Science.gov

Sample records for age-related muscle loss

  1. Nutrient-rich meat proteins in offsetting age-related muscle loss.

    PubMed

    Phillips, Stuart M

    2012-11-01

    From a health perspective, an underappreciated consequence of the normal aging process is the impacts that the gradual loss of skeletal muscle mass, termed sarcopenia, has on health beyond an effect on locomotion. Sarcopenia, refers to the loss of muscle mass, and associated muscle weakness, which occurs in aging and is thought to proceed at a rate of approximately 1% loss per year. However, periods of inactivity due to illness or recovery from orthopedic procedures such as hip or knee replacement are times of accelerated sarcopenic muscle loss from which it may be more difficult for older persons to recover. Some of the consequences of age-related sarcopenia are easy to appreciate such as weakness and, eventually, reduced mobility; however, other lesser recognized consequences include, due to the metabolic role the skeletal muscle plays, an increased risk for poor glucose control and a predisposition toward weight gain. What we currently know is that two stimuli can counter this age related muscle loss and these are physical activity, specifically resistance exercise (weightlifting), and nutrition. The focus of this paper is on the types of dietary protein that people might reasonably consume to offset sarcopenic muscle loss. PMID:22632883

  2. Stuck in gear: age-related loss of variable gearing in skeletal muscle.

    PubMed

    Holt, Natalie C; Danos, Nicole; Roberts, Thomas J; Azizi, Emanuel

    2016-04-01

    Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (P<0.05) from 19.1±5.0 kPa and 188.5±24.2 MPa, respectively, in young rats to 39.1±4.2 kPa and 328.0±48.3 MPa in old rats, indicating a mechanical change in the interaction between contractile and connective tissues. Gear ratio decreased with increasing force in young (P<0.001) but not old (P=0.72) muscles, indicating that variable gearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age. PMID:27030778

  3. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  4. An analysis of age-related loss of skeletal muscle mass and its significance on osteoarthritis in a Korean population

    PubMed Central

    Kim, Hun-Tae; Kim, Hyun-Je; Ahn, Hee-Yun; Hong, Young-Hoon

    2016-01-01

    Background/Aims: This study was conducted in order to analyze the effects of sarcopenia on age-related osteoarthritis (OA) of the knee in a Korean population. Methods: All the Korean subjects who visited the Yeungnam University Medical Center Health Promotion Center between 2008 and 2012 in order to undergo a routine medical examination were enrolled. A total of 5,723 young, healthy people (2,959 males, 2,764 females) enrolled as normal subjects and 23,473 subjects (13,006 males and 10,467 females) were included for evaluation of the effects of sarcopenia on OA. There were 266 subjects who followed-up bioelectrical impedance analysis at a 4-year interval. Of 327 subjects enrolled in this study, knees with anteroposterior X-rays were assessed according to the Kellgren-Lawrence (K/L) grade. Results: Skeletal muscle mass index (SMI) and basal metabolic rate (BMR) showed a steady decrease with the advance of age (p < 0.01), but SMI showed strong positive correlation with BMR (r = 0.72, β = 30.96, p < 0.01). During the 4-year interval, BMR showed a significant decrease with aging (p < 0.01), consistently with the decrease of SMI. Knees with normal SMI were prone to be designated as K/L grade 0 or 1; however, subjects with sarcopenia showed a trend toward the higher K/L grade, classified as knee radiological osteoarthritis (ROA) (p < 0.01). Conclusions: The results of this study may indicate that sarcopenia as age-related loss of skeletal muscle mass is interactively correlated with the presence and severity of age-related OA. PMID:26976151

  5. Age-related hearing loss

    MedlinePlus

    ... is no known single cause of age-related hearing loss. Most commonly, it is caused by changes in the inner ear that occur as you grow older. Your genes and loud noise (from rock concerts or music headphones) may play a large role. The following ...

  6. Age-Related Hearing Loss

    MedlinePlus

    ... hearing loss. Here are the most common ones: Styles of hearing aids Source: NIH/NIDCD Hearing aids ... list of organizations, contact: NIDCD Information Clearinghouse 1 Communication Avenue Bethesda, MD 20892-3456 Toll-free Voice: ( ...

  7. Chronic overload induced hypertrophy is associated with age-related muscle mass loss and diminished mTOR signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to assess activation of the mTOR signaling pathway in young and aging rats in response to chronic muscle overload. Young (6 mo; n = 16) and older (30 mo; n = 23) male rats (F344xBN) were subjected to 4 weeks of bilateral surgical ablation (SA) of two-thirds of the gastr...

  8. Age-related hair pigment loss.

    PubMed

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. PMID:26370651

  9. Age-Related Changes in Skeletal Muscle of Cattle.

    PubMed

    Costagliola, A; Wojcik, S; Pagano, T B; De Biase, D; Russo, V; Iovane, V; Grieco, E; Papparella, S; Paciello, O

    2016-03-01

    Sarcopenia, the age-related loss of muscle mass and strength, is a multifactorial condition that represents a major healthcare concern for the elderly population. Although its morphologic features have been extensively studied in humans, animal models, and domestic and wild animals, only a few reports about spontaneous sarcopenia exist in other long-lived animals. In this work, muscle samples from 60 healthy Podolica-breed old cows (aged 15-23 years) were examined and compared with muscle samples from 10 young cows (3-6 years old). Frozen sections were studied through standard histologic and histoenzymatic procedures, as well as by immunohistochemistry, immunofluorescence, and Western blot analysis. The most prominent age-related myopathic features seen in the studied material included angular fiber atrophy (90% of cases), mitochondrial alterations (ragged red fibers, 70%; COX-negative fibers, 60%), presence of vacuolated fibers (75%), lymphocytic (predominantly CD8+) inflammation (40%), and type II selective fiber atrophy (40%). Immunohistochemistry revealed increased expression of major histocompatibility complex I in 36 cases (60%) and sarcoplasmic accumulations of β-amyloid precursor protein-positive material in 18 cases (30%). In aged cows, muscle atrophy was associated with accumulation of myostatin. Western blot analysis indicated increased amount of both proteins-myostatin and β-amyloid precursor protein-in muscles of aged animals compared with controls. These findings confirm the presence of age-related morphologic changes in cows similar to human sarcopenia and underline the possible role of amyloid deposition and subsequent inflammation in muscle senescence. PMID:26869152

  10. The role of mitochondria in age-related hearing loss.

    PubMed

    Chen, Hengchao; Tang, Jianguo

    2014-02-01

    Age-related hearing loss (ARHL), the hearing loss associated with aging, is a vital problem in present society. The severity of hearing loss is possibly associated with the degeneration of cochlear cells. Mitochondria play a key role in the energy supply, cellular redox homeostasis, signaling, and regulation of programmed cell death. In this review, we focus on the central role of mitochondria in ARHL. The mitochondrial redox imbalance and mitochondrial DNA mutation might collaboratively involve in the process of cochlear senescence in response to the aging stress. Subsequent responses, including alteration of mitochondrial biogenesis, mitophagy, apoptosis and paraptosis, participate in the aging process from different respects. PMID:24202185

  11. Pathogenesis of Age-Related Bone Loss in Humans

    PubMed Central

    2013-01-01

    Background. Although data from rodent systems are extremely useful in providing insights into possible mechanisms of age-related bone loss, concepts evolving from animal models need to ultimately be tested in humans. Methods. This review provides an update on mechanisms of age-related bone loss in humans based on the author’s knowledge of the field and focused literature reviews. Results. Novel imaging, experimental models, biomarkers, and analytic techniques applied directly to human studies are providing new insights into the patterns of bone mass acquisition and loss as well as the role of sex steroids, in particular estrogen, on bone metabolism and bone loss with aging in women and men. These studies have identified the onset of trabecular bone loss at multiple sites that begins in young adulthood and remains unexplained, at least based on current paradigms of the mechanisms of bone loss. In addition, estrogen appears to be a major regulator of bone metabolism not only in women but also in men. Studies assessing mechanisms of estrogen action on bone in humans have identified effects of estrogen on RANKL expression by several different cell types in the bone microenvironment, a role for TNF-α and IL-1β in mediating effects of estrogen deficiency on bone, and possible regulation of the Wnt inhibitor, sclerostin, by estrogen. Conclusions. There have been considerable advances in our understanding of age-related bone loss in humans. However, there are also significant gaps in knowledge, particularly in defining cell autonomous changes in bone in human studies to test or validate concepts emerging from studies in rodents. Decision Editor: Luigi Ferrucci, MD, PhD PMID:22923429

  12. Age-related alterations in cyclic nucleotide phosphodiesterase activity in dystrophic mouse leg muscle.

    PubMed

    Bloom, Timothy J

    2005-11-01

    Previous reports have described both increased and decreased cyclic nucleotide phosphodiesterase (PDE) activity in dystrophic muscle. Total PDE activity was measured in hind leg muscle from a mouse model of Duchenne muscular dystrophy (mdx) and a genetic control strain at 5, 8, 10, and 15 weeks of age. Total PDE activity declined in fractions isolated from mdx muscle over this time period, but was stable in fractions from control mice. Compared with age-matched controls, younger mdx muscle had higher cAMP and cGMP PDE activity. However, at 15 weeks, fractions from both strains had similar cGMP PDE activity and mdx fractions had lower cAMP PDE activity than controls. Particulate fractions from mdx muscle showed an age-related decline in sensitivity to the PDE4 inhibitor RO 20-1724. A similar loss of sensitivity to the PDE2 inhibitor erythro-9-(2-hydroxyl-3-nonyl)-adenine (EHNA) was seen in a particulate fraction from mdx muscle and to a lesser degree in control muscle. These results suggest that the earlier disagreement regarding altered cyclic nucleotide metabolism in dystrophic muscle may be due to changes with age in PDE activity of dystrophic tissue. The age-related decline in particulate PDE activity seen in dystrophic muscle appears to be isozyme-specific and not due to a generalized decrease in total PDE activity. PMID:16391714

  13. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  14. Mouse forepaw lumbrical muscles are resistant to age-related declines in force production.

    PubMed

    Russell, Katelyn A; Ng, Rainer; Faulkner, John A; Claflin, Dennis R; Mendias, Christopher L

    2015-05-01

    A progressive loss of skeletal muscle mass and force generating capacity occurs with aging. Mice are commonly used in the study of aging-associated changes in muscle size and strength, with most models of aging demonstrating 15-35% reductions in muscle mass, cross-sectional area (CSA), maximum isometric force production (Po) and specific force (sPo), which is Po/CSA. The lumbrical muscle of the mouse forepaw is exceptionally small, with corresponding short diffusion distances that make it ideal for in vitro pharmacological studies and measurements of contractile properties. However, the aging-associated changes in lumbrical function have not previously been reported. To address this, we tested the hypothesis that compared to adult (12month old) mice, the forepaw lumbrical muscles of old (30month old) mice exhibit aging-related declines in size and force production similar to those observed in larger limb muscles. We found that the forepaw lumbricals were composed exclusively of fibers with type II myosin heavy chain isoforms, and that the muscles accumulated connective tissue with aging. There were no differences in the number of fibers per whole-muscle cross-section or in muscle fiber CSA. The whole muscle CSA in old mice was increased by 17%, but the total CSA of all muscle fibers in a whole-muscle cross-section was not different. No difference in Po was observed, and while sPo normalized to total muscle CSA was decreased in old mice by 22%, normalizing Po by the total muscle fiber CSA resulted in no difference in sPo. Combined, these results indicate that forepaw lumbrical muscles from 30month old mice are largely protected from the aging-associated declines in size and force production that are typically observed in larger limb muscles. PMID:25762422

  15. MHCI promotes developmental synapse elimination and aging-related synapse loss at the vertebrate neuromuscular junction.

    PubMed

    Tetruashvily, Mazell M; McDonald, Marin A; Frietze, Karla K; Boulanger, Lisa M

    2016-08-01

    Synapse elimination at the developing neuromuscular junction (NMJ) sculpts motor circuits, and synapse loss at the aging NMJ drives motor impairments that are a major cause of loss of independence in the elderly. Here we provide evidence that at the NMJ, both developmental synapse elimination and aging-related synapse loss are promoted by specific immune proteins, members of the major histocompatibility complex class I (MHCI). MHCI is expressed at the developing NMJ, and three different methods of reducing MHCI function all disrupt synapse elimination during the second postnatal week, leaving some muscle fibers multiply-innervated, despite otherwise outwardly normal synapse formation and maturation. Conversely, overexpressing MHCI modestly accelerates developmental synapse elimination. MHCI levels at the NMJ rise with aging, and reducing MHCI levels ameliorates muscle denervation in aged mice. These findings identify an unexpected role for MHCI in the elimination of neuromuscular synapses during development, and indicate that reducing MHCI levels can preserve youthful innervation of aging muscle. PMID:26802986

  16. The functional consequences of age-related changes in microRNA expression in skeletal muscle.

    PubMed

    Soriano-Arroquia, Ana; House, Louise; Tregilgas, Luke; Canty-Laird, Elizabeth; Goljanek-Whysall, Katarzyna

    2016-06-01

    A common characteristic of ageing is disrupted homeostasis between growth and atrophy of skeletal muscle resulting in loss of muscle mass and function, which is associated with sarcopenia. Sarcopenia is related to impaired balance, increased falls and decline in quality of life of older people. Ageing-related transcriptome and proteome changes in skeletal muscle have been characterised, however the molecular mechanisms underlying sarcopenia are still not fully understood. microRNAs are novel regulators of gene expression known to modulate skeletal muscle development and homeostasis. Expression of numerous microRNAs is disrupted in skeletal muscle with age however, the functional consequences of this are not yet understood. Given that a single microRNA can simultaneously affect multiple signalling pathways, microRNAs are potent modulators of pathophysiological changes occurring during ageing. Here we use microRNA and transcript expression profiling together with microRNA functional assays to show that disrupted microRNA:target interactions play an important role in maintaining muscle homeostasis. We identified miR-181a as a regulator of the sirtuin1 (Sirt1) gene expression in skeletal muscle and show that the expression of miR-181a and its target gene is disrupted in skeletal muscle from old mice. Moreover, we show that miR-181a:Sirt1 interactions regulate myotube size. Our results demonstrate that disrupted microRNA:target interactions are likely related to the pathophysiological changes occurring in skeletal muscle during ageing. PMID:26922183

  17. Protective effect of myostatin gene deletion on aging-related muscle metabolic decline.

    PubMed

    Chabi, B; Pauly, M; Carillon, J; Carnac, G; Favier, F B; Fouret, G; Bonafos, B; Vanterpool, F; Vernus, B; Coudray, C; Feillet-Coudray, C; Bonnieu, A; Lacan, D; Koechlin-Ramonatxo, C

    2016-06-01

    While myostatin gene deletion is a promising therapy to fight muscle loss during aging, this approach induces also skeletal muscle metabolic changes such as mitochondrial deficits, redox alteration and increased fatigability. In the present study, we evaluated the effects of aging on these features in aged wild-type (WT) and mstn knockout (KO) mice. Moreover, to determine whether an enriched-antioxidant diet may be useful to prevent age-related disorders, we orally administered to the two genotypes a melon concentrate rich in superoxide dismutase for 12 weeks. We reported that mitochondrial functional abnormalities persisted (decreased state 3 and 4 of respiration; p<0.05) in skeletal muscle from aged KO mice; however, differences with WT mice were attenuated at old age in line with reduced difference on running endurance between the two genotypes. Interestingly, we showed an increase in glutathione levels, associated with lower lipid peroxidation levels in KO muscle. Enriched antioxidant diet reduced the aging-related negative effects on maximal aerobic velocity and running limit time (p<0.05) in both groups, with systemic adaptations on body weight. The redox status and the hypertrophic phenotype appeared to be beneficial to KO mice, mitigating the effect of aging on the skeletal muscle metabolic remodeling. PMID:26944368

  18. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses.

    PubMed

    Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo

    2013-03-01

    We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing. PMID:23100084

  19. Muscle-specificity of age-related changes in markers of autophagy and sphingolipid metabolism.

    PubMed

    Russ, David W; Boyd, Iva M; McCoy, Katherine M; McCorkle, Katherine W

    2015-12-01

    Our previous findings indicate that the gastrocnemius muscle of aging rats exhibits impairments of muscle quality (force/unit muscle tissue) and autophagy and increased sarcoplasmic reticulum stress. The purpose of this study was to examine age-related changes in soleus muscle contractility and in markers of autophagy in the soleus and gastrocnemius muscles. We assessed in situ muscle force and size in the soleus muscle of adult (7-8 months) and aged (24-26 months) male, F344/BN rats. We used immunoblotting to compare abundance of markers of autophagy, sarcoplasmic reticulum (SR) stress and sphingolipid metabolism in the soleus and medial gastrocnemius (MG) muscles of these animals. Relative to adults, aged rats maintained soleus muscle quality and increased muscle size, resulting in increased tetanic force production. Immunoblotting revealed a general pattern of an age-related reduction of basal autophagy, despite increases in indicators of SR stress and upstream autophagic pathway activation in the MG. The MG also exhibited changes in markers of sphingolipid metabolism suggestive of increased muscle ceramide. Minimal age-related changes were observed in the soleus. The soleus maintains muscle mass and quality with age, and exhibits fewer age-related changes in markers of stress and autophagy than the MG. Based on these data, we suggest that maintenance of autophagy may preserve muscle quality by preventing excessive SR stress. PMID:26296420

  20. Muscle function loss

    MedlinePlus

    ... nervous system that cause muscle function loss include: Amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) Bell's palsy Botulism ... of recent progress. Curr Opin Rheum Read More Amyotrophic lateral sclerosis Botulism Broken bone Guillain-Barré syndrome Muscle cramps ...

  1. Models of Accelerated Sarcopenia: Critical Pieces for Solving the Puzzle of Age-Related Muscle Atrophy

    PubMed Central

    Buford, Thomas W.; Anton, Stephen D.; Judge, Andrew R.; Marzetti, Emanuele; Wohlgemuth, Stephanie E; Carter, Christy S.; Leeuwenburgh, Christiaan; Pahor, Marco; Manini, Todd M.

    2013-01-01

    Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia. PMID:20438881

  2. Neural Alterations in Acquired Age-Related Hearing Loss

    PubMed Central

    Mudar, Raksha A.; Husain, Fatima T.

    2016-01-01

    Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although, we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches. PMID:27313556

  3. Glycolytic fast-twitch muscle fiber restoration counters adverse age-related changes in body composition and metabolism.

    PubMed

    Akasaki, Yuichi; Ouchi, Noriyuki; Izumiya, Yasuhiro; Bernardo, Barbara L; Lebrasseur, Nathan K; Walsh, Kenneth

    2014-02-01

    Aging is associated with the development of insulin resistance, increased adiposity, and accumulation of ectopic lipid deposits in tissues and organs. Starting in mid-life there is a progressive decline in lean muscle mass associated with the preferential loss of glycolytic, fast-twitch myofibers. However, it is not known to what extent muscle loss and metabolic dysfunction are causally related or whether they are independent epiphenomena of the aging process. Here, we utilized a skeletal-muscle-specific, conditional transgenic mouse expressing a constitutively active form of Akt1 to examine the consequences of glycolytic, fast-twitch muscle growth in young vs. middle-aged animals fed standard low-fat chow diets. Activation of the Akt1 transgene led to selective skeletal muscle hypertrophy, reversing the loss of lean muscle mass observed upon aging. The Akt1-mediated increase in muscle mass led to reductions in fat mass and hepatic steatosis in older animals, and corrected age-associated impairments in glucose metabolism. These results indicate that the loss of lean muscle mass is a significant contributor to the development of age-related metabolic dysfunction and that interventions that preserve or restore fast/glycolytic muscle may delay the onset of metabolic disease. PMID:24033924

  4. The aging of elite male athletes: age-related changes in performance and skeletal muscle structure and function

    PubMed Central

    Faulkner, John A.; Davis, Carol S.; Mendias, Christopher L.; Brooks, Susan V.

    2009-01-01

    Objective The paper addresses the degree to which the attainment of the status as an elite athlete in different sports ameliorates the known age-related losses in skeletal muscle structure and function. Design The retrospective design, based on comparisons of published data on former elite and masters athletes and data on control subjects, assessed the degree to which the attainment of ‘elite and masters athlete status’ ameliorated the known age-related changes in skeletal muscle structure and function. Setting Institutional. Participants Elite male athletes. Interventions Participation in selected individual and team sports. Main Outcome Measurements Strength, power, VO2 max and performance. Results For elite athletes in all sports, as for the general population, age-related muscle atrophy begins at about 50 years of age. Despite the loss of muscle mass, elite athletes who maintain an active life style age gracefully with few health problems. Conversely, those who lapse into inactivity regress toward general population norms for fitness, weight control, and health problems. Elite athletes in the dual and team sports have careers that rarely extend into the thirties. Conclusions Life long physical activity does not appear to have any impact on the loss in fiber number. The loss of fibers can be buffered to some degree by hypertrophy of fibers that remain. Surprisingly, the performance of elite athletes in all sports appears to be impaired before the onset of the fiber loss. Even with major losses in physical capacity and muscle mass, the performance of elite and masters athletes is remarkable. PMID:19001883

  5. Volumetric Muscle Loss.

    PubMed

    Pollot, Beth E; Corona, Benjamin T

    2016-01-01

    Volumetric muscle loss (VML) injury is prevalent in severe extremity trauma and is an emerging focus area among orthopedic and regenerative medicine fields. VML injuries are the result of an abrupt, frank loss of tissue and therefore of different etiology from other standard rodent injury models to include eccentric contraction, ischemia reperfusion, crush, and freeze injury. The current focus of many VML-related research efforts is to regenerate the lost muscle tissue and thereby improve muscle strength. Herein, we describe a VML model in the anterior compartment of the hindlimb that is permissible to repeated neuromuscular strength assessments and is validated in mouse, rat, and pig. PMID:27492162

  6. Age-Related Hearing Loss: Quality of Care for Quality of Life

    ERIC Educational Resources Information Center

    Li-Korotky, Ha-Sheng

    2012-01-01

    Age-related hearing loss (ARHL), known as presbycusis, is characterized by progressive deterioration of auditory sensitivity, loss of the auditory sensory cells, and central processing functions associated with the aging process. ARHL is the third most prevalent chronic condition in older Americans, after hypertension and arthritis, and is a…

  7. Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity.

    PubMed

    Jeong, Hyeon-Ju; Lee, Hye-Jin; Vuong, Tuan Anh; Choi, Kyu-Sil; Choi, Dahee; Koo, Sung-Hoi; Cho, Sung Chun; Cho, Hana; Kang, Jong-Sun

    2016-07-01

    Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α. PMID:27207521

  8. Potential mechanisms underlying the role of chronic inflammation in age-related muscle wasting.

    PubMed

    Jo, Edward; Lee, Sang-Rok; Park, Bong-Sup; Kim, Jeong-Su

    2012-10-01

    Sarcopenia, an age-related condition characterized by progressive skeletal muscle degeneration, might exist as one of the primary clinical conditions underlying severe functional impairment as well as increased risk of co-morbidities in the elderly. Although the etiology of sarcopenia remains multifaceted, age-related chronic inflammation has been strongly implicated in muscle wasting and related sequelae during advanced age. Recent evidence suggests that aberrant, unresolved alterations in regular inflammatory processes during advanced age might ultimately operate as the link that drives skeletal muscle to become more degenerative and dysfunctional in nature. Such negative atrophic muscular outcomes might result from inflammation-induced disruption of central mechanisms regulating skeletal muscle morphology and remodeling. In addition, recent findings demonstrate an adverse confluence between sarcopenia and excessive adiposity (i.e. sarcopenic obesity), as the co-existence of such adverse alterations in body composition may exacerbate systemic inflammation and muscle wasting in the elderly. The following evidence-based review serves to examine sarcopenia from a mechanistic perspective with emphasis on chronic inflammation. PMID:22717404

  9. Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction.

    PubMed

    Watanabe, Kohei; Holobar, Aleš; Kouzaki, Motoki; Ogawa, Madoka; Akima, Hiroshi; Moritani, Toshio

    2016-06-01

    Age-related changes in motor unit activation properties remain unclear for locomotor muscles such as quadriceps muscles, although these muscles are preferentially atrophied with aging and play important roles in daily living movements. The present study investigated and compared detailed motor unit firing characteristics for the vastus lateralis muscle during isometric contraction at low to moderate force levels in the elderly and young. Fourteen healthy elderly men and 15 healthy young men performed isometric ramp-up contraction to 70 % of the maximal voluntary contractions (MVC) during knee extension. Multichannel surface electromyograms were recorded from the vastus lateralis muscle using a two-dimensional grid of 64 electrodes and decomposed with the convolution kernel compensation technique to extract individual motor units. Motor unit firing rates in the young were significantly higher (~+29.7 %) than in the elderly (p < 0.05). There were significant differences in firing rates among motor units with different recruitment thresholds at each force level in the young (p < 0.05) but not in the elderly (p > 0.05). Firing rates at 60 % of the MVC force level for the motor units recruited at <20 % of MVC were significantly correlated with MVC force in the elderly (r = 0.885, p < 0.0001) but not in the young (r = 0.127, p > 0.05). These results suggest that the motor unit firing rate in the vastus lateralis muscle is affected by aging and muscle strength in the elderly and/or age-related strength loss is related to motor unit firing/recruitment properties. PMID:27084115

  10. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    PubMed Central

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  11. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation.

    PubMed

    Fan, Ruoxun; Gong, He; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  12. Detection of age-related duplications in mtDNA from human muscles and bones.

    PubMed

    Lacan, Marie; Thèves, Catherine; Keyser, Christine; Farrugia, Audrey; Baraybar, Jose-Pablo; Crubézy, Eric; Ludes, Bertrand

    2011-03-01

    Several studies have demonstrated the age-related accumulation of duplications in the D-loop of mitochondrial DNA (mtDNA) extracted from skeletal muscle. This kind of mutation had not yet been studied in bone. The detection of age-related mutations in bone tissue could help to estimate age at death within the context of legal medicine or/and anthropological identification procedures, when traditional osteological markers studied are absent or inefficient. As we detected an accumulation of a point mutation in mtDNA from an older individual's bones in a previous study, we tried here to identify if three reported duplications (150, 190, 260 bp) accumulate in this type of tissue. We developed a sensitive method which consists in the use of back-to-back primers during amplification followed by an electrophoresis capillary analysis. The aim of this study was to confirm that at least one duplication appears systematically in muscle tissue after the age of 20 and to evaluate the duplication age appearance in bones extracted from the same individuals. We found that the number of duplications increase from 38 years and that at least one duplicated fragment is present in 50% of cases after 70 years in this tissue. These results confirm that several age-related mutations can be detected in the D-loop of mtDNA and open the way for the use of molecular markers for age estimation in forensic and/or anthropological identification. PMID:20358214

  13. Age-related hearing impairment and the triad of acquired hearing loss

    PubMed Central

    Yang, Chao-Hui; Schrepfer, Thomas; Schacht, Jochen

    2015-01-01

    Understanding underlying pathological mechanisms is prerequisite for a sensible design of protective therapies against hearing loss. The triad of age-related, noise-generated, and drug-induced hearing loss displays intriguing similarities in some cellular responses of cochlear sensory cells such as a potential involvement of reactive oxygen species (ROS) and apoptotic and necrotic cell death. On the other hand, detailed studies have revealed that molecular pathways are considerably complex and, importantly, it has become clear that pharmacological protection successful against one form of hearing loss will not necessarily protect against another. This review will summarize pathological and pathophysiological features of age-related hearing impairment (ARHI) in human and animal models and address selected aspects of the commonality (or lack thereof) of cellular responses in ARHI to drugs and noise. PMID:26283913

  14. Cumulative Lead Exposure and Age-related Hearing Loss: The VA Normative Aging Study

    PubMed Central

    Park, Sung Kyun; Elmarsafawy, Sahar; Mukherjee, Bhramar; Spiro, Avron; Vokonas, Pantel S.; Nie, Huiling; Weisskopf, Marc G.; Schwartz, Joel; Hu, Howard

    2010-01-01

    Although lead has been associated with hearing loss in occupational settings and in children, little epidemiologic research has been conducted on the impact of cumulative lead exposure on age-related hearing loss in the general population. We determined whether bone lead levels, a marker of cumulative lead exposure, are associated with decreased hearing ability in 448 men from the Normative Aging Study, seen between 1962 and 1996 (2,264 total observations). Air conduction hearing thresholds were measured at 0.25 to 8 kHz and pure tone averages (PTA) (mean of 0.5, 1, 2 and 4 kHz) were computed. Tibia and patella lead levels were measured using K x-ray fluorescence between 1991 and 1996. In cross-sectional analyses, after adjusting for potential confounders including occupational noise, patella lead levels were significantly associated with poorer hearing thresholds at 2, 3, 4, 6 and 8 kHz and PTA. The odds of hearing loss significantly increased with patella lead levels. We also found significant positive associations between tibia lead and the rate change in hearing thresholds at 1, 2, and 8 kHz and PTA in longitudinal analyses. Our results suggest that chronic low-level lead exposure may be an important risk factor for age-related hearing loss and reduction of lead exposure could help prevent or delay development of age-related hearing loss. PMID:20638461

  15. Antioxidant-enriched diet does not delay the progression of age-related hearing loss.

    PubMed

    Sha, Su-Hua; Kanicki, Ariane; Halsey, Karin; Wearne, Kimberly Anne; Schacht, Jochen

    2012-05-01

    Oxidative stress has been linked to noise- and drug-induced as well as age-related hearing loss. Antioxidants can attenuate the decline of cochlear structure and function after exposure to noise or drugs, but it is debated as to whether they can protect from age-related hearing loss. In a long-term longitudinal study, 10-month-old female CBA/J mice were placed on either a control or antioxidant-enriched diet and monitored through 24 months of age. Supplementation with vitamins A, C, and E, L-carnitine, and α-lipoic acid significantly increased the antioxidant capacity of inner ear tissues. However, by 24 months of age, the magnitude of hearing loss was equal between the two groups. Likewise, there were no significant differences in hair cell loss or degeneration of spiral ganglion cells. We conclude that dietary manipulations can alter cochlear antioxidant capacity but do not ameliorate age-related sensorineural hearing loss in the CBA/J mouse. PMID:22154190

  16. Effects of chronic estrogen treatment on modulating age-related bone loss in female mice.

    PubMed

    Syed, Farhan A; Mödder, Ulrike Il; Roforth, Matthew; Hensen, Ira; Fraser, Daniel G; Peterson, James M; Oursler, Merry Jo; Khosla, Sundeep

    2010-11-01

    While female mice do not have the equivalent of a menopause, they do undergo reproductive senescence. Thus, to dissociate the effects of aging versus estrogen deficiency on age-related bone loss, we sham-operated, ovariectomized, or ovariectomized and estrogen-replaced female C57/BL6 mice at 6 months of age and followed them to age 18 to 22 months. Lumbar spines and femurs were excised for analysis, and bone marrow hematopoietic lineage negative (lin-) cells (enriched for osteoprogenitor cells) were isolated for gene expression studies. Six-month-old intact control mice were euthanized to define baseline parameters. Compared with young mice, aged/sham-operated mice had a 42% reduction in lumbar spine bone volume/total volume (BV/TV), and maintaining constant estrogen levels over life in ovariectomized/estrogen-treated mice did not prevent age-related trabecular bone loss at this site. By contrast, lifelong estrogen treatment of ovariectomized mice completely prevented the age-related reduction in cortical volumetric bone mineral density (vBMD) and thickness at the tibial diaphysis present in the aged/sham-operated mice. As compared with cells from young mice, lin- cells from aged/sham-operated mice expressed significantly higher mRNA levels for osteoblast differentiation and proliferation marker genes. These data thus demonstrate that, in mice, age-related loss of cortical bone in the appendicular skeleton, but not loss of trabecular bone in the spine, can be prevented by maintaining constant estrogen levels over life. The observed increase in osteoblastic differentiation and proliferation marker gene expression in progenitor bone marrow cells from aged versus young mice may represent a compensatory mechanism in response to ongoing bone loss. PMID:20499336

  17. Gulliver meets Descartes: early modern concepts of age-related memory loss.

    PubMed

    Schäfer, Daniel

    2003-03-01

    Age-related memory loss was a marginal issue in medical discussions during early modern times and until well into the second half of the 17th century. There are many possible explanations: the lack of similar traditions in antiquity and in the Middle Ages, insufficient physiological and morphological knowledge of the brain, and the underlying conflict between idealistic and materialistic perspectives on the functions of the soul and the conditions of these in old age. After these boundaries had been pushed back by the influence of Cartesianism and Iatromechanism, the problem of age-related memory loss was increasingly regarded as a physical illness and began to receive more attention. This trend first occurred in medicine, before spreading to the literary world, where the novel "Gulliver's Travels" is one clear and famous example. PMID:12785108

  18. Age-Related Weakness of Proximal Muscle Studied with Motor Cortical Mapping: A TMS Study

    PubMed Central

    Plow, Ela B.; Varnerin, Nicole; Cunningham, David A.; Janini, Daniel; Bonnett, Corin; Wyant, Alexandria; Hou, Juliet; Siemionow, Vlodek; Wang, Xiao-Feng; Machado, Andre G.; Yue, Guang H.

    2014-01-01

    Aging-related weakness is due in part to degeneration within the central nervous system. However, it is unknown how changes to the representation of corticospinal output in the primary motor cortex (M1) relate to such weakness. Transcranial magnetic stimulation (TMS) is a noninvasive method of cortical stimulation that can map representation of corticospinal output devoted to a muscle. Using TMS, we examined age-related alterations in maps devoted to biceps brachii muscle to determine whether they predicted its age-induced weakness. Forty-seven right-handed subjects participated: 20 young (22.6±0.90 years) and 27 old (74.96±1.35 years). We measured strength as force of elbow flexion and electromyographic activation of biceps brachii during maximum voluntary contraction. Mapping variables included: 1) center of gravity or weighted mean location of corticospinal output, 2) size of map, 3) volume or excitation of corticospinal output, and 4) response density or corticospinal excitation per unit area. Center of gravity was more anterior in old than in young (p<0.001), though there was no significant difference in strength between the age groups. Map size, volume, and response density showed no significant difference between groups. Regardless of age, center of gravity significantly predicted strength (β = −0.34, p = 0.005), while volume adjacent to the core of map predicted voluntary activation of biceps (β = 0.32, p = 0.008). Overall, the anterior shift of the map in older adults may reflect an adaptive change that allowed for the maintenance of strength. Laterally located center of gravity and higher excitation in the region adjacent to the core in weaker individuals could reflect compensatory recruitment of synergistic muscles. Thus, our study substantiates the role of M1 in adapting to aging-related weakness and subtending strength and muscle activation across age groups. Mapping from M1 may offer foundation for an examination of mechanisms

  19. Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle.

    PubMed

    Chalil, Sreeda; Pierre, Nicolas; Bakker, Astrid D; Manders, Ralph J; Pletsers, Annelies; Francaux, Marc; Klein-Nulend, Jenneke; Jaspers, Richard T; Deldicque, Louise

    2015-12-25

    Anabolic resistance reflects the inability of skeletal muscle to maintain protein mass by appropriate stimulation of protein synthesis. We hypothesized that endoplasmic reticulum (ER) stress contributes to anabolic resistance in skeletal muscle with aging. Muscles were isolated from adult (8 mo) and old (26 mo) mice and weighed. ER stress markers in each muscle were quantified, and the anabolic response to leucine was assessed by measuring the phosphorylation state of S6K1 in soleus and EDL using an ex vivo muscle model. Aging reduced the muscle-to-body weight ratio in soleus, gastrocnemius, and plantaris, but not in EDL and tibialis anterior. Compared to adult mice, the expression of ER stress markers BiP and IRE1α was higher in EDL, and phospho-eIF2α was higher in soleus and EDL of old mice. S6K1 response to leucine was impaired in soleus, but not in EDL, suggesting that anabolic resistance contributes to soleus weight loss in old mice. Pre-incubation with ER stress inducer tunicamycin before leucine stimulation increased S6K1 phosphorylation beyond the level reached by leucine alone. Since tunicamycin did not impair leucine-induced S6K1 response, and based on the different ER stress marker regulation patterns, ER stress is probably not involved in anabolic resistance in skeletal muscle with aging. PMID:26551463

  20. Superoxide Dismutase 1 Loss Disturbs Intracellular Redox Signaling, Resulting in Global Age-Related Pathological Changes

    PubMed Central

    2014-01-01

    Aging is characterized by increased oxidative stress, chronic inflammation, and organ dysfunction, which occur in a progressive and irreversible manner. Superoxide dismutase (SOD) serves as a major antioxidant and neutralizes superoxide radicals throughout the body. In vivo studies have demonstrated that copper/zinc superoxide dismutase-deficient (Sod1−/−) mice show various aging-like pathologies, accompanied by augmentation of oxidative damage in organs. We found that antioxidant treatment significantly attenuated the age-related tissue changes and oxidative damage-associated p53 upregulation in Sod1−/− mice. This review will focus on various age-related pathologies caused by the loss of Sod1 and will discuss the molecular mechanisms underlying the pathogenesis in Sod1−/− mice. PMID:25276767

  1. I owe you: age-related similarities and differences in associative memory for gains and losses.

    PubMed

    Castel, Alan D; Friedman, Michael C; McGillivray, Shannon; Flores, Cynthia C; Murayama, Kou; Kerr, Tyson; Drolet, Aimee

    2016-09-01

    Older adults often experience associative memory impairments but can sometimes remember important information. The current experiments investigate potential age-related similarities and differences associate memory for gains and losses. Younger and older participants were presented with faces and associated dollar amounts, which indicated how much money the person "owed" the participant, and were later given a cued recall test for the dollar amount. Experiment 1 examined face-dollar amount pairs while Experiment 2 included negative dollar amounts to examine both gains and losses. While younger adults recalled more information relative to older adults, both groups were more accurate in recalling the correct value associated with high-value faces compared to lower-value faces and remembered gist-information about the values. However, negative values (losses) did not have a strong impact on recall among older adults versus younger adults, illustrating important associative memory differences between younger and older adults. PMID:26847137

  2. Oxidative Stresses and Mitochondrial Dysfunction in Age-Related Hearing Loss

    PubMed Central

    Fujimoto, Chisato

    2014-01-01

    Age-related hearing loss (ARHL), the progressive loss of hearing associated with aging, is the most common sensory disorder in the elderly population. The pathology of ARHL includes the hair cells of the organ of Corti, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. Many studies have suggested that the accumulation of mitochondrial DNA damage, the production of reactive oxygen species, and decreased antioxidant function are associated with subsequent cochlear senescence in response to aging stress. Mitochondria play a crucial role in the induction of intrinsic apoptosis in cochlear cells. ARHL can be prevented in laboratory animals by certain interventions, such as caloric restriction and supplementation with antioxidants. In this review, we will focus on previous research concerning the role of the oxidative stress and mitochondrial dysfunction in the pathology of ARHL in both animal models and humans and introduce concepts that have recently emerged regarding the mechanisms of the development of ARHL. PMID:25110550

  3. Understanding the Experience of Age-Related Vestibular Loss in Older Individuals: A Qualitative Study

    PubMed Central

    Li, Carol; Bridges, John F. P.; Agrawal, Yuri

    2016-01-01

    Background Inner ear balance (or vestibular) function declines with age and is associated with decreased mobility and an increased risk of falls in older individuals. We sought to understand the lived experience of older adults with vestibular loss in order to improve care in this population. Methods Qualitative data were derived from semi-structured interviews of individuals aged 65 years or older presenting to the Balance and Falls Prevention Clinic from February 1, 2014 to March 30, 2015 for evaluation of age-related vestibular loss. Transcripts were analyzed using interpretive phenomenological analysis. We created a taxonomy of overarching superordinate themes based on the World Health Organization's International Classification of Functioning, Disability, and Health (ICF) Framework, and classified key dimensions within each of these themes. Results Sixteen interviews were conducted with individuals (mean age 76.0 years, 75 % female) with age-related vestibular loss. The three superordinate themes and associated key dimensions were (1) body impairment (including depression, fatigue, fear/anxiety, and problems with concentrating and memory); (2) activity limitation and participation restriction (isolation, needing to stop in the middle of activities, reduced participation relative to expectations, reduced ability to drive or travel, and problems with bending/looking up, standing, and walking); and (3) environmental influences (needing help with daily activities). All participants reported difficulty walking. Conclusions Older adults report that vestibular loss impacts their body functioning and restricts their participation in activities. The specific key dimensions uncovered by this qualitative study can be used to evaluate care from the patient's perspective. PMID:26739817

  4. Age-related decline in muscle mass and muscle function in Flemish Caucasians: a 10-year follow-up.

    PubMed

    Charlier, Ruben; Knaeps, Sara; Mertens, Evelien; Van Roie, Evelien; Delecluse, Christophe; Lefevre, Johan; Thomis, Martine

    2016-04-01

    Aging is a complex process that is accompanied with changes in both muscle mass and muscle function (strength and performance). Therefore, the current longitudinal study aimed to provide a better insight in 10-year aging-related changes in whole-body muscle mass and strength performance of the leg extensors during the adult life span. Data were gathered within the framework of the first- (2002-2004: baseline) and third-generation Flemish Policy Research Center Sport (2012-2014: follow-up). Results are based on muscle characteristics data of 591 Flemish Caucasian adults (19-73 years, 381 men). Skeletal muscle mass (SMM) was determined with bioelectrical impedance analysis. Biodex Medical System 3® dynamometer was used to measure isometric (PTstatic120°) and isokinetic (PTdynamic60° and PTdynamic240°) strength, ballistic movement speed (S 20 %), and muscular endurance (work) of the knee extensors. Overall strength performance was higher at both evaluation moments in men compared to women (p < 0.01). But only S 20 % declined significantly faster in men compared to women (p < 0.01). Age and baseline strength performance were negatively related with the change in strength performance, even when corrected for SMM, protein intake, and energy expenditure during sports (E sport). In conclusion, strength performance was not associated with E sport in this study, but protein intake was associated with isometric strength in men, and with ballistic and isokinetic strength in women. Changes in S 20 % were significantly greater in men compared to women. Baseline values of strength performance and age were associated with changes in strength performance parameters, even after correction for SMM, protein intake, and E sport. PMID:26961694

  5. Long-term treatment with aldosterone slows the progression of age-related hearing loss.

    PubMed

    Halonen, Joshua; Hinton, Ashley S; Frisina, Robert D; Ding, Bo; Zhu, Xiaoxia; Walton, Joseph P

    2016-06-01

    Age-related hearing loss (ARHL), clinically referred to as presbycusis, is one of the three most prevalent chronic medical conditions of our elderly, with the majority of persons over the age of 60 suffering from some degree of ARHL. The progressive loss of auditory sensitivity and perceptual capability results in significant declines in workplace productivity, quality of life, cognition and abilities to communicate effectively. Aldosterone is a mineralocorticoid hormone produced in the adrenal glands and plays a role in the maintenance of key ion pumps, including the Na-K(+)-Cl co-transporter 1 or NKCC1, which is involved in homeostatic maintenance of the endocochlear potential. Previously we reported that aldosterone (1 μM) increases NKCC1 protein expression in vitro and that this up-regulation of NKCC1 was not dose-dependent (dosing range from 1 nM to 100 μM). In the current study we measured behavioral and electrophysiological hearing function in middle-aged mice following long-term systemic treatment with aldosterone. We also confirmed that blood pressure remained stable during treatment and that NKCC1 protein expression was upregulated. Pre-pulse inhibition of the acoustic startle response was used as a functional measure of hearing, and the auditory brainstem response was used as an objective measure of peripheral sensitivity. Long-term treatment with aldosterone improved both behavioral and physiological measures of hearing (ABR thresholds). These results are the first to demonstrate a protective effect of aldosterone on age-related hearing loss and pave the way for translational drug development, using aldosterone as a key component to prevent or slow down the progression of ARHL. PMID:27157488

  6. Aging-related gains and losses associated with word production in connected speech.

    PubMed

    Dennis, Paul A; Hess, Thomas M

    2016-11-01

    Older adults have been observed to use more nonnormative, or atypical, words than younger adults in connected speech. We examined whether aging-related losses in word-finding abilities or gains in language expertise underlie these age differences. Sixty younger and 60 older adults described two neutral photographs. These descriptions were processed into word types, and textual analysis was used to identify interrupted speech (e.g., pauses), reflecting word-finding difficulty. Word types were assessed for normativeness, with nonnormative word types defined as those used by six (5%) or fewer participants to describe a particular picture. Accuracy and precision ratings were provided by another sample of 48 high-vocabulary younger and older adults. Older adults produced more interrupted and, as predicted, nonnormative words than younger adults. Older adults were more likely than younger adults to use nonnormative language via interrupted speech, suggesting a compensatory process. However, older adults' nonnormative words were more precise and trended for having higher accuracy, reflecting expertise. In tasks offering response flexibility, like connected speech, older adults may be able to offset instances of aging-related deficits by maximizing their expertise in other instances. PMID:26963869

  7. Association of Vision Loss in Glaucoma and Age-Related Macular Degeneration with IADL Disability

    PubMed Central

    Hochberg, Chad; Maul, Eugenio; Chan, Emilie S.; Van Landingham, Suzanne; Ferrucci, Luigi; Friedman, David S.; Ramulu, Pradeep Y.

    2012-01-01

    Purpose. To determine if glaucoma and/or age-related macular degeneration (AMD) are associated with disability in instrumental activities of daily living (IADLs). Methods. Glaucoma subjects (n = 84) with bilateral visual field (VF) loss and AMD subjects (n = 47) with bilateral or severe unilateral visual acuity (VA) loss were compared with 60 subjects with normal vision (controls). Subjects completed a standard IADL disability questionnaire, with disability defined as an inability to perform one or more IADLs unassisted. Results. Disability in one or more IADLs was present in 18.3% of controls as compared with 25.0% of glaucoma subjects (P = 0.34) and 44.7% of AMD subjects (P = 0.003). The specific IADL disabilities occurring more frequently in both AMD and glaucoma subjects were preparing meals, grocery shopping, and out-of-home travelling (P < 0.05 for both). In multivariate logistic regression models run adjusting for age, sex, mental status, comorbidity, and years of education, AMD (odds ratio [OR] = 3.4, P = 0.02) but not glaucoma (OR = 1.4, P = 0.45) was associated with IADL disability. However, among glaucoma and control patients, the odds of IADL disability increased 1.6-fold with every 5 dB of VF loss in the better-seeing eye (P = 0.001). Additionally, severe glaucoma subjects (better-eye MD worse than −13.5 dB) had higher odds of IADL disability (OR = 4.2, P = 0.02). Among AMD and control subjects, every Early Treatment of Diabetic Retinopathy Study line of worse acuity was associated with a greater likelihood of IADL disability (OR = 1.3). Conclusions. VA loss in AMD and severe VF loss in glaucoma are associated with self-reported difficulties with IADLs. These limitations become more likely with increasing magnitude of VA or VF loss. PMID:22491415

  8. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration.

    PubMed

    Ikemoto-Uezumi, Madoka; Uezumi, Akiyoshi; Tsuchida, Kunihiro; Fukada, So-ichiro; Yamamoto, Hiroshi; Yamamoto, Naoki; Shiomi, Kosuke; Hashimoto, Naohiro

    2015-08-01

    Sarcopenia, age-related muscle weakness, increases the frequency of falls and fractures in elderly people, which can trigger severe muscle injury. Rapid and successful recovery from muscle injury is essential not to cause further frailty and loss of independence. In fact, we showed insufficient muscle regeneration in aged mice. Although the number of satellite cells, muscle stem cells, decreases with age, the remaining satellite cells maintain the myogenic capacity equivalent to young mice. Transplantation of young green fluorescent protein (GFP)-Tg mice-derived satellite cells into young and aged mice revealed that age-related deterioration of the muscle environment contributes to the decline in regenerative capacity of satellite cells. Thus, extrinsic changes rather than intrinsic changes in satellite cells appear to be a major determinant of inefficient muscle regeneration with age. Comprehensive protein expression analysis identified a decrease in insulin-like growth factor-II (IGF-II) level in regenerating muscle of aged mice. We found that pro- and big-IGF-II but not mature IGF-II specifically express during muscle regeneration and the expressions are not only delayed but also decreased in absolute quantity with age. Supplementation of pro-IGF-II in aged mice ameliorated the inefficient regenerative response by promoting proliferation of satellite cells, angiogenesis, and suppressing adipogenic differentiation of platelet derived growth factor receptor (PDGFR)α(+) mesenchymal progenitors. We further revealed that pro-IGF-II but not mature IGF-II specifically inhibits the pathological adipogenesis of PDGFRα(+) cells. Together, these results uncovered a distinctive pro-IGF-II-mediated self-reinforcement mechanism of muscle regeneration and suggest that supplementation of pro-IGF-II could be one of the most effective therapeutic approaches for muscle injury in elderly people. PMID:25917344

  9. Sporadic Visual Acuity Loss in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT)

    PubMed Central

    Kim, Benjamin J.; Ying, Gui-Shuang; Huang, Jiayan; Levy, Nicole E.; Maguire, Maureen G.

    2014-01-01

    Purpose To evaluate transient, large visual acuity (VA) decreases, termed sporadic vision loss, during anti-vascular endothelial growth factor treatment for neovascular age-related macular degeneration (AMD). Design Cohort within a randomized clinical trial. Methods Setting Comparison of AMD Treatments Trials (CATT). Study Population 1185 CATT patients. Main Outcome Measures incidence of sporadic vision loss and odds ratio (OR) for association with patient and ocular factors. Sporadic vision loss was a decline of ≥ 15 letters from the previous visit, followed by a return at the next visit to no more than 5 letters worse than the visit before the VA loss. Results There were 143 sporadic vision loss events in 122/1185 (10.3%) patients. Mean VA at two years for those with and without sporadic vision loss was 58.5 (~20/63) and 68.4 (~20/40) letters, respectively (P < 0.001). Among patients treated pro re nata, no injection was given for 27.6% (27/98) of sporadic vision loss events. Multivariate analysis demonstrated that baseline predictors for sporadic vision loss included worse baseline VA (OR 2.92, 95%CI:1.65–5.17 for ≤ 20/200 compared with ≥ 20/40), scar (OR 2.21, 95%CI:1.22–4.01), intraretinal foveal fluid on optical coherence tomography (OR 1.80, 95%CI:1.11–2.91), and medical history of anxiety (OR 1.90, 95%CI:1.12–3.24) and syncope (OR 2.75, 95%CI:1.45–5.22). Refraction decreased the likelihood of sporadic vision loss (OR 0.62, 95%CI:0.42–0.91). Conclusions Approximately 10% of CATT patients had sporadic vision loss. Baseline predictors included AMD-related factors and factors independent of AMD. These data are relevant for clinicians in practice and those involved in clinical trials. PMID:24727261

  10. Hair Cell Overexpression of Islet1 Reduces Age-Related and Noise-Induced Hearing Loss

    PubMed Central

    Huang, Mingqian; Kantardzhieva, Albena; Scheffer, Deborah; Liberman, M. Charles

    2013-01-01

    Isl1 is a LIM-homeodomain transcription factor that is critical in the development and differentiation of multiple tissues. In the mouse inner ear, Isl1 is expressed in the prosensory region of otocyst, in young hair cells and supporting cells, and is no longer expressed in postnatal auditory hair cells. To evaluate how continuous Isl1 expression in postnatal hair cells affects hair cell development and cochlear function, we created a transgenic mouse model in which the Pou4f3 promoter drives Isl1 overexpression specifically in hair cells. Isl1 overexpressing hair cells develop normally, as seen by morphology and cochlear functions (auditory brainstem response and otoacoustic emissions). As the mice aged to 17 months, wild-type (WT) controls showed the progressive threshold elevation and outer hair cell loss characteristic of the age-related hearing loss (ARHL) in the background strain (C57BL/6J). In contrast, the Isl1 transgenic mice showed significantly less threshold elevation with survival of hair cells. Further, the Isl1 overexpression protected the ear from noise-induced hearing loss (NIHL): both ABR threshold shifts and hair cell death were significantly reduced when compared with WT littermates. Our model suggests a common mechanism underlying ARHL and NIHL, and provides evidence that hair cell-specific Isl1 expression can promote hair cell survival and therefore minimize the hearing impairment that normally occurs with aging and/or acoustic overexposure. PMID:24048839

  11. Age-related differences in muscle control of the lower extremity for support and propulsion during walking

    PubMed Central

    Toda, Haruki; Nagano, Akinori; Luo, Zhiwei

    2016-01-01

    [Purpose] This study examined age-related differences in muscle control for support and propulsion during walking in both males and females in order to develop optimal exercise regimens for muscle control. [Subjects and Methods] Twenty elderly people and 20 young people participated in this study. Coordinates of anatomical landmarks and ground reaction force during walking were obtained using a 3D motion analysis system and force plates. Muscle forces during walking were estimated using OpenSim. Muscle modules were obtained by using non-negative matrix factorization analysis. A two-way analysis of covariance was performed to examine the difference between the elderly and the young in muscle weightings using walking speed as a covariate. The similarities in activation timing profiles between the elderly and the young were analyzed by cross-correlation analysis in males and females. [Results] In the elderly, there was a change in the coordination of muscles around the ankle, and muscles of the lower extremity exhibited co-contraction in late stance. Timing and shape of these modules were similar between elderly and young people. [Conclusion] Our results suggested that age-related alteration of muscle control was associated with support and propulsion during walking. PMID:27134360

  12. Age-related differences in muscle control of the lower extremity for support and propulsion during walking.

    PubMed

    Toda, Haruki; Nagano, Akinori; Luo, Zhiwei

    2016-03-01

    [Purpose] This study examined age-related differences in muscle control for support and propulsion during walking in both males and females in order to develop optimal exercise regimens for muscle control. [Subjects and Methods] Twenty elderly people and 20 young people participated in this study. Coordinates of anatomical landmarks and ground reaction force during walking were obtained using a 3D motion analysis system and force plates. Muscle forces during walking were estimated using OpenSim. Muscle modules were obtained by using non-negative matrix factorization analysis. A two-way analysis of covariance was performed to examine the difference between the elderly and the young in muscle weightings using walking speed as a covariate. The similarities in activation timing profiles between the elderly and the young were analyzed by cross-correlation analysis in males and females. [Results] In the elderly, there was a change in the coordination of muscles around the ankle, and muscles of the lower extremity exhibited co-contraction in late stance. Timing and shape of these modules were similar between elderly and young people. [Conclusion] Our results suggested that age-related alteration of muscle control was associated with support and propulsion during walking. PMID:27134360

  13. Is the age-related loss in olfactory sensitivity similar for light and heavy molecules?

    PubMed

    Sinding, Charlotte; Puschmann, Laura; Hummel, Thomas

    2014-06-01

    The process of aging affects olfaction quite early and can lead to a major handicap. One may ask whether olfactory loss is general or if it affects some odors more specifically? We investigated whether an age-related increase in olfactory threshold could be more or less specific to heavy or light molecules, based on the idea that these odors would bind differently to olfactory receptors. One group of 30 older subjects (50-70 years) and one group of 30 young adults (18-30 years) were tested for their threshold to 4 odors. Two odorants were light molecules (<150 g/mol) and the 2 others were heavy molecules (>150 g/mol). Both sets contained a single molecule and a binary mixture. Older subjects performed worse than young adults in an odor identification task, confirming a decline in the olfactory function. As a major result, young adults were as sensitive to light and heavy molecules; on the contrary, older subjects were less sensitive to heavy molecules (single molecule and binary mixture). The results suggest that older people present a heterogeneous olfactory loss more specific to heavier molecules. PMID:24803088

  14. Investigation of age-related changes in LMNA splicing and expression of progerin in human skeletal muscles.

    PubMed

    Luo, Yue-Bei; Mitrpant, Chalermchai; Johnsen, Russell D; Fabian, Victoria A; Fletcher, Sue; Mastaglia, Frank L; Wilton, Steve D

    2013-01-01

    Age-related changes in splice-forms of LMNA, which encodes the nuclear lamina proteins lamin A/C, have not been investigated in skeletal muscle. In the rare premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS), de novo point mutations in LMNA activate a cryptic splice site in exon 11, resulting in a 150 base deletion in LMNA mRNA and accumulation of a truncated protein isoform, progerin. The LMNA Δ150 progerin transcript has also been found in trace quantities in tissues of healthy people and its implication in 'natural' ageing has been proposed. We therefore investigated the expression of progerin and lamin A/C in normal human and mouse skeletal muscles of different ages. LMNA Δ150 was detected in most muscle samples from healthy individuals aged 16-71 years, but was not present in any mouse muscle samples up to the age of 18 months. Real time qPCR of human muscle samples showed that there was an age-related increase in both the full length lamin A and LMNA Δ150 transcripts, whereas their protein levels did not change significantly with age. These findings indicate that there is a basal level of mis-splicing during LMNA expression that does not change with ageing in human muscle, but at levels that do not result in increased aberrant protein. The significance of these findings in the pathophysiology of muscle ageing is uncertain and warrants further investigation. PMID:24294364

  15. Investigation of age-related changes in LMNA splicing and expression of progerin in human skeletal muscles

    PubMed Central

    Luo, Yue-Bei; Mitrpant, Chalermchai; Johnsen, Russell D; Fabian, Victoria A; Fletcher, Sue; Mastaglia, Frank L; Wilton, Steve D

    2013-01-01

    Age-related changes in splice-forms of LMNA, which encodes the nuclear lamina proteins lamin A/C, have not been investigated in skeletal muscle. In the rare premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS), de novo point mutations in LMNA activate a cryptic splice site in exon 11, resulting in a 150 base deletion in LMNA mRNA and accumulation of a truncated protein isoform, progerin. The LMNA Δ150 progerin transcript has also been found in trace quantities in tissues of healthy people and its implication in ‘natural’ ageing has been proposed. We therefore investigated the expression of progerin and lamin A/C in normal human and mouse skeletal muscles of different ages. LMNA Δ150 was detected in most muscle samples from healthy individuals aged 16-71 years, but was not present in any mouse muscle samples up to the age of 18 months. Real time qPCR of human muscle samples showed that there was an age-related increase in both the full length lamin A and LMNA Δ150 transcripts, whereas their protein levels did not change significantly with age. These findings indicate that there is a basal level of mis-splicing during LMNA expression that does not change with ageing in human muscle, but at levels that do not result in increased aberrant protein. The significance of these findings in the pathophysiology of muscle ageing is uncertain and warrants further investigation. PMID:24294364

  16. Differences in age-related fiber atrophy between vastii muscles of active subjects: a multichannel surface EMG study.

    PubMed

    Boccia, Gennaro; Dardanello, Davide; Coratella, Giuseppe; Rinaldo, Nicoletta; Schena, Federico; Rainoldi, Alberto

    2015-07-01

    The aim of the study was to non-invasively determine if vastus lateralis (VL) and vastus medialis obliquus (VM) muscles are equally affected by age-related fiber atrophy. Multichannel surface electromyography was used since it allows to estimate muscle fiber conduction velocity (CV), which has been demonstrated to be related to the size of recruited muscle fibers. Twelve active elderly men (age 69   ±   4 years) and 12 active young men (age 23   ±   2 years) performed isometric knee extension at 30%, 50%, and 70% of maximal voluntary contraction. Electromyographic signals were recorded from VL and VM muscles of the dominant limb using arrays with eight electrodes and CVs were estimated for each contraction. CV estimates showed a different behavior in the two muscles: in VL at 50% and 70% of maximum voluntary contraction they were greater in young than in elderly; whereas such a difference was not observed in VM. This finding suggest that in active elderly VM seems to be less affected by the age-related fibers atrophy than VL. Hence, the common choice of studying VL as a muscle representative of the whole quadriceps could generate misleading findings. Indeed, it seemed that the sarcopenic ageing effects might be heterogeneous within quadriceps muscle. PMID:26057569

  17. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis

    PubMed Central

    Baehr, Leslie M.; West, Daniel W.D.; Marcotte, George; Marshall, Andrea G.; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C.

    2016-01-01

    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. PMID:26826670

  18. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation.

    PubMed

    Tanner, Ruth E; Brunker, Lucille B; Agergaard, Jakob; Barrows, Katherine M; Briggs, Robert A; Kwon, Oh Sung; Young, Laura M; Hopkins, Paul N; Volpi, Elena; Marcus, Robin L; LaStayo, Paul C; Drummond, Micah J

    2015-09-15

    Bed rest-induced muscle loss and impaired muscle recovery may contribute to age-related sarcopenia. It is unknown if there are age-related differences in muscle mass and muscle anabolic and catabolic responses to bed rest. A secondary objective was to determine if rehabilitation could reverse bed rest responses. Nine older and fourteen young adults participated in a 5-day bed rest challenge (BED REST). This was followed by 8 weeks of high intensity resistance exercise (REHAB). Leg lean mass (via dual-energy X-ray absorptiometry; DXA) and strength were determined. Muscle biopsies were collected during a constant stable isotope infusion in the postabsorptive state and after essential amino acid (EAA) ingestion on three occasions: before (PRE), after bed rest and after rehabilitation. Samples were assessed for protein synthesis, mTORC1 signalling, REDD1/2 expression and molecular markers related to muscle proteolysis (MURF1, MAFBX, AMPKα, LC3II/I, Beclin1). We found that leg lean mass and strength decreased in older but not younger adults after bedrest (P < 0.05) and was restored after rehabilitation. EAA-induced mTORC1 signalling and protein synthesis increased before bed rest in both age groups (P < 0.05). Although both groups had blunted mTORC1 signalling, increased REDD2 and MURF1 mRNA after bedrest, only older adults had reduced EAA-induced protein synthesis rates and increased MAFBX mRNA, p-AMPKα and the LC3II/I ratio (P < 0.05). We conclude that older adults are more susceptible than young persons to muscle loss after short-term bed rest. This may be partially explained by a combined suppression of protein synthesis and a marginal increase in proteolytic markers. Finally, rehabilitation restored bed rest-induced deficits in lean mass and strength in older adults. PMID:26173027

  19. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover. PMID:26487675

  20. Absence of age-related dopamine transporter loss in current cocaine abusers

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Fischman, M.

    1997-05-01

    The brain dopamine (DA) system appears to play a crucial role in the reinforcing properties of cocaine. Using PET we had previously shown significant decreases in DA D2 receptors but no changes in DA transporters (DAT) in detoxified cocaine abusers (>1 month after last cocaine use). This study evaluates DAT availability in current cocaine abusers (15 male and 5 female; age = 36.2{+-}5.3 years old) using PET and [C-11]cocaine, as a DAT ligand, and compares it to that in 18 male and 2 female age matched normal controls. Cocaine abusers had a history of abusing 4.2{+-}2.8 gm /week of cocaine for an average of 11.0{+-}4.9 years and their last use of cocaine was 5.4{+-}8 days prior to PET study. DAT availability was obtained using the ratio of the distribution volume in the region of interest (caudate, pulamen) to that in cerebellum which is a function of Bmax./Kd.+1. DAT availability in cocaine abusers did not differ to that in normals (N) (C= 1.78{+-}0.14, N= 1.77{+-}0.13). In addition, there were no differences between the groups in the distribution volume or the Kl (plasma to brain transfer constant) measures for [C-11]cocaine. However, in the normals but not in the abusers striatal DAT availability decreased with age (C: r = -0.07, p = 0.76; N: r = -0.55, p < 0.01). Though this study fails to show group differences in DAT availability between normals and current cocaine abusers it indicates a blunting of the age-related decline in DAT availability in the cocaine abusers. Future studies in older cocaine abusers at different time after detoxification arc required in order to assess if cocaine slows the loss of DAT with age or whether these changes reflect compensation to increased DAT blockade and recover with detoxification.

  1. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  2. Auditory Perceptual Learning in Adults with and without Age-Related Hearing Loss

    PubMed Central

    Karawani, Hanin; Bitan, Tali; Attias, Joseph; Banai, Karen

    2016-01-01

    Introduction : Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL). Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL. Methods : Fifty-six listeners (60–72 y/o), 35 participants with ARHL, and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training, and no-training group). Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1) Speech-in-noise, (2) time compressed speech, and (3) competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results : Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions : ARHL did not preclude auditory perceptual learning but there was little generalization to

  3. Molecular Mechanism for Age-Related Memory Loss: The Histone-Binding Protein RbAp48

    PubMed Central

    Pavlopoulos, Elias; Jones, Sidonie; Kosmidis, Stylianos; Close, Maggie; Kim, Carla; Kovalerchik, Olga; Small, Scott A.; Kandel, Eric R.

    2016-01-01

    To distinguish age-related memory loss more explicitly from Alzheimer’s disease (AD), we have explored its molecular underpinning in the dentate gyrus (DG), a subregion of the hippocampal formation thought to be targeted by aging. We carried out a gene expression study in human postmortem tissue harvested from both DG and entorhinal cortex (EC), a neighboring subregion unaffected by aging and known to be the site of onset of AD. Using expression in the EC for normalization, we identified 17 genes that manifested reliable age-related changes in the DG. The most significant change was an age-related decline in RbAp48, a histone-binding protein that modifies histone acetylation. To test whether the RbAp48 decline could be responsible for age-related memory loss, we turned to mice and found that, consistent with humans, RbAp48 was less abundant in the DG of old than in young mice. We next generated a transgenic mouse that expressed a dominant-negative inhibitor of RbAp48 in the adult forebrain. Inhibition of RbAp48 in young mice caused hippocampus-dependent memory deficits similar to those associated with aging, as measured by novel object recognition and Morris water maze tests. Functional magnetic resonance imaging studies showed that within the hippocampal formation, dysfunction was selectively observed in the DG, and this corresponded to a regionally selective decrease in histone acetylation. Up-regulation of RbAp48 in the DG of aged wild-type mice ameliorated age-related hippocampus-based memory loss and age-related abnormalities in histone acetylation. Together, these findings show that the DG is a hippocampal subregion targeted by aging, and identify molecular mechanisms of cognitive aging that could serve as valid targets for therapeutic intervention. PMID:23986399

  4. Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48.

    PubMed

    Pavlopoulos, Elias; Jones, Sidonie; Kosmidis, Stylianos; Close, Maggie; Kim, Carla; Kovalerchik, Olga; Small, Scott A; Kandel, Eric R

    2013-08-28

    To distinguish age-related memory loss more explicitly from Alzheimer's disease (AD), we have explored its molecular underpinning in the dentate gyrus (DG), a subregion of the hippocampal formation thought to be targeted by aging. We carried out a gene expression study in human postmortem tissue harvested from both DG and entorhinal cortex (EC), a neighboring subregion unaffected by aging and known to be the site of onset of AD. Using expression in the EC for normalization, we identified 17 genes that manifested reliable age-related changes in the DG. The most significant change was an age-related decline in RbAp48, a histone-binding protein that modifies histone acetylation. To test whether the RbAp48 decline could be responsible for age-related memory loss, we turned to mice and found that, consistent with humans, RbAp48 was less abundant in the DG of old than in young mice. We next generated a transgenic mouse that expressed a dominant-negative inhibitor of RbAp48 in the adult forebrain. Inhibition of RbAp48 in young mice caused hippocampus-dependent memory deficits similar to those associated with aging, as measured by novel object recognition and Morris water maze tests. Functional magnetic resonance imaging studies showed that within the hippocampal formation, dysfunction was selectively observed in the DG, and this corresponded to a regionally selective decrease in histone acetylation. Up-regulation of RbAp48 in the DG of aged wild-type mice ameliorated age-related hippocampus-based memory loss and age-related abnormalities in histone acetylation. Together, these findings show that the DG is a hippocampal subregion targeted by aging, and identify molecular mechanisms of cognitive aging that could serve as valid targets for therapeutic intervention. PMID:23986399

  5. Insulin-like growth factor 2 rescues aging-related memory loss in rats.

    PubMed

    Steinmetz, Adam B; Johnson, Sarah A; Iannitelli, Dylan E; Pollonini, Gabriella; Alberini, Cristina M

    2016-08-01

    Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments. PMID:27318130

  6. Age Related Differences in the Surface EMG Signals on Adolescent's Muscle during Contraction

    NASA Astrophysics Data System (ADS)

    Uddin Ahamed, Nizam; Taha, Zahari; Alqahtani, Mahdi; Altwijri, Omar; Rahman, Matiur; Deboucha, Abdelhakim

    2016-02-01

    The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal among five different age groups of adolescent's muscle. Fifteen healthy adolescents participated in this study and they were divided into five age groups (13, 14, 15, 16 and 17 years). Subjects were performed dynamic contraction during lifting a standard weight (3-kg dumbbell) and EMG signals were recorded from their Biceps Brachii (BB) muscle. Two common EMG analysis techniques namely root mean square (RMS) and mean absolute values (MAV) were used to find the differences. The statistical analysis was included: linear regression to examine the relationships between EMG amplitude and age, repeated measures ANOVA to assess differences among the variables, and finally Coefficient of Variation (CoV) for signal steadiness among the groups of subjects during contraction. The result from RMS and MAV analysis shows that the 17-years age groups exhibited higher activity (0.28 and 0.19 mV respectively) compare to other groups (13-Years: 0.26 and 0.17 mV, 14-years: 0.25 and 0.23 mV, 15-Years: 0.23 and 0.16 mV, 16-years: 0.23 and 0.16 mV respectively). Also, this study shows modest correlation between age and signal activities among all age group's muscle. The experiential results can play a pivotal role for developing EMG prosthetic hand controller, neuromuscular system, EMG based rehabilitation aid and movement biomechanics, which may help to separate age groups among the adolescents.

  7. Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition.

    PubMed

    Minois, Nadège; Rockenfeller, Patrick; Smith, Terry K; Carmona-Gutierrez, Didac

    2014-01-01

    Spermidine is a natural polyamine involved in many important cellular functions, whose supplementation in food or water increases life span and stress resistance in several model organisms. In this work, we expand spermidine's range of age-related beneficial effects by demonstrating that it is also able to improve locomotor performance in aged flies. Spermidine's mechanism of action on aging has been primarily related to general protein hypoacetylation that subsequently induces autophagy. Here, we suggest that the molecular targets of spermidine also include lipid metabolism: Spermidine-fed flies contain more triglycerides and show altered fatty acid and phospholipid profiles. We further determine that most of these metabolic changes are regulated through autophagy. Collectively, our data suggests an additional and novel lipid-mediated mechanism of action for spermidine-induced autophagy. PMID:25010732

  8. Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior

    PubMed Central

    Larsen, Ryan G.; Callahan, Damien M.; Foulis, Stephen A.; Kent-Braun, Jane A.

    2013-01-01

    There is discrepancy in the literature regarding the degree to which old age affects muscle bioenergetics. These discrepancies are likely influenced by several factors, including variations in physical activity (PA) and differences in the muscle group investigated. To test the hypothesis that age may affect muscles differently, we quantified oxidative capacity of tibialis anterior (TA) and vastus lateralis (VL) muscles in healthy, relatively sedentary younger (8 YW, 8 YM; 21–35 years) and older (8 OW, 8 OM; 65–80 years) adults. To investigate the effect of physical activity on muscle oxidative capacity in older adults, we compared older sedentary women to older women with mild-to-moderate mobility impairment and lower physical activity (OIW, n = 7), and older sedentary men with older active male runners (OAM, n = 6). Oxidative capacity was measured in vivo as the rate constant, kPCr, of postcontraction phosphocreatine recovery, obtained by 31P magnetic resonance spectroscopy following maximal isometric contractions. While kPCr was higher in TA of older than activity-matched younger adults (28%; p = 0.03), older adults had lower kPCr in VL (23%; p = 0.04). In OIW compared with OW, kPCr was lower in VL (~45%; p = 0.01), but not different in TA. In contrast, OAM had higher kPCr than OM (p = 0.03) in both TA (41%) and VL (54%). In older adults, moderate-to-vigorous PA was positively associated with kPCr in VL (r = 0.65, p < 0.001) and TA (r = 0.41, p = 0.03). Collectively, these results indicate that age-related changes in oxidative capacity vary markedly between locomotory muscles, and that altered PA behavior may play a role in these changes. PMID:22236246

  9. Age-related hearing loss: GABA, nicotinic acetylcholine and NMDA receptor expression changes in spiral ganglion neurons of the mouse.

    PubMed

    Tang, X; Zhu, X; Ding, B; Walton, J P; Frisina, R D; Su, J

    2014-02-14

    Age-related hearing loss - presbycusis - is the number one communication disorder and most prevalent neurodegenerative condition of our aged population. Although speech understanding in background noise is quite difficult for those with presbycusis, there are currently no biomedical treatments to prevent, delay or reverse this condition. A better understanding of the cochlear mechanisms underlying presbycusis will help lead to future treatments. Objectives of the present study were to investigate GABAA receptor subunit α1, nicotinic acetylcholine (nACh) receptor subunit β2, and N-methyl-d-aspartate (NMDA) receptor subunit NR1 mRNA and protein expression changes in spiral ganglion neurons (SGN) of the CBA/CaJ mouse cochlea, that occur in age-related hearing loss, utilizing quantitative immunohistochemistry and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) techniques. We found that auditory brainstem response (ABR) thresholds shifted over 40dB from 3 to 48kHz in old mice compared to young adults. DPOAE thresholds also shifted over 40dB from 6 to 49kHz in old mice, and their amplitudes were significantly decreased or absent in the same frequency range. SGN density decreased with age in basal, middle and apical turns, and SGN density of the basal turn declined the most. A positive correlation was observed between SGN density and ABR wave 1amplitude. mRNA and protein expression of GABAAR α1 and AChR β2 decreased with age in SGNs in the old mouse cochlea. mRNA and protein expression of NMDAR NR1 increased with age in SGNs of the old mice. These findings demonstrate that there are functionally-relevant age-related changes of GABAAR, nAChR, NMDAR expression in CBA mouse SGNs reflecting their degeneration, which may be related to functional changes in cochlear synaptic transmission with age, suggesting biological mechanisms for peripheral age-related hearing loss. PMID:24316061

  10. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy*

    PubMed Central

    Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.; Murry, Daryl J.; Fox, Daniel K.; Bongers, Kale S.; Lira, Vitor A.; Meyerholz, David K.; Talley, John J.; Adams, Christopher M.

    2015-01-01

    Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two small molecules that significantly reduce age-related deficits in skeletal muscle strength, quality, and mass: ursolic acid (a pentacyclic triterpenoid found in apples) and tomatidine (a steroidal alkaloid derived from green tomatoes). Because small molecule inhibitors can sometimes provide mechanistic insight into disease processes, we used ursolic acid and tomatidine to investigate the pathogenesis of age-related muscle weakness and atrophy. We found that ursolic acid and tomatidine generate hundreds of small positive and negative changes in mRNA levels in aged skeletal muscle, and the mRNA expression signatures of the two compounds are remarkably similar. Interestingly, a subset of the mRNAs repressed by ursolic acid and tomatidine in aged muscle are positively regulated by activating transcription factor 4 (ATF4). Based on this finding, we investigated ATF4 as a potential mediator of age-related muscle weakness and atrophy. We found that a targeted reduction in skeletal muscle ATF4 expression reduces age-related deficits in skeletal muscle strength, quality, and mass, similar to ursolic acid and tomatidine. These results elucidate ATF4 as a critical mediator of age-related muscle weakness and atrophy. In addition, these results identify ursolic acid and tomatidine as potential agents and/or lead compounds for reducing ATF4 activity, weakness, and atrophy in aged skeletal muscle. PMID:26338703

  11. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy.

    PubMed

    Ebert, Scott M; Dyle, Michael C; Bullard, Steven A; Dierdorff, Jason M; Murry, Daryl J; Fox, Daniel K; Bongers, Kale S; Lira, Vitor A; Meyerholz, David K; Talley, John J; Adams, Christopher M

    2015-10-16

    Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two small molecules that significantly reduce age-related deficits in skeletal muscle strength, quality, and mass: ursolic acid (a pentacyclic triterpenoid found in apples) and tomatidine (a steroidal alkaloid derived from green tomatoes). Because small molecule inhibitors can sometimes provide mechanistic insight into disease processes, we used ursolic acid and tomatidine to investigate the pathogenesis of age-related muscle weakness and atrophy. We found that ursolic acid and tomatidine generate hundreds of small positive and negative changes in mRNA levels in aged skeletal muscle, and the mRNA expression signatures of the two compounds are remarkably similar. Interestingly, a subset of the mRNAs repressed by ursolic acid and tomatidine in aged muscle are positively regulated by activating transcription factor 4 (ATF4). Based on this finding, we investigated ATF4 as a potential mediator of age-related muscle weakness and atrophy. We found that a targeted reduction in skeletal muscle ATF4 expression reduces age-related deficits in skeletal muscle strength, quality, and mass, similar to ursolic acid and tomatidine. These results elucidate ATF4 as a critical mediator of age-related muscle weakness and atrophy. In addition, these results identify ursolic acid and tomatidine as potential agents and/or lead compounds for reducing ATF4 activity, weakness, and atrophy in aged skeletal muscle. PMID:26338703

  12. Computer Simulations of Loss of Organization of Neurons as a Model for Age-related Cognitive Decline

    NASA Astrophysics Data System (ADS)

    Cruz, Luis; Fengometidis, Elene; Jones, Frank; Jampani, Srinivas

    2011-03-01

    In normal aging, brains suffer from progressive cognitive decline not linked with loss of neurons common in neurodegenerative disorders such as Alzheimer's disease. However, in some brain areas neurons have lost positional organization specifically within microcolumns: arrays of interconnected neurons which may constitute fundamental computational units in the brain. This age-related loss of organization, likely a result of micron-sized random displacements in neuronal positions, is hypothesized to be a by-product of the loss of support from the surrounding medium, including dendrites. Using a dynamical model applied to virtual 3D representation of neuronal arrangements, that previously showed loss of organization in brains of cognitively tested rhesus monkeys, the relationship between these displacements and changes to the surrounding dendrite network are presented. The consequences of these displacements on the structure of the dendritic network, with possible disruptions in signal synchrony important to cognitive function, are discussed. NIH R01AG021133.

  13. An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function.

    PubMed

    Pierno, Sabata; Tricarico, Domenico; Liantonio, Antonella; Mele, Antonietta; Digennaro, Claudio; Rolland, Jean-François; Bianco, Gianpatrizio; Villanova, Luciano; Merendino, Alessandro; Camerino, Giulia Maria; De Luca, Annamaria; Desaphy, Jean-François; Camerino, Diana Conte

    2014-02-01

    Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress. PMID:23716142

  14. Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes

    PubMed Central

    Choksi, Kashyap B.; Nuss, Jonathan E.; DeFord, James H.; Papaconstantinou, John

    2010-01-01

    Age-associated mitochondrial dysfunction is a major source of reactive oxygen species (ROS) and oxidative modification to proteins. Mitochondrial electron transport chain (ETC) complexes I and III are the sites of ROS production and we hypothesize that proteins of the ETC complexes are primary targets of ROS-mediated modification which impairs their structure and function. The pectoralis, primarily an aerobic red muscle, and quadriceps, primarily an anaerobic white muscle, have different rates of respiration and oxygen-carrying capacity, and hence, different rates of ROS production. This raises the question of whether these muscles exhibit different levels of oxidative protein modification. Our studies reveal that the pectoralis shows a dramatic age-related decline in almost all complex activities that correlates with increased oxidative modification. Similar complex proteins were modified in the quadriceps, at a significantly lower level with less change in enzyme and ETC coupling function. We postulate that mitochondrial ROS causes damage to specific ETC subunits which increases with age and leads to further mitochondrial dysfunction. We conclude that physiological characteristics of the pectoralis vs quadriceps may play a role in age-associated rate of mitochondrial dysfunction and in the decline in tissue function. PMID:18598756

  15. Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies

    PubMed Central

    Hubert, Patrice A.; Lee, Sang Gil; Lee, Sun-Kyeong; Chun, Ock K.

    2014-01-01

    Bone loss during aging has become an increasing public health concern as average life expectancy has increased. One of the most prevalent forms of age-related bone disease today is osteoporosis in which the body slows down bone formation and existing bone is increasingly being resorbed by the body to maintain the calcium balance. Some causes of this bone loss can be attributed to dysregulation of osteoblast and osteoclast activity mediated by increased oxidative stress through the aging process. Due to certain serious adverse effects of the currently available therapeutic agents that limit their efficacy, complementary and alternative medicine (CAM) has garnered interest as a natural means for the prevention of this debilitating disease. Natural antioxidant supplementation, a type of CAM, has been researched to aid in reducing bone loss caused by oxidative stress. Naturally occurring polyphenols, such as anthocyanins rich in berries, are known to have anti-oxidative properties. Several studies have been reviewed to determine the impact polyphenol intake—particularly that of berries—has on bone health. Studies reveal a positive association of high berry intake and higher bone mass, implicating berries as possible inexpensive alternatives in reducing the risk of age related bone loss. PMID:26784669

  16. Age-Related Loss of Calcium Buffering and Selective Neuronal Vulnerability in Alzheimer’s Disease

    PubMed Central

    Riascos, David; de Leon, Dianne; Baker-Nigh, Alaina; Nicholas, Alexander; Yukhananov, Rustam; Bu, Jing; Wu, Chuang-Kuo; Geula, Changiz

    2011-01-01

    The reasons for the selective vulnerability of distinct neuronal populations in neurodegenerative disorders are unknown. The cholinergic neurons of the basal forebrain are vulnerable to pathology and loss early in Alzheimer’s disease and in a number of other neurodegenerative disorders of the elderly. In the primate, including man, these neurons are rich in the calcium buffer calbindin-D28K. Here we confirm that these neurons undergo a substantial loss of calbindin in the course of normal aging and report a further loss of calbindin in Alzheimer’s disease both at the level of RNA and protein. Significantly, cholinergic neurons that had lost their calbindin in the course of normal aging were those that selectively degenerated in Alzheimer’s disease. Furthermore, calbindin containing neurons were virtually resistant to the process of tangle formation, a hallmark of the disease. We conclude that the loss of calcium buffering capacity in these neurons and the resultant pathological increase in intracellular calcium are permissive to tangle formation and degeneration. PMID:21874328

  17. Effects of Age and Age-Related Hearing Loss on the Brain

    ERIC Educational Resources Information Center

    Tremblay, Kelly; Ross, Bernhard

    2007-01-01

    It is well documented that aging adversely affects the ability to perceive time-varying acoustic cues. Here we review how physiological measures are being used to explore the effects of aging (and concomitant hearing loss) on the neural representation of temporal cues. Also addressed are the implications of current research findings on the…

  18. Molecular Mechanisms of Age-Related Sleep Loss in the Fruit Fly

    PubMed Central

    Robertson, Meagan; Keene, Alex C.

    2013-01-01

    Across phyla, aging is associated with reduced sleep duration and efficiency. Both aging and sleep involve complex genetic architecture and diverse cell types and are heavily influenced by diet and environment. Therefore, understanding the molecular mechanisms of age-dependent changes in sleep will require integrative approaches that go beyond examining these two processes independently. The fruit fly, Drosophila melanogaster, provides a genetically amenable system for dissecting the molecular basis of these processes. In this review, we examine the role of metabolism and circadian rhythms in age-dependent sleep loss. PMID:23594925

  19. Aging-related chromatin defects via loss of the NURD complex

    PubMed Central

    Pegoraro, Gianluca; Kubben, Nard; Wickert, Ute; Göhler, Heike; Hoffmann, Katrin; Misteli, Tom

    2009-01-01

    Physiological and premature aging are characterized by multiple defects in chromatin structure and accumulation of persistent DNA damage. Here we identify the NURD remodeling complex as a key modulator of these aging-associated chromatin defects. We demonstrate loss of several NURD components during premature and normal aging and we find aging-associated reduction of HDAC1 activity. Silencing of individual NURD subunits recapitulates some chromatin defects associated with aging and we provide evidence that structural chromatin defects precede DNA damage accumulation. These results outline a molecular mechanism for chromatin defects during aging. PMID:19734887

  20. Likely Age-Related Hearing Loss (Presbycusis) in a Stranded Indo-Pacific Humpback Dolphin (Sousa chinensis).

    PubMed

    Li, Songhai; Wang, Ding; Wang, Kexiong; Hoffmann-Kuhnt, Matthias; Fernando, Nimal; Taylor, Elizabeth A; Lin, Wenzhi; Chen, Jialin; Ng, Timothy

    2016-01-01

    The hearing of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, was measured. The age of this animal was estimated to be ~40 years. The animal's hearing was measured using a noninvasive auditory evoked potential (AEP) method. The results showed that the high-frequency hearing cutoff frequency of the studied dolphin was ~30-40 kHz lower than that of a conspecific younger individual ~13 year old. The lower high-frequency hearing range in the older dolphin was explained as a likely result of age-related hearing loss (presbycusis). PMID:26611012

  1. Structural basis of growth-related gain and age-related loss of bone strength

    PubMed Central

    2008-01-01

    If bone strength was the only requirement of skeleton, it could be achieved with bulk, but bone must also be light. During growth, bone modelling and remodelling optimize strength, by depositing bone where it is needed, and minimize mass, by removing it from where it is not. The population variance in bone traits is established before puberty and the position of an individual's bone size and mass tracks in the percentile of origin. Larger cross-sections have a comparably larger marrow cavity, which results in a lower volumetric BMD (vBMD), thereby avoiding bulk. Excavation of a marrow cavity thus minimizes mass and shifts the cortex radially, increasing rigidity. Smaller cross-sections are assembled by excavating a smaller marrow cavity leaving a relatively thicker cortex producing a higher vBMD, avoiding the fragility of slenderness. Variation in cellular activity around the periosteal and endocortical envelopes fashions the diverse shapes of adjacent cross-sections. Advancing age is associated with a decline in periosteal bone formation, a decline in the volume of bone formed by each basic multicellular unit (BMU), continued resorption by each BMU, and high remodelling after menopause. Bone loss in young adulthood has modest structural and biomechanical consequences because the negative BMU balance is driven by reduced bone formation, remodelling is slow and periosteal apposition continues shifting the thinned cortex radially. But after the menopause, increased remodelling, worsening negative BMU balance and a decline in periosteal apposition accelerate cortical thinning and porosity, trabecular thinning and loss of connectivity. Interstitial bone, unexposed to surface remodelling becomes more densely mineralized, has few osteocytes and greater collagen cross-linking, and accumulates microdamage. These changes produce the material and structural abnormalities responsible for bone fragility. PMID:18556646

  2. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans.

    PubMed

    McGregor, Robin A; Poppitt, Sally D; Cameron-Smith, David

    2014-09-01

    Progressive age-related changes in skeletal muscle mass and composition, underpin decreases in muscle function, which can inturn lead to impaired mobility and quality of life in older adults. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression in skeletal muscle and are associated with aging. Accumulating evidence suggests that miRNAs play an important role in the age-related changes in skeletal muscle mass, composition and function. At the cellular level, miRNAs have been demonstrated to regulate muscle cell proliferation and differentiation. Furthermore, miRNAs are involved in the transitioning of muscle stem cells from a quiescent, to either an activated or senescence state. Evidence from animal and human studies has shown miRNAs are modulated in muscle atrophy and hypertrophy. In addition, miRNAs have been implicated in changes in muscle fiber composition, fat infiltration and insulin resistance. Both exercise and dietary interventions can combat age-related changes in muscle mass, composition and function, which may be mediated by miRNA modulation in skeletal muscle. Circulating miRNA species derived from myogenic cell populations represent potential biomarkers of aging muscle and the molecular responses to exercise or diet interventions, but larger validation studies are required. In future therapeutic approaches targeting miRNAs, either through exercise, diet or drugs may be able to slow down or prevent the age-related changes in skeletal muscle mass, composition, function, hence help maintain mobility and quality of life in old age. PMID:24833328

  3. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    PubMed

    Todd, Henry; Galea, Gabriel L; Meakin, Lee B; Delisser, Peter J; Lanyon, Lance E; Windahl, Sara H; Price, Joanna S

    2015-01-01

    Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to

  4. Age-Related Changes in Dynamic Postural Control and Attentional Demands are Minimally Affected by Local Muscle Fatigue

    PubMed Central

    Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin

    2016-01-01

    Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626

  5. To unite or divide: mitochondrial dynamics in the murine outer retina that preceded age related photoreceptor loss

    PubMed Central

    Kam, Jaimie Hoh; Jeffery, Glen

    2015-01-01

    Mitochondrial function declines with age and is associated with age-related disorders and cell death. In the retina this is critical as photoreceptor energy demands are the greatest in the body and aged cell loss large (~30%). But mitochondria can fuse or divide to accommodate changing demands. We explore ageing mitochondrial dynamics in young (1 month) and old (12 months) mouse retina, investigating changes in mitochondrial fission (Fis1) and fusion (Opa1) proteins, cytochrome C oxidase (COX III), which reflects mitochondrial metabolic status, and heat shock protein 60 (Hsp60) that is a mitochondrial chaperon for protein folding. Western blots showed each protein declined with age. However, within this, immunostaining revealed increases of around 50% in Fis1 and Opa1 in photoreceptor inner segments (IS). Electron microscope analysis revealed mitochondrial fragmentation with age and marked changes in morphology in IS, consistent with elevated dynamics. COX III declined by approximately 30% in IS, but Hsp60 reductions were around 80% in the outer plexiform layer. Our results are consistent with declining mitochondrial metabolism. But also with increased photoreceptor mitochondrial dynamics that differ from other retinal regions, perhaps reflecting attempts to maintain function. These changes are the platform for age related photoreceptor loss initiated after 12 months. PMID:26393878

  6. Simulated Interventions to Ameliorate Age-Related Bone Loss Indicate the Importance of Timing.

    PubMed

    Proctor, Carole J; Gartland, Alison

    2016-01-01

    Bone remodeling is the continuous process of bone resorption by osteoclasts and bone formation by osteoblasts, in order to maintain homeostasis. The activity of osteoclasts and osteoblasts is regulated by a network of signaling pathways, including Wnt, parathyroid hormone (PTH), RANK ligand/osteoprotegrin, and TGF-β, in response to stimuli, such as mechanical loading. During aging there is a gradual loss of bone mass due to dysregulation of signaling pathways. This may be due to a decline in physical activity with age and/or changes in hormones and other signaling molecules. In particular, hormones, such as PTH, have a circadian rhythm, which may be disrupted in aging. Due to the complexity of the molecular and cellular networks involved in bone remodeling, several mathematical models have been proposed to aid understanding of the processes involved. However, to date, there are no models, which explicitly consider the effects of mechanical loading, the circadian rhythm of PTH, and the dynamics of signaling molecules on bone remodeling. Therefore, we have constructed a network model of the system using a modular approach, which will allow further modifications as required in future research. The model was used to simulate the effects of mechanical loading and also the effects of different interventions, such as continuous or intermittent administration of PTH. Our model predicts that the absence of regular mechanical loading and/or an impaired PTH circadian rhythm leads to a gradual decrease in bone mass over time, which can be restored by simulated interventions and that the effectiveness of some interventions may depend on their timing. PMID:27379013

  7. Simulated Interventions to Ameliorate Age-Related Bone Loss Indicate the Importance of Timing

    PubMed Central

    Proctor, Carole J.; Gartland, Alison

    2016-01-01

    Bone remodeling is the continuous process of bone resorption by osteoclasts and bone formation by osteoblasts, in order to maintain homeostasis. The activity of osteoclasts and osteoblasts is regulated by a network of signaling pathways, including Wnt, parathyroid hormone (PTH), RANK ligand/osteoprotegrin, and TGF-β, in response to stimuli, such as mechanical loading. During aging there is a gradual loss of bone mass due to dysregulation of signaling pathways. This may be due to a decline in physical activity with age and/or changes in hormones and other signaling molecules. In particular, hormones, such as PTH, have a circadian rhythm, which may be disrupted in aging. Due to the complexity of the molecular and cellular networks involved in bone remodeling, several mathematical models have been proposed to aid understanding of the processes involved. However, to date, there are no models, which explicitly consider the effects of mechanical loading, the circadian rhythm of PTH, and the dynamics of signaling molecules on bone remodeling. Therefore, we have constructed a network model of the system using a modular approach, which will allow further modifications as required in future research. The model was used to simulate the effects of mechanical loading and also the effects of different interventions, such as continuous or intermittent administration of PTH. Our model predicts that the absence of regular mechanical loading and/or an impaired PTH circadian rhythm leads to a gradual decrease in bone mass over time, which can be restored by simulated interventions and that the effectiveness of some interventions may depend on their timing. PMID:27379013

  8. Age-related striatal BOLD changes without changes in behavioral loss aversion

    PubMed Central

    Viswanathan, Vijay; Lee, Sang; Gilman, Jodi M.; Kim, Byoung Woo; Lee, Nick; Chamberlain, Laura; Livengood, Sherri L.; Raman, Kalyan; Lee, Myung Joo; Kuster, Jake; Stern, Daniel B.; Calder, Bobby; Mulhern, Frank J.; Blood, Anne J.; Breiter, Hans C.

    2015-01-01

    Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task. PMID:25983682

  9. Age-related striatal BOLD changes without changes in behavioral loss aversion.

    PubMed

    Viswanathan, Vijay; Lee, Sang; Gilman, Jodi M; Kim, Byoung Woo; Lee, Nick; Chamberlain, Laura; Livengood, Sherri L; Raman, Kalyan; Lee, Myung Joo; Kuster, Jake; Stern, Daniel B; Calder, Bobby; Mulhern, Frank J; Blood, Anne J; Breiter, Hans C

    2015-01-01

    Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task. PMID:25983682

  10. Mineralization of the connective tissue: a complex molecular process leading to age-related loss of function.

    PubMed

    Shindyapina, Anastasia V; Mkrtchyan, Garik V; Gneteeva, Tatiana; Buiucli, Sveatoslav; Tancowny, B; Kulka, M; Aliper, Alexander; Zhavoronkov, Alexander

    2014-04-01

    Age-related metastatic mineralization of soft tissues has been considered a passive and spontaneous process. Recent data have demonstrated that calcium salt deposition in soft tissues could be a highly regulated process. Although calcification occurs in any tissue type, vascular calcification has been of particular interest due to association with atherosclerosis, chronic kidney disease (CKD), and osteoporosis. Different mechanisms underlying calcium apatite accumulation are explored with these age-related disorders. In the case of atherosclerotic plaques, oxy-lipids trigger release of the pro-inflammatory cytokines and inflammation that activate calcification processes in aorta intimae. In CKD patients, renal failure alters the balance between calcium and phosphate levels usually regulated by fibroblast growth factor-23 (FGF23), Klotho, and vitamin D, and vascular smooth muscle cells (VSMCs) begin to explore an osteoblastosteoblast-like phenotype. Calcification could affect extracellular matrix along with VSMCs. Collagen is a major component of extracellular matrix and its modifications accumulate with age. The formation of cross-links between collagen fibers is regulated by the action of lysine hydroxylases and lysyl oxidase and could occur spontaneously. Oxidation-induced advanced glycation end products (AGEs) are a major type of spontaneous cross-links that accelerate with age and may result in tissue stiffness, problems with recycling, and potential accumulation of calcium apatite. Applying strategies for clearing the AGEs proposed by de Grey may be more difficult in the highly mineralized extracellular matrix. We performed bioinformatic analysis of the molecular pathways underlying calcification in atherosclerotic and CKD patients, signaling pathways of collagen cross-links formation, and bone mineralization, and we propose new potential targets and review drugs for calcification treatment. PMID:23902273

  11. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions

    PubMed Central

    Larose, Joanie; Boulay, Pierre; Wright-Beatty, Heather E.; Sigal, Ronald J.; Hardcastle, Stephen

    2014-01-01

    This study examined the progression of impairments in heat dissipation as a function of age and environmental conditions. Sixty men (n = 12 per group; 20–30, 40–44, 45–49, 50–54, and 55–70 yr) performed four intermittent exercise/recovery cycles for a duration of 2 h in dry (35°C, 20% relative humidity) and humid (35°C, 60% relative humidity) conditions. Evaporative heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and heat loss during the sessions. Evaporative heat loss was reduced during exercise in the humid vs. dry condition in age groups 20–30 (−17%), 40–44 (−18%), 45–49 (−21%), 50–54 (−25%), and 55–70 yr (−20%). HE fell short of being significantly different between groups in the dry condition, but was greater in age group 20–30 yr (279 ± 10 W) compared with age groups 45–49 (248 ± 8 W), 50–54 (242 ± 6 W), and 55–70 yr (240 ± 7 W) in the humid condition. As a result of a reduced rate of heat dissipation predominantly during exercise, age groups 40–70 yr stored between 60–85 and 13–38% more heat than age group 20–30 yr in the dry and humid conditions, respectively. These age-related differences in heat dissipation and heat storage were not paralleled by significant differences in local sweating and skin blood flow, or by differences in core temperature between groups. From a whole body perspective, combined heat and humidity impeded heat dissipation to a similar extent across age groups, but, more importantly, intermittent exercise in dry and humid heat stress conditions created a greater thermoregulatory challenge for middle-aged and older adults. PMID:24812643

  12. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice.

    PubMed

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R

    2016-04-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the g-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwg mice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  13. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice

    PubMed Central

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R.

    2016-01-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  14. Lipofuscin Redistribution and Loss Accompanied by Cytoskeletal Stress in Retinal Pigment Epithelium of Eyes With Age-Related Macular Degeneration

    PubMed Central

    Ach, Thomas; Tolstik, Elen; Messinger, Jeffrey D.; Zarubina, Anna V.; Heintzmann, Rainer; Curcio, Christine A.

    2015-01-01

    Purpose. Lipofuscin (LF) and melanolipofuscin (MLF) of the retinal pigment epithelium (RPE) are the principal sources of autofluorescence (AF) signals in clinical fundus–AF imaging. Few details about the subcellular distribution of AF organelles in AMD are available. We describe the impact of aging and AMD on RPE morphology revealed by the distribution of AF LF/MLF granules and actin cytoskeleton in human tissues. Methods. Thirty-five RPE-Bruch's membrane flatmounts from 35 donors were prepared (postmortem: ≤4 hours). Ex vivo fundus examination at the time of accession revealed either absence of chorioretinal pathologies (10 tissues; mean age: 83.0 ± 2.6 years) or stages of AMD (25 tissues; 85.0 ± 5.8 years): early AMD, geographic atrophy, and late exudative AMD. Retinal pigment epithelium cytoskeleton was labeled with AlexaFluor647-Phalloidin. Tissues were imaged on a spinning-disk fluorescence microscope and a high-resolution structured illumination microscope. Results. Age-related macular degeneration impacts individual RPE cells by (1) lipofuscin redistribution by (i) degranulation (granule-by-granule loss) and/or (ii) aggregation and apparent shedding into the extracellular space; (2) enlarged RPE cell area and conversion from convex to irregular and sometimes concave polygons; and (3) cytoskeleton derangement including separations and breaks around subretinal deposits, thickening, and stress fibers. Conclusions. We report an extensive and systematic en face analysis of LF/MLF-AF in AMD eyes. Redistribution and loss of AF granules are among the earliest AMD changes and could reduce fundus AF signal attributable to RPE at these locations. Data can enhance the interpretation of clinical fundus–AF and provide a basis for future quantitative studies. PMID:25758814

  15. Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1.

    PubMed

    Tachibana, Masaya; Shinohara, Mitsuru; Yamazaki, Yu; Liu, Chia-Chen; Rogers, Justin; Bu, Guojun; Kanekiyo, Takahisa

    2016-03-01

    Apolipoprotein E (apoE) plays a critical role in maintaining synaptic integrity by transporting cholesterol to neurons through the low-density lipoprotein receptor related protein-1 (LRP1). Bexarotene, a retinoid X receptor (RXR) agonist, has been reported to have potential beneficial effects on cognition by increasing brain apoE levels and lipidation. To investigate the effects of bexarotene on aging-related synapse loss and the contribution of neuronal LRP1 to the pathway, forebrain neuron-specific LRP1 knockout (nLrp1(-/-)) and littermate control mice were administered with bexarotene-formulated diet (100mg/kg/day) or control diet at the age of 20-24 months for 8 weeks. Upon bexarotene treatment, levels of brain apoE and ATP-binding cassette sub-family A member 1 (ABCA1) were significantly increased in both mice. While levels of PSD95, glutamate receptor 1 (GluR1), and N-methyl-d-aspartate receptor NR1 subunit (NR1), which are key postsynaptic proteins that regulate synaptic plasticity, were decreased with aging, they were restored by bexarotene treatment in the brains of control but not nLrp1(-/-) mice. These results indicate that the beneficial effects of bexarotene on synaptic integrity depend on the presence of neuronal LRP1. However, we also found that bexarotene treatment led to the activation of glial cells, weight loss and hepatomegaly, which are likely due to hepatic failure. Taken together, our results demonstrate that apoE-targeted treatment through the RXR pathway has a potential beneficial effect on synapses during aging; however, the therapeutic application of bexarotene requires extreme caution due to its toxic side effects. PMID:26688581

  16. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function.

    PubMed

    Egawa, Junji; Pearn, Matthew L; Lemkuil, Brian P; Patel, Piyush M; Head, Brian P

    2016-08-15

    A better understanding of the cellular physiological role that plasma membrane lipids, fatty acids and sterols play in various cellular systems may yield more insight into how cellular and whole organ function is altered during the ageing process. Membrane lipid rafts (MLRs) within the plasma membrane of most cells serve as key organizers of intracellular signalling and tethering points of cytoskeletal components. MLRs are plasmalemmal microdomains enriched in sphingolipids, cholesterol and scaffolding proteins; they serve as a platform for signal transduction, cytoskeletal organization and vesicular trafficking. Within MLRs are the scaffolding and cholesterol binding proteins named caveolin (Cav). Cavs not only organize a multitude of receptors including neurotransmitter receptors (NMDA and AMPA receptors), signalling proteins that regulate the production of cAMP (G protein-coupled receptors, adenylyl cyclases, phosphodiesterases (PDEs)), and receptor tyrosine kinases involved in growth (Trk), but also interact with components that modulate actin and tubulin cytoskeletal dynamics (e.g. RhoGTPases and actin binding proteins). MLRs are essential for the regulation of the physiology of organs such as the brain, and age-related loss of cholesterol from the plasma membrane leads to loss of MLRs, decreased presynaptic vesicle fusion, and changes in neurotransmitter release, all of which contribute to different forms of neurodegeneration. Thus, MLRs provide an active membrane domain that tethers and reorganizes the cytoskeletal machinery necessary for membrane and cellular repair, and genetic interventions that restore MLRs to normal cellular levels may be exploited as potential therapeutic means to reverse the ageing and neurodegenerative processes. PMID:26332795

  17. Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans

    PubMed Central

    Bedrin, Nicholas G.; Callahan, Damien M.; Previs, Michael J.; Jennings, Mark E.; Ades, Philip A.; Maughan, David W.; Palmer, Bradley M.; Toth, Michael J.

    2013-01-01

    We hypothesize that age-related skeletal muscle dysfunction and physical disability may be partially explained by alterations in the function of the myosin molecule. To test this hypothesis, skeletal muscle function at the whole muscle, single fiber, and molecular levels was measured in young (21–35 yr) and older (65–75 yr) male and female volunteers with similar physical activity levels. After adjusting for muscle size, older adults had similar knee extensor isometric torque values compared with young, but had lower isokinetic power, most notably in women. At the single-fiber and molecular levels, aging was associated with increased isometric tension, slowed myosin actin cross-bridge kinetics (longer myosin attachment times and reduced rates of myosin force production), greater myofilament lattice stiffness, and reduced phosphorylation of the fast myosin regulatory light chain; however, the age effect was driven primarily by women (i.e., age-by-sex interaction effects). In myosin heavy chain IIA fibers, single-fiber isometric tension and molecular level mechanical and kinetic indexes were correlated with whole muscle isokinetic power output. Collectively, considering that contractile dysfunction scales up through various anatomical levels, our results suggest a potential sex-specific molecular mechanism, reduced cross-bridge kinetics, contributes to the reduced physical capacity with aging in women. Thus these results support our hypothesis that age-related alterations in the myosin molecule contribute to skeletal muscle dysfunction and physical disability and indicate that this effect is stronger in women. PMID:23887900

  18. Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells

    PubMed Central

    Whitmore, S. Scott; Braun, Terry A.; Skeie, Jessica M.; Haas, Christine M.; Sohn, Elliott H.; Stone, Edwin M.; Scheetz, Todd E.

    2013-01-01

    Purpose Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. Methods Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. Results Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = –2.61; raw p value=0.0008). Conclusions GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker

  19. Memory Loss, Dementia, and Stroke: Implications for Rehabilitation of Older Adults with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Warren, Mary

    2008-01-01

    Older adults with age-related macular degeneration (AMD) are not immune to the other diseases of aging. Although AMD is the leading cause of low vision in older Americans, stroke is the leading cause of disability, and dementias affect another 2.5 million older Americans. Each condition alone can significantly impair a person's ability to…

  20. Severity and pattern of bone mineral loss in endocrine causes of osteoporosis as compared to age-related bone mineral loss

    PubMed Central

    Dutta, D; Dharmshaktu, P; Aggarwal, A; Gaurav, K; Bansal, R; Devru, N; Garga, UC; Kulshreshtha, B

    2016-01-01

    Background: Data are scant on bone health in endocrinopathies from India. This study evaluated bone mineral density (BMD) loss in endocrinopathies [Graves’ disease (GD), type 1 diabetes mellitus (T1DM), hypogonadotrophic hypogonadism (HypoH), hypergonadotropic hypogonadism (HyperH), hypopituitarism, primary hyperparathyroidism (PHPT)] as compared to age-related BMD loss [postmenopausal osteoporosis (PMO), andropause]. Materials and Methods: Retrospective audit of records of patients >30 years age attending a bone clinic from August 2014 to January 2016 was done. Results: Five-hundred and seven records were screened, out of which 420 (females:male = 294:126) were analyzed. A significantly higher occurrence of vitamin D deficiency and insufficiency was noted in T1DM (89.09%), HyperH (85%), and HypoH (79.59%) compared to age-related BMD loss (60.02%; P < 0.001). The occurrence of osteoporosis among females and males was 55.41% and 53.97%, respectively, and of osteopenia among females and males was 28.91% and 32.54%, respectively. In females, osteoporosis was significantly higher in T1DM (92%), HyperH (85%), and HypoH (59.26%) compared to PMO (49.34%; P < 0.001). Z score at LS, TF, NOF, and greater trochanter (GT) was consistently lowest in T1DM women. Among men, osteoporosis was significantly higher in T1DM (76.67%) and HypoH (54.55%) compared to andropause (45.45%; P = 0.001). Z score at LS, TF, NOF, GT, and TR was consistently lowest in T1DM men. In GD, the burden of osteoporosis was similar to PMO and andropause. BMD difference among the study groups was not significantly different after adjusting for body mass index (BMI) and vitamin D. Conclusion: Low bone mass is extremely common in endocrinopathies, warranting routine screening and intervention. Concomitant vitamin D deficiency compounds the problem. Calcium and vitamin D supplementations may improve bone health in this setting. PMID:27241810

  1. X-Ray induced cataract is preceded by LEC loss, and coincident with accumulation of cortical DNA, and ROS; similarities with age-related cataracts

    PubMed Central

    Zitnik, Galynn; Tsai, Ryan; Wolf, Norman

    2010-01-01

    Purpose To compare age-related cataractous (ARC) changes in unirradiated mice lenses to those induced by head-only X-irradiation of 3 month-old mice. Methods lens epithelial cells (LECs) as well as partially degraded cortical DNA were visualized in fixed sections using 4',6-diamidino-2-phenylindole (DAPI) staining, and in fresh lenses using the vital stain Hoechst 33342. reactive oxygen species (ROS) activity was also visualized directly in fresh lenses using the vital dye Dihydrorhodamine (DHR). In fixed lenses an antibody specific for 8-OH Guanosine (8-OH-G) lesions was used to visualize DNA oxidative adducts from ROS damage. Alpha smooth muscle actin was visualized using specific antibodies to determine if myofibroblasts were present. Fluorescence was quantified using Laser Scanning Confocal Microscopy (LSCM). The degree of lens opacity and cataract formation was determined by slit lamp, or from digitalized images of light reflections taken with a low magnification light microscope. Results Using DNA- and ROS-specific vital fluorescent dyes, and laser scanning confocal microscopy we have previously described 4 changes in the aging rodent lenses: 1) a significantly decreased density of surface LECs in lenses from old compared to younger mice and rats; 2) a very large increase in retained cortical nuclei and DNA fragments in the secondary lens fibers of old rodent lenses; 3) increased cortical ROS in old rodent lenses; 4) increased cataract concomitantly with the cortical DNA and ROS increases. In the current study we report that these same 4 changes also occur in an accelerated fashion in mice given head-only X-irradiation at 3 months of age. In addition to vital staining of fresh lenses, we also examined sections from fixed eyes stained with DAPI or hematoxylin and eosin (H&E) and found the same loss of surface LECs and accumulation of undigested nuclei and debris in secondary lens fibers occur with age or following X-irradiation. In addition sections from fixed

  2. Quantification of Age-Related and per Diopter Accommodative Changes of the Lens and Ciliary Muscle in the Emmetropic Human Eye

    PubMed Central

    Richdale, Kathryn; Sinnott, Loraine T.; Bullimore, Mark A.; Wassenaar, Peter A.; Schmalbrock, Petra; Kao, Chiu-Yen; Patz, Samuel; Mutti, Donald O.; Glasser, Adrian; Zadnik, Karla

    2013-01-01

    Purpose. To calculate age-related and per diopter (D) accommodative changes in crystalline lens and ciliary muscle dimensions in vivo in a single cohort of emmetropic human adults ages 30 to 50 years. Methods. The right eyes of 26 emmetropic adults were examined using ultrasonography, phakometry, anterior segment optical coherence tomography, and high resolution magnetic resonance imaging. Accommodation was measured both subjectively and objectively. Results. In agreement with previous research, older age was linearly correlated with a thicker lens, steeper anterior lens curvature, shallower anterior chamber, and lower lens equivalent refractive index (all P < 0.01). Age was not related to ciliary muscle ring diameter (CMRD) or lens equatorial diameter (LED). With accommodation, lens thickness increased (+0.064 mm/D, P < 0.001), LED decreased (−0.075 mm/D, P < 0.001), CMRD decreased (−0.105 mm/D, P < 0.001), and the ciliary muscle thickened anteriorly (+0.013 to +0.026 mm/D, P < 0.001) and thinned posteriorly (−0.011 to −0.015, P < 0.01). The changes per diopter of accommodation in LED, CMRD, and ciliary muscle thickness were not related to subject age. Conclusions. The per diopter ciliary muscle contraction is age independent, even as total accommodative amplitude declines. Quantifying normal biometric dimensions of the accommodative structures and changes with age and accommodative effort will further the development of new IOLs designed to harness ciliary muscle forces. PMID:23287789

  3. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women

    PubMed Central

    Csapo, R.; Malis, V.; Hodgson, J.

    2014-01-01

    The aim of the present study was to test the hypothesis that the age-associated decrease of tendon stiffness would necessitate greater muscle fascicle strains to produce similar levels of force during isometric contraction. Greater fascicle strains could force sarcomeres to operate in less advantageous regions of their force-length and force-velocity relationships, thus impairing the capacity to generate strong and explosive contractions. To test this hypothesis, sagittal-plane dynamic velocity-encoded phase-contrast magnetic resonance images of the gastrocnemius medialis (GM) muscle and Achilles tendon (AT) were acquired in six young (YW; 26.1 ± 2.3 yr) and six senior (SW; 76.7 ± 8.3 yr) women during submaximal isometric contraction (35% maximum voluntary isometric contraction) of the plantar flexor muscles. Multiple GM fascicle lengths were continuously determined by automatically tracking regions of interest coinciding with the end points of muscle fascicles evenly distributed along the muscle's proximo-distal length. AT stiffness and Young's modulus were measured as the slopes of the tendon's force-elongation and stress-strain curves, respectively. Despite significantly lower AT stiffness at older age (YW: 120.2 ± 52.3 N/mm vs. SW: 53.9 ± 44.4 N/mm, P = 0.040), contraction-induced changes in GM fascicle lengths were similar in both age groups at equal levels of absolute muscular force (4–5% fascicle shortening in both groups), and even significantly larger in YW (YW: 11–12% vs. SW: 6–8% fascicle shortening) at equal percentage of maximum voluntary contraction. These results suggest that factors other than AT stiffness, such as age-associated changes in muscle composition or fascicle slack, might serve as compensatory adaptations, limiting the degree of fascicle strains upon contraction. PMID:24505104

  4. Age-related change of the role of alpha1L-adrenoceptor in canine urethral smooth muscle.

    PubMed

    Suzuki, Y; Moriyama, N; Okaya, Y; Nishimatsu, H; Kawabe, K; Aisaka, K

    1999-10-01

    To examine age-related alteration of the role of alpha1L-adrenoceptor in the urethra, young non-parous and aged parous female dogs were used. In a functional study, we evaluated phenylephrine-induced contraction and antagonistic effects of JTH-601, a newly synthesized alpha1-adrenoceptor antagonist, and prazosin; in a localization survey using autoradiographic technique, we investigated specific [3H]JTH-601 and [3H]tamsulosin binding. Concentration-response curves were obtained for phenylephrine (pD2 = 5.0-5.3). JTH-601 and prazosin antagonized this contraction with pA2 values of 8.2-8.3 and 8.0-8.1, respectively. Specific binding of both [3H]JTH-601 and [3H]tamsulosin were observed in the bladder neck and proximal section of urethra. There were no significant differences of the pD2, pA2, and radio ligand binding between young non-parous and aged parous dogs. PMID:10523074

  5. Age-related loss of hepatic Nrf2 protein homeostasis: Potential role for heightened expression of miR-146a.

    PubMed

    Smith, Eric J; Shay, Kate P; Thomas, Nicholas O; Butler, Judy A; Finlay, Liam F; Hagen, Tory M

    2015-12-01

    Nrf2 regulates the expression of numerous anti-oxidant, anti-inflammatory, and metabolic genes. We observed that, paradoxically, Nrf2 protein levels decline in the livers of aged rats despite the inflammatory environment evident in that organ. To examine the cause(s) of this loss, we investigated the age-related changes in Nrf2 protein homeostasis and activation in cultured hepatocytes from young (4-6 months) and old (24-28 months) Fischer 344 rats. While no age-dependent change in Nrf2 mRNA levels was observed (p>0.05), Nrf2 protein content, and the basal and anetholetrithione (A3T)-induced expression of Nrf2-dependent genes were attenuated with age. Conversely, overexpression of Nrf2 in cells from old animals reinstated gene induction. Treatment with A3T, along with bortezomib to inhibit degradation of existing protein, caused Nrf2 to accumulate significantly in cells from young animals (p<0.05), but not old, indicating a lack of new Nrf2 synthesis. We hypothesized that the loss of Nrf2 protein synthesis with age may partly stem from an age-related increase in microRNA inhibition of Nrf2 translation. Microarray analysis revealed that six microRNAs significantly increase >2-fold with age (p<0.05). One of these, miRNA-146a, is predicted to bind Nrf2 mRNA. Transfection of hepatocytes from young rats with a miRNA-146a mimic caused a 55% attenuation of Nrf2 translation that paralleled the age-related loss of Nrf2. Overall, these results provide novel insights for the age-related decline in Nrf2 and identify new targets to maintain Nrf2-dependent detoxification with age. PMID:26549877

  6. Sirt1 deficiency protects cochlear cells and delays the early onset of age-related hearing loss in C57BL/6 mice.

    PubMed

    Han, Chul; Linser, Paul; Park, Hyo-Jin; Kim, Mi-Jung; White, Karessa; Vann, James M; Ding, Dalian; Prolla, Tomas A; Someya, Shinichi

    2016-07-01

    Hearing gradually declines with age in both animals and humans, and this condition is known as age-related hearing loss (AHL). Here, we investigated the effects of deficiency of Sirt1, a member of the mammalian sirtuin family, on age-related cochlear pathology and associated hearing loss in C57BL/6 mice, a mouse model of early-onset AHL. Sirt1 deficiency reduced age-related oxidative damage of cochlear hair cells and spiral ganglion neurons and delayed the early onset of AHL. In cultured mouse inner ear cell lines, Sirt1 knockdown increased cell viability under oxidative stress conditions, induced nuclear translocation of Foxo3a, and increased acetylation status of Foxo3a. This resulted in increased activity of the antioxidant enzyme catalase. In young wild-type mice, both Sirt1 and Foxo3a proteins resided in the cytoplasm of the supporting cells within the organ of Corti of the cochlea. Therefore, our findings suggest that SIRT1 promotes early-onset AHL through suppressing FOXO3a-mediated oxidative stress resistance in the cochlea of C57BL/6 mice. PMID:27255815

  7. Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training.

    PubMed

    Consitt, Leslie A; Saxena, Gunjan; Saneda, Alicson; Houmard, Joseph A

    2016-07-01

    The purpose of this study was to determine whether plasma lactate and skeletal muscle glucose regulatory pathways, specifically PDH dephosphorylation, are impaired during hyperinsulinemic conditions in middle- to older-aged individuals and determine whether exercise training could improve key variables responsible for skeletal muscle PDH regulation. Eighteen young (19-29 yr; n = 9 males and 9 females) and 20 middle- to older-aged (57-82 yr; n = 10 males and 10 females) individuals underwent a 2-h euglycemic hyperinsulinemic clamp. Plasma samples were obtained at baseline and at 30, 50, 90, and 120 min for analysis of lactate, and skeletal muscle biopsies were performed at 60 min for analysis of protein associated with glucose metabolism. In response to insulin, plasma lactate was elevated in aged individuals when normalized to insulin action. Insulin-stimulated phosphorylation of skeletal muscle PDH on serine sites 232, 293, and 300 decreased in young individuals only. Changes in insulin-stimulated PDH phosphorylation were positively related to changes in plasma lactate. No age-related differences were observed in skeletal muscle phosphorylation of LDH, GSK-3α, or GSK-3β in response to insulin or PDP1, PDP2, PDK2, PDK4, or MPC1 total protein. Twelve weeks of endurance- or strength-oriented exercise training improved insulin-stimulated PDH dephosphorylation, which was related to a reduced lactate response. These findings suggest that impairments in insulin-induced PDH regulation in a sedentary aging population contribute to impaired glucose metabolism and that exercise training is an effective intervention for treating metabolic inflexibility. PMID:27221120

  8. Preparing Muscles for Diving: Age-Related Changes in Muscle Metabolic Profiles in Harp (Pagophilus groenlandicus) and Hooded (Cystophora cristata) Seals.

    PubMed

    Burns, J M; Lestyk, K; Freistroffer, D; Hammill, M O

    2015-01-01

    In adult marine mammals, muscles can sustain aerobic metabolism during dives in part because they contain large oxygen (O2) stores and metabolic rates are low. However, young pups have significantly lower tissue O2 stores and much higher mass-specific metabolic rates. To investigate how these differences may influence muscle function during dives, we measured the activities of enzymes involved in aerobic and anaerobic metabolic pathways (citrate synthase [CS], β-hydroxyacyl-coenzyme A dehydrogenase [HOAD], lactate dehydrogenase [LDH]) and the LDH isoform profile in six muscles from 41 harp (Pagophilus groenlandicus) and 30 hooded (Cystophora cristata) seals ranging in age from fetal to adult. All neonatal muscles had significantly higher absolute but lower metabolically scaled CS and HOAD activities than adults (∼ 70% and ∼ 85% lower, respectively). Developmental increases in LDH activity lagged that of aerobic enzymes and were not accompanied by changes in isozyme profile, suggesting that changes in enzyme concentration rather than structure determine activity levels. Biochemical maturation proceeded faster in the major locomotory muscles. In combination, findings suggest that pup muscles are unable to support strenuous aerobic exercise or rely heavily on anaerobic metabolism during early diving activities and that pups' high mass-specific metabolic rates may play a key role in limiting the ability of their muscles to support underwater foraging. PMID:25730272

  9. Age-Related Benefits of Digital Noise Reduction for Short-Term Word Learning in Children with Hearing Loss

    ERIC Educational Resources Information Center

    Pittman, Andrea

    2011-01-01

    Purpose: To determine the rate of word learning for children with hearing loss (HL) in quiet and in noise compared to normal-hearing (NH) peers. The effects of digital noise reduction (DNR) were examined for children with HL. Method: Forty-one children with NH and 26 children with HL were grouped by age (8-9 years and 11-12 years). The children…

  10. Development of a new Sonovue™ contrast-enhanced ultrasound approach reveals temporal and age-related features of muscle microvascular responses to feeding

    PubMed Central

    Mitchell, William Kyle; Phillips, Bethan E; Williams, John P; Rankin, Debbie; Smith, Kenneth; Lund, Jonathan N; Atherton, Philip J

    2013-01-01

    Compromised limb blood flow in aging may contribute to the development of sarcopenia, frailty, and the metabolic syndrome. We developed a novel contrast-enhanced ultrasound technique using Sonovue™ to characterize muscle microvasculature responses to an oral feeding stimulus (15 g essential amino acids) in young (∼20 years) and older (∼70 years) men. Intensity-time replenishment curves were made via an ultrasound probe “fixed” over the quadriceps, with intermittent high mechanical index destruction of microbubbles within muscle vasculature. This permitted real-time measures of microvascular blood volume (MBV), microvascular flow velocity (MFV) and their product, microvascular blood flow (MBF). Leg blood flow (LBF) was measured by Doppler and insulin by enzyme-linked immunosorbent assay. Steady-state contrast concentrations needed for comparison between different physiological states were achieved <150 sec from commencing Sonovue™ infusion, and MFV and MBV measurements were completed <120 sec thereafter. Interindividual coefficients of variation in MBV and MFV were 35–40%, (N = 36). Younger men (N = 6) exhibited biphasic vascular responses to feeding with early increases in MBV (+36%, P < 0.008 45 min post feed) reflecting capillary recruitment, and late increases in MFV (+77%, P < 0.008) and MBF (+130%, P < 0.007 195 min post feed) reflecting more proximal vessel dilatation. Early MBV responses were synchronized with peak insulin but not increased LBF, while later changes in MFV and MBF occurred with insulin at post absorptive values but alongside increased LBF. All circulatory responses were absent in old men (N = 7). Thus, impaired postprandial circulation could impact age-related declines in muscle glucose disposal, protein anabolism, and muscle mass. PMID:24303186

  11. A Comparative Study of Age-Related Hearing Loss in Wild Type and Insulin-Like Growth Factor I Deficient Mice

    PubMed Central

    Riquelme, Raquel; Cediel, Rafael; Contreras, Julio; Lourdes, Rodriguez-de la Rosa; Murillo-Cuesta, Silvia; Hernandez-Sanchez, Catalina; Zubeldia, Jose M.; Cerdan, Sebastian; Varela-Nieto, Isabel

    2010-01-01

    Insulin-like growth factor-I (IGF-I) belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1−/− null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss) is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1+/+ and null Igf1−/− mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR) recordings and in vivo MRI brain imaging. Igf1−/− null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1+/+ wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1−/− null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to prevent or

  12. Dietary intake of heat-killed Lactococcus lactis H61 delays age-related hearing loss in C57BL/6J mice.

    PubMed

    Oike, Hideaki; Aoki-Yoshida, Ayako; Kimoto-Nira, Hiromi; Yamagishi, Naoko; Tomita, Satoru; Sekiyama, Yasuyo; Wakagi, Manabu; Sakurai, Mutsumi; Ippoushi, Katsunari; Suzuki, Chise; Kobori, Masuko

    2016-01-01

    Age-related hearing loss (AHL) is a common disorder associated with aging. In this study, we investigated the effect of the intake of heat-killed Lactococcus lactis subsp. cremoris H61 (strain H61) on AHL in C57BL/6J mice. Measurement of the auditory brainstem response (ABR) demonstrated that female mice at 9 months of age fed a diet containing 0.05% strain H61 for 6 months maintained a significantly lower ABR threshold than control mice. The age-related loss of neurons and hair cells in the cochlea was suppressed by the intake of strain H61. Faecal analysis of bacterial flora revealed that the intake of strain H61 increased the prevalence of Lactobacillales, which is positively correlated with hearing ability in mice. Furthermore, plasma fatty acid levels were negatively correlated with hearing ability. Overall, the results supported that the intake of heat-killed strain H61 for 6 months altered the intestinal flora, affected plasma metabolite levels, including fatty acid levels, and retarded AHL in mice. PMID:27000949

  13. Dietary intake of heat-killed Lactococcus lactis H61 delays age-related hearing loss in C57BL/6J mice

    PubMed Central

    Oike, Hideaki; Aoki-Yoshida, Ayako; Kimoto-Nira, Hiromi; Yamagishi, Naoko; Tomita, Satoru; Sekiyama, Yasuyo; Wakagi, Manabu; Sakurai, Mutsumi; Ippoushi, Katsunari; Suzuki, Chise; Kobori, Masuko

    2016-01-01

    Age-related hearing loss (AHL) is a common disorder associated with aging. In this study, we investigated the effect of the intake of heat-killed Lactococcus lactis subsp. cremoris H61 (strain H61) on AHL in C57BL/6J mice. Measurement of the auditory brainstem response (ABR) demonstrated that female mice at 9 months of age fed a diet containing 0.05% strain H61 for 6 months maintained a significantly lower ABR threshold than control mice. The age-related loss of neurons and hair cells in the cochlea was suppressed by the intake of strain H61. Faecal analysis of bacterial flora revealed that the intake of strain H61 increased the prevalence of Lactobacillales, which is positively correlated with hearing ability in mice. Furthermore, plasma fatty acid levels were negatively correlated with hearing ability. Overall, the results supported that the intake of heat-killed strain H61 for 6 months altered the intestinal flora, affected plasma metabolite levels, including fatty acid levels, and retarded AHL in mice. PMID:27000949

  14. Age-related decreases of serum-response factor levels in human mesenchymal stem cells are involved in skeletal muscle differentiation and engraftment capacity.

    PubMed

    Ting, Chiao-Hsuan; Ho, Pai-Jiun; Yen, Betty Linju

    2014-06-01

    Skeletal muscle (SkM) comprise ∼40% of human body weight. Injury or damage to this important tissue can result in physical disability, and in severe cases is difficult for its endogenous stem cell-the satellite cell-to reverse effectively. Mesenchymal stem cells (MSC) are postnatal progenitor/stem cells that possess multilineage mesodermal differentiation capacity, including toward SkM. Adult bone marrow (BM) is the best-studied source of MSCs; however, aging also decreases BMMSC numbers and can adversely affect differentiation capacity. Therefore, we asked whether human sources of developmentally early stage mesenchymal stem cells (hDE-MSCs) isolated from embryonic stem cells, fetal bone, and term placenta could be cellular sources for SkM repair. Under standard muscle-inducing conditions, hDE-MPCs differentiate toward a SkM lineage rather than cardiomyocytic or smooth muscle lineages, as evidenced by increased expression of SkM-associated markers and in vitro myotube formation. In vivo transplantation revealed that SkM-differentiated hDE-MSCs can efficiently incorporate into host SkM tissue in a mouse model of SkM injury. In contrast, adult BMMSCs do not express SkM-associated genes after in vitro SkM differentiation nor engraft in vivo. Further investigation of possible factors responsible for this difference in SkM differentiation potential revealed that, compared with adult BMMSCs, hDE-MSCs expressed higher levels of serum response factor (SRF), a transcription factor critical for SkM lineage commitment. Moreover, knockdown of SRF in hDE-MSCs resulted in decreased expression of SkM-related genes after in vitro differentiation and decreased in vivo engraftment. Our results implicate SRF as a key factor in age-related SkM differentiation capacity of MSCs, and demonstrate that hDE-MSCs are possible candidates for SkM repair. PMID:24576136

  15. Age-related hearing loss

    MedlinePlus

    ... EH, Katz PR, Malone ML, eds. Practice of Geriatrics . 4th ed. Philadelphia, PA: Elsevier Mosby; 2007:chap ... Seshamani M, Kashima ML. Special considerations in managing geriatric patients. In: Flint PW, Haughey BH, Lund LJ, ...

  16. Engineered Skeletal Muscle Units for Repair of Volumetric Muscle Loss in the Tibialis Anterior Muscle of a Rat

    PubMed Central

    VanDusen, Keith W.; Syverud, Brian C.; Williams, Michael L.; Lee, Jonah D.

    2014-01-01

    Volumetric muscle loss (VML) is the traumatic, degenerative, or surgical loss of muscle tissue, which may result in function loss and physical deformity. To date, clinical treatments for VML—the reflected muscle flap or transferred muscle graft—are limited by tissue availability and donor site morbidity. To address the need for more innovative skeletal muscle repair options, our laboratory has developed scaffoldless tissue-engineered skeletal muscle units (SMUs), multiphasic tissue constructs composed of engineered skeletal muscle with engineered bone-tendon ends, myotendinous junctions, and entheses, which in vitro can produce force both spontaneously and in response to electrical stimulation. Though phenotypically immature in vitro, we have shown that following 1 week of implantation in an ectopic site, our muscle constructs develop vascularization and innervation, an epimysium-like outer layer of connective tissue, an increase in myosin protein content, formation of myofibers, and increased force production. These findings suggest that our engineered muscle tissue survives implantation and develops the interfaces necessary to advance the phenotype toward adult muscle. The purpose of this study was to evaluate the potential of our SMUs to restore muscle tissue to sites of acute VML. Our results indicate that our SMUs continue to mature in vivo with longer recovery times and have the potential to repair VML sites by providing additional muscle fibers to damaged muscles. We conclude from this study that our SMUs have the potential to restore lost tissue volume in cases of acute VML. PMID:24813922

  17. sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss

    PubMed Central

    Haraguchi, Ryuma; Kitazawa, Riko; Mori, Kiyoshi; Tachibana, Ryosuke; Kiyonari, Hiroshi; Imai, Yuuki; Abe, Takaya; Kitazawa, Sohei

    2016-01-01

    sFRP4 is an extracellular Wnt antagonist that fine-tunes its signal activity by direct binding to Wnts. Bone fragility under oxidative stress by diabetes and aging is partly related to the suppression of the Wnt signal through upregulated sFRP4. Here, to explore the functions of sFRP4 as a balancer molecule in bone development and remodeling, we analyzed the sFRP4 knock-in mouse strain. X-gal and immunohistochemically stained signals in sFRP4-LacZ heterozygous mice were detectable in restricted areas, mostly in osteoblasts and osteoclasts, of the femoral diaphysis after neonatal and postnatal stages. Histological and μCT analyses showed increased trabecular bone mass with alteration of the Wnt signal and osteogenic activity in sFRP4 mutants; this augmented the effect of the buildup of trabecular bone during the ageing period. Our results indicate that sFRP4 plays a critical role in bone development and remodeling by regulating osteoblasts and osteoclasts, and that its functional loss prevents age-related bone loss in the trabecular bone area. These findings imply that sFRP4 functions as a key potential endogenous balancer of the Wnt signaling pathway by efficiently having direct influence on both bone formation and bone absorption during skeletal bone development and maintenance through remodeling. PMID:27117872

  18. sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss.

    PubMed

    Haraguchi, Ryuma; Kitazawa, Riko; Mori, Kiyoshi; Tachibana, Ryosuke; Kiyonari, Hiroshi; Imai, Yuuki; Abe, Takaya; Kitazawa, Sohei

    2016-01-01

    sFRP4 is an extracellular Wnt antagonist that fine-tunes its signal activity by direct binding to Wnts. Bone fragility under oxidative stress by diabetes and aging is partly related to the suppression of the Wnt signal through upregulated sFRP4. Here, to explore the functions of sFRP4 as a balancer molecule in bone development and remodeling, we analyzed the sFRP4 knock-in mouse strain. X-gal and immunohistochemically stained signals in sFRP4-LacZ heterozygous mice were detectable in restricted areas, mostly in osteoblasts and osteoclasts, of the femoral diaphysis after neonatal and postnatal stages. Histological and μCT analyses showed increased trabecular bone mass with alteration of the Wnt signal and osteogenic activity in sFRP4 mutants; this augmented the effect of the buildup of trabecular bone during the ageing period. Our results indicate that sFRP4 plays a critical role in bone development and remodeling by regulating osteoblasts and osteoclasts, and that its functional loss prevents age-related bone loss in the trabecular bone area. These findings imply that sFRP4 functions as a key potential endogenous balancer of the Wnt signaling pathway by efficiently having direct influence on both bone formation and bone absorption during skeletal bone development and maintenance through remodeling. PMID:27117872

  19. Age-Related Loss of Synaptophysin Immunoreactive Presynaptic Boutons within the Hippocampus of APP751SL, PS1M146L, and APP751SL/PS1M146L Transgenic Mice

    PubMed Central

    Rutten, Bart P.F.; Van der Kolk, Nicolien M.; Schafer, Stephanie; van Zandvoort, Marc A.M.J.; Bayer, Thomas A.; Steinbusch, Harry W.M.; Schmitz, Christoph

    2005-01-01

    Neuron and synapse loss are important features of the neuropathology of Alzheimer’s disease (AD). Recently, we observed substantial age-related hippocampal neuron loss in APP751SL/PS1M146L transgenic mice but not in PS1M146L mice. Here, we investigated APP751SL mice, PS1M146L mice, and APP751SL/PS1M146L mice for age-related alterations in synaptic integrity within hippocampal stratum moleculare of the dentate gyrus (SM), stratum lucidum of area CA3 (SL), and stratum radiatum of area CA1–2 (SR) by analyzing densities and numbers of synaptophysin-immunoreactive presynaptic boutons (SIPBs). Wild-type mice, APP751SL mice and PS1M146L mice showed similar amounts of age-related SIPB loss within SM, and no SIPB loss within SL. Both APP751SL mice and PS1M146L mice showed age-related SIPB loss within SR. Importantly, APP751SL/PS1M146L mice displayed the severest age-related SIPB loss within SM, SL, and SR, even in regions free of extracellular Aβ deposits. Together, these mouse models offer a unique framework to study the impact of several molecular and cellular events caused by mutant APP and/or mutant PS1 on age-related alterations in synaptic integrity. The observation of age-related SIPB loss within SR of PS1M146L mice supports a role of mutant PS1 in neurodegeneration apart from its contribution to alterations in Aβ generation. PMID:15972962

  20. Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury.

    PubMed

    Marinelli, Sara; Eleuteri, Cecilia; Vacca, Valentina; Strimpakos, Georgios; Mattei, Elisabetta; Severini, Cinzia; Pavone, Flaminia; Luvisetto, Siro

    2015-01-01

    We analyzed the role of P/Q-type calcium channels in sciatic nerve regeneration after lesion induced by chronic constriction injury (CCI) in heterozygous null mutant mice lacking the CaV2.1α1 subunit of these channels (Cacna1a+/-). Compared with wild type, Cacna1a+/- mice showed an initial reduction of the CCI-induced allodynia, indicating a reduced pain perception, but they also evidenced a lack of recovery over time, with atrophy of the injured hindpaw still present 3 months after CCI when wild-type mice fully recovered. In parallel, Cacna1a+/- mice exhibited an early onset of age-dependent loss of P/Q-type channels, which can be responsible for the lack of functional recovery. Moreover, Cacna1a+/- mice showed an early age-dependent reduction of muscular strength, as well as of Schwann cells proliferation and sciatic nerve remyelination. This study demonstrates the important role played by P/Q-type channels in recovery from nerve injury and has important implications for the knowledge of age-related processes. PMID:25150573

  1. Possible age-related hearing loss (presbycusis) and corresponding change in echolocation parameters in a stranded Indo-Pacific humpback dolphin.

    PubMed

    Li, Songhai; Wang, Ding; Wang, Kexiong; Hoffmann-Kuhnt, Matthias; Fernando, Nimal; Taylor, Elizabeth A; Lin, Wenzhi; Chen, Jialin; Ng, Timothy

    2013-11-15

    The hearing and echolocation clicks of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, were studied. This animal had been repeatedly observed in the wild before it was stranded and its age was estimated to be ~40 years. The animal's hearing was measured using a non-invasive auditory evoked potential (AEP) method. Echolocation clicks produced by the dolphin were recorded when the animal was freely swimming in a 7.5 m (width)×22 m (length)×4.8 m (structural depth) pool with a water depth of ~2.5 m. The hearing and echolocation clicks of the studied dolphin were compared with those of a conspecific younger individual, ~13 years of age. The results suggested that the cut-off frequency of the high-frequency hearing of the studied dolphin was ~30-40 kHz lower than that of the younger individual. The peak and centre frequencies of the clicks produced by the older dolphin were ~16 kHz lower than those of the clicks produced by the younger animal. Considering that the older dolphin was ~40 years old, its lower high-frequency hearing range with lower click peak and centre frequencies could probably be explained by age-related hearing loss (presbycusis). PMID:24172886

  2. Weight, muscle and bone loss during space flight: another perspective.

    PubMed

    Stein, T P

    2013-09-01

    Space flight is a new experience for humans. Humans adapt if not perfectly, rather well to life without gravity. There is a reductive remodeling of the musculo-skeletal system. Protein is lost from muscles and calcium from bones with anti-gravity functions. The observed biochemical and physiological changes reflect this accommodative process. The two major direct effects of the muscle loss are weakness post-flight and the increased incidence of low back ache pre- and post-flight. The muscle protein losses are compromised by the inability to maintain energy balance inflight. Voluntary dietary intake is reduced during space flight by ~20 %. These adaptations to weightlessness leave astronauts ill-equipped for life with gravity. Exercise, the obvious counter-measure has been repeatedly tried and since the muscle and bone losses persist it is not unreasonable to assume that success has been limited at best. Nevertheless, more than 500 people have now flown in space for up to 1 year and have done remarkably well. This review addresses the question of whether enough is now known about these three problems (negative energy balance, muscle loss and bone loss) for to the risks to be considered either acceptable or correctible enough to meet the requirements for a Mars mission. PMID:23192310

  3. On high heels and short muscles: A multiscale model for sarcomere loss in the gastrocnemius muscle

    PubMed Central

    Zöllner, Alexander M.; Pok, Jacquelynn M.; McWalter, Emily J.; Gold, Garry E.; Kuhl, Ellen

    2014-01-01

    High heels are a major source of chronic lower limb pain. Yet, more than one third of all women compromise health for looks and wear high heels on a daily basis. Changing from flat footwear to high heels induces chronic muscle shortening associated with discomfort, fatigue, reduced shock absorption, and increased injury risk. However, the long-term effects of high-heeled footwear on the musculoskeletal kinematics of the lower extremities remain poorly understood. Here we create a multiscale computational model for chronic muscle adaptation to characterize the acute and chronic effects of global muscle shortening on local sarcomere lengths. We perform a case study of a healthy female subject and show that raising the heel by 13 cm shortens the gastrocnemius muscle by 5% while the Achilles tendon remains virtually unaffected. Our computational simulation indicates that muscle shortening displays significant regional variations with extreme values of 22% in the central gastrocnemius. Our model suggests that the muscle gradually adjusts to its new functional length by a chronic loss of sarcomeres in series. Sarcomere loss varies significantly across the muscle with an average loss of 9%, virtually no loss at the proximal and distal ends, and a maximum loss of 39% in the central region. These changes reposition the remaining sarcomeres back into their optimal operating regime. Computational modeling of chronic muscle shortening provides a valuable tool to shape our understanding of the underlying mechanisms of muscle adaptation. Our study could open new avenues in orthopedic surgery and enhance treatment for patients with muscle contracture caused by other conditions than high heel wear such as paralysis, muscular atrophy, and muscular dystrophy. PMID:25451524

  4. On high heels and short muscles: a multiscale model for sarcomere loss in the gastrocnemius muscle.

    PubMed

    Zöllner, Alexander M; Pok, Jacquelynn M; McWalter, Emily J; Gold, Garry E; Kuhl, Ellen

    2015-01-21

    High heels are a major source of chronic lower limb pain. Yet, more than one third of all women compromise health for looks and wear high heels on a daily basis. Changing from flat footwear to high heels induces chronic muscle shortening associated with discomfort, fatigue, reduced shock absorption, and increased injury risk. However, the long-term effects of high-heeled footwear on the musculoskeletal kinematics of the lower extremities remain poorly understood. Here we create a multiscale computational model for chronic muscle adaptation to characterize the acute and chronic effects of global muscle shortening on local sarcomere lengths. We perform a case study of a healthy female subject and show that raising the heel by 13cm shortens the gastrocnemius muscle by 5% while the Achilles tendon remains virtually unaffected. Our computational simulation indicates that muscle shortening displays significant regional variations with extreme values of 22% in the central gastrocnemius. Our model suggests that the muscle gradually adjusts to its new functional length by a chronic loss of sarcomeres in series. Sarcomere loss varies significantly across the muscle with an average loss of 9%, virtually no loss at the proximal and distal ends, and a maximum loss of 39% in the central region. These changes reposition the remaining sarcomeres back into their optimal operating regime. Computational modeling of chronic muscle shortening provides a valuable tool to shape our understanding of the underlying mechanisms of muscle adaptation. Our study could open new avenues in orthopedic surgery and enhance treatment for patients with muscle contracture caused by other conditions than high heel wear such as paralysis, muscular atrophy, and muscular dystrophy. PMID:25451524

  5. Nutrition and muscle loss in humans during spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    1999-01-01

    The protein loss in humans during spaceflight is partly due to a normal adaptive response to a decreased work load on the muscles involved in weight bearing. The process is mediated by changes in prostaglandin release, secondary to the decrease in tension on the affected muscles. On missions, where there is a high level of physical demands on the astronauts, there tends to be an energy deficit, which adds to the muscle protein loss and depletes the body fat reserves. While the adaptive response is a normal part of homeostasis, the additional protein loss from an energy deficit can, in the long run, have a negative effect on health and capability of humans to live and work in space and afterward return to Earth.

  6. The loss of muscle mass and sarcopenia: non hormonal intervention.

    PubMed

    Sanchis-Gomar, Fabian; Gómez-Cabrera, Mari Carmen; Viña, Jose

    2011-12-01

    Muscle aging is a key component of the increase in frailty in human populations. The generation of critical levels of power is a prerequisite to perform simple tasks of daily living, such as rising from a chair or climbing stairs. There is great scientific and social interest to determine which behaviors can lead to the maintenance of the muscle mass in young immobilized subjects and in the elderly. Several hormonal treatments have been proposed for the treatment of sarcopenia. However, the side effects associated to these treatments emphasize the need of finding non-toxic and non-hormonal treatments that help increase muscle strength, improve muscle function, and decrease the degree of dependency in the old population. Recently, several studies have shed new light on this topic. Any medical efforts to develop treatments to prevent muscle dysfunction leading to sarcopenia, and eventually frailty, will be a major breakthrough in the public health in advances countries. Moreover, any significant improvement in the loss of muscle function will be a major breakthrough in the health and welfare of the population. PMID:21920428

  7. Age-related appearance of muscle trauma in primary total hip arthroplasty and the benefit of a minimally invasive approach for patients older than 70 years

    PubMed Central

    Tohtz, Stephan; Dewey, Marc; Springer, Ivonne; Perka, Carsten

    2010-01-01

    Old age is frequently associated with a poorer functional outcome after THA. This might be based upon muscular damage resulting from surgical trauma. Minimally invasive approaches have been widely promoted on the basis of the muscle sparing effect. The aim of the study was to evaluate of the functional outcome and the grade of fatty muscle atrophy of the gluteus medius muscle by magnetic-resonance-imaging (MRI) in patients undergoing minimally invasive or traditional THA. Forty patients (21 female, 19 male) underwent THA either via a modified direct lateral (mDL) or a minimally invasive anterolateral (ALMI) approach. Patients were evaluated clinically and by MRI in terms of age (< or ≥70 y) preoperatively and at three and 12 months postoperatively. The Harris hip score and Trendelenburg’s sign were recorded and a survey of a pain (using a numeric rating scale of 0–10) and satisfaction score (using a numeric rating scale of 1–6) was performed. Fatty atrophy (FA) of gluteus medius muscle was rated by means of a five-point rating scale (0 indicates no fat and 4 implies more fat than muscle). Younger patients reached a significantly higher Harris hip score, lower pain score and lower rate of positive Trendelenburg’s sign accompanied by a significantly lower rate of postoperative FA (P = 0.03; young: FA (MW) = (preop. / 3 / 12 months), 0.15 / 0.7 / 0.7; old: FA (MW) = 0.18 / 1.3 / 1.36). Older patients with an mDL-approach had the significantly lowest clinical scores, the highest rate of positive Trendelenburg’s sign and also the highest rate of fatty atrophy (P = 0.03; FA (old) mDL: 1.8; ALMI: 0.7). Interestingly, no influence of the approach could be detected within the younger group. Patients older than 70 years had a poorer functional outcome and a higher postoperative extent of FA when compared to younger patients, which must be based upon a higher vulnerability and a reduced regenerative capacity of their skeletal muscle. Through a

  8. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  9. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats.

    PubMed

    Sung, Bokyung; Hwang, Seong Yeon; Kim, Min Jo; Kim, Minjung; Jeong, Ji Won; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-09-01

    A main characteristic of aging is the debilitating, progressive and generalized impairment of biological functions, resulting in an increased vulnerability to disease and death. Skeletal muscle comprises approximately 40% of the human body; thus, it is the most abundant tissue. At the age of 30 onwards, 0.5‑1% of human muscle mass is lost each year, with a marked acceleration in the rate of decline after the age of 65. Thus, novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function are required to improve the quality of life of older subjects. The aim of the present study was to determine whether loquat (Eriobotrya japonica) leaf extract (LE) can prevent the loss of skeletal muscle function in aged rats. Young (5-month-old) and aged (18‑19-month-old) rats were fed LE (50 mg/kg/day) for 35 days and the changes in muscle mass and strength were evaluated. The age‑associated loss of grip strength was attenuated, and muscle mass and muscle creatine kinase (CK) activity were enhanced following the administration of LE. Histochemical analysis also revealed that LE abrogated the age‑associated decrease in cross‑sectional area (CSA) and decreased the amount of connective tissue in the muscle of aged rats. To investigate the mode of action of LE, C2C12 murine myoblasts were used to evaluate the myogenic potential of LE. The expression levels of myogenic proteins (MyoD and myogenin) and functional myosin heavy chain (MyHC) were measured by western blot analysis. LE enhanced MyoD, myogenin and MyHC expression. The changes in the expression of myogenic genes corresponded with an increase in the activity of CK, a myogenic differentiation marker. Finally, LE activated the Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is involved in muscle protein synthesis during myogenesis. These findings suggest that LE attenuates sarcopenia by promoting myogenic differentiation and subsequently promoting muscle protein synthesis

  10. Muscle Disuse as a Pivotal Problem in Sarcopenia-related Muscle Loss and Dysfunction.

    PubMed

    Bell, K E; von Allmen, M T; Devries, M C; Phillips, S M

    2016-01-01

    An age-associated loss of muscle mass and strength--sarcopenia--begins at around the fifth decade of life, with mass being lost at ~0.5-1.2% per year and strength at ~3% per year. Sarcopenia can contribute to a variety of negative health outcomes, including an increased risk for falls and fractures, the development of metabolic diseases like type 2 diabetes mellitus, and increase the chance of requiring assisted living. Linear sarcopenic declines in muscle mass and strength are, however, punctuated by transient periods of muscle disuse that can accelerate losses of muscle and strength, which could result in increased risk for the aforementioned conditions. Muscle disuse is recognizable with bed rest or immobilization (for example, due to surgery or acute illness requiring hospitalization); however, recent work has shown that even a relative reduction in ambulation (reduced daily steps) results in significant reductions in muscle mass, strength and possibly an increase in disease risk. Although reduced ambulation is a seemingly "benign" form of disuse, compared to bed rest and immobilization, reports have documented that 2-3 weeks of reduced daily steps may induce: negative changes in body composition, reductions in muscle strength and quality, anabolic resistance, and decrements in glycemic control in older adults. Importantly, periods of reduced ambulation likely occur fairly frequently and appear more difficult to fully recover from, in older adults. Here we explore the consequences of muscle disuse due to reduced ambulatory activity in older adults, with frequent comparisons to established models of disuse: bed rest and immobilization. PMID:26980367

  11. Loss of Ovarian Function Results in Increased Loss of Skeletal Muscle in Arthritic Rats.

    PubMed

    Furlanetto Júnior, Roberto; Martins, Fernanda Maria; Oliveira, Anselmo Alves de; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Murta, Eddie Fernando Candido; Orsatti, Fábio Lera

    2016-02-01

    Objective We studied the effects of loss of ovarian function (ovariectomy) on muscle mass of gastrocnemius and the mRNA levels of IGF-1, atrogin-1, MuRF-1, and myostatin in an experimental model of rheumatoid arthritis in rats. Methods We randomly allocated 24 female Wistar rats (9 weeks, 195.3 ± 17.4 grams) into four groups: control (CT-Sham; n = 6); rheumatoid arthritis (RA; n = 6); ovariectomy without rheumatoid arthritis (OV; n = 6); ovariectomy with rheumatoid arthritis (RAOV; n = 6). We performed the ovariectomy (OV and RAOV) or Sham (CT-Sham or RA) procedures at the same time, fifteen days before the rheumatoid arthritis induction. The RA and RAOV groups were immunized and then were injected with Met-BSA in the tibiotarsal joint. After 15 days of intra-articular injections the animals were euthanized. We evaluated the external manifestations of rheumatoid arthritis (perimeter joint) as well as animal weight, and food intake throughout the study. We also analyzed the cross-sectional areas (CSA) of gastrocnemius muscle fibers in 200 fibers (H&E method). In the gastrocnemius muscle, we analyzed mRNA expression by quantitative real time PCR followed by the Livak method (ΔΔCT). Results The rheumatoid arthritis induced reduction in CSA of gastrocnemius muscle fibers. The RAOV group showed a lower CSA of gastrocnemius muscle fibers compared to RA and CT-Sham groups. Skeletal muscle IGF-1 mRNA increased in arthritics and ovariectomized rats. The increased IGF-1 mRNA was higher in OV groups than in the RA and RAOV groups. Antrogin-1 mRNA also increased in the gastrocnemius muscle of arthritic and ovariectomized rats. However, the increased atrogin-1 mRNA was higher in RAOV groups than in the RA and OV groups. Gastrocnemius muscle MuRF-1 mRNA increased in the OV and RAOV groups, but not in the RA and Sham groups. However, the RAOV group showed higher MuRF-1 mRNA than the OV group. The myostatin gene expression was similar in all groups

  12. Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus

    PubMed Central

    Shi, Yun; Pulliam, Daniel A.; Liu, Yuhong; Hamilton, Ryan T.; Jernigan, Amanda L.; Bhattacharya, Arunabh; Sloane, Lauren B.; Qi, Wenbo; Chaudhuri, Asish; Buffenstein, Rochelle; Ungvari, Zoltan; Austad, Steven N.

    2013-01-01

    Comparing biological processes in closely related species with divergent life spans is a powerful approach to study mechanisms of aging. The oxidative stress hypothesis of aging predicts that longer-lived species would have lower reactive oxygen species (ROS) generation and/or an increased antioxidant capacity, resulting in reduced oxidative damage with age than in shorter-lived species. In this study, we measured ROS generation in the young adult animals of the long-lived white-footed mouse, Peromyscus leucopus (maximal life span potential, MLSP = 8 yr) and the common laboratory mouse, Mus musculus (C57BL/6J strain; MLSP = 3.5 yr). Consistent with the hypothesis, our results show that skeletal muscle mitochondria from adult P. leucopus produce less ROS (superoxide and hydrogen peroxide) compared with M. musculus. Additionally, P. leucopus has an increase in the activity of antioxidant enzymes superoxide dismutase 1, catalase, and glutathione peroxidase 1 at young age. P. leucopus compared with M. musculus display low levels of lipid peroxidation (isoprostanes) throughout life; however, P. leucopus although having elevated protein carbonyls at a young age, the accrual of protein oxidation with age is minimal in contrast to the linear increase in M. musculus. Altogether, the results from young animals are in agreement with the predictions of the oxidative stress hypothesis of aging with the exception of protein carbonyls. Nonetheless, the age-dependent increase in protein carbonyls is more pronounced in short-lived M. musculus, which supports enhanced protein homeostasis in long-lived P. leucopus. PMID:23325454

  13. Perturbation and age-related changes in the fatty acid pattern of soleus muscle phospholipids and triglycerides in rats depleted in long-chain polyunsaturated omega3 fatty acids.

    PubMed

    Malaisse, Willy J; Portois, Laurence; Sener, Abdullah; Carpentier, Yvon A

    2007-12-01

    Altered D-glucose metabolism prevails in the soleus muscle of rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3). In these animals, the prior intravenous injection of an omega3-rich medium-chain triglyceride:fish oil emulsion (omega3-FO rats), as compared to that of an omega3-poor medium-chain triglyceride:olive oil emulsion (omega3-OO rats), may either correct or aggravate selected metabolic variables. This study deals with the fatty acid pattern of soleus phospholipids and triglycerides in control animals versus omega3-depleted rats not injected with any lipid emulsion (omega3-NI rats) and in omega3-OO versus omega3-FO rats. In each group of omega3-depleted rats, age-related changes were also monitored. The omega3-depleted rats displayed low long-chain polyunsaturated omega3 fatty acid content, facilitated metabolism of long-chain polyunsaturated omega6 fatty acids, and increased Delta9-desaturase activity. Both the age-related changes in lipid variables and those attributable to the prior intravenous injection of the omega3-rich lipid emulsion consisted either in a move towards normalization or in the opposite direction, i.e. towards aggravation of the defect found in the omega3-depleted rats. Emphasis is placed, therefore, on the unusual situation found in the soleus muscle of omega3-depleted rats, in which both lipid and metabolic variables may be either favourably or adversely affected by the same environmental factor(s). PMID:17982700

  14. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice.

    PubMed

    Lukjanenko, Laura; Jung, M Juliane; Hegde, Nagabhooshan; Perruisseau-Carrier, Claire; Migliavacca, Eugenia; Rozo, Michelle; Karaz, Sonia; Jacot, Guillaume; Schmidt, Manuel; Li, Liangji; Metairon, Sylviane; Raymond, Frederic; Lee, Umji; Sizzano, Federico; Wilson, David H; Dumont, Nicolas A; Palini, Alessio; Fässler, Reinhard; Steiner, Pascal; Descombes, Patrick; Rudnicki, Michael A; Fan, Chen-Ming; von Maltzahn, Julia; Feige, Jerome N; Bentzinger, C Florian

    2016-08-01

    Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism. PMID:27376579

  15. Age-Related Macular Degeneration

    MedlinePlus

    ... this page please turn Javascript on. Age-related Macular Degeneration What is AMD? Click for more information Age-related macular degeneration, ... the macula allows you to see fine detail. AMD Blurs Central Vision AMD blurs the sharp central ...

  16. How to diminish calcium loss and muscle atrophy in space

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    Humans in micro-gravity suffer from Ca loss and muscle atrophy, efforts are made to prevent it by means of physical exercises and with medicaments. The tread-mill and exercise bike are just two most frequently used examples. This can and should be widely extended, and in such a way as to mimic as close as possible the normal loading of the muscles and skeleton which we experience here on the earth. Special very light weight active harness is proposed which monitors the body loading. This is accomplished by means of computer aided monitoring of muscle and bone loading systems. Using feedback it helps the crew to load their bodies and skeletons in the same way as it happens here on the earth. The active exercise mat with pressure sensors first creates a record here on the earth of all normal muscle tensions during exercise. In space the computer guides each exercising crew member to follow their earthbound training routine. High care is needed to select the best and most effective exercises which should demand least energy, yet providing the very best results. May I suggest the very best known to me kind of comprehensive exercises: Yoga. Doing it on the Earth you need next to none special training equipment. Our body is in principle all we need here to do Yoga exercises on the Earth. Integral part of Yoga exercises are abdominal breathing exercises, which can slow down the breathing rate even threefold. This improves the oxygen and CO_2 exchange and massages all internal organs around the clock, helping the adept to stay fit and also keeps their minds steady and calm. Yoga exercises should be mastered already here on the earth, providing the crew with much greater tolerance to micro-gravity. In Yoga we acquire the tolerance not only to zero gravity but also to "negative" gravity: as it happens in all inverted positions. This should help the astronauts to be more tolerant of the half way only step into "zero gravity". Weightlessness state provides us the ultimate in

  17. Synapse loss and axon retraction in response to local muscle degeneration.

    PubMed

    Hegstrom, C D; Truman, J W

    1996-10-01

    During metamorphosis in the moth, Manduca sexta, the abdominal body-wall muscle DEO1 is remodeled to form the adult muscle DE5. As the larval muscle degenerates, its motoneuron loses its end plates and retracts axon branches from the degenerating muscle. Muscle degeneration is under the control of the insect hormones, the ecdysteroids. Topical application of an ecdysteroid mimic resulted in animals that produced a localized patch of pupal cuticle. Muscle fibers underlying the patch showed a gradient of degeneration. The motoneuron showed end-plate loss and axon retraction from degenerating regions of a given fiber but maintained its fine terminal branches and end plates on intact regions. The results suggest that local steroid treatments that result in local muscle degeneration bring about a loss of synaptic contacts from regions of muscle degeneration. PMID:8885199

  18. [Age-related peculiarities of thymus reaction to the exposure to helium-neon laser and injured muscle alloplasty with the muscle tissue from the animals of the same age].

    PubMed

    Bulyakova, N V; Azarova, V S

    2015-01-01

    Histological, cytological and morphometric changes in the thymus of 1 month-old, adult (3-4 months-old) and old (24-30 months-old) rats (24 animals in each group) were studied during muscle regeneration after the alloplasty of the injured area with the muscle tissue from the animal of the same age. Muscles of the donor or recipient were subjected to the course of preliminary irradiation with He-Ne laser (dose: 4.5-5.4 J/cm2 for each extremity; total dose of 9.0-10.8 J/cm2 per animal). It was shown that the exposure of gastrocnemius muscles that were prepared for the operation to He-Ne laser radiation decreased morpho-functional activity of the thymus in young, adult and old recipient rats the before surgery. This was demonstrated by its weaker reaction to the allograft during the early time intervals after surgery. The observed effect was more pronounced with the increasing age of an animal. PMID:25958725

  19. Age-related anabolic resistance after endurance-type exercise in healthy humans

    PubMed Central

    Durham, William J.; Casperson, Shanon L.; Dillon, Edgar L.; Keske, Michelle A.; Paddon-Jones, Douglas; Sanford, Arthur P.; Hickner, Robert C.; Grady, James J.; Sheffield-Moore, Melinda

    2010-01-01

    Age-related skeletal muscle loss is thought to stem from suboptimal nutrition and resistance to anabolic stimuli. Impaired microcirculatory (nutritive) blood flow may contribute to anabolic resistance by reducing delivery of amino acids to skeletal muscle. In this study, we employed contrast-enhanced ultrasound, microdialysis sampling of skeletal muscle interstitium, and stable isotope methodology, to assess hemodynamic and metabolic responses of older individuals to endurance type (walking) exercise during controlled amino acid provision. We hypothesized that older individuals would exhibit reduced microcirculatory blood flow, interstitial amino acid concentrations, and amino acid transport when compared with younger controls. We report for the first time that aging induces anabolic resistance following endurance exercise, manifested as reduced (by ∼40%) efficiency of muscle protein synthesis. Despite lower (by ∼40–45%) microcirculatory flow in the older than in the younger participants, circulating and interstitial amino acid concentrations and phenylalanine transport into skeletal muscle were all equal or higher in older individuals than in the young, comprehensively refuting our hypothesis that amino acid availability limits postexercise anabolism in older individuals. Our data point to alternative mediators of age-related anabolic resistance and importantly suggest correction of these impairments may reduce requirements for, and increase the efficacy of, dietary protein in older individuals. Durham, W. J., Casperson, S. L., Dillon, E. L., Keske, M. A., Paddon-Jones, D., Sanford, A. P., Hickner, R. C., Grady, J. J., Sheffield-Moore, M. Age-related anabolic resistance after endurance-type exercise in healthy humans. PMID:20547663

  20. Macular degeneration - age-related

    MedlinePlus

    Age-related macular degeneration (ARMD); AMD ... distorted and wavy. There may be a small dark spot in the center of your vision that ... leafy vegetables, may also decrease your risk of age-related macular degeneration. If you have wet AMD, ...

  1. Exercise Promotes Healthy Aging of Skeletal Muscle.

    PubMed

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. PMID:27304505

  2. Is dynamometry able to infer the risk of muscle mass loss in patients with COPD?

    PubMed Central

    Ramos, Dionei; Bertolini, Giovana Navarro; Leite, Marceli Rocha; Carvalho Junior, Luiz Carlos Soares; da Silva Pestana, Paula Roberta; dos Santos, Vanessa Ribeiro; Fortaleza, Ana Claudia de Souza; Rodrigues, Fernanda Maria Machado; Ramos, Ercy Mara Cipulo

    2015-01-01

    Introduction Sarcopenia is characterized by a progressive and generalized decrease of strength and muscle mass. Muscle mass loss is prevalent in patients with chronic obstructive pulmonary disease (COPD) as a result of both the disease and aging. Some methods have been proposed to assess body composition (and therefore identify muscle mass loss) in this population. Despite the high accuracy of some methods, they require sophisticated and costly equipment. Aim The purpose of this study was to infer the occurrence of muscle mass loss measured by a sophisticated method (dual energy X-ray absorptiometry [DEXA]) using a more simple and affordable equipment (dynamometer). Methods Fifty-seven stable subjects with COPD were evaluated for anthropometric characteristics, lung function, functional exercise capacity, body composition, and peripheral muscle strength. A binary logistic regression model verified whether knee-extension strength (measured by dynamometry) could infer muscle mass loss (from DEXA). Results Patients with decreased knee-extension strength were 5.93 times more likely to have muscle mass loss, regardless of sex, disease stage, and functional exercise capacity (P=0.045). Conclusion Knee-extension dynamometry was able to infer muscle mass loss in patients with COPD. PMID:26229459

  3. Endurance interval training in obese mice reduces muscle inflammation and macrophage content independently of weight loss

    PubMed Central

    Samaan, M. Constantine; Marcinko, Katarina; Sikkema, Sarah; Fullerton, Morgan D.; Ziafazeli, Tahereh; Khan, Mohammad I.; Steinberg, Gregory R.

    2014-01-01

    Abstract Obesity is associated with chronic low‐grade inflammation that involves infiltration of macrophages into metabolic organs such as skeletal muscle. Exercise enhances skeletal muscle insulin sensitivity independently of weight loss; but its role in regulating muscle inflammation is not fully understood. We hypothesized that exercise training would inhibit skeletal muscle inflammation and alter macrophage infiltration into muscle independently of weight loss. Wild type C57BL/6 male mice were fed a chow diet or a high‐fat diet (HFD, 45% calories fat) for 6 weeks. Then, mice maintained on the HFD either remained sedentary (HFD Sed) or exercised (HFD Ex) on a treadmill for another 6 weeks. The exercise training protocol involved conducting intervals of 2 min in duration followed by 2 min of rest for 60 min thrice weekly. Chow‐fed control mice remained sedentary for the entire 12 weeks. Muscle cytokine and macrophage gene expression analysis were conducted using qRT‐PCR, and muscle macrophage content was also measured using immunohistochemistry. Muscle cytokine protein content was quantified using a cytokine array. The HFD increased adiposity and weight gain compared to chow‐fed controls. HFD Sed and HFD Ex mice had similar body mass as well as total and visceral adiposity. However, despite similar adiposity, exercise reduced inflammation and muscle macrophage infiltration. We conclude that Endurance exercise training modulates the immune‐metabolic crosstalk in obesity independently of weight loss, and may have potential benefits in reducing obesity‐related muscle inflammation. PMID:24843075

  4. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation With Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss

    PubMed Central

    2006-01-01

    Background Observational and experimental data suggest that antioxidant and/or zinc supplements may delay progression of age-related macular degeneration (AMD) and vision loss. Objective To evaluate the effect of high-dose vitamins C and E, beta carotene, and zinc supplements on AMD progression and visual acuity. Design The Age-Related Eye Disease Study, an 11-center double-masked clinical trial, enrolled participants in an AMD trial if they had extensive small drusen, intermediate drusen, large drusen, noncentral geographic atrophy, or pigment abnormalities in 1 or both eyes, or advanced AMD or vision loss due to AMD in 1 eye. At least 1 eye had best-corrected visual acuity of 20/32 or better. Participants were randomly assigned to receive daily oral tablets containing: (1) antioxidants (vitamin C, 500 mg; vitamin E, 400 IU; and beta carotene, 15 mg); (2) zinc, 80 mg, as zinc oxide and copper, 2 mg, as cupric oxide; (3) antioxidants plus zinc; or (4) placebo. Main Outcome Measures (1)Photographic assessment of progression to or treatment for advanced AMD and (2) at least moderate visual acuity loss from baseline (≥15 letters). Primary analyses used repeated-measures logistic regression with a significance level of .01, unadjusted for covariates. Serum level measurements, medical histories, and mortality rates were used for safety monitoring. Results Average follow-up of the 3640 enrolled study participants, aged 55–80 years, was 6.3 years, with 2.4% lost to follow-up. Comparison with placebo demonstrated a statistically significant odds reduction for the development of advanced AMD with antioxidants plus zinc (odds ratio [OR], 0.72; 99% confidence interval [CI], 0.52–0.98). The ORs for zinc alone and antioxidants alone are 0.75 (99% CI, 0.55–1.03) and 0.80 (99% CI, 0.59–1.09), respectively. Participants with extensive small drusen, nonextensive intermediate size drusen, or pigment abnormalities had only a 1.3% 5-year probability of progression to

  5. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats.

    PubMed

    Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Sperringer, Justin; Mohamed, Junaith S; Edens, Neile K; Pereira, Suzette L

    2015-02-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to

  6. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy. PMID:25715554

  7. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment

    PubMed Central

    Drescher, Cathleen; Konishi, Masaaki; Ebner, Nicole; Springer, Jochen

    2015-01-01

    Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies, and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartate-resistant acid phosphatase 5a, and novel substances like epigallocatechin-3-gallate. In summary, the progress to combat muscle wasting is in full swing, and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon support by improved and more helpful strategies. PMID:26676067

  8. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment.

    PubMed

    Drescher, Cathleen; Konishi, Masaaki; Ebner, Nicole; Springer, Jochen

    2015-12-01

    Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies, and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartate-resistant acid phosphatase 5a, and novel substances like epigallocatechin-3-gallate. In summary, the progress to combat muscle wasting is in full swing, and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon support by improved and more helpful strategies. PMID:26676067

  9. Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment.

    PubMed

    Drescher, Cathleen; Konishi, Masaaki; Ebner, Nicole; Springer, Jochen

    2016-01-01

    Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartrate-resistant acid phosphatase 5a (TRACP5a), and novel substances like Epigallocatechin-3-gallate (EGCg). In summary, the progress to combat muscle wasting is in full swing and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon supported by improved and more helpful strategies. PMID:26474466

  10. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle.

    PubMed

    Frederick, David W; Loro, Emanuele; Liu, Ling; Davila, Antonio; Chellappa, Karthikeyani; Silverman, Ian M; Quinn, William J; Gosai, Sager J; Tichy, Elisia D; Davis, James G; Mourkioti, Foteini; Gregory, Brian D; Dellinger, Ryan W; Redpath, Philip; Migaud, Marie E; Nakamaru-Ogiso, Eiko; Rabinowitz, Joshua D; Khurana, Tejvir S; Baur, Joseph A

    2016-08-01

    NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function. PMID:27508874

  11. Ambient hypoxia enhances the loss of muscle mass after extensive injury

    PubMed Central

    Koulmann, N.; Meunier, A.; Pugnière, P.; McCarthy, J. J.; Beaudry, M.; Bigard, X.

    2016-01-01

    Hypoxia induces a loss of skeletal muscle mass and alters myogenesis in vitro, but whether it affects muscle regeneration in vivo following injury remains to be elucidated. We hypothesized that hypoxia would impair the recovery of muscle mass during regeneration. To test this hypothesis, the soleus muscle of female rats was injured by notexin and allowed to recover for 3, 7, 14, and 28 days under normoxia or hypobaric hypoxia (5,500 m) conditions. Hypoxia impaired the formation and growth of new myofibers and enhanced the loss of muscle mass during the first 7 days of regeneration, but did not affect the final recovery of muscle mass at 28 days. The impaired regeneration under hypoxic conditions was associated with a blunted activation of mechanical target of rapamycin (mTOR) signaling as assessed by p70S6K and 4E-BP1 phosphorylation that was independent of Akt activation. The decrease in mTOR activity with hypoxia was consistent with the increase in AMP-activated protein kinase activity, but not related to the change in regulated in development and DNA response 1 protein content. Hypoxia increased the mRNA levels of the atrogene muscle ring finger-1 after 7 days of regeneration, though muscle atrophy F box transcript levels remained unchanged. The increase in MyoD and myogenin mRNA expression with regeneration was attenuated at 7 days with hypoxia. In conclusion, our results support the notion that the enhanced loss of muscle mass observed after 1 week of regeneration under hypoxic conditions could mainly result from the impaired formation and growth of new fibers resulting from a reduction in protein synthesis and satellite cell activity. PMID:23974966

  12. PULSED FOCUSED ULTRASOUND TREATMENT OF MUSCLE MITIGATES PARALYSIS-INDUCED BONE LOSS IN THE ADJACENT BONE: A STUDY IN A MOUSE MODEL

    PubMed Central

    Poliachik, Sandra L.; Khokhlova, Tatiana D.; Wang, Yak-Nam; Simon, Julianna C.; Bailey, Michael R.

    2015-01-01

    Bone loss can result from bed rest, space flight, spinal cord injury or age-related hormonal changes. Current bone loss mitigation techniques include pharmaceutical interventions, exercise, pulsed ultrasound targeted to bone and whole body vibration. In this study, we attempted to mitigate paralysis-induced bone loss by applying focused ultrasound to the midbelly of a paralyzed muscle. We employed a mouse model of disuse that uses onabotulinumtoxinA-induced paralysis, which causes rapid bone loss in 5 d. A focused 2 MHz transducer applied pulsed exposures with pulse repetition frequency mimicking that of motor neuron firing during walking (80 Hz), standing (20 Hz), or the standard pulsed ultrasound frequency used in fracture healing (1 kHz). Exposures were applied daily to calf muscle for 4 consecutive d. Trabecular bone changes were characterized using micro-computed tomography. Our results indicated that application of certain focused pulsed ultrasound parameters was able to mitigate some of the paralysis-induced bone loss. PMID:24857416

  13. Can loss of muscle spindle afferents explain the ataxic gait in Riley–Day syndrome?

    PubMed Central

    Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B.; Kaufmann, Horacio

    2011-01-01

    their loss of deep tendon reflexes. Moreover, we suggest that their ataxic gait is sensory in origin, due to the loss of functional muscle spindles and hence a compromised sensorimotor control of locomotion. PMID:22075519

  14. Age-related alterations in the sarcolemmal environment are attenuated by lifelong caloric restriction and voluntary exercise.

    PubMed

    Hord, Jeffrey M; Botchlett, Rachel; Lawler, John M

    2016-10-01

    Age-related loss of skeletal muscle mass and function, referred to as sarcopenia, is mitigated by lifelong calorie restriction as well as exercise. In aged skeletal muscle fibers there is compromised integrity of the cell membrane that may contribute to sarcopenia. The purpose of this study was to determine if lifelong mild (8%) caloric restriction (CR) and lifelong CR+voluntary wheel running (WR) could ameliorate disruption of membrane scaffolding and signaling proteins during the aging process, thus maintaining a favorable, healthy membrane environment in plantaris muscle fibers. Fischer-344 rats were divided into four groups: 24-month old adults fed ad libitum (OAL); 24-month old on 8% caloric restriction (OCR); 24month old 8% caloric restriction+wheel running (OCRWR); and 6-month old sedentary adults fed ad libitum (YAL) were used to determine age-related changes. Aging resulted in discontinuous membrane expression of dystrophin glycoprotein complex (DGC) proteins: dystrophin and α-syntrophin. Older muscle also displayed decreased content of neuronal nitric oxide synthase (nNOS), a key DGC signaling protein. In contrast, OCR and OCRWR provided significant protection against age-related DGC disruption. In conjunction with the age-related decline in membrane DGC patency, key membrane repair proteins (MG53, dysferlin, annexin A6, and annexin A2) were significantly increased in the OAL plantaris. However, lifelong CR and CRWR interventions were effective at maintaining membrane repair proteins near YAL levels of. OAL fibers also displayed reduced protein content of NADPH oxidase isoform 2 (Nox2) subunits (p67phox and p47phox), consistent with a perturbed sarcolemmal environment. Loss of Nox2 subunits was prevented by lifelong CR and CRWR. Our results are therefore consistent with the hypothesis that lifelong CR and WR are effective countermeasures against age-related alterations in the myofiber membrane environment. PMID:27534381

  15. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  16. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients. PMID:10420956

  17. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  18. The impact of sleep on age-related sarcopenia: Possible connections and clinical implications.

    PubMed

    Piovezan, Ronaldo D; Abucham, Julio; Dos Santos, Ronaldo Vagner Thomatieli; Mello, Marco Tulio; Tufik, Sergio; Poyares, Dalva

    2015-09-01

    Sarcopenia is a geriatric condition that comprises declined skeletal muscle mass, strength and function, leading to the risk of multiple adverse outcomes, including death. Its pathophysiology involves neuroendocrine and inflammatory factors, unfavorable nutritional habits and low physical activity. Sleep may play a role in muscle protein metabolism, although this hypothesis has not been studied extensively. Reductions in duration and quality of sleep and increases in prevalence of circadian rhythm and sleep disorders with age favor proteolysis, modify body composition and increase the risk of insulin resistance, all of which have been associated with sarcopenia. Data on the effects of age-related slow-wave sleep decline, circadian rhythm disruptions and obstructive sleep apnea (OSA) on hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary-gonadal (HPG), somatotropic axes, and glucose metabolism indicate that sleep disorder interventions may affect muscle loss. Recent research associating OSA with the risk of conditions closely related to the sarcopenia process, such as frailty and sleep quality impairment, indirectly suggest that sleep can influence skeletal muscle decline in the elderly. Several protein synthesis and degradation pathways are mediated by growth hormone (GH), insulin-like growth factor-1 (IGF-1), testosterone, cortisol and insulin, which act on the cellular and molecular levels to increase or reestablish muscle fiber, strength and function. Age-related sleep problems potentially interfere intracellularly by inhibiting anabolic hormone cascades and enhancing catabolic pathways in the skeletal muscle. Specific physical exercises combined or not with nutritional recommendations are the current treatment options for sarcopenia. Clinical studies testing exogenous administration of anabolic hormones have not yielded adequate safety profiles. Therapeutic approaches targeting sleep disturbances to normalize circadian rhythms and sleep homeostasis may

  19. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    SciTech Connect

    Wakeford, S.; Watt, D.J.; Partridge, T.A. )

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD.

  20. Beyond goosebumps: does the arrector pili muscle have a role in hair loss?

    PubMed

    Torkamani, Niloufar; Rufaut, Nicholas W; Jones, Leslie; Sinclair, Rodney D

    2014-07-01

    The arrector pili muscle (APM) consists of a small band of smooth muscle that connects the hair follicle to the connective tissue of the basement membrane. The APM mediates thermoregulation by contracting to increase air-trapping, but was thought to be vestigial in humans. The APM attaches proximally to the hair follicle at the bulge, a known stem cell niche. Recent studies have been directed toward this muscle's possible role in maintaining the follicular integrity and stability. This review summarizes APM anatomy and physiology and then discusses the relationship between the follicular unit and the APM. The potential role of the APM in hair loss disorders is also described, and a model explaining APM changes in hair loss is proposed. PMID:25210331

  1. Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss.

    PubMed

    Gentile, Natalie E; Stearns, Kristen M; Brown, Elke H P; Rubin, J Peter; Boninger, Michael L; Dearth, Christopher L; Ambrosio, Fabrisia; Badylak, Stephen F

    2014-11-01

    Rehabilitation therapy is an important aspect of recovery after volumetric muscle loss. However, the traditional rehabilitation approach involves a period of rest and passive loading followed by gradual active loading. Extracellular matrix is a naturally occurring material consisting of structural proteins that provide mechanical strength, structural support, and functional molecules with diverse bioactive properties. There is evidence to suggest that the addition of aggressive regenerative rehabilitation protocols immediately after surgical implantation of an extracellular matrix scaffold to an area of volumetric muscle loss has significant benefits for extracellular matrix remodeling. Rehabilitation exercises likely provide the needed mechanical signals to encourage cell migration and site-specific differentiation in the temporal framework required for constructive remodeling. Herein, the authors review the literature and present an example of an aggressive rehabilitation program implemented immediately after extracellular matrix transplantation into a severely injured quadriceps muscle. PMID:25133624

  2. Alcohol-induced autophagy contributes to loss in skeletal muscle mass

    PubMed Central

    Thapaliya, Samjhana; Runkana, Ashok; McMullen, Megan R; Nagy, Laura E; McDonald, Christine; Prasad, Sathyamangla V Naga; Dasarathy, Srinivasan

    2014-01-01

    Patients with alcoholic cirrhosis and hepatitis have severe muscle loss. Since ethanol impairs skeletal muscle protein synthesis but does not increase ubiquitin proteasome-mediated proteolysis, we investigated whether alcohol-induced autophagy contributes to muscle loss. Autophagy induction was studied in: A) Human skeletal muscle biopsies from alcoholic cirrhotics and controls, B) Gastrocnemius muscle from ethanol and pair-fed mice, and C) Ethanol-exposed murine C2C12 myotubes, by examining the expression of autophagy markers assessed by immunoblotting and real-time PCR. Expression of autophagy genes and markers were increased in skeletal muscle from humans and ethanol-fed mice, and in myotubes following ethanol exposure. Importantly, pulse-chase experiments showed suppression of myotube proteolysis upon ethanol-treatment with the autophagy inhibitor, 3-methyladenine (3MA) and not by MG132, a proteasome inhibitor. Correspondingly, ethanol-treated C2C12 myotubes stably expressing GFP-LC3B showed increased autophagy flux as measured by accumulation of GFP-LC3B vesicles with confocal microscopy. The ethanol-induced increase in LC3B lipidation was reversed upon knockdown of Atg7, a critical autophagy gene and was associated with reversal of the ethanol-induced decrease in myotube diameter. Consistently, CT image analysis of muscle area in alcoholic cirrhotics was significantly reduced compared with control subjects. In order to determine whether ethanol per se or its metabolic product, acetaldehyde, stimulates autophagy, C2C12 myotubes were treated with ethanol in the presence of the alcohol dehydrogenase inhibitor (4-methylpyrazole) or the acetaldehyde dehydrogenase inhibitor (cyanamide). LC3B lipidation increased with acetaldehyde treatment and increased further with the addition of cyanamide. We conclude that muscle autophagy is increased by ethanol exposure and contributes to sarcopenia. PMID:24492484

  3. Resistance training and timed amino acid supplementation protects against the loss of muscle mass and strength with disuse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Space flight and ground-based models of weightlessness result in loss of muscle mass and strength. Amino acid supplementation and resistance training reverse these losses but their optimal combination is not known. We examined the effect of an amino acid supplement and resistance training on muscl...

  4. Strength training in the elderly: effects on risk factors for age-related diseases.

    PubMed

    Hurley, B F; Roth, S M

    2000-10-01

    Strength training (ST) is considered a promising intervention for reversing the loss of muscle function and the deterioration of muscle structure that is associated with advanced age. This reversal is thought to result in improvements in functional abilities and health status in the elderly by increasing muscle mass, strength and power and by increasing bone mineral density (BMD). In the past couple of decades, many studies have examined the effects of ST on risk factors for age-related diseases or disabilities. Collectively, these studies indicate that ST in the elderly: (i) is an effective intervention against sarcopenia because it produces substantial increases in the strength, mass, power and quality of skeletal muscle; (ii) can increase endurance performance; (iii) normalises blood pressure in those with high normal values; (iv) reduces insulin resistance; (v) decreases both total and intra-abdominal fat; (vi) increases resting metabolic rate in older men; (vii) prevents the loss of BMD with age; (viii) reduces risk factors for falls; and (ix) may reduce pain and improve function in those with osteoarthritis in the knee region. However, contrary to popular belief, ST does not increase maximal oxygen uptake beyond normal variations, improve lipoprotein or lipid profiles, or improve flexibility in the elderly. PMID:11048773

  5. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries.

    PubMed

    Grasman, Jonathan M; Do, Duc M; Page, Raymond L; Pins, George D

    2015-12-01

    A significant challenge in the design and development of biomaterial scaffolds is to incorporate mechanical and biochemical cues to direct organized tissue growth. In this study, we investigated the effect of hepatocyte growth factor (HGF) loaded, crosslinked fibrin (EDCn-HGF) microthread scaffolds on skeletal muscle regeneration in a mouse model of volumetric muscle loss (VML). The rapid, sustained release of HGF significantly enhanced the force production of muscle tissue 60 days after injury, recovering more than 200% of the force output relative to measurements recorded immediately after injury. HGF delivery increased the number of differentiating myoblasts 14 days after injury, and supported an enhanced angiogenic response. The architectural morphology of microthread scaffolds supported the ingrowth of nascent myofibers into the wound site, in contrast to fibrin gel implants which did not support functional regeneration. Together, these data suggest that EDCn-HGF microthreads recapitulate several of the regenerative cues lost in VML injuries, promote remodeling of functional muscle tissue, and enhance the functional regeneration of skeletal muscle. Further, by strategically incorporating specific biochemical factors and precisely tuning the structural and mechanical properties of fibrin microthreads, we have developed a powerful platform technology that may enhance regeneration in other axially aligned tissues. PMID:26344363

  6. Heterogeneous ageing of skeletal muscle microvascular function.

    PubMed

    Muller-Delp, Judy M

    2016-04-15

    The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts. PMID:26575597

  7. Nutrition and physical activity for the prevention and treatment of age-related sarcopenia.

    PubMed

    Bosaeus, Ingvar; Rothenberg, Elisabet

    2016-05-01

    Sarcopenia, defined as loss of skeletal muscle mass and function, is associated with adverse outcomes such as physical disability, impaired quality of life and increased mortality. Several mechanisms are involved in the development of sarcopenia. Potentially modifiable factors include nutrition and physical activity. Protein metabolism is central to the nutritional issues, along with other potentially modifying nutritional factors as energy balance and vitamin D status. An increasing but still incomplete knowledge base has generated recent recommendations on an increased protein intake in the elderly. Several factors beyond the total amount of protein consumed emerge as potentially important in this context. A recent summit examined three hypotheses: (1) A meal threshold; habitually consuming 25-30 g protein at breakfast, lunch and dinner provides sufficient protein to effectively stimulate muscle protein anabolism; (2) Protein quality; including high-quality protein at each meal improves postprandial muscle protein synthesis; and (3) performing physical activity in close temporal proximity to a high-quality protein meal enhances muscle anabolism. Optimising the potential for muscle protein anabolism by consuming an adequate amount of high-quality protein at each meal, in combination with physical activity, appears as a promising strategy to prevent or delay the onset of sarcopenia. However, results of interventions are inconsistent, and well-designed, standardised studies evaluating exercise or nutrition interventions are needed before guidelines can be developed for the prevention and treatment of age-related sarcopenia. PMID:26620911

  8. Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice

    PubMed Central

    Domenighetti, Andrea A.; Chu, Pao-Hsien; Wu, Tongbin; Sheikh, Farah; Gokhin, David S.; Guo, Ling T.; Cui, Ziyou; Peter, Angela K.; Christodoulou, Danos C.; Parfenov, Michael G.; Gorham, Joshua M.; Li, Daniel Y.; Banerjee, Indroneal; Lai, Xianyin; Witzmann, Frank A.; Seidman, Christine E.; Seidman, Jonathan G.; Gomes, Aldrin V.; Shelton, G. Diane; Lieber, Richard L.; Chen, Ju

    2014-01-01

    Recent human genetic studies have provided evidences that sporadic or inherited missense mutations in four-and-a-half LIM domain protein 1 (FHL1), resulting in alterations in FHL1 protein expression, are associated with rare congenital myopathies, including reducing body myopathy and Emery–Dreifuss muscular dystrophy. However, it remains to be clarified whether mutations in FHL1 cause skeletal muscle remodeling owing to gain- or loss of FHL1 function. In this study, we used FHL1-null mice lacking global FHL1 expression to evaluate loss-of-function effects on skeletal muscle homeostasis. Histological and functional analyses of soleus, tibialis anterior and sternohyoideus muscles demonstrated that FHL1-null mice develop an age-dependent myopathy associated with myofibrillar and intermyofibrillar (mitochondrial and sarcoplasmic reticulum) disorganization, impaired muscle oxidative capacity and increased autophagic activity. A longitudinal study established decreased survival rates in FHL1-null mice, associated with age-dependent impairment of muscle contractile function and a significantly lower exercise capacity. Analysis of primary myoblasts isolated from FHL1-null muscles demonstrated early muscle fiber differentiation and maturation defects, which could be rescued by re-expression of the FHL1A isoform, highlighting that FHL1A is necessary for proper muscle fiber differentiation and maturation in vitro. Overall, our data show that loss of FHL1 function leads to myopathy in vivo and suggest that loss of function of FHL1 may be one of the mechanisms underlying muscle dystrophy in patients with FHL1 mutations. PMID:23975679

  9. Muscle power failure in mobility-limited adults: preserved single muscle fibre function despite reduced whole muscle size, quality and neuromuscular activiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power woul...

  10. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway.

    PubMed

    Sebastián, David; Sorianello, Eleonora; Segalés, Jessica; Irazoki, Andrea; Ruiz-Bonilla, Vanessa; Sala, David; Planet, Evarist; Berenguer-Llergo, Antoni; Muñoz, Juan Pablo; Sánchez-Feutrie, Manuela; Plana, Natàlia; Hernández-Álvarez, María Isabel; Serrano, Antonio L; Palacín, Manuel; Zorzano, Antonio

    2016-08-01

    Mitochondrial dysfunction and accumulation of damaged mitochondria are considered major contributors to aging. However, the molecular mechanisms responsible for these mitochondrial alterations remain unknown. Here, we demonstrate that mitofusin 2 (Mfn2) plays a key role in the control of muscle mitochondrial damage. We show that aging is characterized by a progressive reduction in Mfn2 in mouse skeletal muscle and that skeletal muscle Mfn2 ablation in mice generates a gene signature linked to aging. Furthermore, analysis of muscle Mfn2-deficient mice revealed that aging-induced Mfn2 decrease underlies the age-related alterations in metabolic homeostasis and sarcopenia. Mfn2 deficiency reduced autophagy and impaired mitochondrial quality, which contributed to an exacerbated age-related mitochondrial dysfunction. Interestingly, aging-induced Mfn2 deficiency triggers a ROS-dependent adaptive signaling pathway through induction of HIF1α transcription factor and BNIP3. This pathway compensates for the loss of mitochondrial autophagy and minimizes mitochondrial damage. Our findings reveal that Mfn2 repression in muscle during aging is a determinant for the inhibition of mitophagy and accumulation of damaged mitochondria and triggers the induction of a mitochondrial quality control pathway. PMID:27334614

  11. A double-blind, placebo-controlled, randomized clinical trial of recombinant human chorionic gonadotropin on muscle strength and physical function and activity in older men with partial age-related androgen deficiency.

    PubMed

    Liu, Peter Y; Wishart, Susan M; Handelsman, David J

    2002-07-01

    Despite partial androgen deficiency, the safety and efficacy of androgen therapy in older men remains controversial because controlled studies of testosterone have given equivocal results. Human chorionic gonadotropin (hCG) can be conveniently and infrequently self-administered, and it increases not only circulating testosterone but also estradiol and other testicular steroids. We evaluated the efficacy and safety of 3 months of treatment with sc recombinant hCG (r-hCG, Ovidrel) on muscle mass, strength, mobility, and physical activity in ambulant, community-dwelling men more than 60 yr old having partial androgen deficiency (testosterone < or = 15 nmol/liter, twice). Forty eligible men (mean age, 67 yr; range, 60-85 yr) were randomized to receive r-hCG (5000 IU, 250 microg) or placebo by twice weekly sc self-injection and were studied before treatment, monthly during treatment, and 1 month after treatment. All completed the study, and treatment groups were well matched. r-hCG significantly increased body weight (approximately 1 kg; P < 0.05) and lean body mass ( approximately 2 kg; P < 0.001) and reduced fat mass (approximately 1 kg, P < 0.05). However, anthropometric measures of skinfold thickness (biceps, triceps, subscapular, suprailiac) and circumferences (midarm, waist, hip, and midthigh), including the waist-hip ratio, did not change significantly. Shoulder and knee strength (peak torque), as measured by isokinetic and isometric dynamometry, was not significantly increased, nor was physical activity (accelerometry and Physical Activity Scale for Elderly self-report) or gait and balance (modified Guralnik and Frailty and Injuries: Cooperative Studies of Intervention Techniques performance batteries) altered. Total and free testosterone and estradiol were markedly (150%; P < 0.001) and stably increased, whereas LH, FSH, and urea were significantly decreased. Testis volume was significantly decreased (approximately 5 ml; P < 0.05). There were no significant

  12. Age-Related Hyperkyphosis: Its Causes, Consequences, and Management

    PubMed Central

    Katzman, Wendy B.; Wanek, Linda; Shepherd, John A.; Sellmeyer, Deborah E.

    2010-01-01

    Age-related postural hyperkyphosis is an exaggerated anterior curvature of the thoracic spine, sometimes referred to as Dowager’s hump or gibbous deformity. This condition impairs mobility,2,31 and increases the risk of falls33 and fractures.26 The natural history of hyperkyphosis is not firmly established. Hyperkyphosis may develop from either muscle weakness and degenerative disc disease, leading to vertebral fractures and worsening hyperkyphosis, or from initial vertebral fractures that precipitate its development. PMID:20511692

  13. Recovery from volumetric muscle loss injury: A comparison between young and aged rats.

    PubMed

    Kim, John T; Kasukonis, Benjamin M; Brown, Lemuel A; Washington, Tyrone A; Wolchok, Jeffrey C

    2016-10-01

    Termed volumetric muscle loss (VML), the bulk loss of skeletal muscle tissue either through trauma or surgery overwhelms the capacity for repair, leading to the formation of non-contractile scar tissue. The myogenic potential, along with other factors that influence wound repair are known to decline with age. In order to develop effective treatment strategies for VML injuries that are effective across a broad range of patient populations, it is necessary to understand how the response to VML injury is affected by aging. Towards this end, this study was conducted to compare the response of young and aged animal groups to a lower extremity VML injury. Young (3months, n=12) and aged (18months, n=8) male Fischer 344 rats underwent surgical VML injury of the tibialis anterior muscle. Three months after VML injury it was found that young TA muscle was on average 16% heavier than aged muscle when no VML injury was performed and 25% heavier when comparing VML treated young and aged animals (p<0.0001, p<0.0001). Peak contractile force for both the young and aged groups was found to decrease significantly following VML injury, producing 65% and 59% of the contralateral limbs' peak force, respectively (p<0.0001). However, there were no differences found for peak contractile force based on age, suggesting that VML affects muscle's ability to repair, regardless of age. In this study, we used the ratio of collagen I to MyoD expression as a metric for fibrosis vs. myogenesis. Decreasing fiber cross-sectional area with advancing age (p<0.005) coupled with the ratio of collagen I to MyoD expression, which increased with age, supports the thought that regeneration is impaired in the aged population in favor of fibrosis (p=0.0241). This impairment is also exacerbated by the contribution of VML injury, where a 77-fold increase in the ratio of collagen I to MyoD was observed in the aged group (p<0.0002). The aged animal model described in this study provides a tool for investigators

  14. Interdependence of Muscle Atrophy and Bone Loss Induced by Mechanical Unloading

    PubMed Central

    Lloyd, Shane A.; Lang, Charles H.; Zhang, Yue; Paul, Emmanuel M.; Laufenberg, Lacee J.; Lewis, Gregory S.; Donahue, Henry J.

    2014-01-01

    Mechanical unloading induces muscle atrophy and bone loss; however, the time course and interdependence of these effects is not well defined. We subjected 4-month-old C57BL/6J mice to hindlimb suspension (HLS) for three weeks, sacrificing 12-16 mice on day (D) 0, 7, 14, and 21. Lean mass was 7-9% lower for HLS vs. control from D7-21. Absolute mass of the gastrocnemius (gastroc) decreased 8% by D7, and was maximally decreased 16% by D14 of HLS. mRNA levels of Atrogin-1 in the gastroc and quad were increased 99% and 122%, respectively, at D7 of HLS. Similar increases in MuRF1 mRNA levels occurred at D7. Both atrogenes returned to baseline by D14. Protein synthesis in gastroc and quad was reduced 30% from D7-14 of HLS, returning to baseline by D21. HLS decreased phosphorylation of SK61, a substrate of mammalian target of rapamycin (mTOR), on D7-21, while 4E-BP1 was not lower until D21. Cortical thickness of the femur and tibia did not decrease until D14 of HLS. Cortical bone of controls did not change over time. HLS mice had lower distal femur bone volume fraction (−22%) by D14; however, the effects of HLS were eliminated by D21 due to the decline of trabecular bone mass of controls. Femur strength was decreased approximately 13% by D14 of HLS, with no change in tibia mechanical properties at any time point. This investigation reveals that muscle atrophy precedes bone loss during unloading and may contribute to subsequent skeletal deficits. Countermeasures that preserve muscle may reduce bone loss induced by mechanical unloading or prolonged disuse. Trabecular bone loss with age, similar to that which occurs in mature astronauts, is superimposed on unloading. Preservation of muscle mass, cortical structure, and bone strength during the experiment suggests muscle may have a greater effect on cortical than trabecular bone. PMID:24127218

  15. Ovarian function in mice results in abrogated skeletal muscle PPARdelta and FoxO1-mediated gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARDelta expression in vivo, and transgenic mice overexpressing mus...

  16. Intermuscular adipose tissue and thigh muscle area dynamics during an 18-month randomized weight loss trial.

    PubMed

    Yaskolka Meir, Anat; Shelef, Ilan; Schwarzfuchs, Dan; Gepner, Yftach; Tene, Lilac; Zelicha, Hila; Tsaban, Gal; Bilitzky, Avital; Komy, Oded; Cohen, Noa; Bril, Nitzan; Rein, Michal; Serfaty, Dana; Kenigsbuch, Shira; Chassidim, Yoash; Zeller, Lior; Ceglarek, Uta; Stumvoll, Michael; Blüher, Matthias; Thiery, Joachim; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2016-08-01

    It remains unclear whether intermuscular adipose tissue (IMAT) has any metabolic influence or whether it is merely a marker of abnormalities, as well as what are the effects of specific lifestyle strategies for weight loss on the dynamics of both IMAT and thigh muscle area (TMA). We followed the trajectory of IMAT and TMA during 18-mo lifestyle intervention among 278 sedentary participants with abdominal obesity, using magnetic resonance imaging. We measured the resting metabolic rate (RMR) by an indirect calorimeter. Among 273 eligible participants (47.8 ± 9.3 yr of age), the mean IMAT was 9.6 ± 4.6 cm(2) Baseline IMAT levels were directly correlated with waist circumference, abdominal subdepots, C-reactive protein, and leptin and inversely correlated with baseline TMA and creatinine (P < 0.05 for all). After 18 mo (86.3% adherence), both IMAT (-1.6%) and TMA (-3.3%) significantly decreased (P < 0.01 vs. baseline). The changes in both IMAT and TMA were similar across the lifestyle intervention groups and directly corresponded with moderate weight loss (P < 0.001). IMAT change did not remain independently associated with decreased abdominal subdepots or improved cardiometabolic parameters after adjustments for age, sex, and 18-mo weight loss. In similar models, 18-mo TMA loss remained associated with decreased RMR, decreased activity, and with increased fasting glucose levels and IMAT (P < 0.05 for all). Unlike other fat depots, IMAT may not represent a unique or specific adipose tissue, instead largely reflecting body weight change per se. Moderate weight loss induced a significant decrease in thigh muscle area, suggesting the importance of resistance training to accompany weight loss programs. PMID:27402560

  17. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass.

    PubMed

    Zhang, Liping; Pan, Jenny; Dong, Yanjun; Tweardy, David J; Dong, Yanlan; Garibotto, Giacomo; Mitch, William E

    2013-09-01

    Catabolic conditions like chronic kidney disease (CKD) cause loss of muscle mass by unclear mechanisms. In muscle biopsies from CKD patients, we found activated Stat3 (p-Stat3) and hypothesized that p-Stat3 initiates muscle wasting. We created mice with muscle-specific knockout (KO) that prevents activation of Stat3. In these mice, losses of body and muscle weights were suppressed in models with CKD or acute diabetes. A small-molecule that inhibits Stat3 activation produced similar responses, suggesting a potential for translation strategies. Using CCAAT/enhancer-binding protein δ (C/EBPδ) KO mice and C2C12 myotubes with knockdown of C/EBPδ or myostatin, we determined that p-Stat3 initiates muscle wasting via C/EBPδ, stimulating myostatin, a negative muscle growth regulator. C/EBPδ KO also improved survival of CKD mice. We verified that p-Stat3, C/EBPδ, and myostatin were increased in muscles of CKD patients. The pathway from p-Stat3 to C/EBPδ to myostatin and muscle wasting could identify therapeutic targets that prevent muscle wasting. PMID:24011072

  18. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  19. Nutritional antioxidants and age-related cataract and maculopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of vision is the second greatest, next to death, fear among the elderly. Age-related cataract (ARC) and maculopathy (ARM) are two major causes of blindness worldwide. There are several important reasons to study relationships between risk for ARC/ARM and nutrition: (1) because it is likely that...

  20. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  1. Age-Related Changes in Creative Thinking

    ERIC Educational Resources Information Center

    Roskos-Ewoldsen, Beverly; Black, Sheila R.; Mccown, Steven M.

    2008-01-01

    Age-related differences in cognitive processes were used to understand age-related declines in creativity. According to the Geneplore model (Finke, Ward, & Smith, 1992), there are two phases of creativity--generating an idea and exploring the implications of the idea--each with different underlying cognitive processes. These two phases are…

  2. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury.

    PubMed

    Kesireddy, Venu

    2016-01-01

    Volumetric muscle loss (VML) can occur from congenital defects, muscle wasting diseases, civilian or military injuries, and as a result of surgical removal of muscle tissue (eg, cancer), all of which can lead to irrevocable functional and cosmetic defects. Current tissue engineering strategies to repair VML often employ muscle-derived progenitor cells (MDCs) as one component. However, there are some inherent limitations in their in vitro culture expansion. Thus, this study explores the potential of adipose-derived stem cells (ADSCs) as an alternative cell source to MDCs for tissue engineering of skeletal muscle. A reproducible VML injury model in murine latissimus dorsi muscle was used to evaluate tissue-engineered muscle repair (TEMR) constructs incorporating MDCs or ADSCs. Importantly, histological analysis revealed that ADSC-seeded constructs displayed regeneration potential that was comparable to those seeded with MDCs 2 months postrepair. Furthermore, morphological analysis of retrieved constructs demonstrated signs of neotissue formation, including cell fusion, fiber formation, and scaffold remodeling. Immunohistochemistry demonstrated positive staining for both structural and functional proteins. Positive staining for vascular structures indicated the potential for long-term neotissue survival and integration with existing musculature. Qualitative observation of lentivirus-Cherry-labeled donor cells by immunohistochemistry indicates that participation of ADSCs in new hybrid myofiber formation incorporating donor cells was relatively low, compared to donor MDCs. However, ADSCs appear to participate in vascularization. In summary, I have demonstrated that TEMR constructs generated with ADSCs displayed skeletal muscle regeneration potential comparable to TEMR-MDC constructs as previously reported. PMID:27114706

  3. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury

    PubMed Central

    Kesireddy, Venu

    2016-01-01

    Volumetric muscle loss (VML) can occur from congenital defects, muscle wasting diseases, civilian or military injuries, and as a result of surgical removal of muscle tissue (eg, cancer), all of which can lead to irrevocable functional and cosmetic defects. Current tissue engineering strategies to repair VML often employ muscle-derived progenitor cells (MDCs) as one component. However, there are some inherent limitations in their in vitro culture expansion. Thus, this study explores the potential of adipose-derived stem cells (ADSCs) as an alternative cell source to MDCs for tissue engineering of skeletal muscle. A reproducible VML injury model in murine latissimus dorsi muscle was used to evaluate tissue-engineered muscle repair (TEMR) constructs incorporating MDCs or ADSCs. Importantly, histological analysis revealed that ADSC-seeded constructs displayed regeneration potential that was comparable to those seeded with MDCs 2 months postrepair. Furthermore, morphological analysis of retrieved constructs demonstrated signs of neotissue formation, including cell fusion, fiber formation, and scaffold remodeling. Immunohistochemistry demonstrated positive staining for both structural and functional proteins. Positive staining for vascular structures indicated the potential for long-term neotissue survival and integration with existing musculature. Qualitative observation of lentivirus-Cherry-labeled donor cells by immunohistochemistry indicates that participation of ADSCs in new hybrid myofiber formation incorporating donor cells was relatively low, compared to donor MDCs. However, ADSCs appear to participate in vascularization. In summary, I have demonstrated that TEMR constructs generated with ADSCs displayed skeletal muscle regeneration potential comparable to TEMR–MDC constructs as previously reported. PMID:27114706

  4. Age-related changes in the adaptability of neuromuscular output.

    PubMed

    Morrison, Steven; Sosnoff, Jacob J

    2009-05-01

    The aging process is associated with a general decline in biological function. One characteristic that researchers believe represents this diminished functioning of the aging neuromuscular system is increased physiological tremor. The present study is constructed to assess what age-related differences exist in the dynamics of tremor and forearm muscle activity under postural conditions in which the number of arm segments involved in the task was altered. The authors predicted that any alteration in the tremor or electromyographic (EMG) output of these two groups would provide a clearer understanding of the differential effects of aging or task dynamics on physiological function. Results reveal no age-related differences in finger tremor or forearm extensor muscle EMG activity under conditions in which participants were only required to extend their index finger against gravity. However, when participants had to hold their entire upper limb steady against gravity, the authors observed significant increases in forearm EMG activity, finger-tremor amplitude, power in the 8-12-Hz range, and signal regularity between the 2 age groups. The selective changes in signal regularity, EMG activity, and 8-12-Hz tremor amplitude under more challenging postural demands support the view that the age-related changes in neuromuscular dynamics are not fully elucidated when single task demands are utilized. PMID:19366659

  5. Review: Axon pathology in age-related neurodegenerative disorders.

    PubMed

    Adalbert, R; Coleman, M P

    2013-02-01

    'Dying back' axon degeneration is a prominent feature of many age-related neurodegenerative disorders and is widespread in normal ageing. Although the mechanisms of disease- and age-related losses may differ, both contribute to symptoms. Here, we review recent advances in understanding axon pathology in age-related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. In particular, we highlight the importance of axonal transport, autophagy, traumatic brain injury and mitochondrial quality control. We then place these disease mechanisms in the context of changes to axons and dendrites that occur during normal ageing. We discuss what makes ageing such an important risk factor for many neurodegenerative disorders and conclude that the processes of normal ageing and disease combine at the molecular, cellular or systems levels in a range of disorders to produce symptoms. Pathology identical to disease also occurs at the cellular level in most elderly individuals. Thus, normal ageing and age-related disease are inextricably linked and the term 'healthy ageing' downplays the important contributions of cellular pathology. For a full understanding of normal ageing or age-related disease we must study both processes. PMID:23046254

  6. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone

    SciTech Connect

    Carney, J.M.; Starke-Reed, P.E.; Oliver, C.N.; Landum, R.W.; Cheng, M.S.; Wu, J.F.; Floyd, R.A. )

    1991-05-01

    Oxygen free radicals and oxidative events have been implicated as playing a role in bringing about the changes in cellular function that occur during aging. Brain readily undergoes oxidative damage, so it is important to determine if aging-induced changes in brain may be associated with oxidative events. Previously we demonstrated that brain damage caused by an ischemia/reperfusion insult involved oxidative events. In addition, pretreatment with the spin-trapping compound N-tert-butyl-alpha-phenylnitrone (PBN) diminished the increase in oxidized protein and the loss of glutamine synthetase (GS) activity that accompanied ischemia/reperfusion injury in brain. We report here that aged gerbils had a significantly higher level of oxidized protein as assessed by carbonyl residues and decreased GS and neutral protease activities as compared to young adult gerbils. We also found that chronic treatment with the spin-trapping compound PBN caused a decrease in the level of oxidized protein and an increase in both GS and neutral protease activity in aged Mongolian gerbil brain. In contrast to aged gerbils, PBN treatment of young adult gerbils had no significant effect on brain oxidized protein content or GS activity. Male gerbils, young adults (3 months of age) and retired breeders (15-18 months of age), were treated with PBN for 14 days with twice daily dosages of 32 mg/kg. If PBN administration was ceased after 2 weeks, the significantly decreased level of oxidized protein and increased GS and neutral protease activities in old gerbils changed in a monotonic fashion back to the levels observed in aged gerbils prior to PBN administration. We also report that old gerbils make more errors than young animals and that older gerbils treated with PBN made fewer errors in a radial arm maze test for temporal and spatial memory than the untreated aged controls.

  7. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  8. Ultrastructure of the liver microcirculation influences hepatic and systemic insulin activity and provides a mechanism for age-related insulin resistance.

    PubMed

    Mohamad, Mashani; Mitchell, Sarah Jayne; Wu, Lindsay Edward; White, Melanie Yvonne; Cordwell, Stuart James; Mach, John; Solon-Biet, Samantha Marie; Boyer, Dawn; Nines, Dawn; Das, Abhirup; Catherine Li, Shi-Yun; Warren, Alessandra; Hilmer, Sarah Nicole; Fraser, Robin; Sinclair, David Andrew; Simpson, Stephen James; de Cabo, Rafael; Le Couteur, David George; Cogger, Victoria Carroll

    2016-08-01

    While age-related insulin resistance and hyperinsulinemia are usually considered to be secondary to changes in muscle, the liver also plays a key role in whole-body insulin handling and its role in age-related changes in insulin homeostasis is largely unknown. Here, we show that patent pores called 'fenestrations' are essential for insulin transfer across the liver sinusoidal endothelium and that age-related loss of fenestrations causes an impaired insulin clearance and hyperinsulinemia, induces hepatic insulin resistance, impairs hepatic insulin signaling, and deranges glucose homeostasis. To further define the role of fenestrations in hepatic insulin signaling without any of the long-term adaptive responses that occur with aging, we induced acute defenestration using poloxamer 407 (P407), and this replicated many of the age-related changes in hepatic glucose and insulin handling. Loss of fenestrations in the liver sinusoidal endothelium is a hallmark of aging that has previously been shown to cause deficits in hepatic drug and lipoprotein metabolism and now insulin. Liver defenestration thus provides a new mechanism that potentially contributes to age-related insulin resistance. PMID:27095270

  9. Weight loss may be a better approach for managing musculoskeletal conditions than increasing muscle mass and strength

    PubMed Central

    Kim, Bokun; Tsujimoto, Takehiko; So, Rina; Zhao, Xiaoguang; Suzuki, Shun; Kim, Taeho; Tanaka, Kiyoji

    2015-01-01

    To prevent or remedy musculoskeletal conditions, the relationship between obesity and the characteristics of muscle mass and strength need to be clarified. [Subjects and Methods] A total of 259 Japanese males aged 30–64 years were classified into 4 groups according to the Japanese obesity criteria. Body composition was evaluated, and handgrip strength and knee extensor strength were measured for the upper and lower extremities, respectively. Physical performance was evaluated with a jump test. [Results] Obesity was positively correlated with skeletal muscle mass index, percentage of whole-body fat, and leg muscle strength and negatively correlated with the percentage of muscle mass index, body weight-normalized handgrip strength, and knee extensor strength, and the jump test results. [Conclusion] Weight loss may be a better approach than increasing muscle mass and strength to improve musculoskeletal conditions in obese adult males. PMID:26834353

  10. The fly wheel exercise device (FWED): A countermeasure against bone loss and muscle atrophy

    NASA Astrophysics Data System (ADS)

    Hueser, Detlev; Wolff, Christian; Berg, Hans E.; Tesch, Per A.; Cork, Michael

    2008-01-01

    The flywheel exercise device (FWED) is planned for use as an in-flight exercise system, to demonstrate its efficacy as a countermeasure device to prevent muscle atrophy, bone loss and impairment of muscle function in human beings in response to long duration spaceflight. It is intended to be used on the International Space Station (ISS) and will be launched by the European cargo carrier, the automated transfer vehicle (ATV) in late 2005. The FWED is a non-gravity-dependent mechanical device based on the Yo-Yo principle, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning flywheel. Currently, the development of a FWED Flight and Ground Model is in progress and is due to be completed in May 2004. An earlier developed prototype is available that has been used for various ground studies. Our FWED design provides a maximum of built-in safety and support to the operation by one astronaut. This is achieved in particular by innovative mechanical design features and an easy, safe to use man-machine interface. The modular design is optimized for efficient set-up and maintenance operations to be performed in orbit by the crew. The mechanical subsystem of the FWED includes a μg disturbance suspension, which minimizes the mechanical disturbances of the exercising subject at the mechanical interface to the ISS. During the FWED operation the astronaut is guided through the exercises by the data management subsystem, which acquires sensor data from the FWED, calculates and displays real-time feedback to the subject, and stores all data on hard disk and personalized storage media for later scientific analysis.

  11. Inadequate Loading Stimulus on ISS Results in Bone and Muscle Loss

    NASA Technical Reports Server (NTRS)

    Rice, A. J.; Genc, K. O.; Maender, C. C.; Gopalakrishnan, R.; Kuklis, M. M.; Cavanagh, P. R.

    2011-01-01

    INTRODUCTION Exercise has been the primary countermeasure to combat musculoskeletal changes during International Space Station (ISS) missions. However, these countermeasures have not been successful in preventing loss of bone mineral density (BMD) or muscle volume in crew members. METHODS We examined lower extremity loading during typical days on-orbit and on Earth for four ISS crew members. In-shoe forces were monitored using force-measuring insoles placed inside the shoes. BMD (by DXA), muscle volumes (by MRI), and strength were measured before and after long-duration spaceflight (181 +/- 15 days). RESULTS The peak forces measured during ISS activity were significantly less than those measured in 1g for the same activities. Typical single-leg loads on-orbit during walking and running were 0.89 +/- 0.17 body weights (BW) and 1.28 +/- 0.18 BW compared to 1.18 +/- 0.11 BW and 2.36 +/- .22 BW in 1g, respectively [2]. Crew members were only loaded for an average of 43.17 +/- 14.96 min a day while performing exercise on-orbit even though 146.8 min were assigned for exercise each day. Areal BMD decreased in the femoral neck and total hip by 0.71 +/- 0.34% and 0.81 +/- 0.21% per month, respectively. Changes in muscle volume were observed in the lower extremity (-10 to -16% calf; -4 to -7% thigh) but there were no changes in the upper extremity (+0.4 to -0.8%). Decrements in isometric and isokinetic strength at the knee (range: -10.4 to -24.1%), ankle (range: -4 to -22.3%), and elbow (range: -7.5 to - 16.7%) were also observed. Knee extension endurance tests showed an overall decline in total work (-14%) but an increased resistance to fatigue post-flight. DISCUSSION AND CONCLUSIONS Our findings support the conclusion that the measured exercise durations and/or loading stimuli were insufficient to protect bone and muscle health.

  12. Accelerated muscle and adipose tissue loss may predict survival in pancreatic cancer patients: the relationship with diabetes and anaemia.

    PubMed

    Di Sebastiano, Katie M; Yang, Lin; Zbuk, Kevin; Wong, Raimond K; Chow, Tom; Koff, David; Moran, Gerald R; Mourtzakis, Marina

    2013-01-28

    Weight loss leading to cachexia is associated with poor treatment response and reduced survival in pancreatic cancer patients. We aim to identify indicators that allow for early detection that will advance our understanding of cachexia and will support targeted anti-cachexia therapies. A total of fifty pancreatic cancer patients were analysed for skeletal muscle and visceral adipose tissue (VAT) changes using computed tomography (CT) scans. These changes were related to physical characteristics, secondary disease states and treatment parameters. Overall, patients lost 1.72 (SD 3.29) kg of muscle and 1.04 (SD 1.08) kg of VAT during the disease trajectory (413 (SD 213) d). After sorting patients into tertiles by rate of VAT and muscle loss, patients losing VAT at > -0.40 kg/100 d had poorer survival outcomes compared with patients with < -0.10 kg/100 d of VAT loss (P= 0.020). Patients presenting with diabetes at diagnosis demonstrated significantly more and accelerated VAT loss compared with non-diabetic patients. In contrast, patients who were anaemic at the first CT scan lost significantly more muscle tissue and at accelerated rates compared with non-anaemic patients. Accelerated rates of VAT loss are associated with reduced survival. Identifying associated features of cachexia, such as diabetes and anaemia, is essential for the early detection of cachexia and may facilitate the attenuation of complications associated with cachexia. PMID:23021109

  13. Oocyte cryopreservation for age-related fertility loss.

    PubMed

    Dondorp, W; de Wert, G; Pennings, G; Shenfield, F; Devroey, P; Tarlatzis, B; Barri, P; Diedrich, K

    2012-05-01

    The recent introduction of oocyte vitrification has significantly advanced the outcome of oocyte cryopreservation, leading to clinical results comparable to those achieved in IVF using fresh oocytes, as reported by experienced centres. This has lead to new debate, both in the professional community and in society at large, about the acceptability of offering this technology to reproductively healthy women who want to cryopreserve their oocytes against the threat of time. Given the many demands calling for simultaneous realization in a relatively short period of their lives, many women who want to have children feel to be under considerable pressure. The option of oocyte cryopreservation may in fact give them more breathing space. In this document, it is concluded that the arguments against allowing this application of the technology are not convincing. The recommendations include the need for adequate information of women interested in oocyte cryopreservation, also in order to avoid raising false hopes. The message must remain that women's best chances of having a healthy child are through natural reproduction at a relative early age. Centres offering this service must have the necessary expertise to employ oocyte cryopreservation efficiently with the so far non-standardized protocols. As data about long-term safety is still lacking, centres also have a responsibility to contribute to the collection of these data. PMID:22357771

  14. The role of cognition in age-related hearing loss.

    PubMed

    Craik, Fergus I M

    2007-01-01

    The article presents a commentary on the accompanying six papers from the perspective of a cognitive psychologist. Treisman's (1964, 1969) levels of analysis model of selective attention is suggested as a framework within which the interactions between 'bottom-up' auditory factors and 'top-down' cognitive factors may be understood. The complementary roles of auditory and cognitive aspects of hearing are explored, and their mutually compensatory properties discussed. The findings and ideas reported in the six accompanying papers fit well into such a 'levels of processing' framework, which may therefore be proposed as a model for understanding the effects of aging on speech processing and comprehension. PMID:18236642

  15. Age-Related White Matter Changes

    PubMed Central

    Xiong, Yun Yun; Mok, Vincent

    2011-01-01

    Age-related white matter changes (WMC) are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC. PMID:21876810

  16. Pharmacogenetics and age-related macular degeneration.

    PubMed

    Schwartz, Stephen G; Brantley, Milam A

    2011-01-01

    Pharmacogenetics seeks to explain interpatient variability in response to medications by investigating genotype-phenotype correlations. There is a small but growing body of data regarding the pharmacogenetics of both nonexudative and exudative age-related macular degeneration. Most reported data concern polymorphisms in the complement factor H and age-related maculopathy susceptibility 2 genes. At this time, the data are not consistent and no definite conclusions may be drawn. As clinical trials data continue to accumulate, these relationships may become more apparent. PMID:22046503

  17. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  18. Lifelong strength training mitigates the age-related decline in efferent drive.

    PubMed

    Unhjem, Runar; Nygård, Mona; van den Hoven, Lene T; Sidhu, Simranjit K; Hoff, Jan; Wang, Eivind

    2016-08-01

    Recently, we documented age-related attenuation of efferent drive to contracting skeletal muscle. It remains elusive if this indication of reduced muscle strength is present with lifelong strength training. For this purpose, we examined evoked potentials in the calf muscles of 11 [71 ± 4 (SD) yr] strength-trained master athletes (MA) contrasted with 10 (71 ± 4 yr) sedentary (SO) and 11 (73 ± 6 yr) recreationally active (AO) old subjects, as well as 9 (22 ± 2 yr) young controls. As expected, MA had higher leg press maximal strength (MA, 185 ± 32 kg; AO, 128 ± 15 kg; SO, 106 ± 11 kg; young, 147 ± 22 kg, P < 0.01) and rate of force development (MA, 5,588 ± 2,488 N/s; AO, 2,156 ± 1,100 N/s; SO, 2,011 ± 825 N/s; young, 3,663 ± 1,140 N/s, P < 0.05) than the other groups. MA also exhibited higher musculus soleus normalized V waves during maximal voluntary contractions (MVC) [maximal V wave amplitude/maximal M wave during MVC (Vsup/Msup); 0.28 ± 0.15] than AO (0.13 ± 0.06, P < 0.01) and SO (0.11 ± 0.05, P < 0.01), yet lower than young (0.45 ± 0.12, P < 0.01). No differences were apparent between the old groups in H reflex recorded at rest or during MVC [maximal H reflex amplitude/maximal M wave during rest (Hmax/Mmax); maximal H reflex amplitude during MVC/maximal M wave during MVC (Hsup/Msup)], and all were lower (P < 0.01) than young. MA (34.4 ± 2.1 ms) had shorter (P < 0.05) H reflex latency compared with AO (36.4 ± 3.7 ms) and SO (37.3 ± 3.2 ms), but longer (P < 0.01) than young (30.7 ± 2.0 ms). Using interpolated twitch analysis, MA (89 ± 7%) had plantar flexion voluntary activation similar to young (90 ± 6%), and this was higher (P < 0.05), or tended to be higher (P = 0.06-0.09), than SO (83 ± 10%) and AO (84 ± 5%). These observations suggest that lifelong strength training has a protective effect against age-related attenuation of efferent drive. In contrast, no beneficial effect seems to derive from habitual recreational activity, indicating

  19. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  20. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  1. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  2. Driving and Age-Related Macular Degeneration

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2009-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety, and considers directions for future research. PMID:20046818

  3. Neuromuscular contributions to age-related weakness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related physiological change of neuromuscular function is not a linear process and is likely influenced by various biological and behavioral factors (e.g., genetics, nutrition, physical activity level, comorbidities, etc.). These factors contribute to heterogeneity among older adults, which chal...

  4. Prevention of bone loss and muscle atrophy during manned space flight.

    PubMed

    Keller, T S; Strauss, A M; Szpalski, M

    1992-04-01

    This paper reviews the biomedical literature concerning human adaptation to nonterrestrial environments, and focuses on the definition of practical countermeasures necessary for long-term survival on the Moon, Mars and during long-term space missions and exploration. Of particular importance is the development of clinically relevant countermeasures for prevention of pathophysiological changes in the musculoskeletal and cardiopulmonary systems under these conditions. The countermeasures which are proposed are based upon a combination of biomechanical and theoretical analyses. The biomechanical analyses are based upon clinical measurements of human skeletal density changes associated with weight lifting as well as clinical studies of human strength and fitness currently being conducted using an isoinertial trunk dynamometer. The theoretical analysis stems from a mathematical model for bone loss in altered gravity environments that we have begun to develop. These analyses provide guidelines for the development of practical therapeutic treatments (exercise, artificial gravity) designed to minimize musculoskeletal deconditioning associated with less than Earth gravity environments. Our findings suggest that very intensive exercise, which impose high loads on the musculoskeletal system for brief periods, may be more efficient in preserving bone and skeletal muscle conditioning within "safe" limits for longer periods than low intensity activities such as treadmill running and bicycling. A 1/6 to 1/7-g gravitational environment is predicted to be sufficient to preserve bone strength above the fracture risk level. Basic biomedical support of manned space missions, Moon and Mars bases should include routine assessment of skeletal density, muscle strength, cardiac output and total energy expenditure. This information can be used to periodically re-evaluate exercise programs and or artificial gravity requirements for crew members. PMID:11541051

  5. Induction of muscle protein degradation and weight loss by a tumor product.

    PubMed

    Todorov, P T; McDevitt, T M; Cariuk, P; Coles, B; Deacon, M; Tisdale, M J

    1996-03-15

    Splenocytes from mice bearing a cachexia-inducing tumor (MAC16) have been fused with mouse myeloma cells to produce hybridomas, which have been cloned to produce antibody reactive to a material which copurified with a lipid-mobilizing factor isolated from the same tumor. The monoclonal antibody has been used to investigate factors potentially involved in the development of cachexia. The major protein detectable by immunoprecipitation of a partially purified lipid-mobilizing factor was M(r) 69,000, whereas Western blotting showed two bands of M(r) 69,000 and M(r) 24,000. Although the monoclonal antibody did not neutralize lipid-mobilizing activity in an in vitro assay, it did neutralize a serum factor capable of protein degradation in isolated gastrocnemius muscle. Affinity purification of MAC16 tumor homogenates using the monoclonal antibody yielded two immunoreactive bands of M(r) 69,000 and M(r) 24,000, which were further fractionated on a hydrophobic column (C8). This material was capable of inducing tyrosine release from isolated gastrocnemius muscle, and the effect could be blocked with the monoclonal antibody. The two immunoreactive bands from the hydrophobic column were capable of inducing weight loss in mice, whereas nonimmunoreactive fractions had no effect on body weight. The M(r) 24,000 species had a unique amino acid sequence, whereas the M(r) 69,000 species gave the same sequence as the M(r) 24,000 material, together with that for albumin. The M(r) 24,000 species contained carbohydrate, and lectin blotting showed a strong reaction with wheat germ and Erythrina crystagalli agglutinins. This suggests that the material is a glycoprotein or proteoglycan that shows strong binding affinity for albumin, possibly through the carbohydrate residues. PMID:8640810

  6. The physiology and biochemistry of skeletal muscle atrophy as a function of age.

    PubMed

    Carmeli, E; Reznick, A Z

    1994-06-01

    The skeletal muscles are an important entity in the proper function of aging animals and humans. Studies have shown that until humans are 60-70 years old, age-related changes in muscle function and structure are relatively small, while after 70 years, these alterations are accelerated considerably. Factors responsible for the "aging" of skeletal muscles are complex and include intrinsic biochemical changes in muscle metabolism, changes in the distribution and size of muscle fibers, and a general loss of muscle mass. In addition, other factors like the control of muscle contraction by the motor neural system and the influence of external conditions such as exercise, immobility, nutrition and others may also contribute to the age-related decrease in muscle functions. Studies have shown that with age there is some loss of peripheral motor neurons, reduction in the number of motor units, alterations in the neuromuscular junctions, and selective denervation of Type II muscle fibers. These findings led to the concept of denervation atrophy of skeletal muscles as one of the major mechanisms for muscle degeneration in old age. However, it should be emphasized that the extent of age-related changes varies from muscle to muscle, and some do not seem to be affected by age. For example, it has been shown recently, in animal studies, that weight-bearing muscles are much more susceptible to senescent processes than non-weight-bearing muscles. More work is needed to clarify the contributions of the various factors, especially the role of muscle training in alleviating the symptoms of age-related muscle atrophy. PMID:8208732

  7. Genetic and Environmental Underpinnings to Age-Related Ocular Diseases

    PubMed Central

    Seddon, Johanna M.

    2013-01-01

    Age-related macular degeneration (AMD), cataract, glaucoma and diabetic retinopathy are common causes of visual loss. Both environmental and genetic factors contribute to the development of these diseases. The modifiable factors related to some of these age-related and visually threatening diseases are smoking, obesity, and dietary factors, and a cardiovascular risk profile. Many common and a few rare genetic factors are associated with AMD. The role of genetic variants for the other diseases are less clear. Interactions between environmental, therapeutic, and genetic factors are being explored. Knowledge of genetic risk and environmental factors, especially for AMD, has grown markedly over the past 2.5 decades and has led to some sight-saving approaches in preventive management. PMID:24335064

  8. Facts about Age-Related Macular Degeneration

    MedlinePlus

    ... should I follow up after treatment? Loss of Vision Coping with AMD and vision loss can be ... not delay use of these services. What is vision rehabilitation? To cope with vision loss, you must ...

  9. Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells.

    PubMed

    Compton, Leigh A; Potash, Dru A; Mundell, Nathan A; Barnett, Joey V

    2006-01-01

    During embryogenesis, epicardial cells undergo epithelial-mesenchymal transformation (EMT), invade the myocardium, and differentiate into components of the coronary vasculature, including smooth muscle cells. We tested the hypothesis that transforming growth factor-beta (TGFbeta) stimulates EMT and smooth muscle differentiation of epicardial cells. In epicardial explants, TGFbeta1 and TGFbeta2 induce loss of epithelial morphology, cytokeratin, and membrane-associated Zonula Occludens-1 and increase the smooth muscle markers calponin and caldesmon. Inhibition of activin receptor-like kinase (ALK) 5 blocks these effects, whereas constitutively active (ca) ALK5 increases cell invasion by 42%. Overexpression of Smad 3 did not mimic the effects of caALK5. Inhibition of p160 rho kinase or p38 MAP kinase prevented the loss of epithelial morphology in response to TGFbeta, whereas only inhibition of p160 rho kinase blocked TGFbeta-stimulated caldesmon expression. These data demonstrate that TGFbeta stimulates loss of epithelial character and smooth muscle differentiation in epicardial cells by means of a mechanism that requires ALK5 and p160 rho kinase. PMID:16258965

  10. Interaction between muscle and bone, and improving the effects of electrical muscle stimulation on amyotrophy and bone loss in a denervation rat model via sciatic neurectomy

    PubMed Central

    FENG, BO; WU, WEI; WANG, HUA; WANG, JUNCHEN; HUANG, DONGYA; CHENG, LING

    2016-01-01

    The side-to-side difference in bone mineral content and soft tissue composition of extremities and their associations have been observed in patients with stroke and the results are inconsistent. The aim of the present study was to investigate the interaction between bone mineral content (BMC), lean mass (LM) and fat mass (FM) in the paretic extremities in patients following stroke and to determine the effectiveness of electrical muscle stimulation (EMS) following sciatic neurectomy (SN) in rats. BMC, LM and FM were measured by dual-energy X-ray absorptiometry in 61 hemiplegic patients following stroke. In the rat model study, groups of 10 Sprague-Dawley rats were divided into EMS and non-EMS subgroups. Myostatin expression and tetracycline interlabel width were measured. There were significant decreases in BMC, LM and FM in paretic limbs compared to non-paretic limbs. Compared to non-EMS, downregulated myostatin mRNA, and upregulated mechano growth factor (MGF) and insulin-like growth factor 1 (IGF-1) mRNA expression levels were observed in the EMS subgroup (P<0.05). In conclusion, muscle may have an important role in maintaining BMC. EMS-induced muscle contraction effectively downregulated myostatin mRNA, upregulated MGF and IGF-1 mRNA expression in muscle fiber, and mitigated amyotrophy and cortical bone loss from SN. PMID:27123252

  11. Soybean β-Conglycinin Prevents Age-Related Hearing Impairment

    PubMed Central

    Tanigawa, Tohru; Shibata, Rei; Kondo, Kazuhisa; Katahira, Nobuyuki; Kambara, Takahiro; Inoue, Yoko; Nonoyama, Hiroshi; Horibe, Yuichiro; Ueda, Hiromi; Murohara, Toyoaki

    2015-01-01

    Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG), one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months) were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV), which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress. PMID:26348726

  12. Senescent cells: SASPected drivers of age-related pathologies.

    PubMed

    Ovadya, Yossi; Krizhanovsky, Valery

    2014-12-01

    The progression of physiological ageing is driven by intracellular aberrations including telomere attrition, genomic instability, epigenetic alterations and loss of proteostasis. These in turn damage cells and compromise their functionality. Cellular senescence, a stable irreversible cell-cycle arrest, is elicited in damaged cells and prevents their propagation in the organism. Under normal conditions, senescent cells recruit the immune system which facilitates their removal from tissues. Nevertheless, during ageing, tissue-residing senescent cells tend to accumulate, and might negatively impact their microenvironment via profound secretory phenotype with pro-inflammatory characteristics, termed senescence-associated secretory phenotype (SASP). Indeed, senescent cells are mostly abundant at sites of age-related pathologies, including degenerative disorders and malignancies. Interestingly, studies on progeroid mice indicate that selective elimination of senescent cells can delay age-related deterioration. This suggests that chronic inflammation induced by senescent cells might be a main driver of these pathologies. Importantly, senescent cells accumulate as a result of deficient immune surveillance, and their removal is increased upon the use of immune stimulatory agents. Insights into mechanisms of senescence surveillance could be combined with current approaches for cancer immunotherapy to propose new preventive and therapeutic strategies for age-related diseases. PMID:25217383

  13. Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons.

    PubMed

    Lambert, Charles P; Wright, Nicole R; Finck, Brian N; Villareal, Dennis T

    2008-08-01

    Many obese elderly persons have impaired physical function associated with an increased chronic inflammatory response. We evaluated 12 wk of exercise (aerobic and resistance) or 12 wk of weight loss (approximately 7% reduction) on skeletal muscle mRNAs for toll-like receptor-4 (TLR-4), mechanogrowth factor (MGF), TNF-alpha, and IL-6 in 16 obese (body mass index 38+/-2 kg/m2) older (69+/-1 yr) physically frail individuals. Vastus lateralis muscle biopsies were obtained at 0 and 12 wk and analyzed by real-time RT-PCR. Body composition was assessed by dual-energy x-ray absorptiometry. Body weight decreased (-7.5+/-1.2 kg, P=0.001) in the weight loss group but not in the exercise group (-0.3+/-0.8 kg, P=0.74). Fat-free mass (FFM) decreased (-2.9+/-0.6 kg, P=0.010) in the weight loss group and increased (1.6+/-0.6 kg, P=0.03) in the exercise group. Exercise resulted in a 37% decrease in TLR-4 mRNA (P<0.05) while weight loss had no significant effect. Additionally, exercise led to a significant (50%) decrease in IL-6 and TNF-alpha mRNA (P<0.05) while weight loss had no effect. Exercise increased MGF mRNA (approximately 2 fold, P<0.05), but weight loss had no effect. In conclusion, exercise but not weight loss had a beneficial effect on markers of muscle inflammation and anabolism in frail obese elderly individuals. PMID:18535122

  14. Aging, exercise, and muscle protein metabolism.

    PubMed

    Koopman, René; van Loon, Luc J C

    2009-06-01

    Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic disease. The age-related loss of skeletal muscle mass is attributed to a disruption in the regulation of skeletal muscle protein turnover, resulting in an imbalance between muscle protein synthesis and degradation. As basal (fasting) muscle protein synthesis rates do not seem to differ substantially between the young and elderly, many research groups have started to focus on the muscle protein synthetic response to the main anabolic stimuli, i.e., food intake and physical activity. Recent studies suggest that the muscle protein synthetic response to food intake is blunted in the elderly. The latter is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Physical activity and/or exercise stimulate postexercise muscle protein accretion in both the young and elderly. However, the latter largely depends on the timed administration of amino acids and/or protein before, during, and/or after exercise. Prolonged resistance type exercise training represents an effective therapeutic strategy to augment skeletal muscle mass and improve functional performance in the elderly. The latter shows that the ability of the muscle protein synthetic machinery to respond to anabolic stimuli is preserved up to very old age. Research is warranted to elucidate the interaction between nutrition, exercise, and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly. PMID:19131471

  15. Insights into Muscle Degeneration from Heritable Inclusion Body Myopathies

    PubMed Central

    Krause, Sabine

    2015-01-01

    Muscle mass and function are gradually lost in age-related, degenerative neuromuscular disorders, which also reflect the clinical hallmarks of sarcopenia. The consensus definition of sarcopenia includes a condition of age-related loss of muscle mass, quality, and strength. The most common acquired muscle disease affecting adults aged over 50 years is sporadic inclusion body myositis (sIBM). Besides inflammatory effects and immune-mediated muscle injury, degenerative myofiber changes are characteristic features of the disease. Although the earliest triggering events in sIBM remain elusive, a plethora of downstream mechanisms are implicated in the pathophysiology of muscle wasting. Although it remains controversial whether hereditary forms of inclusion body myopathy (IBM) may be considered as degenerative sIBM disease models, partial pathophysiological aspects can mimic the much more frequent sporadic condition, in particular the occurrence of inclusion bodies in skeletal muscle. Various clinical aspects in genetically determined skeletal muscle disorders reflect age-related alterations observed in sarcopenia. Several intriguing clues from monogenic defects in heritable IBMs contributing to the molecular basis of muscle loss will be discussed with special emphasis on inclusion body myopathy with Paget’s disease of bone and frontotemporal dementia (IBMPFD) and GNE myopathy. Finally, also the recently identified dominant multisystem proteinopathy will be considered, which may rarely present as IBM. PMID:25729363

  16. Age-Related Degeneration of the Egg-Laying System Promotes Matricidal Hatching in Caenorhabditis elegans

    PubMed Central

    Pickett, Christopher L.; Kornfeld, Kerry

    2014-01-01

    Summary The identification and characterization of age-related degenerative changes is a critical goal because it can elucidate mechanisms of aging biology and contribute to understanding interventions that promote longevity. Here we document a novel, age-related degenerative change in C. elegans hermaphrodites, an important model system for the genetic analysis of longevity. Matricidal hatching—intra-uterine hatching of progeny that causes maternal death—displayed an age-related increase in frequency and affected ∼70% of mated, wild-type hermaphrodites. The timing and incidence of matricidal hatching were largely independent of the levels of early and total progeny production and the duration of male exposure. Thus, matricidal hatching appears to reflect intrinsic age-related degeneration of the egg-laying system rather than use-dependent damage accumulation. Consistent with this model, mutations that extend longevity by causing dietary restriction significantly delayed matricidal hatching, indicating age-related degeneration of the egg-laying system is controlled by nutrient availability. To identify the underlying tissue defect, we analyzed serotonin signaling that triggers vulval muscle contractions. Mated hermaphrodites displayed an age-related decline in the ability to lay eggs in response to exogenous serotonin, indicating that vulval muscles and/or a further downstream function that is necessary for egg-laying degenerate in an age-related manner. By characterizing a new, age-related degenerative event displayed by C. elegans hermaphrodites, these studies contribute to understanding a frequent cause of death in mated hermaphrodites and establish a model of age-related reproductive complications that may be relevant to the birthing process in other animals such as humans. PMID:23551912

  17. Age-related eye disease and gender.

    PubMed

    Zetterberg, Madeleine

    2016-01-01

    Worldwide, the prevalence of moderate to severe visual impairment and blindness is 285 millions, with 65% of visually impaired and 82% of all blind people being 50 years and older. Meta-analyses have shown that two out of three blind people are women, a gender discrepancy that holds true for both developed and developing countries. Cataract accounts for more than half of all blindness globally and gender inequity in access to cataract surgery is the major cause of the higher prevalence of blindness in women. In addition to gender differences in cataract surgical coverage, population-based studies on the prevalence of lens opacities indicate that women have a higher risk of developing cataract. Laboratory as well as epidemiologic studies suggest that estrogen may confer antioxidative protection against cataractogenesis, but the withdrawal effect of estrogen in menopause leads to increased risk of cataract in women. For the other major age-related eye diseases; glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy, data are inconclusive. Due to anatomic factors, angle closure glaucoma is more common in women, whereas the dominating glaucoma type; primary open-angle glaucoma (POAG), is more prevalent in men. Diabetic retinopathy also has a male predominance and vascular/circulatory factors have been implied both in diabetic retinopathy and in POAG. For AMD, data on gender differences are conflicting although some studies indicate increased prevalence of drusen and neovascular AMD in women. To conclude, both biologic and socioeconomic factors must be considered when investigating causes of gender differences in the prevalence of age-related eye disease. PMID:26508081

  18. Nitric oxide availability is increased in contracting skeletal muscle from aged mice, but does not differentially decrease muscle superoxide

    PubMed Central

    Pearson, T.; McArdle, A.; Jackson, M.J.

    2015-01-01

    Reactive oxygen and nitrogen species have been implicated in the loss of skeletal muscle mass and function that occurs during aging. Nitric oxide (NO) and superoxide are generated by skeletal muscle and where these are generated in proximity their chemical reaction to form peroxynitrite can compete with the superoxide dismutation to hydrogen peroxide. Changes in NO availability may therefore theoretically modify superoxide and peroxynitrite activities in tissues, but published data are contradictory regarding aging effects on muscle NO availability. We hypothesised that an age-related increase in NO generation might increase peroxynitrite generation in muscles from old mice, leading to an increased nitration of muscle proteins and decreased superoxide availability. This was examined using fluorescent probes and an isolated fiber preparation to examine NO content and superoxide in the cytosol and mitochondria of muscle fibers from adult and old mice both at rest and following contractile activity. We also examined the 3-nitrotyrosine (3-NT) and peroxiredoxin 5 (Prx5) content of muscles from mice as markers of peroxynitrite activity. Data indicate that a substantial age-related increase in NO levels occurred in muscle fibers during contractile activity and this was associated with an increase in muscle eNOS. Muscle proteins from old mice also showed an increased 3-NT content. Inhibition of NOS indicated that NO decreased superoxide bioavailability in muscle mitochondria, although this effect was not age related. Thus increased NO in muscles of old mice was associated with an increased 3-NT content that may potentially contribute to age-related degenerative changes in skeletal muscle. PMID:25462644

  19. Loss of the Mechanotransducer Zyxin Promotes a Synthetic Phenotype of Vascular Smooth Muscle Cells

    PubMed Central

    Ghosh, Subhajit; Kollar, Branislav; Nahar, Taslima; Suresh Babu, Sahana; Wojtowicz, Agnieszka; Sticht, Carsten; Gretz, Norbert; Wagner, Andreas H; Korff, Thomas; Hecker, Markus

    2015-01-01

    Background Exposure of vascular smooth muscle cells (VSMCs) to excessive cyclic stretch such as in hypertension causes a shift in their phenotype. The focal adhesion protein zyxin can transduce such biomechanical stimuli to the nucleus of both endothelial cells and VSMCs, albeit with different thresholds and kinetics. However, there is no distinct vascular phenotype in young zyxin-deficient mice, possibly due to functional redundancy among other gene products belonging to the zyxin family. Analyzing zyxin function in VSMCs at the cellular level might thus offer a better mechanistic insight. We aimed to characterize zyxin-dependent changes in gene expression in VSMCs exposed to biomechanical stretch and define the functional role of zyxin in controlling the resultant VSMC phenotype. Methods and Results DNA microarray analysis was used to identify genes and pathways that were zyxin regulated in static and stretched human umbilical artery–derived and mouse aortic VSMCs. Zyxin-null VSMCs showed a remarkable shift to a growth-promoting, less apoptotic, promigratory and poorly contractile phenotype with ≈90% of the stretch-responsive genes being zyxin dependent. Interestingly, zyxin-null cells already seemed primed for such a synthetic phenotype, with mechanical stretch further accentuating it. This could be accounted for by higher RhoA activity and myocardin-related transcription factor-A mainly localized to the nucleus of zyxin-null VSMCs, and a condensed and localized accumulation of F-actin upon stretch. Conclusions At the cellular level, zyxin is a key regulator of stretch-induced gene expression. Loss of zyxin drives VSMCs toward a synthetic phenotype, a process further consolidated by exaggerated stretch. PMID:26071033

  20. Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects.

    PubMed

    Park, Jong G; Tischfield, Max A; Nugent, Alicia A; Cheng, Long; Di Gioia, Silvio Alessandro; Chan, Wai-Man; Maconachie, Gail; Bosley, Thomas M; Summers, C Gail; Hunter, David G; Robson, Caroline D; Gottlob, Irene; Engle, Elizabeth C

    2016-06-01

    Duane retraction syndrome (DRS) is a congenital eye-movement disorder defined by limited outward gaze and retraction of the eye on attempted inward gaze. Here, we report on three heterozygous loss-of-function MAFB mutations causing DRS and a dominant-negative MAFB mutation causing DRS and deafness. Using genotype-phenotype correlations in humans and Mafb-knockout mice, we propose a threshold model for variable loss of MAFB function. Postmortem studies of DRS have reported abducens nerve hypoplasia and aberrant innervation of the lateral rectus muscle by the oculomotor nerve. Our studies in mice now confirm this human DRS pathology. Moreover, we demonstrate that selectively disrupting abducens nerve development is sufficient to cause secondary innervation of the lateral rectus muscle by aberrant oculomotor nerve branches, which form at developmental decision regions close to target extraocular muscles. Thus, we present evidence that the primary cause of DRS is failure of the abducens nerve to fully innervate the lateral rectus muscle in early development. PMID:27181683

  1. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist.

    PubMed

    Pedersen, Thomas Holm; Clausen, Torben; Nielsen, Ole Baekgaard

    2003-08-15

    Loss of K+ from active muscles, leading to increased [K+]o, has been proposed to cause muscle fatigue by reducing excitability. Since exercise increases muscle temperature, we investigated the influence of temperature on muscle [K+]o sensitivity. Intact rat soleus or extensor digitorum longus (EDL) muscles were mounted on force transducers and stimulated electrically to evoke short isometric tetani at regular intervals. In each experiment, control force at 4 mM K+ was initially determined at every temperature used. In soleus muscles at 20 degrees C, 9 mM K+ reduced force to 33 +/- 5 % of control force. Increasing the temperature to 30 degrees C restored force to 89 +/- 5 % of control force. Likewise, at 30 degrees C 11 mM K+ reduced force to 16 +/- 4 % and increasing the temperature to 35 degrees C restored force to 35 +/- 5 %. Similar results were obtained using EDL. The force recovery induced by elevating temperature, reflecting reduced [K+]o sensitivity, was associated with improved excitability assessed from compound action potentials. Force recovery induced by a temperature elevation from 20 to 30 degrees C was associated with hyperpolarization (5 mV), reduced [Na+]i and a 93 % increase in Na+-K+ pump activity. The force recovery was blocked by ouabain. Since intensive exercise leads to lactic acidosis and increased plasma catecholamines, the effect of these two factors was also investigated. At 11 mM K+, force was completely restored by combining temperature elevation (30 to 35 degrees C), L-lactic acid (10 mM) and the beta2-agonist salbutamol (10-5 M). We suggest an exercise scenario where the depressing action of exercise-induced hyperkalaemia is counteracted by elevated muscle temperature, lactic acidosis and catecholamines. PMID:12813152

  2. Determinants of muscle and bone aging

    PubMed Central

    Curtis, E; Litwic, A; Cooper, C; Dennison, E

    2015-01-01

    Loss of bone and muscle with advancing age represent a huge threat to loss of independence in later life. Osteoporosis represents a major public health problem through its association with fragility fractures, primarily of the hip, spine and distal forearm. Sarcopenia, the age related loss of muscle mass and function, may add to fracture risk by increasing falls risk. In the context of muscle aging, it is important to remember that it is not just a decline in muscle mass which contributes to the deterioration of muscle function. Other factors underpinning muscle quality come into play, including muscle composition, aerobic capacity and metabolism, fatty infiltration, insulin resistance, fibrosis and neural activation. Genetic, developmental, endocrine and lifestyle factors, such as physical activity, smoking and poor diet have dual effects on both muscle and bone mass in later life and these will be reviewed here. These include poor nutrition, lack of physical activity and cigarette smoking, comorbidities or medication use. Recent work has highlighted a possible role for the early environment. Inflammaging is an exciting emerging research field that is likely to prove relevant to future work, including interventions designed to retard to reverse bone and muscle loss with age. PMID:25820482

  3. Determinants of Muscle and Bone Aging.

    PubMed

    Curtis, Elizabeth; Litwic, Anna; Cooper, Cyrus; Dennison, Elaine

    2015-11-01

    Loss of bone and muscle with advancing age represent a huge threat to loss of independence in later life. Osteoporosis represents a major public health problem through its association with fragility fractures, primarily of the hip, spine and distal forearm. Sarcopenia, the age related loss of muscle mass and function, may add to fracture risk by increasing falls risk. In the context of muscle aging, it is important to remember that it is not just a decline in muscle mass which contributes to the deterioration of muscle function. Other factors underpinning muscle quality come into play, including muscle composition, aerobic capacity and metabolism, fatty infiltration, insulin resistance, fibrosis and neural activation. Genetic, developmental, endocrine and lifestyle factors, such as physical activity, smoking and poor diet have dual effects on both muscle and bone mass in later life and these will be reviewed here. Recent work has highlighted a possible role for the early environment. Inflammaging is an exciting emerging research field that is likely to prove relevant to future work, including interventions designed to retard to reverse bone and muscle loss with age. PMID:25820482

  4. Risk Factors for Age-Related Maculopathy

    PubMed Central

    Connell, Paul P.; Keane, Pearse A.; O'Neill, Evelyn C.; Altaie, Rasha W.; Loane, Edward; Neelam, Kumari; Nolan, John M.; Beatty, Stephen

    2009-01-01

    Age-related maculopathy (ARM) is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition. PMID:20339564

  5. A review of creatine supplementation in age-related diseases: more than a supplement for athletes.

    PubMed

    Smith, Rachel N; Agharkar, Amruta S; Gonzales, Eric B

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. PMID:25664170

  6. A review of creatine supplementation in age-related diseases: more than a supplement for athletes

    PubMed Central

    Smith, Rachel N.; Agharkar, Amruta S.; Gonzales, Eric B.

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement’s usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer’s disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. PMID:25664170

  7. Oxidative stress and age-related neuronal deficits.

    PubMed

    Joseph, J A; Denisova, N; Villalobos-Molina, R; Erat, S; Strain, J

    1996-01-01

    Research from our laboratory has indicated that the loss of sensitivity that occurs in several receptor systems as a function of age may be an index of an increasing inability to respond to oxidative stress (OS). This loss occurs partially as a result of altered signal transduction (ST). Assessments have involved determining the nature of age-related reductions in oxotremorine enhancement of K(+)-evoked dopamine release (K(+)-ERDA) from superfused striatal slices. Using this model, we have found that 1. Reductions can be restored with in vivo administration of the free-radical trapping agent, N-tert-butyl-alpha-phenylnitrone (PBN); 2. Decrements in DA release induced by NO or H2O2 from striatal slices from both young and old animals could be restored with alpha-tocopherol or PBN; 3. ST decrements, such as those seen in aging, could be induced with radiation exposure; and 4. Pre-incubation of the striatal slices with cholesterol decreased subsequent deleterious effects of NO or OH. on DA release. Thus, cholesterol, which increases in neuronal membranes as a function of age, may function as a potent antioxidant and protectant against neuronal damage. These results suggest that therapeutic efforts to restore cognitive deficits in aging and age-related disease might begin with antioxidant reversal of ST decrements. PMID:8871939

  8. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    SciTech Connect

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.; and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  9. Distraction can reduce age-related forgetting.

    PubMed

    Biss, Renée K; Ngo, K W Joan; Hasher, Lynn; Campbell, Karen L; Rowe, Gillian

    2013-04-01

    In three experiments, we assessed whether older adults' generally greater tendency to process distracting information can be used to minimize widely reported age-related differences in forgetting. Younger and older adults studied and recalled a list of words on an initial test and again on a surprise test after a 15-min delay. In the middle (Experiments 1a and 2) or at the end (Experiment 3) of the delay, participants completed a 1-back task in which half of the studied words appeared as distractors. Across all experiments, older adults reliably forgot unrepeated words; however, older adults rarely or never forgot the words that had appeared as distractors, whereas younger adults forgot words in both categories. Exposure to distraction may serve as a rehearsal episode for older adults, and thus as a method by which general distractibility may be co-opted to boost memory. PMID:23426890

  10. Consequences of Age-Related Cognitive Declines

    PubMed Central

    Salthouse, Timothy

    2013-01-01

    Adult age differences in a variety of cognitive abilities are well documented, and many of those abilities have been found to be related to success in the workplace and in everyday life. However, increased age is seldom associated with lower levels of real-world functioning, and the reasons for this lab-life discrepancy are not well understood. This article briefly reviews research concerned with relations of age to cognition, relations of cognition to successful functioning outside the laboratory, and relations of age to measures of work performance and achievement. The final section discusses several possible explanations for why there are often little or no consequences of age-related cognitive declines in everyday functioning. PMID:21740223

  11. [Age-related changes of sensory system].

    PubMed

    Iwamoto, Toshihiko; Hanyu, Haruo; Umahara, Takahiko

    2013-10-01

    Pathological processes usually superimpose on physiological aging even in the sensory system including visual, hearing, olfactory, taste and somatosensory functions. Representative changes of age-related changes are presbyopia, cataracts, and presbyacusis. Reduced sense of smell is seen in normal aging, but the prominent reduction detected by the odor stick identification test is noticed especially in early stage of Alzheimer or Parkinson disease. Reduced sense of taste is well-known especially in salty sense, while the changes of sweet, bitter, and sour tastes are different among individuals. Finally, deep sensation of vibration and proprioception is decreased with age as well as superficial sensation (touch, temperature, pain). As a result, impaired sensory system could induce deterioration of the activities of daily living and quality of life in the elderly. PMID:24261198

  12. Macular carotenoids and age-related maculopathy.

    PubMed

    O'Connell, Eamonn; Neelam, Kumari; Nolan, John; Au Eong, Kah-Guan; Beatty, Stephan

    2006-11-01

    Lutein (L) and zeaxanthin (Z) are concentrated at the macula, where they are collectively known as macular pigment (MP), and where they are believed to play a major role in protecting retinal tissues against oxidative stress. Whilst the exact pathogenesis of age-related maculopathy (ARM) remains unknown, the disruption of cellular processes by oxidative stress may play an important role. Manipulation of dietary intake of L and Z has been shown to augment MP, thereby raising hopes that dietary supplementation with these carotenoids might prevent, delay, or modify the course of ARM. This article discusses the scientific rationale supporting the hypothesis that L and Z are protective against ARM, and presents the recent evidence germane to this theory. PMID:17160199

  13. Medical bioremediation of age-related diseases

    PubMed Central

    Mathieu, Jacques M; Schloendorn, John; Rittmann, Bruce E; Alvarez, Pedro JJ

    2009-01-01

    Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods. PMID:19358742

  14. [Epidemiology of age-related macular degeneration].

    PubMed

    Brandl, C; Stark, K J; Wintergerst, M; Heinemann, M; Heid, I M; Finger, R P

    2016-09-01

    Age-related macular degeneration (AMD) is the main cause of blindness in industrialized societies. Population-based epidemiological investigations generate important data on prevalence, incidence, risk factors, and future trends. This review summarizes the most important epidemiological studies on AMD with a focus on their transferability to Germany including existing evidence for the main risk factors for AMD development and progression. Future tasks, such as the standardization of grading systems and the use of recent retinal imaging technology in epidemiological studies are discussed. In Germany, epidemiological data on AMD are scarce. However, the need for epidemiological research in ophthalmology is currently being addressed by several recently started population-based studies. PMID:27541733

  15. Age-related macular degeneration: current treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: Although important progress has been made in understanding age-related macular degeneration (AMD), management of the disease continues to be a challenge. AMD research has led to a widening of available treatment options and improved prognostic perspectives. This essay reviews these treatment options. Design: Interpretative essay. Methods: Literature review and interpretation. Results: Current treatments to preserve vision in patients with non-exudative AMD include antioxidant vitamins and mineral supplementations. Exudative AMD is currently most often treated monthly with anti-VEGF intravitreal injections. However, investigators are beginning to experiment with combination therapy and surgical approaches in an attempt to limit the number of treatment and reduce the financial burden on the health care system. Conclusion: By better understanding the basis and pathogenesis of AMD, newer therapies will continue to be developed that target specific pathways in patients with AMD, with the hoped for outcome of better management of the disease and improved visual acuity. PMID:19668560

  16. Low birth weight is associated with adiposity, impaired skeletal muscle energetics, and weight loss resistance in mice

    PubMed Central

    Beauchamp, Brittany; Ghosh, Sujoy; Dysart, Michael; Kanaan, Georges N.; Chu, Alphonse; Blais, Alexandre; Rajamanickam, Karunanithi; Tsai, Eve C.; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2014-01-01

    Background In utero undernutrition is associated with obesity and insulin resistance, although its effects on skeletal muscle remain poorly defined. Therefore, in the current study we explored the effects of in utero food restriction on muscle energy metabolism in mice. Methods We used an experimental mouse model system of maternal undernutrition during late pregnancy to examine offspring from undernourished dams (U) and control offspring from ad libitum fed dams (C). Weight loss of 10 wk old offspring on a 4 wk 40% calorie restricted diet was also followed. Experimental approaches included bioenergetic analyses in isolated mitochondria, intact (permeabilized) muscle and at the whole body level. Results U have increased adiposity and decreased glucose tolerance compared to C. Strikingly, when U are put on a 40% calorie restricted diet they lose half as much weight as calorie restricted controls. Mitochondria from muscle overall from U had decreased coupled (state 3) and uncoupled (state 4) respiration and increased maximal respiration compared to C. Mitochondrial yield was lower in U than C. In permeabilized fiber preparations from mixed fiber type muscle U had decreased mitochondrial content and decreased adenylate free leak respiration, fatty acid oxidative capacity, and state 3 respiratory capacity through complex I. Fiber maximal oxidative phosphorylation capacity did not differ between U and C but was decreased with calorie restriction. Conclusions Our results reveal that in utero undernutrition alters metabolic physiology through a profound effect on skeletal muscle energetics and blunts response to a hypocaloric diet in adulthood. We propose that mitochondrial dysfunction links undernutrition in utero with metabolic disease in adulthood. PMID:25091727

  17. The Effect of Weight Loss on the Muscle Proteome in the Damara, Dorper and Australian Merino Ovine Breeds

    PubMed Central

    Almeida, André M.; Palhinhas, Rui G.; Kilminster, Tanya; Scanlon, Timothy; van Harten, Sofia; Milton, John; Blache, Dominique; Greeff, Johan; Oldham, Chris; Coelho, Ana Varela; Cardoso, Luís Alfaro

    2016-01-01

    Seasonal Weight Loss (SWL) is an important constraint, limiting animal production in the Tropics and the Mediterranean. As a result, the study of physiological and biochemical mechanisms by which domestic animal breeds respond to SWL is important to those interested in animal breeding and the improvement thereof. To that end, the study of the proteome has been instrumental in gathering important information on physiological mechanisms, including those underlying SWL. In spite of that, little information is available concerning physiological mechanisms of SWL in production animals. The objective of this study was to determine differential protein expression in the muscle of three different breeds of sheep, the Australian Merino, the Dorper and the Damara, each showing different levels of tolerance to weight loss (low, medium and high, respectively). Per breed, two experimental groups were established, one labeled “Growth” and the other labeled “Restricted.” After forty-two days of dietary treatment, all animals were euthanized. Muscle samples were then taken. Total protein was extracted from the muscle, then quantified and two-dimensional gel electrophoresis were conducted using 24 cm pH 3–10 immobiline dry strips and colloidal coomassie staining. Gels were analyzed using Samespots® software and spots of interest were in-gel digested with trypsin. The isolated proteins were identified using MALDI-TOF/TOF. Results indicated relevant differences between breeds; several proteins are suggested as putative biomarkers of tolerance to weight loss: Desmin, Troponin T, Phosphoglucomutase and the Histidine Triad nucleotide-binding protein 1. This information is of relevance to and of possible use in selection programs aiming towards ruminant animal production in regions prone to droughts and weight loss. PMID:26828937

  18. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life.

    PubMed

    McGregor, Robin A; Cameron-Smith, David; Poppitt, Sally D

    2014-01-01

    Worldwide estimates predict 2 billion people will be aged over 65 years by 2050. A major current challenge is maintaining mobility and quality of life into old age. Impaired mobility is often a precursor of functional decline, disability and loss of independence. Sarcopenia which represents the age-related decline in muscle mass is a well-established factor associated with mobility limitations in older adults. However, there is now evidence that not only changes in muscle mass but other factors underpinning muscle quality including composition, metabolism, aerobic capacity, insulin resistance, fat infiltration, fibrosis and neural activation may also play a role in the decline in muscle function and impaired mobility associated with ageing. Importantly, changes in muscle quality may precede loss of muscle mass and therefore provide new opportunities for the assessment of muscle quality particularly in middle-aged adults who could benefit from interventions to improve muscle function. This review will discuss the accumulating evidence that in addition to muscle mass, factors underpinning muscle quality influence muscle function and mobility with age. Further development of tools to assess muscle quality in community settings is needed. Preventative diet, exercise or treatment interventions particularly in middle-aged adults at the low end of the spectrum of muscle function may help preserve mobility in later years and improve healthspan. PMID:25520782

  19. Inflammation and its role in age-related macular degeneration.

    PubMed

    Kauppinen, Anu; Paterno, Jussi J; Blasiak, Janusz; Salminen, Antero; Kaarniranta, Kai

    2016-05-01

    Inflammation is a cellular response to factors that challenge the homeostasis of cells and tissues. Cell-associated and soluble pattern-recognition receptors, e.g. Toll-like receptors, inflammasome receptors, and complement components initiate complex cellular cascades by recognizing or sensing different pathogen and damage-associated molecular patterns, respectively. Cytokines and chemokines represent alarm messages for leukocytes and once activated, these cells travel long distances to targeted inflamed tissues. Although it is a crucial survival mechanism, prolonged inflammation is detrimental and participates in numerous chronic age-related diseases. This article will review the onset of inflammation and link its functions to the pathogenesis of age-related macular degeneration (AMD), which is the leading cause of severe vision loss in aged individuals in the developed countries. In this progressive disease, degeneration of the retinal pigment epithelium (RPE) results in the death of photoreceptors, leading to a loss of central vision. The RPE is prone to oxidative stress, a factor that together with deteriorating functionality, e.g. decreased intracellular recycling and degradation due to attenuated heterophagy/autophagy, induces inflammation. In the early phases, accumulation of intracellular lipofuscin in the RPE and extracellular drusen between RPE cells and Bruch's membrane can be clinically detected. Subsequently, in dry (atrophic) AMD there is geographic atrophy with discrete areas of RPE loss whereas in the wet (exudative) form there is neovascularization penetrating from the choroid to retinal layers. Elevations in levels of local and systemic biomarkers indicate that chronic inflammation is involved in the pathogenesis of both disease forms. PMID:26852158

  20. Age-related changes in the tiger salamander retina.

    PubMed

    Townes-Anderson, E; Colantonio, A; St Jules, R S

    1998-05-01

    Tiger salamanders have been used in visual science because of the large size of their cells and the ease of preparation and maintenance of in vitro retinal preparations. We have found that salamanders over 27 cm in length show a variety of visual abnormalities. Compared to smaller animals (15-23 cm), large animals exhibited a decrease in visual responses determined by tests of the optomotor reflex. Small animals responded correctly an average of 84.5% of the time in visual testing at three light levels compared to an average of 68.4% for the large animals with the poorest visual performance at the lowest level of illumination. In addition, large animals contained (i) histological degeneration of the outer retina, in particular, loss and disruption of outer segments and abnormalities of the retinal pigmented epithelium, (ii) loss of cells, including photoreceptors, by apoptosis as evaluated with the TUNEL technique, and (iii) an increase in the number of macrophages and lymphocytes within the retina as determined by morphological examination. These histological changes were present in all large animals and all quadrants of their retinas. In contrast, small animals showed virtually no retinal degeneration, no TUNEL-positive cells, and few immune-like cells in the retina. Since large animals are also older animals. the visual changes are age-related. Loss of visual function and histological degeneration in the outer retina also typify aged human eyes. Thus, we propose that large salamanders serve as an animal model for age-related retinal degeneration. In addition to providing a source of aging retina that is readily accessible to experimental manipulation, the salamander provides a pigmented retina with a mixed (2:1, rod:cone) population of photoreceptors, similar to the degeneration-prone parafoveal region of the human eye. PMID:9631666

  1. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    PubMed Central

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-01-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4°C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4°C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts’ heath and NASA’s mission. PMID:25821722

  2. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.

  3. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment.

    PubMed

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions. PMID:25821722

  4. Flesh Shear Force, Cooking Loss, Muscle Antioxidant Status and Relative Expression of Signaling Molecules (Nrf2, Keap1, TOR, and CK2) and Their Target Genes in Young Grass Carp (Ctenopharyngodon idella) Muscle Fed with Graded Levels of Choline

    PubMed Central

    Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-01-01

    Six groups of grass carp (average weight 266.9 ± 0.6 g) were fed diets containing 197, 385, 770, 1082, 1436 and 1795 mg choline/kg, for 8 weeks. Fish growth, and muscle nutrient (protein, fat and amino acid) content of young grass carp were significantly improved by appropriate dietary choline. Furthermore, muscle hydroxyproline concentration, lactate content and shear force were improved by optimum dietary choline supplementation. However, the muscle pH value, cooking loss and cathepsins activities showed an opposite trend. Additionally, optimum dietary choline supplementation attenuated muscle oxidative damage in grass carp. The muscle antioxidant enzyme (catalase and glutathione reductase did not change) activities and glutathione content were enhanced by optimum dietary choline supplementation. Muscle cooking loss was negatively correlated with antioxidant enzyme activities and glutathione content. At the gene level, these antioxidant enzymes, as well as the targets of rapamycin, casein kinase 2 and NF-E2-related factor 2 transcripts in fish muscle were always up-regulated by suitable choline. However, suitable choline significantly decreased Kelch-like ECH-associated protein 1 a (Keap1a) and Kelch-like ECH-associated protein 1 b (Keap1b) mRNA levels in muscle. In conclusion, suitable dietary choline enhanced fish flesh quality, and the decreased cooking loss was due to the elevated antioxidant status that may be regulated by Nrf2 signaling. PMID:26600252

  5. Age-related macular degeneration: choroidal ischaemia?

    PubMed Central

    Coleman, D Jackson; Silverman, Ronald H; Rondeau, Mark J; Lloyd, Harriet O; Khanifar, Aziz A; Chan, R V Paul

    2013-01-01

    Aim Our aim is to use ultrasound to non-invasively detect differences in choroidal microarchitecture possibly related to ischaemia among normal eyes and those with wet and dry age-related macular degeneration (AMD). Design Prospective case series of subjects with dry AMD, wet AMD and age-matched controls. Methods Digitised 20 MHz B-scan radiofrequency ultrasound data of the region of the macula were segmented to extract the signal from the retina and choroid. This signal was processed by a wavelet transform, and statistical modelling was applied to the wavelet coefficients to examine differences among dry, wet and non-AMD eyes. Receiver operating characteristic (ROC) analysis was used to evaluate a multivariate classifier. Results In the 69 eyes of 52 patients, 18 did not have AMD, 23 had dry AMD and 28 had wet AMD. Multivariate models showed statistically significant differences between groups. Multiclass ROC analysis of the best model showed an excellent volume-under-curve of 0.892±0.17. The classifier is consistent with ischaemia in dry AMD. Conclusions Wavelet augmented ultrasound is sensitive to the organisational elements of choroidal microarchitecture relating to scatter and fluid tissue boundaries such as seen in ischaemia and inflammation, allowing statistically significant differentiation of dry, wet and non-AMD eyes. This study further supports the association of ischaemia with dry AMD and provides a rationale for treating dry AMD with pharmacological agents to increase choroidal perfusion. ClinicalTrials.gov registration NCT00277784. PMID:23740965

  6. Statistical physics of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer disease and Parkinson disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin in the aging RPE. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the RPE the larger ones become fixed and grow by aggregation.

  7. Physics of Age Related Macular Degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    2009-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer's disease, and Parkinson's disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. In this talk I will discuss a model of non-equilibrium cluster growth that we have developed for studying the formation and growth of lipofuscin in AMD [K.I. Mazzitello, C.M. Arizmendi, Fereydoon Family, H. E. Grossniklaus, Physical Review E (2009)]. I will also present an overview of our theoretical and computational efforts in modeling some other aspects of the physics of AMD, including CNV and the breakdown of Bruch's membrane [Ongoing collaboration with Abbas Shirinifard and James A. Glazier, Biocomplexity Institute and Department of Physics, Indiana University, Y. Jiang, Los Alamos, and Hans E. Grossniklaus, Department of Ophthalmology, Emory University].

  8. Age-related crosslink in skin collagen

    SciTech Connect

    Yamauchi, M.; Mechanic, G.

    1986-05-01

    A stable crosslinking amino acid was isolated from mature bovine skin collagen and its structure was identified as histidinohydroxylysinonorleucine (HHL) using fast atom bombardment mass spectrometry and /sup 1/H, /sup 13/C-NMR. This newly identified crosslink has a linkage between C-2 histidine and C-6 of lysine in the latter's portion of hydroxylysinonorleucine. Quantitative studies using various aged samples of cow and human skin collagen indicated that this acid-heat stable nonreducible compound was the major age-related crosslink. In case of cow skin collagen, for example, during early embryonic development (3 and 5 month old embryos) the content of HHL stayed less than 0.01 residue/mole of collagen, however from the middle of gestation period (7 month old embryo) through the maturation stage it showed rapid increase with age and reached approximately 0.5 residues/mole of collagen in the 3 year old animal. Small increments (up to 0.65 res/mole of collagen) were observed in the 9 year old cow. The amounts of the crosslink unlike pyridinoline do not decrease with aging. Similar patterns were observed in human skin collagen.

  9. Borderlines between Sarcopenia and Mild Late-Onset Muscle Disease

    PubMed Central

    Palmio, Johanna; Udd, Bjarne

    2014-01-01

    Numerous natural or disease-related alterations occur in different tissues of the body with advancing age. Sarcopenia is defined as age-related decrease of muscle mass and strength beginning in mid-adulthood and accelerating in people older than 60 years. Pathophysiology of sarcopenia involves both neural and muscle dependent mechanisms and is enhanced by multiple factors. Aged muscles show loss in fiber number, fiber atrophy, and gradual increase in the number of ragged red fibers and cytochrome c oxidase-negative fibers. Generalized loss of muscle tissue and increased amount of intramuscular fat are seen on muscle imaging. However, the degree of these changes varies greatly between individuals, and the distinction between normal age-related weakening of muscle strength and clinically significant muscle disease is not always obvious. Because some of the genetic myopathies can present at a very old age and be mild in severity, the correct diagnosis is easily missed. We highlight this difficult borderline zone between sarcopenia and muscle disease by two examples: LGMD1D and myotonic dystrophy type 2. Muscle magnetic resonance imaging (MRI) is a useful tool to help differentiate myopathies from sarcopenia and to reach the correct diagnosis also in the elderly. PMID:25324776

  10. Muscle structure and innervation are affected by loss of Dorsal in the fruit fly, Drosophila melanogaster.

    PubMed

    Cantera, R; Kozlova, T; Barillas-Mury, C; Kafatos, F C

    1999-02-01

    In Drosophila, the Rel-protein Dorsal and its inhibitor, Cactus, act in signal transduction pathways that control the establishment of dorsoventral polarity during embryogenesis and the immune response during postembryonic life. Here we present data indicating that Dorsal is also involved in the control of development and maintenance of innervation in somatic muscles. Dorsal and Cactus are colocalized in all somatic muscles during postembryonic development. In larvae and adults, these proteins are distributed at low levels in the cytoplasm and nuclei and at much higher levels in the postsynaptic component of glutamatergic neuromuscular junctions. Absence of Dorsal, in homozygous dorsal mutant larvae results in muscle misinsertions, duplications, nuclear hypotrophy, disorganization of actin bundles, and altered subcellular distribution of Cactus. Some muscles show very abnormal neuromuscular junctions, and some motor axon terminals are transformed into growth cone-like structures embedded in synaptotagmin-enriched vesicles. The detailed phenotype suggests a role of Dorsal signalling in the maintenance and plasticity of the NMJ. PMID:10192771

  11. Sociocultural and Individual Influences on Muscle Gain and Weight Loss Strategies among Adolescent Boys and Girls

    ERIC Educational Resources Information Center

    Ricciardelli, Lina A.; McCabe, Marita P.

    2003-01-01

    The study examined the role of body dissatisfaction, body image importance, sociocultural influences (media and parent and peer encouragement), self-esteem and negative affect on body change strategies to decrease weight and increase muscles in adolescent boys and girls. Surveys were administered to 587 boys and 598 girls aged between 11 and 15…

  12. Redox regulation of muscle adaptations to contractile activity and aging

    PubMed Central

    2015-01-01

    Superoxide and nitric oxide are generated by skeletal muscle, and these species are increased by contractile activity. Mitochondria have long been assumed to play the primary role in generation of superoxide in muscle, but recent studies indicate that, during contractile activity, membrane-localized NADPH oxidase(s) rapidly generate(s) superoxide that plays a role in redox signaling. This process is important in upregulation of rapid and specific cytoprotective responses that aid maintenance of cell viability following contractile activity, but the overall extent to which redox signaling contributes to regulation of muscle metabolism and homeostasis following contractile activity is currently unclear, as is identification of key redox-sensitive protein targets involved in these processes. Reactive oxygen and nitrogen species have also been implicated in the loss of muscle mass and function that occurs with aging, although recent work has questioned whether oxidative damage plays a key role in these processes. A failure of redox signaling occurs in muscle during aging and may contribute to the age-related loss of muscle fibers. Whether such changes in redox signaling reflect primary age-related changes or are secondary to the fundamental mechanisms is unclear. For instance, denervated muscle fibers within muscles from aged rodents or humans appear to generate large amounts of mitochondrial hydrogen peroxide that could influence adjacent innervated fibers. Thus, in this instance, a “secondary” source of reactive oxygen species may be potentially generated as a result of a primary age-related pathology (loss of neurons), but, nevertheless, may contribute to loss of muscle mass and function during aging. PMID:25792715

  13. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments

  14. GENETICS OF HUMAN AGE RELATED DISORDERS.

    PubMed

    Srivastava, I; Thukral, N; Hasija, Y

    2015-01-01

    Aging is an inevitable biological phenomenon. The incidence of age related disorders (ARDs) such as cardiovascular diseases, cancer, arthritis, dementia, osteoporosis, diabetes, neurodegenerative diseases increase rapidly with aging. ARDs are becoming a key social and economic trouble for the world's elderly population (above 60 years), which is expected to reach 2 billion by 2050. Advancement in understanding of genetic associations, particularly through genome wide association studies (GWAS), has revealed a substantial contribution of genes to human aging and ARDs. In this review, we have focused on the recent understanding of the extent to which genetic predisposition may influence the aging process. Further analysis of the genetic association studies through pathway analysis several genes associated with multiple ARDs have been highlighted such as apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), cadherin 13 (CDH13), CDK5 regulatory subunit associated protein 1 (CDKAL-1), methylenetetrahydrofolate reductase (MTHFR), disrupted in schizophrenia 1 (DISC1), nitric oxide synthase 3 (NOS3), paraoxonase 1 (PON1), indicating that these genes could play a pivotal role in ARD causation. These genes were found to be significantly enriched in Jak-STAT signalling pathway, asthma and allograft rejection. Further, interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), estrogen receptor1 (ESR1), transforming growth factor, beta 1(TGFB1) and calmodulin 1 (CALM1) were found to be highly interconnected in network analysis. We believe that extensive research on the presence of common genetic variants among various ARDs may facilitate scientists to understand the biology behind ARDs causation. PMID:26856084

  15. Retinal phagocytes in age-related macular degeneration

    PubMed Central

    Kim, Soo-Young

    2015-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in industrial countries. Vision loss caused by AMD results from geographic atrophy (dry AMD) and/or choroidal neovascularization (wet AMD). Presently, the etiology and pathogenesis of AMD is not fully understood and there is no effective treatment. Oxidative stress in retinal pigment epithelial (RPE) cells is considered to be one of the major factors contributing to the pathogenesis of AMD. Also retinal glia, as scavengers, are deeply related with diseases and could play a role. Therefore, therapeutic approaches for microglia and Müller glia, as well as RPE, may lead to new strategies for AMD treatment. This review summarizes the pathological findings observed in RPE cells, microglia and Müller glia of AMD murine models. PMID:26052551

  16. Treatment of neovascular age-related macular degeneration: Current therapies

    PubMed Central

    Augustin, Albert J; Scholl, Stefan; Kirchhof, Janna

    2009-01-01

    Choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD) is now the leading cause of blindness and severe vision loss among people over the age of 40 in the Western world. Its prevalence is certain to increase substantially as the population ages. Treatments currently available for the disease include laser photocoagulation, verteporfin photodynamic therapy, and intravitreal injections of corticosteroids and anti-angiogenic agents. Many studies have reported the benefits of each of these treatments, although none is without its risks. No intervention actually cures AMD, nor the neovascularization associated with it. However, its symptoms are treated with varying degrees of success. Some treatments stabilize or arrest the progress of the disease. Others have been shown to reverse some of the damage that has already been done. These treatments can even lead to visual improvement. This paper will review the major classes of drugs and therapies designed to treat this condition. PMID:19668562

  17. Non-invasive muscle contraction assay to study rodent models of sarcopenia

    PubMed Central

    2011-01-01

    Background Age-related sarcopenia is a disease state of loss of muscle mass and strength that affects physical function and mobility leading to falls, fractures, and disability. The need for therapies to treat age-related sarcopenia has attracted intensive preclinical research. To facilitate the discovery of these therapies, we have developed a non-invasive rat muscle functional assay system to efficiently measure muscle force and evaluate the efficacy of drug candidates. Methods The lower leg muscles of anesthetized rats are artificially stimulated with surface electrodes on the knee holders and the heel support, causing the lower leg muscles to push isometric pedals that are attached to force transducers. We developed a stimulation protocol to perform a fatigability test that reveals functional muscle parameters like maximal force, the rate of fatigue, fatigue-resistant force, as well as a fatigable muscle force index. The system is evaluated in a rat aging model and a rat glucocorticoid-induced muscle loss model Results The aged rats were generally weaker than adult rats and showed a greater reduction in their fatigable force when compared to their fatigue-resistant force. Glucocorticoid treated rats mostly lost fatigable force and fatigued at a higher rate, indicating reduced force from glycolytic fibers with reduced energy reserves. Conclusions The involuntary contraction assay is a reliable system to assess muscle function in rodents and can be applied in preclinical research, including age-related sarcopenia and other myopathy. PMID:22035016

  18. Age-Related Neurochemical Changes in the Vestibular Nuclei

    PubMed Central

    Smith, Paul F.

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa’s ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  19. Age-Related Neurochemical Changes in the Vestibular Nuclei.

    PubMed

    Smith, Paul F

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa's ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  20. Vision Loss, Sudden

    MedlinePlus

    ... of age-related macular degeneration. Spotlight on Aging: Vision Loss in Older People Most commonly, vision loss ... Some Causes and Features of Sudden Loss of Vision Cause Common Features* Tests Sudden loss of vision ...

  1. Association of Age Related Macular Degeneration and Age Related Hearing Impairment

    PubMed Central

    Ghasemi, Hassan; Pourakbari, Malihe Shahidi; Entezari, Morteza; Yarmohammadi, Mohammad Ebrahim

    2016-01-01

    Purpose: To evaluate the association between age-related macular degeneration (ARMD) and sensory neural hearing impairment (SHI). Methods: In this case-control study, hearing status of 46 consecutive patients with ARMD were compared with 46 age-matched cases without clinical ARMD as a control group. In all patients, retinal involvements were confirmed by clinical examination, fluorescein angiography (FA) and optical coherence tomography (OCT). All participants were examined with an otoscope and underwent audiological tests including pure tone audiometry (PTA), speech reception threshold (SRT), speech discrimination score (SDS), tympanometry, reflex tests and auditory brainstem response (ABR). Results: A significant (P = 0.009) association was present between ARMD, especially with exudative and choroidal neovascularization (CNV) components, and age-related hearing impairment primarily involving high frequencies. Patients had higher SRT and lower SDS against anticipated presbycusis than control subjects. Similar results were detected in exudative, CNV and scar patterns supporting an association between late ARMD with SRT and SDS abnormalities. ABR showed significantly prolonged wave I and IV latency times in ARMD (P = 0.034 and 0.022, respectively). Average latency periods for wave I in geographic atrophy (GA) and CNV, and that for wave IV in drusen patterns of ARMD were significantly higher than controls (P = 0.030, 0.007 and 0.050, respectively). Conclusion: The association between ARMD and age-related SHI may be attributed to common anatomical components such as melanin in these two sensory organs. PMID:27195086

  2. Eye Conditions in Older Adults: Age-Related Macular Degeneration.

    PubMed

    Iroku-Malize, Tochi; Kirsch, Scott

    2016-06-01

    Age-related macular degeneration (AMD) causes a progressive loss of photoreceptors in the macula. It is the most common cause of legal blindness in the United States, and some form of AMD is thought to affect more than 9 million individuals. Risk factors include older age, smoking, dyslipidemia, obesity, white race, female sex, and a family history of AMD. There are two types of advanced AMD: nonexudative (dry or geographic atrophy) and exudative (wet or neovascular). Both cause progressive central vision loss with intact peripheral vision. Nonexudative AMD accounts for 80% to 90% of all advanced cases, and more than 90% of patients with severe vision loss have exudative AMD. On ophthalmoscopic examination, early findings include drusen (ie, yellow deposits in the retina). Prominent choroidal vessels, subretinal edema, and/or hemorrhage are seen in wet AMD. Regular eye examinations, visual field testing, fluorescein angiography, and optical coherence tomography are used for diagnosis and to guide management. There is no specific therapy for dry AMD, but antioxidant supplementation may be helpful. Intravitreal injection of a vascular endothelial growth factor inhibitor is the treatment of choice for wet AMD. Optical aids and devices can help to maximize function for patients with AMD. PMID:27348529

  3. Nitroxide pharmaceutical development for age-related degeneration and disease

    PubMed Central

    Zarling, Jacob A.; Brunt, Vienna E.; Vallerga, Anne K.; Li, Weixing; Tao, Albert; Zarling, David A.; Minson, Christopher T.

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed. PMID:26594225

  4. Age-Related Changes in the Misinformation Effect.

    ERIC Educational Resources Information Center

    Sutherland, Rachel; Hayne, Harlene

    2001-01-01

    Two experiments examined relation between age-related changes in retention and age-related changes in the misinformation effect. Found large age-related retention differences when participants were interviewed immediately and after 1 day, but after 6 weeks, differences were minimal. Exposure to misleading information increased commission errors.…

  5. Loss of serum response factor induces microRNA-mediated apoptosis in intestinal smooth muscle cells

    PubMed Central

    Park, C; Lee, M Y; Slivano, O J; Park, P J; Ha, S; Berent, R M; Fuchs, R; Collins, N C; Yu, T J; Syn, H; Park, J K; Horiguchi, K; Miano, J M; Sanders, K M; Ro, S

    2015-01-01

    Serum response factor (SRF) is a transcription factor known to mediate phenotypic plasticity in smooth muscle cells (SMCs). Despite the critical role of this protein in mediating intestinal injury response, little is known about the mechanism through which SRF alters SMC behavior. Here, we provide compelling evidence for the involvement of SRF-dependent microRNAs (miRNAs) in the regulation of SMC apoptosis. We generated SMC-restricted Srf inducible knockout (KO) mice and observed both severe degeneration of SMCs and a significant decrease in the expression of apoptosis-associated miRNAs. The absence of these miRNAs was associated with overexpression of apoptotic proteins, and we observed a high level of SMC death and myopathy in the intestinal muscle layers. These data provide a compelling new model that implicates SMC degeneration via anti-apoptotic miRNA deficiency caused by lack of SRF in gastrointestinal motility disorders. PMID:26633717

  6. REDD1 Is a Major Target of Testosterone Action in Preventing Dexamethasone-Induced Muscle Loss

    PubMed Central

    Wu, Yong; Zhao, Weidong; Zhao, Jingbo; Zhang, Yuanfei; Qin, Weiping; Pan, Jiangping; Bauman, William A.; Blitzer, Robert D.; Cardozo, Christopher

    2010-01-01

    Glucocorticoids are a well-recognized and common cause of muscle atrophy that can be prevented by testosterone. However, the molecular mechanisms underlying such protection have not been described. Thus, the global effects of testosterone on dexamethasone-induced changes in gene expression were evaluated in rat gastrocnemius muscle using DNA microarrays. Gene expression was analyzed after 7-d administration of dexamethasone, dexamethasone plus testosterone, or vehicle. Dexamethasone changed expression of 876 probe sets by at least 2-fold. Among these, 474 probe sets were changed by at least 2-fold in the opposite direction in the dexamethasone plus testosterone group (genes in opposition). Major biological themes represented by genes in opposition included IGF-I signaling, myogenesis and muscle development, and cell cycle progression. Testosterone completely prevented the 22-fold increase in expression of the mammalian target of rapamycin (mTOR) inhibitor regulated in development and DNA damage responses 1 (REDD1), and attenuated dexamethasone induced increased expression of eIF4E binding protein 1, Forkhead box O1, and the p85 regulatory subunit of the IGF-I receptor but prevented decreased expression of IRS-1. Testosterone attenuated increases in REDD1 protein in skeletal muscle and L6 myoblasts and prevented dephosphorylation of p70S6 kinase at the mTOR-dependent site Thr389 in L6 myoblast cells. Effects of testosterone on REDD1 mRNA levels occurred within 1 h, required the androgen receptor, were blocked by bicalutamide, and were due to inhibition of transcriptional activation of REDD1 by dexamethasone. These data suggest that testosterone blocks dexamethasone-induced changes in expression of REDD1 and other genes that collectively would otherwise down-regulate mTOR activity and hence also down-regulate protein synthesis. PMID:20032058

  7. Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Space flight and bed rest (BR) result in losses of muscle mass and strength. Resistance training (RT) and amino acid (AA) supplementation are potential countermeasures to minimize these losses. However, it is unknown if timing of supplementation with exercise can optimize benefits, particularly with...

  8. Improved word recognition for observers with age-related maculopathies using compensation filters

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B.

    1988-01-01

    A method for improving word recognition for people with age-related maculopathies, which cause a loss of central vision, is discussed. It is found that the use of individualized compensation filters based on an person's normalized contrast sensitivity function can improve word recognition for people with age-related maculopathies. It is shown that 27-70 pct more magnification is needed for unfiltered words compared to filtered words. The improvement in word recognition is positively correlated with the severity of vision loss.

  9. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This longitudinal study examined the major physiological mechanisms that determine the age related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~3 years of follow-up, mobility-limited older adults (mean age: 77.2 +/- 4, n = 22, 12 females) w...

  10. Fat cell invasion in long-term denervated skeletal muscle.

    PubMed

    de Castro Rodrigues, Antonio; Andreo, Jesus Carlos; Rosa, Geraldo Marco; dos Santos, Nícolas Bertolaccini; Moraes, Luis Henrique Rapucci; Lauris, José Roberto P

    2007-01-01

    There are several differences between red and white muscles submitted to different experimental conditions, especially following denervation: a) denervation atrophy is more pronounced in red than white muscles; b) the size of the fibers in the red muscles does not vary between different parts of the muscle before and after denervation, when compared to white muscles; c) the regional difference in the white muscles initially more pronounced after denervation than red muscle; d) red muscle fibers and fibers of the deep white muscle present degenerative changes such as disordered myofibrils and sarcolemmal folds after long-term denervation; e) myotube-like fibers with central nuclei occur in the red muscle more rapidly than white after denervation. Denervation of skeletal muscles causes, in addition to fibers atrophy, loss of fibers with subsequent regeneration, but the extent of fat cell percentage invasion is currently unknown. The present article describes a quantitative study on fat cell invasion percentage in red m. soleus and white m. extensor digitorum longus (EDL) rat muscles at 7 weeks for up to 32 weeks postdenervation. The results indicate that the percentage of fat cells increase after denervation and it is steeper than the age-related fat invasion in normal muscles. The fat percentage invasion is more pronounced in red compared with white muscle. All experimental groups present a statistically significant difference as regard fat cell percentage invasion. PMID:17941108

  11. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. PMID:27296994

  12. Anatomic Alterations in Aging and Age-Related Diseases of the Eye

    PubMed Central

    Grossniklaus, Hans E.; Nickerson, John M.; Edelhauser, Henry F.; Bergman, Louise A. M. K.; Berglin, Lennart

    2013-01-01

    Purpose. We described anatomic age-related changes in the human eye to determine potential areas of investigation that may lead to identifying eyes at risk for age-related disease. Methods. A descriptive review of anatomic changes in the eye related to aging was performed in the context of current areas of investigation. The review was performed specifically for differing anatomic ocular structures, including cornea, trabecular meshwork, lens, uveal tract, Bruch's membrane, retina, RPE, vitreous, sclera, and optic nerve. Results. Age-related changes occur in all ocular tissues. The cornea flattens and there is an attrition of endothelial cells. The shape of the trabecular meshwork changes and there is a loss of trabecular endothelium. The lens grows and becomes cataractous. The ciliary body becomes collagenized, there are choroidal vascular changes, and Bruch's membrane thickens. Retinal vessels become hyalinized and there is a loss of rods before cones in the macula. RPE morphometric changes occur with aging. The vitreous becomes liquefied and there is a loss of vitreous compartmentalization. The sclera becomes rigid and may become calcified. The optic nerve exhibits structural changes with age. Conclusions. There are numerous anatomic age-related changes in the human eye. Current areas of investigation related to these changes include adaptive optics scanning laser ophthalmoscopy imaging of the RPE mosaic in the context of aging, and drug delivery devices that overcome age-related alterations to retinal and macular perfusion. PMID:24335063

  13. Age-Related Tissue Stiffening: Cause and Effect

    PubMed Central

    Sherratt, Michael J.

    2013-01-01

    Significance Tissue elasticity is severely compromised in aging skin, lungs, and blood vessels. In the vascular and pulmonary systems, respectively, loss of mechanical function is linked to hypertension, which in turn is a risk factor for heart and renal failure, stroke, and aortic aneurysms, and to an increased risk of mortality as a result of acute lung infections. Recent Advances Although cellular mechanisms were thought to play an important role in mediating tissue aging, the reason for the apparent sensitivity of elastic fibers to age-related degradation remained unclear. We have recently demonstrated that compared with type I collagen, a key component of the elastic fiber system, the cysteine-rich fibrillin microfibril is highly susceptible to direct UV exposure in a cell-free environment. We hypothesized therefore that, as a consequence of both their remarkable longevity and cysteine-rich composition, many elastic fiber-associated components will be susceptible to the accumulation of damage by both direct UV radiation and reactive oxygen species-mediated oxidation. Critical Issues Although elastic fiber remodeling is a common feature of aging dynamic tissues, the inaccessibility of most human tissues has hampered attempts to define the molecular causes. Clinical Care Relevance Although, currently, the localized repair of damaged elastic fibers may be effected by the topical application of retinoids and some cosmetic products, future studies may extend the application of systemic transforming growth factor β antagonists, which can prevent cardiovascular remodeling in murine Marfan syndrome, to aging humans. Acellular mechanisms may be key mediators of elastic fiber remodeling and hence age-related tissue stiffening. PMID:24527318

  14. Disproportionate loss of thin filaments in human soleus muscle after 17-day bed rest

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Bain, J. L.; Thompson, J. L.; Fitts, R. H.; Widrick, J. J.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.

    1998-01-01

    Previously we reported that, after 17-day bed rest unloading of 8 humans, soleus slow fibers atrophied and exhibited increased velocity of shortening without fast myosin expression. The present ultrastructural study examined fibers from the same muscle biopsies to determine whether decreased myofilament packing density accounted for the observed speeding. Quantitation was by computer-assisted morphometry of electron micrographs. Filament densities were normalized for sarcomere length, because density depends directly on length. Thick filament density was unchanged by bed rest. Thin filaments/microm2 decreased 16-23%. Glycogen filled the I band sites vacated by filaments. The percentage decrease in thin filaments (Y) correlated significantly (P < 0.05) with the percentage increase in velocity (X), (Y = 0.1X + 20%, R2 = 0.62). An interpretation is that fewer filaments increases thick to thin filament spacing and causes earlier cross-bridge detachment and faster cycling. Increased velocity helps maintain power (force x velocity) as atrophy lowers force. Atrophic muscles may be prone to sarcomere reloading damage because force/microm2 was near normal, and force per thin filament increased an estimated 30%.

  15. Automatic age-related macular degeneration detection and staging

    NASA Astrophysics Data System (ADS)

    van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.

    2013-03-01

    Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.

  16. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice

    PubMed Central

    Zhang, Yingpei; Padalecki, Susan S; Chaudhuri, Asish R; Waal, Eric De; Goins, Beth A; Grubbs, Barry; Ikeno, Yuji; Richardson, Arlan; Mundy, Gregory R; Herman, Brian

    2007-01-01

    Alteration of apoptotic activity has been observed in a number of tissues in aging mammals, but it remains unclear whether and/or how apoptosis may affect aging. Caspase-2 is a member of the cysteine protease family that plays a critical role in apoptosis. To understand the impact of compromised apoptosis function on mammalian aging, we conducted a comparative study on caspase-2 deficient mice and their wild-type littermates with a specific focus on the aging-related traits at advanced ages. We found that caspase-2 deficiency enhanced a number of traits commonly seen in premature aging animals. Loss of caspase-2 was associated with shortened maximum lifespan, impaired hair growth, increased bone loss, and reduced body fat content. In addition, we found that the livers of caspase-2 deficient mice had higher levels of oxidized proteins than those of age-matched wild-type mice, suggesting that caspase-2 deficiency compromised the animal's ability to clear oxidatively damaged cells. Collectively, these results suggest that caspase-2 deficiency affects aging in the mice. This study thus demonstrates for the first time that disruption of a key apoptotic gene has a significant impact on aging. PMID:17188333

  17. Loss of lean body and muscle mass correlates with androgen levels in hypogonadal men with acquired immunodeficiency syndrome and wasting.

    PubMed

    Grinspoon, S; Corcoran, C; Lee, K; Burrows, B; Hubbard, J; Katznelson, L; Walsh, M; Guccione, A; Cannan, J; Heller, H; Basgoz, N; Klibanski, A

    1996-11-01

    The acquired immunodeficiency syndrome (AIDS) wasting syndrome (AWS) is a devastating complication of human immunodeficiency virus infection characterized by a disproportionate decrease in lean body mass. The pathogenesis of the AWS is unknown, but recent data suggest that endogenous secretion of the potent anabolic hormone, testosterone; is decreased in 30-50% of men with AIDS. However, it is unknown whether decreased androgen levels are associated with decreased lean body mass and/or functional decreases in muscle strength and aerobic capacity in hypogonadal men with the AWS. In addition, testosterone is known to have stimulatory effects on GH secretion, and the loss of these effects on the GH-insulin-like growth factor I (IGF-I) axis may be an additional mechanism of decreased lean body mass in this population. Twenty hypogonadal subjects (free-testosterone < 12 pg/mL) with weight loss > 10% of preillness weight or absolute weight < 90% ideal body weight (IBW) were enrolled in the study. None of the subjects were receiving Megace. Lean body mass and fat-free mass were determined by potassium-40 isotope analysis (40K) and dual-energy x-ray absorptiometry, respectively, and analyzed with respect to gonadal function by linear regression analysis. Muscle mass was determined by urinary creatinine excretion, and exercise functional capacity was assessed by a 6-min walk test, a sit-to-stand test, and a timed get-up-and-go test. Results also were compared with gonadal function by regression analysis. IGF-I and mean overnight GH levels, determined from frequent sampling (q20 min from 2000-0800 h), were compared with results obtained from age- and sex-matched normal controls. Subjects were 26-58 yr of age (39 +/- 7 yr, mean +/- SD) with a CD4 cell count of 150 +/- 186 cells/mm3. Serum levels of FSH were elevated in 30% of the subjects. Muscle mass was significantly reduced, compared with expected mass for height (23.3 +/- 5.5 vs. 29.3 +/- 1.7 kg, P = 0.0001) and was

  18. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study

    PubMed Central

    Frestedt, Joy L; Zenk, John L; Kuskowski, Michael A; Ward, Loren S; Bastian, Eric D

    2008-01-01

    Background This study evaluated a specialized whey fraction (Prolibra™, high in leucine, bioactive peptides and milk calcium) for use as a dietary supplement to enhance weight loss. Methods This was a randomized, double-blind, parallel-arm, 12-week study. Caloric intake was reduced 500 calories per day. Subjects consumed Prolibra or an isocaloric ready-to-mix beverage 20 minutes before breakfast and 20 minutes before dinner. Body fat and lean muscle tissue were measured by dual-energy x-ray absorptiometry (DEXA). Body weight and anthropometric measurements were recorded every 4 weeks. Blood samples were taken at the beginning and end of the study. Statistical analyses were performed on all subjects that completed (completer analysis) and all subjects that lost at least 2.25 kg of body weight (responder analysis). Within group significance was determined at P < 0.05 using a two-tailed paired t-test and between group significance was determined using one way analysis of covariance with baseline data as a covariate. Results Both groups lost a significant amount of weight and the Prolibra group tended to lose more weight than the control group; however the amount of weight loss was not significantly different between groups after 12 weeks. Prolibra subjects lost significantly more body fat compared to control subjects for both the completer (2.81 vs. 1.62 kg P = 0.03) and responder (3.63 vs. 2.11 kg, P = 0.01) groups. Prolibra subjects lost significantly less lean muscle mass in the responder group (1.07 vs. 2.41 kg, P = 0.02). The ratio of fat to lean loss (kg fat lost/kg lean lost) was much larger for Prolibra subjects for both completer (3.75 vs. 1.05) and responder (3.39 vs. 0.88) groups. Conclusion Subjects in both the control and treatment group lost a significant amount of weight with a 500 calorie reduced diet. Subjects taking Prolibra lost significantly more body fat and showed a greater preservation of lean muscle compared to subjects consuming the control

  19. Age-Associated Methylation Suppresses SPRY1, Leading to a Failure of Re-quiescence and Loss of the Reserve Stem Cell Pool in Elderly Muscle.

    PubMed

    Bigot, Anne; Duddy, William J; Ouandaogo, Zamalou G; Negroni, Elisa; Mariot, Virginie; Ghimbovschi, Svetlana; Harmon, Brennan; Wielgosik, Aurore; Loiseau, Camille; Devaney, Joe; Dumonceaux, Julie; Butler-Browne, Gillian; Mouly, Vincent; Duguez, Stéphanie

    2015-11-10

    The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated methylation in humans inhibits the replenishment of the muscle stem cell pool, contributing to a decreased regenerative response in old age. We further show that aging does not affect muscle stem cell senescence in humans. PMID:26526994

  20. Chronic Exercise Modifies Age-Related Telomere Dynamics in a Tissue-Specific Fashion

    PubMed Central

    Ludlow, Andrew T.; Witkowski, Sarah; Marshall, Mallory R.; Wang, Jenny; Lima, Laila C. J.; Guth, Lisa M.; Spangenburg, Espen E.

    2012-01-01

    We evaluated the impact of long-term exercise on telomere dynamics in wild-derived short telomere mice (CAST/Ei) over 1 year. We observed significant telomere shortening in liver and cardiac tissues in sedentary 1-year-old mice compared with young (8 weeks) baseline mice that were attenuated in exercised 1-year-old animals. In contrast, skeletal muscle exhibited significant telomere shortening in exercise mice compared with sedentary and young mice. Telomerase enzyme activity was increased in skeletal muscle of exercise compared with sedentary animals but was similar in cardiac and liver tissues. We observed significant age-related decreases in expression of telomere-related genes that were attenuated by exercise in cardiac and skeletal muscle but not liver. Protein content of TRF1 was significantly increased in plantaris muscle with age. In summary, long-term exercise altered telomere dynamics, slowing age-related decreases in telomere length in cardiac and liver tissue but contributing to shortening in exercised skeletal muscle. PMID:22389464

  1. Detection of G-Induced Loss of Consciousness (G-LOC) prognosis through EMG monitoring on gastrocnemius muscle in flight.

    PubMed

    Booyong Choi; Yongkyun Lee; Taehwan Cho; Hyojin Koo; Dongsoo Kim

    2015-08-01

    G-Induced Loss of Consciousness (G-LOC) is mainly caused by the sudden acceleration in the direction of +Gz axis from the fighter pilots, and is considered as an emergent situation of which fighter pilots are constantly aware. In order to resist against G-LOC, fighter pilots are subject to run Anti-G straining maneuver (AGSM), which includes L-1 respiration maneuvering and muscular contraction of the whole body. The purpose of this study is to create a G-LOC warning alarm prior to G-LOC by monitoring the Electromyogram (EMG) of the gastrocnemius muscle on the calf, which goes under constant muscular contraction during the AGSM process. EMG data was retrieved from pilots and pilot trainees of the Korean Air Force, during when subjects were under high G-trainings on a human centrifugal simulator. Out of the EMG features, integrated absolute value (IAV), reflecting muscle contraction, and waveform length (WL), reflecting muscle contraction and fatigue, have shown a rapid decay during the alarm phase, 3 seconds before G-LOC, compared to that of a normal phase withstanding G-force. Such results showed consistency amongst pilots and pilot trainees who were under G-LOC. Based on these findings, this study developed an algorithm which can detect G-LOC prognosis during flight, and at the same time, generate warning signals. The probability of G-LOC occurrence is detected through monitoring the decay trend and degree of the IVA and WL value of when the pilot initiates AGSM during sudden acceleration above 6G. Conclusively, this G-LOC prognosis detecting and warning system is a customized, real-time countermeasure which enhanced the accuracy of detecting G-LOC. PMID:26737905

  2. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction.

    PubMed

    Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2016-08-01

    Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia. PMID:27362462

  3. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery.

    PubMed

    Coen, Paul M; Menshikova, Elizabeth V; Distefano, Giovanna; Zheng, Donghai; Tanner, Charles J; Standley, Robert A; Helbling, Nicole L; Dubis, Gabriel S; Ritov, Vladimir B; Xie, Hui; Desimone, Marisa E; Smith, Steven R; Stefanovic-Racic, Maja; Toledo, Frederico G S; Houmard, Joseph A; Goodpaster, Bret H

    2015-11-01

    Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery-induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity. PMID:26293505

  4. Psychosocial Intervention for Age-Related Macular Degeneration: A Pilot Project

    ERIC Educational Resources Information Center

    Wahl, Hans-Werner; Kammerer, Annette; Holz, Frank; Miller, Daniel; Becker, Stefanie; Kaspar, Roman; Himmelsbach, Ines

    2006-01-01

    This study evaluated an emotion-focused and a problem-focused intervention designed for patients with age-related macular degeneration. It found a limited decrease in depression in the emotion-focused group and an increase in active problem orientation and in adaptation to vision loss in the problem-focused group.

  5. Introduction to the issue regarding research regarding age related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blindness is the second greatest fear among the elderly. Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly in most industrialized nations. AMD first compromises central high acuity vision. Subsequently, all vision may be lost. AMD is a progressive retinal d...

  6. Muscular senescence in cetaceans: adaptation towards a slow muscle fibre phenotype

    PubMed Central

    Sierra, Eva; Fernández, Antonio; de los Monteros, Antonio Espinosa; Arbelo, Manuel; de Quirós, Yara Bernaldo; Herráez, Pedro

    2013-01-01

    Sarcopenia, or senile muscle atrophy, is the slow and progressive loss of muscle mass with advancing age that constitutes the most prevalent form of muscle atrophy. The effects of ageing on skeletal muscle have been extensively studied in humans and laboratory animals (mice), while the few reports on wild animals are based on short-lived mammals. The present study describes the age-related changes in cetacean muscles regarding the three factors that determine muscle mass: fibre size, fibre number, and fibre type. We show that the skeletal muscle fibres in cetaceans change with advancing age, evolving towards a slower muscle phenotype. We suggest that this physiological evolution constitutes an adaptation that allows these marine mammals to perform prolonged, deep dives. PMID:23648412

  7. Changes in skeletal muscle with aging: effects of exercise training.

    PubMed

    Rogers, M A; Evans, W J

    1993-01-01

    There is an approximate 30% decline in muscle strength and a 40% reduction in muscle area between the second and seventh decades of life. Thus, the loss of muscle mass with aging appears to be the major factor in the age-related loss of muscle strength. The loss of muscle mass is partially due to a significant decline in the numbers of both Type I and Type II muscle fibers plus a decrease in the size of the muscle cells, with the Type II fibers showing a preferential atrophy. There appears to be no loss of glycolytic capacity in senescent skeletal muscle whereas muscle oxidative enzyme activity and muscle capillarization decrease by about 25%. Vigorous endurance exercise training in older people, where the stimulus is progressively increased, elicits a proliferation of muscle capillaries, an increase in oxidative enzyme activity, and a significant improvement in VO2max. Likewise, progressive resistive training in older individuals results in muscle hypertrophy and increased strength, if the training stimulus is of a sufficient intensity and duration. Since older individuals adapt to resistive and endurance exercise training in a similar fashion to young people, the decline in the muscle's metabolic and force-producing capacity can no longer be considered as an inevitable consequence of the aging process. Rather, the adaptations in aging skeletal muscle to exercise training may prevent sarcopenia, enhance the ease of carrying out the activities of daily living, and exert a beneficial effect on such age-associated diseases as Type II diabetes, coronary artery disease, hypertension, osteoporosis, and obesity. PMID:8504850

  8. Forever young: rejuvenating muscle satellite cells

    PubMed Central

    Madaro, Luca; Latella, Lucia

    2015-01-01

    A hallmark of aging is alteration of organismal homeostasis and progressive decline of tissue functions. Alterations of both cell intrinsic functions and regenerative environmental cues contribute to the compromised stem cell activity and reduced regenerative capability occurring in aged muscles. In this perspective, we discuss the new evidence supporting the hypothesis that skeletal muscle stem cells (MuSCs) are intrinsically defective in elderly muscles. In particular, we review three recent papers leading to identify fibroblast growth factor receptor-1, p38 mitogen-activated protein kinase, and p16INK4a as altered signaling in satellite cells from aged mice. These pathways contribute to age-related loss of MuSCs asymmetric polarization, compromised self-renewal capacity, and acquisition of pre-senescent state. The pharmacological manipulation of those networks can open novel strategies to rejuvenate MuSCs and counteract the functional decline of skeletal muscle during aging. PMID:25954192

  9. Loss of nNOS inhibits compensatory muscle hypertrophy and exacerbates inflammation and eccentric contraction-induced damage in mdx mice

    PubMed Central

    Froehner, Stanley C.; Reed, Sarah M.; Anderson, Kendra N.; Huang, Paul L.; Percival, Justin M.

    2015-01-01

    Approaches targeting nitric oxide (NO) signaling show promise as therapies for Duchenne and Becker muscular dystrophies. However, the mechanisms by which NO benefits dystrophin-deficient muscle remain unclear, but may involve nNOSβ, a newly discovered enzymatic source of NO in skeletal muscle. Here we investigate the impact of dystrophin deficiency on nNOSβ and use mdx mice engineered to lack nNOSμ and nNOSβ to discern how the loss of nNOS impacts dystrophic skeletal muscle pathology. In mdx muscle, nNOSβ was mislocalized and its association with the Golgi complex was reduced. nNOS depletion from mdx mice prevented compensatory skeletal muscle cell hypertrophy, decreased myofiber central nucleation and increased focal macrophage cell infiltration, indicating exacerbated dystrophic muscle damage. Reductions in muscle integrity in nNOS-null mdx mice were accompanied by decreases in specific force and increased susceptibility to eccentric contraction-induced muscle damage compared with mdx controls. Unexpectedly, muscle fatigue was unaffected by nNOS depletion, revealing a novel latent compensatory mechanism for the loss of nNOS in mdx mice. Together with previous studies, these data suggest that localization of both nNOSμ and nNOSβ is disrupted by dystrophin deficiency. They also indicate that nNOS has a more complex role as a modifier of dystrophic pathology and broader therapeutic potential than previously recognized. Importantly, these findings also suggest nNOSβ as a new drug target and provide a new conceptual framework for understanding nNOS signaling and the benefits of NO therapies in dystrophinopathies. PMID:25214536

  10. Cellular models and therapies for age-related macular degeneration

    PubMed Central

    Forest, David L.; Johnson, Lincoln V.; Clegg, Dennis O.

    2015-01-01

    ABSTRACT Age-related macular degeneration (AMD) is a complex neurodegenerative visual disorder that causes profound physical and psychosocial effects. Visual impairment in AMD is caused by the loss of retinal pigmented epithelium (RPE) cells and the light-sensitive photoreceptor cells that they support. There is currently no effective treatment for the most common form of this disease (dry AMD). A new approach to treating AMD involves the transplantation of RPE cells derived from either human embryonic or induced pluripotent stem cells. Multiple clinical trials are being initiated using a variety of cell therapies. Although many animal models are available for AMD research, most do not recapitulate all aspects of the disease, hampering progress. However, the use of cultured RPE cells in AMD research is well established and, indeed, some of the more recently described RPE-based models show promise for investigating the molecular mechanisms of AMD and for screening drug candidates. Here, we discuss innovative cell-culture models of AMD and emerging stem-cell-based therapies for the treatment of this vision-robbing disease. PMID:26035859

  11. Mechanism of Inflammation in Age-Related Macular Degeneration

    PubMed Central

    Parmeggiani, Francesco; Romano, Mario R.; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease. PMID:23209345

  12. Effect of NCAM on aged-related deterioration in vision.

    PubMed

    Luke, Margaret Po-Shan; LeVatte, Terry L; O'Reilly, Amanda M; Smith, Benjamin J; Tremblay, François; Brown, Richard E; Clarke, David B

    2016-05-01

    The neural cell adhesion molecule (NCAM) is involved in developmental processes and age-associated cognitive decline; however, little is known concerning the effects of NCAM in the visual system during aging. Using anatomical, electrophysiological, and behavioral assays, we analyzed age-related changes in visual function of NCAM deficient (-/-) and wild-type mice. Anatomical analyses indicated that aging NCAM -/- mice had fewer retinal ganglion cells, thinner retinas, and fewer photoreceptor cell layers than age-matched controls. Electroretinogram testing of retinal function in young adult NCAM -/- mice showed a 2-fold increase in a- and b-wave amplitude compared with wild-type mice, but the retinal activity dropped dramatically to control levels when the animals reached 10 months. In behavioral tasks, NCAM -/- mice had no visual pattern discrimination ability and showed premature loss of vision as they aged. Together, these findings demonstrate that NCAM plays significant roles in the adult visual system in establishing normal retinal anatomy, physiology and function, and in maintaining vision during aging. PMID:27103522

  13. Promising new treatments for neovascular age-related macular degeneration.

    PubMed

    Michels, Stephan; Schmidt-Erfurth, Ursula; Rosenfeld, Philip J

    2006-07-01

    Angiogenesis, the growth of new blood vessels from existing blood vessels, is responsible for vision loss in a variety of ophthalmic diseases. In neovascular age-related macular degeneration (AMD), the leading cause for legal blindness in many industrialised countries, abnormal blood vessels grow in the macula and cause blindness. There are a number of factors important in the angiogenic cascade but VEGF-A has been implicated in recent years as the major factor responsible for neovascular and exudative diseases of the eye. Numerous antiangiogenic drugs are in development but anti-VEGF drugs have shown great promise in treating neovascular AMD and other ocular diseases, and many of these drugs have been adopted from oncology where antiangiogenic therapy is gaining wide acceptance. For the first time in neovascular AMD, anti-VEGF drugs have brought the hope of vision improvement to a significant proportion of patients. This review provides an overview on angiogenic mechanisms, potential antiangiogenic treatment strategies and different antiangiogenic drugs with special focus on neovascular AMD. PMID:16787141

  14. Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy.

    PubMed

    Cohen, Shenhav; Zhai, Bo; Gygi, Steven P; Goldberg, Alfred L

    2012-08-20

    During muscle atrophy, myofibrillar proteins are degraded in an ordered process in which MuRF1 catalyzes ubiquitylation of thick filament components (Cohen et al. 2009. J. Cell Biol. http://dx.doi.org/10.1083/jcb.200901052). Here, we show that another ubiquitin ligase, Trim32, ubiquitylates thin filament (actin, tropomyosin, troponins) and Z-band (α-actinin) components and promotes their degradation. Down-regulation of Trim32 during fasting reduced fiber atrophy and the rapid loss of thin filaments. Desmin filaments were proposed to maintain the integrity of thin filaments. Accordingly, we find that the rapid destruction of thin filament proteins upon fasting was accompanied by increased phosphorylation of desmin filaments, which promoted desmin ubiquitylation by Trim32 and degradation. Reducing Trim32 levels prevented the loss of both desmin and thin filament proteins. Furthermore, overexpression of an inhibitor of desmin polymerization induced disassembly of desmin filaments and destruction of thin filament components. Thus, during fasting, desmin phosphorylation increases and enhances Trim32-mediated degradation of the desmin cytoskeleton, which appears to facilitate the breakdown of Z-bands and thin filaments. PMID:22908310

  15. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index. PMID:26572116

  16. Wet age related macular degeneration management and follow-up.

    PubMed

    Alexandru, Malciolu Radu; Alexandra, Nica Maria

    2016-01-01

    Age-related macular degeneration (AMD) is referred to as the leading cause of irreversible visual loss in developed countries, with a profound effect on the quality of life. The neovascular form of AMD is characterized by the formation of subretinal choroidal neovascularization, leading to sudden and severe visual loss. Research has identified the vascular endothelial growth factor (VEGF) as an important pathophysiological component in neovascular AMD and its intraocular inhibition as one of the most efficient therapies in medicine. The introduction of anti-VEGF as a standard treatment in wet AMD has led to a great improvement in the prognosis of patients, allowing recovery and maintenance of visual function in the vast majority of cases. However, the therapeutic benefit is accompanied by a difficulty in maintaining the treatment schedule due to the increase in the amount of patients, stress of monthly assessments, as well as the associated economic burden. Therefore, treatment strategies have evolved from fixed monthly dosing, to individualized regimens, aiming for comparable results, with fewer injections. One such protocol is called "pro re nata", or "treat and observe". Patients are given a loading dose of 3 monthly injections, followed by an as-needed decision to treat, based on the worsening of visual acuity, clinical evidence of the disease activity on fundoscopy, or OCT evidence of retinal thickening in the presence of intra or subretinal fluid. A different regimen is called "treat and extend", in which the interval between injections is gradually increased, once the disease stabilization is achieved. This paper aims to review the currently available anti-VEGF agents--bevacizumab, ranibizumab, aflibercept, and the aforementioned treatment strategies. PMID:27220225

  17. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance.

    PubMed

    Zolla, Valerio; Nizamutdinova, Irina Tsoy; Scharf, Brian; Clement, Cristina C; Maejima, Daisuke; Akl, Tony; Nagai, Takashi; Luciani, Paola; Leroux, Jean-Christophe; Halin, Cornelia; Stukes, Sabriya; Tiwari, Sangeeta; Casadevall, Arturo; Jacobs, William R; Entenberg, David; Zawieja, David C; Condeelis, John; Fooksman, David R; Gashev, Anatoliy A; Santambrogio, Laura

    2015-08-01

    The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic's endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport. PMID:25982749

  18. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance

    PubMed Central

    Zolla, Valerio; Nizamutdinova, Irina Tsoy; Scharf, Brian; Clement, Cristina C; Maejima, Daisuke; Akl, Tony; Nagai, Takashi; Luciani, Paola; Leroux, Jean-Christophe; Halin, Cornelia; Stukes, Sabriya; Tiwari, Sangeeta; Casadevall, Arturo; Jacobs, William R; Entenberg, David; Zawieja, David C; Condeelis, John; Fooksman, David R; Gashev, Anatoliy A; Santambrogio, Laura

    2015-01-01

    The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic’s endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport. PMID:25982749

  19. Long-term high-level exercise promotes muscle reinnervation with age.

    PubMed

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Fruhmann, Hannah; Vogelauer, Michael; Burggraf, Samantha; Mayr, Winfried; Krenn, Matthias; Paternostro-Sluga, Tatjana; Hamar, Dusan; Cvecka, Jan; Sedliak, Milan; Tirpakova, Veronika; Sarabon, Nejc; Musarò, Antonio; Sandri, Marco; Protasi, Feliciano; Nori, Alessandra; Pond, Amber; Zampieri, Sandra

    2014-04-01

    The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging. PMID:24607961

  20. Pearson’s correlations between moisture content, drip loss, expressible fluid and salt-induced water gain of broiler pectoralis major muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture content, drip loss, expressible fluid, and % salt-induced water gain are widely used to estimate water states and water-holding capacity of raw meat. However, the relationships between these four measurements of broiler pectoralis (p.) major muscle describe are not well described. The objec...

  1. Effects of high protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: The benefits of high protein diets for sparing lean body mass and sustaining skeletal muscle protein metabolism during short-term weight loss in normal-weight adults are not well described. Objective: Determine the effects of varying levels of dietary protein intake on body compos...

  2. Nutritional Supplements in Support of Resistance Exercise to Counter Age-Related Sarcopenia12

    PubMed Central

    Phillips, Stuart M

    2015-01-01

    Age-related sarcopenia, composed of myopenia (a decline in muscle mass) and dynapenia (a decline in muscle strength), can compromise physical function, increase risk of disability, and lower quality of life in older adults. There are no available pharmaceutical treatments for this condition, but evidence shows resistance training (RT) is a viable and relatively low-cost treatment with an exceptionally positive side effect profile. Further evidence suggests that RT-induced increases in muscle mass, strength, and function can be enhanced by certain foods, nutrients, or nutritional supplements. This brief review focuses on adjunctive nutritional strategies, which have a reasonable evidence base, to enhance RT-induced gains in outcomes relevant to sarcopenia and to reducing risk of functional declines. PMID:26178029

  3. Nutritional supplements in support of resistance exercise to counter age-related sarcopenia.

    PubMed

    Phillips, Stuart M

    2015-07-01

    Age-related sarcopenia, composed of myopenia (a decline in muscle mass) and dynapenia (a decline in muscle strength), can compromise physical function, increase risk of disability, and lower quality of life in older adults. There are no available pharmaceutical treatments for this condition, but evidence shows resistance training (RT) is a viable and relatively low-cost treatment with an exceptionally positive side effect profile. Further evidence suggests that RT-induced increases in muscle mass, strength, and function can be enhanced by certain foods, nutrients, or nutritional supplements. This brief review focuses on adjunctive nutritional strategies, which have a reasonable evidence base, to enhance RT-induced gains in outcomes relevant to sarcopenia and to reducing risk of functional declines. PMID:26178029

  4. Loss of Abdominal Muscle in Pitx2 Mutants Associated with Altered Axial Specification of Lateral Plate Mesoderm

    PubMed Central

    Eng, Diana; Ma, Hsiao-Yen; Xu, Jun; Shih, Hung-Ping; Gross, Michael K.; Kiouss, Chrissa

    2012-01-01

    Sequence specific transcription factors (SSTFs) combinatorially define cell types during development by forming recursively linked network kernels. Pitx2 expression begins during gastrulation, together with Hox genes, and becomes localized to the abdominal lateral plate mesoderm (LPM) before the onset of myogenesis in somites. The somatopleure of Pitx2 null embryos begins to grow abnormally outward before muscle regulatory factors (MRFs) or Pitx2 begin expression in the dermomyotome/myotome. Abdominal somites become deformed and stunted as they elongate into the mutant body wall, but maintain normal MRF expression domains. Subsequent loss of abdominal muscles is therefore not due to defects in specification, determination, or commitment of the myogenic lineage. Microarray analysis was used to identify SSTF families whose expression levels change in E10.5 interlimb body wall biopsies. All Hox9-11 paralogs had lower RNA levels in mutants, whereas genes expressed selectively in the hypaxial dermomyotome/myotome and sclerotome had higher RNA levels in mutants. In situ hybridization analyses indicate that Hox gene expression was reduced in parts of the LPM and intermediate mesoderm of mutants. Chromatin occupancy studies conducted on E10.5 interlimb body wall biopsies showed that Pitx2 protein occupied chromatin sites containing conserved bicoid core motifs in the vicinity of Hox 9-11 and MRF genes. Taken together, the data indicate that Pitx2 protein in LPM cells acts, presumably in combination with other SSTFs, to repress gene expression, that are normally expressed in physically adjoining cell types. Pitx2 thereby prevents cells in the interlimb LPM from adopting the stable network kernels that define sclerotomal, dermomyotomal, or myotomal mesenchymal cell types. This mechanism may be viewed either as lineage restriction or specification. PMID:22860089

  5. Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit

    PubMed Central

    Brooks, Naomi; Cloutier, Gregory J.; Cadena, Samuel M.; Layne, Jennifer E.; Nelsen, Carol A.; Freed, Alicia M.; Roubenoff, Ronenn; Castaneda-Sceppa, Carmen

    2008-01-01

    Spaceflight and bed rest (BR) result in losses of muscle mass and strength. Resistance training (RT) and amino acid (AA) supplementation are potential countermeasures to minimize these losses. However, it is unknown if timing of supplementation with exercise can optimize benefits, particularly with energy deficit. We examined the effect of these countermeasures on body composition, strength, and insulin levels in 31 men (ages 31–55 yr) during BR (28 days) followed by active recovery (14 days). Subjects were randomly assigned to essential AA supplementation (AA group, n = 7); RT with AA given 3 h after training (RT group, n = 12); or RT with AA given 5 min before training (AART group, n = 12). Energy intake was reduced by 8 ± 6%. Midthigh muscle area declined with BR for the AA > RT > AART groups: −11%, −3%, −4% (P = 0.05). Similarly, greatest losses in lower body muscle strength were seen in the AA group (−22%). These were attenuated in the exercising groups [RT (−8%) and AART (−6%; P < 0.05)]. Fat mass and midthigh intramuscular fat increased after BR in the AA group (+3% and +14%, respectively), and decreased in the RT (−5% and −4%) and AART groups (−1 and −5%; P = 0.05). Muscle mass and strength returned toward baseline after recovery, but the AA group showed the lowest regains. Combined resistance training with AA supplementation pre- or postexercise attenuated the losses in muscle mass and strength by approximately two-thirds compared with AA supplement alone during BR and energy deficit. These data support the efficacy of combined AA and RT as a countermeasure against muscle wasting due to low gravity. PMID:18483167

  6. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease

    PubMed Central

    Crosson, Bruce; McGregor, Keith M.; Nocera, Joe R.; Drucker, Jonathan H.; Tran, Stella M.; Butler, Andrew J.

    2015-01-01

    The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered. PMID:26074807

  7. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System.

    PubMed

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-02-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere's disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  8. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    PubMed Central

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  9. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori. PMID:25857689

  10. [Muscular power of masticating muscles and mandibular osteoporosis].

    PubMed

    Morii, Hirotoshi; Takaishi, Yoshitomo

    2006-02-01

    Whereas the most powerful stimuli for bone formation is supposed to be a stretching of muscles, Frost HM classified the effect of muscle on bone mineral density (BMD) into various types: 1. age-related loss of bone mineral density (BMD) is partly due to loss of muscular wasting, 2. the increase of BMD in obesity is due to the increase in muscular power to support the increased body weight and 3. the decrease of BMD in chronic wasting disease is partly due to the decrease in muscular power. Likewise, the decrease in BMD in mandibular alveolar bones will be partly due to the decrease in the power of masticating muscles, if such exists. A case report of mitochondrial encephalo-myopathy associated with impaired function of cranial nerves involving trigeminus nerves and impaired function of masticating muscles and dysphagia. This patient showed decrease in alveolar BMD and atrophy of mandibular. PMID:16465028

  11. Loss of caveolin-3 induced by the dystrophy-associated P104L mutation impairs L-type calcium channel function in mouse skeletal muscle cells.

    PubMed

    Couchoux, Harold; Allard, Bruno; Legrand, Claude; Jacquemond, Vincent; Berthier, Christine

    2007-05-01

    Caveolins are membrane scaffolding proteins that associate with and regulate a variety of signalling proteins, including ion channels. A deficiency in caveolin-3 (Cav-3), the major striated muscle isoform, is responsible for skeletal muscle disorders, such as limb-girdle muscular dystrophy 1C (LGMD 1C). The molecular mechanisms leading to the muscle wasting that characterizes this pathology are poorly understood. Here we show that a loss of Cav-3 induced by the expression of the LGMD 1C-associated mutant P104L (Cav-3(P104L)) provokes a reduction by half of the maximal conductance of the voltage-dependent L-type Ca(2+) channel in mouse primary cultured myotubes and fetal skeletal muscle fibres. Confocal immunomiscrocopy indicated a colocalization of Cav-3 and Ca(v)1.1, the pore-forming subunit of the L-type Ca(2+) channel, at the surface membrane and in the developing T-tubule network in control myotubes and fetal fibres. In myotubes expressing Cav-3(P104L), the loss of Cav-3 was accompanied by a 66% reduction in Ca(v)1.1 mean labelling intensity. Our results suggest that Cav-3 is involved in L-type Ca(2+) channel membrane function and localization in skeletal muscle cells and that an alteration of L-type Ca(2+) channels could be involved in the physiopathological mechanisms of caveolinopathies. PMID:17317753

  12. Loss of caveolin-3 induced by the dystrophy-associated P104L mutation impairs L-type calcium channel function in mouse skeletal muscle cells

    PubMed Central

    Couchoux, Harold; Allard, Bruno; Legrand, Claude; Jacquemond, Vincent; Berthier, Christine

    2007-01-01

    Caveolins are membrane scaffolding proteins that associate with and regulate a variety of signalling proteins, including ion channels. A deficiency in caveolin-3 (Cav-3), the major striated muscle isoform, is responsible for skeletal muscle disorders, such as limb-girdle muscular dystrophy 1C (LGMD 1C). The molecular mechanisms leading to the muscle wasting that characterizes this pathology are poorly understood. Here we show that a loss of Cav-3 induced by the expression of the LGMD 1C-associated mutant P104L (Cav-3P104L) provokes a reduction by half of the maximal conductance of the voltage-dependent L-type Ca2+ channel in mouse primary cultured myotubes and fetal skeletal muscle fibres. Confocal immunomiscrocopy indicated a colocalization of Cav-3 and Cav1.1, the pore-forming subunit of the L-type Ca2+ channel, at the surface membrane and in the developing T-tubule network in control myotubes and fetal fibres. In myotubes expressing Cav-3P104L, the loss of Cav-3 was accompanied by a 66% reduction in Cav1.1 mean labelling intensity. Our results suggest that Cav-3 is involved in L-type Ca2+ channel membrane function and localization in skeletal muscle cells and that an alteration of L-type Ca2+ channels could be involved in the physiopathological mechanisms of caveolinopathies. PMID:17317753

  13. Runx2/Cbfa1, but not loss of Myocardin, is Required for Smooth Muscle Cell Lineage Reprogramming toward Osteochondrogenesis

    PubMed Central

    Speer, Mei Y.; Li, Xianwu; Hiremath, Pranoti G.; Giachelli, Cecilia M.

    2010-01-01

    Vascular calcification is a major risk factor for cardiovascular morbidity and mortality. Smooth muscle cells (SMCs) may play an important role in vascular cartilaginous metaplasia and calcification via reprogramming to the osteochondrogenic state. To study whether SM lineage reprogramming and thus matrix calcification is reversible and what the necessary regulatory factors are to reverse this process, we used cells isolated from calcifying arterial medias of 4-week-old matrix Gla protein knockout mice (MGP−/− SMCs). We found that vascular cells with an osteochondrogenic phenotype regained SMC properties (positive for SM22α and SM α-actin) and down-regulated osteochondrogenic gene expression (Runx2/Cbfa1 and osteopontin) upon culture in medium that favors SMC differentiation. Over time, the MGP−/− SMCs no longer expressed osteochondrogenic proteins and became indistinguishable from wild-type SMCs. Moreover, phenotypic switch of the restored SMCs to the osteochondrogenic state was re-induced by the pro-calcific factor, inorganic phosphate. Finally, loss- and gain-of-function studies of myocardin, a SM-specific transcription co-activator, and Runx2/Cbfa1, an osteochondrogenic transcription factor, revealed that upregulation of Runx2/Cbfa1, but not loss of myocardin, played a critical role in phosphate-induced SMC lineage reprogramming and calcification. These results are the first to demonstrate reversibility of vascular SMCs to an osteochondrogenic state in response to local environmental cues, and that myocardin-enforced SMC lineage allocation was not sufficient to block vascular calcification. On the other hand, Runx2/Cbfa1 was found to be a decisive factor identified in the process. PMID:20564193

  14. Loss of knee extensor torque complexity during fatiguing isometric muscle contractions occurs exclusively above the critical torque.

    PubMed

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2016-06-01

    The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1-S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = -0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI -0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = -0.72, -0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT. PMID:27101290

  15. Low Calorie Diet Affects Aging-Related Factors

    MedlinePlus

    ... Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / Summer 2006 Table of ... project sponsored by the NIH's National Institute on Aging (NIA) to learn more about the effects of ...

  16. Low Calorie Diet Affects Aging-Related Factors

    MedlinePlus

    ... Issue Past Issues Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / Summer ... learn more about the effects of sustained low-calorie diets in humans on factors affecting aging. This ...

  17. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle

    PubMed Central

    Gonzalez-Freire, Marta; de Cabo, Rafael; Studenski, Stephanie A.; Ferrucci, Luigi

    2014-01-01

    Aging is associated with a progressive loss of muscle mass and strength and a decline in neurophysiological functions. Age-related neuromuscular junction (NMJ) plays a key role in musculoskeletal impairment that occurs with aging. However, whether changes in the NMJ precede or follow the decline of muscle mass and strength remains unresolved. Many factors such as mitochondrial dysfunction, oxidative stress, inflammation, changes in the innervation of muscle fibers, and mechanical properties of the motor units probably perform an important role in NMJ degeneration and muscle mass and strength decline in late life. This review addresses the primary events that might lead to NMJ dysfunction with aging, including studies on biomarkers, signaling pathways, and animal models. Interventions such as caloric restriction and exercise may positively affect the NMJ through this mechanism and attenuate the age-related progressive impairment in motor function. PMID:25157231

  18. Age-related changes in the misinformation effect.

    PubMed

    Sutherland, R; Hayne, H

    2001-08-01

    In these experiments, we examined the relation between age-related changes in retention and age-related changes in the misinformation effect. Children (5- and 6- and 11- and 12-year-olds) and adults viewed a video, and their memory was assessed immediately, 1 day, or 6 weeks later (Experiment 1). There were large age-related differences in retention when participants were interviewed immediately and after 1 day, but after the 6-week delay, age-related differences in retention were minimal. In Experiment 2, 11- and 12-year-olds and adults were exposed to neutral, leading, and misleading postevent information 1 day or 6 weeks after they viewed the video. Exposure to misleading information increased the number of commission errors, particularly when participants were asked about peripheral aspects of the video. At both retention intervals, children were more likely than adults to incorporate the misleading postevent information into their subsequent verbal accounts. These findings indicate that age-related changes in the misinformation effect are not predicted by age-related changes in retention. PMID:11511130

  19. Oxidative stress, innate immunity, and age-related macular degeneration

    PubMed Central

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  20. The Difference that Age Makes: Cultural Factors that Shape Older Adults' Responses to Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Mogk, Marja

    2008-01-01

    This article suggests that approaching vision loss from age-related macular degeneration from a sociocultural perspective, specifically considering perceptions of aging, blindness, disability, and generational viewpoints and norms, may be critical to understanding older adults' responses to vision loss and visual rehabilitation.

  1. Influence of Age-Related Versus Non-Age-Related Renal Dysfunctionon Survival in Patients with Left Ventricular Dysfunction

    PubMed Central

    Testani, Jeffrey M.; Brisco, Meredith A.; Han, Gang; Laur, Olga; Kula, Alexander J.; Cheng, Susan J.; Tang, W. H. Wilson; Parikh, Chirag R.

    2013-01-01

    Normal aging results in a predictable decline in glomerular filtration rate (GFR) and low GFR is associated with worsened survival. If this survival disadvantage is directly caused by the low GFR, as opposed to the disease causing the low GFR, the risk should be similar regardless of the underlying mechanism. Our objective was to determine if age related declines in estimated GFR (eGFR) carry the same prognostic importance as disease attributable losses in patients with ventricular dysfunction. We analyzed the Studies Of Left Ventricular Dysfunction (SOLVD) limited data set (n=6337). The primary analysis focused on determining if the eGFR mortality relationship differed by the extent the eGFR was consistent with normal ageing. Mean eGFR was 65.7 ± 19.0ml/min/1.73m2. Across the range of age in the population (27 to 80 years), baseline eGFR decreased by 0.67 ml/min/1.73m2 per year (95% CI 0.63 to 0.71). The risk of death associated with eGFR was strongly modified by the degree to which the low eGFR could be explained by aging (p interaction <0.0001). For example, in a model incorporating the interaction, uncorrected eGFR was no longer significantly related to mortality (adjusted HR=1.0 per 10 ml/min/1.73m2, 95% CI 0.97–1.1, p=0.53) whereas a disease attributable decrease in eGFR above the median carried significant risk (adjusted HR=2.8, 95% CI 1.6–4.7, p<0.001). In conclusion, in the setting of LV dysfunction, renal dysfunction attributable to normal aging had a limited risk for mortality, suggesting that the mechanism underlying renal dysfunction is critical in determining prognosis. PMID:24216124

  2. The supplementation of Korean mistletoe water extracts reduces hot flushes, dyslipidemia, hepatic steatosis, and muscle loss in ovariectomized rats.

    PubMed

    Kim, Min Jung; Park, Jong-Heum; Kwon, Dae Young; Yang, Hye Jeong; Kim, Da Sol; Kang, Suna; Shin, Bae Keun; Moon, Na Rang; Song, Beom-Seok; Kim, Jae-Hun; Park, Sunmin

    2015-04-01

    , hepatic steatosis, and loss of muscle mass in post-menopausal women. PMID:25258426

  3. Age-related hearing decline in individuals with and without occupational noise exposure

    PubMed Central

    Hederstierna, Christina; Rosenhall, Ulf

    2016-01-01

    This study was conducted to compare the pattern of age-related hearing decline in individuals with and without self-reported previous occupational noise exposure. This was a prospective, population-based, longitudinal study of individuals aged 70-75 years, from an epidemiological investigation, comprising three age cohorts. In total there were 1013 subjects (432 men and 581 women). Participants were tested with pure tone audiometry, and they answered a questionnaire to provide information regarding number of years of occupational noise exposure. There were no significant differences in hearing decline, at any frequency, for those aged 70-75 years between the noise-exposed (N= 62 men, 22 women) and the nonexposed groups (N = 96 men, 158 women). This study supports the additive model of noise-induced hearing loss (NIHL) and age-related hearing loss (ARHL). The concept of different patterns of hearing decline between persons exposed and not exposed to noise could not be verified. PMID:26780958

  4. Age-related change of technetium-99m-HMDP distribution in the skeleton

    SciTech Connect

    Kigami, Yusuke; Yamamoto, Itsuo; Ohnishi, Hideo

    1996-05-01

    To understand age-related changes of whole-body and regional skeletal metabolism, it is important to investigate the mechanisms of age-related bone loss and to develop suitable treatments for it. Bone biopsies show metabolism of the particular site examined while biochemical markers for bone metabolism reflect total skeletal metabolis. Bone scintigraphy is a convenient and simple way to analyze whole-body and regional skeletal metabolism. We attempted to study and understand age-related changes in bone metabolism by quantifying the bone scan and correlating it with biochemical bone metabolic markers. The whole-body skeletal uptake (WBSU) and whole-body skeletal tracer distribution pattern were studied in men and women by bone scintigraphy using {sup 99m}Tc-hydroxy-methane-diphosphonate (HMDP). Bone scans were performed using a standard protocol and quantified by setting regions of interest (ROIs) on selected regions. WBSU and the skeletal distribution pattern were compared with simultaneously obtained serum biochemical markers. WBSU showed an increase with age in both sexes, but in women, uptake in the head and legs increased more relatively than in the thoracic region, while in men no such tendency was observed. Increase of WBSU and relative increase of uptakes in the head demonstrated a weak correlation with the serum levels of alkaline phosphatase and type 1 collagen metabolites. These results show an age-related increase of skeletal turnover and sex-dependent regional skeletal metabolism. The age-related changes seen in bone scintigrams might be a sign of progressive bone loss, reflecting changes in local bone matabolism. 23 refs., 3 figs., 1 tab.

  5. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

    PubMed Central

    Pereira, Ana C.; Lambert, Hilary K.; Grossman, Yael S.; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K.; Calakos, Katina; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2014-01-01

    The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  6. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering.

    PubMed

    Pereira, Ana C; Lambert, Hilary K; Grossman, Yael S; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K; Calakos, Katina; Janssen, William G; McEwen, Bruce S; Morrison, John H

    2014-12-30

    The dementia of Alzheimer's disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  7. Age-Related Changes in the Anterior Segment Biometry During Accommodation

    PubMed Central

    Shao, Yilei; Tao, Aizhu; Jiang, Hong; Mao, Xinjie; Zhong, Jianguang; Shen, Meixiao; Lu, Fan; Xu, Zhe; Karp, Carol L.; Wang, Jianhua

    2015-01-01

    Purpose. We investigated the dynamic response of human accommodative elements as a function of age during accommodation using synchronized spectral domain optical coherence tomography devices (SD-OCT). Methods. We enrolled 33 left eyes from 33 healthy subjects (age range, 20–39 years, 17 males and 16 females). Two SD-OCT devices were synchronized to simultaneously image the anterior segment through pupil and the ciliary muscle during 6.00 diopter (D) accommodation for approximately 3.7 seconds in two repeated measurements. The anterior segment parameters included the lens thickness (LT), radius of curvature of the lens anterior surface (LAC), maximum thickness of ciliary muscle (CMTMAX), and anterior length of the ciliary muscle (CMAL). A first-order exponential equation was used to fit the dynamic changes during accommodation. The age-related changes in the dynamic response and their relationship were calculated and compared. Results. The amplitude (r = −0.40 and 0.53 for LT and LAC, respectively) and peak velocity (r = −0.65 and 0.71 for LT and LAC, respectively) of the changes in LT and LAC significantly decreased with age (P < 0.05), whereas the parameters of the ciliary muscle remained unchanged (P > 0.05), except for the peak velocity of the CMAL (r = 0.44, P = 0.01). The difference in the time constant between the lens reshaping (LT and LAC) and CMTMAX increased with age (r = 0.46 and 0.57 for LT and LAC, respectively, P < 0.01). The changes in LT and LAC per millimeter of CMTMAX change decreased with age (r = −0.52 and −0.34, respectively, P < 0.05). The ciliary muscle forward movement correlated with the lens deformation (r = −0.35 and 0.40 for amplitude, while r = 0.36 and 0.58 for time constant, respectively, P < 0.05). Conclusions. Age-related changes in the lens reshaping and ciliary muscle forward movement were found. Lens reshaping was much slower than the contraction of the ciliary muscle, especially in aging eyes, and this process

  8. Muscle function loss

    MedlinePlus

    ... itself (myopathy) A disease of the nervous system: nerve damage (neuropathy), spinal cord or nerve injury, or brain damage ( stroke ... gravis Neuropathy Paralytic shellfish poisoning Periodic paralysis Focal nerve injury Polio Spinal cord injury Stroke

  9. Can DRYAD explain age-related associative memory deficits?

    PubMed

    Smyth, Andrea C; Naveh-Benjamin, Moshe

    2016-02-01

    A recent interesting theoretical account of aging and memory judgments, the DRYAD (density of representations yields age-related deficits; Benjamin, 2010; Benjamin, Diaz, Matzen, & Johnson, 2012), attributes the extensive findings of disproportional age-related deficits in memory for source, context, and associations, to a global decline in memory fidelity. It is suggested that this global deficit, possibly due to a decline in attentional processes, is moderated by weak representation of contextual information to result in disproportional age-related declines. In the current article, we evaluate the DRYAD model, comparing it to specific age-related deficits theories, in particular, the ADH (associative deficit hypothesis, Naveh-Benjamin, 2000). We question some of the main assumptions/hypotheses of DRYAD in light of data reported in the literature, and we directly assess the role of attention in age-related deficits by manipulations of divided attention and of the instructions regarding what to pay attention to in 2 experiments (one from the literature and a new one). The results of these experiments fit the predictions of the ADH and do not support the main assumption/hypotheses of DRYAD. PMID:25961878

  10. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration. PMID:26292978

  11. Loss of heterozygosis on chromosome 18q21-23 and muscle-invasive bladder cancer natural history

    PubMed Central

    CAI, TOMMASO; MONDAINI, NICOLA; TISCIONE, DANIELE; DAL CANTO, MAURIZIO; SANTI, RAFFAELLA; BARTOLETTI, RICCARDO; NESI, GABRIELLA

    2015-01-01

    Loss of heterozygosis (LOH) on chromosome (Chr) 18q21-23 was reported to be one of the most common genetic alterations identified in bladder cancer. The current study aimed to determine the prognostic role of LOH on Chr 18q21-23 in patients diagnosed with muscle-invasive urothelial bladder carcinoma (MIBC). A total of 34 consecutive patients were enrolled in the present prospective study. LOH on Chr 18 was assessed by performing multiplex polymerase chain reaction on paired blood and tumour tissue samples from each patient. The following primers were used in the present study: D18S51, MBP LW and MBP H. These data were then compared with follow-up information. The main outcome measure was patient status at the end of the follow-up. Cox regression was used to evaluate the impact of each parameter on cancer-specific survival and the Kaplan Meier test for disease-free survival was plotted in order to estimate survival. Out of 34 patients, 18 (52.9%) exhibited ≥1 alteration in one of the loci analysed on chromosome 18, while 16 (47.1%) revealed no alterations. No correlation was identified with stage (P=0.18) or grade (P=0.06); however, LOH on Chr 18q21-23 was significantly associated with a lower recurrence-free probability (P<0.0001). Kaplan-Meier curves demonstrated a significant association between patient status at follow-up and LOH on Chr 18 (P<0.001). In addition, multivariate analysis identified LOH on Chr 18 (P<0.001) and stage (P=0.01) as independent survival predictors. Furthermore, artificial neural network analysis was consistent with the results of the multivariate analysis. In conclusion, the present study highlighted the role of LOH on Chr 18q21-23 in predicting the clinical outcome of patients with MIBC. PMID:26622891

  12. How stem cells manage to escape senescence and ageing - while they can: A recent study reveals that autophagy is responsible for senescence-dependent loss of regenerative potential of muscle stem cells during ageing.

    PubMed

    Ricchetti, Miria

    2016-09-01

    Skeletal muscle stem cells or satellite cells are responsible for muscle regeneration in the adult. Although satellite cells are highly resistant to stress, and display greater capacity to repair molecular damage than the committed progeny, their regenerative potential declines with age. During ageing, satellite cells switch to a state of permanent cell cycle arrest or senescence which prevents their activation. A recent study reveals that the senescence of satellite cell relies on defective autophagy, the quality control mechanism that degrades damaged proteins and organelles. Molecular damage is generated by oxidative stress that also promotes epigenetic changes that activate the expression of master genes, in a double-hit mechanism that ensures senescence. Importantly, genetic, and pharmacological correction of defective autophagy reverses satellite cell senescence and restores muscle regeneration in geriatric mice, with perspectives of modulating age-related functional decline of muscle. This study provides new clues to understand stem cell and organismal ageing. PMID:27389857

  13. Nutrition in the age-related disablement process.

    PubMed

    Inzitari, M; Doets, E; Bartali, B; Benetou, V; Di Bari, M; Visser, M; Volpato, S; Gambassi, G; Topinkova, E; De Groot, L; Salva, A

    2011-08-01

    The transition from independence to disability in older adults is characterized by detectable changes in body composition and physical function. Epidemiologic studies have shown that weight loss, reduced caloric intake and the reduced intake of specific nutrients are associated with such changes. The mechanisms underlying these associations remain unclear, and different hypotheses have been suggested, including the reduction of the antioxidant effects of some nutrients. Changes in muscle mass and quality might play a central role in the pathway linking malnutrition, its biological and molecular consequences, and function. A different approach aims at assessing diets by dietary patterns, which capture intercorrelations of nutrients within a diet, rather than by selective foods or nutrients: epidemiologic evidence suggests that some types of diet, such as the Mediterranean diet, might prevent negative functional outcomes in older adults. However, despite a theoretical and empirical basis, intervention studies using nutritional supplementation have shown inconclusive results in preventing functional impairment and disability. The present work is the result of a review and consensus effort of a European task force on nutrition in the elderly, promoted by the International Association of Gerontology and Geriatrics (IAGG) European Region. After the critical review of different aspects related to the role of nutrition in the transition from independence to disability, we propose future lines for research, including the determination of levels of inadequacy and target doses of supplements, the study of interactions (between nutrients within a diet and with other lifestyle aspects), and the association with functional outcomes. PMID:21968852

  14. Effect of Transcutaneous Electrical Nerve Stimulation, Cold, and a Combination Treatment on Pain, Decreased Range of Motion, and Strength Loss Associated with Delayed Onset Muscle Soreness

    PubMed Central

    Denegar, Craig R.; Perrin, David H.

    1992-01-01

    Athletic trainers have a variety of therapeutic agents at their disposal to treat musculoskeletal pain, but little objective evidence exists of the efficacy of the modalities they use. In this study, delayed onset muscle soreness (DOMS) served as a model for musculoskeletal injury in order to: (1) compare the changes in perceived pain, elbow extension range of motion, and strength loss in subjects experiencing DOMS in the elbow flexor muscle group following a single treatment with either transcutaneous electrical nerve stimulation (TENS), cold, a combination of TENS and cold, sham TENS, or 20 minutes of rest; (2) compare the effects of combining static stretching with these treatments; and (3) determine if decreased pain is accompanied by a restoration of strength. DOMS was induced in the non-dominant elbow flexor muscle group in 40 females (age = 22.0 ± 4.3 yr) with repeated eccentric contractions. Forty-eight hours following exercise, all subjects presented with pain, decreased elbow extension range of motion, and decreased strength consistent with DOMS. Subjects were randomly assigned to 20-minute treatments followed by static stretching. Cold, TENS, and the combined treatment resulted in significant decreases in perceived pain. Treatments with cold resulted in a significant increase in elbow extension range of motion. Static stretching also significantly reduced perceived pain. Only small, nonsignificant changes in muscle strength were observed following treatment or stretching, regardless of the treatment group. These results suggest that the muscle weakness associated with DOMS is not the result of inhibition caused by pain. The results suggest that these modalities are effective in treating the pain and muscle spasm associated with DOMS, and that decreased pain may not be an accurate indicator of the recovery of muscle strength. PMID:16558162

  15. Pathophysiology of ageing, longevity and age related diseases

    PubMed Central

    Bürkle, Alexander; Caselli, Graziella; Franceschi, Claudio; Mariani, Erminia; Sansoni, Paolo; Santoni, Angela; Vecchio, Giancarlo; Witkowski, Jacek M; Caruso, Calogero

    2007-01-01

    On April 18, 2007 an international meeting on Pathophysiology of Ageing, Longevity and Age-Related Diseases was held in Palermo, Italy. Several interesting topics on Cancer, Immunosenescence, Age-related inflammatory diseases and longevity were discussed. In this report we summarize the most important issues. However, ageing must be considered an unavoidable end point of the life history of each individual, nevertheless the increasing knowledge on ageing mechanisms, allows envisaging many different strategies to cope with, and delay it. So, a better understanding of pathophysiology of ageing and age-related disease is essential for giving everybody a reasonable chance for living a long and enjoyable final part of the life. PMID:17683521

  16. Thigh muscle volume in relation to age, sex and femur volume.

    PubMed

    Maden-Wilkinson, T M; McPhee, J S; Rittweger, J; Jones, D A; Degens, H

    2014-02-01

    Secular changes and intra-individual differences in body shape and size can confound cross-sectional studies of muscle ageing. Normalising muscle mass to height squared is often suggested as a solution for this. We hypothesised that normalisation of muscle volume to femur volume may be a better way of determining the extent of muscle lost with ageing (sarcopenia). Thigh and femur muscle volumes were measured from serial magnetic resonance imaging sections in 20 recreationally active young men (mean age 22.4 years), 25 older men (72.3 years), 18 young women (22.1 years) and 28 older women (72.0 years). There were no age-related differences in femur volume. The relationship between thigh muscle volume and femur volume (R (2) = 0.76; exponent of 1.12; P < 0.01) was stronger than that with height (R (2) = 0.49; exponent of 3.86; P < 0.01) in young participants. For young subjects, the mean muscle/bone ratios were 16.0 and 14.6 for men and women, respectively. For older men and women, the mean ratios were 11.6 and 11.5, respectively. The Z score for the thigh muscle/bone volume ratio relative to young subjects was -2.2 ± 0.7 for older men and -1.4 ± 0.8 for older women. The extent of sarcopenia judged by the muscle/bone ratio was approximately twice that determined when normalising to height squared. These data suggest that the muscle/bone ratio captures the intra-individual loss of muscle mass during ageing, and that the age-related loss of muscle mass may be underestimated when normalised to height squared. The quadriceps seems relatively more affected by ageing than other thigh muscles. PMID:23934008

  17. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  18. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  19. Molecular mechanisms and therapeutics of the deficit in specific force in ageing skeletal muscle.

    PubMed

    Delbono, Osvaldo

    2002-01-01

    The age-related impairment in muscle force is only partially explained by the loss of muscle mass. The loss both in specific and absolute forces contributes to the muscle weakness measured in the elderly and in animal models of ageing. Successful interventions aimed at preventing age-associated functional deficits will require a better insight into the mechanisms underlying the decline in muscle-specific force. The present review article is focused on recent evidence supporting excitation-contraction uncoupling as a key factor underlying fast and slow muscle fiber impairment with ageing. The molecular, functional and structural factors supporting this theory and counteracting measures such as insulin-like growth factor 1 transgenic overexpression are discussed. PMID:12237563

  20. OGT and OGA expression in postmenopausal skeletal muscle associates with hormone replacement therapy and muscle cross-sectional area.

    PubMed

    Toivonen, Minna H M; Pöllänen, Eija; Ahtiainen, Maarit; Suominen, Harri; Taaffe, Dennis R; Cheng, Sulin; Takala, Timo; Kujala, Urho M; Tammi, Markku I; Sipilä, Sarianna; Kovanen, Vuokko

    2013-12-01

    Protein glycosylation via O-linked N-acetylglucosaminylation (O-GlcNAcylation) is an important post-translational regulatory mechanism mediated by O-GlcNAc transferase (OGT) and responsive to nutrients and stress. OGT attaches an O-GlcNAc moiety to proteins, while O-GlcNAcase (OGA) catalyzes O-GlcNAc removal. In skeletal muscle of experimental animals, prolonged increase in O-GlcNAcylation associates with age and muscle atrophy. Here we examined the effects of hormone replacement therapy (HRT) and power training (PT) on muscle OGT and OGA gene expression in postmenopausal women generally prone to age-related muscle weakness. In addition, the associations of OGT and OGA gene expressions with muscle phenotype were analyzed. Twenty-seven 50-57-year-old women participated in a yearlong randomized placebo-controlled trial: HRT (n=10), PT (n=8) and control (n=9). OGT and OGA mRNA levels were measured from muscle samples obtained at baseline and after one year. Knee extensor muscle cross-sectional area (CSA), knee extension force, running speed and vertical jumping height were measured. During the yearlong intervention, HRT suppressed the aging-associated upregulation of OGT mRNA that occurred in the controls. The effects of PT were similar but weaker. HRT also tended to increase the OGA mRNA level compared to the controls. The change in the ratio of OGT to OGA gene expressions correlated negatively with the change in muscle CSA. Our results suggest that OGT and OGA gene expressions are associated with muscle size during the critical postmenopausal period. HRT and PT influence muscle OGT and OGA gene expression, which may be one of the mechanisms by which HRT and PT prevent aging-related loss of muscle mass. PMID:24365779

  1. Functional characterization of a promoter polymorphism that drives ACSL5 gene expression in skeletal muscle and associates with diet-induced weight loss.

    PubMed

    Teng, Allen C T; Adamo, Kristi; Tesson, Frédérique; Stewart, Alexandre F R

    2009-06-01

    Diet-induced weight loss is affected by a wide range of factors, including genetic variation. Identifying functional polymorphisms will help to elucidate mechanisms that account for variation in dietary metabolism. Previously, we reported a strong association between a common single nucleotide polymorphism (SNP) rs2419621 (C>T) in the promoter of acyl-CoA synthetase long chain 5 (ACSL5), rapid weight loss in obese Caucasian females, and elevated ACSL5 mRNA levels in skeletal muscle biopsies. Here, we showed by electrophoretic mobility shift assay (EMSA) that the T allele creates a functional cis-regulatory E-box element (CANNTG) that is recognized by the myogenic regulatory factor MyoD. The T allele promoted MyoD-dependent activation of a 1089-base pair ACSL5 promoter fragment in nonmuscle CV1 cells. Differentiation of skeletal myoblasts significantly elevated expression of the ACSL5 promoter. The T allele sustained promoter activity 48 h after differentiation, whereas the C allele showed a significant decline. These results reveal a mechanism for elevated transcription of ACSL5 in skeletal muscle of carriers of the rs2419621(T) allele, associated with more rapid diet-induced weight loss. Natural selection favoring promoter polymorphisms that reduced expression of catabolic genes in skeletal muscle likely accounts for the resistance of obese individuals to dietary intervention. PMID:19218499

  2. Glutamatergic treatment strategies for age-related memory disorders.

    PubMed

    Müller, W E; Scheuer, K; Stoll, S

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7997073

  3. Muscle Changes in Aging

    PubMed Central

    Siparsky, Patrick N.; Kirkendall, Donald T.; Garrett, William E.

    2014-01-01

    Muscle physiology in the aging athlete is complex. Sarcopenia, the age-related decrease in lean muscle mass, can alter activity level and affect quality of life. This review addresses the microscopic and macroscopic changes in muscle with age, recognizes contributing factors including nutrition and changes in hormone levels, and identifies potential pharmacologic agents in clinical trial that may aid in the battle of this complex, costly, and disabling problem. Level of Evidence: Level 5. PMID:24427440

  4. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens

    PubMed Central

    Luo, Wen; Lin, Shumao; Li, Guihuan; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    The sex-linked dwarf (SLD) chicken is an ideal model system for understanding growth hormone (GH)-action and growth hormone receptor (GHR) function because of its recessive mutation in the GHR gene. Skeletal muscle mass is reduced in the SLD chicken with a smaller muscle fiber diameter. Our previous study has presented the mRNA and miRNA expression profiles of the SLD chicken and normal chicken between embryo day 14 and seven weeks of age. However, the molecular mechanism of GHR-deficient induced muscle mass loss is still unclear, and the key molecules and pathways underlying the GHR-deficient induced muscle mass loss also remain to be illustrated. Here, by functional network analysis of the differentially expressed miRNAs and mRNAs between the SLD and normal chickens, we revealed that let-7b, miR-128 and the MAPK pathway might play key roles in the GHR-deficient induced muscle mass loss, and that the reduced cell division and growth are potential cellular processes during the SLD chicken skeletal muscle development. Additionally, we also found some genes and miRNAs involved in chicken skeletal muscle development, through the MAPK, PI3K-Akt, Wnt and Insulin signaling pathways. This study provides new insights into the molecular mechanism underlying muscle mass loss in the SLD chickens, and some regulatory networks that are crucial for chicken skeletal muscle development. PMID:26927061

  5. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass.

    PubMed

    Rom, Oren; Reznick, Abraham Z

    2016-09-01

    The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored. PMID:26738803

  6. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline.

    PubMed

    Sergeyenko, Yevgeniya; Lall, Kumud; Liberman, M Charles; Kujawa, Sharon G

    2013-08-21

    Aging listeners experience greater difficulty understanding speech in adverse listening conditions and exhibit degraded temporal resolution, even when audiometric thresholds are normal. When threshold evidence for peripheral involvement is lacking, central and cognitive factors are often cited as underlying performance declines. However, previous work has uncovered widespread loss of cochlear afferent synapses and progressive cochlear nerve degeneration in noise-exposed ears with recovered thresholds and no hair cell loss (Kujawa and Liberman 2009). Here, we characterize age-related cochlear synaptic and neural degeneration in CBA/CaJ mice never exposed to high-level noise. Cochlear hair cell and neuronal function was assessed via distortion product otoacoustic emissions and auditory brainstem responses, respectively. Immunostained cochlear whole mounts and plastic-embedded sections were studied by confocal and conventional light microscopy to quantify hair cells, cochlear neurons, and synaptic structures, i.e., presynaptic ribbons and postsynaptic glutamate receptors. Cochlear synaptic loss progresses from youth (4 weeks) to old age (144 weeks) and is seen throughout the cochlea long before age-related changes in thresholds or hair cell counts. Cochlear nerve loss parallels the synaptic loss, after a delay of several months. Key functional clues to the synaptopathy are available in the neural response; these can be accessed noninvasively, enhancing the possibilities for translation to human clinical characterization. PMID:23966690

  7. Innervation and neuromuscular control in ageing skeletal muscle.

    PubMed

    Hepple, Russell T; Rice, Charles L

    2016-04-15

    Changes in the neuromuscular system affecting the ageing motor unit manifest structurally as a reduction in motor unit number secondary to motor neuron loss; fibre type grouping due to repeating cycles of denervation-reinnervation; and instability of the neuromuscular junction that may be due to either or both of a gradual perturbation in postsynaptic signalling mechanisms necessary for maintenance of the endplate acetylcholine receptor clusters or a sudden process involving motor neuron death or traumatic injury to the muscle fibre. Functionally, these changes manifest as a reduction in strength and coordination that precedes a loss in muscle mass and contributes to impairments in fatigue. Regular muscle activation in postural muscles or through habitual physical activity can attenuate some of these structural and functional changes up to a point along the ageing continuum. On the other hand, regular muscle activation in advanced age (>75 years) loses its efficacy, and at least in rodents may exacerbate age-related motor neuron death. Transgenic mouse studies aimed at identifying potential mechanisms of motor unit disruptions in ageing muscle are not conclusive due to many different mechanisms converging on similar motor unit alterations, many of which phenocopy ageing muscle. Longitudinal studies of ageing models and humans will help clarify the cause and effect relationships and thus, identify relevant therapeutic targets to better preserve muscle function across the lifespan. PMID:26437581

  8. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions.

    PubMed

    Delplace, Vianney; Payne, Samantha; Shoichet, Molly

    2015-12-10

    Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery. PMID:26435454

  9. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody.

    PubMed

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-05-15

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963

  10. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody

    PubMed Central

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-01-01

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963

  11. The Experience of Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Wong, Elaine Y. H.; Guymer, Robyn H.; Hassell, Jennifer B.; Keeffe, Jill E.

    2004-01-01

    This qualitative article describes the impact of age-related macular degeneration (ARMD) among 15 participants: how a person makes sense of ARMD, the effect of ARMD on the person's quality of life, the psychological disturbances associated with the limitations of ARMD, and the influence of ARMD on social interactions. Such in-depth appreciation of…

  12. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  13. Age-Related Differences in Moral Identity across Adulthood

    ERIC Educational Resources Information Center

    Krettenauer, Tobias; Murua, Lourdes Andrea; Jia, Fanli

    2016-01-01

    In this study, age-related differences in adults' moral identity were investigated. Moral identity was conceptualized a context-dependent self-structure that becomes differentiated and (re)integrated in the course of development and that involves a broad range of value-orientations. Based on a cross-sectional sample of 252 participants aged 14 to…

  14. Neuroimaging explanations of age-related differences in task performance

    PubMed Central

    Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov

    2014-01-01

    Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance. PMID:24672481

  15. Glycosaminoglycans in the Human Cornea: Age-Related Changes

    PubMed Central

    Pacella, Elena; Pacella, Fernanda; De Paolis, Giulio; Parisella, Francesca Romana; Turchetti, Paolo; Anello, Giulia; Cavallotti, Carlo

    2015-01-01

    AIM To investigate possible age-related changes in glycosaminoglycans (GAGs) in the human cornea. The substances today called GAGs were previously referred to as mucopolysaccharides. METHODS Samples of human cornea were taken from 12 younger (age 21 ± 1.2) and 12 older (age 72 ± 1.6) male subjects. Samples were weighed, homogenized, and used for biochemical and molecular analyses. All the quantitative results were statistically analyzed. RESULTS The human cornea appears to undergo age-related changes, as evidenced by our biochemical and molecular results. The total GAG and hyaluronic acid counts were significantly higher in the younger subjects than in the older subjects. The sulfated heavy GAGs, such as chondroitin, dermatan, keratan, and heparan sulfate, were lower in the younger subjects than in the older subjects. DISCUSSION GAGs of the human cornea undergo numerous age-related changes. Their quantity is significantly altered in the elderly in comparison with younger subjects. GAGs play an important role in age-related diseases of the human cornea. PMID:25674020

  16. PPARα agonist, fenofibrate, ameliorates age-related renal injury.

    PubMed

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Kim, Hyung Wook; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-08-01

    The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney. PMID:27130813

  17. Age-Related Differences in the Production of Textual Descriptions

    ERIC Educational Resources Information Center

    Marini, Andrea; Boewe, Anke; Caltagirone, Carlo; Carlomagno, Sergio

    2005-01-01

    Narratives produced by 69 healthy Italian adults were analyzed for age-related changes of microlinguistic, macrolinguistic and informative aspects. The participants were divided into five age groups (20-24, 25-39, 40-59, 60-74, 75-84). One single-picture stimulus and two cartoon sequences were used to elicit three stories per subject. Age-related…

  18. APOLIPOPROTEIN E GENE AND EARLY AGE-RELATED MACULOPATHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVE: To examine the association between the apolipoprotein E (APOE) gene and early age-related maculopathy (ARM) in middle-aged persons. DESIGN: Population-based cross-sectional study. PARTICIPANTS: Participants from the Atherosclerosis Risk in Communities Study (n = 10139; age range, 49-73 ye...

  19. Nutritional modulation of age-related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated wi...

  20. Age-Related Factors in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Twyford, Charles William

    The convergence of several lines of psycholinguistic and sociolinguistic research suggests possible explanations for age-related influences on language acquisition. These factors, which include cognitive development, sociocultural context, affective factors, and language input, can be helpful to language educators. By being alert to the cognitive…

  1. Nutritional influences on epigenetics and age-related disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  2. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution.

    PubMed

    Youm, Yun-Hee; Horvath, Tamas L; Mangelsdorf, David J; Kliewer, Steven A; Dixit, Vishwa Deep

    2016-01-26

    Age-related thymic degeneration is associated with loss of naïve T cells, restriction of peripheral T-cell diversity, and reduced healthspan due to lower immune competence. The mechanistic basis of age-related thymic demise is unclear, but prior evidence suggests that caloric restriction (CR) can slow thymic aging by maintaining thymic epithelial cell integrity and reducing the generation of intrathymic lipid. Here we show that the prolongevity ketogenic hormone fibroblast growth factor 21 (FGF21), a member of the endocrine FGF subfamily, is expressed in thymic stromal cells along with FGF receptors and its obligate coreceptor, βKlotho. We found that FGF21 expression in thymus declines with age and is induced by CR. Genetic gain of FGF21 function in mice protects against age-related thymic involution with an increase in earliest thymocyte progenitors and cortical thymic epithelial cells. Importantly, FGF21 overexpression reduced intrathymic lipid, increased perithymic brown adipose tissue, and elevated thymic T-cell export and naïve T-cell frequencies in old mice. Conversely, loss of FGF21 function in middle-aged mice accelerated thymic aging, increased lethality, and delayed T-cell reconstitution postirradiation and hematopoietic stem cell transplantation (HSCT). Collectively, FGF21 integrates metabolic and immune systems to prevent thymic injury and may aid in the reestablishment of a diverse T-cell repertoire in cancer patients following HSCT. PMID:26755598

  3. Physical training and weight loss in dogs lead to transcriptional changes in genes involved in the glucose-transport pathway in muscle and adipose tissues.

    PubMed

    Herrera Uribe, Juber; Vitger, Anne D; Ritz, Christian; Fredholm, Merete; Bjørnvad, Charlotte R; Cirera, Susanna

    2016-02-01

    Obesity is a worldwide problem in humans and domestic animals. Interventions, including a combination of dietary management and exercise, have proven to be effective for inducing weight loss in humans. In companion animals, the role of exercise in the management of obesity has received relatively little attention. The aim of the present study was to investigate changes in the transcriptome of key energy metabolism genes in muscle and adipose tissues in response to diet-induced weight loss alone, or combined with exercise in dogs. Overweight pet dogs were enrolled on a weight loss programme, based on calorie restriction and physical training (FD group, n = 5) or calorie restriction alone (DO group, n = 7). mRNA expression of 12 genes and six microRNAs were investigated using quantitative real-time PCR (qPCR). In the FD group, FOXO1 and RAC1 were expressed at lower levels in adipose tissue, whereas ESRRA and AKT2 were more highly expressed in muscle, when compared with the DO group. Comparing expression before and after the intervention, in the DO group, nine genes and three microRNAs showed significant altered expression in adipose tissue (PPARG, ADIPOQ and FOXO1; P < 0.001) and seven genes and two microRNAs were significantly downregulated (NRF2, RAC1, ESRRA, AKT2, PGC1a and mir-23; P < 0.001) in muscle. Thus, calorie restriction causes regulation of several metabolic genes in both tissues. The mild exercise, incorporated into this study design, was sufficient to elicit transcriptional changes in adipose and muscle tissues, suggesting a positive effect on glucose metabolism. The study findings support inclusion of exercise in management of canine obesity. PMID:26701817

  4. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  5. Reduced L-type Ca2+ current and compromised excitability induce loss of skeletal muscle function during acute cooling in locust.

    PubMed

    Findsen, Anders; Overgaard, Johannes; Pedersen, Thomas Holm

    2016-08-01

    Low temperature causes most insects to enter a state of neuromuscular paralysis, termed chill coma. The susceptibility of insect species to chill coma is tightly correlated to their distribution limits and for this reason it is important to understand the cellular processes that underlie chill coma. It is known that muscle function is markedly depressed at low temperature and this suggests that chill coma is partly caused by impairment in the muscle per se. To find the cellular mechanism(s) underlying muscle dysfunction at low temperature, we examined the effect of low temperature (5°C) on several events in excitation-contraction coupling in the migratory locust (Locusta migratoria). Intracellular membrane potential recordings during single nerve stimulations showed that 70% of fibers at 20°C produced an action potential (AP), while only 55% of fibers were able to fire an AP at 5°C. Reduced excitability at low temperature was caused by an ∼80% drop in L-type Ca(2+) current and a depolarizing shift in its activation of around 20 mV, which means that a larger endplate potential would be needed to activate the muscle AP at low temperature. In accordance, we showed that intracellular Ca(2+) transients were largely absent at low temperature following nerve stimulation. In contrast, maximum contractile force was unaffected by low temperature in chemically skinned muscle bundles, which demonstrates that the function of the contractile filaments is preserved at low temperature. These findings demonstrate that reduced L-type Ca(2+) current is likely to be the most important factor contributing to loss of muscle function at low temperature in locust. PMID:27247315

  6. Classification of wet aged related macular degeneration using optical coherence tomographic images

    NASA Astrophysics Data System (ADS)

    Haq, Anam; Mir, Fouwad Jamil; Yasin, Ubaid Ullah; Khan, Shoab A.

    2013-12-01

    Wet Age related macular degeneration (AMD) is a type of age related macular degeneration. In order to detect Wet AMD we look for Pigment Epithelium detachment (PED) and fluid filled region caused by choroidal neovascularization (CNV). This form of AMD can cause vision loss if not treated in time. In this article we have proposed an automated system for detection of Wet AMD in Optical coherence tomographic (OCT) images. The proposed system extracts PED and CNV from OCT images using segmentation and morphological operations and then detailed feature set are extracted. These features are then passed on to the classifier for classification. Finally performance measures like accuracy, sensitivity and specificity are calculated and the classifier delivering the maximum performance is selected as a comparison measure. Our system gives higher performance using SVM as compared to other methods.

  7. Dietary compound score and risk of age-related macular degeneration in the Age-Related Eye Disease Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Because foods provide many nutrients, which may interact with each other to modify risk for multifactorial diseases such as age-related macular degeneration (AMD), we sought to develop a composite scoring system to summarize the combined effect of multiple dietary nutrients on AMD risk. Th...

  8. Age-related changes of auditory brainstem responses in nonhuman primates.

    PubMed

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R; Recanzone, Gregg H

    2015-07-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  9. Age-related changes of auditory brainstem responses in nonhuman primates

    PubMed Central

    Ng, Chi-Wing; Navarro, Xochi; Engle, James R.

    2015-01-01

    Nonhuman primates, compared with humans and rodents, have historically been far less used for studies of age-related hearing loss, primarily because of their long life span and high cost of maintenance. Strong similarities in genetics, anatomy, and neurophysiology of the auditory nervous system between humans and monkeys, however, could provide fruitful opportunities to enhance our understanding of hearing loss. The present study used a common, noninvasive technique for testing hearing sensitivity in humans, the auditory brainstem response (ABR), to assess the hearing of 48 rhesus macaques from 6 to 35 yr of age to clicks and tone stimuli between 0.5 and 16.0 kHz. Old monkeys, particularly those above 21.5 yr of age, had missing ABR waveforms at high frequencies. Regression analyses revealed that ABR threshold increased as a function of age at peaks II and IV simultaneously. In the suprathreshold hearing condition (70 dB peak sound pressure level), ABR-based audiograms similarly varied as a function of age such that old monkeys had smaller peak amplitudes and delayed latencies at low, middle, and high frequencies. Peripheral hearing differences remained a major influence associated with age-related changes in audiometric functions of old monkeys at a comparable sensation level across animals. The present findings suggest that hearing loss occurs in old monkeys across a wide range of frequencies and that these deficits increase in severity with age. Parallel to prior studies in monkeys, we found weak effects of sex on hearing, and future investigations are necessary to clarify its role in age-related hearing loss. PMID:25972589

  10. Greater trunk muscle torque reduces postmenopausal bone loss at the spine independently of age, body size, and vitamin D receptor genotype in Japanese women.

    PubMed

    Iki, M; Saito, Y; Dohi, Y; Kajita, E; Nishino, H; Yonemasu, K; Kusaka, Y

    2002-10-01

    Bone mineral density (BMD) is affected by muscle strength. Recently, vitamin D receptor (VDR) genotype was reported to affect muscle strength as well as BMD in Caucasian women. The aim of this study was to evaluate independent effects of muscle strength of the trunk on BMD at the spine and its change over time in Japanese women. We followed 119 healthy postmenopausal women for 4 years and determined the change in BMD at the spine by dual energy X-ray absorptiometry. Isometric peak torque and isokinetic concentric and eccentric peak torque of the trunk flexors and extensors were measured. The VDR genotype was determined by the PCR-RFLP method based on Apa I and Taq I endonuclease digestions defining the absence/existence of the restriction sites as A/a and T/t, respectively. The subjects were 60.1 +/- 6.6 years old, had 0.808 +/- 0.159 g/cm2 of BMD at baseline. The mean annual change in BMD (delta BMD) was -5.6 +/- 10.4 mg/cm2 during the follow-up period. The VDR genotype, defined by Taq I enzyme, significantly related to BMD at baseline and delta BMD showing that the subjects with genotype TT had the lowest BMD at baseline and lost bone most rapidly. However, its effect on muscle strength was not significant. All the trunk muscle strength indices showed significant positive effects on delta BMD, that is, the effects in increasing the gain and reducing the loss of BMD, after controlling for the effects of age, body size and the VDR genotype. The eccentric trunk extensor torque had a significant positive effect on delta BMD in a dose-dependent manner. The effect of this torque was the greatest among all the muscle indices. The net effect of the trunk extensor torque on delta BMD was greater than that of the VDR genotype. The trunk muscle strength was suggested to affect BMD change independently of age, body size, and the VDR genotype. Exercise programs to increase the strength of the trunk muscles would be beneficial for the prevention of osteoporosis regardless of

  11. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development

    PubMed Central

    Brunt, Lucy H.; Norton, Joanna L.; Bright, Jen A.; Rayfield, Emily J.; Hammond, Chrissy L.

    2015-01-01

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. PMID:26253758

  12. The suprachiasmatic nucleus: age-related decline in biological rhythms.

    PubMed

    Nakamura, Takahiro J; Takasu, Nana N; Nakamura, Wataru

    2016-09-01

    Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging. Furthermore, we have previously observed age-related infertility in female mice, caused by a mismatch between environmental light-dark cycles and the intrinsic, internal biological clocks. In this review, we address regulatory mechanisms underlying circadian rhythms in mammals and summarize recent literature describing the effects of aging on the circadian system. PMID:26915078

  13. Age-related percutaneous penetration part 1: skin factors.

    PubMed

    Konda, S; Meier-Davis, S R; Cayme, B; Shudo, J; Maibach, H I

    2012-05-01

    Changes in the skin that occur in the elderly may put them at increased risk for altered percutaneous penetration from pharmacotherapy along with potential adverse effects. Skin factors that may have a role in age-related percutaneous penetration include blood flow, pH, skin thickness, hair and pore density, and the content and structure of proteins, glycosaminoglycans (GAGs), water, and lipids. Each factor is examined as a function of increasing age along with its potential impact on percutaneous penetration. Additionally, topical drugs that successfully overcome the barrier function of the skin can still fall victim to cutaneous metabolism, thereby producing metabolites that may have increased or decreased activity. This overview discusses the current data and highlights the importance of further studies to evaluate the impact of skin factors in age-related percutaneous penetration. PMID:22622279

  14. Veterans have less age-related cognitive decline.

    PubMed

    McLay, R N; Lyketsos, C G

    2000-08-01

    Military service involves exposure to a number of stresses, both psychological and physical. On the other hand, military personnel generally maintain excellent fitness, and veterans have increased access to education and health care. The overall effect on age-related cognitive decline, whether for good or ill, of having served in the armed forces has not been investigated previously. In this study, we examined a diverse population of 208 veterans and 1,216 civilians followed as part of the Epidemiologic Catchment Area Study in 1981, 1982, and 1993 to 1996. We examined change in Mini-Mental State Examination (MMSE) score after a median of 11.5 years. Veterans were found to have significantly less decrease in MMSE scores at follow-up even after sex, race, and education were taken into account. These results suggest an overall positive effect of military service on the rate of age-related cognitive decline. PMID:10957857

  15. Idiom understanding in adulthood: examining age-related differences.

    PubMed

    Hung, Pei-Fang; Nippold, Marilyn A

    2014-03-01

    Idioms are figurative expressions such as hold your horses, kick the bucket, and lend me a hand, which commonly occur in everyday spoken and written language. Hence, the understanding of these expressions is essential for daily communication. In this study, we examined idiom understanding in healthy adults in their 20s, 40s, 60s and 80s (n=30 per group) to determine if performance would show an age-related decline. Participants judged their own familiarity with a set of 20 idioms, explained the meaning of each, described a situation in which the idiom could be used, and selected the appropriate interpretation from a set of choices. There was no evidence of an age-related decline on any tasks. Rather, the 60s group reported greater familiarity and offered better explanations than did the 20s group. Moreover, greater familiarity with idioms was associated with better understanding in adults. PMID:24405225

  16. Dietary Approaches that Delay Age-Related Diseases

    PubMed Central

    Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G

    2006-01-01

    Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2–15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet—disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood

  17. Smoking and Age-Related Macular Degeneration: Review and Update

    PubMed Central

    Velilla, Sara; García-Medina, José Javier; García-Layana, Alfredo; Pons-Vázquez, Sheila; Pinazo-Durán, M. Dolores; Gómez-Ulla, Francisco; Arévalo, J. Fernando; Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto

    2013-01-01

    Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health. PMID:24368940

  18. Dietary approaches that delay age-related diseases.

    PubMed

    Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G

    2006-01-01

    Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2-15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet-disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood and

  19. Topography of age-related changes in sleep spindles.

    PubMed

    Martin, Nicolas; Lafortune, Marjolaine; Godbout, Jonathan; Barakat, Marc; Robillard, Rebecca; Poirier, Gaétan; Bastien, Célyne; Carrier, Julie

    2013-02-01

    Aging induces multiple changes to sleep spindles, which may hinder their alleged functional role in memory and sleep protection mechanisms. Brain aging in specific cortical regions could affect the neural networks underlying spindle generation, yet the topography of these age-related changes is currently unknown. In the present study, we analyzed spindle characteristics in 114 healthy volunteers aged between 20 and 73 years over 5 anteroposterior electroencephalography scalp derivations. Spindle density, amplitude, and duration were higher in young subjects than in middle-aged and elderly subjects in all derivations, but the topography of age effects differed drastically. Age-related decline in density and amplitude was more prominent in anterior derivations, whereas duration showed a posterior prominence. Age groups did not differ in all-night spindle frequency for any derivation. These results show that age-related changes in sleep spindles follow distinct topographical patterns that are specific to each spindle characteristic. This topographical specificity may provide a useful biomarker to localize age-sensitive changes in underlying neural systems during normal and pathological aging. PMID:22809452

  20. Hypermnesia: age-related differences between young and older adults.

    PubMed

    Widner, R L; Otani, H; Smith, A D

    2000-06-01

    Hypermnesia is a net improvement in memory performance that occurs across tests in a multitest paradigm with only one study session. Our goal was to identify possible age-related differences in hypermnesic recall. We observed hypermnesia for young adults using verbal (Experiment 1) as well as pictorial (Experiment 2) material, but no hypermnesia for older adults in either experiment. We found no age-related difference in reminiscence (Experiments 1 and 2), though there was a substantial difference in intertest forgetting (Experiments 1 and 2). Older, relative to young, adults produced more forgetting, most of which occurred between Tests 1 and 2 (Experiments 1 and 2). Furthermore, older, relative to young, adults produced more intrusions. We failed to identify a relationship between intrusions and intertest forgetting. We suggest that the age-related difference in intertest forgetting may be due to less efficient reinstatement of cues at test by older adults. The present findings reveal that intertest forgetting plays a critical role in hypermnesic recall, particularly for older adults. PMID:10946539

  1. Age-related differences in working memory updating components.

    PubMed

    Linares, Rocío; Bajo, M Teresa; Pelegrina, Santiago

    2016-07-01

    The aim of this study was to investigate possible age-related changes throughout childhood and adolescence in different component processes of working memory updating (WMU): retrieval, transformation, and substitution. A set of numerical WMU tasks was administered to four age groups (8-, 11-, 14-, and 21-year-olds). To isolate the effect of each of the WMU components, participants performed different versions of a task that included different combinations of the WMU components. The results showed an expected overall decrease in response times and an increase in accuracy performance with age. Most important, specific age-related changes in the retrieval component were found, demonstrating that the effect of retrieval on accuracy was larger in children than in adolescents or young adults. These findings indicate that the availability of representations from outside the focus of attention may change with age. Thus, the retrieval component of updating could contribute to the age-related changes observed in the performance of many updating tasks. PMID:26985577

  2. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-01

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip. PMID:27444019

  3. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties

    PubMed Central

    Reid, Kieran F.; Pasha, Evan; Doros, Gheorghe; Clark, David J.; Patten, Carolynn; Phillips, Edward M.; Frontera, Walter R.; Fielding, Roger A.

    2013-01-01

    Purpose This longitudinal study examined the major physiological mechanisms that determine the age-related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~ 3 years of follow-up, mobility-limited older adults (mean age: 77.2 ± 4, n = 22, 12 females) would have significantly greater reductions in leg extensor muscle power compared to healthy older adults (74.1 ± 4, n = 26, 12 females). Methods Mid-thigh muscle size and composition were assessed using computed tomography. Neuromuscular activation was quantified using surface electromyography and vastus lateralis single muscle fibers were studied to evaluate intrinsic muscle contractile properties. Results At follow-up, the overall magnitude of muscle power loss was similar between groups: mobility-limited: −8.5% vs. healthy older: −8.8%, P > 0.8. Mobility-limited elders had significant reductions in muscle size (−3.8%, P< 0.01) and strength (−5.9%, P< 0.02), however, these parameters were preserved in healthy older (P ≥ 0.7). Neuromuscular activation declined significantly within healthy older but not in mobility-limited participants. Within both groups, the cross sectional areas of type I and type IIA muscle fibers were preserved while substantial increases in single fiber peak force ( > 30%), peak power (> 200%) and unloaded shortening velocity (>50%) were elicited at follow-up. Conclusion Different physiological mechanisms contribute to the loss of lower extremity muscle power in healthy older and mobility-limited older adults. Neuromuscular changes may be the critical early determinant of muscle power deficits with aging. In response to major whole muscle decrements, major compensatory mechanisms occur within the contractile properties of surviving single muscle fibers in an attempt to restore overall muscle power and function with advancing age. PMID:24122149

  4. Development and Pilot Evaluation of a Psychosocial Intervention Program for Patients with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Birk, Tanja; Hickl, Susanne; Wahl, Hans-Werner; Miller, Daniel; Kammerer, Annette; Holz, Frank; Becker, Stefanie; Volcker, Hans E.

    2004-01-01

    Purpose: The psychosocial needs of patients suffering from severe visual loss associated with advanced age-related macular degeneration (ARMD) are generally ignored in the clinical routine. The aim of this study was to develop and evaluate a psychosocial intervention program for ARMD patients. This intervention program was based on six modules…

  5. Psychosocial Adaptation to Visual Impairment and Its Relationship to Depressive Affect in Older Adults with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Tolman, Jennifer; Hill, Robert D.; Kleinschmidt, Julia J.; Gregg, Charles H.

    2005-01-01

    Purpose: In this study we examined psychosocial adaptation to vision loss and its relationship to depressive symptomatology in legally blind older adults with age-related macular degeneration (ARMD). Design and Methods: The 144 study participants were outpatients of a large regional vision clinic that specializes in the diagnosis and treatment of…

  6. Genetic and Functional Dissection of HTRA1 and LOC387715 in Age-Related Macular Degeneration

    PubMed Central

    Zeng, Jiexi; Lu, Fang; Sun, Xufang; Zhao, Chao; Wang, Kevin; Davey, Lisa; Chen, Haoyu; London, Nyall; Muramatsu, Daisuke; Salasar, Francesca; Carmona, Ruben; Kasuga, Daniel; Wang, Xiaolei; Bedell, Matthew; Dixie, Manjuxia; Zhao, Peiquan; Yang, Ruifu; Gibbs, Daniel; Liu, Xiaoqi; Li, Yan; Li, Cai; Li, Yuanfeng; Campochiaro, Betsy; Constantine, Ryan; Zack, Donald J.; Campochiaro, Peter; Fu, Yinbin; Li, Dean Y.; Katsanis, Nicholas; Zhang, Kang

    2010-01-01

    A common haplotype on 10q26 influences the risk of age-related macular degeneration (AMD) and encompasses two genes, LOC387715 and HTRA1. Recent data have suggested that loss of LOC387715, mediated by an insertion/deletion (in/del) that destabilizes its message, is causally related with the disorder. Here we show that loss of LOC387715 is insufficient to explain AMD susceptibility, since a nonsense mutation (R38X) in this gene that leads to loss of its message resides in a protective haplotype. At the same time, the common disease haplotype tagged by the in/del and rs11200638 has an effect on the transcriptional upregulation of the adjacent gene, HTRA1. These data implicate increased HTRA1 expression in the pathogenesis of AMD and highlight the importance of exploring multiple functional consequences of alleles in haplotypes that confer susceptibility to complex traits. PMID:20140183

  7. Effect of diet-induced weight loss on muscle strength in adults with overweight or obesity - a systematic review and meta-analysis of clinical trials.

    PubMed

    Zibellini, J; Seimon, R V; Lee, C M Y; Gibson, A A; Hsu, M S H; Sainsbury, A

    2016-08-01

    We conducted a systematic review and meta-analysis to identify how diet-induced weight loss in adults with overweight or obesity impacts on muscle strength. Twenty-seven publications, including 33 interventions, most of which were 8-24 weeks in duration, were included. Meta-analysis of seven interventions measuring knee extensor strength by isokinetic dynamometry in 108 participants found a significant decrease following diet-induced weight loss (-9.0 [95% confidence interval: -13.8, -4.1] N/m, P < 0.001), representing a 7.5% decrease from baseline values. Meta-analysis of handgrip strength from 10 interventions in 231 participants showed a non-significant decrease (-1.7 [-3.6, 0.1] kg, P = 0.070), with significant heterogeneity (I(2)  = 83.9%, P < 0.001). This heterogeneity may have been due to diet type, because there was a significant decrease in handgrip strength in seven interventions in 169 participants involving moderate energy restriction (-2.4 [-4.8, -0.0] kg, P = 0.046), representing a 4.6% decrease from baseline values, but not in three interventions in 62 participants involving very-low-energy diet (-0.4 [-2.0, 1.2] kg, P = 0.610). Because of variability in methodology and muscles tested, no other data could be meta-analyzed, and qualitative assessment of the remaining interventions revealed mixed results. Despite varying methodologies, diets and small sample sizes, these findings suggest a potential adverse effect of diet-induced weight loss on muscle strength. While these findings should not act as a deterrent against weight loss, due to the known health benefits of losing excess weight, they call for strategies to combat strength loss - such as weight training and other exercises - during diet-induced weight loss. © 2016 World Obesity. PMID:27126087

  8. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume.

    PubMed

    Erickson, Kirk I; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D; Martin, Stephen A; Vieira, Victoria J; Woods, Jeffrey A; McAuley, Edward; Kramer, Arthur F

    2010-04-14

    Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain-derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age, and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958

  9. Age-related changes in the visual pathways: blame it on the axon.

    PubMed

    Calkins, David J

    2013-12-01

    The aging visual system is marked by a decline in some, but not all, key functions. Some of this decline is attributed to changes in the optics of the eye, but other aspects must have a neural basis. Across mammals, with aging there is remarkable persistence of central structures to which retinal ganglion cell (RGC) axons project with little or no loss of neurons. Similarly, RGC bodies in the retina are subject to variable age-related loss, with most mammals showing none over time. In contrast, the RGC axon itself is highly vulnerable. Across species, the rate of axon loss in the optic nerve is related inversely to the total number of axons at maturity and lifespan. The result of this scaling is approximately a 40% total decline in axon number. Evidence suggests that the consistent vulnerability of RGC axons to aging arises from their high metabolic demand combined with diminishing resources. Thus, therapeutic interventions that conserve bioenergetics may have potential to abate age-related decline in visual function. PMID:24335066

  10. Motor unit loss is accompanied by decreased peak muscle power in the lower limb of older adults.

    PubMed

    McKinnon, Neal B; Montero-Odasso, Manuel; Doherty, Timothy J

    2015-10-01

    This study investigated the relationship between motor unit (MU) properties and the isometric strength and power of two lower limb muscles in healthy young and older adults. Twelve older adults (6 men, mean age, 77 ± 5 years) and twelve young adults (6 men, mean age, 24 ± 3 years) were studied. MU properties of the tibialis anterior (TA) and vastus medialis (VM) muscles were determined electrophysiologically using decomposition-enhanced spike-triggered averaging (DE-STA). Motor unit number estimates (MUNEs) of the TA were significantly reduced (p<0.05) in older adults (102 ± 76) compared to young adults (234 ± 109), primarily as a result of significantly larger surface-detected motor unit potentials (S-MUPs) in older adults (63 ± 29 μV) compared to young adults (27 ± 14 μV). Although VM S-MUP values were larger in older adults (60 ± 31 μV) compared to young (48 ± 42 μV), the difference was not significant. Maximal isometric strength was significantly larger in both the TA and knee extensors of young adults (TA: 0.56 Nm/kg, KE: 2.2 Nm/kg) compared to old (TA: 0.4 Nm/kg, KE: 1.3 Nm/kg). Similar reductions in peak muscle power were observed between young (TA: 33 W, KE: 35 7 W) and old adults (TA: 26 W, KE: 224 W). The greatest deficit between young and old subjects in peak power output occurred at 20% MVC for the TA and 40% MVC for the knee extensors. Results from this study indicate that there are changes in MU properties with age, and that this effect may be greater in the more distal TA muscle. Further, this study demonstrates that muscle power may be a sensitive marker of changes in neuromuscular function with aging. PMID:26190479

  11. Recent developments in the treatment of age-related macular degeneration

    PubMed Central

    Holz, Frank G.; Schmitz-Valckenberg, Steffen; Fleckenstein, Monika

    2014-01-01

    Age-related macular degeneration (AMD) is a common cause of visual loss in the elderly, with increasing prevalence due to increasing life expectancy. While the introduction of anti-VEGF therapy has improved outcomes, there are still major unmet needs and gaps in the understanding of underlying biological processes. These include early, intermediate, and atrophic disease stages. Recent studies have assessed therapeutic approaches addressing various disease-associated pathways, including complement inhibitors. Drug-delivery aspects are also relevant, as many agents have to be administered repeatedly. Herein, relevant pathogenetic factors and underlying mechanisms as well as recent and potential therapeutic approaches are reviewed. PMID:24691477

  12. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: a single-blind randomized clinical trial

    PubMed Central

    Alemán-Mateo, Heliodoro; Carreón, Virginia Ramírez; Macías, Liliana; Astiazaran-García, Humberto; Gallegos-Aguilar, Ana Cristina; Ramos Enríquez, José Rogelio

    2014-01-01

    Background At present, it is unknown whether the use of nutrient-rich dairy proteins improves the markers of sarcopenia syndrome. Therefore, our proposal was to investigate whether adding 210 g of ricotta cheese daily would improve skeletal muscle mass, handgrip strength, and physical performance in non-sarcopenic older subjects. Subjects and methods This was a single-blind randomized clinical trial that included two homogeneous, randomized groups of men and women over 60 years of age. Participants in the intervention group were asked to consume their habitual diet but add 210 g of ricotta cheese (IG/HD + RCH), while the control group was instructed to consume only their habitual diet (CG/HD). Basal and 12-week follow-up measurements included appendicular skeletal muscle mass (ASMM) by dual-energy X-ray absorptiometry, handgrip strength by a handheld dynamometer, and physical performance using the short physical performance battery (SPPB) and the stair-climb power test (SCPT). The main outcomes were relative changes in ASMM, strength, SPPB, and SCPT. Results ASMM increased in the IG/HD + RCH (0.6±3.5 kg), but decreased in the CG/HD (−1.0±2.6). The relative change between groups was statistically significant (P=0.009). The relative change in strength in both groups was negative, but the loss of muscle strength was more pronounced in CG/HD, though in this regard statistical analysis found only a tendency (P=0.07). The relative change in the balance-test scores was positive for the IG/HD + RCH, while in the CG/HD it was negative, as those individuals had poorer balance. In this case, the relative change between groups did reach statistical significance. Conclusion The addition of 210 g of ricotta cheese improves ASMM and balance-test scores, while attenuating the loss of muscle strength. These results suggest that adding ricotta cheese to the habitual diet is a promising dietetic strategy that may improve the markers of sarcopenia in subjects without a pronounced

  13. The eye lens: age-related trends and individual variations in refractive index and shape parameters.

    PubMed

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-10-13

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

  14. The eye lens: age-related trends and individual variations in refractive index and shape parameters

    PubMed Central

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-01-01

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

  15. Age-related changes in the thickness of cortical zones in humans.

    PubMed

    McGinnis, Scott M; Brickhouse, Michael; Pascual, Belen; Dickerson, Bradford C

    2011-10-01

    Structural neuroimaging studies have demonstrated that all regions of the cortex are not affected equally by aging, with frontal regions appearing especially susceptible to atrophy. The "last in, first out" hypothesis posits that aging is, in a sense, the inverse of development: late-maturing regions of the brain are preferentially vulnerable to age-related loss of structural integrity. We tested this hypothesis by analyzing age-related changes in regional cortical thickness via three methods: (1) an exploratory linear regression of cortical thickness and age across the entire cortical mantle (2) an analysis of age-related differences in the thickness of zones of cortex defined by functional/cytoarchitectural affiliation (including primary sensory/motor, unimodal association, heteromodal association, and paralimbic zones), and (3) an analysis of age-related differences in the thickness of regions of cortex defined by surface area expansion in the period between birth and early adulthood. Subjects were grouped as young (aged 18-29, n = 138), middle-aged (aged 30-59, n = 80), young-old (aged 60-79, n = 60), and old-old (aged 80+, n = 38). Thinning of the cortex between young and middle-aged adults was greatest in heteromodal association cortex and regions of high postnatal surface area expansion. In contrast, thinning in old-old age was greatest in primary sensory/motor cortices and regions of low postnatal surface area expansion. In sum, these results lead us to propose a sequential "developmental-sensory" model of aging, in which developmental factors influence cortical vulnerability relatively early in the aging process, whereas later-in more advanced stages of aging-factors specific to primary sensory and motor cortices confer vulnerability. This model offers explicitly testable hypotheses and suggests the possibility that normal aging may potentially allow for multiple opportunities for intervention to promote the structural integrity of the cerebral

  16. Age-related changes in mouse bone permeability.

    PubMed

    Rodriguez-Florez, Naiara; Oyen, Michelle L; Shefelbine, Sandra J

    2014-03-21

    The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling. PMID:24433671

  17. Overexpression of X-Linked Inhibitor of Apoptotic Protein (XIAP) reduces age-related neuronal degeneration in the mouse cochlea.

    PubMed

    Ruan, Q; Zeng, S; Liu, A; Chen, Z; Yu, Z; Zhang, R; He, J; Bance, M; Robertson, G; Yin, S; Wang, J

    2014-11-01

    Previously, we showed that age-related hearing loss (AHL) was delayed in C57BL6 mice overexpressing X-Linked Inhibitor of Apoptotic Protein (XIAP), and the delayed AHL was associated with attenuated hair cell (HC) loss in XIAP-overexpressing mice. Similar to other reports, the HC loss in aged mice was restricted to the basal turn in this previous study, and occurred slightly at the apical end of the cochlea, showing considerably less spread than the frequency region of hearing loss. In the present study, we examined whether and how AHL is related to the degeneration of neuronal innervation of the cochlea and whether the overexpression of XIAP exerts a protective effect against age-related degeneration in both afferent and efferent cochlear neurites. In contrast to HC loss, degeneration of both afferent and efferent neurites spread to the middle turns of the cochlea. Moreover, XIAP-overexpressing mice lost fewer HC afferent dendrites and efferent axons, as well as fewer spiral ganglion neurons between 3 and 14 months of age in comparison with wild-type littermates. The results suggest that age-related degeneration of cochlear neurites may be independent of HC loss. Further, the inhibition of apoptosis by XIAP appears to reduce degeneration of both afferent and efferent cochlear neurites. PMID:25142138

  18. Overexpression of X-Linked Inhibitor of Apoptotic Protein (XIAP) Reduces Age-related Neuronal Degeneration in the Mouse Cochlea

    PubMed Central

    Ruan, Qingwei; Zeng, Shan; Liu, Aiguo; Chen, Zhengnong; Yu, Zhuowei; Zhang, Ruxin; He, jingchun; Bance, Manohar; Robertson, George; Yin, Shankai; Wang, Jian

    2016-01-01

    Previously, we showed that age-related hearing loss (AHL) was delayed in C57BL6 mice overexpressing X-Linked Inhibitor of Apoptotic Protein (XIAP), and the delayed AHL was associated with attenuated hair cell (HC) loss in XIAP-overexpressing mice. Similar to other reports, the HC loss in aged mice was restricted to the basal turn in this previous study, and occurred slightly at the apical end of the cochlea, showing considerably less spread than the frequency region of hearing loss. In the present study, we examined whether and how AHL is related to the degeneration of neuronal innervation of the cochlea and if the overexpression of XIAP exerts a protective effect against age-related degeneration in both afferent and efferent cochlear neurites. In contrast to HC loss, degeneration of both afferent and efferent neurites spread to the middle turns of the cochlea. Moreover, XIAP-overexpressing mice lost fewer HC afferent dendrites and efferent axons, as well as fewer spiral ganglion neurons (SGNs) between 3– 14 months of age in comparison to wild-type littermates. The results suggest that age-related degeneration of cochlear neurites may be independent of HC loss. Further, the inhibition of apoptosis by XIAP appears to reduce degeneration of both afferent and efferent cochlear neurites. PMID:25142138

  19. Age-Related Macular Degeneration: Advances in Management and Diagnosis.

    PubMed

    Yonekawa, Yoshihiro; Miller, Joan W; Kim, Ivana K

    2015-01-01

    Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment in older populations in industrialized nations. AMD is a late-onset deterioration of photoreceptors and retinal pigment epithelium in the central retina caused by various environmental and genetic factors. Great strides in our understanding of AMD pathogenesis have been made in the past several decades, which have translated into revolutionary therapeutic agents in recent years. In this review, we describe the clinical and pathologic features of AMD and present an overview of current diagnosis and treatment strategies. PMID:26239130

  20. Age-related macular degeneration: Complement in action.

    PubMed

    van Lookeren Campagne, Menno; Strauss, Erich C; Yaspan, Brian L

    2016-06-01

    The complement system plays a key role in host-defense against common pathogens but must be tightly controlled to avoid inflammation and tissue damage. Polymorphisms in genes encoding two important negative regulators of the alternative complement pathway, complement factor H (CFH) and complement factor I (CFI), are associated with the risk for Age-Related Macular Degeneration (AMD), a leading cause of vision impairment in the ageing population. In this review, we will discuss the genetic basis of AMD and the potential impact of complement de-regulation on disease pathogenesis. Finally, we will highlight recent therapeutic approaches aimed at controlling complement activation in patients with AMD. PMID:26742632

  1. Effects of Vitreomacular Adhesion on Age-Related Macular Degeneration

    PubMed Central

    Kang, Eui Chun; Koh, Hyoung Jun

    2015-01-01

    Herein, we review the association between vitreomacular adhesion (VMA) and neovascular age-related macular degeneration (AMD). Meta-analyses have shown that eyes with neovascular AMD are twice as likely to have VMA as normal eyes. VMA in neovascular AMD may induce inflammation, macular traction, decrease in oxygenation, sequestering of vascular endothelial growth factor (VEGF), and other cytokines or may directly stimulate VEGF production. VMA may also interfere with the treatment effects of anti-VEGF therapy, which is the standard treatment for neovascular AMD, and releasing VMA can improve the treatment response to anti-VEGF treatment in neovascular AMD. We also reviewed currently available methods of relieving VMA. PMID:26425354

  2. Present and Possible Therapies for Age-Related Macular Degeneration

    PubMed Central

    Kamal, Ahmed

    2014-01-01

    Age-related macular degeneration (AMD) is the most common cause of blindness in the elderly population worldwide and is defined as a chronic, progressive disorder characterized by changes occurring within the macula reflective of the ageing process. At present, the prevalence of AMD is currently rising and is estimated to increase by a third by 2020. Although our understanding of the several components underpinning the pathogenesis of this condition has increased significantly, the treatment options for this condition remain substantially limited. In this review, we outline the existing arsenal of therapies available for AMD and discuss the additional role of further novel therapies currently under investigation for this debilitating disease. PMID:25097787

  3. [Diagnostic Criteria for Atrophic Age-related Macular Degeneration].

    PubMed

    Takahashi, Kanji; Shiraga, Fumio; Ishida, Susumu; Kamei, Motohiro; Yanagi, Yasuo; Yoshimura, Nagahisa

    2015-10-01

    Diagnostic criteria for dry age-related macular degeneration is described. Criteria include visual acuity, fundscopic findings, diagnostic image findings, exclusion criteria and classification of severity grades. Essential findings to make diagnosis as "geographic atrophy" are, 1) at least 250 μm in diameter, 2) round/oval/cluster-like or geographic in shape, 3) sharp delineation, 4) hypopigmentation or depigmentation in retinal pigment epithelium, 5) choroidal vessels are more visible than in surrounding area. Severity grades were classified as mild, medium and severe by relation of geographic atrophy to the fovea and attendant findings. PMID:26571627

  4. [Glaucoma and age-related macular degeneration intricacy].

    PubMed

    Valtot, F

    2008-07-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness among the elderly in Western nations. Age is also a well-known and well-evidenced risk factor for glaucoma. With increasing longevity and the rising prevalence of older people around the world, more and more patients will have glaucoma and AMD. Clinical evaluation of these patients still poses problems for clinicians. It is very important to order the right tests at the right time to distinguish glaucomatous defects from those caused by retinal lesions, because appropriate therapy has a beneficial effect on slowing or halting damage. PMID:18957915

  5. Age-Related Macular Degeneration: Advances in Management and Diagnosis

    PubMed Central

    Yonekawa, Yoshihiro; Miller, Joan W.; Kim, Ivana K.

    2015-01-01

    Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment in older populations in industrialized nations. AMD is a late-onset deterioration of photoreceptors and retinal pigment epithelium in the central retina caused by various environmental and genetic factors. Great strides in our understanding of AMD pathogenesis have been made in the past several decades, which have translated into revolutionary therapeutic agents in recent years. In this review, we describe the clinical and pathologic features of AMD and present an overview of current diagnosis and treatment strategies. PMID:26239130

  6. Squalamine lactate for exudative age-related macular degeneration.

    PubMed

    Connolly, Brian; Desai, Avinash; Garcia, Charles A; Thomas, Edgar; Gast, Michael J

    2006-09-01

    Squalamine lactate inhibits angiogenesis by a long-lived, intracellular mechanism of action. The drug is taken up into activated endothelial cells through caveolae, small invaginations in the cellular membrane. Subsequently, the drug binds to and "chaperones" calmodulin to an intracellular membrane compartment and blocks angiogenesis at several levels. A series of basic investigations, preclinical studies, and human clinical trials have begun to establish the proof of concept, efficacy, and safety parameters for use of squalamine lactate as a therapeutic agent for exudative age-related macular degeneration and several types of malignancies. PMID:16935213

  7. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease.

    PubMed

    Argilés, Josep M; Campos, Nefertiti; Lopez-Pedrosa, José M; Rueda, Ricardo; Rodriguez-Mañas, Leocadio

    2016-09-01

    Skeletal muscle is recognized as vital to physical movement, posture, and breathing. In a less known but critically important role, muscle influences energy and protein metabolism throughout the body. Muscle is a primary site for glucose uptake and storage, and it is also a reservoir of amino acids stored as protein. Amino acids are released when supplies are needed elsewhere in the body. These conditions occur with acute and chronic diseases, which decrease dietary intake while increasing metabolic needs. Such metabolic shifts lead to the muscle loss associated with sarcopenia and cachexia, resulting in a variety of adverse health and economic consequences. With loss of skeletal muscle, protein and energy availability is lowered throughout the body. Muscle loss is associated with delayed recovery from illness, slowed wound healing, reduced resting metabolic rate, physical disability, poorer quality of life, and higher health care costs. These adverse effects can be combatted with exercise and nutrition. Studies suggest dietary protein and leucine or its metabolite β-hydroxy β-methylbutyrate (HMB) can improve muscle function, in turn improving functional performance. Considerable evidence shows that use of high-protein oral nutritional supplements (ONS) can help maintain and rebuild muscle mass and strength. We review muscle structure, function, and role in energy and protein balance. We discuss how disease- and age-related malnutrition hamper muscle accretion, ultimately causing whole-body deterioration. Finally, we describe how specialized nutrition and exercise can restore muscle mass, strength, and function, and ultimately reverse the negative health and economic outcomes associated with muscle loss. PMID:27324808

  8. Age-related changes in human posture control: Motor coordination tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1989-01-01

    Postural responses to support surface displacements were measured in 214 normal human subjects ranging in age from 7 to 81 years. Motor tests measured leg muscle Electromyography (EMG) latencies, body sway, and the amplitude and timing of changes in center of pressure displacements in response to sudden forward and backward horizontal translations of the support surface upon which the subjects stood. There were small increases in both EMG latencies and the time to reach the peak amplitude of center of pressure responses with increasing age. The amplitude of center of pressure responses showed little change with age if the amplitude measures were normalized by a factor related to subject height. In general, postural responses to sudden translations showed minimal changes with age, and all age related trends which were identified were small relative to the variability within the population.

  9. Adaptive processes of the central and autonomic cholinergic neurotransmitter system: Age-related differences

    SciTech Connect

    Fortuna, S.; Pintor, A.; Michalek, H. )

    1991-01-01

    Potential age-related differences in the response of the ileum strip longitudinal and circular muscle to repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. The response was measured in terms of both biochemical parameters (acetylcholinesterase-AChE inhibition, muscarinic acetylcholine receptor binding sites-mAChRs, choline acetyltransferase-ChAT) and functional responsiveness (contractility of the isolated ileum stimulated by cholinergic agonists). The biochemical data were compared with those obtained for the cerebral cortex. In the ileum strip of control rats there was a significant age-related decline of AChE, maximal density of {sup 3}H-QNB binding sites (Bmax) and ChAT. During the first week of DFP treatment the cholinergic syndrome was more pronounced in aged than in young rats, resulting in 35% and 10% mortality, respectively; subsequently the syndrome attenuated. At the end of DFP treatment ileal AChE were inhibited by about 30%; the down-regulation of mAChRs was about 50% in young and 35% in aged rats. No significant differences in the recovery rate of AChE were noted between young and aged rats. On the contrary, mAChRs normalized within 5 weeks in young and 3 weeks in aged rats.

  10. Is age-related decline in lean mass and physical function accelerated by Obstructive Lung Disease or smoking?

    PubMed Central

    van den Borst, Bram; Koster, Annemarie; Yu, Binbing; Gosker, Harry R.; Meibohm, Bernd; Bauer, Douglas C.; Kritchevsky, Stephen B.; Liu, Yongmei; Newman, Anne B.; Harris, Tamara B.; Schols, Annemie M.W.J.

    2012-01-01

    Background and aims Cross-sectional studies suggest that Obstructive Lung Disease (OLD) and smoking affect lean mass and mobility. We aimed to investigate whether OLD and smoking accelerate aging-related decline in lean mass and physical functioning. Methods 260 persons with OLD (FEV1 63±18 %predicted), 157 smoking controls (FEV1 95±16 %predicted), 866 formerly smoking controls (FEV1 100±16 %predicted) and 891 never-smoking controls (FEV1 104±17 %predicted) participating in the Health, Aging and Body Composition (ABC) Study were studied. At baseline, the mean age was 74±3 y and participants reported no functional limitations. Baseline and seven-year longitudinal data were investigated of body composition (by Dual-energy X-ray absorptiometry), muscle strength (by hand and leg dynamometry) and Short Physical Performance Battery (SPPB). Results Compared to never-smoking controls, OLD persons and smoking controls had a significantly lower weight, fat mass, lean mass and bone mineral content (BMC) at baseline (p<0.05). While the loss of weight, fat mass, lean mass and strength was comparable between OLD persons and never-smoking controls, the SPPB declined 0.12 points/yr faster in OLD men (p=0.01) and BMC 4 g/yr faster in OLD women (p=0.02). In smoking controls, only lean mass declined 0.1 kg/yr faster in women (p=0.03) and BMC 8 g/yr faster in men (p=0.02) compared to never-smoking controls. Conclusions Initially well-functioning older adults with mild-to-moderate OLD and smokers without OLD have a comparable compromised baseline profile of body composition and physical functioning, while seven-year longitudinal trajectories are to a large extent comparable to those observed in never-smokers without OLD. This suggests a common insult earlier in life related to smoking. 3 PMID:21724748

  11. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation.

    PubMed

    Merrick, Deborah; Stadler, Lukas Kurt Josef; Larner, Dean; Smith, Janet

    2009-01-01

    Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3(-/-)) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3(-/-) mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3(-/-) and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3(-/-) and mdx mutants have cardiac defects. In cav-3(-/-) mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3(-/-) mutants. In double mutant (mdxcav-3(+/-)) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3(+/-)), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive cells are depleted

  12. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation

    PubMed Central

    Merrick, Deborah; Stadler, Lukas Kurt Josef; Larner, Dean; Smith, Janet

    2009-01-01

    SUMMARY Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3−/−) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3−/− mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3−/− and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3−/− and mdx mutants have cardiac defects. In cav-3−/− mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3−/− mutants. In double mutant (mdxcav-3+/−) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3+/−), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive

  13. Parainflammation, chronic inflammation and age-related macular degeneration

    PubMed Central

    Chen, Mei; Xu, Heping

    2016-01-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978

  14. Fertility preservation for age-related fertility decline.

    PubMed

    Stoop, Dominic; Cobo, Ana; Silber, Sherman

    2014-10-01

    Cryopreservation of eggs or ovarian tissue to preserve fertility for patients with cancer has been studied since 1994 with R G Gosden's paper describing restoration of fertility in oophorectomised sheep, and for decades previously by others in smaller mammals. Clinically this approach has shown great success. Many healthy children have been born from eggs cryopreserved with the Kuwayama egg vitrification technique for non-medical (social) indications, but until now very few patients with cancer have achieved pregnancy with cryopreserved eggs. Often, oncologists do not wish to delay cancer treatment while the patient goes through multiple ovarian stimulation cycles to retrieve eggs, and the patient can only start using the oocytes after full recovery from cancer. Ovarian stimulation and egg retrieval is not a barrier for patients without cancer who wish to delay childbearing, which makes oocyte cryopreservation increasingly popular to overcome an age-related decline in fertility. Cryopreservation of ovarian tissue is an option if egg cryopreservation is ruled out. More than 35 babies have been born so far with cryopreserved ovarian tissue in patients with cancer who have had a complete return of hormonal function, and fertility to baseline. Both egg and ovarian tissue cryopreservation might be ready for application to the preservation of fertility not only in patients with cancer but also in countering the increasing incidence of age-related decline in female fertility. PMID:25283572

  15. Age-related mutations and chronic myelomonocytic leukemia.

    PubMed

    Mason, C C; Khorashad, J S; Tantravahi, S K; Kelley, T W; Zabriskie, M S; Yan, D; Pomicter, A D; Reynolds, K R; Eiring, A M; Kronenberg, Z; Sherman, R L; Tyner, J W; Dalley, B K; Dao, K-H; Yandell, M; Druker, B J; Gotlib, J; O'Hare, T; Deininger, M W

    2016-04-01

    Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy nearly confined to the elderly. Previous studies to determine incidence and prognostic significance of somatic mutations in CMML have relied on candidate gene sequencing, although an unbiased mutational search has not been conducted. As many of the genes commonly mutated in CMML were recently associated with age-related clonal hematopoiesis (ARCH) and aged hematopoiesis is characterized by a myelomonocytic differentiation bias, we hypothesized that CMML and aged hematopoiesis may be closely related. We initially established the somatic mutation landscape of CMML by whole exome sequencing followed by gene-targeted validation. Genes mutated in ⩾10% of patients were SRSF2, TET2, ASXL1, RUNX1, SETBP1, KRAS, EZH2, CBL and NRAS, as well as the novel CMML genes FAT4, ARIH1, DNAH2 and CSMD1. Most CMML patients (71%) had mutations in ⩾2 ARCH genes and 52% had ⩾7 mutations overall. Higher mutation burden was associated with shorter survival. Age-adjusted population incidence and reported ARCH mutation rates are consistent with a model in which clinical CMML ensues when a sufficient number of stochastically acquired age-related mutations has accumulated, suggesting that CMML represents the leukemic conversion of the myelomonocytic-lineage-biased aged hematopoietic system. PMID:26648538

  16. Current therapeutic developments in atrophic age-related macular degeneration.

    PubMed

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age-Related Eye Disease Study (AREDS) formulation, which has been demonstrated to slow down the progression of dry AMD. This review summarises recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem cell-based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  17. Age-related Cardiac Disease Model of Drosophila

    PubMed Central

    Ocorr, Karen; Akasaka, Takeshi; Bodmer, Rolf

    2007-01-01

    We have begun to study the genetic basis of deterioration of cardiac function in the fruit fly Drosophila melanogaster as an age-related cardiac disease model. For this purpose we have developed heart function assays in Drosophila and found that the fly's cardiac performance, as that of the human heart, deteriorates with age: aging fruit flies exhibit a progressive increase in electrical pacing-induced heart failure as well as in arrhythmias. The insulin receptor and associated pathways have a dramatic and heart-autonomous influence on age-related cardiac performance in flies, suggestive of potentially similar mechanisms in regulating cardiac aging in vertebrates. Compromised KCNQ and KATP ion channel functions also seem to contribute to the decline in heart performance in aging flies, suggesting that the corresponding vertebrate gene functions may similarly decline with age, in addition to their conserved role in protecting against arrhythmias and hypoxia/ischemia, respectively. The fly heart is thus emerging as a promising genetic model for studying the age-dependent decline in organ function. PMID:17125816

  18. Long noncoding RNAs in aging and age-related diseases.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-03-01

    Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process. PMID:26655093

  19. Age-related differences in electroencephalogram connectivity and network topology.

    PubMed

    Knyazev, Gennady G; Volf, Nina V; Belousova, Ludmila V

    2015-05-01

    To better understand age-related differences in brain function and behavior, connectivity between brain regions was estimated from electroencephalogram source time series in eyes closed versus eyes open resting condition. In beta band, decrease of connectivity upon eyes opening was more pronounced in younger than in older participants. The extent of this decrease was associated with reaction time in attention tasks, and this relationship was fully mediated by participants' age, implying that physiological processes, which lead to age-related slowing, include changes in beta reactivity. Graph-theoretical analysis showed a decrease of modularity and clustering in beta and gamma band networks in older adults, implying that age makes brain networks more random. The overall number of nodes identified as hubs in posterior cortical regions decreased in older participants. At the same time, increase of connectedness of anterior nodes, probably reflecting compensatory activation of the anterior attentional system, was observed in beta-band network of older adults. These findings show that normal aging mostly affects interactions in beta band, which are probably involved in attentional processes. PMID:25766772

  20. Age-related changes to the production of linguistic prosody

    NASA Astrophysics Data System (ADS)

    Barnes, Daniel R.

    The production of speech prosody (the rhythm, pausing, and intonation associated with natural speech) is critical to effective communication. The current study investigated the impact of age-related changes to physiology and cognition in relation to the production of two types of linguistic prosody: lexical stress and the disambiguation of syntactically ambiguous utterances. Analyses of the acoustic correlates of stress: speech intensity (or sound-pressure level; SPL), fundamental frequency (F0), key word/phrase duration, and pause duration revealed that both young and older adults effectively use these acoustic features to signal linguistic prosody, although the relative weighting of cues differed by group. Differences in F0 were attributed to age-related physiological changes in the laryngeal subsystem, while group differences in duration measures were attributed to relative task complexity and the cognitive-linguistic load of these respective tasks. The current study provides normative acoustic data for older adults which informs interpretation of clinical findings as well as research pertaining to dysprosody as the result of disease processes.

  1. Age-related preferences and age weighting health benefits.

    PubMed

    Tsuchiya, A

    1999-01-01

    This paper deals with the relevance of age in the paradigm of quality adjusted life years (QALYs). The first section outlines two rationales for incorporating age weights into QALYs. One of them is based on efficiency concerns; and the other on equity concerns. Both of these are theoretical constructs. The main purpose of this paper is to examine the extent of published empirical support for such age weighting. The second section is a brief survey of nine empirical studies that elicited age-related preferences from the general public. Six of these quantified the strength of the preferences, and these are discussed in more detail in the third section. The analysis distinguishes three kinds of age-related preference: productivity ageism, utilitarian ageism and egalitarian ageism. The relationship between them and their relevance to the two different rationales for age weighting are then explored. It is concluded that, although there is strong prima facie evidence of public support for both types of age weighting, the empirical evidence to support any particular set of weights is at present weak. PMID:10048783

  2. Current Therapeutic Development for Atrophic Age-related Macular Degeneration

    PubMed Central

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age Related Eye Disease Study (AREDS) formulation which has been demonstrated to slow down the progression of dry AMD. This review summarizes recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem-cell based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  3. Age-related differences in moral identity across adulthood.

    PubMed

    Krettenauer, Tobias; Murua, Lourdes Andrea; Jia, Fanli

    2016-06-01

    In this study, age-related differences in adults' moral identity were investigated. Moral identity was conceptualized a context-dependent self-structure that becomes differentiated and (re)integrated in the course of development and that involves a broad range of value-orientations. Based on a cross-sectional sample of 252 participants aged 14 to 65 years (148 women, M = 33.5 years, SD = 16.9) and a modification of the Good Self-Assessment, it was demonstrated that mean-level of moral identity (averaged across the contexts of family, school/work, and community) significantly increased in the adult years, whereas cross-context differentiation showed a nonlinear trend peaking at the age of 25 years. Value-orientations that define individuals' moral identity shifted so that self-direction and rule-conformity became more important with age. Age-related differences in moral identity were associated with, but not fully attributable to changes in personality traits. Overall, findings suggest that moral identity development is a lifelong process that starts in adolescence but expands well into middle age. (PsycINFO Database Record PMID:27124654

  4. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia.

    PubMed

    Fry, Christopher S; Lee, Jonah D; Mula, Jyothi; Kirby, Tyler J; Jackson, Janna R; Liu, Fujun; Yang, Lin; Mendias, Christopher L; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2015-01-01

    A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis. PMID:25501907

  5. FOXO/4E-BP Signaling in Drosophila Muscles Regulates Organism-wide Proteostasis During Aging

    PubMed Central

    Demontis, Fabio; Perrimon, Norbert

    2011-01-01

    SUMMARY The progressive loss of muscle strength during aging is a common degenerative event of unclear pathogenesis. Although muscle functional decline precedes age-related changes in other tissues, its contribution to systemic aging is unknown. Here, we show that muscle aging is characterized in Drosophila by the progressive accumulation of protein aggregates that associate with impaired muscle function. The transcription factor FOXO and its target 4E-BP remove damaged proteins at least in part via the autophagy/lysosome system, while foxo mutants have dysfunctional proteostasis. Both FOXO and 4E-BP delay muscle functional decay and extend lifespan. Moreover, FOXO/4E-BP signaling in muscles decreases feeding behavior and the release of Insulin from producing cells, which in turn delays the age-related accumulation of protein aggregates in other tissues. These findings reveal an organism-wide regulation of proteostasis in response to muscle aging, and a key role of FOXO/4E-BP signaling in the coordination of organismal and tissue aging. PMID:21111239

  6. Age-Related Neurochemical Changes in the Rhesus Macaque Superior Olivary Complex

    PubMed Central

    Gray, Daniel T.; Engle, James R.; Recanzone, Gregg H.

    2014-01-01

    Positive immunoreactivity to the calcium-binding protein parvalbumin (PV) and nitric oxide synthase NADPH-diaphorase (NADPHd) is well documented within neurons of the central auditory system of both rodents and primates. These proteins are thought to play roles in the regulation of auditory processing. Studies examining the age-related changes in expression of these proteins have been conducted primarily in rodents but are sparse in primate models. In the brainstem, the superior olivary complex (SOC) is crucial for the computation of sound source localization in azimuth, and one hallmark of age-related hearing deficits is a reduced ability to localize sounds. To investigate how these histochemical markers change as a function of age and hearing loss, we studied eight rhesus macaques ranging in age from 12 to 35 years. Auditory brainstem responses (ABRs) were obtained in anesthetized animals for click and tone stimuli. The brainstems of these same animals were then stained for PV and NADPHd reactivity. Reactive neurons in the three nuclei of the SOC were counted, and the densities of each cell type were calculated. We found that PV and NADPHd expression increased with both age and ABR thresholds in the medial superior olive but not in either the medial nucleus of the trapezoid body or the lateral superior olive. Together these results suggest that the changes in protein expression employed by the SOC may compensate for the loss of efficacy of auditory sensitivity in the aged primate. PMID:25232570

  7. Age-related motor dysfunction and neuropathology in a transgenic mouse model of multiple system atrophy.

    PubMed

    Fernagut, P O; Meissner, W G; Biran, M; Fantin, M; Bassil, F; Franconi, J M; Tison, F

    2014-03-01

    Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by a progressive degeneration of the striatonigral, olivo-ponto-cerebellar, and autonomic systems. Glial cytoplasmic inclusions (GCIs) containing alpha-synuclein represent the hallmark of MSA and are recapitulated in mice expressing alpha-synuclein in oligodendrocytes. To assess if oligodendroglial expression of human wild-type alpha-synuclein in mice (proteolipid promoter, PLP-SYN) could be associated with age-related deficits, PLP-SYN and wild-type mice were assessed for motor function, brain morphometry, striatal levels of dopamine and metabolites, dopaminergic loss, and distribution of GCIs. PLP-SYN displayed age-related impairments on a beam-traversing task. MRI revealed a significantly smaller brain volume in PLP-SYN mice at 12 months, which further decreased at 18 months together with increased volume of ventricles and cortical atrophy. The distribution of GCIs was reminiscent of MSA with a high burden in the basal ganglia. Mild dopaminergic cell loss was associated with decreased dopamine turnover at 18 months. These data indicate that PLP-SYN mice may recapitulate some of the progressive features of MSA and deliver endpoints for the evaluation of therapeutic strategies. PMID:24243499

  8. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age.

    PubMed

    Gorski, Jeff P; Huffman, Nichole T; Vallejo, Julian; Brotto, Leticia; Chittur, Sridar V; Breggia, Anne; Stern, Amber; Huang, Jian; Mo, Chenglin; Seidah, Nabil G; Bonewald, Lynda; Brotto, Marco

    2016-02-26

    Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10-12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss. PMID:26719336

  9. Inflammatory networks in ageing, age-related diseases and longevity.

    PubMed

    Vasto, Sonya; Candore, Giuseppina; Balistreri, Carmela Rita; Caruso, Marco; Colonna-Romano, Giuseppina; Grimaldi, Maria Paola; Listi, Florinda; Nuzzo, Domenico; Lio, Domenico; Caruso, Calogero

    2007-01-01

    Inflammation is considered a response set by the tissues in response to injury elicited by trauma or infection. It is a complex network of molecular and cellular interactions that facilitates a return to physiological homeostasis and tissue repair. The individual response against infection and trauma is also determined by gene variability. Ageing is accompanied by chronic low-grade inflammation state clearly showed by 2-4-fold increase in serum levels of inflammatory mediators. A wide range of factors has been claimed to contribute to this state; however, the most important role seems to be played by the chronic antigenic stress, which affects immune system thorough out life with a progressive activation of macrophages and related cells. This pro-inflammatory status, interacting with the genetic background, potentially triggers the onset of age-related inflammatory diseases as atherosclerosis. Thus, the analysis of polymorphisms of the genes that are key nodes of the natural immunity response might clarify the patho-physiology of age-related inflammatory diseases as atherosclerosis. On the other hand, centenarians are characterized by marked delay or escape from age-associated diseases that, on average, cause mortality at earlier ages. In addition, centenarian offspring have increased likelihood of surviving to 100 years and show a reduced prevalence of age-associated diseases, as cardiovascular disease (CVD) and less prevalence of cardiovascular risk factors. So, genes involved in CVD may play an opposite role in human longevity. Thus, the model of centenarians can be used to understand the role of these genes in successful and unsuccessful ageing. Accordingly, we report the results of several studies in which the frequencies of pro-inflammatory alleles were significantly higher in patients affected by infarction and lower in centenarians whereas age-related controls displayed intermediate values. These findings point to a strong relationship between the genetics

  10. Progressive Age-Related Changes Similar to Age-Related Macular Degeneration in a Transgenic Mouse Model

    PubMed Central

    Rakoczy, Piroska Elizabeth; Zhang, Dan; Robertson, Terry; Barnett, Nigel L.; Papadimitriou, John; Constable, Ian Jeffrey; Lai, Chooi-May

    2002-01-01

    Age-related macular degeneration (AMD) is the major cause of blindness in the developed world. Its pathomechanism is unknown and its late onset, complex genetics and strong environmental components have all hampered investigations. Here we demonstrate the development of an animal model for AMD that reproduces features associated with geographic atrophy; a transgenic mouse line (mcd/mcd) expressing a mutated form of cathepsin D that is enzymatically inactive thus impairing processing of phagocytosed photoreceptor outer segments in the retinal pigment epithelial (RPE) cells. Pigmentary changes indicating RPE cell atrophy and a decreased response to flash electroretinograms were observed in 11- to 12-month-old mcd/mcd mice. Histological studies showed RPE cell proliferation, photoreceptor degeneration, shortening of photoreceptor outer segments, and accumulation of immunoreactive photoreceptor breakdown products in the RPE cells. An accelerated photoreceptor cell death was detected in 12-month-old mcd/mcd mice. Transmission electron microscopy demonstrated presence of basal laminar and linear deposits that are considered to be the hallmarks of AMD. Small hard drusen associated with human age-related maculopathy were absent in the mcd/mcd mouse model at the ages analyzed. In summary, this model presents several features of AMD, thus providing a valuable tool for investigating the underlying biological processes and pathomechanism of AMD. PMID:12368224

  11. Loss of ATRX and DAXX expression identifies poor prognosis for smooth muscle tumours of uncertain malignant potential and early stage uterine leiomyosarcoma.

    PubMed

    Slatter, Tania L; Hsia, Howard; Samaranayaka, Ari; Sykes, Peter; Clow, William Bill; Devenish, Celia J; Sutton, Tim; Royds, Janice A; Pc, Philip; Cheung, Annie N; Hung, Noelyn Anne

    2015-04-01

    Uterine smooth muscle tumours of uncertain malignant potential (STUMP) are diagnostically and clinically challenging. The alternative lengthening of telomeres (ALT) telomere maintenance mechanism is associated with poor survival in soft tissue leiomyosarcoma. Time to first recurrence and survival were known for 18 STUMP and 43 leiomyosarcomata (LMS). These were screened for ALT telomere maintenance by the presence of ALT-associated PML bodies (APBs) and for changes associated with the ALT phenotype, namely aberrant p53 expression, isocitrate dehydrogenase 1 mutation (R132H substitution) expression, mutant ATRX (αthalassemia/mental retardation syndrome X-linked) expression and mutant DAXX (death-domain-associated protein) expression by immunohistochemistry (IHC). Overexpression of p16(INK4A) was examined immunohistologically in a subset of cases. Many of the tumours associated with death or recurrence demonstrated APBs commensurate with ALT telomere maintenance. However, all uterine STUMP (4/4), and vaginal STUMP (2/2) patients, and almost all LMS patients (88.4%, 23/26, including 90% (9/10) of stage 1 LMS cases), who had died of disease or who had recurrent disease, displayed loss of ATRX or DAXX expression. Loss of ATRX or DAXX expression identified poor prognosis (95% CI 2.1 to 40.8, p < 0.003), in the LMS group. Thus, loss of ATRX or DAXX expression in uterine smooth muscle tumours identifies a clinically aggressive molecular subtype of early stage LMS and when histopathological features are problematic such as in STUMP. As ATRX and DAXX IHC is readily performed in diagnostic laboratories these are potentially useful for routine histopathological classification and management. PMID:27499896

  12. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors

    PubMed Central

    Hoekstra, Attje S.; de Graaff, Marieke A.; Briaire-de Bruijn, Inge H.; Ras, Cor; Seifar, Reza Maleki; van Minderhout, Ivonne; Cornelisse, Cees J.; Hogendoorn, Pancras C.W.; Breuning, Martijn H.; Suijker, Johnny; Korpershoek, Esther; Kunst, Henricus P.M.; Frizzell, Norma; Devilee, Peter; Bayley, Jean-Pierre; Bovée, Judith V.M.G.

    2015-01-01

    Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are tricarboxylic acid (TCA) cycle enzymes and tumor suppressors. Loss-of-function mutations give rise to hereditary paragangliomas/pheochromocytomas and hereditary leiomyomatosis and renal cell carcinoma. Inactivation of SDH and FH results in an abnormal accumulation of their substrates succinate and fumarate, leading to inhibition of numerous α-ketoglutarate dependent dioxygenases, including histone demethylases and the ten-eleven-translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. To evaluate the distribution of DNA and histone methylation, we used immunohistochemistry to analyze the expression of 5mC, 5-hydroxymethylcytosine (5hmC), TET1, H3K4me3, H3K9me3, and H3K27me3 on tissue microarrays containing paragangliomas/pheochromocytomas (n = 134) and hereditary and sporadic smooth muscle tumors (n = 56) in comparison to their normal counterparts. Our results demonstrate distinct loss of 5hmC in tumor cells in SDH- and FH-deficient tumors. Loss of 5hmC in SDH-deficient tumors was associated with nuclear exclusion of TET1, a known regulator of 5hmC levels. Moreover, increased methylation of H3K9me3 occurred predominantly in the chief cell component of SDH mutant tumors, while no changes were seen in H3K4me3 and H3K27me3, data supported by in vitro knockdown of SDH genes. We also show for the first time that FH-deficient smooth muscle tumors exhibit increased H3K9me3 methylation compared to wildtype tumors. Our findings reveal broadly similar patterns of epigenetic deregulation in both FH- and SDH-deficient tumors, suggesting that defects in genes of the TCA cycle result in common mechanisms of inhibition of histone and DNA demethylases. PMID:26472283

  13. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors.

    PubMed

    Hoekstra, Attje S; de Graaff, Marieke A; Briaire-de Bruijn, Inge H; Ras, Cor; Seifar, Reza Maleki; van Minderhout, Ivonne; Cornelisse, Cees J; Hogendoorn, Pancras C W; Breuning, Martijn H; Suijker, Johnny; Korpershoek, Esther; Kunst, Henricus P M; Frizzell, Norma; Devilee, Peter; Bayley, Jean-Pierre; Bovée, Judith V M G

    2015-11-17

    Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are tricarboxylic acid (TCA) cycle enzymes and tumor suppressors. Loss-of-function mutations give rise to hereditary paragangliomas/pheochromocytomas and hereditary leiomyomatosis and renal cell carcinoma. Inactivation of SDH and FH results in an abnormal accumulation of their substrates succinate and fumarate, leading to inhibition of numerous α-ketoglutarate dependent dioxygenases, including histone demethylases and the ten-eleven-translocation (TET) family of 5-methylcytosine (5 mC) hydroxylases. To evaluate the distribution of DNA and histone methylation, we used immunohistochemistry to analyze the expression of 5 mC, 5-hydroxymethylcytosine (5 hmC), TET1, H3K4me3, H3K9me3, and H3K27me3 on tissue microarrays containing paragangliomas/pheochromocytomas (n = 134) and hereditary and sporadic smooth muscle tumors (n = 56) in comparison to their normal counterparts. Our results demonstrate distinct loss of 5 hmC in tumor cells in SDH- and FH-deficient tumors. Loss of 5 hmC in SDH-deficient tumors was associated with nuclear exclusion of TET1, a known regulator of 5 hmC levels. Moreover, increased methylation of H3K9me3 occurred predominantly in the chief cell component of SDH mutant tumors, while no changes were seen in H3K4me3 and H3K27me3, data supported by in vitro knockdown of SDH genes. We also show for the first time that FH-deficient smooth muscle tumors exhibit increased H3K9me3 methylation compared to wildtype tumors. Our findings reveal broadly similar patterns of epigenetic deregulation in both FH- and SDH-deficient tumors, suggesting that defects in genes of the TCA cycle result in common mechanisms of inhibition of histone and DNA demethylases. PMID:26472283

  14. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  15. Age-related priming effects in social judgments.

    PubMed

    Hess, T M; McGee, K A; Woodburn, S M; Bolstad, C A

    1998-03-01

    Two experiments investigated adult age differences in the impact of previously activated (and thus easily accessible) trait-related information on judgments about people. The authors hypothesized that age-related declines in the efficiency of controlled processing mechanisms during adulthood would be associated with increased susceptibility to judgment biases associated with such information. In each study, different-aged adults made impression judgments about a target, and assimilation of these judgments to trait constructs activated in a previous, unrelated task were examined. Consistent with the authors' hypotheses, older adults were likely to form impressions that were biased toward the primed trait constructs. In contrast, younger adults exhibited greater awareness of the primed information and were more likely to correct for its perceived influence, especially when distinctive contextual cues regarding the source of the primes were available. PMID:9533195

  16. Modulation of cell death in age-related diseases.

    PubMed

    Tezil, Tugsan; Basaga, Huveyda

    2014-01-01

    Aging is a stage of life of all living organisms. According to the free-radical theory, aging cells gradually become unable to maintain cellular homeostasis due to the adverse effects of reactive oxygen species (ROS). ROS can cause irreversible DNA mutations, protein and lipid damage which are increasingly accumulated in the course of time if cells could not overcome these effects by the antioxidant defence system. Accrued damaged molecules in cells may either induce cellular death or contribute to develop various pathologies. Hence, programmed cell death mechanisms, apoptosis and autophagy, play a vital role in the aging process. Although they are strictly controlled by various interconnected signalling pathways, alterations in their regulations may contribute to severe pathologies including cancer, Alzheimer's and Parkinson's diseases. In this review, we summarized our current understanding and hypotheses regarding oxidative stress and age-related dysregulation of cell death signalling pathways. PMID:24079770

  17. Molecular pathology of age-related macular degeneration

    PubMed Central

    Ding, Xiaoyan; Patel, Mrinali; Chan, Chi-Chao

    2009-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. Although the etiology and pathogenesis of AMD remain largely unclear, a complex interaction of genetic and environmental factors is thought to exist. AMD pathology is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium, and Bruch’s membrane, as well as, in some cases, alterations in choroidal capillaries. Recent research on the genetic and molecular underpinnings of AMD brings to light several basic molecular pathways and pathophysiological processes that might mediate AMD risk, progression, and/or response to therapy. This review summarizes, in detail, the molecular pathological findings in both humans and animal models, including genetic variations in CFH, CX3CR1, and ARMS2/HtrA1, as well as the role of numerous molecules implicated in inflammation, apoptosis, cholesterol trafficking, angiogenesis, and oxidative stress. PMID:19026761

  18. Complement Factor H Polymorphism in Age-Related Macular Degeneration

    PubMed Central

    Klein, Robert J.; Zeiss, Caroline; Chew, Emily Y.; Tsai, Jen-Yue; Sackler, Richard S.; Haynes, Chad; Henning, Alice K.; SanGiovanni, John Paul; Mane, Shrikant M.; Mayne, Susan T.; Bracken, Michael B.; Ferris, Frederick L.; Ott, Jurg; Barnstable, Colin; Hoh., Josephine

    2006-01-01

    Age-related macular degeneration (AMD) is a major cause of blindness in the elderly. We report a genome-wide screen of 96 cases and 50 controls for polymorphisms associated with AMD. Among 116,204 single-nucleotide polymorphisms genotyped, an intronic and common variant in the complement factor H gene (CFH) is strongly associated with AMD (nominal P value <10−7). In individuals homozygous for the risk allele, the likelihood of AMD is increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing revealed a polymorphism in linkage disequilibrium with the risk allele representing a tyrosine-histidine change at amino acid 402. This polymorphism is in a region of CFH that binds heparin and C-reactive protein. The CFH gene is located on chromosome 1 in a region repeatedly linked to AMD in family-based studies. PMID:15761122

  19. Translational strategies in aging and age-related disease.

    PubMed

    Armanios, Mary; de Cabo, Rafael; Mannick, Joan; Partridge, Linda; van Deursen, Jan; Villeda, Saul

    2015-12-01

    Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine. PMID:26646495

  20. Targeting MAPK Signaling in Age-Related Macular Degeneration

    PubMed Central

    Kyosseva, Svetlana V.

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease. PMID:27385915

  1. A Revised Hemodynamic Theory of Age-Related Macular Degeneration.

    PubMed

    Gelfand, Bradley D; Ambati, Jayakrishna

    2016-08-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  2. Complement factor H polymorphism and age-related macular degeneration.

    PubMed

    Edwards, Albert O; Ritter, Robert; Abel, Kenneth J; Manning, Alisa; Panhuysen, Carolien; Farrer, Lindsay A

    2005-04-15

    Age-related macular degeneration (AMD) is a common, late-onset, and complex trait with multiple risk factors. Concentrating on a region harboring a locus for AMD on 1q25-31, the ARMD1 locus, we tested single-nucleotide polymorphisms for association with AMD in two independent case-control populations. Significant association (P = 4.95 x 10(-10)) was identified within the regulation of complement activation locus and was centered over a tyrosine-402 --> histidine-402 protein polymorphism in the gene encoding complement factor H. Possession of at least one histidine at amino acid position 402 increased the risk of AMD 2.7-fold and may account for 50% of the attributable risk of AMD. PMID:15761121

  3. Age-Related Macular Degeneration: Insights into Inflammatory Genes

    PubMed Central

    Ragazzo, Michele; Missiroli, Filippo; Borgiani, Paola; Angelucci, Francesco; Marsella, Luigi Tonino; Cusumano, Andrea; Novelli, Giuseppe; Ricci, Federico; Giardina, Emiliano

    2014-01-01

    Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old). AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension). In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species) have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2) that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines), immune cells (macrophages), and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression. PMID:25478207

  4. Age-related differences in arithmetic strategy sequential effects.

    PubMed

    Lemaire, Patrick

    2016-03-01

    In this article, I review a series of new findings concerning how age-related changes in strategic variations are modulated by sequential effects. Sequential effects refer to how strategy selection and strategy execution on current problems are influenced by which strategy is used on immediately preceding problems. Two sequential effects during strategy selection (i.e., strategy revisions and strategy perseverations) and during strategy execution (i.e., strategy switch costs and modulations of poorer strategy effects) are presented. I also discuss how these effects change with age during adulthood. These phenomena are important, as they shed light on arithmetic processes and how these processes change with age during adulthood. In particular, they speak to the role of executive control while participants select and execute arithmetic strategies. Finally, I discuss the implications of sequential effects for theories of strategies and of arithmetic. (PsycINFO Database Record PMID:26372058

  5. Gene Therapies for Neovascular Age-Related Macular Degeneration.

    PubMed

    Pechan, Peter; Wadsworth, Samuel; Scaria, Abraham

    2015-07-01

    Pathological neovascularization is a key component of the neovascular form (also known as the wet form) of age-related macular degeneration (AMD) and proliferative diabetic retinopathy. Several preclinical studies have shown that antiangiogenesis strategies are effective for treating neovascular AMD in animal models. Vascular endothelial growth factor (VEGF) is one of the main inducers of ocular neovascularization, and several clinical trials have shown the benefits of neutralizing VEGF in patients with neovascular AMD or diabetic macular edema. In this review, we summarize several preclinical and early-stage clinical trials with intraocular gene therapies, which have the potential to reduce or eliminate the repeated intravitreal injections that are currently required for the treatment of neovascular AMD. PMID:25524721

  6. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  7. Age-related macular degeneration: Evidence of a major gene

    SciTech Connect

    Bhatt, S.; Warren, C.; Yang, H.

    1994-09-01

    Age-related macular degeneration is a major cause of blindness in developing countries. It remains a very poorly understood disorder. Although environmental and genetic factors have been implicated in its pathogenesis, none have been firmly implicated. The purpose of this study was to use pedigree analysis to evaluate the possible role of a major gene as a determinant of familial aggregation. Information was collected regarding occupation, smoking, sun exposure, associated medical problems and family history. 50 probands with age-related macular degeneration (ARMD) and 39 age, race and sex-matched controls were included in the study. In the ARMD group 15/50 (30%) of probands reported a positive family history; 22 out of 222 first degree relatives over age 60 were reported to be affected. In the control groups, none of the 138 first degree relatives over age 50 had a history of ARMD. This difference is statistically significant (p = 0.0003), indicating that genetic factors may play an important role in the pathogenesis of ARMD. In the ARMD group more siblings as compared to parents (16/127 vs. 5/82) were affected. 5/50 (10%) of the ARMD probands also gave a history of a second degree relative affected with ARMD, compared to none known among the relatives of controls. Data from 50 pedigrees were analyzed by complex segregation analysis under a class A regressive logistic model using the REGD program implemented in the SAGE package. Preliminary results allow rejection of a polygenic model and suggest there is a major gene for ARMD in these families. The inheritance model most compatible with the observed familial aggregation is autosomal recessive. In conclusion, these results are suggestive of a major gene effect in the etiology of ARMD. Identification of a major gene effect is a first step to further pursue linkage analysis and to search for the gene(s) involved in the causation of ARMD.

  8. Genetic risk factors and age-related macular degeneration (AMD)

    PubMed Central

    Mousavi, Maryam; Armstrong, Richard A.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make lifestyle choices that may reduce the risk of disease. Collaboration between geneticists, ophthalmologists, and optometrists suggests that genetic risk factors play a more significant role in AMD than previously thought. The most important genes are associated with immune system modulation and the complement system, e.g., complement factor H (CFH), factor B (CFB), factor C3, and serpin peptidase inhibitor (SERPING1). Genes associated with membrane transport, e.g., ATP-binding cassette protein (ABCR) and voltage-dependent calcium channel gamma 3 (CACNG3), the vascular system, e.g., fibroblast growth factor 2 (FGF2), fibulin-5, lysyl oxidase-like gene (LOXL1) and selectin-P (SELP), and with lipid metabolism, e.g., apolipoprotein E (APOE) and hepatic lipase (LIPC) have also been implicated. In addition, several other genes exhibit some statistical association with AMD, e.g., age-related maculopathy susceptibility protein 2 (ARMS2) and DNA excision repair protein gene (ERCC6) but more research is needed to establish their significance. Modifiable risk factors for AMD should be discussed with patients whose lifestyle and/or family history place them in an increased risk category. Furthermore, calculation of AMD risk using current models should be recommended as a tool for patient education. It is likely that AMD management in future will be increasingly influenced by assessment of genetic risk as such screening methods become more widely available.

  9. Age-related oxidative modifications of transthyretin modulate its amyloidogenicity

    PubMed Central

    Zhao, Lei; Buxbaum, Joel N; Reixach, Natàlia

    2013-01-01

    The transthyretin amyloidoses are diseases of protein misfolding characterized by the extracellular deposition of fibrils and other aggregates of the homotetrameric protein transthyretin (TTR) in peripheral nerves, heart and other tissues. Age is the major risk factor for the development of these diseases. We hypothesized that an age-associated increase in protein oxidation could be involved in the onset of the senile forms of the TTR amyloidoses. To test this hypothesis we have produced and characterized relevant age-related oxidative modifications of wild type (WT) and the Val122Ile (V122I) TTR variant, both involved in cardiac TTR deposition in the elderly. Our studies show that methionine/cysteine oxidized TTR and carbonylated TTR either from WT or the V122I variant, are thermodynamically less stable than their non-oxidized counterparts. Moreover, carbonylated WT and carbonylated V122I TTR have a greater propensity to form aggregates and fibrils than WT and V122I TTR, respectively, at physiologically attainable pH. It is well known that TTR tetramer dissociation, the limiting step for aggregation and amyloid fibril formation, can be prevented by small molecules that bind the TTR tetramer interface. Here, we report that carbonylated WT TTR is less amenable to resveratrol-mediated tetramer stabilization than WT TTR. All the oxidized forms of TTR tested are cytotoxic to a human cardiomyocyte cell line known to be a target for cardiac-specific TTR variants. Overall these studies demonstrate that age-related oxidative modifications of TTR can contribute to the onset of the senile forms of the TTR amyloidoses. PMID:23414091

  10. Age-related oxidative modifications of transthyretin modulate its amyloidogenicity.

    PubMed

    Zhao, Lei; Buxbaum, Joel N; Reixach, Natàlia

    2013-03-19

    The transthyretin amyloidoses are diseases of protein misfolding characterized by the extracellular deposition of fibrils and other aggregates of the homotetrameric protein transthyretin (TTR) in peripheral nerves, heart, and other tissues. Age is the major risk factor for the development of these diseases. We hypothesized that an age-associated increase in the level of protein oxidation could be involved in the onset of the senile forms of the TTR amyloidoses. To test this hypothesis, we have produced and characterized relevant age-related oxidative modifications of the wild type (WT) and the Val122Ile (V122I) TTR variant, both involved in cardiac TTR deposition in the elderly. Our studies show that methionine/cysteine-oxidized TTR and carbonylated TTR from either the WT or the V122I variant are thermodynamically less stable than their nonoxidized counterparts. Moreover, carbonylated WT and carbonylated V122I TTR have a stronger propensity to form aggregates and fibrils than WT and V122I TTR, respectively, at physiologically attainable pH values. It is well-known that TTR tetramer dissociation, the limiting step for aggregation and amyloid fibril formation, can be prevented by small molecules that bind the TTR tetramer interface. Here, we report that carbonylated WT TTR is less amenable to resveratrol-mediated tetramer stabilization than WT TTR. All the oxidized forms of TTR tested are cytotoxic to a human cardiomyocyte cell line known to be a target for cardiac-specific TTR variants. Overall, these studies demonstrate that age-related oxidative modifications of TTR can contribute to the onset of the senile forms of the TTR amyloidoses. PMID:23414091

  11. Age-related vascular stiffening: causes and consequences

    PubMed Central

    Kohn, Julie C.; Lampi, Marsha C.; Reinhart-King, Cynthia A.

    2015-01-01

    Arterial stiffening occurs with age and is closely associated with the progression of cardiovascular disease. Stiffening is most often studied at the level of the whole vessel because increased stiffness of the large arteries can impose increased strain on the heart leading to heart failure. Interestingly, however, recent evidence suggests that the impact of increased vessel stiffening extends beyond the tissue scale and can also have deleterious microscale effects on cellular function. Altered extracellular matrix (ECM) architecture has been recognized as a key component of the pre-atherogenic state. Here, the underlying causes of age-related vessel stiffening are discussed, focusing on age-related crosslinking of the ECM proteins as well as through increased matrix deposition. Methods to measure vessel stiffening at both the macro- and microscale are described, spanning from the pulse wave velocity measurements performed clinically to microscale measurements performed largely in research laboratories. Additionally, recent work investigating how arterial stiffness and the changes in the ECM associated with stiffening contributed to endothelial dysfunction will be reviewed. We will highlight how changes in ECM protein composition contribute to atherosclerosis in the vessel wall. Lastly, we will discuss very recent work that demonstrates endothelial cells (ECs) are mechano-sensitive to arterial stiffening, where changes in stiffness can directly impact EC health. Overall, recent studies suggest that stiffening is an important clinical target not only because of potential deleterious effects on the heart but also because it promotes cellular level dysfunction in the vessel wall, contributing to a pathological atherosclerotic state. PMID:25926844

  12. Variations of CT-Based Trunk Muscle Attenuation by Age, Sex, and Specific Muscle

    PubMed Central

    Anderson, Dennis E.

    2013-01-01

    Background. Fat accumulation in muscle may contribute to age-related declines in muscle function and is indicated by reduced attenuation of x-rays by muscle tissue in computed tomography scans. Reduced trunk muscle attenuation is associated with poor physical function, low back pain, and increased hyperkyphosis in older adults. However, variations in trunk muscle attenuation with age, sex and between specific muscles have not been investigated. Methods. A cross-sectional examination of trunk muscle attenuation in computed tomography scans was performed in 60 younger (35–50 years) and 60 older (75–87 years) adults randomly selected from participants in the Framingham Heart Study Offspring and Third Generation Multidetector Computed Tomography Study. Computed tomography attenuation of 11 trunk muscles was measured at vertebral levels T8 and L3, and the effects of age, sex, and specific muscle on computed tomography attenuation of trunk muscles were determined. Results. Muscle attenuation varied by specific muscle (p < .001), was lower in older adults (p < .001), and was generally lower in women than in men (p < .001), although not in all muscles. Age-related differences in muscle attenuation varied with specific muscle (p < .001), with the largest age differences occurring in the paraspinal and abdominal muscles. Conclusions. Trunk muscle attenuation is lower in older adults than in younger adults in both women and men, but such age-related differences vary widely between muscle groups. The reasons that some muscles exhibit larger age-related differences in fat content than others should be further explored to better understand age-related changes in functional capacity and postural stability. PMID:22904095

  13. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    PubMed Central

    2011-01-01

    Age-related muscle wasting (sarcopenia) is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i) elevated basal-fasted rates of muscle protein breakdown, ii) a reduction in basal muscle protein synthesis (MPS), or iii) a combination of the two factors. However, basal rates of muscle protein synthesis and breakdown are unchanged with advancing healthy age. Instead, it appears that the muscles of the elderly are resistant to normally robust anabolic stimuli such as amino acids and resistance exercise. Ageing muscle is less sensitive to lower doses of amino acids than the young and may require higher quantities of protein to acutely stimulate equivalent muscle protein synthesis above rest and accrue muscle proteins. With regard to dietary protein recommendations, emerging evidence suggests that the elderly may need to distribute protein intake evenly throughout the day, so as to promote an optimal per meal stimulation of MPS. The branched-chain amino acid leucine is thought to play a central role in mediating mRNA translation for MPS, and the elderly should ensure sufficient leucine is provided with dietary protein intake. With regards to physical activity, lower, than previously realized, intensity high-volume resistance exercise can stimulate a robust muscle protein synthetic response similar to traditional high-intensity low volume training, which may be beneficial for older adults. Resistance exercise combined with amino acid ingestion elicits the greatest anabolic response and may assist elderly in producing a 'youthful' muscle protein synthetic response provided sufficient protein is ingested following exercise. PMID:21975196

  14. Laminar organization and age-related loss of cholinergic receptors in temporal neocortex of rhesus monkey.

    PubMed

    Wagster, M V; Whitehouse, P J; Walker, L C; Kellar, K J; Price, D L

    1990-09-01

    Using in vitro receptor autoradiography, the distributions of cholinergic muscarinic [3H-N-methyl scopolamine (NMS), 3H-pirenzepine (PZ), and 3H-oxotremorine-M (OXO-M)] and nicotinic [3H-acetylcholine (ACh)] receptors were mapped in the temporal cortices of rhesus monkeys (Macaca mulatta) ranging from 2-22 years of age. Although high-affinity 3H-PZ, low-affinity 3H-NMS binding (M1 sites) and high-affinity 3H-OXO-M, high-affinity 3H-NMS binding (M2 sites) occurred across all layers of the temporal neocortex, the laminar distribution of M1 and M2 receptor binding sites was different. M1 muscarinic receptor binding was concentrated in layers II and III, whereas M2 muscarinic receptor binding was greatest in layers IV and V. The concentration of both muscarinic (M1 and M2) and nicotinic receptor binding sites declined with increasing age, and decrements were uniform across all cortical layers. This investigation provides evidence for a decrease in cholinergic receptor binding with age in temporal cortices of rhesus monkeys. Moreover, these changes appear to precede previously reported age-associated memory deficits and neuropathological changes that occur in this species. PMID:2398366

  15. Age-related loss of the DNA repair response following exposure to oxidative stress.

    PubMed

    Cabelof, Diane C; Raffoul, Julian J; Ge, Yubin; Van Remmen, Holly; Matherly, Larry H; Heydari, Ahmad R

    2006-05-01

    Young (4- to 6-month-old) and aged (24- to 28-month-old) mice were exposed to 2-nitropropane (2-NP), a DNA oxidizing agent, and the ability to induce DNA polymerase beta (beta-pol) and AP endonuclease (APE) was determined. In contrast to the inducibility of these gene products in response to oxidative damage in young mice, aged mice showed a lack of inducibility of beta-pol and APE. APE protein level and endonuclease activity were both reduced 40% (p<.01) in response to 2-NP. Accordingly, the accumulation of DNA repair intermediates in response to 2-NP differed with age. Young animals accumulated 3'OH-containing DNA strand breaks, whereas the aged animals did not. A role for p53 in the difference in DNA damage response with age is suggested by the observation that the accumulation of p53 protein in response to DNA damage in young animals was absent in the aged animals. Our results are consistent with a reduced ability to process DNA damage with age. PMID:16720738

  16. The fragile elderly hip: Mechanisms associated with age-related loss of strength and toughness☆

    PubMed Central

    Reeve, Jonathan; Loveridge, Nigel

    2014-01-01

    Every hip fracture begins with a microscopic crack, which enlarges explosively over microseconds. Most hip fractures in the elderly occur on falling from standing height, usually sideways or backwards. The typically moderate level of trauma very rarely causes fracture in younger people. Here, this paradox is traced to the decline of multiple protective mechanisms at many length scales from nanometres to that of the whole femur. With normal ageing, the femoral neck asymmetrically and progressively loses bone tissue precisely where the cortex is already thinnest and is also compressed in a sideways fall. At the microscopic scale of the basic remodelling unit (BMU) that renews bone tissue, increased numbers of actively remodelling BMUs associated with the reduced mechanical loading in a typically inactive old age augments the numbers of mechanical flaws in the structure potentially capable of initiating cracking. Menopause and over-deep osteoclastic resorption are associated with incomplete BMU refilling leading to excessive porosity, cortical thinning and disconnection of trabeculae. In the femoral cortex, replacement of damaged bone or bone containing dead osteocytes is inefficient, impeding the homeostatic mechanisms that match strength to habitual mechanical usage. In consequence the participation of healthy osteocytes in crack-impeding mechanisms is impaired. Observational studies demonstrate that protective crack deflection in the elderly is reduced. At the most microscopic levels attention now centres on the role of tissue ageing, which may alter the relationship between mineral and matrix that optimises the inhibition of crack progression and on the role of osteocyte ageing and death that impedes tissue maintenance and repair. This review examines recent developments in the understanding of why the elderly hip becomes fragile. This growing understanding is suggesting novel testable approaches for reducing risk of hip fracture that might translate into control of the growing worldwide impact of hip fractures on our ageing populations. PMID:24412288

  17. The Effects of Rapid Weight Loss and Attempted Rehydration on Strength and Endurance of the Handgripping Muscles in College Wrestlers.

    ERIC Educational Resources Information Center

    Serfass, Robert C.; And Others

    1984-01-01

    Because of the continued prevalence of rapid weight reduction by wrestlers, this study attempted to determine if college wrestlers' strength and muscular endurance were affected by either rehydration or dehydration. Results showed that a loss of five percent of body weight over three days did not affect strength or endurance levels. (JMK)

  18. Age-Related Changes in Strength, Joint Laxity, and Walking Patterns: Are They Related to Knee Osteoarthritis?

    PubMed Central

    Rudolph, Katherine S; Schmitt, Laura C; Lewek, Michael D

    2008-01-01

    Background and Purpose Aging is associated with musculoskeletal changes and altered walking patterns. These changes are common in people with knee osteoarthritis (OA) and may precipitate the development of OA. We examined age-related changes in musculoskeletal structures and walking patterns to better understand the relationship between aging and knee OA. Methods Forty-four individuals without OA (15 younger, 15 middle-aged, 14 older adults) and 15 individuals with medial knee OA participated. Knee laxity, quadriceps femoris muscle strength (force-generating capacity), and gait were assessed. Results Medial laxity was greater in the OA group, but there were no differences between the middle-aged and older control groups. Quadriceps femoris strength was less in the older control group and in the OA group. During the stance phase of walking, the OA group demonstrated less knee flexion and greater knee adduction, but there were no differences in knee motion among the control groups. During walking, the older control group exhibited greater quadriceps femoris muscle activity and the OA group used greater muscle co-contraction. Discussion and Conclusion Although weaker, the older control group did not use truncated motion or higher co-contraction. The maintenance of movement patterns that were similar to the subjects in the young control group may have helped to prevent development of knee OA. Further investigation is warranted regarding age-related musculoskeletal changes and their influence on the development of knee OA. PMID:17785376

  19. NMR based biomarkers to study age-related changes in the human quadriceps.

    PubMed

    Azzabou, Noura; Hogrel, Jean-Yves; Carlier, Pierre G

    2015-10-01

    Age-related sarcopenia is a major health issue. To improve elderly person quality of life, it is important to characterize age-associated structural changes within the skeletal muscle. NMR imaging offers quantitative tools to monitor these changes. We scanned 93 subjects: 33 young adults aged between 19 and 27 years old and 60 older adults between 69 and 80 years old. Their physical activity was assessed using a tri-axial accelerometer and they were classified either as active or sedentary. A standard multi-slice multi-echo (MSME) sequence was run and water T2 maps were extracted using a tri-exponential fit. Fat fraction was quantified using three-point Dixon technique. Each quadriceps muscle was characterized by: water T2 mean value, water T2 heterogeneity and the mean fat fraction. Statistical analysis (ANOVA) showed that water T2 mean values and its heterogeneity indices as well as fat fraction were significantly higher in the elderly group (p<0.05). Only fat fraction was significantly lower in the active group compared to the sedentary one (p<0.05). Linear regression confirmed the significant impact of age on these NMR parameters whereas physical activity impact was not systematic. NMR imaging provided a comprehensive assessment of the aging process impact on skeletal muscle composition. Water T2 increase might be related to changes in fiber typology while increased T2 heterogeneities might correlate with some degree of tissue disorganization, like the development of interstitial fibrosis. Fat fraction and water T2 heterogeneity increase was partly slowed down by physical activity. These changes were not gender dependent. PMID:26122131

  20. Absence of collagen XVIII in mice causes age-related insufficiency in retinal pigment epithelium proteostasis.

    PubMed

    Kivinen, Niko; Felszeghy, Szabolcs; Kinnunen, Aino I; Setälä, Niko; Aikio, Mari; Kinnunen, Kati; Sironen, Reijo; Pihlajaniemi, Taina; Kauppinen, Anu; Kaarniranta, Kai

    2016-08-01

    Collagen XVIII has the structural properties of both collagen and proteoglycan. It has been found at the basement membrane/stromal interface where it is thought to mediate their attachment. Endostatin, a proteolytic fragment from collagen XVIII C-terminal end has been reported to possess anti-angiogenic properties. Age-related vision loss in collagen XVIII mutant mice has been accompanied with a pathological accumulation of deposits under the retinal pigment epithelium (RPE). We have recently demonstrated that impaired proteasomal and autophagy clearance are associated with the pathogenesis of age-related macular degeneration. This study examined the staining levels of proteasomal and autophagy markers in the RPE of different ages of the Col18a1 (-/-) mice. Eyes from 3, 6-7, 10-13 and 18 months old mice were enucleated and embedded in paraffin according to the routine protocol. Sequential 5 μm-thick parasagittal samples were immunostained for proteasome and autophagy markers ubiquitin (ub), SQSTM1/p62 and beclin-1. The levels of immunopositivity in the RPE cells were evaluated by confocal microscopy. Collagen XVIII knock-out mice had undergone age-related RPE degeneration accompanied by an accumulation of drusen-like deposits. Ub protein conjugate staining was prominent in both RPE cytoplasm and extracellular space whereas SQSTM1/p62 and beclin-1 stainings were clearly present in the basal part of RPE cell cytoplasm in the Col18a1 (-/-) mice. SQSTM1/p62 displayed mild extracellular space staining. Disturbed proteostasis regulated by collagen XVIII might be responsible for the RPE degeneration, increased protein aggregation, ultimately leading to choroidal neovascularization. PMID:27125427

  1. Blueberry-enriched diet ameliorates age-related declines in NMDA receptor-dependent LTP

    PubMed Central

    Bickford, Paula C.; Browning, Michael D.

    2008-01-01

    NMDA receptor-dependent long-term potentiation (LTP) in the hippocampus is widely accepted as a cellular substrate for memory formation. Age-related declines in the expression of both NMDAR-dependent LTP and NMDAR subunit proteins in the CA1 region of the hippocampus have been well characterized and likely underlie age-related memory impairment. In the current study, we examined NMDAR-dependent LTP in young Fischer 344 rats (4 months old) and aged rats (24 months old) given either a control diet or a diet supplemented with blueberry extract for 6–8 weeks. NMDAR-dependent LTP was evoked by high-frequency stimulation (HFS) in the presence of nifedipine, to eliminate voltage-gated calcium channel LTP. Field excitatory postsynaptic potentials (fEPSPs) were increased by 57% 1 h after HFS in young animals, but this potentiation was reduced to 31% in aged animals. Supplementation of the diet with blueberry extract elevated LTP (63%) in aged animals to levels seen in young. The normalization of LTP may be due to the blueberry diet preventing a decline in synaptic strength, as measured by the slope of the fEPSP for a given fiber potential. The blueberry diet did not prevent age-related declines in NMDAR protein expression. However, phosphorylation of a key tyrosine residue on the NR2B subunit, important for increasing NMDAR function, was enhanced by the diet, suggesting that an increase in NMDAR function might overcome the loss in protein. This report provides evidence that dietary alterations later in life may prevent or postpone the cognitive declines associated with aging. PMID:19424850

  2. Experimental evidence of age-related adaptive changes in human acinar airways.

    PubMed

    Quirk, James D; Sukstanskii, Alexander L; Woods, Jason C; Lutey, Barbara A; Conradi, Mark S; Gierada, David S; Yusen, Roger D; Castro, Mario; Yablonskiy, Dmitriy A

    2016-01-15

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized (3)He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized (3)He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  3. Age-related changes and diseases of the ocular surface and cornea.

    PubMed

    Gipson, Ilene K

    2013-12-01

    Aging of the ocular surface and corneal tissues, major components of the visual system, causes major eye disease and results in substantial cost in medical and social terms. These diseases include the highly prevalent dry eye disease that affects the ocular surface and its glands, leading to tear film alterations, discomfort, and decreased vision. Studies show that 14.4% of the population in the United States older than 50 years have dry eye disease and demonstrate that it is particularly prevalent among women. Annual medical costs per patient with dry eye in the United States are estimated at $783 per year, with an overall medical cost adjusted to prevalence of $3.84 billion per year. Societal costs, which include loss of productivity, are estimated per patient at $11,302 per year, with overall costs adjusted to prevalence of $55.4 billion per year. Because there are few effective treatments for the disease, more research on its etiology and mechanisms is warranted and needed. Increased public education about risk factors for the disease is also required. Another major age-related eye disease of the cornea that leads to vision impairment and potentially blindness if left untreated is Fuchs' endothelial corneal dystrophy. This disease leads to loss of the endothelial cells on the internal side of the cornea that are responsible for keeping the cornea in the proper hydration state to ensure its transparency to light. The mechanism of cell loss is unknown, and the only treatment available to date is surgical transplantation of the cornea or inner part of the cornea. These medically costly procedures require donor corneas, eye banking, and medical follow-up, with accrued costs. Fuchs' endothelial corneal dystrophy is a major cause of corneal transplantation in the United States; therefore, research support is needed to determine the mechanism of this age-related disease, to develop medical, nonsurgical methods for treatment. PMID:24335068

  4. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia

    PubMed Central

    Pannérec, Alice; Ireland, Alex; Piasecki, Mathew; Karaz, Sonia; Jacot, Guillaume; Métairon, Sylviane; Danenberg, Esther; Raymond, Frédéric; Descombes, Patrick; McPhee, Jamie S.; Feige, Jerome N.

    2016-01-01

    Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process. PMID:27019136

  5. Propeptide-mediated inhibition of myostatin increases muscle mass through inhibiting proteolytic pathways in aged mice.

    PubMed

    Collins-Hooper, Henry; Sartori, Roberta; Macharia, Raymond; Visanuvimol, Korntip; Foster, Keith; Matsakas, Antonios; Flasskamp, Hannah; Ray, Steve; Dash, Philip R; Sandri, Marco; Patel, Ketan

    2014-09-01

    Mammalian aging is accompanied by a progressive loss of skeletal muscle, a process called sarcopenia. Myostatin, a secreted member of the transforming growth factor-β family of signaling molecules, has been shown to be a potent inhibitor of muscle growth. Here, we examined whether muscle growth could be promoted in aged animals by antagonizing the activity of myostatin through the neutralizing activity of the myostatin propeptide. We show that a single injection of an AAV8 virus expressing the myostatin propeptide induced an increase in whole body weights and all muscles examined within 7 weeks of treatment. Our cellular studies demonstrate that muscle enlargement was due to selective fiber type hypertrophy, which was accompanied by a shift toward a glycolytic phenotype. Our molecular investigations elucidate the mechanism underpinning muscle hypertrophy by showing a decrease in the expression of key genes that control ubiquitin-mediated protein breakdown. Most importantly, we show that the hypertrophic muscle that develops as a consequence of myostatin propeptide in aged mice has normal contractile properties. We suggest that attenuating myostatin signaling could be a very attractive strategy to halt and possibly reverse age-related muscle loss. PMID:24414825

  6. Age-related thermal response: the cellular resilience of juveniles.

    PubMed

    Clark, M S; Thorne, M A S; Burns, G; Peck, L S

    2016-01-01

    Understanding species' responses to environmental challenges is key to predicting future biodiversity. However, there is currently little data on how developmental stages affect responses and also whether universal gene biomarkers to environmental stress can be identified both within and between species. Using the Antarctic clam, Laternula elliptica, as a model species, we examined both the tissue-specific and age-related (juvenile versus mature adult) gene expression response to acute non-lethal warming (12 h at 3 °C). In general, there was a relatively muted response to this sub-lethal thermal challenge when the expression profiles of treated animals, of either age, were compared with those of 0 °C controls, with none of the "classical" stress response genes up-regulated. The expression profiles were very variable between the tissues of all animals, irrespective of age with no single transcript emerging as a universal biomarker of thermal stress. However, when the expression profiles of treated animals of the different age groups were directly compared, a very different pattern emerged. The profiles of the younger animals showed significant up-regulation of chaperone and antioxidant transcripts when compared with those of the older animals. Thus, the younger animals showed evidence of a more robust cellular response to warming. These data substantiate previous physiological analyses showing a more resilient juvenile population. PMID:26364303

  7. Ocular Surface Temperature in Age-Related Macular Degeneration

    PubMed Central

    Sodi, Andrea; Giacomelli, Giovanni; Corvi, Andrea; Menchini, Ugo

    2014-01-01

    Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD) eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320). The ocular surface temperature (OST) of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA) test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272). OST in AMD patients was significantly lower than in controls (P > 0.05). Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD. PMID:25436140

  8. Age-Related Macular Degeneration: A Scientometric Analysis

    PubMed Central

    Ramin, Shahrokh; Soheilian, Masoud; Habibi, Gholamreza; Ghazavi, Roghayeh; Gharebaghi, Reza; Heidary, Fatemeh

    2015-01-01

    Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject. The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993–2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic’s structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed. The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research. Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning. PMID:26060829

  9. Proinflammatory cytokines, aging, and age-related diseases.

    PubMed

    Michaud, Martin; Balardy, Laurent; Moulis, Guillaume; Gaudin, Clement; Peyrot, Caroline; Vellas, Bruno; Cesari, Matteo; Nourhashemi, Fati

    2013-12-01

    Inflammation is a physiological process that repairs tissues in response to endogenous or exogenous aggressions. Nevertheless, a chronic state of inflammation may have detrimental consequences. Aging is associated with increased levels of circulating cytokines and proinflammatory markers. Aged-related changes in the immune system, known as immunosenescence, and increased secretion of cytokines by adipose tissue, represent the major causes of chronic inflammation. This phenomenon is known as "inflamm-aging." High levels of interleukin (IL)-6, IL-1, tumor necrosis factor-α, and C-reactive protein are associated in the older subject with increased risk of morbidity and mortality. In particular, cohort studies have indicated TNF-α and IL-6 levels as markers of frailty. The low-grade inflammation characterizing the aging process notably concurs at the pathophysiological mechanisms underlying sarcopenia. In addition, proinflammatory cytokines (through a variety of mechanisms, such as platelet activation and endothelial activation) may play a major role in the risk of cardiovascular events. Dysregulation of the inflammatory pathway may also affect the central nervous system and be involved in the pathophysiological mechanisms of neurodegenerative disorders (eg, Alzheimer disease).The aim of the present review was to summarize different targets of the activity of proinflammatory cytokines implicated in the risk of pathological aging. PMID:23792036

  10. Mathematical morphologic analysis of aging-related epidermal changes.

    PubMed

    Moragas, A; Castells, C; Sans, M

    1993-04-01

    Fractographic techniques based on mathematical morphology were used to study aging-related epidermal changes in abdominal skin samples obtained from 96 autopsy cases. Three linear roughness indices were evaluated for the rete peg profile and the shrinkage effect on the basal layer and interface between the granular and horny layers. Elderly subjects had a 36.3% decrease in rete peg-related roughness index when compared with younger subjects. This roughness index has been corrected, with shrinkage due to skin elasticity taken into account. For females, fitting of a logistic decay function yielded a curve with right and left asymptotes and a steeper descent between 40 and 60 years. Half value time--i.e., the time when half rete peg profile flattening occurred--was 46.8 years. In contrast, males showed almost monotonical decay. Epidermal thickness measured between rete pegs showed the same exponential decline for both sexes, with values from 22.6 to 11.4 microns. Skin shrinkage in elderly subjects decreased 22% in superficial layers and only 6% in the lower epidermis. In both cases shrinkage had a linear relation with age, and no sex differences were found. PMID:8318130

  11. Seven New Loci Associated with Age-Related Macular Degeneration

    PubMed Central

    2013-01-01

    Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate understanding of AMD biology and help design new therapies, we executed a collaborative genomewide association study, examining >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with AMD with p<5×10−8 and enriched for genes involved in regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching p<5×10−8 for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all loci displayed similar good ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD. PMID:23455636

  12. Pachychoroid neovasculopathy and age-related macular degeneration

    PubMed Central

    Miyake, Masahiro; Ooto, Sotaro; Yamashiro, Kenji; Takahashi, Ayako; Yoshikawa, Munemitsu; Akagi-Kurashige, Yumiko; Ueda-Arakawa, Naoko; Oishi, Akio; Nakanishi, Hideo; Tamura, Hiroshi; Tsujikawa, Akitaka; Yoshimura, Nagahisa

    2015-01-01

    Pachychoroid neovasculopathy is a recently proposed clinical entity of choroidal neovascularization (CNV). As it often masquerades as neovascular age-related macular degeneration (AMD), it is currently controversial whether pachychoroid neovasculopathy should be distinguished from neovascular AMD. This is because its characteristics have yet to be well described. To estimate the relative prevalence of pachychoroid neovasculopathy in comparison with neovascular AMD and to investigate the phenotypic/genetic differences of the two diseases, we evaluated 200 consecutive Japanese patients who agreed to participate in the genetic study and diagnosed with pachychoroid neovasculopathy or neovascular AMD. Pachychoroid neovasculopathy was observed in 39 individuals (19.5%), which corresponds to one fourth of neovascular AMD. Patients with pachychoroid neovasculopathy were significantly younger (p = 5.1 × 10−5) and showed a greater subfoveal choroidal thickness (p = 3.4 × 10−14). Their genetic susceptibility to AMD was significantly lower than that of neovascular AMD; ARMS2 rs10490924 (p = 0.029), CFH rs800292 (p = 0.013) and genetic risk score calculated from 11 AMD susceptibility genes (p = 3.8 × 10−3). Current results implicate that the etiologies of the two conditions must be different. Thus, it will be necessary to distinguish these two conditions in future studies. PMID:26542071

  13. Angiofluorographic aspects in age-related macular degeneration

    PubMed Central

    Tomi, A; Marin, I

    2014-01-01

    Although AMD (age-related macular degeneration) has been described for over 100 years, there is neither a standard agreement on the definition of specific lesions nor a generally accepted classification system. For example, the age limits for AMD varied widely in different clinical studies; the methods used for examination also vary (visual acuity, perimetry, contrast sensitivity, slit lamp examination of the fundus, retinal photography, fluorescein angiography, indocyanine green angiography). We described the multitude of angiofluorographic aspects in patients with AMD and conceived a classification to be easily used in clinical practice. Although a detailed ophthalmoscopy can often identify the characteristic lesions of AMD, a complete picture is obtained by fluorescein angiography. The angiographic classification of AMD is structured similarly to the clinical one. It has two main patterns, non-exudative and exudative lesions, but it provides more information about the nature of the lesions. In the last three decades, an impressive amount of information regarding the prevalence, progression and risk factors for AMD has been published. The source of this information is mainly represented by the large population studies that are often multicenter studies. Recognizing the clinical signs of AMD and classifying them into different stages is important for the prognosis and the therapeutical decision, but also for conceiving study protocols. PMID:27057244

  14. Age-Related Changes in Demand-Withdraw Communication Behaviors.

    PubMed

    Holley, Sarah R; Haase, Claudia M; Levenson, Robert W

    2013-08-01

    Demand-withdraw communication is a set of conflict-related behaviors in which one partner blames or pressures while the other partner withdraws or avoids. The present study examined age-related changes in these behaviors longitudinally over the course of later life stages. One hundred twenty-seven middle-aged and older long-term married couples were observed at 3 time points across 13 years as they engaged in a conversation about an area of relationship conflict. Husbands' and wives' demand-withdraw behaviors (i.e., blame, pressure, withdrawal, avoidance) were objectively rated by trained coders at each time point. Data were analyzed using dyad-level latent growth curve models in a structural equation modeling framework. For both husbands and wives, the results showed a longitudinal pattern of increasing avoidance behavior over time and stability in all other demand and withdraw behaviors. This study supports the notion that there is an important developmental shift in the way that conflict is handled in later life. PMID:23913982

  15. Age-related somatic mutations in the cancer genome

    PubMed Central

    Milholland, Brandon; Auton, Adam; Suh, Yousin; Vijg, Jan

    2015-01-01

    Aging is associated with an increased risk of cancer, possibly in part because of an age-related increase in mutations in normal tissues. Due to their extremely low abundance, somatic mutations in normal tissues frequently escape detection. Tumors, as clonal expansions of single cells, can provide information about the somatic mutations present in these cells prior to tumorigenesis. Here, we used data from The Cancer Genome Atlas (TCGA), to systematically study the frequency and spectrum of somatic mutations in a total of 6,969 patients and 34 different tumor types as a function of the age of the patient. After using linear modeling to control for the age structure of different tumor types, we found that the number of identified somatic mutations increases exponentially with age. Using additional data from the literature, we found that accumulation of somatic mutations is associated with cell division rate, cancer risk and cigarette smoking, with the latter also associated with a distinct spectrum of mutations. Our results confirm that aging is associated with the accumulation of somatic mutations, and strongly suggest that the level of genome instability of normal cells, modified by both endogenous and environmental factors, is the main risk factor for cancer. PMID:26384365

  16. Reversal of age-related neural timing delays with training.

    PubMed

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-03-12

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  17. Prevalence of age-related macular degeneration among the elderly

    PubMed Central

    Rasoulinejad, Seyed Ahmad; Zarghami, Amin; Hosseini, Seyed Reza; Rajaee, Neda; Rasoulinejad, Seyed Elahe; Mikaniki, Ebrahim

    2015-01-01

    Background: Age-related macular degeneration (AMD) is the leading cause of visual impairment and blindness in elderly population in the developing countries. Previous epidemiological studies revealed various potential modifiable risk factors for this disease. The purpose of this study was to evaluate the prevalence of AMD among elderly living in Babol, North of Iran. Methods: The study population of this cross-sectional study came from the Amirkola Health and Ageing Project (AHAP), the first comprehensive cohort study of the health of people aged 60 years and over in Amirkola, North of Iran. The prevalence of AMD was estimated and its risk was determined using logistic regression analysis (LRA) with regard to variables such as smoking, hyperlipidemia, hypertension and diabetes. Results: Five hundred and five participants with mean age of 71.55±5.9 (ranged 60-89) years entered the study. The prevalence of AMD was 17.6%. There was a significant association between AMD and smoking (P<0.001) but no association was seen with AMD and age, level of education, history of hyperlipidemia, hypertension and diabetes. Multiple LRAs revealed that smoking increased AMD by odds ratio of 5.03 (95% confidence interval 2.47-10.23 p<0.001) as compared to nonsmokers Conclusion: According to our findings, the prevalence of AMD was relatively high and smoking increased the risk of AMD in the elderly population. PMID:26644880

  18. Functional Visual Acuity in Age-Related Macular Degeneration

    PubMed Central

    Tomita, Yohei; Nagai, Norihiro; Suzuki, Misa; Shinoda, Hajime; Uchida, Atsuro; Mochimaru, Hiroshi; Izumi-Nagai, Kanako; Sasaki, Mariko; Tsubota, Kazuo; Ozawa, Yoko

    2016-01-01

    ABSTRACT Purpose We evaluated whether a functional visual acuity (FVA) system can detect subtle changes in central visual acuity that reflect pathological findings associated with age-related macular degeneration (AMD). Methods Twenty-eight patients with unilateral AMD and logMAR monocular best corrected VA better than 0 in both eyes, as measured by conventional chart examination, were analyzed between November 2012 and April 2013. After measuring conventional VA, FVA, and contrast VA with best correction, routine eye examinations including spectral domain–optical coherence tomography were performed. Standard Schirmer test was performed, and corneal and lens densities were measured. Results The FVA score (p < 0.001) and visual maintenance ratio (p < 0.001) measured by the FVA system, contrast VA (p < 0. 01), and conventional VA (p < 0.01) were significantly worse in the AMD-affected eyes than in the fellow eyes. No significant differences were observed in the anterior segment conditions. Forward stepwise regression analysis demonstrated that the length of interdigitation zone disruption, as visualized by optical coherence tomography imaging, correlated with the FVA score (p < 0.01) but not with any other parameters investigated. Conclusions The FVA system detects subtle changes in best corrected VA in AMD-affected eyes and reflects interdigitation zone disruption, an anatomical change in the retina recorded by optical coherence tomography. Further studies are required to understand the value of the FVA system in detecting subtle changes in AMD. PMID:26583795

  19. Flavonoids and Age Related Disease: Risk, benefits and critical windows

    PubMed Central

    Prasain, JK; Carlson, SH; Wyss, JM

    2010-01-01

    Plant derived products are consumed by a large percentage of the population to prevent, delay and ameliorate disease burden; however, relatively little is known about the efficacy, safety and underlying mechanisms of these traditional health products, especially when taken in concert with pharmaceutical agents. The flavonoids are a group of plant metabolites that are common in the diet and appear to provide some health benefits. While flavonoids are primarily derived from soy, many are found in fruits, nuts and more exotic sources, e.g., kudzu. Perhaps the strongest evidence for the benefits of flavonoids in diseases of aging relates to their effect on components of the metabolic syndrome. Flavonoids from soy, grape seed, kudzu and other sources all lower arterial pressure in hypertensive animal models and in a limited number of tests in humans. They also decrease the plasma concentration of lipids and buffer plasma glucose. The underlying mechanisms appear to include antioxidant actions, central nervous system effects, gut transport alterations, fatty acid sequestration and processing, PPAR activation and increases in insulin sensitivity. In animal models of disease, dietary flavonoids also demonstrate a protective effect against cognitive decline, cancer and metabolic disease. However, research also indicates that the flavonoids can be detrimental in some settings and, therefore, are not universally safe. Thus, as the population ages, it is important to determine the impact of these agents on prevention/attenuation of disease, including optimal exposure (intake, timing/duration) and potential contraindications. PMID:20181448

  20. Reversal of age-related neural timing delays with training

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541