin sites containing conserved bicoid core motifs in the vicinity of Hox 9-11 and MRF genes. Taken together, the data indicate that Pitx2 protein in LPM cells acts, presumably in combination with other SSTFs, to repress gene expression, that are normally expressed in physically adjoining cell types. Pitx2 thereby prevents cells in the interlimb LPM from adopting the stable network kernels that define sclerotomal, dermomyotomal, or myotomal mesenchymal cell types. This mechanism may be viewed either as lineage restriction or specification. PMID:22860089

  20. Skeletal muscle myopathy mutations at the actin tropomyosin interface that cause gain- or loss-of-function.

    PubMed

    Memo, Massimiliano; Marston, Steven

    2013-08-01

    It is well known that the regulation of muscle contraction relies on the ability of tropomyosin to switch between different positions on the actin filament, but it is still not well understood which amino acids are directly involved in the different states of the interaction. Recently the structure of the actin-tropomyosin interface has been determined both in the absence and presence of myosin heads. Interestingly, a number of mutations in tropomyosin that are associated with skeletal muscle myopathy are located within this interface. We first give an overview of the functional effect of mutations on amino acids that are involved in the contact with actin asp25, which represent a pattern repeated seven times along tropomyosin. It is explained how some of these amino acids (R167 and R244) which are thought to be involved in a salt bridge contact with actin in the closed state can produce a loss-of-function when mutated, while other positively charged tropomyosin amino acids positioned on the downstream side of the contact (K7, K49, R91, K168) can produce a gain-of-function when mutated. We then consider mutations of amino acids involved in another salt bridge contact between the two proteins in the closed state, actin K326N (which binds on five different points of tropomyosin) and tropomyosin ∆E139 and E181K, and we report how all of these mutations produce a gain-of-function. These observations can be important to validate the proposed structures and to understand more deeply how mutations affect the function of these proteins and to enable prediction of their outcomes.

  1. Nutritional Supplements in Support of Resistance Exercise to Counter Age-Related Sarcopenia12

    PubMed Central

    Phillips, Stuart M

    2015-01-01

    Age-related sarcopenia, composed of myopenia (a decline in muscle mass) and dynapenia (a decline in muscle strength), can compromise physical function, increase risk of disability, and lower quality of life in older adults. There are no available pharmaceutical treatments for this condition, but evidence shows resistance training (RT) is a viable and relatively low-cost treatment with an exceptionally positive side effect profile. Further evidence suggests that RT-induced increases in muscle mass, strength, and function can be enhanced by certain foods, nutrients, or nutritional supplements. This brief review focuses on adjunctive nutritional strategies, which have a reasonable evidence base, to enhance RT-induced gains in outcomes relevant to sarcopenia and to reducing risk of functional declines. PMID:26178029

  2. Nutritional supplements in support of resistance exercise to counter age-related sarcopenia.

    PubMed

    Phillips, Stuart M

    2015-07-01

    Age-related sarcopenia, composed of myopenia (a decline in muscle mass) and dynapenia (a decline in muscle strength), can compromise physical function, increase risk of disability, and lower quality of life in older adults. There are no available pharmaceutical treatments for this condition, but evidence shows resistance training (RT) is a viable and relatively low-cost treatment with an exceptionally positive side effect profile. Further evidence suggests that RT-induced increases in muscle mass, strength, and function can be enhanced by certain foods, nutrients, or nutritional supplements. This brief review focuses on adjunctive nutritional strategies, which have a reasonable evidence base, to enhance RT-induced gains in outcomes relevant to sarcopenia and to reducing risk of functional declines. PMID:26178029

  3. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease

    PubMed Central

    Crosson, Bruce; McGregor, Keith M.; Nocera, Joe R.; Drucker, Jonathan H.; Tran, Stella M.; Butler, Andrew J.

    2015-01-01

    The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered. PMID:26074807

  4. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System.

    PubMed

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-02-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere's disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  5. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    PubMed Central

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  6. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress.

  7. Polyunsaturated fatty acids and their relation with bone and muscle health in adults.

    PubMed

    Mangano, Kelsey M; Sahni, Shivani; Kerstetter, Jane E; Kenny, Anne M; Hannan, Marian T

    2013-09-01

    Age-related bone and muscle loss are major public health problems. Investigational therapies to reduce these losses include anti-inflammatory dietary supplementations, such as polyunsaturated fatty acids (PUFA). Surprisingly, this topic has received little attention in the osteoporosis community. Recent research highlights the role of PUFA in inflammatory regulation of bone remodeling via cellular pathways. Emerging research suggests significant roles for PUFA in reducing bone and muscle loss with aging; however, findings are conflicted for PUFA and fracture risk. Limited studies suggest a relation between higher omega-3 FA and better muscle/bone in older adults. This review highlights new research since 2008 and synthesizes our current understanding of PUFA in relation to bone and muscle. Across study designs, evidence indicates that PUFA has positive effects upon bone. As data are sparse, future clinical trials and prospective studies are important to determine the long term benefits of PUFA supplementation upon bone and muscle outcomes. PMID:23857286

  8. Polyunsaturated fatty acids and their relation with bone and muscle health in adults

    PubMed Central

    Mangano, Kelsey M; Sahni, Shivani; Kerstetter, Jane E; Kenny, Anne M; Hannan, Marian T

    2013-01-01

    Age-related bone and muscle loss are major public health problems. Investigational therapies to reduce these losses include anti-inflammatory dietary supplementations, such as polyunsaturated fatty acids (PUFA). Surprisingly, this topic has received little attention in the osteoporosis community. Recent research highlights the role of PUFA in inflammatory regulation of bone remodeling via cellular pathways. Emerging research suggests significant roles for PUFA in reducing bone and muscle loss with aging; however, findings are conflicted for PUFA and fracture risk. Limited studies suggest a relation between higher omega-3 FA and better muscle/bone in older adults. This review highlights new research since 2008 and synthesizes our current understanding of PUFA in relation to bone and muscle. Across study designs, evidence indicates that PUFA has positive effects upon bone. As data are sparse, future clinical trials and prospective studies are important to determine the long term benefits of PUFA supplementation upon bone and muscle outcomes. PMID:23857286

  9. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori.

  10. Low Calorie Diet Affects Aging-Related Factors

    MedlinePlus

    ... Issue Past Issues Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / Summer ... learn more about the effects of sustained low-calorie diets in humans on factors affecting aging. This ...

  11. Random myosin loss along thick-filaments increases myosin attachment time and the proportion of bound myosin heads to mitigate force decline in skeletal muscle.

    PubMed

    Tanner, Bertrand C W; McNabb, Mark; Palmer, Bradley M; Toth, Michael J; Miller, Mark S

    2014-06-15

    Diminished skeletal muscle performance with aging, disuse, and disease may be partially attributed to the loss of myofilament proteins. Several laboratories have found a disproportionate loss of myosin protein content relative to other myofilament proteins, but due to methodological limitations, the structural manifestation of this protein loss is unknown. To investigate how variations in myosin content affect ensemble cross-bridge behavior and force production we simulated muscle contraction in the half-sarcomere as myosin was removed either (i) uniformly, from the Z-line end of thick-filaments, or (ii) randomly, along the length of thick-filaments. Uniform myosin removal decreased force production, showing a slightly steeper force-to-myosin content relationship than the 1:1 relationship that would be expected from the loss of cross-bridges. Random myosin removal also decreased force production, but this decrease was less than observed with uniform myosin loss, largely due to increased myosin attachment time (ton) and fractional cross-bridge binding with random myosin loss. These findings support our prior observations that prolonged ton may augment force production in single fibers with randomly reduced myosin content from chronic heart failure patients. These simulations also illustrate that the pattern of myosin loss along thick-filaments influences ensemble cross-bridge behavior and maintenance of force throughout the sarcomere. PMID:24486373

  12. Age related differences in maximal and rapid torque characteristics of the leg extensors and flexors in young, middle-aged and old men.

    PubMed

    Thompson, Brennan J; Ryan, Eric D; Sobolewski, Eric J; Conchola, Eric C; Cramer, Joel T

    2013-02-01

    The decline in maximal and rapid isometric torque characteristics may compromise functional living abilities in aging adults while loco-motor muscle groups, such as the leg extensors and flexors, may exhibit different torque-time age related decreases. The purpose of the present study was to examine the age-related differences in maximal and rapid torque characteristics of the leg extensor and flexor muscle groups in young, middle-aged, and old men. Sixty-five healthy men were categorized by age as young (n=25; mean±SD age=24.9±3.0 years), middle-aged (n=22; age=50.6±4.0 years), and old (n=18; age=66.8±4.5 years). Participants performed maximal voluntary contractions (MVCs) of the leg extensors and flexors and an estimated thigh cross sectional area (eThighCSA) assessment. Peak torque (PT), peak rate of torque development (RTDpeak), absolute RTD and the contractile impulse (IMPULSE) were calculated at time intervals of 30, 50, 100 and 200 ms from the torque-time curve. Relative RTD was calculated at 10, 20, 30, 40 and 50% of MVC from the normalized torque-time curves. PT, RTDpeak and later rapid torque variables (RTD100, RTD200, and IMPULSE200) were greater (P≤0.05) in the young and middle-aged when compared to the old men for both muscle groups. Early (RTD30,50; IMPULSE30,50) and late (IMPULSE100) rapid torque variables were greater (P≤0.05) for the young and middle-aged than the old men for the leg extensors but not the leg flexors, except for RTD30, in which there was no difference between young and old. There were no differences for all relative RTD variables between age groups (P>0.05). eThighCSA was lower in the old compared to the young (P=0.001) and middle-aged (P=0.016) men. Maximal and rapid torque characteristics were preserved in middle-aged men but greatly reduced in older men with differential effects at early and late portions of the torque-time curve between the leg extensors and flexors. Significant decreases in absolute maximal and rapid

  13. High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following botulinum toxin injection.

    PubMed

    Manske, Sarah L; Good, Craig A; Zernicke, Ronald F; Boyd, Steven K

    2012-01-01

    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16-18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ± 0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12 ± 9% and 7 ± 6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX. PMID:22590551

  14. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles.

    PubMed

    Thomas, Melissa M; Wang, David C; D'Souza, Donna M; Krause, Matthew P; Layne, Andrew S; Criswell, David S; O'Neill, Hayley M; Connor, Michael K; Anderson, Judy E; Kemp, Bruce E; Steinberg, Gregory R; Hawke, Thomas J

    2014-05-01

    AMP-activated protein kinase (AMPK) is a master regulator of metabolism. While muscle-specific AMPK β1β2 double-knockout (β1β2M-KO) mice display alterations in metabolic and mitochondrial capacity, their severe exercise intolerance suggested a secondary contributor to the observed phenotype. We find that tibialis anterior (TA), but not soleus, muscles of sedentary β1β2M-KO mice display a significant myopathy (decreased myofiber areas, increased split and necrotic myofibers, and increased centrally nucleated myofibers. A mitochondrial- and fiber-type-specific etiology to the myopathy was ruled out. However, β1β2M-KO TA muscles displayed significant (P<0.05) increases in platelet aggregation and apoptosis within myofibers and surrounding interstitium (P<0.05). These changes correlated with a 45% decrease in capillary density (P<0.05). We hypothesized that the β1β2M-KO myopathy in resting muscle resulted from impaired AMPK-nNOSμ signaling, causing increased platelet aggregation, impaired vasodilation, and, ultimately, ischemic injury. Consistent with this hypothesis, AMPK-specific phosphorylation (Ser1446) of nNOSμ was decreased in β1β2M-KO compared to wild-type (WT) mice. The AMPK-nNOSμ relationship was further demonstrated by administration of 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) to β1β2-MKO muscles and C2C12 myotubes. AICAR significantly increased nNOSμ phosphorylation and nitric oxide production (P<0.05) within minutes of administration in WT muscles and C2C12 myotubes but not in β1β2M-KO muscles. These findings highlight the importance of the AMPK-nNOSμ pathway in resting skeletal muscle.

  15. Oxidative stress, innate immunity, and age-related macular degeneration

    PubMed Central

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  16. The Difference that Age Makes: Cultural Factors that Shape Older Adults' Responses to Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Mogk, Marja

    2008-01-01

    This article suggests that approaching vision loss from age-related macular degeneration from a sociocultural perspective, specifically considering perceptions of aging, blindness, disability, and generational viewpoints and norms, may be critical to understanding older adults' responses to vision loss and visual rehabilitation.

  17. Age-related hearing decline in individuals with and without occupational noise exposure.

    PubMed

    Hederstierna, Christina; Rosenhall, Ulf

    2016-01-01

    This study was conducted to compare the pattern of age-related hearing decline in individuals with and without self-reported previous occupational noise exposure. This was a prospective, population-based, longitudinal study of individuals aged 70-75 years, from an epidemiological investigation, comprising three age cohorts. In total there were 1013 subjects (432 men and 581 women). Participants were tested with pure tone audiometry, and they answered a questionnaire to provide information regarding number of years of occupational noise exposure. There were no significant differences in hearing decline, at any frequency, for those aged 70-75 years between the noise-exposed (N= 62 men, 22 women) and the nonexposed groups (N = 96 men, 158 women). This study supports the additive model of noise-induced hearing loss (NIHL) and age-related hearing loss (ARHL). The concept of different patterns of hearing decline between persons exposed and not exposed to noise could not be verified.

  18. The supplementation of Korean mistletoe water extracts reduces hot flushes, dyslipidemia, hepatic steatosis, and muscle loss in ovariectomized rats

    PubMed Central

    Kim, Min Jung; Park, Jong-Heum; Kwon, Dae Young; Yang, Hye Jeong; Kim, Da Sol; Kang, Suna; Shin, Bae Keun; Moon, Na Rang; Song, Beom-Seok; Kim, Jae-Hun

    2015-01-01

    , hepatic steatosis, and loss of muscle mass in post-menopausal women. PMID:25258426

  19. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle

    PubMed Central

    Gonzalez-Freire, Marta; de Cabo, Rafael; Studenski, Stephanie A.; Ferrucci, Luigi

    2014-01-01

    Aging is associated with a progressive loss of muscle mass and strength and a decline in neurophysiological functions. Age-related neuromuscular junction (NMJ) plays a key role in musculoskeletal impairment that occurs with aging. However, whether changes in the NMJ precede or follow the decline of muscle mass and strength remains unresolved. Many factors such as mitochondrial dysfunction, oxidative stress, inflammation, changes in the innervation of muscle fibers, and mechanical properties of the motor units probably perform an important role in NMJ degeneration and muscle mass and strength decline in late life. This review addresses the primary events that might lead to NMJ dysfunction with aging, including studies on biomarkers, signaling pathways, and animal models. Interventions such as caloric restriction and exercise may positively affect the NMJ through this mechanism and attenuate the age-related progressive impairment in motor function. PMID:25157231

  20. Plantaris muscle weakness in old mice: relative contributions of changes in specific force, muscle mass, myofiber cross-sectional area, and number.

    PubMed

    Ballak, Sam B; Degens, Hans; Busé-Pot, Tinelies; de Haan, Arnold; Jaspers, Richard T

    2014-01-01

    The age-related decline in muscle function contributes to the movement limitations in daily life in old age. The age-related loss in muscle force is attributable to loss of myofibers, myofiber atrophy, and a reduction in specific force. The contribution of each of these determinants to muscle weakness in old age is, however, largely unknown. The objective of this study is to determine whether a loss in myofiber number, myofiber atrophy, and a reduction in specific muscle force contribute to the age-related loss of muscle force in 25-month-old mouse. Maximal isometric force of in situ m. plantaris of C57BL/6J male adult (9 months) and old (25 months) mice was determined and related to myofiber number, myofiber size, intramuscular connective tissue content, and proportion of denervated myofibers. Isometric maximal plantaris muscle force was 13 % lower in old than adult mice (0.97 ± 0.05 N vs. 0.84 ± 0.03 N; P < 0.05). M. plantaris mass of old mice was not significantly smaller than that of adult mice. There was also no significant myofiber atrophy or myofiber loss. Specific muscle force of old mice was 25 % lower than that of adult mice (0.55 ± 0.05 vs. 0.41 ± 0.03 N·mm(-2), P < 0.01). In addition, with age, the proportion of type IIB myofibers decreased (43.6 vs. 38.4 %, respectively), while the connective tissue content increased (11.6 vs. 16.4 %, respectively). The age-related reduction in maximal isometric plantaris muscle force in 25-month-old male C57BL/6J mice is mainly attributable to a reduction in specific force, which is for 5 % explicable by an age-related increase in connective tissue, rather than myofiber atrophy and myofiber loss.

  1. Muscle function loss

    MedlinePlus

    ... disease of the nervous system: Nerve damage (neuropathy), spinal cord injury (myelopathy), or brain damage (stroke or other brain ... shellfish poisoning Periodic paralysis Focal nerve injury Polio Spinal cord injury Stroke

  2. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

    PubMed Central

    Pereira, Ana C.; Lambert, Hilary K.; Grossman, Yael S.; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K.; Calakos, Katina; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2014-01-01

    The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  3. Age-related structural and functional changes in the cochlear nucleus.

    PubMed

    Frisina, Robert D; Walton, Joseph P

    2006-01-01

    Presbycusis - age-related hearing loss - is a key communication disorder and chronic medical condition of our aged population. The cochlear nucleus is the major site of projections from the auditory portion of the inner ear. Relative to other levels of the peripheral and central auditory systems, relatively few studies have been conducted examining age-related changes in the cochlear nucleus. The neurophysiological investigations suggest declines in glycine-mediated inhibition, reflected in increased firing rates in cochlear nucleus neurons from old animals relative to young adults. Biochemical investigations of glycine inhibition in the cochlear nucleus are consistent with the functional aging declines of this inhibitory neurotransmitter system that affect complex sound processing. Anatomical reductions in neurons of the cochlear nucleus and their output pathways can occur due to aging changes in the brain, as well as due to age-dependent plasticity of the cochlear nucleus in response to the age-related loss of inputs from the cochlea, particularly from the basal, high-frequency regions. Novel preventative and curative biomedical interventions in the future aimed at alleviating the hearing loss that comes with age, will likely emanate from increasing our knowledge and understanding of its neural and molecular bases. To the extent that this sensory deficit resides in the central auditory system, including the cochlear nucleus, future neural therapies will be able to improve hearing in the elderly.

  4. Mitochondrial energetics is impaired in vivo in aged skeletal muscle.

    PubMed

    Gouspillou, Gilles; Bourdel-Marchasson, Isabelle; Rouland, Richard; Calmettes, Guillaume; Biran, Marc; Deschodt-Arsac, Véronique; Miraux, Sylvain; Thiaudiere, Eric; Pasdois, Philippe; Detaille, Dominique; Franconi, Jean-Michel; Babot, Marion; Trézéguet, Véronique; Arsac, Laurent; Diolez, Philippe

    2014-02-01

    With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with (31) P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness ('elasticity') of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon. PMID:23919652

  5. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.

  6. Age-Related Changes in the Anterior Segment Biometry During Accommodation

    PubMed Central

    Shao, Yilei; Tao, Aizhu; Jiang, Hong; Mao, Xinjie; Zhong, Jianguang; Shen, Meixiao; Lu, Fan; Xu, Zhe; Karp, Carol L.; Wang, Jianhua

    2015-01-01

    Purpose. We investigated the dynamic response of human accommodative elements as a function of age during accommodation using synchronized spectral domain optical coherence tomography devices (SD-OCT). Methods. We enrolled 33 left eyes from 33 healthy subjects (age range, 20–39 years, 17 males and 16 females). Two SD-OCT devices were synchronized to simultaneously image the anterior segment through pupil and the ciliary muscle during 6.00 diopter (D) accommodation for approximately 3.7 seconds in two repeated measurements. The anterior segment parameters included the lens thickness (LT), radius of curvature of the lens anterior surface (LAC), maximum thickness of ciliary muscle (CMTMAX), and anterior length of the ciliary muscle (CMAL). A first-order exponential equation was used to fit the dynamic changes during accommodation. The age-related changes in the dynamic response and their relationship were calculated and compared. Results. The amplitude (r = −0.40 and 0.53 for LT and LAC, respectively) and peak velocity (r = −0.65 and 0.71 for LT and LAC, respectively) of the changes in LT and LAC significantly decreased with age (P < 0.05), whereas the parameters of the ciliary muscle remained unchanged (P > 0.05), except for the peak velocity of the CMAL (r = 0.44, P = 0.01). The difference in the time constant between the lens reshaping (LT and LAC) and CMTMAX increased with age (r = 0.46 and 0.57 for LT and LAC, respectively, P < 0.01). The changes in LT and LAC per millimeter of CMTMAX change decreased with age (r = −0.52 and −0.34, respectively, P < 0.05). The ciliary muscle forward movement correlated with the lens deformation (r = −0.35 and 0.40 for amplitude, while r = 0.36 and 0.58 for time constant, respectively, P < 0.05). Conclusions. Age-related changes in the lens reshaping and ciliary muscle forward movement were found. Lens reshaping was much slower than the contraction of the ciliary muscle, especially in aging eyes, and this process

  7. Loss of heterozygosis on chromosome 18q21-23 and muscle-invasive bladder cancer natural history

    PubMed Central

    CAI, TOMMASO; MONDAINI, NICOLA; TISCIONE, DANIELE; DAL CANTO, MAURIZIO; SANTI, RAFFAELLA; BARTOLETTI, RICCARDO; NESI, GABRIELLA

    2015-01-01

    Loss of heterozygosis (LOH) on chromosome (Chr) 18q21-23 was reported to be one of the most common genetic alterations identified in bladder cancer. The current study aimed to determine the prognostic role of LOH on Chr 18q21-23 in patients diagnosed with muscle-invasive urothelial bladder carcinoma (MIBC). A total of 34 consecutive patients were enrolled in the present prospective study. LOH on Chr 18 was assessed by performing multiplex polymerase chain reaction on paired blood and tumour tissue samples from each patient. The following primers were used in the present study: D18S51, MBP LW and MBP H. These data were then compared with follow-up information. The main outcome measure was patient status at the end of the follow-up. Cox regression was used to evaluate the impact of each parameter on cancer-specific survival and the Kaplan Meier test for disease-free survival was plotted in order to estimate survival. Out of 34 patients, 18 (52.9%) exhibited ≥1 alteration in one of the loci analysed on chromosome 18, while 16 (47.1%) revealed no alterations. No correlation was identified with stage (P=0.18) or grade (P=0.06); however, LOH on Chr 18q21-23 was significantly associated with a lower recurrence-free probability (P<0.0001). Kaplan-Meier curves demonstrated a significant association between patient status at follow-up and LOH on Chr 18 (P<0.001). In addition, multivariate analysis identified LOH on Chr 18 (P<0.001) and stage (P=0.01) as independent survival predictors. Furthermore, artificial neural network analysis was consistent with the results of the multivariate analysis. In conclusion, the present study highlighted the role of LOH on Chr 18q21-23 in predicting the clinical outcome of patients with MIBC. PMID:26622891

  8. Blockade of Ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells.

    PubMed

    Rao, Velidi H; Rai, Vikrant; Stoupa, Samantha; Agrawal, Devendra K

    2015-09-15

    Although degradation of extracellular matrix by matrix metalloproteinases (MMPs) is thought to be involved in symptomatic (S) carotid plaques in atherosclerosis, the mechanisms of MMP expression are poorly understood. Here, we demonstrate that collagen loss in vascular smooth vessel cells (VSMCs) isolated from S plaques was induced by epidermal growth factor (EGF) through the activation of p38-MAPK and JNK-MAPK pathways. Inhibitors of p38-MAPK and JNK-MAPK signaling pathways downregulated the expression of MMP-1 and MMP-9. In addition, we examined whether v-ets erythroblastosis virus E26 oncogene homologue 1 (Ets-1), an important regulator of different genes, is involved in destabilizing S plaques in patients with carotid stenosis. We demonstrate that EGF induces Ets-1 expression and decreases interstitial and basement membrane collagen in vascular smooth muscle cells (VSMCs) from patients with carotid stenosis. Increased expression of MMP-1 and -9 and decreased collagen mRNA transcripts were also found in Ets-1-overexpressed VSMCs. Transfection with both dominant-negative form of Ets-1 and small interfering RNA blocked EGF-induced MMP-1 and -9 expressions and increased the mRNA transcripts for collagen I (α1) and collagen III (α1) in S compared with asymptomatic (AS) carotid plaques. Inhibitors of p38-MAPK (SB202190) and JNK-MAPK (SP600125) signaling pathways decreased the expression of Ets-1, MMP-1, and MMP-9 and increased collagen type I and III expression in EGF-treated VSMCs. This study provides a mechanistic insight into the role of Ets-1 in the plaque destabilization in patients with carotid stenosis involving p38-MAPK and JNK signaling pathways.

  9. [Age-related changes in swallowing. Physiology and pathophysiology].

    PubMed

    Muhle, P; Wirth, R; Glahn, J; Dziewas, R

    2015-04-01

    The term presbyphagia refers to all changes of swallowing physiology that are manifested with increasing age. Alterations in the pattern of deglutition that are part of healthy aging are called primary presbyphagia. Primary presbyphagia is not an illness in itself but contributes to a more pervasive naturally diminished functional reserve, making older adults more susceptible to dysphagia. If disorders in swallowing occur in the elderly as a comorbidity of a specific disease, for example stroke or neurodegenerative disorders, this is called secondary presbyphagia. Increasing age has an impact on each stage of deglutition. In the oral preparatory phase a diminished input for smell and taste as well as a usually multifactorial cause of dry mouth are the most important influencing factors. Sarcopenia, the degenerative loss of skeletal muscle mass, strength and quality associated with aging, interferes in particular with the oropharyngeal phase. A decreased sensory feedback from the oropharyngeal mucosa leads to a delayed triggering of the swallowing reflex. Finally, a reduction in connective tissue elasticity and changes of the axial skeleton lead to various modifications of the swallowing pattern with advanced age.

  10. Pathophysiology of ageing, longevity and age related diseases

    PubMed Central

    Bürkle, Alexander; Caselli, Graziella; Franceschi, Claudio; Mariani, Erminia; Sansoni, Paolo; Santoni, Angela; Vecchio, Giancarlo; Witkowski, Jacek M; Caruso, Calogero

    2007-01-01

    On April 18, 2007 an international meeting on Pathophysiology of Ageing, Longevity and Age-Related Diseases was held in Palermo, Italy. Several interesting topics on Cancer, Immunosenescence, Age-related inflammatory diseases and longevity were discussed. In this report we summarize the most important issues. However, ageing must be considered an unavoidable end point of the life history of each individual, nevertheless the increasing knowledge on ageing mechanisms, allows envisaging many different strategies to cope with, and delay it. So, a better understanding of pathophysiology of ageing and age-related disease is essential for giving everybody a reasonable chance for living a long and enjoyable final part of the life. PMID:17683521

  11. Age-related alterations in retinal neurovascular and inflammatory transcripts

    PubMed Central

    Van Kirk, Colleen A.; VanGuilder, Heather D.; Young, Megan; Farley, Julie A.; Sonntag, William E.

    2011-01-01

    factor [Pedf]) displayed patterns of expression dissimilar to that previously demonstrated with diabetes. Conclusions The commonalities in retinal age-related and diabetes-induced molecular alterations provide support for the hypothesis that diabetes and aging engage some common para-inflammatory processes. However, these results also demonstrate that while the retinal genomic response to diabetes and aging share commonalities, they are not superimposable phenotypes. The observed changes in retinal gene expression provide further evidence of retinal alterations in neurovascular and inflammatory processes across the adult rat lifespan; this is indicative of para-inflammation that may contribute to the functional impairments that occur with advanced age. The data also suggest the potential for an additive effect of aging and diabetes in the development of diabetic complications. PMID:21633715

  12. How stem cells manage to escape senescence and ageing - while they can: A recent study reveals that autophagy is responsible for senescence-dependent loss of regenerative potential of muscle stem cells during ageing.

    PubMed

    Ricchetti, Miria

    2016-09-01

    Skeletal muscle stem cells or satellite cells are responsible for muscle regeneration in the adult. Although satellite cells are highly resistant to stress, and display greater capacity to repair molecular damage than the committed progeny, their regenerative potential declines with age. During ageing, satellite cells switch to a state of permanent cell cycle arrest or senescence which prevents their activation. A recent study reveals that the senescence of satellite cell relies on defective autophagy, the quality control mechanism that degrades damaged proteins and organelles. Molecular damage is generated by oxidative stress that also promotes epigenetic changes that activate the expression of master genes, in a double-hit mechanism that ensures senescence. Importantly, genetic, and pharmacological correction of defective autophagy reverses satellite cell senescence and restores muscle regeneration in geriatric mice, with perspectives of modulating age-related functional decline of muscle. This study provides new clues to understand stem cell and organismal ageing. PMID:27389857

  13. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  14. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  15. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  16. Age-related differences in human skin proteoglycans

    PubMed Central

    Carrino, David A; Calabro, Anthony; Darr, Aniq B; Dours-Zimmermann, Maria T; Sandy, John D; Zimmermann, Dieter R; Sorrell, J Michael; Hascall, Vincent C; Caplan, Arnold I

    2011-01-01

    Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human skin. PMID:20947661

  17. Effect of Transcutaneous Electrical Nerve Stimulation, Cold, and a Combination Treatment on Pain, Decreased Range of Motion, and Strength Loss Associated with Delayed Onset Muscle Soreness

    PubMed Central

    Denegar, Craig R.; Perrin, David H.

    1992-01-01

    Athletic trainers have a variety of therapeutic agents at their disposal to treat musculoskeletal pain, but little objective evidence exists of the efficacy of the modalities they use. In this study, delayed onset muscle soreness (DOMS) served as a model for musculoskeletal injury in order to: (1) compare the changes in perceived pain, elbow extension range of motion, and strength loss in subjects experiencing DOMS in the elbow flexor muscle group following a single treatment with either transcutaneous electrical nerve stimulation (TENS), cold, a combination of TENS and cold, sham TENS, or 20 minutes of rest; (2) compare the effects of combining static stretching with these treatments; and (3) determine if decreased pain is accompanied by a restoration of strength. DOMS was induced in the non-dominant elbow flexor muscle group in 40 females (age = 22.0 ± 4.3 yr) with repeated eccentric contractions. Forty-eight hours following exercise, all subjects presented with pain, decreased elbow extension range of motion, and decreased strength consistent with DOMS. Subjects were randomly assigned to 20-minute treatments followed by static stretching. Cold, TENS, and the combined treatment resulted in significant decreases in perceived pain. Treatments with cold resulted in a significant increase in elbow extension range of motion. Static stretching also significantly reduced perceived pain. Only small, nonsignificant changes in muscle strength were observed following treatment or stretching, regardless of the treatment group. These results suggest that the muscle weakness associated with DOMS is not the result of inhibition caused by pain. The results suggest that these modalities are effective in treating the pain and muscle spasm associated with DOMS, and that decreased pain may not be an accurate indicator of the recovery of muscle strength. PMID:16558162

  18. Age-related decline in emotional prosody discrimination: acoustic correlates.

    PubMed

    Mitchell, Rachel L C; Kingston, Rachel A

    2014-01-01

    It is now accepted that older adults have difficulty recognizing prosodic emotion cues, but it is not clear at what processing stage this ability breaks down. We manipulated the acoustic characteristics of tones in pitch, amplitude, and duration discrimination tasks to assess whether impaired basic auditory perception coexisted with our previously demonstrated age-related prosodic emotion perception impairment. It was found that pitch perception was particularly impaired in older adults, and that it displayed the strongest correlation with prosodic emotion discrimination. We conclude that an important cause of age-related impairment in prosodic emotion comprehension exists at the fundamental sensory level of processing.

  19. Glutamatergic treatment strategies for age-related memory disorders.

    PubMed

    Müller, W E; Scheuer, K; Stoll, S

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7997073

  20. Future time perspective and awareness of age-related change: Examining their role in predicting psychological well-being.

    PubMed

    Brothers, Allyson; Gabrian, Martina; Wahl, Hans-Werner; Diehl, Manfred

    2016-09-01

    This study examined how 2 distinct facets of perceived personal lifetime-future time perspective (FTP) and awareness of age-related change (AARC)-are associated with another, and how they may interact to predict psychological well-being. To better understand associations among subjective perceptions of lifetime, aging, and well-being, we tested a series of models to investigate questions of directionality, indirect effects, and conditional processes among FTP, AARC-Gains, AARC-Losses, and psychological well-being. In all models, we tested for differences between middle-aged and older adults, and between adults from the United States and Germany. Analyses were conducted within a structural equation modeling framework on a cross-national, 2.5-year longitudinal sample of 537 community-residing adults (age 40-98 years). Awareness of age-related losses (AARC-Losses) at Time 1 predicted FTP at Time 2, but FTP did not predict AARC-Gains or AARC-Losses. Furthermore, future time perspective mediated the association between AARC-Losses and well-being. Moderation analyses revealed a buffering effect of awareness of age-related gains (AARC-Gains) in which perceptions of more age-related gains diminished the negative effect of a limited future time perspective on well-being. Effects were robust across age groups and countries. Taken together, these findings suggest that perceived age-related loss experiences may sensitize individuals to perceive a more limited future lifetime which may then lead to lower psychological well-being. In contrast, perceived age-related gains may function as a resource to preserve psychological well-being, in particular when time is perceived as running out. (PsycINFO Database Record

  1. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure.

    PubMed

    Aagaard, P; Suetta, C; Caserotti, P; Magnusson, S P; Kjaer, M

    2010-02-01

    Aging is characterized by loss of spinal motor neurons (MNs) due to apoptosis, reduced insulin-like growth factor I signaling, elevated amounts of circulating cytokines, and increased cell oxidative stress. The age-related loss of spinal MNs is paralleled by a reduction in muscle fiber number and size (sarcopenia), resulting in impaired mechanical muscle performance that in turn leads to a reduced functional capacity during everyday tasks. Concurrently, maximum muscle strength, power, and rate of force development are decreased with aging, even in highly trained master athletes. The impairment in muscle mechanical function is accompanied and partly caused by an age-related loss in neuromuscular function that comprise changes in maximal MN firing frequency, agonist muscle activation, antagonist muscle coactivation, force steadiness, and spinal inhibitory circuitry. Strength training appears to elicit effective countermeasures in elderly individuals even at a very old age (>80 years) by evoking muscle hypertrophy along with substantial changes in neuromuscular function, respectively. Notably, the training-induced changes in muscle mass and nervous system function leads to an improved functional capacity during activities of daily living.

  2. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass.

    PubMed

    Rom, Oren; Reznick, Abraham Z

    2016-09-01

    The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored. PMID:26738803

  3. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens

    PubMed Central

    Luo, Wen; Lin, Shumao; Li, Guihuan; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    The sex-linked dwarf (SLD) chicken is an ideal model system for understanding growth hormone (GH)-action and growth hormone receptor (GHR) function because of its recessive mutation in the GHR gene. Skeletal muscle mass is reduced in the SLD chicken with a smaller muscle fiber diameter. Our previous study has presented the mRNA and miRNA expression profiles of the SLD chicken and normal chicken between embryo day 14 and seven weeks of age. However, the molecular mechanism of GHR-deficient induced muscle mass loss is still unclear, and the key molecules and pathways underlying the GHR-deficient induced muscle mass loss also remain to be illustrated. Here, by functional network analysis of the differentially expressed miRNAs and mRNAs between the SLD and normal chickens, we revealed that let-7b, miR-128 and the MAPK pathway might play key roles in the GHR-deficient induced muscle mass loss, and that the reduced cell division and growth are potential cellular processes during the SLD chicken skeletal muscle development. Additionally, we also found some genes and miRNAs involved in chicken skeletal muscle development, through the MAPK, PI3K-Akt, Wnt and Insulin signaling pathways. This study provides new insights into the molecular mechanism underlying muscle mass loss in the SLD chickens, and some regulatory networks that are crucial for chicken skeletal muscle development. PMID:26927061

  4. Thigh muscle volume in relation to age, sex and femur volume.

    PubMed

    Maden-Wilkinson, T M; McPhee, J S; Rittweger, J; Jones, D A; Degens, H

    2014-02-01

    Secular changes and intra-individual differences in body shape and size can confound cross-sectional studies of muscle ageing. Normalising muscle mass to height squared is often suggested as a solution for this. We hypothesised that normalisation of muscle volume to femur volume may be a better way of determining the extent of muscle lost with ageing (sarcopenia). Thigh and femur muscle volumes were measured from serial magnetic resonance imaging sections in 20 recreationally active young men (mean age 22.4 years), 25 older men (72.3 years), 18 young women (22.1 years) and 28 older women (72.0 years). There were no age-related differences in femur volume. The relationship between thigh muscle volume and femur volume (R (2) = 0.76; exponent of 1.12; P < 0.01) was stronger than that with height (R (2) = 0.49; exponent of 3.86; P < 0.01) in young participants. For young subjects, the mean muscle/bone ratios were 16.0 and 14.6 for men and women, respectively. For older men and women, the mean ratios were 11.6 and 11.5, respectively. The Z score for the thigh muscle/bone volume ratio relative to young subjects was -2.2 ± 0.7 for older men and -1.4 ± 0.8 for older women. The extent of sarcopenia judged by the muscle/bone ratio was approximately twice that determined when normalising to height squared. These data suggest that the muscle/bone ratio captures the intra-individual loss of muscle mass during ageing, and that the age-related loss of muscle mass may be underestimated when normalised to height squared. The quadriceps seems relatively more affected by ageing than other thigh muscles. PMID:23934008

  5. PPARα agonist, fenofibrate, ameliorates age-related renal injury.

    PubMed

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Kim, Hyung Wook; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-08-01

    The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney. PMID:27130813

  6. [Impact of thymic function in age-related immune deterioration].

    PubMed

    Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles

    2013-01-01

    Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline.

  7. Age-Related Differences in Idiom Production in Adulthood

    ERIC Educational Resources Information Center

    Conner, Peggy S.; Hyun, Jungmoon; O'Connor Wells, Barbara; Anema, Inge; Goral, Mira; Monereau-Merry, Marie-Michelle; Rubino, Daniel; Kuckuk, Raija; Obler, Loraine K.

    2011-01-01

    To investigate whether idiom production was vulnerable to age-related difficulties, we asked 40 younger (ages 18-30) and 40 older healthy adults (ages 60-85) to produce idiomatic expressions in a story-completion task. Younger adults produced significantly more correct idiom responses (73%) than did older adults (60%). When older adults generated…

  8. Age-Related Factors in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Twyford, Charles William

    The convergence of several lines of psycholinguistic and sociolinguistic research suggests possible explanations for age-related influences on language acquisition. These factors, which include cognitive development, sociocultural context, affective factors, and language input, can be helpful to language educators. By being alert to the cognitive…

  9. A Context for Teaching Aging-Related Public Policy.

    ERIC Educational Resources Information Center

    Brown, David K.

    1999-01-01

    Describes two points of view regarding age-related public programs (Medicaid, Medicare, Social Security): that of devolutionists who would curtail them and safety netters who maintain the government's role is indispensable. Uses Relative Deprivation theory as a framework for teaching public policy about aging. (SK)

  10. Age-Related Differences in the Production of Textual Descriptions

    ERIC Educational Resources Information Center

    Marini, Andrea; Boewe, Anke; Caltagirone, Carlo; Carlomagno, Sergio

    2005-01-01

    Narratives produced by 69 healthy Italian adults were analyzed for age-related changes of microlinguistic, macrolinguistic and informative aspects. The participants were divided into five age groups (20-24, 25-39, 40-59, 60-74, 75-84). One single-picture stimulus and two cartoon sequences were used to elicit three stories per subject. Age-related…

  11. The Experience of Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Wong, Elaine Y. H.; Guymer, Robyn H.; Hassell, Jennifer B.; Keeffe, Jill E.

    2004-01-01

    This qualitative article describes the impact of age-related macular degeneration (ARMD) among 15 participants: how a person makes sense of ARMD, the effect of ARMD on the person's quality of life, the psychological disturbances associated with the limitations of ARMD, and the influence of ARMD on social interactions. Such in-depth appreciation of…

  12. Nutritional influences on epigenetics and age-related disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  13. Age-Related Differences in Moral Identity across Adulthood

    ERIC Educational Resources Information Center

    Krettenauer, Tobias; Murua, Lourdes Andrea; Jia, Fanli

    2016-01-01

    In this study, age-related differences in adults' moral identity were investigated. Moral identity was conceptualized a context-dependent self-structure that becomes differentiated and (re)integrated in the course of development and that involves a broad range of value-orientations. Based on a cross-sectional sample of 252 participants aged 14 to…

  14. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  15. Nutritional modulation of age-related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated wi...

  16. Age-Related Health Stereotypes and Illusory Correlation

    ERIC Educational Resources Information Center

    Madey, Scott F.; Chasteen, Alison L.

    2004-01-01

    This experiment investigated how age-related health stereotypes affect people's judgments of younger and older patients' medical compliance. Previous research has shown that stereotypes of young adults include healthy components, but stereotypes of older adults include both healthy and unhealthy components (Hummert, 1990). We predicted that…

  17. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions.

    PubMed

    Delplace, Vianney; Payne, Samantha; Shoichet, Molly

    2015-12-10

    Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery.

  18. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody

    PubMed Central

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-01-01

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963

  19. Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution

    PubMed Central

    Sun, Liguang; Guo, Jianfei; Brown, Robert; Amagai, Takashi; Zhao, Yong; Su, Dong-Ming

    2010-01-01

    SUMMARY Age-related thymic involution may be triggered by gene expression changes in lymphohematopoietic and/or non-hematopoietic thymic epithelial cells (TECs). The role of epithelial cell-autonomous gene FoxN1 may be involved in the process, but it is still a puzzle due to shortage of evidence from gradual loss-of-function and exogenous gain-of-function studies. Using our recently generated loxP-floxed-FoxN1(fx) mouse carrying the ubiquitous CreERT (uCreERT) transgene with a low dose of spontaneous activation, which causes gradual FoxN1 deletion with age, we found that the uCreERT-fx/fx mice showed an accelerated age-related thymic involution due to progressive loss of FoxN1+ TECs. The thymic aging phenotypes were clearly observable as early as at 3–6 months of age, resembling the naturally aged (18–22-month-old) murine thymus. By intrathymically supplying aged wild-type mice with exogenous FoxN1-cDNA, thymic involution and defective peripheral CD4+ T-cell function could be partially rescued. The results support the notion that decline of a single epithelial cell-autonomous gene FoxN1 levels with age causes primary deterioration in TECs followed by impairment of the total postnatal thymic microenvironment, and potentially triggers age-related thymic involution in mice. PMID:20156205

  20. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution.

    PubMed

    Youm, Yun-Hee; Horvath, Tamas L; Mangelsdorf, David J; Kliewer, Steven A; Dixit, Vishwa Deep

    2016-01-26

    Age-related thymic degeneration is associated with loss of naïve T cells, restriction of peripheral T-cell diversity, and reduced healthspan due to lower immune competence. The mechanistic basis of age-related thymic demise is unclear, but prior evidence suggests that caloric restriction (CR) can slow thymic aging by maintaining thymic epithelial cell integrity and reducing the generation of intrathymic lipid. Here we show that the prolongevity ketogenic hormone fibroblast growth factor 21 (FGF21), a member of the endocrine FGF subfamily, is expressed in thymic stromal cells along with FGF receptors and its obligate coreceptor, βKlotho. We found that FGF21 expression in thymus declines with age and is induced by CR. Genetic gain of FGF21 function in mice protects against age-related thymic involution with an increase in earliest thymocyte progenitors and cortical thymic epithelial cells. Importantly, FGF21 overexpression reduced intrathymic lipid, increased perithymic brown adipose tissue, and elevated thymic T-cell export and naïve T-cell frequencies in old mice. Conversely, loss of FGF21 function in middle-aged mice accelerated thymic aging, increased lethality, and delayed T-cell reconstitution postirradiation and hematopoietic stem cell transplantation (HSCT). Collectively, FGF21 integrates metabolic and immune systems to prevent thymic injury and may aid in the reestablishment of a diverse T-cell repertoire in cancer patients following HSCT. PMID:26755598

  1. Muscle Changes in Aging

    PubMed Central

    Siparsky, Patrick N.; Kirkendall, Donald T.; Garrett, William E.

    2014-01-01

    Muscle physiology in the aging athlete is complex. Sarcopenia, the age-related decrease in lean muscle mass, can alter activity level and affect quality of life. This review addresses the microscopic and macroscopic changes in muscle with age, recognizes contributing factors including nutrition and changes in hormone levels, and identifies potential pharmacologic agents in clinical trial that may aid in the battle of this complex, costly, and disabling problem. Level of Evidence: Level 5. PMID:24427440

  2. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  3. Age-Related Changes in 1/f Neural Electrophysiological Noise.

    PubMed

    Voytek, Bradley; Kramer, Mark A; Case, John; Lepage, Kyle Q; Tempesta, Zechari R; Knight, Robert T; Gazzaley, Adam

    2015-09-23

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15-53 years) and scalp EEG data from healthy younger (20-30 years) and older (60-70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <-1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. Significance statement: Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise-induced deficits in

  4. Physical training and weight loss in dogs lead to transcriptional changes in genes involved in the glucose-transport pathway in muscle and adipose tissues.

    PubMed

    Herrera Uribe, Juber; Vitger, Anne D; Ritz, Christian; Fredholm, Merete; Bjørnvad, Charlotte R; Cirera, Susanna

    2016-02-01

    Obesity is a worldwide problem in humans and domestic animals. Interventions, including a combination of dietary management and exercise, have proven to be effective for inducing weight loss in humans. In companion animals, the role of exercise in the management of obesity has received relatively little attention. The aim of the present study was to investigate changes in the transcriptome of key energy metabolism genes in muscle and adipose tissues in response to diet-induced weight loss alone, or combined with exercise in dogs. Overweight pet dogs were enrolled on a weight loss programme, based on calorie restriction and physical training (FD group, n = 5) or calorie restriction alone (DO group, n = 7). mRNA expression of 12 genes and six microRNAs were investigated using quantitative real-time PCR (qPCR). In the FD group, FOXO1 and RAC1 were expressed at lower levels in adipose tissue, whereas ESRRA and AKT2 were more highly expressed in muscle, when compared with the DO group. Comparing expression before and after the intervention, in the DO group, nine genes and three microRNAs showed significant altered expression in adipose tissue (PPARG, ADIPOQ and FOXO1; P < 0.001) and seven genes and two microRNAs were significantly downregulated (NRF2, RAC1, ESRRA, AKT2, PGC1a and mir-23; P < 0.001) in muscle. Thus, calorie restriction causes regulation of several metabolic genes in both tissues. The mild exercise, incorporated into this study design, was sufficient to elicit transcriptional changes in adipose and muscle tissues, suggesting a positive effect on glucose metabolism. The study findings support inclusion of exercise in management of canine obesity.

  5. Physical training and weight loss in dogs lead to transcriptional changes in genes involved in the glucose-transport pathway in muscle and adipose tissues.

    PubMed

    Herrera Uribe, Juber; Vitger, Anne D; Ritz, Christian; Fredholm, Merete; Bjørnvad, Charlotte R; Cirera, Susanna

    2016-02-01

    Obesity is a worldwide problem in humans and domestic animals. Interventions, including a combination of dietary management and exercise, have proven to be effective for inducing weight loss in humans. In companion animals, the role of exercise in the management of obesity has received relatively little attention. The aim of the present study was to investigate changes in the transcriptome of key energy metabolism genes in muscle and adipose tissues in response to diet-induced weight loss alone, or combined with exercise in dogs. Overweight pet dogs were enrolled on a weight loss programme, based on calorie restriction and physical training (FD group, n = 5) or calorie restriction alone (DO group, n = 7). mRNA expression of 12 genes and six microRNAs were investigated using quantitative real-time PCR (qPCR). In the FD group, FOXO1 and RAC1 were expressed at lower levels in adipose tissue, whereas ESRRA and AKT2 were more highly expressed in muscle, when compared with the DO group. Comparing expression before and after the intervention, in the DO group, nine genes and three microRNAs showed significant altered expression in adipose tissue (PPARG, ADIPOQ and FOXO1; P < 0.001) and seven genes and two microRNAs were significantly downregulated (NRF2, RAC1, ESRRA, AKT2, PGC1a and mir-23; P < 0.001) in muscle. Thus, calorie restriction causes regulation of several metabolic genes in both tissues. The mild exercise, incorporated into this study design, was sufficient to elicit transcriptional changes in adipose and muscle tissues, suggesting a positive effect on glucose metabolism. The study findings support inclusion of exercise in management of canine obesity. PMID:26701817

  6. Influence of body mass loss and myoglobinuria on the development of muscle fatigue after a marathon in a warm environment.

    PubMed

    Del Coso, Juan; Salinero, Juan José; Abián-Vicen, Javier; González-Millán, Cristina; Garde, Sergio; Vega, Pablo; Pérez-González, Benito

    2013-03-01

    The aim of this study was to determine the changes in body mass and myoglobinuria concentration in recreational runners during a marathon in a warm environment, and the relation of these changes to muscle fatigue. We recruited 138 amateur runners (114 men and 24 women) for the study. Before the race, leg muscle power output was measured during a countermovement jump on a force platform, body weight was measured, and a urine sample was obtained. Within 3 min of race completion (28 °C; 46% relative humidity), the runners repeated the countermovement jump, body weight was measured again, and a second urine sample was obtained. Myoglobin concentration was determined in the urine samples. After the race, mean body mass reduction was 2.2% ± 1.2%. Fifty-five runners (40% of the total) reduced their body mass by less than 2%, and 10 runners (7.2%) reduced their body mass by more than 4%. Only 3 runners increased their body mass after the marathon. Mean leg muscle power reduction was 16% ± 10%. Twenty-four runners reduced their muscle power by over 30%. No myoglobin was detected in the prerace urine specimens, whereas postrace urinary myoglobin concentration increased to 3.5 ± 9.5 μg·mL(-1) (p < 0.05). Muscle power change after the marathon significantly correlated with postrace urine myoglobin concentration (r = -0.55; p < 0.001), but not with body mass change (r = -0.08; p = 0.35). After a marathon in a warm environment, interindividual variability in body mass change was high, but only 7% of the runners reduced their body mass by more than 4%. The correlation between myoglobinuria and muscle power change suggests that muscle fatigue is associated with muscle breakdown.

  7. Reduced L-type Ca2+ current and compromised excitability induce loss of skeletal muscle function during acute cooling in locust.

    PubMed

    Findsen, Anders; Overgaard, Johannes; Pedersen, Thomas Holm

    2016-08-01

    Low temperature causes most insects to enter a state of neuromuscular paralysis, termed chill coma. The susceptibility of insect species to chill coma is tightly correlated to their distribution limits and for this reason it is important to understand the cellular processes that underlie chill coma. It is known that muscle function is markedly depressed at low temperature and this suggests that chill coma is partly caused by impairment in the muscle per se. To find the cellular mechanism(s) underlying muscle dysfunction at low temperature, we examined the effect of low temperature (5°C) on several events in excitation-contraction coupling in the migratory locust (Locusta migratoria). Intracellular membrane potential recordings during single nerve stimulations showed that 70% of fibers at 20°C produced an action potential (AP), while only 55% of fibers were able to fire an AP at 5°C. Reduced excitability at low temperature was caused by an ∼80% drop in L-type Ca(2+) current and a depolarizing shift in its activation of around 20 mV, which means that a larger endplate potential would be needed to activate the muscle AP at low temperature. In accordance, we showed that intracellular Ca(2+) transients were largely absent at low temperature following nerve stimulation. In contrast, maximum contractile force was unaffected by low temperature in chemically skinned muscle bundles, which demonstrates that the function of the contractile filaments is preserved at low temperature. These findings demonstrate that reduced L-type Ca(2+) current is likely to be the most important factor contributing to loss of muscle function at low temperature in locust. PMID:27247315

  8. Innervation and neuromuscular control in ageing skeletal muscle.

    PubMed

    Hepple, Russell T; Rice, Charles L

    2016-04-15

    Changes in the neuromuscular system affecting the ageing motor unit manifest structurally as a reduction in motor unit number secondary to motor neuron loss; fibre type grouping due to repeating cycles of denervation-reinnervation; and instability of the neuromuscular junction that may be due to either or both of a gradual perturbation in postsynaptic signalling mechanisms necessary for maintenance of the endplate acetylcholine receptor clusters or a sudden process involving motor neuron death or traumatic injury to the muscle fibre. Functionally, these changes manifest as a reduction in strength and coordination that precedes a loss in muscle mass and contributes to impairments in fatigue. Regular muscle activation in postural muscles or through habitual physical activity can attenuate some of these structural and functional changes up to a point along the ageing continuum. On the other hand, regular muscle activation in advanced age (>75 years) loses its efficacy, and at least in rodents may exacerbate age-related motor neuron death. Transgenic mouse studies aimed at identifying potential mechanisms of motor unit disruptions in ageing muscle are not conclusive due to many different mechanisms converging on similar motor unit alterations, many of which phenocopy ageing muscle. Longitudinal studies of ageing models and humans will help clarify the cause and effect relationships and thus, identify relevant therapeutic targets to better preserve muscle function across the lifespan. PMID:26437581

  9. Classification of wet aged related macular degeneration using optical coherence tomographic images

    NASA Astrophysics Data System (ADS)

    Haq, Anam; Mir, Fouwad Jamil; Yasin, Ubaid Ullah; Khan, Shoab A.

    2013-12-01

    Wet Age related macular degeneration (AMD) is a type of age related macular degeneration. In order to detect Wet AMD we look for Pigment Epithelium detachment (PED) and fluid filled region caused by choroidal neovascularization (CNV). This form of AMD can cause vision loss if not treated in time. In this article we have proposed an automated system for detection of Wet AMD in Optical coherence tomographic (OCT) images. The proposed system extracts PED and CNV from OCT images using segmentation and morphological operations and then detailed feature set are extracted. These features are then passed on to the classifier for classification. Finally performance measures like accuracy, sensitivity and specificity are calculated and the classifier delivering the maximum performance is selected as a comparison measure. Our system gives higher performance using SVM as compared to other methods.

  10. Dysregulated TGF-β Production Underlies the Age-Related Vulnerability to Chikungunya Virus

    PubMed Central

    Uhrlaub, Jennifer L.; Pulko, Vesna; DeFilippis, Victor R.; Streblow, Daniel N.; Coleman, Gary D.; Lindo, John F.; Vickers, Ivan; Anzinger, Joshua J.; Nikolich-Žugich, Janko

    2016-01-01

    Chikungunya virus (CHIKV) is a re-emerging global pathogen with pandemic potential, which causes fever, rash and debilitating arthralgia. Older adults over 65 years are particularly susceptible to severe and chronic CHIKV disease (CHIKVD), accounting for >90% of all CHIKV-related deaths. There are currently no approved vaccines or antiviral treatments available to limit chronic CHIKVD. Here we show that in old mice excessive, dysregulated TGFβ production during acute infection leads to a reduced immune response and subsequent chronic disease. Humans suffering from CHIKV infection also exhibited high TGFβ levels and a pronounced age-related defect in neutralizing anti-CHIKV antibody production. In vivo reduction of TGFβ levels minimized acute joint swelling, restored neutralizing antibody production and diminished chronic joint pathology in old mice. This study identifies increased and dysregulated TGFβ secretion as one key mechanism contributing to the age-related loss of protective anti-CHIKV-immunity leading to chronic CHIKVD. PMID:27736984

  11. Loss of distal axons and sensory Merkel cells and features indicative of muscle denervation in hindlimbs of P0-deficient mice.

    PubMed

    Frei, R; Mötzing, S; Kinkelin, I; Schachner, M; Koltzenburg, M; Martini, R

    1999-07-15

    Mice lacking the major Schwann cell myelin component P0 show a severe dysmyelination with pathological features reminiscent of the Déjérine-Sottas syndrome in humans. Previous morphological and electrophysiological studies on these mice did not only demonstrate a compromised myelination and myelin maintenance, but were suggestive of an impairment of axons as well. Here, we studied the axonal pathology in P0-deficient mice by quantitative electron microscopy. In addition, we investigated epidermal receptor end organs by immunocytochemistry and muscle pathology by histochemistry. In proximal sections of facial and femoral nerves, axon calibers were significantly reduced, whereas the number of myelin-competent axons was not diminished in 5- and 17-month-old P0-deficient mice. However, in distal branches of the femoral and sciatic nerve (digital nerves innervating the skin of the first toe) the numbers of myelin-competent axons were reduced by 70% in 6-month-old P0-deficient mice. Immunolabeling of foot pads revealed a corresponding loss of Merkel cells by 75%, suggesting that survival of these cells is dependent on the presence or maintenance of their innervating myelinated axons. In addition, quadriceps and gastrocnemius muscles showed pathological features indicative of denervation and axonal sprouting. These findings demonstrate that loss of an important myelin component can initiate degenerative mechanisms not only in the Schwann cell but also in the distal portions of myelinated axons, leading to the degeneration of specialized receptor end organs and impairment of muscle innervation. PMID:10407042

  12. Age-related changes of auditory brainstem responses in nonhuman primates.

    PubMed

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R; Recanzone, Gregg H

    2015-07-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  13. Age-related changes of auditory brainstem responses in nonhuman primates

    PubMed Central

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R.

    2015-01-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  14. Age-Related Changes of Myelin Basic Protein in Mouse and Human Auditory Nerve

    PubMed Central

    Xing, Yazhi; Samuvel, Devadoss J.; Stevens, Shawn M.; Dubno, Judy R.; Schulte, Bradley A.; Lang, Hainan

    2012-01-01

    Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38–46 years (middle-aged group) and 6 adults aged 63–91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP+ auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis. PMID:22496821

  15. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development.

    PubMed

    Brunt, Lucy H; Norton, Joanna L; Bright, Jen A; Rayfield, Emily J; Hammond, Chrissy L

    2015-09-18

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. PMID:26253758

  16. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development

    PubMed Central

    Brunt, Lucy H.; Norton, Joanna L.; Bright, Jen A.; Rayfield, Emily J.; Hammond, Chrissy L.

    2015-01-01

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. PMID:26253758

  17. Stem cell transplantation improves aging-related diseases

    PubMed Central

    Ikehara, Susumu; Li, Ming

    2014-01-01

    Aging is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. The number of patients with age-associated diseases such as type 2 diabetes mellitus (T2DM), osteoporosis, Alzheimer's disease (AD), Parkinson's disease, atherosclerosis, and cancer has increased recently. Aging-related diseases are related to a deficiency of the immune system, which results from an aged thymus and bone marrow cells. Intra bone marrow-bone marrow transplantation (IBM-BMT) is a useful method to treat intractable diseases. This review summarizes findings that IBM-BMT can improve and treat aging-related diseases, including T2DM, osteoporosis and AD, in animal models. PMID:25364723

  18. Veterans have less age-related cognitive decline.

    PubMed

    McLay, R N; Lyketsos, C G

    2000-08-01

    Military service involves exposure to a number of stresses, both psychological and physical. On the other hand, military personnel generally maintain excellent fitness, and veterans have increased access to education and health care. The overall effect on age-related cognitive decline, whether for good or ill, of having served in the armed forces has not been investigated previously. In this study, we examined a diverse population of 208 veterans and 1,216 civilians followed as part of the Epidemiologic Catchment Area Study in 1981, 1982, and 1993 to 1996. We examined change in Mini-Mental State Examination (MMSE) score after a median of 11.5 years. Veterans were found to have significantly less decrease in MMSE scores at follow-up even after sex, race, and education were taken into account. These results suggest an overall positive effect of military service on the rate of age-related cognitive decline. PMID:10957857

  19. The suprachiasmatic nucleus: age-related decline in biological rhythms.

    PubMed

    Nakamura, Takahiro J; Takasu, Nana N; Nakamura, Wataru

    2016-09-01

    Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging. Furthermore, we have previously observed age-related infertility in female mice, caused by a mismatch between environmental light-dark cycles and the intrinsic, internal biological clocks. In this review, we address regulatory mechanisms underlying circadian rhythms in mammals and summarize recent literature describing the effects of aging on the circadian system.

  20. Ageism, age relations, and garment industry work in Montreal.

    PubMed

    McMullin, J A; Marshall, V W

    2001-02-01

    This study examined the complexities of age relations at work. Garment workers believed that their fate was linked to ageism and that their work experience was discounted by management. Managers wanted to be rid of older workers because they commanded higher wages than younger workers. The issue was cost reduction, and age was implicated unintendedly. Still, managers seemed to use stereotypical images to discourage older workers and they did not organize work routines to facilitate the adaptation of them. Instead, they subcontracted the easy jobs, relying on the experience of the older employees for difficult work while not adapting the workplace. Theoretically, the authors argue that ageism and age discrimination can best be understood through a recognition of the importance of structured age relations and human agency.

  1. Smoking and Age-Related Macular Degeneration: Review and Update

    PubMed Central

    Velilla, Sara; García-Medina, José Javier; García-Layana, Alfredo; Pons-Vázquez, Sheila; Pinazo-Durán, M. Dolores; Gómez-Ulla, Francisco; Arévalo, J. Fernando; Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto

    2013-01-01

    Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health. PMID:24368940

  2. Age-related changes in ultra-triathlon performances

    PubMed Central

    2012-01-01

    Background The age-related decline in performance has been investigated in swimmers, runners and triathletes. No study has investigated the age-related performance decline in ultra-triathletes. The purpose of this study was to analyse the age-related declines in swimming, cycling, running and overall race time for both Triple Iron ultra-triathlon (11.4-km swimming, 540-km cycling and 126.6-km running) and Deca Iron ultra-triathlon (38-km swimming, 1,800-km cycling and 420-km running). Methods The age and performances of 423 male Triple Iron ultra-triathletes and 119 male Deca Iron ultra-triathletes were analysed from 1992 to 2010 using regression analyses and ANOVA. Results The mean age of the finishers was significantly higher for Deca Iron ultra-triathletes (41.3 ± 3.1 years) compared to a Triple Iron ultra-triathletes (38.5 ± 3.3 years) (P < 0.05). For both ultra-distances, the fastest overall race times were achieved between the ages of 25 and 44 years. Deca Iron ultra-triathletes achieved the same level of performance in swimming and cycling between 25 and 54 years of age. Conclusions The magnitudes of age-related declines in performance in the three disciplines of ultra-triathlon differ slightly between Triple and Deca Iron ultra-triathlon. Although the ages of Triple Iron ultra-triathletes were on average younger compared to Deca Iron ultra-triathletes, the fastest race times were achieved between 25 and 44 years for both distances. Further studies should investigate the motivation and training of ultra-triathletes to gain better insights in ultra-triathlon performance. PMID:23849327

  3. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-01

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip. PMID:27444019

  4. Later developments: molecular keys to age-related memory impairment.

    PubMed

    Barad, Mark

    2003-01-01

    Age-related memory impairment, a cognitive decline not clearly related to any gross pathology, is progressive and widespread in the population, although not universal. While the mechanisms of learning and memory remain incompletely understood, the study of their molecular mechanisms is already yielding promising approaches toward therapy for such "normal" declines in the efficiency of learning. This review presents the rationale and results for two such approaches. One approach, partial inhibition of the type IV cAMP specific phosphodiesterase, appears to act indirectly. Although little evidence supports an age-related decline in this system, considerable evidence indicates that this approach can facilitate the transition from short-term to long-term memory and thus counterbalance defects in long-term memory, which may be due to other causes. A second approach, inhibition of l-type voltage gated calcium channels (LVGCCs) may be a specific corrective for a molecular pathology of aging, as substantial evidence indicates that an ongoing increase occurs throughout the lifespan in the density of these channels in hippocampal pyramidal cells, with a concomitant reduction in cellular excitability. Because LVGCCs are also crucial to extinction, a paradigm of inhibitory learning, age-related memory impairment may be an unfortunate side effect of a developmental process necessary to the maturation of the ability to suppress inappropriate behavior, an interpretation consistent with the antagonistic pleiotropy theory of aging.

  5. Age related alterations of adrenoreceptor activity in erythrocyte membrane.

    PubMed

    Lomsadze, G; Khetsuriani, R; Arabuli, M; Intskirveli, N; Sanikidze, T

    2011-06-01

    The aim of the study was the investigation of age-related functional alterations of adrenoreceptors and the effect of agonist and antagonist drugs on age related adrenoreceptor activity in erythrocyte membrane. The impact of isopropanol and propanol on functional activity β- adrenergic receptors in red blood cell membrane were studied in 50 practically healthy men--volunteers. (I group--75-89 years old, II group--22-30 years old). The EPR signals S1 and S2 were registered in red blood cell membrane samples after incubation with isopropanol and propanol respectively. It was found that decreasing sensitivity (functional activity) of red blood cells membrane adrenoreceptors comes with aging (S1oldage-related hypertension, heart failure, type II diabetes and other diseases, The findings suggests that the erythrocyte could be a new therapeutic marker in the treatment different diseases.

  6. Telomere length variations in aging and age-related diseases.

    PubMed

    Rizvi, Saliha; Raza, Syed Tasleem; Mahdi, Farzana

    2014-01-01

    Telomeres are gene sequences present at chromosomal ends and are responsible for maintaining genome integrity. Telomere length is maximum at birth and decreases progressively with advancing age and thus is considered as a biomarker of chronological aging. This age associated decrease in the length of telomere is linked to various ageing associated diseases like diabetes, hypertension, Alzheimer's disease, cancer etc. and their associated complications. Telomere length is a result of combined effect of oxidative stress, inflammation and repeated cell replication on it, and thus forming an association between telomere length and chronological aging and related diseases. Thus, decrease in telomere length was found to be important in determining both, the variations in longevity and age-related diseases in an individual. Ongoing and progressive research in the field of telomere length dynamics has proved that aging and age-related diseases apart from having a synergistic effect on telomere length were also found to effect telomere length independently also. Here a short description about telomere length variations and its association with human aging and age-related diseases is reviewed.

  7. Adverse environmental conditions influence age-related innate immune responsiveness

    PubMed Central

    May, Linda; van den Biggelaar, Anita HJ; van Bodegom, David; Meij, Hans J; de Craen, Anton JM; Amankwa, Joseph; Frölich, Marijke; Kuningas, Maris; Westendorp, Rudi GJ

    2009-01-01

    Background- The innate immune system plays an important role in the recognition and induction of protective responses against infectious pathogens, whilst there is increasing evidence for a role in mediating chronic inflammatory diseases at older age. Despite indications that environmental conditions can influence the senescence process of the adaptive immune system, it is not known whether the same holds true for the innate immune system. Therefore we studied whether age-related innate immune responses are similar or differ between populations living under very diverse environmental conditions. Methods- We compared cross-sectional age-related changes in ex vivo innate cytokine responses in a population living under affluent conditions in the Netherlands (age 20–68 years old, n = 304) and a population living under adverse environmental conditions in Ghana (age 23–95 years old, n = 562). Results- We found a significant decrease in LPS-induced Interleukin (IL)-10 and Tumor Necrosis Factor (TNF) production with age in the Dutch population. In Ghana a similar age-related decline in IL-10 responses to LPS, as well as to zymosan, or LPS plus zymosan, was observed. TNF production, however, did not show an age-associated decline, but increased significantly with age in response to co-stimulation with LPS and zymosan. Conclusion- We conclude that the decline in innate cytokine responses is an intrinsic ageing phenomenon, while pathogen exposure and/or selective survival drive pro-inflammatory responses under adverse living conditions. PMID:19480711

  8. Therapies for sarcopenia and regeneration of old skeletal muscles

    PubMed Central

    Grounds, Miranda D

    2014-01-01

    Age related loss of skeletal muscle mass and function (sarcopenia) reduces independence and the quality of life for individuals, and leads to falls and fractures with escalating health costs for the rapidly aging human population. Thus there is much interest in developing interventions to reduce sarcopenia. One area that has attracted recent attention is the proposed use of myogenic stem cells to improve regeneration of old muscles. This mini-review challenges the fundamental need for myogenic stem cell therapy for sarcopenia. It presents evidence that demonstrates the excellent capacity of myogenic stem cells from very old rodent and human muscles to form new muscles after experimental myofiber necrosis. The many factors required for successful muscle regeneration are considered with a strong focus on integration of components of old muscle bioarchitecture. The fundamental role of satellite cells in homeostasis of normal aging muscles and the incidence of endogenous regeneration in old muscles is questioned. These issues, combined with problems for clinical myogenic stem cell therapies for severe muscle diseases, raise fundamental concerns about the justification for myogenic stem cell therapy for sarcopenia. PMID:25101758

  9. Development and Pilot Evaluation of a Psychosocial Intervention Program for Patients with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Birk, Tanja; Hickl, Susanne; Wahl, Hans-Werner; Miller, Daniel; Kammerer, Annette; Holz, Frank; Becker, Stefanie; Volcker, Hans E.

    2004-01-01

    Purpose: The psychosocial needs of patients suffering from severe visual loss associated with advanced age-related macular degeneration (ARMD) are generally ignored in the clinical routine. The aim of this study was to develop and evaluate a psychosocial intervention program for ARMD patients. This intervention program was based on six modules…

  10. Psychosocial Adaptation to Visual Impairment and Its Relationship to Depressive Affect in Older Adults with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Tolman, Jennifer; Hill, Robert D.; Kleinschmidt, Julia J.; Gregg, Charles H.

    2005-01-01

    Purpose: In this study we examined psychosocial adaptation to vision loss and its relationship to depressive symptomatology in legally blind older adults with age-related macular degeneration (ARMD). Design and Methods: The 144 study participants were outpatients of a large regional vision clinic that specializes in the diagnosis and treatment of…

  11. Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: role of p38 MAPK

    PubMed Central

    Archuleta, Tara L.; Lemieux, Andrew M.; Saengsirisuwan, Vitoon; Teachey, Mary K.; Lindborg, Katherine A.; Kim, John S.; Henriksen, Erik J.

    2009-01-01

    Oxidative stress is characterized as the imbalance between the cellular production of oxidants and cellular antioxidant defenses and contributes to the development of numerous cardiovascular and metabolic disorders, including hypertension and insulin resistance. The effects of prolonged oxidant stress in vitro on the insulin-dependent glucose transport system in mammalian skeletal muscle are not well understood. The current study examined the in vitro effects of low-level oxidant stress (60-90 μM, H2O2) for 4 hr on insulin-stimulated (5 mU/ml) glucose transport activity (2-deoxyglucose uptake) and on protein expression of critical insulin signaling factors (insulin receptor (IR), IR substrates IRS-1 and IRS-2, phosphatidylinositol-3-kinase (PI3-kinase), Akt, and glycogen synthase kinase-3 (GSK-3)) in isolated soleus muscle of lean Zucker rats. This oxidant stress exposure caused significant (50%, p<0.05) decreases in insulin-stimulated glucose transport activity that was associated with selective loss of IRS-1 (59%) and IRS-2 (33%) proteins, increased (64%) relative IRS-1 Ser307 phosphorylation, and decreased phosphorylation of Akt Ser473 (50%) and GSK-3ß Ser9 (43%). Moreover, enhanced (37%) phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was observed. Selective inhibition of p38 MAPK (10 μM A304000) prevented a significant portion (29%) of the oxidant stress-induced loss of IRS-1 (but not IRS-2) protein and allowed partial recovery of the impaired insulin-stimulated glucose transport activity. These results indicate that in vitro oxidative stress in mammalian skeletal muscle leads to substantial insulin resistance of distal insulin signaling and glucose transport activity, associated with a selective loss of IRS-1 protein, in part due to a p38 MAPK-dependent mechanism. PMID:19703555

  12. Age-related differences in associative memory: the role of sensory decline.

    PubMed

    Naveh-Benjamin, Moshe; Kilb, Angela

    2014-09-01

    Numerous studies show age-related decline in episodic memory. One of the explanations for this decline points to older adults' deficit in associative memory, reflecting the difficulties they have in binding features of episodes into cohesive entities and retrieving these bindings. Here, we evaluate the degree to which this deficit may be mediated by sensory loss associated with increased age. In 2 experiments, young adults studied word pairs that were degraded at encoding either visually (Experiment 1) or auditorily (Experiment 2). We then tested their memory for both the component words and the associations with recognition tests. For both experiments, young adults under nondegraded conditions showed an advantage in associative over item memory, relative to a group of older adults. In contrast, under perceptually degraded conditions younger adults performed similarly to the older adults who were tested under nondegraded conditions. More specifically, under perceptual degradation, young adults' associative memory declined and their component memory improved somewhat, resulting in an associative deficit, similar to that shown by older adults. This evidence is consistent with a sensory acuity decline in old age being one mediator in the associative deficit of older adults. These results broaden our understanding of age-related memory changes and how sensory and cognitive processes interact to shape these changes. The theoretical implications of these results are discussed with respect to mechanisms underlying age-related changes in episodic memory and resource tradeoffs in the encoding of component and associative memory.

  13. The Marmoset as a Model of Aging and Age-Related Diseases

    PubMed Central

    Tardif, Suzette D.; Mansfield, Keith G.; Ratnam, Rama; Ross, Corinna N.; Ziegler, Toni E.

    2013-01-01

    The common marmoset (Callithrix jacchus) is poised to become a standard nonhuman primate aging model. With an average lifespan of 5 to 7 years and a maximum lifespan of 16.5 years, marmosets are the shortest-lived anthropoid primates. They display age-related changes in pathologies that mirror those seen in humans, such as cancer, amyloidosis, diabetes, and chronic renal disease. They also display predictable age-related differences in lean mass, calf circumference, circulating albumin, hemoglobin, and hematocrit. Features of spontaneous sensory and neurodegenerative change—for example, reduced neurogenesis, β-amyloid deposition in the cerebral cortex, loss of calbindin D28k binding, and evidence of presbycusis—appear between the ages of 7 and 10 years. Variation among colonies in the age at which neurodegenerative change occurs suggests the interesting possibility that marmosets could be specifically managed to produce earlier versus later occurrence of degenerative conditions associated with differing rates of damage accumulation. In addition to the established value of the marmoset as a model of age-related neurodegenerative change, this primate can serve as a model of the integrated effects of aging and obesity on metabolic dysfunction, as it displays evidence of such dysfunction associated with high body weight as early as 6 to 8 years of age. PMID:21411858

  14. On the definition of age-related norms for visual function testing.

    PubMed

    Johnson, M A; Choy, D

    1987-04-15

    Cross-sectional psychophysical and electrophysiologic studies of aging indicate that visual function declines only slightly or not at all until age 50-60, at which time the decline in visual function rapidly accelerates. This accelerated loss of function may reflect an increased rate of natural cellular degradation, or it may reflect an increased proportion of subclinical pathology in the presumed normal older population. This paper provides a critical review of the changes in visual function that occur with age. The results of this review have implications for both the definition of age-matched control groups and for early detection of age-related pathology.

  15. The eye lens: age-related trends and individual variations in refractive index and shape parameters

    PubMed Central

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-01-01

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

  16. The eye lens: age-related trends and individual variations in refractive index and shape parameters.

    PubMed

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-10-13

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.

  17. Age-related changes in the thickness of cortical zones in humans.

    PubMed

    McGinnis, Scott M; Brickhouse, Michael; Pascual, Belen; Dickerson, Bradford C

    2011-10-01

    Structural neuroimaging studies have demonstrated that all regions of the cortex are not affected equally by aging, with frontal regions appearing especially susceptible to atrophy. The "last in, first out" hypothesis posits that aging is, in a sense, the inverse of development: late-maturing regions of the brain are preferentially vulnerable to age-related loss of structural integrity. We tested this hypothesis by analyzing age-related changes in regional cortical thickness via three methods: (1) an exploratory linear regression of cortical thickness and age across the entire cortical mantle (2) an analysis of age-related differences in the thickness of zones of cortex defined by functional/cytoarchitectural affiliation (including primary sensory/motor, unimodal association, heteromodal association, and paralimbic zones), and (3) an analysis of age-related differences in the thickness of regions of cortex defined by surface area expansion in the period between birth and early adulthood. Subjects were grouped as young (aged 18-29, n = 138), middle-aged (aged 30-59, n = 80), young-old (aged 60-79, n = 60), and old-old (aged 80+, n = 38). Thinning of the cortex between young and middle-aged adults was greatest in heteromodal association cortex and regions of high postnatal surface area expansion. In contrast, thinning in old-old age was greatest in primary sensory/motor cortices and regions of low postnatal surface area expansion. In sum, these results lead us to propose a sequential "developmental-sensory" model of aging, in which developmental factors influence cortical vulnerability relatively early in the aging process, whereas later-in more advanced stages of aging-factors specific to primary sensory and motor cortices confer vulnerability. This model offers explicitly testable hypotheses and suggests the possibility that normal aging may potentially allow for multiple opportunities for intervention to promote the structural integrity of the cerebral

  18. The eye lens: age-related trends and individual variations in refractive index and shape parameters.

    PubMed

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-10-13

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

  19. Age-related degradation of Westinghouse 480-volt circuit breakers

    SciTech Connect

    Subudhi, M.; Shier, W.; MacDougall, E. )

    1990-07-01

    An aging assessment of Westinghouse DS-series low-voltage air circuit breakers was performed as part of the Nuclear Plant Aging Research (NPAR) program. The objectives of this study are to characterize age-related degradation within the breaker assembly and to identify maintenance practices to mitigate their effect. Since this study has been promulgated by the failures of the reactor trip breakers at the McGuire Nuclear Station in July 1987, results relating to the welds in the breaker pole lever welds are also discussed. The design and operation of DS-206 and DS-416 breakers were reviewed. Failure data from various national data bases were analyzed to identify the predominant failure modes, causes, and mechanisms. Additional operating experiences from one nuclear station and two industrial breaker-service companies were obtained to develop aging trends of various subcomponents. The responses of the utilities to the NRC Bulletin 88-01, which discusses the center pole lever welds, were analyzed to assess the final resolution of failures of welds in the reactor trips. Maintenance recommendations, made by the manufacturer to mitigate age-related degradation were reviewed, and recommendations for improving the monitoring of age-related degradation are discussed. As described in Volume 2 of this NUREG, the results from a test program to assess degradation in breaker parts through mechanical cycling are also included. The testing has characterized the cracking of center-pole lever welds, identified monitoring techniques to determine aging in breakers, and provided information to augment existing maintenance programs. Recommendations to improve breaker reliability using effective maintenance, testing, and inspection programs are suggested. 13 refs., 21 figs., 8 tabs.

  20. Age-related changes in the meibomian gland.

    PubMed

    Nien, Chyong Jy; Paugh, Jerry R; Massei, Salina; Wahlert, Andrew J; Kao, Winston W; Jester, James V

    2009-12-01

    The purpose of this study was to characterize the age-related changes of the mouse meibomian gland. Eyelids from adult C57Bl/6 mice at 2, 6, 12 and 24 months of age were stained with specific antibodies against peroxisome proliferator activated receptor gamma (PPARgamma) to identify differentiating meibocytes, Oil Red O (ORO) to identify lipid, Ki67 nuclear antigen to identify cycling cells, B-lymphocyte-induced maturation protein-1 (Blimp1) to identify potential stem cells and CD45 to identify immune cells. Meibomian glands from younger mice (2 and 6 months) showed cytoplasmic and perinuclear staining with anti-PPARgamma antibodies with abundant ORO staining of small, intracellular lipid droplets. Meibomian glands from older mice (12 and 24 months) showed only nuclear PPARgamma localization with less ORO staining and significantly reduced acinar tissue (p < 0.04). Acini of older mice also showed significantly reduced (p < 0.004) numbers of Ki67 stained nuclei. While Blimp1 appeared to diffusely stain the superficial ductal epithelium, isolated cells were occasionally stained within the meibomian gland duct and acini of older mice that also stained with CD45 antibodies, suggesting the presence of infiltrating plasmacytoid cells. These findings suggest that there is altered PPARgamma receptor signaling in older mice that may underlie changes in cell cycle entry/proliferation, lipid synthesis and gland atrophy during aging. These results are consistent with the hypothesis that mouse meibomian glands undergo age-related changes similar to those identified in humans and may be used as a model for age-related meibomian gland dysfunction.

  1. Age-Related Deterioration of Rod Vision in Mice

    PubMed Central

    Kolesnikov, Alexander V.; Fan, Jie; Crouch, Rosalie K.; Kefalov, Vladimir J.

    2010-01-01

    Even in healthy individuals, aging leads to deterioration in visual acuity, contrast sensitivity, visual field, and dark adaptation. Little is known about the neural mechanisms that drive the age-related changes of the retina and more specifically of photoreceptors. According to one hypothesis, the age-related deterioration in rod function is due to the limited availability of 11-cis-retinal for rod pigment formation. To determine how aging affects rod photoreceptors and to test the retinoid deficiency hypothesis, we compared the morphological and functional properties of rods of adult and aged B6D2F1/J mice. We found that the number of rods and the length of their outer segments were significantly reduced in 2.5 year-old mice compared to 4 month-old animals. Aging also resulted in a 2-fold reduction in the total level of opsin in the retina. Behavioral tests revealed that scotopic visual acuity and contrast sensitivity were decreased by 2-fold in aged mice, and rod ERG recordings demonstrated reduced amplitudes of both a- and b-waves. Sensitivity of aged rods determined from single-cell recordings was also decreased by 1.5-fold, corresponding to not more than 1% free opsin in these photoreceptors, and kinetic parameters of dim flash response were not altered. Notably, the rate of rod dark adaptation was unaffected by age. Thus, our results argue against age-related deficiency of 11-cis-retinal in the B6D2F1/J mouse rod visual cycle. Surprisingly, the level of cellular dark noise was increased in aged rods providing an alternative mechanism for their desensitization. PMID:20720130

  2. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: a single-blind randomized clinical trial

    PubMed Central

    Alemán-Mateo, Heliodoro; Carreón, Virginia Ramírez; Macías, Liliana; Astiazaran-García, Humberto; Gallegos-Aguilar, Ana Cristina; Ramos Enríquez, José Rogelio

    2014-01-01

    Background At present, it is unknown whether the use of nutrient-rich dairy proteins improves the markers of sarcopenia syndrome. Therefore, our proposal was to investigate whether adding 210 g of ricotta cheese daily would improve skeletal muscle mass, handgrip strength, and physical performance in non-sarcopenic older subjects. Subjects and methods This was a single-blind randomized clinical trial that included two homogeneous, randomized groups of men and women over 60 years of age. Participants in the intervention group were asked to consume their habitual diet but add 210 g of ricotta cheese (IG/HD + RCH), while the control group was instructed to consume only their habitual diet (CG/HD). Basal and 12-week follow-up measurements included appendicular skeletal muscle mass (ASMM) by dual-energy X-ray absorptiometry, handgrip strength by a handheld dynamometer, and physical performance using the short physical performance battery (SPPB) and the stair-climb power test (SCPT). The main outcomes were relative changes in ASMM, strength, SPPB, and SCPT. Results ASMM increased in the IG/HD + RCH (0.6±3.5 kg), but decreased in the CG/HD (−1.0±2.6). The relative change between groups was statistically significant (P=0.009). The relative change in strength in both groups was negative, but the loss of muscle strength was more pronounced in CG/HD, though in this regard statistical analysis found only a tendency (P=0.07). The relative change in the balance-test scores was positive for the IG/HD + RCH, while in the CG/HD it was negative, as those individuals had poorer balance. In this case, the relative change between groups did reach statistical significance. Conclusion The addition of 210 g of ricotta cheese improves ASMM and balance-test scores, while attenuating the loss of muscle strength. These results suggest that adding ricotta cheese to the habitual diet is a promising dietetic strategy that may improve the markers of sarcopenia in subjects without a pronounced

  3. Age-related differences in updating working memory.

    PubMed

    Van der Linden, M; Brédart, S; Beerten, A

    1994-02-01

    Age-related differences in updating working memory were investigated in two experiments using a running memory task. In the first experiment, the task of the young and elderly subjects was to watch strings of four to 10 consonants and then to recall serially the four most recent items. Results revealed no age effect. A second experiment was then carried out using a memory load that was close to memory span: lists of six to 12 consonants were presented and subjects had to recall the last six items. Age interacted with list length but not with serial position. This dissociation is discussed in terms of Baddeley's (1986) model.

  4. [Diagnostic Criteria for Atrophic Age-related Macular Degeneration].

    PubMed

    Takahashi, Kanji; Shiraga, Fumio; Ishida, Susumu; Kamei, Motohiro; Yanagi, Yasuo; Yoshimura, Nagahisa

    2015-10-01

    Diagnostic criteria for dry age-related macular degeneration is described. Criteria include visual acuity, fundscopic findings, diagnostic image findings, exclusion criteria and classification of severity grades. Essential findings to make diagnosis as "geographic atrophy" are, 1) at least 250 μm in diameter, 2) round/oval/cluster-like or geographic in shape, 3) sharp delineation, 4) hypopigmentation or depigmentation in retinal pigment epithelium, 5) choroidal vessels are more visible than in surrounding area. Severity grades were classified as mild, medium and severe by relation of geographic atrophy to the fovea and attendant findings. PMID:26571627

  5. Effects of Vitreomacular Adhesion on Age-Related Macular Degeneration

    PubMed Central

    Kang, Eui Chun; Koh, Hyoung Jun

    2015-01-01

    Herein, we review the association between vitreomacular adhesion (VMA) and neovascular age-related macular degeneration (AMD). Meta-analyses have shown that eyes with neovascular AMD are twice as likely to have VMA as normal eyes. VMA in neovascular AMD may induce inflammation, macular traction, decrease in oxygenation, sequestering of vascular endothelial growth factor (VEGF), and other cytokines or may directly stimulate VEGF production. VMA may also interfere with the treatment effects of anti-VEGF therapy, which is the standard treatment for neovascular AMD, and releasing VMA can improve the treatment response to anti-VEGF treatment in neovascular AMD. We also reviewed currently available methods of relieving VMA. PMID:26425354

  6. [Glaucoma and age-related macular degeneration intricacy].

    PubMed

    Valtot, F

    2008-07-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness among the elderly in Western nations. Age is also a well-known and well-evidenced risk factor for glaucoma. With increasing longevity and the rising prevalence of older people around the world, more and more patients will have glaucoma and AMD. Clinical evaluation of these patients still poses problems for clinicians. It is very important to order the right tests at the right time to distinguish glaucomatous defects from those caused by retinal lesions, because appropriate therapy has a beneficial effect on slowing or halting damage. PMID:18957915

  7. Age-Related Macular Degeneration: Advances in Management and Diagnosis

    PubMed Central

    Yonekawa, Yoshihiro; Miller, Joan W.; Kim, Ivana K.

    2015-01-01

    Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment in older populations in industrialized nations. AMD is a late-onset deterioration of photoreceptors and retinal pigment epithelium in the central retina caused by various environmental and genetic factors. Great strides in our understanding of AMD pathogenesis have been made in the past several decades, which have translated into revolutionary therapeutic agents in recent years. In this review, we describe the clinical and pathologic features of AMD and present an overview of current diagnosis and treatment strategies. PMID:26239130

  8. Squalamine lactate for exudative age-related macular degeneration.

    PubMed

    Connolly, Brian; Desai, Avinash; Garcia, Charles A; Thomas, Edgar; Gast, Michael J

    2006-09-01

    Squalamine lactate inhibits angiogenesis by a long-lived, intracellular mechanism of action. The drug is taken up into activated endothelial cells through caveolae, small invaginations in the cellular membrane. Subsequently, the drug binds to and "chaperones" calmodulin to an intracellular membrane compartment and blocks angiogenesis at several levels. A series of basic investigations, preclinical studies, and human clinical trials have begun to establish the proof of concept, efficacy, and safety parameters for use of squalamine lactate as a therapeutic agent for exudative age-related macular degeneration and several types of malignancies. PMID:16935213

  9. Procyanidins extracted from the lotus seedpod ameliorate age-related antioxidant deficit in aged rats.

    PubMed

    Xu, Jiqu; Rong, Shuang; Xie, Bijun; Sun, Zhida; Zhang, Li; Wu, Hailei; Yao, Ping; Hao, Liping; Liu, Liegang

    2010-03-01

    The alleviative effect of procyanidins extracted from the lotus seedpod (LSPC) on oxidative stress in various tissues was evaluated by determining the activities of the antioxidant enzymes and the content of reduced glutathione (GSH) in heart, liver, lung, kidney, skeletal muscle, and serum in aged rats. Aging led to antioxidant deficit in various tissues in this study, which is confirmed by remarkable increased lipid peroxidation, whereas the change patterns of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and GSH were diverse in various tissues of aged rats. LSPC treatment (50 and 100 mg/kg body weight) modified the activity of SOD, CAT, and GPx as well as GSH content alteration in these tissues, which reversed the age-related antioxidant deficit in aged rats. However, the regulatory patterns on the activities of these enzymes and GSH content by LSPC treatment were different according to the tissues in aged rats.

  10. Age-related changes in human posture control: Motor coordination tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1989-01-01

    Postural responses to support surface displacements were measured in 214 normal human subjects ranging in age from 7 to 81 years. Motor tests measured leg muscle Electromyography (EMG) latencies, body sway, and the amplitude and timing of changes in center of pressure displacements in response to sudden forward and backward horizontal translations of the support surface upon which the subjects stood. There were small increases in both EMG latencies and the time to reach the peak amplitude of center of pressure responses with increasing age. The amplitude of center of pressure responses showed little change with age if the amplitude measures were normalized by a factor related to subject height. In general, postural responses to sudden translations showed minimal changes with age, and all age related trends which were identified were small relative to the variability within the population.

  11. Adaptive processes of the central and autonomic cholinergic neurotransmitter system: Age-related differences

    SciTech Connect

    Fortuna, S.; Pintor, A.; Michalek, H. )

    1991-01-01

    Potential age-related differences in the response of the ileum strip longitudinal and circular muscle to repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. The response was measured in terms of both biochemical parameters (acetylcholinesterase-AChE inhibition, muscarinic acetylcholine receptor binding sites-mAChRs, choline acetyltransferase-ChAT) and functional responsiveness (contractility of the isolated ileum stimulated by cholinergic agonists). The biochemical data were compared with those obtained for the cerebral cortex. In the ileum strip of control rats there was a significant age-related decline of AChE, maximal density of {sup 3}H-QNB binding sites (Bmax) and ChAT. During the first week of DFP treatment the cholinergic syndrome was more pronounced in aged than in young rats, resulting in 35% and 10% mortality, respectively; subsequently the syndrome attenuated. At the end of DFP treatment ileal AChE were inhibited by about 30%; the down-regulation of mAChRs was about 50% in young and 35% in aged rats. No significant differences in the recovery rate of AChE were noted between young and aged rats. On the contrary, mAChRs normalized within 5 weeks in young and 3 weeks in aged rats.

  12. Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up.

    PubMed

    Rittweger, J; Felsenberg, D

    2009-02-01

    Earlier studies found the recovery of bone loss after clinical immobilization to be incomplete. It has been argued that this is due to the human skeleton's inability to accrue bone mass once peak bone mass has been attained. However, recent studies suggest that bone losses can fully recover when complete functional rehabilitation is achieved. Accordingly, we hypothesized that bone losses by experimental bed rest would recover within one-year of follow-up. Twenty-five men (mean age 32 years, SD 4.2) were randomly assigned to either bed rest only (Ctrl), resistive flywheel exercise (FW), or to a group receiving 60 mg. i.v pamidronate prior to bed rest (Pam). Calf muscle cross sectional area and bone mineral content of the tibia was measured by peripheral quantitative computed tomography. Calcium, PTH and alkaline phosphatase blood levels were assessed along with urinary desoxypyridinoline excretion. Physical activity was assessed by the Freiburg questionnaire. In Pam and FW, diaphyseal bone losses were completely recovered at a 180-day follow-up, and there was even a small surplus after 1 year (p=0.016). Epiphyseal bone losses were largely, although not completely recovered after 1 year, when they still amounted to -0.6% (SD 1.3%, p=0.034, averaged over all groups). Bone formation and resorption markers had returned to baseline values at this time. However, epiphyseal recovery may still have been on-going, and fitting an exponential model yielded full recovery of the epiphysis within 2 years. Importantly, recovery of calf muscle cross-section and resumption of impact sport activities seemed to precede bone recovery, and bone accrual was closely matching the prior losses on an individual basis. No relationship was found between the epiphyseal BMC deficit at one-year follow-up and the participants' age. Results demonstrate recovery of bed rest induced bone losses in healthy adults. The initial re-accrual rate was remarkably high and is comparable to the accrual of bone

  13. Current therapeutic developments in atrophic age-related macular degeneration.

    PubMed

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age-Related Eye Disease Study (AREDS) formulation, which has been demonstrated to slow down the progression of dry AMD. This review summarises recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem cell-based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  14. Long noncoding RNAs in aging and age-related diseases.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-03-01

    Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process.

  15. Long noncoding RNAs in aging and age-related diseases.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-03-01

    Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process. PMID:26655093

  16. Curcumin, inflammation, ageing and age-related diseases.

    PubMed

    Sikora, E; Scapagnini, Giovanni; Barbagallo, Mario

    2010-01-17

    A Symposium regarding the Pathophysiology of Successful and Unsuccessful Ageing was held in Palermo, Italy between April 7 and 8th 2009. Here the lecture by Sikora with some input from the chairpersons Scapagnini and Barbagallo is summarized. Ageing is manifested by the decreasing health status and increasing probability to acquire age-related disease such as cancer, Alzheimer's disease, atherosclerosis, metabolic disorders and others. They are likely caused by low grade inflammation driven by oxygen stress and manifested by the increased level of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-alpha, encoded by genes activated by the transcription factor NF-kappaB. It is believed that ageing is plastic and can be slowed down by caloric restriction as well as by some nutraceuticals. Accordingly, slowing down ageing and postponing the onset of age-related diseases might be achieved by blocking the NF-kappaB-dependent inflammation. In this review we consider the possibility of the spice curcumin, a powerful antioxidant and anti-inflammatory agent possibly capable of improving the health status of the elderly.

  17. Current Therapeutic Development for Atrophic Age-related Macular Degeneration

    PubMed Central

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age Related Eye Disease Study (AREDS) formulation which has been demonstrated to slow down the progression of dry AMD. This review summarizes recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem-cell based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  18. Age-related changes to the production of linguistic prosody

    NASA Astrophysics Data System (ADS)

    Barnes, Daniel R.

    The production of speech prosody (the rhythm, pausing, and intonation associated with natural speech) is critical to effective communication. The current study investigated the impact of age-related changes to physiology and cognition in relation to the production of two types of linguistic prosody: lexical stress and the disambiguation of syntactically ambiguous utterances. Analyses of the acoustic correlates of stress: speech intensity (or sound-pressure level; SPL), fundamental frequency (F0), key word/phrase duration, and pause duration revealed that both young and older adults effectively use these acoustic features to signal linguistic prosody, although the relative weighting of cues differed by group. Differences in F0 were attributed to age-related physiological changes in the laryngeal subsystem, while group differences in duration measures were attributed to relative task complexity and the cognitive-linguistic load of these respective tasks. The current study provides normative acoustic data for older adults which informs interpretation of clinical findings as well as research pertaining to dysprosody as the result of disease processes.

  19. Age-Related Deficits in Reality Monitoring of Action Memories

    PubMed Central

    McDaniel, Mark A.; Lyle, Keith B.; Butler, Karin M.; Dornburg, Courtney C.

    2008-01-01

    We describe three theoretical accounts of age-related increases in falsely remembering that imagined actions were performed (Thomas & Bulevich, 2006). To investigate these accounts and further explore age-related changes in reality monitoring of action memories, we used a new paradigm in which actions were (a) imagined-only (b) actually performed, or (c) both imagined and performed. Older adults were more likely than younger adults to misremember the source of imagined-only actions, with older adults’ more often specifying that the action was imagined and also that it was performed. For both age groups, as repetitions of the imagined-only events increased, illusions that the actions were only performed decreased. These patterns suggest that both older and younger adults utilize qualitative characteristics when making reality-monitoring judgments and that repeated imagination produces richer records of both sensory details and cognitive operations. However, sensory information derived from imagination appears to be more similar to that derived from performance for older than younger adults. PMID:18808253

  20. Age-related preferences and age weighting health benefits.

    PubMed

    Tsuchiya, A

    1999-01-01

    This paper deals with the relevance of age in the paradigm of quality adjusted life years (QALYs). The first section outlines two rationales for incorporating age weights into QALYs. One of them is based on efficiency concerns; and the other on equity concerns. Both of these are theoretical constructs. The main purpose of this paper is to examine the extent of published empirical support for such age weighting. The second section is a brief survey of nine empirical studies that elicited age-related preferences from the general public. Six of these quantified the strength of the preferences, and these are discussed in more detail in the third section. The analysis distinguishes three kinds of age-related preference: productivity ageism, utilitarian ageism and egalitarian ageism. The relationship between them and their relevance to the two different rationales for age weighting are then explored. It is concluded that, although there is strong prima facie evidence of public support for both types of age weighting, the empirical evidence to support any particular set of weights is at present weak. PMID:10048783

  1. Auditory white noise reduces age-related fluctuations in balance.

    PubMed

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-01

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. PMID:27495013

  2. Prediction of key genes and miRNAs responsible for loss of muscle force in patients during an acute exacerbation of chronic obstructive pulmonary disease

    PubMed Central

    Duan, Yanhong; Zhou, Min; Xiao, Jian; Wu, Chaomin; Zhou, Lei; Zhou, Feng; Du, Chunling; Song, Yuanlin

    2016-01-01

    The present study aimed to identify genes and microRNAs (miRNAs or miRs) that were abnormally expressed in the vastus lateralis muscle of patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). The gene expression profile of GSE10828 was downloaded from the Gene Expression Omnibus database, and this dataset was comprised of 4 samples from patients with AECOPD and 5 samples from patients with stable COPD. Differentially expressed genes (DEGs) were screened using the Limma package in R. A protein-protein interaction (PPI) network of DEGs was built based on the STRING database. Module analysis of the PPI network was performed using the ClusterONE plugin and functional analysis of DEGs was conducted using DAVID. Additionally, key miRNAs were enriched using gene set enrichment analysis (GSEA) software and a miR-gene regulatory network was constructed using Cytoscape software. In total, 166 up- and 129 downregulated DEGs associated with muscle weakness in AECOPD were screened. Among them, NCL, GOT1, TMOD1, TSPO, SOD2, NCL and PA2G4 were observed in the modules consisting of upregulated or downregulated genes. The upregulated DEGs in modules (including KLF6 and XRCC5) were enriched in GO terms associated with immune system development, whereas the downregulated DEGs were enriched in GO terms associated with cell death and muscle contraction. Additionally, 39 key AECOPD-related miRNAs were also predicted, including miR-1, miR-9 and miR-23a, miR-16 and miR-15a. In conclusion, DEGs (NCL, GOT1, SOD2, KLF6, XRCC5, TSPO and TMOD1) and miRNAs (such as miR-1, miR-9 and miR-23a) may be associated with the loss of muscle force in patients during an acute exacerbation of COPD which also may act as therapeutic targets in the treatment of AECOPD.

  3. Age-related changes in the fracture resistance of male Fischer F344 rat bone.

    PubMed

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J; Does, Mark D; Nyman, Jeffry S

    2016-02-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Raman spectroscopy analysis of embedded cross-sections of the tibia mid-shaft detected an increase in carbonate subsitution with advanced aging for both inner and outer tissue.

  4. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease.

    PubMed

    Argilés, Josep M; Campos, Nefertiti; Lopez-Pedrosa, José M; Rueda, Ricardo; Rodriguez-Mañas, Leocadio

    2016-09-01

    Skeletal muscle is recognized as vital to physical movement, posture, and breathing. In a less known but critically important role, muscle influences energy and protein metabolism throughout the body. Muscle is a primary site for glucose uptake and storage, and it is also a reservoir of amino acids stored as protein. Amino acids are released when supplies are needed elsewhere in the body. These conditions occur with acute and chronic diseases, which decrease dietary intake while increasing metabolic needs. Such metabolic shifts lead to the muscle loss associated with sarcopenia and cachexia, resulting in a variety of adverse health and economic consequences. With loss of skeletal muscle, protein and energy availability is lowered throughout the body. Muscle loss is associated with delayed recovery from illness, slowed wound healing, reduced resting metabolic rate, physical disability, poorer quality of life, and higher health care costs. These adverse effects can be combatted with exercise and nutrition. Studies suggest dietary protein and leucine or its metabolite β-hydroxy β-methylbutyrate (HMB) can improve muscle function, in turn improving functional performance. Considerable evidence shows that use of high-protein oral nutritional supplements (ONS) can help maintain and rebuild muscle mass and strength. We review muscle structure, function, and role in energy and protein balance. We discuss how disease- and age-related malnutrition hamper muscle accretion, ultimately causing whole-body deterioration. Finally, we describe how specialized nutrition and exercise can restore muscle mass, strength, and function, and ultimately reverse the negative health and economic outcomes associated with muscle loss. PMID:27324808

  5. Red ginseng delays age-related hearing and vestibular dysfunction in C57BL/6 mice.

    PubMed

    Tian, Chunjie; Kim, Yeon Ju; Lim, Hye Jin; Kim, Young Sun; Park, Hun Yi; Choung, Yun-Hoon

    2014-09-01

    Since Korean red ginseng (KRG) has been proven to protect against gentamicin-induced vestibular and hearing dysfunction, the effects of KRG on age-related inner ear disorder in C57BL/6 mice were investigated. While age-related hearing loss was detected at the age of 6months (32kHz) and 9months (16kHz) in the control group, it was significantly delayed (p<0.05) in the 150mg/kg KRG-treated group. Vestibular dysfunction was observed in the tail-hanging and swimming tests, with significantly different severity scores and swimming times detected between the control and 150mg/kg KRG-treated group at the age of 12months (p<0.05). Mice treated with 500mg/kg KRG exhibited irritability and aggravated inner ear dysfunction. Histological observation supported the findings of hearing and vestibular function defects. In conclusion, C57BL/6 mice showed early-onset hearing loss and progressive vestibular dysfunction with aging, which were delayed by treatment with 150mg/kg KRG. However, 500mg/kg KRG treatment may induce aggressive behavior. PMID:24952098

  6. Age-related motor dysfunction and neuropathology in a transgenic mouse model of multiple system atrophy.

    PubMed

    Fernagut, P O; Meissner, W G; Biran, M; Fantin, M; Bassil, F; Franconi, J M; Tison, F

    2014-03-01

    Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by a progressive degeneration of the striatonigral, olivo-ponto-cerebellar, and autonomic systems. Glial cytoplasmic inclusions (GCIs) containing alpha-synuclein represent the hallmark of MSA and are recapitulated in mice expressing alpha-synuclein in oligodendrocytes. To assess if oligodendroglial expression of human wild-type alpha-synuclein in mice (proteolipid promoter, PLP-SYN) could be associated with age-related deficits, PLP-SYN and wild-type mice were assessed for motor function, brain morphometry, striatal levels of dopamine and metabolites, dopaminergic loss, and distribution of GCIs. PLP-SYN displayed age-related impairments on a beam-traversing task. MRI revealed a significantly smaller brain volume in PLP-SYN mice at 12 months, which further decreased at 18 months together with increased volume of ventricles and cortical atrophy. The distribution of GCIs was reminiscent of MSA with a high burden in the basal ganglia. Mild dopaminergic cell loss was associated with decreased dopamine turnover at 18 months. These data indicate that PLP-SYN mice may recapitulate some of the progressive features of MSA and deliver endpoints for the evaluation of therapeutic strategies.

  7. Age-Related Neurochemical Changes in the Rhesus Macaque Superior Olivary Complex

    PubMed Central

    Gray, Daniel T.; Engle, James R.; Recanzone, Gregg H.

    2014-01-01

    Positive immunoreactivity to the calcium-binding protein parvalbumin (PV) and nitric oxide synthase NADPH-diaphorase (NADPHd) is well documented within neurons of the central auditory system of both rodents and primates. These proteins are thought to play roles in the regulation of auditory processing. Studies examining the age-related changes in expression of these proteins have been conducted primarily in rodents but are sparse in primate models. In the brainstem, the superior olivary complex (SOC) is crucial for the computation of sound source localization in azimuth, and one hallmark of age-related hearing deficits is a reduced ability to localize sounds. To investigate how these histochemical markers change as a function of age and hearing loss, we studied eight rhesus macaques ranging in age from 12 to 35 years. Auditory brainstem responses (ABRs) were obtained in anesthetized animals for click and tone stimuli. The brainstems of these same animals were then stained for PV and NADPHd reactivity. Reactive neurons in the three nuclei of the SOC were counted, and the densities of each cell type were calculated. We found that PV and NADPHd expression increased with both age and ABR thresholds in the medial superior olive but not in either the medial nucleus of the trapezoid body or the lateral superior olive. Together these results suggest that the changes in protein expression employed by the SOC may compensate for the loss of efficacy of auditory sensitivity in the aged primate. PMID:25232570

  8. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia.

    PubMed

    Fry, Christopher S; Lee, Jonah D; Mula, Jyothi; Kirby, Tyler J; Jackson, Janna R; Liu, Fujun; Yang, Lin; Mendias, Christopher L; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2015-01-01

    A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis.

  9. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors

    PubMed Central

    Hoekstra, Attje S.; de Graaff, Marieke A.; Briaire-de Bruijn, Inge H.; Ras, Cor; Seifar, Reza Maleki; van Minderhout, Ivonne; Cornelisse, Cees J.; Hogendoorn, Pancras C.W.; Breuning, Martijn H.; Suijker, Johnny; Korpershoek, Esther; Kunst, Henricus P.M.; Frizzell, Norma; Devilee, Peter; Bayley, Jean-Pierre; Bovée, Judith V.M.G.

    2015-01-01

    Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are tricarboxylic acid (TCA) cycle enzymes and tumor suppressors. Loss-of-function mutations give rise to hereditary paragangliomas/pheochromocytomas and hereditary leiomyomatosis and renal cell carcinoma. Inactivation of SDH and FH results in an abnormal accumulation of their substrates succinate and fumarate, leading to inhibition of numerous α-ketoglutarate dependent dioxygenases, including histone demethylases and the ten-eleven-translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. To evaluate the distribution of DNA and histone methylation, we used immunohistochemistry to analyze the expression of 5mC, 5-hydroxymethylcytosine (5hmC), TET1, H3K4me3, H3K9me3, and H3K27me3 on tissue microarrays containing paragangliomas/pheochromocytomas (n = 134) and hereditary and sporadic smooth muscle tumors (n = 56) in comparison to their normal counterparts. Our results demonstrate distinct loss of 5hmC in tumor cells in SDH- and FH-deficient tumors. Loss of 5hmC in SDH-deficient tumors was associated with nuclear exclusion of TET1, a known regulator of 5hmC levels. Moreover, increased methylation of H3K9me3 occurred predominantly in the chief cell component of SDH mutant tumors, while no changes were seen in H3K4me3 and H3K27me3, data supported by in vitro knockdown of SDH genes. We also show for the first time that FH-deficient smooth muscle tumors exhibit increased H3K9me3 methylation compared to wildtype tumors. Our findings reveal broadly similar patterns of epigenetic deregulation in both FH- and SDH-deficient tumors, suggesting that defects in genes of the TCA cycle result in common mechanisms of inhibition of histone and DNA demethylases. PMID:26472283

  10. Age-related priming effects in social judgments.

    PubMed

    Hess, T M; McGee, K A; Woodburn, S M; Bolstad, C A

    1998-03-01

    Two experiments investigated adult age differences in the impact of previously activated (and thus easily accessible) trait-related information on judgments about people. The authors hypothesized that age-related declines in the efficiency of controlled processing mechanisms during adulthood would be associated with increased susceptibility to judgment biases associated with such information. In each study, different-aged adults made impression judgments about a target, and assimilation of these judgments to trait constructs activated in a previous, unrelated task were examined. Consistent with the authors' hypotheses, older adults were likely to form impressions that were biased toward the primed trait constructs. In contrast, younger adults exhibited greater awareness of the primed information and were more likely to correct for its perceived influence, especially when distinctive contextual cues regarding the source of the primes were available. PMID:9533195

  11. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  12. Age-related changes in human vitreous structure.

    PubMed

    Sebag, J

    1987-01-01

    Changes in vitreous structure that occur with aging are important in the pathogenesis of vitreous liquefaction (synchisis senilis), vitreous detachment, and retinal disease. Vitreous morphology was studied in 59 human eyes post-mortem using dark-field horizontal slit illumination of the entire dissected vitreous. In many individuals younger than 30 years, the vitreous was homogeneous in structure. Middle-aged individuals had macroscopic fibers in the central vitreous, which coursed anteroposteriorly and inserted into the vitreous base and the vitreous cortex, posteriorly. During senescence, the vitreous volume was reduced, the vitreous body was collapsed (syneresis), and the fibers were thickened, tortuous, and surrounded by liquid vitreous. This sequence of age-related changes probably results from a progressive reorganization of the hyaluronic acid and collagen molecular networks. Characterization of the molecular events underlying these changes will elucidate the mechanisms of the phenomena of synchisis, syneresis, and detachment, and may provide methods with which to prevent or induce vitreous detachment prophylactically.

  13. Sex- and age-related differences in mathematics.

    PubMed

    Rustemeyer, Ruth; Fischer, Natalie

    2005-08-01

    This study examined sex differences and age-related changes in mathematics based on Eccles's 1985 expectancy-value model of "achievement-related choices" and Dweck's 1986 motivation-process model. We have assessed motivational variables and performance in mathematics for youth in Grades 5, 7, and 9 in a German comprehensive secondary school. Significant sex differences in Grades 7 and 9 were observed even when school marks were controlled for. Furthermore, the results indicated differences between Grade 7 and Grade 9 on most of the motivational variables. Older students show a less favorable motivational pattern. Our results give evidence of the importance of motivational encouragement in mathematics classes, especially for girls and low achieving learners. PMID:16279324

  14. Age-Related Differences in Multiple Task Monitoring

    PubMed Central

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  15. Gene-Diet Interactions in Age-Related Macular Degeneration.

    PubMed

    Rowan, Sheldon; Taylor, Allen

    2016-01-01

    Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50 % of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation is the only available treatment option for the dry form of the disease known to slow progression of AMD. Despite an excellent understanding of genes and nutrition in AMD, there is remarkably little known about gene-diet interactions that may identify efficacious approaches to treat individuals. This review will summarize our current understanding of gene-diet interactions in AMD with a focus on animal models and human epidemiological studies.

  16. Age-related responses to mild restraint in the rat.

    PubMed

    Rattner, B A; Michael, S D; Altland, P D

    1983-11-01

    Immature, postpubertal, young adult, and middle-aged rats were lightly restrained for 4 h. Relative to untreated controls, restraint uniformly reduced body weight and plasma luteinizing hormone concentration and elevated plasma corticosterone concentration in all age groups. However, restraint increased activities of plasma alanine and aspartate aminotransferase, creatine phosphokinase, and fructose-diphosphate aldolase in only immature and middle-aged animals. This age-related release of tissue enzymes is hypothesized to reflect enhanced responsiveness to catecholamines in immature rats, and possible ischemia related to diminished vasodilatory activity in middle-aged rats. On the basis of these changes, tolerance to restraint in postpubertal and young adults appears to be slightly greater than that of immature and middle-aged rats.

  17. A Revised Hemodynamic Theory of Age-Related Macular Degeneration.

    PubMed

    Gelfand, Bradley D; Ambati, Jayakrishna

    2016-08-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  18. MicroRNAs in age-related diseases.

    PubMed

    Dimmeler, Stefanie; Nicotera, Pierluigi

    2013-02-01

    Aging is a complex process that is linked to an increased incidence of major diseases such as cardiovascular and neurodegenerative disease, but also cancer and immune disorders. MicroRNAs (miRNAs) are small non-coding RNAs, which post-transcriptionally control gene expression by inhibiting translation or inducing degradation of targeted mRNAs. MiRNAs target up to hundreds of mRNAs, thereby modulating gene expression patterns. Many miRNAs appear to be dysregulated during cellular senescence, aging and disease. However, only few miRNAs have been so far linked to age-related changes in cellular and organ functions. The present article will discuss these findings, specifically focusing on the cardiovascular and neurological systems.

  19. Molecular pathology of age-related macular degeneration

    PubMed Central

    Ding, Xiaoyan; Patel, Mrinali; Chan, Chi-Chao

    2009-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. Although the etiology and pathogenesis of AMD remain largely unclear, a complex interaction of genetic and environmental factors is thought to exist. AMD pathology is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium, and Bruch’s membrane, as well as, in some cases, alterations in choroidal capillaries. Recent research on the genetic and molecular underpinnings of AMD brings to light several basic molecular pathways and pathophysiological processes that might mediate AMD risk, progression, and/or response to therapy. This review summarizes, in detail, the molecular pathological findings in both humans and animal models, including genetic variations in CFH, CX3CR1, and ARMS2/HtrA1, as well as the role of numerous molecules implicated in inflammation, apoptosis, cholesterol trafficking, angiogenesis, and oxidative stress. PMID:19026761

  20. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  1. Translational strategies in aging and age-related disease.

    PubMed

    Armanios, Mary; de Cabo, Rafael; Mannick, Joan; Partridge, Linda; van Deursen, Jan; Villeda, Saul

    2015-12-01

    Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine.

  2. Targeting MAPK Signaling in Age-Related Macular Degeneration

    PubMed Central

    Kyosseva, Svetlana V.

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease. PMID:27385915

  3. Translational strategies in aging and age-related disease.

    PubMed

    Armanios, Mary; de Cabo, Rafael; Mannick, Joan; Partridge, Linda; van Deursen, Jan; Villeda, Saul

    2015-12-01

    Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine. PMID:26646495

  4. Complement factor H polymorphism and age-related macular degeneration.

    PubMed

    Edwards, Albert O; Ritter, Robert; Abel, Kenneth J; Manning, Alisa; Panhuysen, Carolien; Farrer, Lindsay A

    2005-04-15

    Age-related macular degeneration (AMD) is a common, late-onset, and complex trait with multiple risk factors. Concentrating on a region harboring a locus for AMD on 1q25-31, the ARMD1 locus, we tested single-nucleotide polymorphisms for association with AMD in two independent case-control populations. Significant association (P = 4.95 x 10(-10)) was identified within the regulation of complement activation locus and was centered over a tyrosine-402 --> histidine-402 protein polymorphism in the gene encoding complement factor H. Possession of at least one histidine at amino acid position 402 increased the risk of AMD 2.7-fold and may account for 50% of the attributable risk of AMD.

  5. The genetics of age-related macular degeneration.

    PubMed

    Gorin, M B; Breitner, J C; De Jong, P T; Hageman, G S; Klaver, C C; Kuehn, M H; Seddon, J M

    1999-11-01

    Age-related macular degeneration (AMD) is increasingly recognized as a complex genetic disorder in which one or more genes contribute to an individual's susceptibility for developing the condition. Twin and family studies as well as population-based genetic epidemiologic methods have convincingly demonstrated the importance of genetics in AMD, though the extent of heritability, the number of genes involved, and the phenotypic and genetic heterogeneity of the condition remain unresolved. The extent to which other hereditary macular dystrophies such as Stargardts disease, familial radial drusen (malattia leventinese), Best's disease, and peripherin/RDS-related dystrophy are related to AMD remains unclear. Alzheimer's disease, another late onset, heterogeneous degenerative disorder of the central nervous system, offers a valuable model for identifying the issues that confront AMD genetics.

  6. Age-related differences in arithmetic strategy sequential effects.

    PubMed

    Lemaire, Patrick

    2016-03-01

    In this article, I review a series of new findings concerning how age-related changes in strategic variations are modulated by sequential effects. Sequential effects refer to how strategy selection and strategy execution on current problems are influenced by which strategy is used on immediately preceding problems. Two sequential effects during strategy selection (i.e., strategy revisions and strategy perseverations) and during strategy execution (i.e., strategy switch costs and modulations of poorer strategy effects) are presented. I also discuss how these effects change with age during adulthood. These phenomena are important, as they shed light on arithmetic processes and how these processes change with age during adulthood. In particular, they speak to the role of executive control while participants select and execute arithmetic strategies. Finally, I discuss the implications of sequential effects for theories of strategies and of arithmetic.

  7. Age-related macular degeneration and the complement system.

    PubMed

    Khandhadia, S; Cipriani, V; Yates, J R W; Lotery, A J

    2012-02-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. It is a complex multifactorial disease, and despite new advances in treatment, many patients still succumb to visual impairment. The complement pathway has been implicated in the pathogenesis of many diseases, and recently variants in several genes encoding complement pathway proteins have been associated with AMD. Complement proteins have been found in histological specimens of eyes with AMD. Altered levels of both intrinsic complement proteins and activated products have been found in the circulation of patients with AMD. Complement activation may be triggered by oxidative stress, resulting from retinal exposure to incoming light; indeed an inter-play between these two pathological processes seems to exist. Finally, complement inhibitors are currently being evaluated in clinical trials. This article reviews the role of the complement system in AMD, and the potential of complement inhibition in preventing the devastating blindness resulting from this disease.

  8. Dietary folate improves age-related decreases in lymphocyte function.

    PubMed

    Field, Catherine J; Van Aerde, Arne; Drager, Kelly L; Goruk, Susan; Basu, Tapan

    2006-01-01

    Although low folate status is thought to be fairly common in the older population, its implication on immunity has not been adequately investigated. Using 11-month-old and 23-month-old male rats (Fisher 344), the present study was undertaken to examine the modifying effects of feeding a control diet (NIH-07) supplemented with folate (35.7 mg/kg) for 3 weeks on the immune cells of spleen and mesenteric lymph node (MLN) origin. The serum concentrations of folate along with vitamin B(12) were elevated in response to the folate supplementation (P<.05). These results were accompanied by an improved proliferative response (stimulation index) to mitogens in both the spleen and MLNs (P<.05). The proportion of T cells in the MLNs, but not in the spleen, was significantly increased in rats fed a diet supplemented with folate. In the spleen, the folate-supplemented diet prevented the age-associated decrease (P<.05) in the production of interferon (IFN)alpha by unstimulated cells and the decrease in T-helper (Th)1/Th2-type response after stimulation with phorbol myristate acetate and ionomycin. In the MLNs, on the other hand, the folate-supplemented diet failed to influence any age-related increase in interleukin (IL)-2, tumor necrosis factor alpha and IFNgamma following stimulation but did result in a significantly increased production of IL-4 (P<.05). Overall, this study provides data suggesting that aging is associated with changes in the proportion of T cells, the ability of immune cells to proliferate and the production of cytokines after stimulation. Supplementing a folate-sufficient diet with additional folate improves proliferative response to mitogens, the distribution of T cells in the MLNs and the age-related changes in cytokine production in the spleen. These results suggest that the dietary folate requirement may be higher in the older population than in the younger population to support immune functions.

  9. Age-related macular degeneration: Evidence of a major gene

    SciTech Connect

    Bhatt, S.; Warren, C.; Yang, H.

    1994-09-01

    Age-related macular degeneration is a major cause of blindness in developing countries. It remains a very poorly understood disorder. Although environmental and genetic factors have been implicated in its pathogenesis, none have been firmly implicated. The purpose of this study was to use pedigree analysis to evaluate the possible role of a major gene as a determinant of familial aggregation. Information was collected regarding occupation, smoking, sun exposure, associated medical problems and family history. 50 probands with age-related macular degeneration (ARMD) and 39 age, race and sex-matched controls were included in the study. In the ARMD group 15/50 (30%) of probands reported a positive family history; 22 out of 222 first degree relatives over age 60 were reported to be affected. In the control groups, none of the 138 first degree relatives over age 50 had a history of ARMD. This difference is statistically significant (p = 0.0003), indicating that genetic factors may play an important role in the pathogenesis of ARMD. In the ARMD group more siblings as compared to parents (16/127 vs. 5/82) were affected. 5/50 (10%) of the ARMD probands also gave a history of a second degree relative affected with ARMD, compared to none known among the relatives of controls. Data from 50 pedigrees were analyzed by complex segregation analysis under a class A regressive logistic model using the REGD program implemented in the SAGE package. Preliminary results allow rejection of a polygenic model and suggest there is a major gene for ARMD in these families. The inheritance model most compatible with the observed familial aggregation is autosomal recessive. In conclusion, these results are suggestive of a major gene effect in the etiology of ARMD. Identification of a major gene effect is a first step to further pursue linkage analysis and to search for the gene(s) involved in the causation of ARMD.

  10. Age-related vascular stiffening: causes and consequences

    PubMed Central

    Kohn, Julie C.; Lampi, Marsha C.; Reinhart-King, Cynthia A.

    2015-01-01

    Arterial stiffening occurs with age and is closely associated with the progression of cardiovascular disease. Stiffening is most often studied at the level of the whole vessel because increased stiffness of the large arteries can impose increased strain on the heart leading to heart failure. Interestingly, however, recent evidence suggests that the impact of increased vessel stiffening extends beyond the tissue scale and can also have deleterious microscale effects on cellular function. Altered extracellular matrix (ECM) architecture has been recognized as a key component of the pre-atherogenic state. Here, the underlying causes of age-related vessel stiffening are discussed, focusing on age-related crosslinking of the ECM proteins as well as through increased matrix deposition. Methods to measure vessel stiffening at both the macro- and microscale are described, spanning from the pulse wave velocity measurements performed clinically to microscale measurements performed largely in research laboratories. Additionally, recent work investigating how arterial stiffness and the changes in the ECM associated with stiffening contributed to endothelial dysfunction will be reviewed. We will highlight how changes in ECM protein composition contribute to atherosclerosis in the vessel wall. Lastly, we will discuss very recent work that demonstrates endothelial cells (ECs) are mechano-sensitive to arterial stiffening, where changes in stiffness can directly impact EC health. Overall, recent studies suggest that stiffening is an important clinical target not only because of potential deleterious effects on the heart but also because it promotes cellular level dysfunction in the vessel wall, contributing to a pathological atherosclerotic state. PMID:25926844

  11. Genetic risk factors and age-related macular degeneration (AMD)

    PubMed Central

    Mousavi, Maryam; Armstrong, Richard A.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make lifestyle choices that may reduce the risk of disease. Collaboration between geneticists, ophthalmologists, and optometrists suggests that genetic risk factors play a more significant role in AMD than previously thought. The most important genes are associated with immune system modulation and the complement system, e.g., complement factor H (CFH), factor B (CFB), factor C3, and serpin peptidase inhibitor (SERPING1). Genes associated with membrane transport, e.g., ATP-binding cassette protein (ABCR) and voltage-dependent calcium channel gamma 3 (CACNG3), the vascular system, e.g., fibroblast growth factor 2 (FGF2), fibulin-5, lysyl oxidase-like gene (LOXL1) and selectin-P (SELP), and with lipid metabolism, e.g., apolipoprotein E (APOE) and hepatic lipase (LIPC) have also been implicated. In addition, several other genes exhibit some statistical association with AMD, e.g., age-related maculopathy susceptibility protein 2 (ARMS2) and DNA excision repair protein gene (ERCC6) but more research is needed to establish their significance. Modifiable risk factors for AMD should be discussed with patients whose lifestyle and/or family history place them in an increased risk category. Furthermore, calculation of AMD risk using current models should be recommended as a tool for patient education. It is likely that AMD management in future will be increasingly influenced by assessment of genetic risk as such screening methods become more widely available.

  12. Age-related modifications in neural cardiovascular control.

    PubMed

    Ferrari, A U

    1992-09-01

    Integrated cardiovascular responses to a range of different stimuli, as well as the overall, spontaneously occurring variability in blood pressure and heart rate, undergo complex changes with aging. A general trend is that homeostatic control mechanisms lose part of their ability to modulate heart rate and to buffer the concomitant blood pressure variations; the two phenomena are possibly linked by a cause-effect relationship. A detailed analysis of the age-related changes in the major reflex systems reveals a clear-cut impairment in arterial baroreceptor control of the heart rate, but much less pronounced changes in its control of blood pressure, on the other hand, both the hemodynamic and humoral components of the cardiopulmonary reflex appear to be markedly attenuated. The experimental evidence of the mechanisms underlying these changes is still largely incomplete, and it appears that the gaps will have to be filled by a systematic, detailed analysis, i.e., that no generalizations or extrapolations will be possible. Indeed, the data available so far indicate that the age-related alterations are highly non-uniform, some functions undergoing a definite impairment but others being much better preserved and some being even enhanced; thus aging is by no means associated with a generalized decline in cardiovascular functions and should instead be viewed as a complex, highly selective process. These peculiar biological features of the aging phenomena merit further investigation in both the cardiovascular and the other organ systems, in order to verify the possibility that currently unrecognized homeostatic potentials in the elderly subject may be exploited to advance his/her clinical management in health and disease.

  13. Apoptosis in capillary endothelial cells in ageing skeletal muscle

    PubMed Central

    Wang, Huijuan; Listrat, Anne; Meunier, Bruno; Gueugneau, Marine; Coudy-Gandilhon, Cécile; Combaret, Lydie; Taillandier, Daniel; Polge, Cécile; Attaix, Didier; Lethias, Claire; Lee, Kijoon; Goh, Kheng Lim; Béchet, Daniel

    2014-01-01

    The age-related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein-7 (Pax7) or laminin-2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age-related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre-associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7+ satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age-dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing. PMID:24245531

  14. The fragile elderly hip: Mechanisms associated with age-related loss of strength and toughness☆

    PubMed Central

    Reeve, Jonathan; Loveridge, Nigel

    2014-01-01

    Every hip fracture begins with a microscopic crack, which enlarges explosively over microseconds. Most hip fractures in the elderly occur on falling from standing height, usually sideways or backwards. The typically moderate level of trauma very rarely causes fracture in younger people. Here, this paradox is traced to the decline of multiple protective mechanisms at many length scales from nanometres to that of the whole femur. With normal ageing, the femoral neck asymmetrically and progressively loses bone tissue precisely where the cortex is already thinnest and is also compressed in a sideways fall. At the microscopic scale of the basic remodelling unit (BMU) that renews bone tissue, increased numbers of actively remodelling BMUs associated with the reduced mechanical loading in a typically inactive old age augments the numbers of mechanical flaws in the structure potentially capable of initiating cracking. Menopause and over-deep osteoclastic resorption are associated with incomplete BMU refilling leading to excessive porosity, cortical thinning and disconnection of trabeculae. In the femoral cortex, replacement of damaged bone or bone containing dead osteocytes is inefficient, impeding the homeostatic mechanisms that match strength to habitual mechanical usage. In consequence the participation of healthy osteocytes in crack-impeding mechanisms is impaired. Observational studies demonstrate that protective crack deflection in the elderly is reduced. At the most microscopic levels attention now centres on the role of tissue ageing, which may alter the relationship between mineral and matrix that optimises the inhibition of crack progression and on the role of osteocyte ageing and death that impedes tissue maintenance and repair. This review examines recent developments in the understanding of why the elderly hip becomes fragile. This growing understanding is suggesting novel testable approaches for reducing risk of hip fracture that might translate into control of the growing worldwide impact of hip fractures on our ageing populations. PMID:24412288

  15. Managing age-related hearing loss: how to use hearing aids efficiently - a mini-review.

    PubMed

    Williger, Bettina; Lang, Frieder R

    2014-01-01

    Using hearing aids may contribute to better functioning in the everyday lives of hearing-impaired older individuals. We introduce an integrative concept for the efficient use of hearing aids that involves both satisfaction with, and behaviour towards, hearing aids. We review theoretical and empirical work on the predictors of the efficient use of hearing aids in everyday life. Furthermore, we contend that the use of hearing aids requires improved understanding of the variability of hearing demands within specific contexts of everyday life (e.g. conversation with family members, listening to music). The efficiency of hearing aid use thus depends on the fit of situational demands, personal resources, and the specific configuration of the hearing aid device. We propose an integrative person-environment-fit model that advances concepts of selection, optimisation, and compensation to hearing aid efficiency. We discuss the implications of this model for research and for practitioners in the field of gerontology. PMID:24751499

  16. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age.

    PubMed

    Gorski, Jeff P; Huffman, Nichole T; Vallejo, Julian; Brotto, Leticia; Chittur, Sridar V; Breggia, Anne; Stern, Amber; Huang, Jian; Mo, Chenglin; Seidah, Nabil G; Bonewald, Lynda; Brotto, Marco

    2016-02-26

    Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10-12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss. PMID:26719336

  17. The Effects of Rapid Weight Loss and Attempted Rehydration on Strength and Endurance of the Handgripping Muscles in College Wrestlers.

    ERIC Educational Resources Information Center

    Serfass, Robert C.; And Others

    1984-01-01

    Because of the continued prevalence of rapid weight reduction by wrestlers, this study attempted to determine if college wrestlers' strength and muscular endurance were affected by either rehydration or dehydration. Results showed that a loss of five percent of body weight over three days did not affect strength or endurance levels. (JMK)

  18. SATB2-Nanog axis links age-related intrinsic changes of mesenchymal stem cells from craniofacial bone

    PubMed Central

    Xu, Rongyao; Ge, Jie; Fu, Yu; Zhang, Yuchao; Du, Yifei; Ye, Jinhai; Cheng, Jie; Jiang, Hongbing

    2016-01-01

    Bone mesenchymal stem cells (BMSCs) senescence contributes to age-related bone loss. The alveolar bone in jaws originates from neural crest cells and possesses significant site- and age-related properties. However, such intrinsic characteristics of BMSCs from alveolar bone (AB-BMSCs) and the underlying regulatory mechanisms still remain unknown. Here, we found that the expression of special AT-rich binding protein 2 (SATB2) in human AB-BMSCs significantly decreased with aging. SATB2 knockdown on AB-BMSCs from young donors displayed these aging-related phenotypes in vitro. Meanwhile, enforced SATB2 overexpression could rejuvenate AB-BMSCs from older donors. Importantly, satb2 gene- modified BMSCs therapy could prevent the alveolar bone loss during the aging of rats. Mechanistically, the stemness regulator Nanog was identified as the direct transcriptional target of SATB2 in BMSCs and functioned as a downstream mediator of SATB2. Collectively, our data reveal that SATB2 in AB-BMSCs associates with their age-related properties, and prevents AB-BMSCs senescence via maintaining Nanog expression. These findings highlight the translational potential of transcriptional factor-based cellular reprogramming for anti-aging therapy. PMID:27632702

  19. Absence of collagen XVIII in mice causes age-related insufficiency in retinal pigment epithelium proteostasis.

    PubMed

    Kivinen, Niko; Felszeghy, Szabolcs; Kinnunen, Aino I; Setälä, Niko; Aikio, Mari; Kinnunen, Kati; Sironen, Reijo; Pihlajaniemi, Taina; Kauppinen, Anu; Kaarniranta, Kai

    2016-08-01

    Collagen XVIII has the structural properties of both collagen and proteoglycan. It has been found at the basement membrane/stromal interface where it is thought to mediate their attachment. Endostatin, a proteolytic fragment from collagen XVIII C-terminal end has been reported to possess anti-angiogenic properties. Age-related vision loss in collagen XVIII mutant mice has been accompanied with a pathological accumulation of deposits under the retinal pigment epithelium (RPE). We have recently demonstrated that impaired proteasomal and autophagy clearance are associated with the pathogenesis of age-related macular degeneration. This study examined the staining levels of proteasomal and autophagy markers in the RPE of different ages of the Col18a1 (-/-) mice. Eyes from 3, 6-7, 10-13 and 18 months old mice were enucleated and embedded in paraffin according to the routine protocol. Sequential 5 μm-thick parasagittal samples were immunostained for proteasome and autophagy markers ubiquitin (ub), SQSTM1/p62 and beclin-1. The levels of immunopositivity in the RPE cells were evaluated by confocal microscopy. Collagen XVIII knock-out mice had undergone age-related RPE degeneration accompanied by an accumulation of drusen-like deposits. Ub protein conjugate staining was prominent in both RPE cytoplasm and extracellular space whereas SQSTM1/p62 and beclin-1 stainings were clearly present in the basal part of RPE cell cytoplasm in the Col18a1 (-/-) mice. SQSTM1/p62 displayed mild extracellular space staining. Disturbed proteostasis regulated by collagen XVIII might be responsible for the RPE degeneration, increased protein aggregation, ultimately leading to choroidal neovascularization. PMID:27125427